Sample records for cross range capability

  1. Simple tunnel diode circuit for accurate zero crossing timing

    NASA Technical Reports Server (NTRS)

    Metz, A. J.

    1969-01-01

    Tunnel diode circuit, capable of timing the zero crossing point of bipolar pulses, provides effective design for a fast crossing detector. It combines a nonlinear load line with the diode to detect the zero crossing of a wide range of input waveshapes.

  2. Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas.

    PubMed

    Boyarsky, Michael; Sleasman, Timothy; Pulido-Mancera, Laura; Diebold, Aaron V; Imani, Mohammadreza F; Smith, David R

    2018-05-20

    Through aperture synthesis, an electrically small antenna can be used to form a high-resolution imaging system capable of reconstructing three-dimensional (3D) scenes. However, the large spectral bandwidth typically required in synthetic aperture radar systems to resolve objects in range often requires costly and complex RF components. We present here an alternative approach based on a hybrid imaging system that combines a dynamically reconfigurable aperture with synthetic aperture techniques, demonstrating the capability to resolve objects in three dimensions (3D), with measurements taken at a single frequency. At the core of our imaging system are two metasurface apertures, both of which consist of a linear array of metamaterial irises that couple to a common waveguide feed. Each metamaterial iris has integrated within it a diode that can be biased so as to switch the element on (radiating) or off (non-radiating), such that the metasurface antenna can produce distinct radiation profiles corresponding to different on/off patterns of the metamaterial element array. The electrically large size of the metasurface apertures enables resolution in range and one cross-range dimension, while aperture synthesis provides resolution in the other cross-range dimension. The demonstrated imaging capabilities of this system represent a step forward in the development of low-cost, high-performance 3D microwave imaging systems.

  3. A method of predicting the energy-absorption capability of composite subfloor beams

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    A simple method of predicting the energy-absorption capability of composite subfloor beam structure was developed. The method is based upon the weighted sum of the energy-absorption capability of constituent elements of a subfloor beam. An empirical data base of energy absorption results from circular and square cross section tube specimens were used in the prediction capability. The procedure is applicable to a wide range of subfloor beam structure. The procedure was demonstrated on three subfloor beam concepts. Agreement between test and prediction was within seven percent for all three cases.

  4. Joint multifractal analysis based on wavelet leaders

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi-Qiang; Yang, Yan-Hong; Wang, Gang-Jin; Zhou, Wei-Xing

    2017-12-01

    Mutually interacting components form complex systems and these components usually have long-range cross-correlated outputs. Using wavelet leaders, we propose a method for characterizing the joint multifractal nature of these long-range cross correlations; we call this method joint multifractal analysis based on wavelet leaders (MF-X-WL). We test the validity of the MF-X-WL method by performing extensive numerical experiments on dual binomial measures with multifractal cross correlations and bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. Both experiments indicate that MF-X-WL is capable of detecting cross correlations in synthetic data with acceptable estimating errors. We also apply the MF-X-WL method to pairs of series from financial markets (returns and volatilities) and online worlds (online numbers of different genders and different societies) and determine intriguing joint multifractal behavior.

  5. Investigation of sonic boom for the Space Shuttle: Low cross-range orbiter

    NASA Technical Reports Server (NTRS)

    Levy, Lionel L., Jr.; Hicks, Raymond M.; Mendoza, Joel P.

    1993-01-01

    It is desired that the Space Shuttle Orbiter be capable of landing at airports equipped to handle present-day jet transports. Since the majority of such airports are located near heavily populated areas, an investigation has been undertaken to determine whether or not the sonic boom generated during reentry of Space Shuttle Orbiters is potentially a serious problem. The investigation was concerned with the low cross-range orbiter and reentry concept proposed by Faget of the Manned Spacecraft Center (MSC). This report describes the approach used and presents the results obtained to date.

  6. A cross-domain communication resource scheduling method for grid-enabled communication networks

    NASA Astrophysics Data System (ADS)

    Zheng, Xiangquan; Wen, Xiang; Zhang, Yongding

    2011-10-01

    To support a wide range of different grid applications in environments where various heterogeneous communication networks coexist, it is important to enable advanced capabilities in on-demand and dynamical integration and efficient co-share with cross-domain heterogeneous communication resource, thus providing communication services which are impossible for single communication resource to afford. Based on plug-and-play co-share and soft integration with communication resource, Grid-enabled communication network is flexibly built up to provide on-demand communication services for gird applications with various requirements on quality of service. Based on the analysis of joint job and communication resource scheduling in grid-enabled communication networks (GECN), this paper presents a cross multi-domain communication resource cooperatively scheduling method and describes the main processes such as traffic requirement resolution for communication services, cross multi-domain negotiation on communication resource, on-demand communication resource scheduling, and so on. The presented method is to afford communication service capability to cross-domain traffic delivery in GECNs. Further research work towards validation and implement of the presented method is pointed out at last.

  7. Slender body theory programmed for bodies with arbitrary cross section. [including fuselages

    NASA Technical Reports Server (NTRS)

    Werner, J.; Krenkel, A. R.

    1978-01-01

    A computer program developed for determining the subsonic pressure, force, and moment coefficients for a fuselage-type body using slender body theory is described. The program is suitable for determining the angle of attack and sideslipping characteristics of such bodies in the linear range where viscous effects are not predominant. Procedures developed which are capable of treating cross sections with corners or regions of large curvature are outlined.

  8. Trajectory optimization study of a lifting body re-entry vehicle for medium to intermediate range applications

    NASA Astrophysics Data System (ADS)

    Rizvi, S. Tauqeer ul Islam; Linshu, He; ur Rehman, Tawfiq; Rafique, Amer Farhan

    2012-11-01

    A numerical optimization study of lifting body re-entry vehicles is presented for nominal as well as shallow entry conditions for Medium and Intermediate Range applications. Due to the stringent requirement of a high degree of accuracy for conventional vehicles, lifting re-entry can be used to attain the impact at the desired terminal flight path angle and speed and thus can potentially improve accuracy of the re-entry vehicle. The re-entry of a medium range and intermediate range vehicles is characterized by very high negative flight path angle and low re-entry speed as compared to a maneuverable re-entry vehicle or a common aero vehicle intended for an intercontinental range. Highly negative flight path angles at the re-entry impose high dynamic pressure as well as heat loads on the vehicle. The trajectory studies are carried out to maximize the cross range of the re-entry vehicle while imposing a maximum dynamic pressure constraint of 350 KPa with a 3 MW/m2 heat rate limit. The maximum normal acceleration and the total heat load experienced by the vehicle at the stagnation point during the maneuver have been computed for the vehicle for possible future conceptual design studies. It has been found that cross range capability of up to 35 km can be achieved with a lifting-body design within the heat rate and the dynamic pressure boundary at normal entry conditions. For shallow entry angle of -20 degree and intermediate ranges a cross range capability of up to 250 km can be attained for a lifting body design with less than 10 percent loss in overall range. The normal acceleration also remains within limits. The lifting-body results have also been compared with wing-body results at shallow entry condition. An hp-adaptive pseudo-spectral method has been used for constrained trajectory optimization.

  9. Human Factors Lessons Learned from Flight Testing Wingless Lifting Body Vehicles

    NASA Technical Reports Server (NTRS)

    Merlin, Peter William

    2014-01-01

    Since the 1960s, NASA, the Air Force, and now private industry have attempted to develop an operational human crewed reusable spacecraft with a wingless, lifting body configuration. This type of vehicle offers increased mission flexibility and greater reentry cross range than capsule type craft, and is particularly attractive due to the capability to land on a runway. That capability, however, adds complexity to the human factors engineering requirements of developing such aircraft.

  10. Physical properties and biocompatibility of chitosan/soy blended membranes.

    PubMed

    Silva, S S; Santos, M I; Coutinho, O P; Mano, J F; Reis, R L

    2005-06-01

    Blends of polysaccharides and proteins are a source for the development of novel materials with interesting and tailorable properties, with potential to be used in a range of biomedical applications. in this work a series of blended membranes composed by chitosan and soy protein isolate was prepared by solvent casting methodology. in addition, cross-linking was performed in situ with glutaraldehyde solutions in the range 5x10(-3)-0.1 M. Furthermore, the influence of the composition and cross-linking on the degradation behaviour, water uptake and cell adhesion was investigated. The obtained results showed that the incorporation of chitosan, associated to network formation by cross linking, promoted a slight decrease of water absorption and a slower degradability of the membranes. Moreover, direct contact biocompatibility studies, with L929 cells, indicate that the cross-linking enhances the capability of the material to support cell growth.

  11. Polyelectrolyte complexes between (cross-linked) N-carboxyethylchitosan and (quaternized) poly[2-(dimethylamino)ethyl methacrylate]: preparation, characterization, and antibacterial properties.

    PubMed

    Yancheva, Elena; Paneva, Dilyana; Maximova, Vera; Mespouille, Laetitia; Dubois, Philippe; Manolova, Nevena; Rashkov, Iliya

    2007-03-01

    Novel polyelectrolyte complexes (PECs) between N-carboxyethylchitosan (CECh) and well-defined (quaternized) poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) have been obtained. The modification of chitosan into CECh allows the preparation of PECs in a pH range in which chitosan cannot form complexes. The CECh/PDMAEMA complex is formed in a narrow pH range around 7. The quaternization of the tertiary amino groups of PDMAEMA enables complex formation with CECh both in neutral and in alkaline medium. Cross-linked CECh is also capable of forming complexes with (quaternized) PDMAEMA. The antibacterial activity of (cross-linked) CECh, (quaternized) PDMAEMA, and their complexes against Escherichia coli has been evaluated. In contrast to (quaternized) PDMAEMA, (cross-linked) CECh exhibits no antibacterial activity. The complex formation between cross-linked CECh and (quaternized) PDMAEMA results in a loss of the inherent antibacterial activity of the latter in neutral medium. In acidic medium, the complexes exhibit strong antibacterial activity due to complex disintegration and release of (quaternized) PDMAEMA.

  12. Missile Defense in the 21st Century Acquisition Environment: Exploring a BMD-Capable LCS Mission Package

    DTIC Science & Technology

    2013-09-01

    75 Figure 25: Swing Weight Analysis....................................................................................76 Figure 26...AN/SPY-1D radar “can track golf ball-sized targets at ranges in excess of 165 kilometers” (Robinson, 2004). Given the radar cross section (RCS) of a... golf ball (calculated as a simple metallic sphere), it was determined that this would correspond to a maximum detection range beyond the Launch

  13. A prototype fully polarimetric 160-GHz bistatic ISAR compact radar range

    NASA Astrophysics Data System (ADS)

    Beaudoin, C. J.; Horgan, T.; DeMartinis, G.; Coulombe, M. J.; Goyette, T.; Gatesman, A. J.; Nixon, William E.

    2017-05-01

    We present a prototype bistatic compact radar range operating at 160 GHz and capable of collecting fullypolarimetric radar cross-section and electromagnetic scattering measurements in a true far-field facility. The bistatic ISAR system incorporates two 90-inch focal length, 27-inch-diameter diamond-turned mirrors fed by 160 GHz transmit and receive horns to establish the compact range. The prototype radar range with its modest sized quiet zone serves as a precursor to a fully developed compact radar range incorporating a larger quiet zone capable of collecting X-band bistatic RCS data and 3D imagery using 1/16th scale objects. The millimeter-wave transmitter provides 20 GHz of swept bandwidth in the single linear (Horizontal/Vertical) polarization while the millimeter-wave receiver, that is sensitive to linear Horizontal and Vertical polarization, possesses a 7 dB noise figure. We present the design of the compact radar range and report on test results collected to validate the system's performance.

  14. Measuring laser reflection cross-sections of small unmanned aerial vehicles for laser detection, ranging and tracking

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Bacher, Emmanuel; Christnacher, Frank

    2017-05-01

    An increasing number of incidents are reported where small unmanned aerial vehicles (UAV) are involved flying at low altitude. Thus UAVs are becoming more and more a serious threat in civilian and military scenarios leading to serious danger to safety or privacy issues. In this context, the detection and tracking of small UAV flying at low altitude in urban environment or near background structures is a challenge for state of the art detection technologies. In this paper, we focus on detection, tracking and identification by laser sensing technologies that are Laser Gated Viewing and scanning LiDAR. The laser reflection cross-sections (LRCS) has direct impact on the probability to detection and capability for range measurement. Here, we present methods to determine the laser reflection cross-sections by experimental and computational approaches.

  15. Two-degrees-of-freedom piezo-driven fast steering mirror with cross-axis decoupling capability

    NASA Astrophysics Data System (ADS)

    Shao, Shubao; Tian, Zheng; Song, Siyang; Xu, Minglong

    2018-05-01

    Because mechanical cross coupling between its axes would lead to degradation of the scanning precision of a piezo-driven fast steering mirror (PFSM), a two-degrees-of-freedom (2-DoF) PFSM with a cross-axis decoupling capability, in which 2-DoF flexure hinges are used, is proposed in this work. The overall structure of the proposed PFSM is first introduced and then both static and dynamic models are established analytically; in addition, the decoupling mechanism is described in detail and the low dynamic cross coupling ratios that occur between the two DoFs are shown. Because of the decoupling property of the PFSM, the 2-DoF motion is treated as a combination of two independent one-degree-of-freedom (1-DoF) motions and two independent proportional-integral-derivative controllers are thus used separately in the control of the two DoFs. Based on this control strategy, experiments involving both 1-DoF trajectory tracking and 2-DoF trajectory tracking are implemented. The test results show that the proposed PFSM can achieve the tilt range of ±7 mrad for both axes with the low coupling ratios that are less than 2% (-34 dB), and the bandwidths of both axes are higher than 810 Hz; in addition, the maximal tracking full scale range errors for 1-DoF trajectory tracking and 2-DoF trajectory tracking are less than 0.2% and 1%, respectively, where the larger error of 2-DoF trajectory tracking is mainly caused by the remaining cross coupling between axes.

  16. 3D parallel-detection microwave tomography for clinical breast imaging

    PubMed Central

    Meaney, P. M.; Paulsen, K. D.

    2014-01-01

    A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to −130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500–2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate recovery of 3D dielectric property distributions for breast-like phantoms with tumor inclusions utilizing both the in-plane and new cross-plane data. PMID:25554311

  17. COSMO - SkyMed Mission Overview

    DTIC Science & Technology

    2000-10-01

    antenna with range and cross-range steering capabilities; The SAR Payload is an X-band Radar which 0 development and qualification of low mass ...summarised as follows: * Swaths: 20 Kmn to 300 Km SIlfale sflos" Swaccs: regKion: t 350 (a) to support the Payload mass (on ground,"• Access region: -/+ 35...real-time product is requested); situ" product delivery. This raises the problem of the size of the data to be transmitted and the geo- Customisation

  18. Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability.

    PubMed

    Morrison, Jessica; Imboden, Matthias; Little, Thomas D C; Bishop, D J

    2015-04-06

    MEMS micromirrors have proven to be very important optical devices with applications ranging from steerable mirrors for switches and cross-connects to spatial light modulators for correcting optical distortions. Usually beam steering and focusing are done with different MEMS devices and tilt angles in excess of 10 degrees are seldom obtained. Here we describe a single MEMS device that combines tip/tilt, piston mode and varifocal capability into a single, low cost device with very large tilt angles. Our device consists of a 400 micron diameter mirror driven with thermal bimorphs. We have demonstrated deflection angles of ± 40 degrees along both axes, a tunable focal length which varies between -0.48 mm to + 20.5 mm and a piston mode range of 300 microns - four separately controllable degrees of freedom in a single device. Potential applications range from smart lighting to optical switches and devices for telecom systems.

  19. Readiness for the Patient-Centered Medical Home: structural capabilities of Massachusetts primary care practices.

    PubMed

    Friedberg, Mark W; Safran, Dana G; Coltin, Kathryn L; Dresser, Marguerite; Schneider, Eric C

    2009-02-01

    The Patient-Centered Medical Home (PCMH), a popular model for primary care reorganization, includes several structural capabilities intended to enhance quality of care. The extent to which different types of primary care practices have adopted these capabilities has not been previously studied. To measure the prevalence of recommended structural capabilities among primary care practices and to determine whether prevalence varies among practices of different size (number of physicians) and administrative affiliation with networks of practices. Cross-sectional analysis. One physician chosen at random from each of 412 primary care practices in Massachusetts was surveyed about practice capabilities during 2007. Practice size and network affiliation were obtained from an existing database. Presence of 13 structural capabilities representing 4 domains relevant to quality: patient assistance and reminders, culture of quality, enhanced access, and electronic health records (EHRs). Three hundred eight (75%) physicians responded, representing practices with a median size of 4 physicians (range 2-74). Among these practices, 64% were affiliated with 1 of 9 networks. The prevalence of surveyed capabilities ranged from 24% to 88%. Larger practice size was associated with higher prevalence for 9 of the 13 capabilities spanning all 4 domains (P < 0.05). Network affiliation was associated with higher prevalence of 5 capabilities (P < 0.05) in 3 domains. Associations were not substantively altered by statistical adjustment for other practice characteristics. Larger and network-affiliated primary care practices are more likely than smaller, non-affiliated practices to have adopted several recommended capabilities. In order to achieve PCMH designation, smaller non-affiliated practices may require the greatest investments.

  20. Vacuum ultraviolet detector for gas chromatography.

    PubMed

    Schug, Kevin A; Sawicki, Ian; Carlton, Doug D; Fan, Hui; McNair, Harold M; Nimmo, John P; Kroll, Peter; Smuts, Jonathan; Walsh, Phillip; Harrison, Dale

    2014-08-19

    Analytical performance characteristics of a new vacuum ultraviolet (VUV) detector for gas chromatography (GC) are reported. GC-VUV was applied to hydrocarbons, fixed gases, polyaromatic hydrocarbons, fatty acids, pesticides, drugs, and estrogens. Applications were chosen to feature the sensitivity and universal detection capabilities of the VUV detector, especially for cases where mass spectrometry performance has been limited. Virtually all chemical species absorb and have unique gas phase absorption cross sections in the approximately 120-240 nm wavelength range monitored. Spectra are presented, along with the ability to use software for deconvolution of overlapping signals. Some comparisons with experimental synchrotron data and computed theoretical spectra show good agreement, although more work is needed on appropriate computational methods to match the simultaneous broadband electronic and vibronic excitation initiated by the deuterium lamp. Quantitative analysis is governed by Beer-Lambert Law relationships. Mass on-column detection limits reported for representatives of different classes of analytes ranged from 15 (benzene) to 246 pg (water). Linear range measured at peak absorption for benzene was 3-4 orders of magnitude. Importantly, where absorption cross sections are known for analytes, the VUV detector is capable of absolute determination (without calibration) of the number of molecules present in the flow cell in the absence of chemical interferences. This study sets the stage for application of GC-VUV technology across a wide breadth of research areas.

  1. Michigan's Physician Group Incentive Program offers a regional model for incremental 'fee for value' payment reform.

    PubMed

    Share, David A; Mason, Margaret H

    2012-09-01

    Blue Cross Blue Shield of Michigan partnered with providers across the state to create an innovative, "fee for value" physician incentive program that would deliver high-quality, efficient care. The Physician Group Incentive Program rewards physician organizations-formal groups of physicians and practices that can accept incentive payments on behalf of their members-based on the number of quality and utilization measures they adopt, such as generic drug dispensing rates, and on their performance on these measures across their patient populations. Physicians also receive payments for implementing a range of patient-centered medical home capabilities, such as patient registries, and they receive higher fees for office visits for incorporating these capabilities into routine practice while also improving performance. Taken together, the incentive dollars, fee increases, and care management payments amount to a potential increase in reimbursement of 40 percent or more from Blue Cross Blue Shield of Michigan for practices designated as high-performing patient-centered medical homes. At the same time, we estimate that implementing the patient-centered medical home capabilities was associated with $155 million in lower medical costs in program year 2011 for Blue Cross Blue Shield of Michigan members. We intend to devote a higher percentage of reimbursement over time to communities of caregivers that offer high-value, system-based care, and a lower percentage of reimbursement to individual physicians on a service-specific basis.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieselquist, William A.

    SCALE’s general depletion, activation, and spent fuel source terms analysis capabilities are enabled through a family of modules related to the main ORIGEN depletion/irradiation/decay solver. The nuclide tracking in ORIGEN is based on the principle of explicitly modeling all available nuclides and transitions in the current fundamental nuclear data for decay and neutron-induced transmutation and relies on fundamental cross section and decay data in ENDF/B VII. Cross section data for materials and reaction processes not available in ENDF/B-VII are obtained from the JEFF-3.0/A special purpose European activation library containing 774 materials and 23 reaction channels with 12,617 neutron-induced reactions belowmore » 20 MeV. Resonance cross section corrections in the resolved and unresolved range are performed using a continuous-energy treatment by data modules in SCALE. All nuclear decay data, fission product yields, and gamma-ray emission data are developed from ENDF/B-VII.1 evaluations. Decay data include all ground and metastable state nuclides with half-lives greater than 1 millisecond. Using these data sources, ORIGEN currently tracks 174 actinides, 1149 fission products, and 974 activation products. The purpose of this chapter is to describe the stand-alone capabilities and underlying methodology of ORIGEN—as opposed to the integrated depletion capability it provides in all coupled neutron transport/depletion sequences in SCALE, as described in other chapters.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, John Leonard; Couture, Aaron Joseph; Koehler, Paul E.

    An accurate knowledge of the neutron capture cross section is important for many applications. Experimental measurements are important since theoretical calculations of capture have been notoriously difficult, with the ratio of measured to calculated cross sections often a factor of 2 or more in the 10 keV to 1 MeV region. However, a direct measurement of capture cannot be made on many interesting radioactive nuclides because of their short half-life or backgrounds caused by their nuclear decay. On the other hand, neutron transmission measurements of the total cross section are feasible for a wide range of radioactive nuclides since themore » detectors are far from the sample, and often are less sensitive to decay radiation. The parameters extracted from a total cross section measurement, which include the average resonance spacing, the neutron strength function, and the average total radiation width, (Γ γ), provide tight constraints on the calculation of the capture cross section, and when applied produce much more accurate results. These measurements can be made using the intense epithermal neutron flux at the Lujan Center on relatively small quantities of target material. It was the purpose of this project to investigate and develop the capability to make these measurements. A great deal of progress was made towards establishing this capability during 2016, including setting up the flight path and obtaining preliminary results, but more work remains to be done.« less

  4. A new time of flight mass spectrometer for absolute dissociative electron attachment cross-section measurements in gas phase

    NASA Astrophysics Data System (ADS)

    Chakraborty, Dipayan; Nag, Pamir; Nandi, Dhananjay

    2018-02-01

    A new time of flight mass spectrometer (TOFMS) has been developed to study the absolute dissociative electron attachment (DEA) cross section using a relative flow technique of a wide variety of molecules in gas phase, ranging from simple diatomic to complex biomolecules. Unlike the Wiley-McLaren type TOFMS, here the total ion collection condition has been achieved without compromising the mass resolution by introducing a field free drift region after the lensing arrangement. The field free interaction region is provided for low energy electron molecule collision studies. The spectrometer can be used to study a wide range of masses (H- ion to few hundreds atomic mass unit). The mass resolution capability of the spectrometer has been checked experimentally by measuring the mass spectra of fragment anions arising from DEA to methanol. Overall performance of the spectrometer has been tested by measuring the absolute DEA cross section of the ground state SO2 molecule, and the results are satisfactory.

  5. Computer programs for calculating pressure distributions including vortex effects on supersonic monoplane or cruciform wing-body-tail combinations with round or elliptical bodies

    NASA Technical Reports Server (NTRS)

    Dillenius, M. F. E.; Nielsen, J. N.

    1979-01-01

    Computer programs are presented which are capable of calculating detailed aerodynamic loadings and pressure distributions acting on pitched and rolled supersonic missile configurations which utilize bodies of circular or elliptical cross sections. The applicable range of angle of attack is up to 20 deg, and the Mach number range is 1.3 to about 2.5. Effects of body and fin vortices are included in the methods, as well as arbitrary deflections of canard or fin panels.

  6. Autonomous RPOD Technology Challenges for the Coming Decade

    NASA Technical Reports Server (NTRS)

    Naasz, Bo J.; Moreau, Michael C.

    2012-01-01

    Rendezvous Proximity Operations and Docking (RPOD) technologies are important to a wide range of future space endeavors. This paper will review some of the recent and ongoing activities related to autonomous RPOD capabilities and summarize the current state of the art. Gaps are identified where future investments are necessary to successfully execute some of the missions likely to be conducted within the next ten years. A proposed RPOD technology roadmap that meets the broad needs of NASA's future missions will be outlined, and ongoing activities at OSFC in support of a future satellite servicing mission are presented. The case presented shows that an evolutionary, stair-step technology development program. including a robust campaign of coordinated ground tests and space-based system-level technology demonstration missions, will ultimately yield a multi-use main-stream autonomous RPOD capability suite with cross-cutting benefits across a wide range of future applications.

  7. Assessing and improving cross-border chemical incident preparedness and response across Europe.

    PubMed

    Stewart-Evans, James; Hall, Lisbeth; Czerczak, Slawomir; Manley, Kevin; Dobney, Alec; Hoffer, Sally; Pałaszewska-Tkacz, Anna; Jankowska, Agnieszka

    2014-11-01

    Good practices in emergency preparedness and response for chemical incidents include practices specific to the different functions of exposure assessment (e.g., within the monitoring function, the use of mobile monitoring equipment; within the modelling function, the use of rapid dispersion models with integrated mapping software) and generic practices to engage incident response stakeholders to maximise exposure assessment capabilities (e.g., sharing protocols and pre-prepared information and multi-agency training and exercising). Such practices can optimise cross-border collaboration. A wide range of practices have been implemented across MSs during chemical incident response, particularly during incidents that have cross-border and trans-boundary impacts. This paper proposes a self-assessment methodology to enable MSs, or organisations within MSs, to examine exposure assessment capabilities and communication pathways between exposure assessors and public health risk assessors. Where gaps exist, this methodology provides links to good practices that could improve response, communication and collaboration across local, regional and national borders. A fragmented approach to emergency preparedness for chemical incidents is a major obstacle to improving cross-border exposure assessment. There is no one existing body or structure responsible for all aspects of chemical incident preparedness and response in the European Union. Due to the range of different organisations and networks involved in chemical incident response, emergency preparedness needs to be drawn together. A number of recommendations are proposed, including the use of networks of experts which link public health risk assessors with experts in exposure assessment, in order to coordinate and improve chemical incident emergency preparedness. The EU's recent Decision on serious cross-border threats to health aims to facilitate MSs' compliance with the International Health Regulations, which require reporting and communication regarding significant chemical incidents. This provides a potential route to build on in order to improve chemical incident preparedness and response across Europe. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Evaluation of Wavelength Detuning to Mitigate Cross-Beam Energy Transfer Using the Nike Laser

    NASA Astrophysics Data System (ADS)

    McKenty, P. W.; Delettrez, J. A.; Marozas, J. A.; Weaver, J.; Obenschain, S.; Schmitt, A.

    2014-10-01

    Cross-beam energy transfer (CBET) has become a serious threat to the overall success of polar-drive-ignition experiments. CBET redirects incident laser light before it can be absorbed into the target, thereby degrading overall target performance. CBET is particularly effective over the equator of the target, which is hydrodynamically very sensitive to such losses. A promising solution uses laser wavelength detuning between beams to break the resonance between them and reduce energy transfer. Testing this process for direct drive has been limited because of the lack of sufficient detuning capabilities. However, the Naval Research Laboratory's Nike laser has the capability of providing a wide range of detuning between its main drive and backlighter beams. This paper explores the design of an experimental platform on Nike to directly evaluate the benefit of frequency detuning in mitigating CBET. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  9. Full-field chromatic confocal surface profilometry employing digital micromirror device correspondence for minimizing lateral cross talks

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Chang, Yi-Wei; Li, Hau-Wei

    2012-08-01

    Full-field chromatic confocal surface profilometry employing a digital micromirror device (DMD) for spatial correspondence is proposed to minimize lateral cross-talks between individual detection sensors. Although full-field chromatic confocal profilometry is capable of enhancing measurement efficiency by completely removing time-consuming vertical scanning operation, its vertical measurement resolution and accuracy are still severely affected by the potential sensor lateral cross-talk problem. To overcome this critical bottleneck, a DMD-based chromatic confocal method is developed by employing a specially-designed objective for chromatic light dispersion, and a DMD for lateral pixel correspondence and scanning, thereby reducing the lateral cross-talk influence. Using the chromatic objective, the incident light is dispersed according to a pre-designed detection range of several hundred micrometers, and a full-field reflected light is captured by a three-chip color camera for multi color detection. Using this method, the full width half maximum of the depth response curve can be significantly sharpened, thus improving the vertical measurement resolution and repeatability of the depth detection. From our preliminary experimental evaluation, it is verified that the ±3σ repeatability of the height measurement can be kept within 2% of the overall measurement range.

  10. Cross delay line sensor characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, Israel J; Remelius, Dennis K; Tiee, Joe J

    There exists a wealth of information in the scientific literature on the physical properties and device characterization procedures for complementary metal oxide semiconductor (CMOS), charge coupled device (CCD) and avalanche photodiode (APD) format detectors. Numerous papers and books have also treated photocathode operation in the context of photomultiplier tube (PMT) operation for either non imaging applications or limited night vision capability. However, much less information has been reported in the literature about the characterization procedures and properties of photocathode detectors with novel cross delay line (XDL) anode structures. These allow one to detect single photons and create images by recordingmore » space and time coordinate (X, Y & T) information. In this paper, we report on the physical characteristics and performance of a cross delay line anode sensor with an enhanced near infrared wavelength response photocathode and high dynamic range micro channel plate (MCP) gain (> 10{sup 6}) multiplier stage. Measurement procedures and results including the device dark event rate (DER), pulse height distribution, quantum and electronic device efficiency (QE & DQE) and spatial resolution per effective pixel region in a 25 mm sensor array are presented. The overall knowledge and information obtained from XDL sensor characterization allow us to optimize device performance and assess capability. These device performance properties and capabilities make XDL detectors ideal for remote sensing field applications that require single photon detection, imaging, sub nano-second timing response, high spatial resolution (10's of microns) and large effective image format.« less

  11. Associations between structural capabilities of primary care practices and performance on selected quality measures.

    PubMed

    Friedberg, Mark W; Coltin, Kathryn L; Safran, Dana Gelb; Dresser, Marguerite; Zaslavsky, Alan M; Schneider, Eric C

    2009-10-06

    Recent proposals to reform primary care have encouraged physician practices to adopt such structural capabilities as performance feedback and electronic health records. Whether practices with these capabilities have higher performance on measures of primary care quality is unknown. To measure associations between structural capabilities of primary care practices and performance on commonly used quality measures. Cross-sectional analysis. Massachusetts. 412 primary care practices. During 2007, 1 physician from each participating primary care practice (median size, 4 physicians) was surveyed about structural capabilities of the practice (responses representing 308 practices were obtained). Data on practice structural capabilities were linked to multipayer performance data on 13 Healthcare Effectiveness Data and Information Set (HEDIS) process measures in 4 clinical areas: screening, diabetes, depression, and overuse. Frequently used multifunctional electronic health records were associated with higher performance on 5 HEDIS measures (3 in screening and 2 in diabetes), with statistically significant differences in performance ranging from 3.1 to 7.6 percentage points. Frequent meetings to discuss quality were associated with higher performance on 3 measures of diabetes care (differences ranging from 2.3 to 3.1 percentage points). Physician awareness of patient experience ratings was associated with higher performance on screening for breast cancer and cervical cancer (1.9 and 2.2 percentage points, respectively). No other structural capabilities were associated with performance on more than 1 measure. No capabilities were associated with performance on depression care or overuse. Structural capabilities of primary care practices were assessed by physician survey. Among the investigated structural capabilities of primary care practices, electronic health records were associated with higher performance across multiple HEDIS measures. Overall, the modest magnitude and limited number of associations between structural capabilities and clinical performance suggest the importance of continuing to measure the processes and outcomes of care for patients. The Commonwealth Fund.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battum, LJ van; Heukelom, S

    Purpose This study investigates the origin of lateral optical density (OD) variation for Gafchromic film (EBT and EBT2) scanned in transmission mode with Epson flatbed scanners (1680 Expression Pro and 10000XL). Effects investigated are: cross talk, optical path length and polarization. Methods Cross talk has been examined with triangular shaped light-transmission sheets with OD ranging from 0 to opaque. Optical path length has been studied with absorptive and reflective OD-filters (OD range 0.2 to 2.0). Dependency on light-polarization on the scanner read out has been investigated using linear polarizer sheets. All experiments have been performed at centre scanner position (normmore » point) and at several lateral scan positions, without and with (un)irradiated EBT-film. Dose values used ranged between 0.2 to 9 Gy, yielding an OD-range between 0.25 to 1.1. Results The lateral OD variation is dose dependent and increases up to 14% at most lateral position for dose up to 9 Gy. Cross talk effect contributes to 0.5% in clinical used OD ranges but equals 2% for extreme high dose gradients. Film induced optical path length will effect the lateral OD variation up to 3% at most lateral points. Light polarization is inherent present in these scanners due to multiple reflection on mirrors. In addition film induced polarization is the most important effect generating the observed lateral OD variation. Both Gafchromic film base and sensitive layer have polarizing capabilities; for the sensitive layer its influence is dose dependent. Conclusions Lateral OD variation origins from optical physics (i.e. polarization and reflection) related to scanner and film construction. Cross talk can be ignored in film dosimetry for clinical used dose values and gradients. Therefore it is recommended to determine the lateral OD variation per film type and scanner.« less

  13. Readiness for the Patient-Centered Medical Home: Structural Capabilities of Massachusetts Primary Care Practices

    PubMed Central

    Friedberg, Mark W.; Safran, Dana G.; Coltin, Kathryn L.; Dresser, Marguerite

    2008-01-01

    Background The Patient-Centered Medical Home (PCMH), a popular model for primary care reorganization, includes several structural capabilities intended to enhance quality of care. The extent to which different types of primary care practices have adopted these capabilities has not been previously studied. Objective To measure the prevalence of recommended structural capabilities among primary care practices and to determine whether prevalence varies among practices of different size (number of physicians) and administrative affiliation with networks of practices. Design Cross-sectional analysis. Participants One physician chosen at random from each of 412 primary care practices in Massachusetts was surveyed about practice capabilities during 2007. Practice size and network affiliation were obtained from an existing database. Measurements Presence of 13 structural capabilities representing 4 domains relevant to quality: patient assistance and reminders, culture of quality, enhanced access, and electronic health records (EHRs). Main Results Three hundred eight (75%) physicians responded, representing practices with a median size of 4 physicians (range 2–74). Among these practices, 64% were affiliated with 1 of 9 networks. The prevalence of surveyed capabilities ranged from 24% to 88%. Larger practice size was associated with higher prevalence for 9 of the 13 capabilities spanning all 4 domains (P < 0.05). Network affiliation was associated with higher prevalence of 5 capabilities (P < 0.05) in 3 domains. Associations were not substantively altered by statistical adjustment for other practice characteristics. Conclusions Larger and network-affiliated primary care practices are more likely than smaller, non-affiliated practices to have adopted several recommended capabilities. In order to achieve PCMH designation, smaller non-affiliated practices may require the greatest investments. Electronic supplementary material The online version of this article (doi:10.1007/s11606-008-0856-x) contains supplementary material, which is available to authorized users. PMID:19050977

  14. Cross polarization optical coherence tomography for diagnosis of oral soft tissues

    NASA Astrophysics Data System (ADS)

    Gladkova, Natalia; Karabut, Maria; Kiseleva, Elena; Robakidze, Natalia; Muraev, Alexander; Fomina, Julia

    2011-03-01

    We consider the capabilities of cross-polarization OCT (CP OCT) focused on comparison of images resulting from cross-polarization and co-polarization scattering simultaneously for diagnosis of oral soft tissues. CP OCT was done for 35 patients with dental implants and 30 patients with inflammatory intestine diseases. Our study showed good diagnostic capabilities of CP OCT for detecting soft tissue pathology in the oral cavity. The cross-polarized images demonstrate the ability of tissue to depolarize. CP OCT demonstrates clinical capabilities for early diagnosis of inflammatory intestine diseases by the state of oral cavity mucosa and for early detection of gingivitis in patients above implant.

  15. Energy-absorption capability and scalability of square cross section composite tube specimens

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Static crushing tests were conducted on graphite/epoxy and Kevlar/epoxy square cross section tubes to study the influence of specimen geometry on the energy-absorption capability and scalability of composite materials. The tube inside width-to-wall thickness (W/t) ratio was determined to significantly affect the energy-absorption capability of composite materials. As W/t ratio decreases, the energy-absorption capability increases nonlinearly. The energy-absorption capability of Kevlar epoxy tubes was found to be geometrically scalable, but the energy-absorption capability of graphite/epoxy tubes was not geometrically scalable.

  16. Advances in Multi-Pixel Photon Counter technology: First characterization results

    NASA Astrophysics Data System (ADS)

    Bonanno, G.; Marano, D.; Romeo, G.; Garozzo, S.; Grillo, A.; Timpanaro, M. C.; Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G.

    2016-01-01

    Due to the recent advances in silicon photomultiplier technology, new types of Silicon Photomultiplier (SiPM), also named Multi-Pixel Photon Counter (MPPC) detectors have become recently available, demonstrating superior performance in terms of their most important electrical and optical parameters. This paper presents the latest characterization results of the novel Low Cross-Talk (LCT) MPPC families from Hamamatsu, where a noticeable fill-factor enhancement and cross-talk reduction is achieved. In addition, the newly adopted resin coating has been proven to yield improved photon detection capabilities in the 280-320 nm spectral range, making the new LCT MPPCs particularly suitable for emerging applications like Cherenkov Telescope Array, and Astroparticle Physics.

  17. System Error Compensation Methodology Based on a Neural Network for a Micromachined Inertial Measurement Unit

    PubMed Central

    Liu, Shi Qiang; Zhu, Rong

    2016-01-01

    Errors compensation of micromachined-inertial-measurement-units (MIMU) is essential in practical applications. This paper presents a new compensation method using a neural-network-based identification for MIMU, which capably solves the universal problems of cross-coupling, misalignment, eccentricity, and other deterministic errors existing in a three-dimensional integrated system. Using a neural network to model a complex multivariate and nonlinear coupling system, the errors could be readily compensated through a comprehensive calibration. In this paper, we also present a thermal-gas MIMU based on thermal expansion, which measures three-axis angular rates and three-axis accelerations using only three thermal-gas inertial sensors, each of which capably measures one-axis angular rate and one-axis acceleration simultaneously in one chip. The developed MIMU (100 × 100 × 100 mm3) possesses the advantages of simple structure, high shock resistance, and large measuring ranges (three-axes angular rates of ±4000°/s and three-axes accelerations of ±10 g) compared with conventional MIMU, due to using gas medium instead of mechanical proof mass as the key moving and sensing elements. However, the gas MIMU suffers from cross-coupling effects, which corrupt the system accuracy. The proposed compensation method is, therefore, applied to compensate the system errors of the MIMU. Experiments validate the effectiveness of the compensation, and the measurement errors of three-axis angular rates and three-axis accelerations are reduced to less than 1% and 3% of uncompensated errors in the rotation range of ±600°/s and the acceleration range of ±1 g, respectively. PMID:26840314

  18. Effects of vocal training on singing and speaking voice characteristics in vocally healthy adults and children based on choral and nonchoral data.

    PubMed

    Siupsinskiene, Nora; Lycke, Hugo

    2011-07-01

    This prospective cross-sectional study examines the effects of voice training on vocal capabilities in vocally healthy age and gender differentiated groups measured by voice range profile (VRP) and speech range profile (SRP). Frequency and intensity measurements of the VRP and SRP using standard singing and speaking voice protocols were derived from 161 trained choir singers (21 males, 59 females, and 81 prepubescent children) and from 188 nonsingers (38 males, 89 females, and 61 children). When compared with nonsingers, both genders of trained adult and child singers exhibited increased mean pitch range, highest frequency, and VRP area in high frequencies (P<0.05). Female singers and child singers also showed significantly increased mean maximum voice intensity, intensity range, and total VRP area. The logistic regression analysis showed that VRP pitch range, highest frequency, maximum voice intensity, and maximum-minimum intensity range, and SRP slope of speaking curve were the key predictors of voice training. Age, gender, and voice training differentiated norms of VRP and SRP parameters are presented. Significant positive effect of voice training on vocal capabilities, mostly singing voice, was confirmed. The presented norms for trained singers, with key parameters differentiated by gender and age, are suggested for clinical practice of otolaryngologists and speech-language pathologists. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  19. A Novel Concept for a Deformable Membrane Mirror for Correction of Large Amplitude Aberrations

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Patrick, Brian

    2006-01-01

    Very large, light weight mirrors are being developed for applications in space. Due to launch mass and volume restrictions these mirrors will need to be much more flexible than traditional optics. The use of primary mirrors with these characteristics will lead to requirements for adaptive optics capable of correcting wave front errors with large amplitude relatively low spatial frequency aberrations. The use of low modulus membrane mirrors actuated with electrostatic attraction forces is a potential solution for this application. Several different electrostatic membrane mirrors are now available commercially. However, as the dynamic range requirement of the adaptive mirror is increased the separation distance between the membrane and the electrodes must increase to accommodate the required face sheet deformations. The actuation force applied to the mirror decreases inversely proportional to the square of the separation distance; thus for large dynamic ranges the voltage requirement can rapidly increase into the high voltage regime. Experimentation with mirrors operating in the KV range has shown that at the higher voltages a serious problem with electrostatic field cross coupling between actuators can occur. Voltage changes on individual actuators affect the voltage of other actuators making the system very difficult to control. A novel solution has been proposed that combines high voltage electrodes with mechanical actuation to overcome this problem. In this design an array of electrodes are mounted to a backing structure via light weight large dynamic range flextensional actuators. With this design the control input becomes the separation distance between the electrode and the mirror. The voltage on each of the actuators is set to a uniform relatively high voltage, thus the problem of cross talk between actuators is avoided and the favorable distributed load characteristic of electrostatic actuation is retained. Initial testing and modeling of this concept demonstrates that this is an attractive concept for increasing the dynamic range capability of electrostatic deformable mirrors.

  20. Assessment of Bridging Requirements and Current Bridging Capabilities for use of Legacy Heavy Forces Inside the Contemporary Operational Environment

    DTIC Science & Technology

    2003-01-01

    vehicle-launched bridge (AVLB), the medium-girder bridge (MGB) and the Ribbon Bridge. The AVLB is capable of crossing 17-meter gaps using a crew under ... armor protection (FM 5-34, 2001). The MGB is capable of crossing single spans of 46.2 meters with the addition of a “link-reinforcement system” that

  1. IMPLICATIONS OF CROSS DOMAIN FIRES IN MULTI-DOMAIN BATTLE

    DTIC Science & Technology

    2017-04-06

    States Air Force 6 April 2017 DISTRIBUTION A. Approved for public release: distribution unlimited. 1 DISCLAIMER The views expressed in this...their cyber capability that will ultimately reinforce their influence and power across the Middle East. In viewing North Korea threat capabilities...land-based assets operating in cross domain denial type operations. In viewing the historical warfare capabilities captured in 13 the case study

  2. Cross-modal individual recognition in wild African lions.

    PubMed

    Gilfillan, Geoffrey; Vitale, Jessica; McNutt, John Weldon; McComb, Karen

    2016-08-01

    Individual recognition is considered to have been fundamental in the evolution of complex social systems and is thought to be a widespread ability throughout the animal kingdom. Although robust evidence for individual recognition remains limited, recent experimental paradigms that examine cross-modal processing have demonstrated individual recognition in a range of captive non-human animals. It is now highly relevant to test whether cross-modal individual recognition exists within wild populations and thus examine how it is employed during natural social interactions. We address this question by testing audio-visual cross-modal individual recognition in wild African lions (Panthera leo) using an expectancy-violation paradigm. When presented with a scenario where the playback of a loud-call (roaring) broadcast from behind a visual block is incongruent with the conspecific previously seen there, subjects responded more strongly than during the congruent scenario where the call and individual matched. These findings suggest that lions are capable of audio-visual cross-modal individual recognition and provide a useful method for studying this ability in wild populations. © 2016 The Author(s).

  3. Design considerations for eye-safe single-aperture laser radars

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Volfson, L.

    2015-05-01

    The design considerations for low cost, shock resistant, compact and efficient laser radars and ranging systems are discussed. The reviewed approach with single optical aperture allows reducing the size, weight and power of the system. Additional design benefits include improved stability, reliability and rigidity of the overall system. The proposed modular architecture provides simplified way of varying the performance parameters of the range finder product family by selecting the sets of specific illumination and detection modules. The performance operation challenges are presented. The implementation of non-reciprocal optical elements is considered. The cross talk between illumination and detection channels for single aperture design is reviewed. 3D imaging capability for the ranging applications is considered. The simplified assembly and testing process for single aperture range finders that allows to mass produce the design are discussed. The eye safety of the range finder operation is summarized.

  4. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  5. Scanning electron microscopical and cross-sectional analysis of extraterrestrial carbonaceous nanoglobules

    NASA Astrophysics Data System (ADS)

    Garvie, Laurence A. J.; Baumgardner, Grant; Buseck, Peter R.

    2008-05-01

    Carbonaceous nanoglobules are ubiquitous in carbonaceous chondrite (CC) meteorites. The Tagish Lake (C2) meteorite is particularly intriguing in containing an abundance of nanoglobules, with a wider range of forms and sizes than encountered in other CC meteorites. Previous studies by transmission electron microscopy (TEM) have provided a wealth of information on chemistry and structure. In this study low voltage scanning electron microscopy (SEM) was used to characterize the globule forms and external structures. The internal structure of the globules was investigated after sectioning by focused ion beam (FIB) milling. The FIB-SEM analysis shows that the globules range from solid to hollow. Some hollow globules show a central open core, with adjoining smaller cores. The FIB with an SEM is a valuable tool for the analysis of extraterrestrial materials, even of sub-micron-sized "soft" carbonaceous particles. The rapid site-specific cross-sectioning capabilities of the FIB allow the preservation of the internal morphology of the nanoglobules, with minimal damage or alteration of the unsectioned areas.

  6. Roads influence movement and home ranges of a fragmentation-sensitive carnivore, the bobcat, in an urban landscape

    USGS Publications Warehouse

    Poessel, Sharon A; Boydston, Erin E.; Lyren, Lisa M.; Fisher, Robert N.; Burdett, Christopher L.; Alonso, Robert S.; Crooks, Kevin R.

    2014-01-01

    Roads in urbanized areas can impact carnivore populations by constraining their movements and increasing mortality. Bobcats (Lynx rufus) are felids capable of living in urban environments, but are sensitive to habitat fragmentation and, thus, useful indicators of landscape connectivity; in particular, bobcat habitat selection, movement, and mortality may be affected by roads. We analyzed movement patterns of 52 bobcats in southern California in three study sites and investigated: (1) how bobcats responded to two types of roads within their home ranges; (2) how they placed their home ranges with respect to roads within the study area; and (3) whether male and female bobcats differed in their behavioral responses to roads. Within home ranges, primary and secondary roads did not influence movements, but bobcats more frequently crossed secondary roads when road densities were higher within their home ranges, thus increasing mortality risk. However, road densities within each study site were several times higher than road densities within home ranges, suggesting bobcats selected against roaded areas in home-range placement. Male home ranges bordering roads were smaller than home ranges for other males, but male home ranges containing roads were larger than those without roads. Male bobcats also were more likely to cross roads than females, potentially reflecting larger male home range sizes. Our results suggest roads have important impacts on urban bobcats, with stronger effects on males than females, and continued efforts to mitigate the effects of roads on carnivores and other fragmentation-sensitive species would help promote connectivity conservation in urban systems.

  7. Demonstration of a rapidly-swept external cavity quantum cascade laser for rapid and sensitive quantification of chemical mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.

    2016-02-13

    A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.

  8. Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer.

    PubMed

    Tardaguila, Javier; Fernández-Novales, Juan; Gutiérrez, Salvador; Diago, Maria Paz

    2017-08-01

    Until now, the majority of methods employed to assess grapevine water status have been destructive, time-intensive, costly and provide information of a limited number of samples, thus the ability of revealing within-field water status variability is reduced. The goal of this work was to evaluate the capability of non-invasive, portable near infrared (NIR) spectroscopy acquired in the field, to assess the grapevine water status in diverse varieties, grown under different environmental conditions, in a fast and reliable way. The research was conducted 2 weeks before harvest in 2012, in two commercial vineyards, planted with eight different varieties. Spectral measurements were acquired in the field on the adaxial and abaxial sides of 160 individual leaves (20 leaves per variety) using a commercially available handheld spectrophotometer (1600-2400 nm). Principal component analysis (PCA) and modified partial least squares (MPLS) were used to interpret the spectra and to develop reliable prediction models for stem water potential (Ψ s ) (cross-validation correlation coefficient (r cv ) ranged from 0.77 to 0.93, and standard error of cross validation (SECV) ranged from 0.10 to 0.23), and leaf relative water content (RWC) (r cv ranged from 0.66 to 0.81, and SECV between 1.93 and 3.20). The performance differences between models built from abaxial and adaxial-acquired spectra is also discussed. The capability of non-invasive NIR spectroscopy to reliably assess the grapevine water status under field conditions was proved. This technique can be a suitable and promising tool to appraise within-field variability of plant water status, helpful to define optimised irrigation strategies in the wine industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Relativistic three-dimensional Lippmann-Schwinger cross sections for space radiation applications

    NASA Astrophysics Data System (ADS)

    Werneth, C. M.; Xu, X.; Norman, R. B.; Maung, K. M.

    2017-12-01

    Radiation transport codes require accurate nuclear cross sections to compute particle fluences inside shielding materials. The Tripathi semi-empirical reaction cross section, which includes over 60 parameters tuned to nucleon-nucleus (NA) and nucleus-nucleus (AA) data, has been used in many of the world's best-known transport codes. Although this parameterization fits well to reaction cross section data, the predictive capability of any parameterization is questionable when it is used beyond the range of the data to which it was tuned. Using uncertainty analysis, it is shown that a relativistic three-dimensional Lippmann-Schwinger (LS3D) equation model based on Multiple Scattering Theory (MST) that uses 5 parameterizations-3 fundamental parameterizations to nucleon-nucleon (NN) data and 2 nuclear charge density parameterizations-predicts NA and AA reaction cross sections as well as the Tripathi cross section parameterization for reactions in which the kinetic energy of the projectile in the laboratory frame (TLab) is greater than 220 MeV/n. The relativistic LS3D model has the additional advantage of being able to predict highly accurate total and elastic cross sections. Consequently, it is recommended that the relativistic LS3D model be used for space radiation applications in which TLab > 220MeV /n .

  10. Driving Behaviour Profile of Drivers with Autism Spectrum Disorder (ASD).

    PubMed

    Chee, Derserri Y; Lee, Hoe C; Patomella, Ann-Helen; Falkmer, Torbjörn

    2017-09-01

    The symptomatology of autism spectrum disorder (ASD) can make driving risky, but little is known about the on-road driving behaviour of individuals with ASD. This study assessed and compared the on-road driving performance of drivers with and without ASD, and explored how the symptomatology of ASD hinders or facilitates on-road driving performance. Sixteen drivers with ASD and 21 typically-developed drivers participated in the study. Drivers with ASD underperformed in vehicle manoeuvring, especially at left-turns, right-turns and pedestrian crossings. However, drivers with ASD outperformed the TD group in aspects related to rule-following such as using the indicator at roundabouts and checking for cross-traffic when approaching intersections. Drivers with ASD in the current study presented with a range of capabilities and weaknesses during driving.

  11. BrainStorm: a psychosocial game suite design for non-invasive cross-generational cognitive capabilities data collection

    NASA Astrophysics Data System (ADS)

    Ahmad, Faizan; Chen, Yiqiang; Hu, Lisha; Wang, Shuangquan; Wang, Jindong; Chen, Zhenyu; Jiang, Xinlong; Shen, Jianfei

    2017-11-01

    Currently available traditional as well as videogame-based cognitive assessment techniques are inappropriate due to several reasons. This paper presents a novel psychosocial game suite, BrainStorm, for non-invasive cross-generational cognitive capabilities data collection, which additionally provides cross-generational social support. A motivation behind the development of presented game suite is to provide an entertaining and exciting platform for its target users in order to collect gameplay-based cognitive capabilities data in a non-invasive manner. An extensive evaluation of the presented game suite demonstrated high acceptability and attraction for its target users. Besides, the data collection process is successfully reported as transparent and non-invasive.

  12. Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Berggren, Susan Anne Elizabeth

    This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.

  13. A Computational Fluid Dynamics Study of Transitional Flows in Low-Pressure Turbines under a Wide Range of Operating Conditions

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.; Volino, R. J.; Corke, T. C.; Thomas, F. O.; Huang, J.; Lake, J. P.; King, P. I.

    2007-01-01

    A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.

  14. 16O(n,α) cross section investigation using LENZ instrument at LANSCE

    NASA Astrophysics Data System (ADS)

    Lee, H. Y.; Mosby, S.; Haight, R. C.; White, M. C.

    2016-06-01

    Importance of studying the 16O(n,α) reaction is motivated by multiple nuclear applications. The Los Alamos Neutron Science Center (LANSCE) produces a white neutron spectrum ranging from thermal to several hundreds of MeV energies. We have recently developed the LENZ (Low Energy NZ-neutron induced charged particle detection) capability to measure high-precision (n,α) cross sections. In order to provide more reliable data, we have enhanced solid angle coverage, and improved signal-to-noise ratios and time-of-flight resolution by implementing digitizer waveform analysis. The LENZ was commissioned by studying the 59Co(n,α) reaction with neutron beams in early 2015. For the 16O(n,α) reaction, we investigate solid oxygen targets and make a relative measurement to a better known cross section, such as the 6Li(n,α) reaction in order to further reduce systematic uncertainty. We will discuss the progress of the 16O(n,α) study at LANSCE and the outlook for improving Hauser-Feshbah prediction on (n,p) reaction cross sections.

  15. In Situ Forming, Cytocompatible, and Self-Recoverable Tough Hydrogels Based on Dual Ionic and Click Cross-Linked Alginate.

    PubMed

    Ghanian, Mohammad Hossein; Mirzadeh, Hamid; Baharvand, Hossein

    2018-05-14

    A dual cross-linking strategy was developed to answer the urgent need for fatigue-resistant, cytocompatible, and in situ forming tough hydrogels. Clickable, yet calcium-binding derivatives of alginate were synthesized by partial substitution of its carboxyl functionalities with furan, which could come into Diels-Alder click reaction with maleimide end groups of a four arm poly(ethylene glycol) cross-linker. Tuning the cooperative viscoelastic action of transient ionic and permanent click cross-links within the single network of alginate provided a soft tough hydrogel with a set of interesting features: (i) immediate self-recovery under cyclic loading, (ii) highly efficient and autonomous self-healing upon fracture, (iii) in situ forming ability for molding and minimally invasive injection, (iv) capability for viable cell encapsulation, and (v) reactivity for on-demand biomolecule conjugation. The facile strategy is applicable to a wide range of natural and synthetic polymers by introducing the calcium binding and click reacting functional groups and can broaden the use of tough hydrogels in load-bearing, cell-laden applications such as soft tissue engineering and bioactuators.

  16. Hot zero power reactor calculations using the Insilico code

    DOE PAGES

    Hamilton, Steven P.; Evans, Thomas M.; Davidson, Gregory G.; ...

    2016-03-18

    In this paper we describe the reactor physics simulation capabilities of the insilico code. A description of the various capabilities of the code is provided, including detailed discussion of the geometry, meshing, cross section processing, and neutron transport options. Numerical results demonstrate that the insilico SP N solver with pin-homogenized cross section generation is capable of delivering highly accurate full-core simulation of various PWR problems. Comparison to both Monte Carlo calculations and measured plant data is provided.

  17. High-resolution high-sensitivity and truly distributed optical frequency domain reflectometry for structural crack detection

    NASA Astrophysics Data System (ADS)

    Li, Wenhai; Bao, Xiaoyi; Chen, Liang

    2014-05-01

    Optical Frequency Domain Reflectometry (OFDR) with the use of polarization maintaining fiber (PMF) is capable of distinguishing strain and temperature, which is critical for successful field applications such as structural health monitoring (SHM) and smart material. Location-dependent measurement sensitivities along PMF are compensated by cross- and auto-correlations measurements of the spectra form a distributed parameter matrix. Simultaneous temperature and strain measurement accuracy of 1μstrain and 0.1°C is achieved with 2.5mm spatial resolution in over 180m range.

  18. Radar cross section studies

    NASA Technical Reports Server (NTRS)

    Burnside, W. D.; Dominek, A. K.; Gupta, I. J.; Newman, E. H.; Pathak, P. H.; Peters, L., Jr.

    1987-01-01

    The ultimate goal is to generate experimental techniques and computer codes of rather general capability that would enable the aerospace industry to evaluate the scattering properties of aerodynamic shapes. Another goal involves developing an understanding of scattering mechanisms so that modification of the vehicular structure could be introduced within constraints set by aerodynamics. The development of indoor scattering measurement systems with special attention given to the compact range is another goal. There has been considerable progress in advancing state-of-the-art scattering measurements and control and analysis of the electromagnetic scattering from general targets.

  19. Compound Wing Vertical Takeoff and Landing Small Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Logan, Michael J. (Inventor); Motter, Mark A. (Inventor); Deloach, Richard (Inventor); Vranas, Thomas L. (Inventor); Prendergast, Joseph M. (Inventor); Lipp, Brittney N. (Inventor)

    2017-01-01

    Systems, methods, and devices are provided that enable robust operations of a small unmanned aircraft system (sUAS) using a compound wing. The various embodiments may provide a sUAS with vertical takeoff and landing capability, long endurance, and the capability to operate in adverse environmental conditions. In the various embodiments a sUAS may include a fuselage and a compound wing comprising a fixed portion coupled to the fuselage, a wing lifting portion outboard of the fixed portion comprising a rigid cross member and a controllable articulating portion configured to rotate controllable through a range of motion from a horizontal position to a vertical position, and a freely rotating wing portion outboard of the wing lifting portion and configured to rotate freely based on wind forces incident on the freely rotating wing portion.

  20. New 30-50 Ghz Wideband Receiver for Nobeyama 45-M Telescope with Capability to Observe Three Zeeman

    NASA Astrophysics Data System (ADS)

    Huang, Yau De

    2018-01-01

    Zeeman measurement is the only tool to probe the magnetic field strengths directly. A new receiver covering 30-50 GHz frequency range is proposed for Nobeyama 45-m telescope based on the design of the ALMA Band 1 receiver. With dual linear polarization feed, wide IF bandwidth and state-of-the-art noise performance, it is capable to observe three Zeeman transitions (SO at 30.0 GHz and CCS at 33.7 and 45.4 GHz) toward the pre-protostellar cores simultaneously. This feature will not only increase the survey efficiency but also provide a reliable tool to calibrate the unwanted instrumental cross-polarization. Slim receiver layout also allows easy expansion to form focal plane array. We will present the receiver design and the current status of the pro

  1. Bird Radar Validation in the Field by Time-Referencing Line-Transect Surveys

    PubMed Central

    Dokter, Adriaan M.; Baptist, Martin J.; Ens, Bruno J.; Krijgsveld, Karen L.; van Loon, E. Emiel

    2013-01-01

    Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar’s detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer’s accuracy in determining a bird’s transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ∼1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50±0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms. PMID:24066103

  2. Bird radar validation in the field by time-referencing line-transect surveys.

    PubMed

    Dokter, Adriaan M; Baptist, Martin J; Ens, Bruno J; Krijgsveld, Karen L; van Loon, E Emiel

    2013-01-01

    Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar's detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer's accuracy in determining a bird's transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ~1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50 ± 0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms.

  3. Development of microsatellites from Fothergilla ×intermedia (Hamamelidaceae) and cross transfer to four other genera within Hamamelidaceae1

    PubMed Central

    Hatmaker, E. Anne; Wadl, Phillip A.; Mantooth, Kristie; Scheffler, Brian E.; Ownley, Bonnie H.; Trigiano, Robert N.

    2015-01-01

    Premise of the study: We developed microsatellites from Fothergilla ×intermedia to establish loci capable of distinguishing species and cultivars, and to assess genetic diversity for use by ornamental breeders and to transfer within Hamamelidaceae. Methods and Results: We sequenced a small insert genomic library enriched for microsatellites to develop 12 polymorphic microsatellite loci. The number of alleles detected ranged from four to 15 across five genera within Hamamelidaceae. Shannon’s information index ranged from 0.07 to 0.14. Conclusions: These microsatellite loci provide a set of markers to evaluate genetic diversity of natural and cultivated collections and assist ornamental plant breeders for genetic studies of five popular genera of woody ornamental plants. PMID:25909044

  4. The 27-28 October 1986 FIRE IFO cirrus case study - Cloud optical properties determined by High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Grund, C. J.; Eloranta, E. W.

    1990-01-01

    The High Spectral Resolution Lidar (HSRL) was operated from a roof-top site in Madison, Wisconsin. The transmitter configuration used to acquire the case study data produces about 50 mW of ouput power and achieved eye-safe, direct optical depth, and backscatter cross section measurements with 10 min averaging times. A new continuously pumped, injection seeded, frequency doubled Nd:YAG laser transmitter reduces time-averaging constraints by a factor of about 10, while improving the aerosol-molecular signal separation capabilities and wavelength stability of the instrument. The cirrus cloud backscatter-phase functions have been determined for the October 27-28, 1986 segment of the HSRL FIRE dataset. Features exhibiting backscatter cross sections ranging over four orders of magnitude have been observed within this 33 h period. During this period, cirrus clouds were observed with optical thickness ranging from 0.01 to 1.4. The altitude relationship between cloud top and bottom boundaries and the optical center of the cloud is influenced by the type of formation observed.

  5. Comparative architectural properties of limb muscles in Crocodylidae and Alligatoridae and their relevance to divergent use of asymmetrical gaits in extant Crocodylia.

    PubMed

    Allen, Vivian; Molnar, Julia; Parker, William; Pollard, Andrea; Nolan, Grant; Hutchinson, John R

    2014-12-01

    Crocodiles and their kin (Crocodylidae) use asymmetrical (bounding and galloping) gaits when moving rapidly. Despite being morphologically and ecologically similar, it seems alligators and their kin (Alligatoridae) do not. To investigate a possible anatomical basis for this apparent major difference in locomotor capabilities, we measured relative masses and internal architecture (fascicle lengths and physiological cross-sectional areas) of muscles of the pectoral and pelvic limbs of 40 individuals from six representative species of Crocodylidae and Alligatoridae. We found that, relative to body mass, Crocodylidae have significantly longer muscle fascicles (increased working range), particularly in the pectoral limb, and generally smaller muscle physiological cross-sectional areas (decreased force-exerting capability) than Alligatoridae. We therefore hypothesise that the ability of some crocodylians to use asymmetrical gaits may be limited more by the ability to make large, rapid limb motions (especially in the pectoral limb) than the ability to exert large limb forces. Furthermore, analysis of scaling patterns in muscle properties shows that limb anatomy in the two clades becomes more divergent during ontogeny. Limb muscle masses, fascicle lengths and physiological cross-sectional areas scale with significantly larger coefficients in Crocodylidae than Alligatoridae. This combination of factors suggests that inter-clade disparity in maximal limb power is highest in adult animals. Therefore, despite their apparent morphological similarities, both mean values and scaling patterns suggest that considerable diversity exists in the locomotor apparatus of extant Crocodylia. © 2014 Anatomical Society.

  6. A computer program for analyzing channel geometry

    USGS Publications Warehouse

    Regan, R.S.; Schaffranek, R.W.

    1985-01-01

    The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)

  7. Design, Fabrication and Characterization of a MEMS-Based Three-Dimensional Electric Field Sensor with Low Cross-Axis Coupling Interference

    PubMed Central

    Ling, Biyun; Peng, Chunrong; Ren, Ren; Chu, Zhaozhi; Zhang, Zhouwei; Lei, Hucheng; Xia, Shanhong

    2018-01-01

    One of the major concerns in the development of three-dimensional (3D) electric field sensors (EFSs) is their susceptibility to cross-axis coupling interference. The output signal for each sensing axis of a 3D EFS is often coupled by electric field components from the two other orthogonal sensing axes. In this paper, a one-dimensional (1D) electric field sensor chip (EFSC) with low cross-axis coupling interference is presented. It is designed to be symmetrical, forming a pair of in-plane symmetrically-located sensing structures. Using a difference circuit, the 1D EFSC is capable of sensing parallel electric fields along symmetrical structures and eliminating cross-axis coupling interference, which is contrast to previously reported 1D EFSCs designed for perpendicular electric field component measurement. Thus, a 3D EFS with low cross-axis coupling interference can be realized using three proposed 1D EFSCs. This 3D EFS has the advantages of low cross-axis coupling interference, small size, and high integration. The testing and calibration systems of the proposed 3D EFS were developed. Experimental results show that in the range of 0–120 kV/m, cross-axis sensitivities are within 5.48%, and the total measurement errors of this 3D EFS are within 6.16%. PMID:29543744

  8. Normative voice range profiles in vocally trained and untrained children aged between 7 and 10 years.

    PubMed

    Schneider, Berit; Zumtobel, Michaela; Prettenhofer, Walter; Aichstill, Birgitta; Jocher, Werner

    2010-03-01

    Only limited data on normal vocal constitution and vocal capabilities in school-aged children are available. To take better care of children's voices, it might be helpful to know voice ranges and limits of not only vocally trained but also vocally untrained children. Goal of this study was the evaluation of singing voice capabilities of vocally healthy children with different social and vocal/musical backgrounds using voice range profile measurements (VRP). VRP percentiles that reflect constitutional aspects were suggested. In this cross-sectional study, 186 children (aged between seven and 10 years), attending five schools, were included. VRP measurements were performed under field conditions. Interviews and questionnaires regarding vocal strain and vocal training were applied; the answers were used for classification of singing activity and vocal training (KLASAK). All children reached a mean singing voice range of at least two octaves. By using the answers of interviews and questionnaires, the children could be classified according to vocal strain and vocal training. The groups showed no significant differences regarding VRP measurements. In the following step, percentiles were calculated. Twenty-five percent of all children (P25) reached a minimum voice range of almost two octaves, namely, 22 semitones (ST) from 220 to 784 Hz with soft and loud singing. Half of the children (P50) had a voice range of 24 ST (2 octaves), while soft singing and a larger voice range of 26 ST while loud singing. The measurements of third quartile (P75) revealed that 25% of children have even a larger voice range than 29 dB (from 196 Hz/g to 1047 Hz/c3) and can sing at most frequencies louder than 90 dB. P90 demonstrated that 10% of the children can sing even lower or higher than the frequency range between 196 Hz/g and 1319 Hz/e3 analyzed. The voice range seems not to be constrained by social but by voice/musical background: children of vocally/musically encouraged schools had wider voice ranges. This underlines the necessity of regular singing lessons already in primary schools. The percentile VRP introduced might help to evaluate the vocal constitution and vocal capabilities of a child. Copyright (c) 2010 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  9. Noise pair velocity and range echo location system

    DOEpatents

    Erskine, D.J.

    1999-02-16

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution is disclosed. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna. 46 figs.

  10. Noise pair velocity and range echo location system

    DOEpatents

    Erskine, David J.

    1999-01-01

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna.

  11. High precision laser ranging by time-of-flight measurement of femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Lee, Joohyung; Lee, Keunwoo; Lee, Sanghyun; Kim, Seung-Woo; Kim, Young-Jin

    2012-06-01

    Time-of-flight (TOF) measurement of femtosecond light pulses was investigated for laser ranging of long distances with sub-micrometer precision in the air. The bandwidth limitation of the photo-detection electronics used in timing femtosecond pulses was overcome by adopting a type-II nonlinear second-harmonic crystal that permits the production of a balanced optical cross-correlation signal between two overlapping light pulses. This method offered a sub-femtosecond timing resolution in determining the temporal offset between two pulses through lock-in control of the pulse repetition rate with reference to the atomic clock. The exceptional ranging capability was verified by measuring various distances of 1.5, 60 and 700 m. This method is found well suited for future space missions based on formation-flying satellites as well as large-scale industrial applications for land surveying, aircraft manufacturing and shipbuilding.

  12. From Physics Model to Results: An Optimizing Framework for Cross-Architecture Code Generation

    DOE PAGES

    Blazewicz, Marek; Hinder, Ian; Koppelman, David M.; ...

    2013-01-01

    Starting from a high-level problem description in terms of partial differential equations using abstract tensor notation, the Chemora framework discretizes, optimizes, and generates complete high performance codes for a wide range of compute architectures. Chemora extends the capabilities of Cactus, facilitating the usage of large-scale CPU/GPU systems in an efficient manner for complex applications, without low-level code tuning. Chemora achieves parallelism through MPI and multi-threading, combining OpenMP and CUDA. Optimizations include high-level code transformations, efficient loop traversal strategies, dynamically selected data and instruction cache usage strategies, and JIT compilation of GPU code tailored to the problem characteristics. The discretization ismore » based on higher-order finite differences on multi-block domains. Chemora's capabilities are demonstrated by simulations of black hole collisions. This problem provides an acid test of the framework, as the Einstein equations contain hundreds of variables and thousands of terms.« less

  13. Absorption Of Crushing Energy In Square Composite Tubes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1992-01-01

    Report describes investigation of crash-energy-absorbing capabilities of square-cross-section tubes of two matrix/fiber composite materials. Both graphite/epoxy and Kevlar/epoxy tubes crushed in progressive and stable manner. Ratio between width of cross section and thickness of wall determined to affect energy-absorption significantly. As ratio decreases, energy-absorption capability increases non-linearly. Useful in building energy-absorbing composite structures.

  14. Are We Ready for Mass Fatality Incidents? Preparedness of the US Mass Fatality Infrastructure.

    PubMed

    Merrill, Jacqueline A; Orr, Mark; Chen, Daniel Y; Zhi, Qi; Gershon, Robyn R

    2016-02-01

    To assess the preparedness of the US mass fatality infrastructure, we developed and tested metrics for 3 components of preparedness: organizational, operational, and resource sharing networks. In 2014, data were collected from 5 response sectors: medical examiners and coroners, the death care industry, health departments, faith-based organizations, and offices of emergency management. Scores were calculated within and across sectors and a weighted score was developed for the infrastructure. A total of 879 respondents reported highly variable organizational capabilities: 15% had responded to a mass fatality incident (MFI); 42% reported staff trained for an MFI, but only 27% for an MFI involving hazardous contaminants. Respondents estimated that 75% of their staff would be willing and able to respond, but only 53% if contaminants were involved. Most perceived their organization as somewhat prepared, but 13% indicated "not at all." Operational capability scores ranged from 33% (death care industry) to 77% (offices of emergency management). Network capability analysis found that only 42% of possible reciprocal relationships between resource-sharing partners were present. The cross-sector composite score was 51%; that is, half the key capabilities for preparedness were in place. The sectors in the US mass fatality infrastructure report suboptimal capability to respond. National leadership is needed to ensure sector-specific and infrastructure-wide preparedness for a large-scale MFI.

  15. Design optimization of continuous partially prestressed concrete beams

    NASA Astrophysics Data System (ADS)

    Al-Gahtani, A. S.; Al-Saadoun, S. S.; Abul-Feilat, E. A.

    1995-04-01

    An effective formulation for optimum design of two-span continuous partially prestressed concrete beams is described in this paper. Variable prestressing forces along the tendon profile, which may be jacked from one end or both ends with flexibility in the overlapping range and location, and the induced secondary effects are considered. The imposed constraints are on flexural stresses, ultimate flexural strength, cracking moment, ultimate shear strength, reinforcement limits cross-section dimensions, and cable profile geometries. These constraints are formulated in accordance with ACI (American Concrete Institute) code provisions. The capabilities of the program to solve several engineering problems are presented.

  16. Novel microsatellite loci for studies of Thamnophis Gartersnake genetic identity and hybridization

    USGS Publications Warehouse

    Sloss, Brian L.; Schuurman, Gregor W.; Paloski, Rori A.; Boyle, Owen D.; Kapfer, Joshua M.

    2012-01-01

    Butler’s Gartersnakes (BGS; Thamnophis butleri) are confined to open and semi-open canopy wetlands and adjacent uplands, habitats under threat of development in Wisconsin. To address issues of species identity and putative hybridization with congeneric snakes, a suite of 18 microsatellite loci capable of cross-species amplification of Plains Gartersnakes (T. radix) and Common Gartersnakes (T. sirtalis) was developed. All loci were polymorphic in BGS with mean number of alleles per locus of 16.11 (range = 3–41) and mean observed heterozygosity of 0.659 (range = 0.311–0.978). Loci amplified efficiently in the congeneric species with high levels of intra- and inter-specific variation. These loci will aid ongoing efforts to effectively identify and manage BGS in Wisconsin.

  17. Neutron-Induced Fission Cross Section Measurements for Full Suite of Uranium Isotopes

    NASA Astrophysics Data System (ADS)

    Laptev, Alexander; Tovesson, Fredrik; Hill, Tony

    2010-11-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans energies from sub-thermal energies up to 200 MeV by measuring both the Lujan Center and the Weapons Neutron Research center (WNR). Conventional parallel-plate fission ionization chambers with actinide deposited foils are used as a fission detector. The time-of-flight method is implemented to measure neutron energy. Counting rate ratio from investigated and standard U-235 foils is translated into fission cross section ratio. Different methods of normalization for measured ratio are employed, namely, using of actinide deposit thicknesses, normalization to evaluated data, etc. Finally, ratios are converted to cross sections based on the standard U-235 fission cross section data file. Preliminary data for newly investigated isotopes U-236 and U-234 will be reported. Those new data complete a full suite of Uranium isotopes, which were investigated with presented experimental approach. When analysis of the new measured data will is completed, data will be delivered to evaluators. Having data for full set of Uranium isotopes will increase theoretical modeling capabilities and make new data evaluations much more reliable.

  18. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    NASA Astrophysics Data System (ADS)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  19. Unsteady transonic potential flow over a flexible fuselage

    NASA Technical Reports Server (NTRS)

    Gibbons, Michael D.

    1993-01-01

    A flexible fuselage capability has been developed and implemented within version 1.2 of the CAP-TSD code. The capability required adding time dependent terms to the fuselage surface boundary conditions and the fuselage surface pressure coefficient. The new capability will allow modeling the effect of a flexible fuselage on the aeroelastic stability of complex configurations. To assess the flexible fuselage capability several steady and unsteady calculations have been performed for slender fuselages with circular cross-sections. Steady surface pressures are compared with experiment at transonic flight conditions. Unsteady cross-sectional lift is compared with other analytical results at a low subsonic speed and a transonic case has been computed. The comparisons demonstrate the accuracy of the flexible fuselage modifications.

  20. Upgraded PMI diagnostic capabilities using Accelerator-based In-situ Materials Surveillance (AIMS) on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Kesler, Leigh; Barnard, Harold; Hartwig, Zachary; Sorbom, Brandon; Lanza, Richard; Terry, David; Vieira, Rui; Whyte, Dennis

    2014-10-01

    The AIMS diagnostic was developed to rapidly and non-invasively characterize in-situ plasma material interactions (PMI) in a tokamak. Recent improvements are described which significantly expand this measurement capability on Alcator C-Mod. The detection time at each wall location is reduced from about 10 min to 30 s, via improved hardware and detection geometry. Detectors are in an augmented re-entrant tube to maximize the solid angle between detectors and diagnostic locations. Spatial range is expanded by using beam dynamics simulation to design upgraded B-field power supplies to provide maximal poloidal access, including a ~20° toroidal range in the divertor. Measurement accuracy is improved with angular and energy resolved cross section measurements obtained using a separate 0.9 MeV deuteron ion accelerator. Future improvements include the installation of recessed scintillator tiles as beam targets for calibration of the diagnostic. Additionally, implanted depth marker tiles will enable AIMS to observe the in-situ erosion and deposition of high-Z plasma-facing materials. This work is supported by U.S. DOE Grant No. DE-FG02-94ER54235 and Cooperative Agreement No. DE-FC02-99ER54512.

  1. The effect of riboflavin/UVA cross-linking on anti-degeneration and promoting angiogenic capability of decellularized liver matrix.

    PubMed

    Xiang, Junxi; Liu, Peng; Zheng, Xinglong; Dong, Dinghui; Fan, Shujuan; Dong, Jian; Zhang, Xufeng; Liu, Xuemin; Wang, Bo; Lv, Yi

    2017-10-01

    Weak mechanical property and unstable degradation rate limited the application of decellularized liver matrix in tissue engineering. The aim of this study was to explore a new method for improving the mechanical properties, anti-degeneration and angiogenic capability of decellularized liver matrix. This was achieved by a novel approach using riboflavin/ultraviolet A treatment to induce collagen cross-linking of decellularized matrix. Histological staining and scanning electron microscope showed that the diameter of cross-linked fibers significantly increased compared with the control group. The average peak load and Young's modulus of decellularized matrix were obviously improved after cross-linking. Then we implanted the modified matrix into the rat hepatic injury model to test the anti-degeneration and angiogenic capability of riboflavin/UVA cross-linked decellularized liver scaffolds in vivo. The results indicated that cross-linked scaffolds degrade more slowly than those in the control group. In the experiment group, average microvessel density in the implanted matrix was higher than that in the control group since the first week after implantation. In conclusion, we initiated the method to improve the biomechanical properties of decellularized liver scaffolds by riboflavin/UVA cross-linking, and more importantly, its improvement on anti-degeneration and angiogenesis was identified. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2662-2669, 2017. © 2017 Wiley Periodicals, Inc.

  2. An evaluation of fiber-reinforced titanium matrix composites for advanced high-temperature aerospace applications

    NASA Astrophysics Data System (ADS)

    Larsen, James M.; Russ, Stephan M.; Jones, J. W.

    1995-12-01

    The current capabilities of continuous silicon-carbide fiber-reinforced titanium matrix composites (TMCs) are reviewed with respect to application needs and compared to the capabilities of conventional high-temperature monolithic alloys and aluminides. In particular, the properties of a firstgeneration titanium aluminide composite, SCS-6/Ti-24Al-11Nb, and a second-generation metastable beta alloy composite, SCS-6/TIMETAL 21S, are compared with the nickel-base superalloy IN100, the high-temperature titanium alloy Ti-1100, and a relatively new titanium aluminide alloy. Emphasis is given to life-limiting cyclic and monotonie properties and to the influence of time-dependent deformation and environmental effects on these properties. The composite materials offer a wide range of performance capabilities, depending on laminate architecture. In many instances, unidirectional composites exhibit outstanding properties, although the same materials loaded transverse to the fiber direction typically exhibit very poor properties, primarily due to the weak fiber/matrix interface. Depending on the specific mechanical property under consideration, composite cross-ply laminates often show no improvement over the capability of conventional monolithic materials. Thus, it is essential that these composite materials be tailored to achieve a balance of properties suitable to the specific application needs if these materials are to be attractive candidates to replace more conventional materials.

  3. Analysis of penetration and mixing of gas jets in supersonic cross flow

    NASA Technical Reports Server (NTRS)

    Billig, F. S.; Schetz, J. A.

    1992-01-01

    The JETPEN analysis for gas jets in a supersonic cross flow developed earlier at APL/JHU has been extended in several important ways. First, the treatment of cases with injection at angles other than 90 deg has been redone. Next, the second of the three regions formerly treated has been eliminated. Third, the region downstream of the Mach disk for underexpanded cases has been reformulated such that turbulent entrainment of main stream fluid into the plume is modeled, and the equations of motion are solved marching downstream. These changes now permit prediction of the variation in composition, mixing area growth and all other flow variables along the plume. The analysis has been verified by comparison of predictions and experiment over a wide range of conditions. The result is an analysis capable of reliable predictions of the major flowfield variables that can be run on a PC.

  4. Characterization of a 6×6-mm2 75-μm cell MPPC suitable for the Cherenkov Telescope Array project

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Bonanno, G.; Garozzo, S.; Grillo, A.; Marano, D.; Munari, M.; Timpanaro, M. C.; Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G.

    2016-08-01

    This paper presents the latest characterization results of a novel Low Cross-Talk (LCT) large-area (6×6-mm2) Multi-Pixel Photon Counter (MPPC) detector manufactured by Hamamatsu, belonging to the recent LCT5 family and achieving a fill-factor enhancement and cross-talk reduction. In addition, the newly adopted resin coating is demonstrated to yield improved photon detection capabilities in the 290-350 nm spectral range, making the new LCT MPPC particularly suitable for emerging applications like Cherenkov Telescopes. For a 3×3-mm2 version of the new MPPC under test, a comparative analysis of the large pixel pitch (75-μm) detector versus the smaller pixel pitch (50-μm) detector is also undertaken. Furthermore, measurements of the 6×6-mm2 MPPC response versus the angle of incidence are provided for the characterized device.

  5. Cardiovascular and pulmonary dynamics by quantitative imaging

    NASA Technical Reports Server (NTRS)

    Wood, E. H.

    1976-01-01

    The accuracy and range of studies on cardiovascular and pulmonary functions can be greatly facilitated if the motions of the underlying organ systems throughout individual cycles can be directly visualized and readily measured with minimum or preferably no effect on these motions. Achievement of this objective requires development of techniques for quantitative noninvasive or minimally invasive dynamic and stop-action imaging of the organ systems. A review of advances in dynamic quantitative imaging of moving organs reveals that the revolutionary value of cross-sectional and three-dimensional images produced by various types of radiant energy such as X-rays and gamma rays, positrons, electrons, protons, light, and ultrasound for clinical diagnostic and biomedical research applications is just beginning to be realized. The fabrication of a clinically useful cross-section reconstruction device with sensing capabilities for both anatomical structural composition and chemical composition may be possible and awaits future development.

  6. Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork

    PubMed Central

    Villafana, Tana Elizabeth; Brown, William P.; Delaney, John K.; Palmer, Michael; Warren, Warren S.; Fischer, Martin C.

    2014-01-01

    The layering structure of a painting contains a wealth of information about the artist's choice of materials and working methods, but currently, no 3D noninvasive method exists to replace the taking of small paint samples in the study of the stratigraphy. Here, we adapt femtosecond pump-probe imaging, previously shown in tissue, to the case of the color palette in paintings, where chromophores have much greater variety. We show that combining the contrasts of multispectral and multidelay pump-probe spectroscopy permits nondestructive 3D imaging of paintings with molecular and structural contrast, even for pigments with linear absorption spectra that are broad and relatively featureless. We show virtual cross-sectioning capabilities in mockup paintings, with pigment separation and nondestructive imaging on an intact 14th century painting (The Crucifixion by Puccio Capanna). Our approach makes it possible to extract microscopic information for a broad range of applications to cultural heritage. PMID:24449855

  7. Linear prediction data extrapolation superresolution radar imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaoda; Ye, Zhenru; Wu, Xiaoqing

    1993-05-01

    Range resolution and cross-range resolution of range-doppler imaging radars are related to the effective bandwidth of transmitted signal and the angle through which the object rotates relatively to the radar line of sight (RLOS) during the coherent processing time, respectively. In this paper, linear prediction data extrapolation discrete Fourier transform (LPDEDFT) superresolution imaging method is investigated for the purpose of surpassing the limitation imposed by the conventional FFT range-doppler processing and improving the resolution capability of range-doppler imaging radar. The LPDEDFT superresolution imaging method, which is conceptually simple, consists of extrapolating observed data beyond the observation windows by means of linear prediction, and then performing the conventional IDFT of the extrapolated data. The live data of a metalized scale model B-52 aircraft mounted on a rotating platform in a microwave anechoic chamber and a flying Boeing-727 aircraft were processed. It is concluded that, compared to the conventional Fourier method, either higher resolution for the same effective bandwidth of transmitted signals and total rotation angle of the object or equal-quality images from smaller bandwidth and total angle may be obtained by LPDEDFT.

  8. Transformational Spaceport and Range Capabilities Roadmap Interim Review to National Research Council External Review Panel

    NASA Technical Reports Server (NTRS)

    Poniatowski, Karen

    2005-01-01

    Contents include the following: Overview/Introduction. Roadmap Approach/Considerations. Roadmap Timeline/Spirals. Requirements Development. Spaceport/Range Capabilities. Mixed Range Architecture. User Requirements/Customer Considerations. Manifest Considerations. Emerging Launch User Requirements. Capability Breakdown Structure/Assessment. Roadmap Team Observations. Transformational Range Test Concept. Roadmap Team Conclusions. Next Steps.

  9. Crushing characteristics of composite tubes with 'near-elliptical' cross sections

    NASA Astrophysics Data System (ADS)

    Farley, Gary L.; Jones, Robert M.

    1992-01-01

    An experimental investigation was conducted to determine whether the energy-absorption capability of near-elliptical cross-section composite tubular specimens is a function of included angle. Each half of the near-elliptical cross-section tube is a segment of a circle. The included angle is the angle created by radial lines extending from the center of the circular segment to the ends of the circular segment. Graphite- and Kevlar-reinforced epoxy material was used to fabricate specimens. Tube internal diameters were 2.54, 3.81, and 7.62 cm, and included angles were 180, 160, 135, and 90 degrees. Based upon the test results from these tubes, energy-absorption capability increased between 10 and 30 percent as included angle decreased between 180 and 90 degrees for the materials evaluated. Energy-absorption capability was a decreasing nonlinear function of the ratio of tube internal diameter to wall thickness.

  10. Pentopyranosyl Oligonucleotide Systems. Part 11: Systems with Shortened Backbones: D)-beta-Ribopyranosyl-(4 yields 3 )- and (L)-alpha - Lyxopyranosyl-(4 yields 3 )-oligonucleotides

    NASA Technical Reports Server (NTRS)

    Wippo, Harald; Reck, Folkert; Kudick, Rene; Ramaseshan, Mahesh; Ceulemans, Griet; Bolli, Martin; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert

    2001-01-01

    The (L)-a-lyxopyranosyl-(4'yields 3')-oligonucleotide system-a member of a pentopyranosyl oligonucleotide family containing a shortened backbone-is capable of cooperative base-pairing and of cross-pairing with DNA and RNA. In contrast, corresponding (D)-beta-ribopyransoyl-(4' yields 3')-oligonucleotides do not show base-pairing under similar conditions. We conclude that oligonucleotide systems can violate the six-bonds-per-backbone-unit rule by having five bonds instead, if their vicinally bound phosphodiester bridges can assume an antiperiplanar conformation. An additional structural feature that seems relevant to the cross-pairing capability of the (L)-a-lyxopyranosyl-(4' yields 3')-oligonucleotide system is its (small) backbone/basepair axes inclination. An inclination which is similar to that in B-DNA seems to be a prerequisite for an oligonucleotide system s capability to cross-pair with DNA.

  11. Millimeter accuracy satellites for two color ranging

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1993-01-01

    The principal technical challenge in designing a millimeter accuracy satellite to support two color observations at high altitudes is to provide high optical cross-section simultaneously with minimal pulse spreading. In order to address this issue, we provide, a brief review of some fundamental properties of optical retroreflectors when used in spacecraft target arrays, develop a simple model for a spherical geodetic satellite, and use the model to determine some basic design criteria for a new generation of geodetic satellites capable of supporting millimeter accuracy two color laser ranging. We find that increasing the satellite diameter provides: a larger surface area for additional cube mounting thereby leading to higher cross-sections; and makes the satellite surface a better match for the incoming planar phasefront of the laser beam. Restricting the retroreflector field of view (e.g. by recessing it in its holder) limits the target response to the fraction of the satellite surface which best matches the optical phasefront thereby controlling the amount of pulse spreading. In surveying the arrays carried by existing satellites, we find that European STARLETTE and ERS-1 satellites appear to be the best candidates for supporting near term two color experiments in space.

  12. In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing.

    PubMed

    Wu, Chuang; Liu, Zhengyong; Zhang, A Ping; Guan, Bai-Ou; Tam, Hwa-Yaw

    2014-09-08

    We report an open-cavity optical fiber Fabry-Pérot interferometer (FPI) capable of measuring refractive index with very low temperature cross-sensitivity. The FPI was constructed by splicing a thin piece of C-shaped fiber between two standard single-mode fibers. The refractive index (RI) response of the FPI was characterized using water-ethanol mixtures with RI in the range of 1.33 to 1.36. The RI sensitivity was measured to be 1368 nm/RIU at the wavelength of 1600 nm with good linearity. Thanks to its all-glass structure, the FPI exhibits very low temperature cross-sensitivity of 3.04 × 10⁻⁷ RIU/°C. The effects of cavity length on the performance of the sensor were also studied. A shorter cavity gives rise to broader measurement range while offering larger detection limit, and vice versa. What's more, the effect of material dispersion of analyte on the sensitivity of open-cavity FPIs was identified for the first time. The sensor is compact in size and easy to fabricate. It is potentially useful for label-free optical sensing of chemical and biological samples.

  13. Using health information technology to manage a patient population in accountable care organizations.

    PubMed

    Wu, Frances M; Rundall, Thomas G; Shortell, Stephen M; Bloom, Joan R

    2016-06-20

    Purpose - The purpose of this paper is to describe the current landscape of health information technology (HIT) in early accountable care organizations (ACOs), the different strategies ACOs are using to develop HIT-based capabilities, and how ACOs are using these capabilities within their care management processes to advance health outcomes for their patient population. Design/methodology/approach - Mixed methods study pairing data from a cross-sectional National Survey of ACOs with in-depth, semi-structured interviews with leaders from 11 ACOs (both completed in 2013). Findings - Early ACOs vary widely in their electronic health record, data integration, and analytic capabilities. The most common HIT capability was drug-drug and drug-allergy interaction checks, with 53.2 percent of respondents reporting that the ACO possessed the capability to a high degree. Outpatient and inpatient data integration was the least common HIT capability (8.1 percent). In the interviews, ACO leaders commented on different HIT development strategies to gain a more comprehensive picture of patient needs and service utilization. ACOs realize the necessity for robust data analytics, and are exploring a variety of approaches to achieve it. Research limitations/implications - Data are self-reported. The qualitative portion was based on interviews with 11 ACOs, limiting generalizability to the universe of ACOs but allowing for a range of responses. Practical implications - ACOs are challenged with the development of sophisticated HIT infrastructure. They may benefit from targeted assistance and incentives to implement health information exchanges with other providers to promote more coordinated care management for their patient population. Originality/value - Using new empirical data, this study increases understanding of the extent of ACOs' current and developing HIT capabilities to support ongoing care management.

  14. An assessment of future computer system needs for large-scale computation

    NASA Technical Reports Server (NTRS)

    Lykos, P.; White, J.

    1980-01-01

    Data ranging from specific computer capability requirements to opinions about the desirability of a national computer facility are summarized. It is concluded that considerable attention should be given to improving the user-machine interface. Otherwise, increased computer power may not improve the overall effectiveness of the machine user. Significant improvement in throughput requires highly concurrent systems plus the willingness of the user community to develop problem solutions for that kind of architecture. An unanticipated result was the expression of need for an on-going cross-disciplinary users group/forum in order to share experiences and to more effectively communicate needs to the manufacturers.

  15. A hypersonic vehicle approach to planetary exploration

    NASA Technical Reports Server (NTRS)

    Murbach, Marcus S.

    1993-01-01

    An enhanced Mars network class mission using a lifting hypersonic entry vehicle is proposed. The basic vehicle, derived from a mature hypersonic flight system called SWERVE, offers several advantages over more conventional low L/D or ballistic entry systems. The proposed vehicle has greatly improved lateral and cross range capability (e.g., it is capable of reaching the polar regions during less than optimal mission opportunities), is not limited to surface target areas of low elevation, and is less susceptible to problems caused by Martian dust storms. Further, the integrated vehicle has attractive deployment features and allows for a much improved evolutionary path to larger vehicles with greater science capability. Analysis of the vehicle is aided by the development of a Mars Hypersonic Flight Simulator from which flight trajectories are obtained. Atmospheric entry performance of the baseline vehicle is improved by a deceleration skirt and transpiration cooling system which significantly reduce TPS (Thermal Protection System) and flight battery mass. The use of the vehicle is also attractive in that the maturity of the flight systems make it cost-competitive with the development of a conventional low L/D entry system. Finally, the potential application of similar vehicles to other planetary missions is discussed.

  16. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  17. Velocity Mapping Toolbox (VMT): a processing and visualization suite for moving-vessel ADCP measurements

    USGS Publications Warehouse

    Parsons, D.R.; Jackson, P.R.; Czuba, J.A.; Engel, F.L.; Rhoads, B.L.; Oberg, K.A.; Best, J.L.; Mueller, D.S.; Johnson, K.K.; Riley, J.D.

    2013-01-01

    The use of acoustic Doppler current profilers (ADCP) for discharge measurements and three-dimensional flow mapping has increased rapidly in recent years and has been primarily driven by advances in acoustic technology and signal processing. Recent research has developed a variety of methods for processing data obtained from a range of ADCP deployments and this paper builds on this progress by describing new software for processing and visualizing ADCP data collected along transects in rivers or other bodies of water. The new utility, the Velocity Mapping Toolbox (VMT), allows rapid processing (vector rotation, projection, averaging and smoothing), visualization (planform and cross-section vector and contouring), and analysis of a range of ADCP-derived datasets. The paper documents the data processing routines in the toolbox and presents a set of diverse examples that demonstrate its capabilities. The toolbox is applicable to the analysis of ADCP data collected in a wide range of aquatic environments and is made available as open-source code along with this publication.

  18. Subgroup Benchmark Calculations for the Intra-Pellet Nonuniform Temperature Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Jung, Yeon Sang; Liu, Yuxuan

    A benchmark suite has been developed by Seoul National University (SNU) for intrapellet nonuniform temperature distribution cases based on the practical temperature profiles according to the thermal power levels. Though a new subgroup capability for nonuniform temperature distribution was implemented in MPACT, no validation calculation has been performed for the new capability. This study focuses on bench-marking the new capability through a code-to-code comparison. Two continuous-energy Monte Carlo codes, McCARD and CE-KENO, are engaged in obtaining reference solutions, and the MPACT results are compared to the SNU nTRACER using a similar cross section library and subgroup method to obtain self-shieldedmore » cross sections.« less

  19. A multi-parameter optical fiber sensor with interrogation and discrimination capabilities

    NASA Astrophysics Data System (ADS)

    Zhan, Yage; Wu, Hua; Yang, Qinyu; Pei, Jincheng; Yang, Xichun

    2009-11-01

    A multi-parameter and multi-function, but low-cost, optical fiber grating sensor with self-interrogation and self-discrimination capabilities is presented theoretically and experimentally. The sensor bases on three fiber Bragg gratings (FBG) and one fiber long period grating (LPG). Strain, vibration, pressure, ordinary temperature (-10 to 100 °C) and high temperature (100-800 °C) can be measured by the sensor. When high temperature (100-800 °C) is measured, the LPG is used as a high temperture sensor head and FBG 1 is used as an interrogation element. Alternatively, when one of the other four measurands is measured, FBG 1 (or FBG 2) is used as a sensor head and LPG is used as an interrogation element. When two of the other four measurands are measured simultaneously, FBG 1 and FBG 2 are used as sensor heads and LPG is used as a shared interrogation element. FBG 3 is used as a reference element to eliminate the errors resulted from light source fluctuation and the cross-sensitivity between measurand and environmental temperature. The measurands can be interrogated according to the signals of the photodiodes (PDs), which are related to the relative wavelength shift of the LPG and the FBGs. Experimental results agree well with theoretical analyses. The interrogation scheme is immune to light source fluctuation and the cross-sensitivity between measurands and enviromental temperature, and also the dynamic range is large.

  20. Noise Exposure and Hearing Capabilities of Quarry Workers in Ghana: A Cross-Sectional Study

    PubMed Central

    Gyamfi, Charles Kwame R.; Amankwaa, Isaac; Owusu Sekyere, Frank; Boateng, Daniel

    2016-01-01

    Introduction. Although quarry operations have high economic significance, the effects they cause to the workers in terms of excessive noise production cannot be overlooked. This cross-sectional study assessed the extent of noise exposure and its influence on hearing capabilities among quarry workers in Ashanti region. Methods. The study involved 400 workers randomly selected from five quarries in Ashanti region from April to June 2012. Data was collected using structured questionnaires, physical examination, and audiological assessments. A logistic regression model was fitted to assess independent predictors of hearing loss. Results. All the machines used at the various quarries produced noise that exceeded the minimum threshold with levels ranging from 85.5 dBA to 102.7 dBA. 176 (44%) of study respondents had hearing threshold higher than 25 dBA. 18% and 2% of these were moderately (41–55 dBA) and severely (71–90 dBA) impaired, respectively. Age, duration of work, and use of earplugs independently predicted the development of hearing loss. Use of earplugs showed a protective effect on the development of hearing loss (OR = 0.45; 95% CI = 0.25, 0.84). Conclusion. This study provides empirical evidence on the extent of damage caused to quarry workers as a result of excessive noise exposure. This will support the institution of appropriate protective measures to minimize this threat. PMID:26904137

  1. Using Design Capability Indices to Satisfy Ranged Sets of Design Requirements

    NASA Technical Reports Server (NTRS)

    Chen, Wei; Allen, Janet K.; Simpson, Timothy W.; Mistree, Farrokh

    1996-01-01

    For robust design it is desirable to allow the design requirements to vary within a certain range rather than setting point targets. This is particularly important during the early stages of design when little is known about the system and its requirements. Toward this end, design capability indices are developed in this paper to assess the capability of a family of designs, represented by a range of top-level design specifications, to satisfy a ranged set of design requirements. Design capability indices are based on process capability indices from statistical process control and provide a single objective, alternate approach to the use of Taguchi's signal-to- noise ratio which is often used for robust design. Successful implementation of design capability indices ensures that a family of designs conforms to a given ranged set of design requirements. To demonstrate an application and the usefulness of design capability indices, the design of a solar powered irrigation system is presented. Our focus in this paper is on the development and implementation of design capability indices as an alternate approach to the use of the signal-to-noise ratio and not on the results of the example problem, per se.

  2. Satellite laser ranging work at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mcgunigal, T. E.; Carrion, W. J.; Caudill, L. O.; Grant, C. R.; Johnson, T. S.; Premo, D. A.; Spadin, P. L.; Winston, G. C.

    1975-01-01

    Laser ranging systems, their range and accuracy capabilities, and planned improvements for future systems are discussed, the systems include one fixed and two mobile lasers ranging systems. They have demonstrated better than 10 cm accuracy both on a carefully surveyed ground range and in regular satellite ranging operations. They are capable of ranging to all currently launched retroreflector equipped satellites with the exception of Timation III. A third mobile system is discussed which will be accurate to better than 5 cm and will be capable of ranging to distant satellites such as Timation III and LAGEOS.

  3. National Research Council Dialogue to Assess Progress on NASA's Transformational Spaceport and Range Technologies Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Skelly, Darin M.

    2005-01-01

    Viewgraphs on the National Research Council's diaglog to assess progress on NASA's transformational spaceport and range technologies capability roadmap development is presented. The topics include: 1) Agency Goals and Objectives; 2) Strategic Planning Transformation; 3) Advanced Planning Organizational Roles; 4) Public Involvement in Strategic Planning; 5) Strategic Roadmaps; 6) Strategic Roadmaps Schedule; 7) Capability Roadmaps; 8) Capability Charter; 9) Process for Team Selection; 10) Capability Roadmap Development Schedule Overview; 11) Purpose of NRC Review; 12) Technology Readiness Levels; 13) Capability Readiness Levels; 14) Crosswalk Matrix Trans Spaceport & Range; 15) Example linkage to other roadmaps; 16) Capability Readiness Levels Defined; and 17) Crosswalk Matrix Ratings Work In-progress.

  4. Multiscale field-aligned current analyzer

    NASA Astrophysics Data System (ADS)

    Bunescu, C.; Marghitu, O.; Constantinescu, D.; Narita, Y.; Vogt, J.; Blǎgǎu, A.

    2015-11-01

    The magnetosphere-ionosphere coupling is achieved, essentially, by a superposition of quasi-stationary and time-dependent field-aligned currents (FACs), over a broad range of spatial and temporal scales. The planarity of the FAC structures observed by satellite data and the orientation of the planar FAC sheets can be investigated by the well-established minimum variance analysis (MVA) of the magnetic perturbation. However, such investigations are often constrained to a predefined time window, i.e., to a specific scale of the FAC. The multiscale field-aligned current analyzer, introduced here, relies on performing MVA continuously and over a range of scales by varying the width of the analyzing window, appropriate for the complexity of the magnetic field signatures above the auroral oval. The proposed technique provides multiscale information on the planarity and orientation of the observed FACs. A new approach, based on the derivative of the largest eigenvalue of the magnetic variance matrix with respect to the length of the analysis window, makes possible the inference of the current structures' location (center) and scale (thickness). The capabilities of the FAC analyzer are explored analytically for the magnetic field profile of the Harris sheet and tested on synthetic FAC structures with uniform current density and infinite or finite geometry in the cross-section plane of the FAC. The method is illustrated with data observed by the Cluster spacecraft on crossing the nightside auroral region, and the results are cross checked with the optical observations from the Time History of Events and Macroscale Interactions during Substorms ground network.

  5. Micro-optoelectromechanical systems accelerometer based on intensity modulation using a one-dimensional photonic crystal.

    PubMed

    Sheikhaleh, Arash; Abedi, Kambiz; Jafari, Kian; Gholamzadeh, Reza

    2016-11-10

    In this paper, we propose what we believe is a novel sensitive micro-optoelectromechanical systems (MOEMS) accelerometer based on intensity modulation by using a one-dimensional photonic crystal. The optical sensing system of the proposed structure includes an air-dielectric multilayer photonic bandgap material, a laser diode (LD) light source, a typical photodiode (1550 nm) and a set of integrated optical waveguides. The proposed sensor provides several advantages, such as a relatively wide measurement range, good linearity in the whole measurement range, integration capability, negligible cross-axis sensitivity, high reliability, and low air-damping coefficient, which results in a wider frequency bandwidth for a fixed resonance frequency. Simulation results show that the functional characteristics of the sensor are as follows: a mechanical sensitivity of 119.21 nm/g, a linear measurement range of ±38g and a resonance frequency of 1444 Hz. Thanks to the above-mentioned characteristics, the proposed MOEMS accelerometer is suitable for a wide spectrum of applications, ranging from consumer electronics to aerospace and inertial navigation.

  6. Performance evaluation of a second-generation elastic loop mobility system

    NASA Technical Reports Server (NTRS)

    Melzer, K. J.; Swanson, G. D.

    1974-01-01

    Tests were conducted to evaluate the mobility performance of a second-generation Elastic Loop Mobility System (ELMS II). Performance on level test lanes and slopes of lunar soil simulant (LSS) and obstacle-surmounting and crevasse-crossing capabilities were investigated. In addition, internal losses and contact pressure distributions were evaluated. To evaluate the soft-soil performance, two basic soil conditions were tested: loose (LSS1) and dense (LSS5). These conditions embrace the spectrum of soil strengths tested during recent studies for NASA related to the mobility performance of the LRV. Data indicated that for the tested range of the various performance parameters, performance was independent of unit load (contact pressure) and ELMS II drum angular velocity, but was influenced by soil strength and ELMS pitch mode. Power requirements were smaller at a given system output for dense soil than for loose soil. The total system output in terms of pull developed or slope-climbing capability was larger for the ELMS II operating in restrained-pitch mode than in free-pitch mode.

  7. Multiple protocol fluorometer and method

    DOEpatents

    Kolber, Zbigniew S.; Falkowski, Paul G.

    2000-09-19

    A multiple protocol fluorometer measures photosynthetic parameters of phytoplankton and higher plants using actively stimulated fluorescence protocols. The measured parameters include spectrally-resolved functional and optical absorption cross sections of PSII, extent of energy transfer between reaction centers of PSII, F.sub.0 (minimal), F.sub.m (maximal) and F.sub.v (variable) components of PSII fluorescence, photochemical and non-photochemical quenching, size of the plastoquinone (PQ) pool, and the kinetics of electron transport between Q.sub.a and PQ pool and between PQ pool and PSI. The multiple protocol fluorometer, in one embodiment, is equipped with an excitation source having a controlled spectral output range between 420 nm and 555 nm and capable of generating flashlets having a duration of 0.125-32 .mu.s, an interval between 0.5 .mu.s and 2 seconds, and peak optical power of up to 2 W/cm.sup.2. The excitation source is also capable of generating, simultaneous with the flashlets, a controlled continuous, background illumination.

  8. Diagnostic capability of Pulsar perimetry in pre-perimetric and early glaucoma.

    PubMed

    Hirasawa, Kazunori; Takahashi, Natsumi; Matsumura, Kazuhiro; Kasahara, Masayuki; Shoji, Nobuyuki

    2017-06-12

    This study aimed to compare the diagnostic capability of Pulsar perimetry (Pulsar) in pre-perimetric glaucoma (PPG) and early glaucoma (EG) with that of Flicker perimetry (Flicker) and spectral-domain optical conference tomography (SD-OCT). This prospective cross-sectional study included 25 eyes of 25 PPG patients, 35 eyes of 35 EG patients, and 42 eyes of 42 healthy participants. The diagnostic capability using the area under the curve (AUC) of the best parameter and agreement of detectability between structural and functional measurements were compared. For PPG patients, the AUC of Pulsar, Flicker, OCT-disc, and OCT-macular was 0.733, 0.663, 0.842, and 0.780, respectively. The AUC of Flicker was significantly lower than that of OCT-disc (p = 0.016). For EG patients, the AUC of Pulsar, Flicker, OCT-disc, and OCT-macular were 0.851, 0.869, 0.907, and 0.861, respectively. There was no significant difference in AUC among these methods. The agreement between structural and functional measurements expressed by kappa value ranged from -0.16 to 0.07 for PPG and from 0.01 to 0.25 for EG. Although the diagnostic capability of Pulsar in the PPG and EG groups was equal to that of Flicker and SD-OCT, the agreements between structural and functional measurements for both PPG and EG were poor.

  9. Interpreting the Clinical Significance of Capacity Scores for Informed Consent in Alzheimer Disease Clinical Trials

    PubMed Central

    Karlawish, Jason; Kim, Scott Y. H.; Knopman, David; van Dyck, Christopher H.; James, Bryan D.; Bioethics, M.; Marson, Daniel

    2014-01-01

    Objective Among Alzheimer disease (AD) patients enrolled in a clinical trial, the authors assessed the ability of a standardized capacity assessment procedure to identify persons who are capable of giving their own informed consent. Design Cross-sectional interview. Setting Thirteen sites participating in a randomized and placebo controlled study of simvastatin for the treatment of mild to moderate AD. Participants Persons with mild to moderate AD and their study partners enrolled in the simvastatin clinical trial. Measurements Interviews to assess decision-making capacity using the MacArthur Competency Assessment Tool for Clinical Research (MacCAT-CR). Results Judges blinded to the subject’s clinical status had a high rate of agreement on patients capable of giving their own informed consent (κ = 0.73). The understanding subscale had the best receiver operator characteristic and an analysis of positive and negative predictive values over a range of hypothetical prevalences of incapacity to consent demonstrated the value of a range of understanding cut-points. Conclusion Among mild to moderate AD patients, enrolled in an actual clinical trial, these results suggest evidence based guidelines for using the MacCAT-CR understanding subscale to help guide judgments about whether a patient has the capacity to consent. PMID:18556397

  10. Self-mating in the definitive host potentiates clonal outbreaks of the apicomplexan parasites Sarcocystis neurona and Toxoplasma gondii.

    PubMed

    Wendte, Jered M; Miller, Melissa A; Lambourn, Dyanna M; Magargal, Spencer L; Jessup, David A; Grigg, Michael E

    2010-12-23

    Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease outbreaks.

  11. Tonopah Test Range - Index

    Science.gov Websites

    Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Us Range Videos/Photos Range Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Optical Systems Cinetheodolites Telescopes R&D Telescopes

  12. The User Community and a Multi-Mission Data Project: Services, Experiences and Directions of the Space Physics Data Facility

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Bilitza, D.; Candey, R.; Chimiak, R.; Cooper, John; Fung, Shing; Harris, B.; Johnson R.; King, J.; Kovalick, T.; hide

    2008-01-01

    From a user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer a unique range of important data and services highly complementary to other services presently available or now evolving in the international heliophysics data environment. The VSP (Virtual Space Physics Observatory) service is an active portal to a wide range of distributed data sources. CDAWeb (Coordinate Data Analysis Web) enables plots, listings and file downloads for current data cross the boundaries of missions and instrument types (and now including data from THEMIS and STEREO). SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently important to heliophysics science. OMNIWeb with its new extension to 1- and 5-minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. SPDF also maintains NASA's CDF (common Data Format) standard and a range of associated tools including translation services. These capabilities are all now available through webservices-based APIs as well as through our direct user interfaces. In this paper, we will demonstrate the latest data and capabilities now supported in these multi-mission services, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  13. Quantitative mass imaging of single biological macromolecules.

    PubMed

    Young, Gavin; Hundt, Nikolas; Cole, Daniel; Fineberg, Adam; Andrecka, Joanna; Tyler, Andrew; Olerinyova, Anna; Ansari, Ayla; Marklund, Erik G; Collier, Miranda P; Chandler, Shane A; Tkachenko, Olga; Allen, Joel; Crispin, Max; Billington, Neil; Takagi, Yasuharu; Sellers, James R; Eichmann, Cédric; Selenko, Philipp; Frey, Lukas; Riek, Roland; Galpin, Martin R; Struwe, Weston B; Benesch, Justin L P; Kukura, Philipp

    2018-04-27

    The cellular processes underpinning life are orchestrated by proteins and their interactions. The associated structural and dynamic heterogeneity, despite being key to function, poses a fundamental challenge to existing analytical and structural methodologies. We used interferometric scattering microscopy to quantify the mass of single biomolecules in solution with 2% sequence mass accuracy, up to 19-kilodalton resolution, and 1-kilodalton precision. We resolved oligomeric distributions at high dynamic range, detected small-molecule binding, and mass-imaged proteins with associated lipids and sugars. These capabilities enabled us to characterize the molecular dynamics of processes as diverse as glycoprotein cross-linking, amyloidogenic protein aggregation, and actin polymerization. Interferometric scattering mass spectrometry allows spatiotemporally resolved measurement of a broad range of biomolecular interactions, one molecule at a time. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems

    PubMed Central

    Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID:25411511

  15. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhong, Shuncong; Shen, Yao-Chun; Ho, Louise; May, Robert K.; Zeitler, J. Axel; Evans, Mike; Taday, Philip F.; Pepper, Michael; Rades, Thomas; Gordon, Keith C.; Müller, Ronny; Kleinebudde, Peter

    2011-03-01

    Optical coherence tomography (OCT) and terahertz pulsed imaging (TPI) are two powerful techniques allowing high quality cross-sectional images from within scattering media to be obtained non-destructively. In this paper, we report experimental results of using OCT and TPI for quantitatively characterizing pharmaceutical tablet coatings in the thickness range of 10-140 μm. We found that the spectral OCT system developed in-house has an axial resolution of 0.9 μm, and is capable of quantifying very thin coatings in the range of 10-60 μm. The upper limit of 60 μm within the tablet coating and core is owed to the strong scattering of OCT light, which has relatively short wavelengths in the range of 0.5-1.0 μm. On the other hand, TPI utilizes terahertz radiation that has substantially long wavelengths in the range of hundreds of microns, and thus is less prone to the scattering problem. Consequently TPI has been demonstrated to be able to quantify thicker coatings in the range of 40-140 μm and beyond. We concluded that OCT and TPI are two complementary analytical techniques for non-destructive and quantitative characterization of pharmaceutical tablet coatings.

  16. Exploring the Further Integration of Machine Translation in English-Chinese Cross Language Information Access

    ERIC Educational Resources Information Center

    Wu, Dan; He, Daqing

    2012-01-01

    Purpose: This paper seeks to examine the further integration of machine translation technologies with cross language information access in providing web users the capabilities of accessing information beyond language barriers. Machine translation and cross language information access are related technologies, and yet they have their own unique…

  17. Crack healing in cross-ply composites observed by dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Nielsen, Christian; Nemat-Nasser, Sia

    2015-03-01

    Cross-ply composites with healable polymer matrices are characterized using dynamic mechanical analysis (DMA). The [90,0]s samples are prepared by embedding layers of unidirectional glass or carbon fibers in 2MEP4FS, a polymer with thermally reversible covalent cross-links, which has been shown to be capable of healing internal cracks and fully recovering fracture toughness when the crack surfaces are kept in contact. After fabrication, cracks in the composites' transverse plies are observed due to residual thermal stresses introduced during processing. Single cantilever bending DMA measurements show the samples exhibit periods of increasing storage moduli with increasing temperature. These results are accurately modeled as a one-dimensional composite, which captures the underlying physics of the phenomenon. The effect of cracks on the stiffness is accounted for by a shear-lag model. The predicted crack density of the glass fiber composite is shown to fall within a range observed from microscopy images. Crack healing occurs as a function of temperature, with chemistry and mechanics-based rationales given for the onset and conclusion of healing. The model captures the essential physics of the phenomenon and yields results in accord with experimental observations.

  18. Injection deep level transient spectroscopy: An improved method for measuring capture rates of hot carriers in semiconductors

    DOE PAGES

    Fleming, R. M.; Seager, C. H.; Lang, D. V.; ...

    2015-07-02

    In this study, an improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy(DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V 2) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range ofmore » capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.« less

  19. The 3-D vision system integrated dexterous hand

    NASA Technical Reports Server (NTRS)

    Luo, Ren C.; Han, Youn-Sik

    1989-01-01

    Most multifingered hands use a tendon mechanism to minimize the size and weight of the hand. Such tendon mechanisms suffer from the problems of striction and friction of the tendons resulting in a reduction of control accuracy. A design for a 3-D vision system integrated dexterous hand with motor control is described which overcomes these problems. The proposed hand is composed of three three-jointed grasping fingers with tactile sensors on their tips, a two-jointed eye finger with a cross-shaped laser beam emitting diode in its distal part. The two non-grasping fingers allow 3-D vision capability and can rotate around the hand to see and measure the sides of grasped objects and the task environment. An algorithm that determines the range and local orientation of the contact surface using a cross-shaped laser beam is introduced along with some potential applications. An efficient method for finger force calculation is presented which uses the measured contact surface normals of an object.

  20. EnsMart: A Generic System for Fast and Flexible Access to Biological Data

    PubMed Central

    Kasprzyk, Arek; Keefe, Damian; Smedley, Damian; London, Darin; Spooner, William; Melsopp, Craig; Hammond, Martin; Rocca-Serra, Philippe; Cox, Tony; Birney, Ewan

    2004-01-01

    The EnsMart system (www.ensembl.org/EnsMart) provides a generic data warehousing solution for fast and flexible querying of large biological data sets and integration with third-party data and tools. The system consists of a query-optimized database and interactive, user-friendly interfaces. EnsMart has been applied to Ensembl, where it extends its genomic browser capabilities, facilitating rapid retrieval of customized data sets. A wide variety of complex queries, on various types of annotations, for numerous species are supported. These can be applied to many research problems, ranging from SNP selection for candidate gene screening, through cross-species evolutionary comparisons, to microarray annotation. Users can group and refine biological data according to many criteria, including cross-species analyses, disease links, sequence variations, and expression patterns. Both tabulated list data and biological sequence output can be generated dynamically, in HTML, text, Microsoft Excel, and compressed formats. A wide range of sequence types, such as cDNA, peptides, coding regions, UTRs, and exons, with additional upstream and downstream regions, can be retrieved. The EnsMart database can be accessed via a public Web site, or through a Java application suite. Both implementations and the database are freely available for local installation, and can be extended or adapted to `non-Ensembl' data sets. PMID:14707178

  1. Doppler centroid estimation ambiguity for synthetic aperture radars

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Curlander, J. C.

    1989-01-01

    A technique for estimation of the Doppler centroid of an SAR in the presence of large uncertainty in antenna boresight pointing is described. Also investigated is the image degradation resulting from data processing that uses an ambiguous centroid. Two approaches for resolving ambiguities in Doppler centroid estimation (DCE) are presented: the range cross-correlation technique and the multiple-PRF (pulse repetition frequency) technique. Because other design factors control the PRF selection for SAR, a generalized algorithm is derived for PRFs not containing a common divisor. An example using the SIR-C parameters illustrates that this algorithm is capable of resolving the C-band DCE ambiguities for antenna pointing uncertainties of about 2-3 deg.

  2. Second-order Born calculation of coplanar symmetric (e, 2e) process on Mg

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Zhi; Wang, Yang; Zhou, Ya-Jun

    2014-06-01

    The second-order distorted wave Born approximation (DWBA) method is employed to investigate the triple differential cross sections (TDCS) of coplanar doubly symmetric (e, 2e) collisions for magnesium at excess energies of 6 eV-20 eV. Comparing with the standard first-order DWBA calculations, the inclusion of the second-order Born term in the scattering amplitude improves the degree of agreement with experiments, especially for backward scattering region of TDCS. This indicates that the present second-order Born term is capable to give a reasonable correction to DWBA model in studying coplanar symmetric (e, 2e) problems of two-valence-electron target in low energy range.

  3. Future Interagency Range and Spaceport Technologies (FIRST) Formulation Products: 1. Transformational Spaceport and Range Concept of Operations. 2. F.I.R.S.T. Business Case Analysis

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Baseline Report captures range and spaceport capabilities at five sites: KSC, CCAFS, VAFB, Wallops, and Kodiak. The Baseline depicts a future state that relies on existing technology, planned upgrades, and straight-line recapitalization at these sites projected through 2030. The report presents an inventory of current spaceport and range capabilities at these five sites. The baseline is the first part of analyzing a business case for a set of capabilities designed to transform U.S. ground and space launch operations toward a single, integrated national "system" of space transportation systems. The second part of the business case compares current capabilities with technologies needed to support the integrated national "system". The final part, a return on investment analysis, identifies the technologies that best lead to the integrated national system and reduce recurring costs..Numerous data sources were used to define and describe the baseline spaceport and range by identifying major systems and elements and describing capabilities, limitations, and capabilities

  4. Drivers' decision-making when attempting to cross an intersection results from choice between affordances

    PubMed Central

    Marti, Geoffrey; Morice, Antoine H. P.; Montagne, Gilles

    2015-01-01

    In theory, a safe approach to an intersection implies that drivers can simultaneously manage two scenarios: they either choose to cross or to give way to an oncoming vehicle. In this article we formalize the critical time for safe crossing (CTcross) and the critical time for safe stopping (CTstop) to represent crossing and stopping possibilities, respectively. We describe these critical times in terms of affordances and empirically test their respective contribution to the driver's decision-making process. Using a driving simulator, three groups of participants drove cars with identical acceleration capabilities and different braking capabilities. They were asked to try to cross an intersection where there was an oncoming vehicle, if they deemed the maneuver to be safe. If not, they could decide to stop or, as a last resort, make an emergency exit. The intersections were identical among groups. Results showed that although the crossing possibilities (CTcross) were the same for all groups, there were between-group differences in crossing frequency. This suggests that stopping possibilities (CTstop) play a role in the driver's decision-making process, in addition to the crossing possibilities. These results can be accounted for by a behavioral model of decision making, and provide support for the hypothesis of choice between affordances. PMID:25620922

  5. Productivity and quality improvements in health care through airboss mobile messaging services.

    PubMed

    Shah, P J; Martinez, R; Cooney, E

    1997-01-01

    The US health care industry is in the midst of revolutionary changes. Under tremendous pressures from third-party payers and managed care programs to control costs while providing high quality medical services, health care entities are now looking at information technologies to help them achieve their goals. These goals typically include improved productivity, efficiency and decision-making capabilities among staff members. Moreover, hospitals and other health care facilities that provide a broad and integrated range of inpatient and outpatient care, wellness and home care services are in the best position to offer comprehensive packages to managed care and private insurers. Many health care providers and administrators are considered mobile employees. This mobility can range from intra-building and intra-campus to multi-site and metropolitan areas. This group often relies on a variety of information technologies such as personal computers, communicating laptops, pagers, cellular phones, wireline phones, cordless phones and fax machines to stay in touch and handle information needs. These health care professionals require mobile information access and messaging tools to improve communications, control accessibility and enhance decision-making capabilities. AirBoss mobile messaging services could address the health care industry's need for improved messaging capabilities for its mobile employees. The AirBoss family of services supports integrated voice services, data messaging, mobile facsimile and customized information delivery. This paper describes overview of the current mobile data networking capability, the AirBoss architecture, the health care-related applications it addresses and long-term benefits. In addition, a prototype application for mobile home health care workers is illustrated. This prototype application provides integrated e-mail, information services, web access, real-time access and update of patient records from wireline or wireless networks, and cross media delivery and notification. It provides seamless wide area access to patient data in a secure environment, thus providing a continuity of care from the hospital to home.

  6. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-03-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  7. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-07-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  8. Multimodal fiber-probe spectroscopy as a clinical tool for diagnosing and classifying biological tissues

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Fantechi, Riccardo; Giordano, Flavio; Gacci, Mauro; Conti, Valerio; Nesi, Gabriella; Buccoliero, Anna Maria; Carini, Marco; Guerrini, Renzo; Pavone, Francesco Saverio

    2017-07-01

    An optical fiber probe for multimodal spectroscopy was designed, developed and used for tissue diagnostics. The probe, based on a fiber bundle with optical fibers of various size and properties, allows performing spectroscopic measurements with different techniques, including fluorescence, Raman, and diffuse reflectance, using the same probe. Two visible laser diodes were used for fluorescence spectroscopy, a laser diode emitting in the NIR was used for Raman spectroscopy, and a fiber-coupled halogen lamp for diffuse reflectance. The developed probe was successfully employed for diagnostic purposes on various tissues, including brain and bladder. In particular, the device allowed discriminating healthy tissue from both tumor and dysplastic tissue as well as to perform tumor grading. The diagnostic capabilities of the method, determined using a cross-validation method with a leave-one-out approach, demonstrated high sensitivity and specificity for all the examined samples, as well as a good agreement with histopathological examination performed on the same samples. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities with respect to what can be obtained from individual techniques. The experimental setup presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used clinically for guiding surgical resection in the near future.

  9. Networking Cyberinfrastructure Resources to Support Global, Cross-disciplinary Science

    NASA Astrophysics Data System (ADS)

    Lehnert, K.; Ramamurthy, M. K.

    2016-12-01

    Geosciences are globally connected by nature and the grand challenge problems like climate change, ocean circulations, seasonal predictions, impact of volcanic eruptions, etc. all transcend both disciplinary and geographic boundaries, requiring cross-disciplinary and international partnerships. Cross-disciplinary and international collaborations are also needed to unleash the power of cyber- (or e-) infrastructure (CI) by networking globally distributed, multi-disciplinary data, software, and computing resources to accelerate new scientific insights and discoveries. While the promises of a global and cross-disciplinary CI are exhilarating and real, a range of technical, organizational, and social challenges needs to be overcome in order to achieve alignment and linking of operational data systems, software tools, and computing facilities. New modes of collaboration require agreement on and governance of technical standards and best practices, and funding for necessary modifications. This presentation will contribute the perspective of domain-specific data facilities to the discussion of cross-disciplinary and international collaboration in CI development and deployment, in particular those of IEDA (Interdisciplinary Earth Data Alliance) serving the solid Earth sciences and Unidata serving atmospheric sciences. Both facilities are closely involved with the US NSF EarthCube program that aims to network and augment existing Geoscience CI capabilities "to make disciplinary boundaries permeable, nurture and facilitate knowledge sharing, …, and enhance collaborative pursuit of cross-disciplinary research" (EarthCube Strategic Vision), while also collaborating internationally to network domain-specific and cross-disciplinary CI resources. These collaborations are driven by the substantial benefits to the science community, but create challenges, when operational and funding constraints need to be balanced with adjustments to new joint data curation practices and interoperability standards.

  10. Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Tsilipakos, Odysseas; Kriezis, Emmanouil E.; Bozhevolnyi, Sergey I.

    2011-04-01

    Thermo-optic switching elements made of dielectric-loaded plasmonic (DLSPP) waveguides are theoretically investigated by utilizing the three-dimensional vector finite element method. The configurations considered employ microring resonators, whose resonant frequency is varied by means of thermal tuning. First, a classic add-drop filter with parallel access waveguides is examined. Such a component features very poor drop port extinction ratio (ER). We therefore extend the analysis to add-drop filters with perpendicular access waveguides, which are found to exhibit superior drop port ERs, due to interference effects associated with the drop port transmission. In the process, the performance of a DLSPP waveguide crossing is also assessed, since it is a building block of those filters whose bus waveguides intersect. An elliptic tapering scheme is proposed for minimizing cross talk and its effect on the filter performance is explored. The dual-resonator add-drop filter with perpendicular bus waveguides and an untreated waveguide crossing of Sec. V can act as an efficient 2×2 switching element (the single-resonator variant can only act as a 1×2 switch due to structure asymmetry), possessing two equivalent input ports and featuring high ERs for both output ports over a broad wavelength range. Specifically, an extinction ratio of at least 8 dB can be attained for both output ports over a wavelength range of 3.2 nm, accommodating four 100-GHz-spaced channels. Switching times are in the order of a few microseconds, rendering the aforementioned structure capable of handling real-world routing scenarios.

  11. Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding

    PubMed Central

    Ware, Taylor; Hearon, Keith; Lonnecker, Alexander; Wooley, Karen L.; Maitland, Duncan J.; Voit, Walter

    2012-01-01

    Triple shape memory polymers (TSMPs) are a growing subset of a class of smart materials known as shape memory polymers, which are capable of changing shape and stiffness in response to a stimulus. A TSMP can change shapes twice and can fix two metastable shapes in addition to its permanent shape. In this work, a novel TSMP system comprised of both permanent covalent cross-links and supramolecular hydrogen bonding cross-links has been synthesized via a one-pot method. Triple shape properties arise from the combination of the glass transition of (meth)acrylate copolymers and the dissociation of self-complementary hydrogen bonding moieties, enabling broad and independent control of both glass transition temperature (Tg) and cross-link density. Specifically, ureidopyrimidone methacrylate and a novel monomer, ureidopyrimidone acrylate, were copolymerized with various alkyl acrylates and bisphenol A ethoxylate diacrylate. Control of Tg from 0 to 60 °C is demonstrated: concentration of hydrogen bonding moieties is varied from 0 to 40 wt %; concentration of the diacrylate is varied from 0 to 30 wt %. Toughness ranges from 0.06 to 0.14 MPa and is found to peak near 20 wt % of the supramolecular cross-linker. A widely tunable class of amorphous triple-shape memory polymers has been developed and characterized through dynamic and quasi-static thermomechanical testing to gain insights into the dynamics of supramolecular networks. PMID:22287811

  12. EPA Region 6 Laboratory Method Specific Analytical Capabilities with Sample Concentration Range

    EPA Pesticide Factsheets

    EPA Region 6 Environmental Services Branch (ESB) Laboratory is capable of analyzing a wide range of samples with concentrations ranging for low part-per trillion (ppt) to low percent () levels, depending on the sample matrix.

  13. Measurement Of Trailing Edge Noise using Directional Array and Coherent Output Power Methods

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2002-01-01

    The use of a directional array of microphones for the measurement of trailing edge (TE) noise is described. The capabilities of this method are evaluated via measurements of TE noise from a NACA 63-215 airfoil model and from a cylindrical rod. This TE noise measurement approach is compared to one that is based on the cross spectral analysis of output signals from a pair of microphones (COP method). Advantages and limitations of both methods are examined. It is shown that the microphone array can accurately measures TE noise and captures its two-dimensional characteristic over a large frequency range for any TE configuration as long as noise contamination from extraneous sources is within bounds. The COP method is shown to also accurately measure TE noise but over a more limited frequency range that narrows for increased TE thickness. Finally, the applicability and generality of an airfoil self-noise prediction method was evaluated via comparison to the experimental data obtained using the COP and array measurement methods. The predicted and experimental results are shown to agree over large frequency ranges.

  14. Western Aeronautical Test Range (WATR) mission control Blue room

    NASA Image and Video Library

    1994-12-05

    Mission control Blue Room, seen here, in building 4800 at NASA's Dryden Flight Research Center, is part of the Western Aeronautical Test Range (WATR). All aspects of a research mission are monitored from one of two of these control rooms at Dryden. The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests, corridors are provided for low, medium, and high-altitude supersonic flight, and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada.

  15. Western Aeronautical Test Range (WATR) mission control Gold room

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Mission control Gold room is seen here, located at the Dryden Flight Research Center of the Western Aeronautical Test Range (WATR). All aspects of a research mission are monitored from one of two of these control rooms at Dryden. The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests, corridors are provided for low, medium, and high-altitude supersonic flight, and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada.

  16. In Situ Resource Utilization For Mobility In Mars Exploration

    NASA Astrophysics Data System (ADS)

    Hartman, Leo

    There has been considerable interest in the unmanned exploration of Mars for quite some time but the current generation of rovers can explore only a small portion of the total planetary surface. One approach to addressing this deficiency is to consider a rover that has greater range and that is cheaper so that it can be deployed in greater numbers. The option explored in this paper uses the wind to propel a rover platform, trading off precise navigation for greater range. The capabilities of such a rover lie between the global perspective of orbiting satellites and the detailed local analysis of current-generation rovers. In particular, the design includes two inflatable wheels with an unspun payload platform suspended between then. Slightly deflating one of the wheels enables steering away from the direction of the wind and sufficiently deflating both wheels will allow the rover to stop. Current activities revolve around the development of a prototype with a wheel cross-sectional area that is scaled by 1/100 to enable terrestrial trials to provide meaningful insight into the performance and behavior of a full-sized rover on Mars. The paper will discuss the design and its capabilities in more detail as well as current efforts to build a prototype suitable for deployment at a Mars analogue site such as Devon Island in the Canadian arctic.

  17. Improving socially constructed cross-cultural communication in aged care homes: A critical perspective.

    PubMed

    Xiao, Lily Dongxia; Willis, Eileen; Harrington, Ann; Gillham, David; De Bellis, Anita; Morey, Wendy; Jeffers, Lesley

    2018-01-01

    Cultural diversity between residents and staff is significant in aged care homes in many developed nations in the context of international migration. This diversity can be a challenge to achieving effective cross-cultural communication. The aim of this study was to critically examine how staff and residents initiated effective cross-cultural communication and social cohesion that enabled positive changes to occur. A critical hermeneutic analysis underpinned by Giddens' Structuration Theory was applied to the study. Data were collected by interviews with residents or their family and by focus groups with staff in four aged care homes in Australia. Findings reveal that residents and staff are capable of restructuring communication via a partnership approach. They can also work in collaboration to develop communication resources. When staff demonstrate cultural humility, they empower residents from culturally and linguistically diverse backgrounds to engage in effective communication. Findings also suggest that workforce interventions are required to improve residents' experiences in cross-cultural care. This study challenges aged care homes to establish policies, criteria and procedures in cross-cultural communication. There is also the challenge to provide ongoing education and training for staff to improve their cross-cultural communication capabilities. © 2017 John Wiley & Sons Ltd.

  18. Recent Advances in Resonance Region Nuclear Data Measurements and Analyses for Supporting Nuclear Energy Applications

    NASA Astrophysics Data System (ADS)

    Dunn, Michael

    2008-10-01

    For over 30 years, the Oak Ridge National Laboratory (ORNL) has performed research and development to provide more accurate nuclear cross-section data in the resonance region. The ORNL Nuclear Data (ND) Program consists of four complementary areas of research: (1) cross-section measurements at the Oak Ridge Electron Linear Accelerator; (2) resonance analysis methods development with the SAMMY R-matrix analysis software; (3) cross-section evaluation development; and (4) cross-section processing methods development with the AMPX software system. The ND Program is tightly coupled with nuclear fuel cycle analyses and radiation transport methods development efforts at ORNL. Thus, nuclear data work is performed in concert with nuclear science and technology needs and requirements. Recent advances in each component of the ORNL ND Program have led to improvements in resonance region measurements, R-matrix analyses, cross-section evaluations, and processing capabilities that directly support radiation transport research and development. Of particular importance are the improvements in cross-section covariance data evaluation and processing capabilities. The benefit of these advances to nuclear science and technology research and development will be discussed during the symposium on Nuclear Physics Research Connections to Nuclear Energy.

  19. The Los Alamos suite of relativistic atomic physics codes

    DOE PAGES

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; ...

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suitemore » can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.« less

  20. Differences in acoustic features of vocalizations produced by killer whales cross-socialized with bottlenose dolphins.

    PubMed

    Musser, Whitney B; Bowles, Ann E; Grebner, Dawn M; Crance, Jessica L

    2014-10-01

    Limited previous evidence suggests that killer whales (Orcinus orca) are capable of vocal production learning. However, vocal contextual learning has not been studied, nor the factors promoting learning. Vocalizations were collected from three killer whales with a history of exposure to bottlenose dolphins (Tursiops truncatus) and compared with data from seven killer whales held with conspecifics and nine bottlenose dolphins. The three whales' repertoires were distinguishable by a higher proportion of click trains and whistles. Time-domain features of click trains were intermediate between those of whales held with conspecifics and dolphins. These differences provided evidence for contextual learning. One killer whale spontaneously learned to produce artificial chirps taught to dolphins; acoustic features fell within the range of inter-individual differences among the dolphins. This whale also produced whistles similar to a stereotyped whistle produced by one dolphin. Thus, results provide further support for vocal production learning and show that killer whales are capable of contextual learning. That killer whales produce similar repertoires when associated with another species suggests substantial vocal plasticity and motivation for vocal conformity with social associates.

  1. Examining Cultural Intelligence and Cross-Cultural Negotiation Effectiveness

    ERIC Educational Resources Information Center

    Groves, Kevin S.; Feyerherm, Ann; Gu, Minhua

    2015-01-01

    International negotiation failures are often linked to deficiencies in negotiator cross-cultural capabilities, including limited understanding of the cultures engaged in the transaction, an inability to communicate with persons from different cultural backgrounds, and limited behavioral flexibility to adapt to culturally unfamiliar contexts.…

  2. Using Novel Experiences in Introductory Psychology: Insects 101

    ERIC Educational Resources Information Center

    Forrest, Krista D.; Hoback, W. Wyatt

    2009-01-01

    This demonstration provides students with 1 active experience capable of representing cross-cultural psychology, personality and nature-nurture. Early in the semester, students completed Sensation Seeking and television preference questionnaires. We offered students the opportunity to eat insects during a cross-cultural psychology lecture. After…

  3. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    PubMed

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm 2 , 0.08 m 2 RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  4. Study of foldable elastic tubes for large space structure applications, phase 3

    NASA Technical Reports Server (NTRS)

    Jones, I. W.; Mitchell, S. O.

    1981-01-01

    A bi-convex foldable elastic tube, suitable for use in self deploying space structures, was subjected to a series of buckling tests to deterine initial buckling loads, collapse loads, and the buckling mode. The tube is cylindrical with a cross-section that is lenticular-like with flared edges. It is capable of being flattened in the center and folded compactly, storing up strain energy in the process. Upon removal of constraint, it springs back to its original straight configuration, releasing the stored strain energy. The tests showed that this type of tube has good resistance to buckling, with the initial buckling loads all falling within or above the range of those for comparable circular cylindrical tubes.

  5. Design and Performance of a Multiwavelength Airborne Polarimetric Lidar for Vegetation Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tan, Songxin; Narayanan, Ram M.

    2004-04-01

    The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.

  6. Future capabilities for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Berner, J. B.; Bryant, S. H.; Andrews, K. S.

    2004-01-01

    This paper will look at three new capabilities that are in different stages of development. First, turbo decoding, which provides improved telemetry performance for data rates up to about 1 Mbps, will be discussed. Next, pseudo-noise ranging will be presented. Pseudo-noise ranging has several advantages over the current sequential ranging, anmely easier operations, improved performance, and the capability to be used in a regenerative implementation on a spacecraft. Finally, Low Density Parity Check decoding will be discussed. LDPC codes can provide performance that matches or slightly exceed turbo codes, but are designed for use in the 10 Mbps range.

  7. C 3, A Command-line Catalog Cross-match Tool for Large Astrophysical Catalogs

    NASA Astrophysics Data System (ADS)

    Riccio, Giuseppe; Brescia, Massimo; Cavuoti, Stefano; Mercurio, Amata; di Giorgio, Anna Maria; Molinari, Sergio

    2017-02-01

    Modern Astrophysics is based on multi-wavelength data organized into large and heterogeneous catalogs. Hence, the need for efficient, reliable and scalable catalog cross-matching methods plays a crucial role in the era of the petabyte scale. Furthermore, multi-band data have often very different angular resolution, requiring the highest generality of cross-matching features, mainly in terms of region shape and resolution. In this work we present C 3 (Command-line Catalog Cross-match), a multi-platform application designed to efficiently cross-match massive catalogs. It is based on a multi-core parallel processing paradigm and conceived to be executed as a stand-alone command-line process or integrated within any generic data reduction/analysis pipeline, providing the maximum flexibility to the end-user, in terms of portability, parameter configuration, catalog formats, angular resolution, region shapes, coordinate units and cross-matching types. Using real data, extracted from public surveys, we discuss the cross-matching capabilities and computing time efficiency also through a direct comparison with some publicly available tools, chosen among the most used within the community, and representative of different interface paradigms. We verified that the C 3 tool has excellent capabilities to perform an efficient and reliable cross-matching between large data sets. Although the elliptical cross-match and the parametric handling of angular orientation and offset are known concepts in the astrophysical context, their availability in the presented command-line tool makes C 3 competitive in the context of public astronomical tools.

  8. Cross-orientation interactions in human vision.

    PubMed

    Roeber, Urte; Wong, Elaine M Y; Freeman, Alan W

    2008-03-18

    Humans can discriminate one visual contour from another on the basis of small differences in orientation. This capability depends on cortical detectors that are selective for a small range of orientations. We have measured this orientation bandwidth and the suppression that helps to shape it, with a reverse correlation technique. Human subjects were presented with a stream of randomly oriented gratings at a rate of 30 per second. Their task was to press a key whenever they saw an orientation nominated as the target. We analyzed the data by finding the probability density of two orientations: One preceded the key-press by the reaction time, and the second preceded the first by up to 100 ms. The results were as follows: (1) One grating facilitated the following one in producing a key-press when the gratings differed little in orientation. The estimate of orientation bandwidth resulting from this facilitation was 38 degrees . (2) A large angle between the two orientations reduced the probability of a key-press. This finding was best modelled as a suppression that did not vary with orientation, consistent with the idea that cross-orientation suppression is non-oriented. (3) Analysis of non-consecutive grating pairs showed that cross-orientation interactions lasted no longer than 67 ms.

  9. Asymmetrical flow field-flow fractionation coupled with multiple detections: A complementary approach in the characterization of egg yolk plasma.

    PubMed

    Dou, Haiyang; Li, Yueqiu; Choi, Jaeyeong; Huo, Shuying; Ding, Liang; Shen, Shigang; Lee, Seungho

    2016-09-23

    The capability of asymmetrical flow field-flow fractionation (AF4) coupled with UV/VIS, multiangle light scattering (MALS) and quasi-elastic light scattering (QELS) (AF4-UV-MALS-QELS) for separation and characterization of egg yolk plasma was evaluated. The accuracy of hydrodynamic radius (Rh) obtained from QELS and AF4 theory (using both simplified and full expression of AF4 retention equations) was discussed. The conformation of low density lipoprotein (LDL) and its aggregates in egg yolk plasma was discussed based on the ratio of radius of gyration (Rg) to Rh together with the results from bio-transmission electron microscopy (Bio-TEM). The results indicate that the full retention equation is more relevant than simplified version for the Rh determination at high cross flow rate. The Rh from online QELS is reliable only at a specific range of sample concentration. The effect of programmed cross flow rate (linear and exponential decay) on the analysis of egg yolk plasma was also investigated. It was found that the use of an exponentially decaying cross flow rate not only reduces the AF4 analysis time of the egg yolk plasma, but also provides better resolution than the use of either a constant or linearly decaying cross flow rate. A combination of an exponentially decaying cross flow AF4-UV-MALS-QELS and the utilization of full retention equation was proved to be a useful method for the separation and characterization of egg yolk plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Cross Validation of the Attitudes toward Mainstreaming Scale (ATMS).

    ERIC Educational Resources Information Center

    Berryman, Joan D.; Neal, W. R. Jr.

    1980-01-01

    Reliability and factorial validity of the Attitudes Toward Mainstreaming Scale was supported in a cross-validation study with teachers. Three factors emerged: learning capability, general mainstreaming, and traditional limiting disabilities. Factor intercorrelations varied from .42 to .55; correlations between total scores and individual factors…

  11. Smaller to larger biomolecule detection using a lab-built surface plasmon resonance based instrument

    NASA Astrophysics Data System (ADS)

    Lukose, J.; Kulal, V.; Chidangil, S.; Sinha, R. K.

    2016-10-01

    We have developed a low-cost surface plasmon resonance (SPR) instrument based on the Kretschmann configuration for biosensing applications. The fabricated instrument is capable of operating in both angular and intensity interrogation schemes. The proposed sensor has proved enormously versatile by detecting a range of analytes with low to high molecular weights. The refractive index based sensor has been used for detecting the variation in the concentration of the aqueous solution of glucose and glycerine. Real time immobilization of protein molecules, bovine serum albumin on a gold (Au) film surface, has also been detected using the SPR imaging technique. Alkanethiol functionalization of the Au surface was performed, and bovine serum albumin was immobilized onto the carboxyl functionalized surface using amine reactive cross linker chemistry. In future, the present approach can also be utilized for the selective detection of a wide range of target biomolecules with the help of specific capture probes, as well as for monitoring protein-drug interactions.

  12. Acoustic monitoring of the tide height and slope-water intrusion at the New Jersey Shelf in winter conditions.

    PubMed

    Turgut, Altan; Orr, Marshall; Pasewark, Bruce

    2007-05-01

    Waveguide invariant theory is used to describe the frequency shifts of constant acoustic intensity level curves in broadband signal spectrograms measured at the New Jersey Shelf during the winter of 2003. The broadband signals (270-330 Hz) were transmitted from a fixed source and received at three fixed receivers, located at 10, 20, and 30 km range along a cross-shelf propagation track. The constant acoustic intensity level curves of the received signals indicate regular frequency shifts that can be well predicted by the change in water depth observed through tens of tidal cycles. A second pattern of frequency shifts is observed at only 30 km range where significant variability of slope-water intrusion was measured. An excellent agreement between observed frequency shifts of the constant acoustic intensity levels and those predicted by the change in tide height and slope water elevations suggests the capability of long-term acoustic monitoring of tide and slope water intrusions in winter conditions.

  13. Evaluation of a HDR image sensor with logarithmic response for mobile video-based applications

    NASA Astrophysics Data System (ADS)

    Tektonidis, Marco; Pietrzak, Mateusz; Monnin, David

    2017-10-01

    The performance of mobile video-based applications using conventional LDR (Low Dynamic Range) image sensors highly depends on the illumination conditions. As an alternative, HDR (High Dynamic Range) image sensors with logarithmic response are capable to acquire illumination-invariant HDR images in a single shot. We have implemented a complete image processing framework for a HDR sensor, including preprocessing methods (nonuniformity correction (NUC), cross-talk correction (CTC), and demosaicing) as well as tone mapping (TM). We have evaluated the HDR sensor for video-based applications w.r.t. the display of images and w.r.t. image analysis techniques. Regarding the display we have investigated the image intensity statistics over time, and regarding image analysis we assessed the number of feature correspondences between consecutive frames of temporal image sequences. For the evaluation we used HDR image data recorded from a vehicle on outdoor or combined outdoor/indoor itineraries, and we performed a comparison with corresponding conventional LDR image data.

  14. Isolation and characterization of a novel herpesvirus from a free-ranging eastern grey kangaroo (Macropus giganteus).

    PubMed

    Vaz, Paola Karinna; Motha, Julian; McCowan, Christina; Ficorilli, Nino; Whiteley, Pam Lizette; Wilks, Colin Reginald; Hartley, Carol Anne; Gilkerson, James Rudkin; Browning, Glenn Francis; Devlin, Joanne Maree

    2013-01-01

    We isolated a macropodid herpesvirus from a free-ranging eastern grey kangaroo (Macropus giganteous) displaying clinical signs of respiratory disease and possibly neurologic disease. Sequence analysis of the herpesvirus glycoprotein G (gG) and glycoprotein B (gB) genes revealed that the virus was an alphaherpesvirus most closely related to macropodid herpesvirus 2 (MaHV-2) with 82.7% gG and 94.6% gB amino acid sequence identity. Serologic analyses showed similar cross-neutralization patterns to those of MaHV-2. The two viruses had different growth characteristics in cell culture. Most notably, this virus formed significantly larger plaques and extensive syncytia when compared with MaHV-2. No syncytia were observed for MaHV-2. Restriction endonuclease analysis of whole viral genomes demonstrated distinct restriction endonuclease cleavage patterns for all three macropodid herpesviruses. These studies suggest that a distinct macropodid alphaherpesvirus may be capable of infecting and causing disease in eastern grey kangaroos.

  15. Optical design of the PEPSI high-resolution spectrograph at LBT

    NASA Astrophysics Data System (ADS)

    Andersen, Michael I.; Spano, Paolo; Woche, Manfred; Strassmeier, Klaus G.; Beckert, Erik

    2004-09-01

    PEPSI is a high-resolution, fiber fed echelle spectrograph with polarimetric capabilities for the LBT. In order to reach a maximum resolution R=120.000 in polarimetric mode and 300.000 in integral light mode with high efficiency in the spectral range 390-1050~nm, we designed a white-pupil configuration with Maksutov collimators. Light is dispersed by an R4 31.6 lines/mm monolithic echelle grating mosaic and split into two arms through dichroics. The two arms, optimized for the spectral range 390-550~nm and 550-1050~nm, respectively, consist of Maksutov transfer collimators, VPH-grism cross dispersers, optimized dioptric cameras and 7.5K x 7.5K 8~μ CCDs. Fibers of different core sizes coupled to different image-slicers allow a high throughput, comparable to that of direct feed instruments. The optical configuration with only spherical and cylindrical surfaces, except for one aspherical surface in each camera, reduces costs and guarantees high optical quality. PEPSI is under construction at AIP with first light expected in 2006.

  16. A protein coated piezoelectric crystal detector

    NASA Astrophysics Data System (ADS)

    Suleiman, Ahmad; Pender, Marie; Ngeh-Ngwainbi, Jerome; Lubrano, Glenn; Guilbault, George

    1990-05-01

    The purpose of this project was to develop a protein coated, portable piezoelectric crystal detector for organophosphorus compounds. The performance of acetylcholinesterase, GD-1 anti-soman, anti-DMMP antibody, and bovine serum albumin (BSA) coatings was evaluated. Different immobilization methods were also tested. The responses obtained with the protein coatings immobilized via cross-linking with glutaraldehyde were acceptable, provided that the reference crystal was coated with dextran. The proposed coatings showed good stability and reasonable lifetimes that ranged from approximately three weeks in the case of the antibody coatings to several months in the case of BSA. Although moisture, gasoline, and sulfur are potential interferents, their effects on the sensor were eliminated by using a sodium sulfate scrubber which did not affect the performance of the detector towards organophosphates. A small, battery operated portable instrument capable of real time measurements with alarm function was produced. The instrument can be used in a wide range of applications, depending on the coatings applied to the crystals.

  17. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing

    PubMed Central

    Yun, S.H.; Vakoc, B.J.; Shishkov, M.; Desjardins, A.E.; Park, B.H.; de Boer, J.F.; Tearney, G.J.; Bouma, B.E.

    2009-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. Instruments capable of applying these measurements percutaneously in vivo may provide new insights into coronary atherosclerosis and acute myocardial infarction. We have developed a polarization sensitive optical frequency domain imaging (PS-OFDI) system that enables high-speed intravascular birefringence imaging through a fiber-optic catheter. The novel design of this system utilizes frequency multiplexing to simultaneously measure reflectance of two incident polarization states, overcoming concerns regarding temporal variations of the catheter fiber birefringence and spatial variations in the birefringence of the sample. We demonstrate circular cross-sectional birefringence imaging of a human coronary artery ex vivo through a flexible fiber-optic catheter with an A-line rate of 62 kHz and a ranging depth of 6.2 mm. PMID:18542183

  18. A Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Cerimele, Christopher J.; Robertson, Edward A.; Sostaric, Ronald R.; Campbell, Charles H.; Robinson, Phil; Matz, Daniel A.; Johnson, Breanna J.; Stachowiak, Susan J.; Garcia, Joseph A.; Bowles, Jeffrey V.; hide

    2017-01-01

    Current NASA Human Mars architectures require delivery of approximately 20 metric tons of cargo to the surface in a single landing. A proposed vehicle type for performing the entry, descent, and landing at Mars associated with this architecture is a rigid, enclosed, elongated lifting body shape that provides a higher lift-to-drag ratio (L/D) than a typical entry capsule, but lower than a typical winged entry vehicle (such as the Space Shuttle Orbiter). A rigid Mid-L/D shape has advantages for large mass Mars EDL, including loads management, range capability during entry, and human spaceflight heritage. Previous large mass Mars studies have focused more on symmetric and/or circular cross-section Mid-L/D shapes such as the ellipsled. More recent work has shown performance advantages for non-circular cross section shapes. This paper will describe efforts to design a rigid Mid-L/D entry vehicle for Mars which shows mass and performance improvements over previous Mid-L/D studies. The proposed concept, work to date and evolution, forward path, and suggested future strategy are described.

  19. The dynamic flexural response of propeller blades. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Djordjevic, S. Z.

    1982-01-01

    The determination of the torsional constants of three blade models having NACA four-digit symmetrical airfoil cross sections is presented. Values were obtained for these models analytically and experimentally. Results were also obtained for three other models having rectangular, elliptical, and parabolic cross sections. Complete modal analyses were performed for five blade models. The identification of modal parameters was done for cases when the blades were modeled as either undamped or damped multi-degree-of-freedom systems. For the experimental phase of this study, the modal testing was performed using a Dual Channel FFT analyzer and an impact hammer (which produced an impulsive excitation). The natural frequency and damping of each mode in the frequency range up to 2 kHz were measured. A small computer code was developed to calculate the dynamic response of the blade models for comparison with the experimental results. A comparison of the undamped and damped cases was made for all five blade models at the instant of maximum excitation force. The program was capable of handling models where the excitation forces were distributed arbitrarily along the length of the blade.

  20. The physics of solid-state neutron detector materials and geometries.

    PubMed

    Caruso, A N

    2010-11-10

    Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.

  1. Wind-Induced Reconfigurations in Flexible Branched Trees

    NASA Astrophysics Data System (ADS)

    Ojo, Oluwafemi; Shoele, Kourosh

    2017-11-01

    Wind induced stresses are the major mechanical cause of failure in trees. We know that the branching mechanism has an important effect on the stress distribution and stability of a tree in the wind. Eloy in PRL 2011, showed that Leonardo da Vinci's original observation which states the total cross section of branches is conserved across branching nodes is the best configuration for resisting wind-induced fracture in rigid trees. However, prediction of the fracture risk and pattern of a tree is also a function of their reconfiguration capabilities and how they mitigate large wind-induced stresses. In this studies through developing an efficient numerical simulation of flexible branched trees, we explore the role of the tree flexibility on the optimal branching. Our results show that the probability of a tree breaking at any point depends on both the cross-section changes in the branching nodes and the level of tree flexibility. It is found that the branching mechanism based on Leonardo da Vinci's original observation leads to a uniform stress distribution over a wide range of flexibilities but the pattern changes for more flexible systems.

  2. Ground-based measurements of inflight antenna patterns for imaging radar systems

    NASA Astrophysics Data System (ADS)

    Seifert, Pedro; Lentz, Harald; Zink, Manfred; Heel, Franz

    1992-11-01

    An approach is presented on how to determine the inflight antenna pattern in the cross-track direction for air- and spaceborne synthetic aperture radar (SAR) systems. In the 1991 Oberpfaffenhofen DC-8/E-SAR calibration campaign there was a good opportunity to test ground-based measurement equipment comprising 18 precision calibration receivers and nine polarimetric active radar calibrators (PARC's), all operating in C-band. These devices were designed and manufactured by the Institute of Navigation at the University of Stuttgart (INS). These instruments are capable of handling various pulse lengths, PRF's, and have a very high dynamic range. Together with precise internal clocks, these instruments are suitable for recording the actual radar transmit pulse shape for the later evaluation of the desired inflight antenna pattern. Lining up these devices in the cross-track direction, each receiver yields an azimuth cut of the three-dimensional antenna pattern. The elevation pattern was then obtained by time correlation of these azimuth cuts. Further results concerning pulse shapes, squint angles, and H-V pattern misalignment are presented.

  3. Polymyxin B immobilized on cross-linked cellulose microspheres for endotoxin adsorption.

    PubMed

    Cao, Xiaodong; Zhu, Biyan; Zhang, Xufeng; Dong, Hua

    2016-01-20

    Cross-linked cellulose microspheres (CL-CMs) were successfully prepared by inverse crosslinking suspension method. NaOH/urea aqueous solution was used as solvent to dissolve cellulose at low temperature. The microspheres presented good spherical shape and monodispersity, which were applied to synthesize endotoxin adsorbent with polymyxin B (PMB) as ligand. The adsorbent showed good adsorption capability on endotoxin in physiologic saline solution and the maximum adsorption capacity was 3605 EU/g (1 EU=100 pg). It was worth noting that more than 70% of endotoxin could be effectively removed from the human plasma with the initial concentration of endotoxin ranged from 1 EU/mL to 5 EU/mL. The dynamic adsorption efficiency of endotoxin was 72.3% at the plasma perfusion rate of 300 mL/h with the endotoxin concentration of 4 EU/mL, while the variation of plasma protein before and after adsorption was only 8.9%. It suggests that the PMB immobilized CL-CMs have great potential application in clinical blood purification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators.

  5. Modeling Cross-Situational Word-Referent Learning: Prior Questions

    ERIC Educational Resources Information Center

    Yu, Chen; Smith, Linda B.

    2012-01-01

    Both adults and young children possess powerful statistical computation capabilities--they can infer the referent of a word from highly ambiguous contexts involving many words and many referents by aggregating cross-situational statistical information across contexts. This ability has been explained by models of hypothesis testing and by models of…

  6. Roadside Judgments in Children with Developmental Co-ordination Disorder

    ERIC Educational Resources Information Center

    Purcell, Catherine; Wann, John P.; Wilmut, Kate; Poulter, Damian

    2011-01-01

    As pedestrians, the perceptual ability to accurately judge the relative rate of approaching vehicles and select a suitable crossing gap requires sensitivity to looming. It also requires that crossing judgments are synchronized with motoric capabilities. Previous research has suggested that children with Developmental Co-ordination Disorder (DCD)…

  7. Cross-calibration of Medium Resolution Earth Observing Satellites by Using EO-1 Hyperion-derived Spectral Surface Reflectance from "Lunar Cal Sites"

    NASA Astrophysics Data System (ADS)

    Ungar, S.

    2017-12-01

    Over the past 3 years, the Earth Observing-one (EO-1) Hyperion imaging spectrometer was used to slowly scan the lunar surface at a rate which results in up to 32X oversampling to effectively increase the SNR. Several strategies, including comparison against the USGS RObotic Lunar Observatory (ROLO) mode,l are being employed to estimate the absolute and relative accuracy of the measurement set. There is an existing need to resolve discrepancies as high as 10% between ROLO and solar based calibration of current NASA EOS assets. Although the EO-1 mission was decommissioned at the end of March 2017, the development of a well-characterized exoatmospheric spectral radiometric database, for a range of lunar phase angles surrounding the fully illuminated moon, continues. Initial studies include a comprehensive analysis of the existing 17-year collection of more than 200 monthly lunar acquisitions. Specific lunar surface areas, such as a lunar mare, are being characterized as potential "lunar calibration sites" in terms of their radiometric stability in the presence of lunar nutation and libration. Site specific Hyperion-derived lunar spectral reflectance are being compared against spectrographic measurements made during the Apollo program. Techniques developed through this activity can be employed by future high-quality orbiting imaging spectrometers (such as HyspIRI and EnMap) to further refine calibration accuracies. These techniques will enable the consistent cross calibration of existing and future earth observing systems (spectral and multi-spectral) including those that do not have lunar viewing capability. When direct lunar viewing is not an option for an earth observing asset, orbiting imaging spectrometers can serve as transfer radiometers relating that asset's sensor response to lunar values through near contemporaneous observations of well characterized stable CEOS test sites. Analysis of this dataset will lead to the development of strategies to ensure more accurate cross calibrations when employing the more capable, future imaging spectrometers.

  8. Self-Mating in the Definitive Host Potentiates Clonal Outbreaks of the Apicomplexan Parasites Sarcocystis neurona and Toxoplasma gondii

    PubMed Central

    Wendte, Jered M.; Miller, Melissa A.; Lambourn, Dyanna M.; Magargal, Spencer L.; Jessup, David A.; Grigg, Michael E.

    2010-01-01

    Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease outbreaks. PMID:21203443

  9. Management of Guidance, Navigation and Control Technologies for Spacecraft Formations under the NASA Cross-Enterprise Technology Development Program (CETDP)

    NASA Technical Reports Server (NTRS)

    Hartman, Kathy; Weidow, David; Hadaegh, Fred

    1999-01-01

    Breakthrough technology development is critical to securing the future of our space industry. The National Aeronautics and Space Administration (NASA) Cross-Enterprise Technology Development Program (CETDP) is developing critical space technologies that enable innovative and less costly missions, and spawn new mission opportunities through revolutionary, long-term, high-risk, high-payoff technology advances. The CETDP is a NASA-wide activity managed by the Advanced Technology and Mission Studies Division (AT&MS) at Headquarters Office of Space Science. Program management for CETDP is distributed across the multiple NASA Centers and draws on expertise throughout the Agency. The technology research activities are organized along Project-level divisions called thrust areas that are directly linked to the Agency's goals and objectives of the Enterprises: Earth Science, Space Science, Human Exploration and Development of Space; and the Office of the Chief Technologist's (OCT) strategic technology areas. Cross-Enterprise technology is defined as long-range strategic technologies that have broad potential to span the needs of more than one Enterprise. Technology needs are identified and prioritized by each of the primary customers. The thrust area manager (TAM) for each division is responsible for the ultimate success of technologies within their area, and can draw from industry, academia, other government agencies, other CETDP thrust areas, and other NASA Centers to accomplish the goals of the thrust area. An overview of the CETDP and description of the future directions of the thrust area called Distributed Spacecraft are presented in this paper. Revolutionary technologies developed within this thrust area will enable the implementation of a spatially distributed network of individual vehicles, or assets, collaborating as a single collective unit, and exhibiting a common system-wide capability to accomplish a shared objective. With such a capability, new Earth and space science measurement concepts become a reality.

  10. Management of Guidance, Navigation, and Control Technologies for Spacecraft Formations Under the NASA Cross Enterprise Technology Development Program (CETDP)

    NASA Technical Reports Server (NTRS)

    Hartman, Kathy; Weidow, David; Hadaegh, Fred

    1999-01-01

    Breakthrough technology development is critical to securing the future of our space industry. The National Aeronautics and Space Administration (NASA) Cross-Enterprise Technology Development Program (CETDP) is developing critical space technologies that enable innovative and less costly missions, and spawn new mission opportunities through revolutionary, long-term, high-risk, high-payoff technology advances. The CETDP is a NASA-wide activity managed by the Advanced Technology and Mission Studies Division (AT&MS) at Headquarters Office of Space Science. Program management for CETDP is distributed across the multiple NASA Centers and draws on expertise throughout the Agency. The technology research activities are organized along Project-level divisions called thrust areas that are directly linked to the Agency's goals and objectives of the Enterprises: Earth Science, Space Science, Human Exploration and Development of Space; and the Office of the Chief Technologist's (OCT) strategic technology areas. Cross-Enterprise technology is defined as long-range strategic technologies that have broad potential to span the needs of more than one Enterprise. Technology needs are identified and prioritized by each of the primary customers. The thrust area manager (TAM) for each division is responsible for the ultimate success of technologies within their area, and can draw from industry, academia, other government agencies, other CETDP thrust areas, and other NASA Centers to accomplish the goals of the thrust area. An overview of the CETDP and description of the future directions of the thrust area called Distributed Spacecraft are presented in this paper. Revolutionary technologies developed within this thrust area will enable the implementation of a spatially distributed network of individual vehicles, or assets, collaborating as a single collective unit, and exhibiting a common system-wide capability to accomplish a shared objective. With such a capability, new Earth and space science measurement concepts become a reality.

  11. Calibration of the JET neutron activation system for DT operation

    NASA Astrophysics Data System (ADS)

    Bertalot, L.; Roquemore, A. L.; Loughlin, M.; Esposito, B.

    1999-01-01

    The neutron activation system at JET is a pneumatic transfer system capable of positioning activation samples close to the plasma. Its primary purpose is to provide a calibration for the time-dependent neutron yield monitors (fission chambers and solid state detectors). Various activation reactions with different high energy thresholds were used including 56Fe(n,p) 56Mn, 27Al(n,α) 24Na, 93Nb(n,2n) 92mNb, and 28Si(n,p) 28Al reactions. The silicon reaction, with its short half life (2.25 min), provides a prompt determination of the 14 MeV DT yield. The neutron induced γ-ray activity of the Si samples was measured using three sodium iodide scintillators, while two high purity germanium detectors were used for other foils. It was necessary to use a range of sample masses and different counting geometries in order to cover the wide range of neutron yields (1015-1019 neutrons) while avoiding excessive count rates in the detectors. The absolute full energy peak efficiency calibration of the detectors was measured taking into account the source-detector geometry, the self-attenuation of the samples and cross-talk effects. An error analysis of the neutron yield measurement was performed including uncertainties in efficiency calibration, neutron transport calculations, cross sections, and counting statistics. Cross calibrations between the different irradiation ends were carried out in DD and DT (with 1% and 10% tritium content) discharges. The effect of the plasma vertical displacement was also experimentally studied. An agreement within 10% was found between the 14 MeV neutron yields measured from Si, Fe, Al, Nb samples in DT discharges.

  12. Increased cross-bridge recruitment contributes to transient increase in force generation beyond maximal capacity in human myocardium.

    PubMed

    Milani-Nejad, Nima; Chung, Jae-Hoon; Canan, Benjamin D; Fedorov, Vadim V; Whitson, Bryan A; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L

    2018-01-01

    Cross-bridge attachment allows force generation to occur, and rate of tension redevelopment (k tr ) is a commonly used index of cross-bridge cycling rate. Tension overshoots have been observed briefly after a slack-restretch k tr maneuver in various species of animal models and humans. In this study, we set out to determine the properties of these overshoots and their possible underlying mechanism. Utilizing human cardiac trabeculae, we have found that tension overshoots are temperature-dependent and that they do not occur at resting states. In addition, we have found that myosin cross-bridge cycle is vital to these overshoots as inhibition of the cycle results in the blunting of the overshoots and the magnitude of the overshoots are dependent on the level of myofilament activation. Lastly, we show that the number of cross-bridges transiently increase during tension overshoots. These findings lead us to conclude that tension overshoots are likely due to a transient enhancement of the recruitment of myosin heads into the cross-bridge cycling, regulated by the myocardium, and with potential physiological significance in determining cardiac output. We show that isolated human myocardium is capable of transiently increasing its maximal force generation capability by increasing cross-bridge recruitment following slack-restretch maneuver. This process can potentially have important implications and significance in cardiac contraction in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. KSC-2012-3152

    NASA Image and Video Library

    2012-04-06

    DALLAS – This computational fluid dynamics CFD image was taken during a series of wind tunnel tests for Blue Origin's next-generation Space Vehicle at Lockheed Martin's High Speed Wind Tunnel Facility in Dallas. The Space Vehicle's innovative biconic shape is designed to provide more cross-range and interior volume than a traditional capsule and weigh less than a winged vehicle. More than 180 wind tunnel tests validated the company's analysis of the Space Vehicle's aerodynamics during descent through the atmosphere and the ability to change its flight path, which could increase the number of available landing opportunities and enhance the vehicle's emergency return capability. In 2011, NASA selected Blue Origin during Commercial Crew Development Round 2 CCDev2) activities for NASA’s Commercial Crew Program to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Blue Origin

  14. KSC-2012-3151

    NASA Image and Video Library

    2012-04-06

    DALLAS – This image was taken during a series of wind tunnel tests for Blue Origin's Space Vehicle at Lockheed Martin's High Speed Wind Tunnel Facility in Dallas. The Space Vehicle's innovative biconic shape is designed to provide more cross-range and interior volume than a traditional capsule and weigh less than a winged vehicle. More than 180 wind tunnel tests validated the company's analysis of the Space Vehicle's aerodynamics during descent through the atmosphere and the ability to change its flight path, which could increase the number of available landing opportunities and enhance the vehicle's emergency return capability. In 2011, NASA selected Blue Origin during Commercial Crew Development Round 2 CCDev2) activities for NASA’s Commercial Crew Program to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Blue Origin

  15. Results from teleoperated free-flying spacecraft simulations in the Martin Marietta space operations simulator lab

    NASA Technical Reports Server (NTRS)

    Hartley, Craig S.

    1990-01-01

    To augment the capabilities of the Space Transportation System, NASA has funded studies and developed programs aimed at developing reusable, remotely piloted spacecraft and satellite servicing systems capable of delivering, retrieving, and servicing payloads at altitudes and inclinations beyond the reach of the present Shuttle Orbiters. Since the mid 1970's, researchers at the Martin Marietta Astronautics Group Space Operations Simulation (SOS) Laboratory have been engaged in investigations of remotely piloted and supervised autonomous spacecraft operations. These investigations were based on high fidelity, real-time simulations and have covered a wide range of human factors issues related to controllability. Among these are: (1) mission conditions, including thruster plume impingements and signal time delays; (2) vehicle performance variables, including control authority, control harmony, minimum impulse, and cross coupling of accelerations; (3) maneuvering task requirements such as target distance and dynamics; (4) control parameters including various control modes and rate/displacement deadbands; and (5) display parameters involving camera placement and function, visual aids, and presentation of operational feedback from the spacecraft. This presentation includes a brief description of the capabilities of the SOS Lab to simulate real-time free-flyer operations using live video, advanced technology ground and on-orbit workstations, and sophisticated computer models of on-orbit spacecraft behavior. Sample results from human factors studies in the five categories cited above are provided.

  16. Gender-differences in risk factors for suicidal behaviour identified by perceived burdensomeness, thwarted belongingness and acquired capability: cross-sectional analysis from a longitudinal cohort study.

    PubMed

    Donker, Tara; Batterham, Philip J; Van Orden, Kimberly A; Christensen, Helen

    2014-01-01

    The Interpersonal-Psychological Theory of Suicidal Behavior (IPT) is supported by recent epidemiological data. Unique risk factors for the IPT constructs have been identified in community epidemiological studies. Gender differences in these risk factors may contribute substantially to our understanding of suicidal risk, and require further investigation. The present study explores gender differences in the predictors and correlates of perceived burdensomeness, thwarted belongingness and acquired capability for suicide. Participants (547 males, 739 females) aged 32-38 from the PATH through Life study, an Australian population-based longitudinal cohort study (n=1,177) were assessed on perceived burdensomeness, thwarted belongingness and acquired capability for suicide using the Interpersonal Needs Questionnaire and Acquired Capability for Suicide Survey, and on a range of demographic, social support, psychological, mental health and physical health measures. Gender differences in the predictors of the IPT constructs were assessed using linear regression analyses. Higher perceived burdensomeness increased suicide ideation in both genders, while higher thwarted belongingness increased suicide ideation only in females. In females, thwarted belongingness was uniquely related to perceived burdensomeness, while greater physical health was significantly associated with greater thwarted belongingness in males but not in females. There were trends suggesting greater effects of being single and greater perceived burdensomeness for men, and stronger effects of less positive friendship support for women associated with greater thwarted belongingness. Men and women differ in the pattern of psychological characteristics that predict suicide ideation, and in the factors predicting vulnerability. Suicide prevention strategies need to take account of gender differences.

  17. A Hardware-in-the-Loop Testbed for Spacecraft Formation Flying Applications

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center (GSFC) is being developed as a modular, hybrid dynamic simulation facility employed for end-to-end guidance, navigation, and control (GN&C) analysis and design for formation flying clusters and constellations of satellites. The FFTB will support critical hardware and software technology development to enable current and future missions for NASA, other government agencies, and external customers for a wide range of missions, particularly those involving distributed spacecraft operations. The initial capabilities of the FFTB are based upon an integration of high fidelity hardware and software simulation, emulation, and test platforms developed at GSFC in recent years; including a high-fidelity GPS simulator which has been a fundamental component of the Guidance, Navigation, and Control Center's GPS Test Facility. The FFTB will be continuously evolving over the next several years from a too[ with initial capabilities in GPS navigation hardware/software- in-the- loop analysis and closed loop GPS-based orbit control algorithm assessment to one with cross-link communications and relative navigation analysis and simulation capability. Eventually the FFT13 will provide full capability to support all aspects of multi-sensor, absolute and relative position determination and control, in all (attitude and orbit) degrees of freedom, as well as information management for satellite clusters and constellations. In this paper we focus on the architecture for the FFT13 as a general GN&C analysis environment for the spacecraft formation flying community inside and outside of NASA GSFC and we briefly reference some current and future activities which will drive the requirements and development.

  18. Capability beliefs on, and use of evidence-based practice among four health professional and student groups in geriatric care: A cross sectional study

    PubMed Central

    2018-01-01

    Implementation of evidence-based practice (EBP) is a complex task. This study, conducted in an acute geriatric setting, aims to compare self-reported capability beliefs on EBP between health professionals and students, and to compare the use of EBP between health professional groups. Occupational therapists, physicians, physiotherapists and registered nurses with three or more months’ employment, and all students from the occupational therapy, medical, physiotherapy and nursing programs, who had conducted workplace learning at the department, were invited. Data on capability beliefs and use of EBP were collected using the Evidence-based Practice Capabilities Beliefs Scale assessing six activities of EBP: formulate questions; search databases; search other sources; appraise research reports; participate in implementation in practice; and participate in evaluation. Descriptive and inferential statistics were used. Capability beliefs on EBP: The health professionals (n = 101; response rate 80%) reported high on search other sources but less on appraise research reports. The students (n = 124; response rate 73%) reported high on all EBP activities. The health professionals reported significantly higher on search other sources than the students. The students reported significantly higher on formulate questions and appraise research reports than the health professionals. No significant differences were identified between the health professional groups or between the student groups. Use of EBP: Health professionals reported wide-ranging use from several times each month to once every six months. The physicians reported significantly more frequent use than registered nurses and occupational therapists. Health professionals supervising students reported more frequent use of appraise research reports than the non-supervising group. There is a need for improving the use of EBP, particularly among registered nurses and occupational therapists. Supervision of students might enhance the motivation among staff to increase the use of EBP and students’ high EBP capability beliefs might inspire staff in this matter. PMID:29444179

  19. Real-time high-velocity resolution color Doppler OCT

    NASA Astrophysics Data System (ADS)

    Westphal, Volker; Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2001-05-01

    Color Doppler optical coherence tomography (CDOCT), also called Optical Doppler Tomography) is a noninvasive optical imaging technique, which allows for micron-scale physiological flow mapping simultaneous with morphological OCT imaging. Current systems for real-time endoscopic optical coherence tomography (EOCT) would be enhanced by the capability to visualize sub-surface blood flow for applications in early cancer diagnosis and the management of bleeding ulcers. Unfortunately, previous implementations of CDOCT have either been sufficiently computationally expensive (employing Fourier or Hilbert transform techniques) to rule out real-time imaging of flow, or have been restricted to imaging of excessively high flow velocities when used in real time. We have developed a novel Doppler OCT signal-processing strategy capable of imaging physiological flow rates in real time. This strategy employs cross-correlation processing of sequential A-scans in an EOCT image, as opposed to autocorrelation processing as described previously. To measure Doppler shifts in the kHz range using this technique, it was necessary to stabilize the EOCT interferometer center frequency, eliminate parasitic phase noise, and to construct a digital cross correlation unit able to correlate signals of megahertz bandwidth by a fixed lag of up to a few ms. The performance of the color Doppler OCT system was demonstrated in a flow phantom, demonstrating a minimum detectable flow velocity of ~0.8 mm/s at a data acquisition rate of 8 images/second (with 480 A-scans/image) using a handheld probe. Dynamic flow as well as using it freehanded was shown. Flow was also detectable in a phantom in combination with a clinical usable endoscopic probe.

  20. FY17 Status Report on NEAMS Neutronics Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. H.; Jung, Y. S.; Smith, M. A.

    2017-09-30

    Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H)more » capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.« less

  1. Gravity Wave Variances and Propagation Derived from AIRS Radiances

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.; Eckermann, S. D.

    2012-01-01

    As the first gravity wave (GW) climatology study using nadir-viewing infrared sounders, 50 Atmospheric Infrared Sounder (AIRS) radiance channels are selected to estimate GW variances at pressure levels between 2-100 hPa. The GW variance for each scan in the cross-track direction is derived from radiance perturbations in the scan, independently of adjacent scans along the orbit. Since the scanning swaths are perpendicular to the satellite orbits, which are inclined meridionally at most latitudes, the zonal component of GW propagation can be inferred by differencing the variances derived between the westmost and the eastmost viewing angles. Consistent with previous GW studies using various satellite instruments, monthly mean AIRS variance shows large enhancements over meridionally oriented mountain ranges as well as some islands at winter hemisphere high latitudes. Enhanced wave activities are also found above tropical deep convective regions. GWs prefer to propagate westward above mountain ranges, and eastward above deep convection. AIRS 90 field-of-views (FOVs), ranging from +48 deg. to -48 deg. off nadir, can detect large-amplitude GWs with a phase velocity propagating preferentially at steep angles (e.g., those from orographic and convective sources). The annual cycle dominates the GW variances and the preferred propagation directions for all latitudes. Indication of a weak two-year variation in the tropics is found, which is presumably related to the Quasi-biennial oscillation (QBO). AIRS geometry makes its out-tracks capable of detecting GWs with vertical wavelengths substantially shorter than the thickness of instrument weighting functions. The novel discovery of AIRS capability of observing shallow inertia GWs will expand the potential of satellite GW remote sensing and provide further constraints on the GW drag parameterization schemes in the general circulation models (GCMs).

  2. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  3. The "+" for CRIRES: enabling better science at infrared wavelength and high spectral resolution at the ESO VLT

    NASA Astrophysics Data System (ADS)

    Dorn, Reinhold J.; Follert, Roman; Bristow, Paul; Cumani, Claudio; Eschbaumer, Siegfried; Grunhut, Jason; Haimerl, Andreas; Hatzes, Artie; Heiter, Ulrike; Hinterschuster, Renate; Ives, Derek J.; Jung, Yves; Kerber, Florian; Klein, Barbara; Lavaila, Alexis; Lizon, Jean Louis; Löwinger, Tom; Molina-Conde, Ignacio; Nicholson, Belinda; Marquart, Thomas; Oliva, Ernesto; Origlia, Livia; Pasquini, Luca; Paufique, Jérôme; Piskunov, Nikolai; Reiners, Ansgar; Seemann, Ulf; Stegmeier, Jörg; Stempels, Eric; Tordo, Sebastien

    2016-08-01

    The adaptive optics (AO) assisted CRIRES instrument is an IR (0.92 - 5.2 μm) high-resolution spectrograph was in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES+, transforms this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 μm cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities offered by CRIRES+. CRIRES+ has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory.

  4. Variable Depth Bragg Peak Method for Single Event Effects Testing

    NASA Technical Reports Server (NTRS)

    Buchner, S.; Kanyogoro, N.; Foster, C.; O'Neill, P.

    2011-01-01

    Traditionally, accelerator SEE testing is accomplished by removing the tops of packages so that the IC chips are accessible to heavy ions. However, ICs in some advanced packages cannot be de-lidded so a different approach is used that involves grinding and/or chemically etching away part of the package and the chip from the back side. The parts are then tested from the back side with ions having sufficient range to reach the sensitive volume. More recently, the entire silicon substrate in an SOI/SRAM was removed, making it possible to use low-energy ions with shorter ranges. Where removal of part of the package is not possible, facilities at Michigan State, NASA Space Radiation Laboratory, GANIL (France) and GSI (Germany) offer high-energy heavy ions with long ranges so that the ions can reach the devices' sensitive volumes without much change in the LET. Unfortunately, a run will typically involve only one ion species having a single energy and LET due to the long time it takes to tune a new energy. The Variable Depth Bragg Peak (VDBP) method is similar to the above method in that it involves the use of high-energy heavy ions that are able to pass through the packaging material and reach the device, obviating the need to remove the package. However, the method provides a broad range of LETs from a single ion by inserting degraders in the beam that modify the ion energy and, therefore, the LET. The crux of the method involves establishing a fiduciary point for degrader thickness, i.e., where the Bragg peak is located precisely at the sensitive volume in the device, for which the measured SEU cross-section and the ion LET are both also maxima and can be calculated using a Monte-Carlo program, TRIM. Once the fiduciary point has been established, calibrated high density polyethylene (HDPE) degraders are inserted into or removed from the beam to vary the ion LET at the device in a known manner. After each change of degrader thickness, the SEU cross-section is measured and the corresponding LET calculated from the change in degrader thickness. That information is used to generate a plot of cross-section as a function of ion LET. The advantages of this approach are that the part does not have to be de-lidded and a broad range of LETs is available from a single heavy ion without having to go to non-normal angles of incidence to change the "effective" LET. As we will show, it is possible to obtain an entire curve of cross-section versus LET using just two or three ions. Fig. 1 shows curves of cross-section vs LET for a Freescale 4 Mbit SOI/SRAM measured at the 88" Cyclotron at Berkeley and at NSRL. The open symbols are the data obtained from Berkeley for top-side and back-side irradiation. The solid data points are for the data obtained at NSRL using a device for which the package was intact. The data are for Iron and Gold and cover a range of LETs from 4 MeV.cm2/mg to 84 MeV.cm2/mg. The agreement between the data obtained from Berkeley and from NSRL is excellent, demonstrating that the VDBP method is capable of providing accurate values of cross-section versus LET, at least for the 4 Mbit SRAM. Details of the technique will be included in the final presentation.

  5. Range and Endurance Tradeoffs on Personal Rotorcraft Design

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2016-01-01

    Rotorcraft design has always been a challenging tradeoff among overall size, capabilities, complexity, and other factors based on available technology and customer requirements. Advancements in propulsion, energy systems and other technologies have enabled new vehicles and missions; complementary advances in analysis methods and tools enable exploration of these enhanced vehicles and the evolving mission design space. A system study was performed to better understand the interdependency between vehicle design and propulsion system capabilities versus hover loiter requirements and range capability. Three representative vertical lift vehicles were developed to explore the tradeoff in capability between hover efficiency versus range and endurance capability. The vehicles were a single-main rotor helicopter, a tilt rotor, and a vertical take-off and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew) and maximum range within one hour of flight (100-200 miles, depending on vehicle). Two types of propulsion and energy storage systems were used in this study. First was traditional hydrocarbon-fueled cycles (such as Otto, diesel or gas turbine cycles). Second was an all-electric system using electric motors, power management and distribution, assuming batteries for energy storage, with the possibility of hydrocarbon-fueled range extenders. The high power requirements for hover significantly reduced mission radius capability. Loiter was less power intensive, resulting in about 12 the equivalent mission radius penalty. With so many design variables, the VTOL aircraft has the potential to perform well for a variety of missions. This vehicle is a good candidate for additional study; component model development is also required to adequately assess performance over the design space of interest.

  6. Range and Endurance Tradeoffs on Personal Rotorcraft Design

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2016-01-01

    Rotorcraft design has always been a challenging tradeoff among overall size, capabilities, complexity, and other factors based on available technology and customer requirements. Advancements in propulsion, energy systems and other technologies have enabled new vehicles and missions; complementary advances in analysis methods and tools enable exploration of these enhanced vehicles and the evolving mission design space. A system study was performed to better understand the interdependency between vehicle design and propulsion system capabilities versus hover / loiter requirements and range capability. Three representative vertical lift vehicles were developed to explore the tradeoff in capability between hover efficiency versus range and endurance capability. The vehicles were a single-main rotor helicopter, a tilt rotor, and a vertical take-off and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew) and maximum range within one hour of flight (100-200 miles, depending on vehicle). Two types of propulsion and energy storage systems were used in this study. First was traditional hydrocarbon-fueled cycles (such as Otto, diesel or gas turbine cycles). Second was an all-electric system using electric motors, power management and distribution, assuming batteries for energy storage, with the possibility of hydrocarbon-fueled range extenders. The high power requirements for hover significantly reduced mission radius capability. Loiter was less power intensive, resulting in about 1/2 the equivalent mission radius penalty. With so many design variables, the VTOL aircraft has the potential to perform well for a variety of missions. This vehicle is a good candidate for additional study; component model development is also required to adequately assess performance over the design space of interest.

  7. NASA Capabilities That Could Impact Terrestrial Smart Grids of the Future

    NASA Technical Reports Server (NTRS)

    Beach, Raymond F.

    2015-01-01

    Incremental steps to steadily build, test, refine, and qualify capabilities that lead to affordable flight elements and a deep space capability. Potential Deep Space Vehicle Power system characteristics: power 10 kilowatts average; two independent power channels with multi-level cross-strapping; solar array power 24 plus kilowatts; multi-junction arrays; lithium Ion battery storage 200 plus ampere-hours; sized for deep space or low lunar orbit operation; distribution120 volts secondary (SAE AS 5698); 2 kilowatt power transfer between vehicles.

  8. Capabilities of radar as they might relate to entomological studies

    NASA Technical Reports Server (NTRS)

    Skolnik, M. I.

    1979-01-01

    A tutoral background of radar capabilities and its potential for insect research is provided. The basic principles and concepts of radar were reviewed. Information on current radar equipment was examined. Specific issues related to insect research included; target cross-section, radar frequency, tracking target recognition and false alarms, clutter reduction, radar transmitter power, and ascertained atmospheric processes.

  9. Perceptions of Present and Future Capability among a Sample of Rural British Columbia Youth Perceptions

    ERIC Educational Resources Information Center

    Kapil, Meg E.; Shepard, Blythe C.

    2011-01-01

    A cross-sectional survey explored 96 rural adolescents' perceptions of their rural context and how their self-concept is related to perceptions of capability regarding hopes and fears for the future. The youth surveyed, from the Kootenay Boundary region of British Columbia, indicated ambivalence about staying in their communities after leaving…

  10. Embry-Riddle Aeronautical University multispectral sensor and data fusion laboratory: a model for distributed research and education

    NASA Astrophysics Data System (ADS)

    McMullen, Sonya A. H.; Henderson, Troy; Ison, David

    2017-05-01

    The miniaturization of unmanned systems and spacecraft, as well as computing and sensor technologies, has opened new opportunities in the areas of remote sensing and multi-sensor data fusion for a variety of applications. Remote sensing and data fusion historically have been the purview of large government organizations, such as the Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and National Geospatial-Intelligence Agency (NGA) due to the high cost and complexity of developing, fielding, and operating such systems. However, miniaturized computers with high capacity processing capabilities, small and affordable sensors, and emerging, commercially available platforms such as UAS and CubeSats to carry such sensors, have allowed for a vast range of novel applications. In order to leverage these developments, Embry-Riddle Aeronautical University (ERAU) has developed an advanced sensor and data fusion laboratory to research component capabilities and their employment on a wide-range of autonomous, robotic, and transportation systems. This lab is unique in several ways, for example, it provides a traditional campus laboratory for students and faculty to model and test sensors in a range of scenarios, process multi-sensor data sets (both simulated and experimental), and analyze results. Moreover, such allows for "virtual" modeling, testing, and teaching capability reaching beyond the physical confines of the facility for use among ERAU Worldwide students and faculty located around the globe. Although other institutions such as Georgia Institute of Technology, Lockheed Martin, University of Dayton, and University of Central Florida have optical sensor laboratories, the ERAU virtual concept is the first such lab to expand to multispectral sensors and data fusion, while focusing on the data collection and data products and not on the manufacturing aspect. Further, the initiative is a unique effort among Embry-Riddle faculty to develop multi-disciplinary, cross-campus research to facilitate faculty- and student-driven research. Specifically, the ERAU Worldwide Campus, with locations across the globe and delivering curricula online, will be leveraged to provide novel approaches to remote sensor experimentation and simulation. The purpose of this paper and presentation is to present this new laboratory, research, education, and collaboration process.

  11. Prospects for the design of an ultraviolet imaging Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Lemaire, Philippe

    2017-11-01

    Recent results from solar observations in the far and extremeultraviolet (FUV/EUV) obtained from SOHO (SOlar and Heliospheric Observatory) and TRACE (Transition Region Camera) show the extreme variability of the solar atmosphere. Within the limited resolution of the instruments (1-2 arcseconds) horizontal and vertical velocities up-to 100 to 400 km s-1 have been measured. With an horizontal velocity of 100 km s-1 an one arsecond structure crosses the one arcsecond slit width of a classical slit spectrometer in less than 10 seconds. In the future, with higher angular resolution (e.g. 0.1 arcsecond), the capability to study small structures will be greatly reduced by a classical slit spectrometer. To be able to characterize the small scale solar atmospheric structures formed in the 104 K to 106 K temperature range (which emit in the 30 to 180 nm wavelength range) a spectrometer without slit (or with wide slit) is required. At the same time to obtain an accurate measurement of the doppler velocity an high spectral resolution is needed. The two requirements, high spectral resolution and large slit, are difficult to be simultaneously fulfilled with a classical slit spectrometer within the limited volume of a space instrumentation. Also, we propose to use an Imaging Fourier Transform Spectrometer (IFTS) to provide simultaneously a bidimensionnal field and an accurate determination of line profiles and positions. The development of Fourier Transform Spectrometers (FTS), although popular in the infrared, has been very limited in the UV/FUV by the lack of very high quality beam splitter. Since 10 years, the use of diffraction gratings as beam splitters has been suggested and few intruments have been built ([Chak 94]; [Clea 92]; [File 00]). These instruments illustrate some applications in the new wavelength domain opened by using a beam splitter grating, but do not yet provide the full capabilities of an FTS. In this paper we present several optical schemes which can provide the full capabilities of a complete IFTS in the FUV/EUV spectral range.

  12. [Cross-reactions between the antigens of healthy pulmonary tissue and Moraxella catarrhalis].

    PubMed

    Markina, O A; Iastrebova, N E; Vaneeva, N P; Liashova, V N; Ovechko, N N

    2004-01-01

    The study of cross-reactions between healthy pulmonary tissue antigens and Moraxella catarrhalis with the use of SDS-electrophoresis and immunoblotting revealed that in the component of healthy pulmonary tissue with a mol. wt. of 40 kD epitopes existed to which antibodies were produced, capable of cross reaction with the components of M. catarrhalis with a mol. wt. of 35 kD and 70 kD. In addition, the presence of cross-reactions between cytokeratin-8, protein contained in healthy pulmonary tissue, and M. catarrhalis antigens was established.

  13. A cooperative positioning algorithm for DSRC enabled vehicular networks

    NASA Astrophysics Data System (ADS)

    Efatmaneshnik, M.; Kealy, A.; Alam, N.; Dempster, A. G.

    2011-12-01

    Many of the safety related applications that can be facilitated by Dedicated Short Range Communications (DSRC), such as vehicle proximity warnings, automated braking (e.g. at level crossings), speed advisories, pedestrian alerts etc., rely on a robust vehicle positioning capability such as that provided by a Global Navigation Satellite System (GNSS). Vehicles in remote areas, entering tunnels, high rise areas or any high multipath/ weak signal environment will challenge the integrity of GNSS position solutions, and ultimately the safety application it underpins. To address this challenge, this paper presents an innovative application of Cooperative Positioning techniques within vehicular networks. CP refers to any method of integrating measurements from different positioning systems and sensors in order to improve the overall quality (accuracy and reliability) of the final position solution. This paper investigates the potential of the DSRC infrastructure itself to provide an inter-vehicular ranging signal that can be used as a measurement within the CP algorithm. In this paper, time-based techniques of ranging are introduced and bandwidth requirements are investigated and presented. The robustness of the CP algorithm to inter-vehicle connection failure as well as GNSS dropouts is also demonstrated using simulation studies. Finally, the performance of the Constrained Kalman Filter used to integrate GNSS measurements with DSRC derived range estimates within a typical VANET is described and evaluated.

  14. Silicon oxynitride-on-glass waveguide array refractometer with wide sensing range and integrated read-out (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Viegas, Jaime; Mayeh, Mona; Srinivasan, Pradeep; Johnson, Eric G.; Marques, Paulo V. S.; Farahi, Faramarz

    2017-02-01

    In this work, a silicon oxynitride-on-silica refractometer is presented, based on sub-wavelength coupled arrayed waveguide interference, and capable of low-cost, high resolution, large scale deployment. The sensor has an experimental spectral sensitivity as high as 3200 nm/RIU, covering refractive indices ranging from 1 (air) up to 1.43 (oils). The sensor readout can be performed by standard spectrometers techniques of by pattern projection onto a camera, followed by optical pattern recognition. Positive identification of the refractive index of an unknown species is obtained by pattern cross-correlation with a look-up calibration table based algorithm. Given the lower contrast between core and cladding in such devices, higher mode overlap with single mode fiber is achieved, leading to a larger coupling efficiency and more relaxed alignment requirements as compared to silicon photonics platform. Also, the optical transparency of the sensor in the visible range allows the operation with light sources and camera detectors in the visible range, of much lower capital costs for a complete sensor system. Furthermore, the choice of refractive indices of core and cladding in the sensor head with integrated readout, allows the fabrication of the same device in polymers, for mass-production replication of disposable sensors.

  15. InP-InxGa1-xAs core-multi-shell nanowire quantum wells with tunable emission in the 1.3-1.55 μm wavelength range.

    PubMed

    Fonseka, H A; Ameruddin, A S; Caroff, P; Tedeschi, D; De Luca, M; Mura, F; Guo, Y; Lysevych, M; Wang, F; Tan, H H; Polimeni, A; Jagadish, C

    2017-09-21

    The usability and tunability of the essential InP-InGaAs material combination in nanowire-based quantum wells (QWs) are assessed. The wurtzite phase core-multi-shell InP-InGaAs-InP nanowire QWs are characterised using cross-section transmission electron microscopy and photoluminescence measurements. The InP-InGaAs direct interface is found to be sharp while the InGaAs-InP inverted interface is more diffused, in agreement with their planar counterpart. Bright emission is observed from the single nanowires containing the QWs at room temperature, with no emission from the InP core or outer barrier. The tunability of the QW emission wavelength in the 1.3-1.55 μm communication wavelength range is demonstrated by varying the QW thickness and in the 1.3 μm range by varying the composition. The experiments are supported by simulation of the emission wavelength of the wurtzite phase InP-InGaAs QWs in the thickness range considered. The radial heterostructure is further extended to design multiple QWs with bright emission, therefore establishing the capability of this material system for nanowire based optical devices for communication applications.

  16. Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 microns

    NASA Technical Reports Server (NTRS)

    Mcguckin, B. T.; Menzies, Robert T.

    1992-01-01

    A conversion efficiency of 42 percent and slope efficiency of approximately 60 percent relative to absorbed pump power are reported from a continuous wave diode-pumped Tm, Ho:YLF laser at 2 microns with output power of 84 mW at sub-ambient temperatures. The emission spectrum is etalon tunable over a range of 16/cm centered on 2.067 microns, with fine tuning capability of the transition frequency with crystal temperature at a measured rate of about -0.03/cm-K. The effective emission cross section is measured to be 5 x 10 exp -21 sq cm. These and other aspects of the laser performance are discussed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications.

  17. Hydrogen Recombination and Dimer Formation on Graphite from Ab Initio Molecular Dynamics Simulations.

    PubMed

    Casolo, S; Tantardini, G F; Martinazzo, R

    2016-07-14

    We studied Eley-Rideal molecular hydrogen formation on graphite using ab initio molecular dynamics, in the energy range relevant for the chemistry of the interstellar medium and for terrestrial experiments employing cold plasma (0.02-1 eV). We found substantial projectile steering effects that prevent dimer formation at low energies, thereby ruling out any catalytic synthetic pathways that form hydrogen molecules. Ortho and para dimers do form efficiently thanks to preferential sticking, but only at energies that are too high to be relevant for the chemistry of the interstellar medium. Computed reaction cross sections and ro-vibrational product populations are in good agreement with available experimental data and capable of generating adsorbate configurations similar to those observed with scanning tunneling microscopy techniques.

  18. Crew Exploration Vehicle Ascent Abort Trajectory Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Gefert, Leon P.

    2007-01-01

    The Orion Crew Exploration Vehicle is the first crewed capsule design to be developed by NASA since Project Apollo. Unlike Apollo, however, the CEV is being designed for service in both Lunar and International Space Station missions. Ascent aborts pose some issues that were not present for Apollo, due to its launch azimuth, nor Space Shuttle, due to its cross range capability. The requirement that a North Atlantic splashdown following an abort be avoidable, in conjunction with the requirement for overlapping abort modes to maximize crew survivability, drives the thrust level of the service module main engine. This paper summarizes 3DOF analysis conducted by NASA to aid in the determination of the appropriate propulsion system for the service module, and the appropriate propellant loading for ISS missions such that crew survivability is maximized.

  19. The value of forage measurement information in rangeland management. [implementation of satellite data in range management

    NASA Technical Reports Server (NTRS)

    Lietzke, K. R.

    1975-01-01

    An economic model and simulation are developed to estimate the potential social benefit arising from the use of alternative measurement systems in rangeland management. In order to estimate these benefits, it was necessary to model three separate systems: the range environment, the rangeland manager, and the information system which links the two. The rancher's decision-making behavior is modeled according to sound economic principles. Results indicate substantial potential benefits, particularly when used in assisting management of government-operated ranges; possible annual benefits in this area range from $20 to $46 million, depending upon the system capabilities assumed. Possible annual benefit in privately-managed stocker operations range from $2.8 to $49.5 million, depending upon where actual rancher capabilities lie and what system capabilities are assumed.

  20. Measurement of Trailing Edge Noise Using Directional Array and Coherent Output Power Methods

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2002-01-01

    The use of a directional (or phased) array of microphones for the measurement of trailing edge (TE) noise is described and tested. The capabilities of this method arc evaluated via measurements of TE noise from a NACA 63-215 airfoil model and from a cylindrical rod. This TE noise measurement approach is compared to one that is based on thc cross spectral analysis of output signals from a pair of microphones placed on opposite sides of an airframe model (COP method). Advantages and limitations of both methods arc examined. It is shown that the microphone array can accurately measures TE noise and captures its two-dimensional characteristic over a large frequency range for any TE configuration as long as noise contamination from extraneous sources is within bounds. The COP method is shown to also accurately measure TE noise but over a more limited frequency range that narrows for increased TE thickness. Finally, the applicability and generality of an airfoil self-noise prediction method was evaluated via comparison to the experimental data obtained using the COP and array measurement methods. The predicted and experimental results are shown to agree over large frequency ranges.

  1. Association of physical capacity with heart rate variability based on a short-duration measurement of resting pulse rate in older adults with obesity

    PubMed Central

    Liao, Chun-De; Tsauo, Jau-Yih; Hsiao, Dun-Jen; Liou, Tsan-Hon

    2017-01-01

    Background Obesity can limit physical capacity and lower physical activity levels in elderly people. Low physical activity levels may be mediated by autonomic dysfunction with decreased heart rate variability (HRV). However, the relationship between autonomic dysfunction and low physical capability remains unclear. This cross-sectional study investigated the association of low physical capability with HRV in older adults with obesity. Materials and methods We recruited 231 old man and 210 old women with a mean (range) age of 65.5 (51−78) and 62.9 (52−76) years, respectively. Physical capability was measured using mobility tasks, including functional reach, single-leg stance (SLS), gait speed (GS), timed up and go, and timed chair rise (TCR), and the scores on these tasks were merged and transformed into a global physical capability score (GPCS). HRV was measured using a 7-min resting pulse-based technique, and the time- and frequency-domain indices of HRV were obtained including standard deviation of normal-to-normal intervals (SDNN), root mean square of successive differences at rest (rMSSD), and high-frequency (HF) power. All HRV indices were natural log (ln) transformed for analysis. Participants were divided into high, moderate, and low physical-capability groups according to their physical performance. Multivariate analysis of covariance was performed to test differences in HRV indices among physical-capability groups with participants’ characteristics serving as covariates. A stepwise regression model was established to identify the determinants of HRV indices. We used hierarchical regression analysis to identify the association of the GPCS with HRV indices. Results In both men and women, the low physical-capability group exhibited significantly increased heart rate (P <0.05) and decreased HRV in terms of a decreased ln[SDNN] (P <0.001), ln[rMSSD] (P <0.05) and ln[HF] (P <0.05), compared with the high physical-capability group. GS positively predicted ln[SDNN], whereas SLS, GS, and TCR were determinants of ln[HF], regardless of gender. The GPCS in older men and women independently accounted for 29.9% (P <0.001) and 23.7% (P <0.001), respectively, in variance in ln[SDNN]. Conclusions A low physical-capability level is an independent determinant of decreased HRV in older adults with obesity. PMID:29267296

  2. Low Cost Sensors-Current Capabilities and Gaps

    EPA Science Inventory

    1. Present the findings from the a recent technology review of gas and particulate phase sensors 2. Focus on the lower-cost sensors 3. Discuss current capabilities, estimated range of measurement, selectivity, deployment platforms, response time, and expected range of acceptabl...

  3. FY07 LDRD Final Report Neutron Capture Cross-Section Measurements at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, W; Agvaanluvsan, U; Wilk, P

    2008-02-08

    We have measured neutron capture cross sections intended to address defense science problems including mix and the Quantification of Margins and Uncertainties (QMU), and provide details about statistical decay of excited nuclei. A major part of this project included developing the ability to produce radioactive targets. The cross-section measurements were made using the white neutron source at the Los Alamos Neutron Science Center, the detector array called DANCE (The Detector for Advanced Neutron Capture Experiments) and targets important for astrophysics and stockpile stewardship. DANCE is at the leading edge of neutron capture physics and represents a major leap forward inmore » capability. The detector array was recently built with LDRD money. Our measurements are a significant part of the early results from the new experimental DANCE facility. Neutron capture reactions are important for basic nuclear science, including astrophysics and the statistics of the {gamma}-ray cascades, and for applied science, including stockpile science and technology. We were most interested in neutron capture with neutron energies in the range between 1 eV and a few hundred keV, with targets important to basic science, and the s-process in particular. Of particular interest were neutron capture cross-section measurements of rare isotopes, especially radioactive isotopes. A strong collaboration between universities and Los Alamos due to the Academic Alliance was in place at the start of our project. Our project gave Livermore leverage in focusing on Livermore interests. The Lawrence Livermore Laboratory did not have a resident expert in cross-section measurements; this project allowed us to develop this expertise. For many radionuclides, the cross sections for destruction, especially (n,{gamma}), are not well known, and there is no adequate model that describes neutron capture. The modeling problem is significant because, at low energies where capture reactions are important, the neutron reaction cross sections show resonance behavior or follow 1/v of the incident neutrons. In the case of odd-odd nuclei, the modeling problem is particularly difficult because degenerate states (rotational bands) present in even-even nuclei have separated in energy. Our work included interpretation of the {gamma}-ray spectra to compare with the Statistical Model and provides information on level density and statistical decay. Neutron capture cross sections are of programmatic interest to defense sciences because many elements were added to nuclear devices in order to determine various details of the nuclear detonation, including fission yields, fusion yields, and mix. Both product nuclei created by (n,2n) reactions and reactant nuclei are transmuted by neutron capture during the explosion. Very few of the (n,{gamma}) cross sections for reactions that create products measured by radiochemists have ever been experimentally determined; most are calculated by radiochemical equivalences. Our new experimentally measured capture cross sections directly impact our knowledge about the uncertainties in device performances, which enhances our capability of carrying out our stockpile stewardship program. Europium and gadolinium cross sections are important for both astrophysics and defense programs. Measurements made prior to this project on stable europium targets differ by 30-40%, which was considered to be significantly disparate. Of the gadolinium isotopes, {sup 151}Gd is important for stockpile stewardship, and {sup 153}Gd is of high interest to astrophysics, and nether of these (radioactive) gadolinium (n,{gamma}) cross sections have been measured. Additional stable gadolinium isotopes, including {sup 157,160}Gd are of interest to astrophysics. Historical measurements of gadolinium isotopes, including {sup 152,154}Gd, had disagreements similar to the 30-40% disagreements found in the historical europium data. Actinide capture cross section measurements are important for both Stockpile Stewardship and for nuclear forensics. We focused on the {sup 242m}Am(n,{gamma}) measurement, as there was no existing capture measurement for this isotope. The cross-section measurements (cross section vs. E{sub n}) were made at the Detector for Advanced Neutron Capture Experiments. DANCE is comprised of a highly segmented array of barium fluoride (BaF{sub 2}) crystals specifically designed for neutron capture-gamma measurements, using small radioactive targets (less than one milligram). A picture of half the array, along with a photo of one crystal, is shown in Fig. 1. DANCE provides the world's leading capability for measurements of neutron capture cross sections with radioactive targets. The DANCE is a 4{pi} calorimeter and uses the intense spallation neutron source the Lujan Center at the Los Alamos National Laboratory. The detector array consists of 159 barium fluoride crystals arranged in a sphere around the target.« less

  4. Chinese HJ-1C SAR And Its Wind Mapping Capability

    NASA Astrophysics Data System (ADS)

    Huang, Weigen; Chen, Fengfeng; Yang, Jingsong; Fu, Bin; Chen, Peng; Zhang, Chan

    2010-04-01

    Chinese Huan Jing (HJ)-1C synthetic aperture radar (SAR) satellite has been planed to be launched in 2010. HJ-1C satellite will fly in a sun-synchronous polar orbit of 500-km altitude. SAR will be the only sensor on board the satellite. It operates in S band with VV polarization. Its image mode has the incidence angles 25°and 47°at the near and far sides of the swath respectively. There are two selectable SAR modes of operation, which are fine resolution beams and standard beams respectively. The sea surface wind mapping capability of the SAR has been examined using M4S radar imaging model developed by Romeiser. The model is based on Bragg scattering theory in a composite surface model expansion. It accounts for contributions of the full ocean wave spectrum to the radar backscatter from ocean surface. The model reproduces absolute normalized radar cross section (NRCS) values for wide ranges of wind speeds. The model results of HJ-1C SAR have been compared with the model results of Envisat ASAR. It shows that HJ-1C SAR is as good as Envisat ASAR at sea surface wind mapping.

  5. Mirage: a visible signature evaluation tool

    NASA Astrophysics Data System (ADS)

    Culpepper, Joanne B.; Meehan, Alaster J.; Shao, Q. T.; Richards, Noel

    2017-10-01

    This paper presents the Mirage visible signature evaluation tool, designed to provide a visible signature evaluation capability that will appropriately reflect the effect of scene content on the detectability of targets, providing a capability to assess visible signatures in the context of the environment. Mirage is based on a parametric evaluation of input images, assessing the value of a range of image metrics and combining them using the boosted decision tree machine learning method to produce target detectability estimates. It has been developed using experimental data from photosimulation experiments, where human observers search for vehicle targets in a variety of digital images. The images used for tool development are synthetic (computer generated) images, showing vehicles in many different scenes and exhibiting a wide variation in scene content. A preliminary validation has been performed using k-fold cross validation, where 90% of the image data set was used for training and 10% of the image data set was used for testing. The results of the k-fold validation from 200 independent tests show a prediction accuracy between Mirage predictions of detection probability and observed probability of detection of r(262) = 0:63, p < 0:0001 (Pearson correlation) and a MAE = 0:21 (mean absolute error).

  6. Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications.

    PubMed

    Liu, Bin; Xu, Han; Zhao, Huiying; Liu, Wei; Zhao, Liyun; Li, Yuan

    2017-02-10

    We have developed an intelligent starch/poly-vinyl alcohol (PVA) film that is capable of monitoring pH changes and inhibiting undesired microbial growth in foods. Starch and PVA polymers in the film were doubly cross-linked by sodium trimetaphosphate and boric acid to improve their water-resistance and mechanical strength. Anthocyanins (ANT) and limonene (LIM) were used to achieve simultaneous colorimetric indication and antimicrobial activity. Firstly, the characterization of surface morphology using SEM confirmed that the starch-PVA-ANT-LIM film possessed a smooth surface. Secondly, the results of the mechanical strength test showed that starch-PVA-ANT-LIM possesses the highest mechanical strength. Additionally, there was a distinguishable change of colors as the film was immersed in solutions of pH ranging from 1.0 to 14.0. Moreover, the film showed excellent antimicrobial activity for three typical undesired microorganisms in foods, Bacillus subtilis, Aspergillus niger, and Staphylococcus aureus. Finally, the film exhibited good color indication and antimicrobial activity on pasteurized milk. The results suggest that the intelligent film reported here shows good capability for both alerting and inhibiting food spoilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Human viruses: discovery and emergence

    PubMed Central

    Woolhouse, Mark; Scott, Fiona; Hudson, Zoe; Howey, Richard; Chase-Topping, Margo

    2012-01-01

    There are 219 virus species that are known to be able to infect humans. The first of these to be discovered was yellow fever virus in 1901, and three to four new species are still being found every year. Extrapolation of the discovery curve suggests that there is still a substantial pool of undiscovered human virus species, although an apparent slow-down in the rate of discovery of species from different families may indicate bounds to the potential range of diversity. More than two-thirds of human viruses can also infect non-human hosts, mainly mammals, and sometimes birds. Many specialist human viruses also have mammalian or avian origins. Indeed, a substantial proportion of mammalian viruses may be capable of crossing the species barrier into humans, although only around half of these are capable of being transmitted by humans and around half again of transmitting well enough to cause major outbreaks. A few possible predictors of species jumps can be identified, including the use of phylogenetically conserved cell receptors. It seems almost inevitable that new human viruses will continue to emerge, mainly from other mammals and birds, for the foreseeable future. For this reason, an effective global surveillance system for novel viruses is needed. PMID:22966141

  8. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Precision Hawk pilot readies Lancaster Mark 3 UAS for test flight.

  9. Analysis of Capabilities of Organizations in the Areas of Responsibility for U.S. Commands of the United States Navy to Humanitarian Assistance and Disaster Relief

    DTIC Science & Technology

    2015-09-30

    Items ..................................... 14 Table 6. Health Action...Red Cross 3436 3381 3,055 90.4 The Salvation Army International 3388 3289 2,706 82.3 Baptist Health South Florida 2637...Distribution Health Service Support Collaboration & Governance Information & Knowledge Mgt Core Competencies and Capabilities for Disaster Response

  10. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species.

    PubMed

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Cross-neutralizing activities partly correlate with the phylogenetic distance of the virus species. Cross-neutralizing activities against the species BBLV and DUVV of phylogroup 1 were demonstrated, in line with previous results of cross-neutralizing activities against ABLV and EBLV-1 and -2. Potential partial cross-neutralizing activities against more distant lyssavirus species like selected MOKV strains need further research.

  11. The Use of Formative Testing in Diagnosing Place Vocabulary Capabilities: A Cross-Cultural Example.

    ERIC Educational Resources Information Center

    Saveland, Robert N.

    A cross-cultural educational research study involving 12,500 students in 13 countries is described, with particular emphasis on one aspect of geographic literacy--place vocabulary skills. Place vocabulary is defined as that component of vocabulary that is concerned with places which are proper nouns and capitalized to show their importance. The…

  12. Research at the University of Kentucky Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Kovash, M. A.

    The Department of Physics and Astronomy at the University of Kentucky operates a 7-MV CN Van de Graaff accelerator that produces primary beams of protons, deuterons, and helium ions. An in-terminal pulsing and bunching system operates at 1.875 MHz and is capable of providing 1 ns beam bunches at an average current of several microamperes. Nearly all ongoing research programs involve secondary pulsed neutrons produced with gas cells containing deuterium or tritium, as well as with a variety of solid targets. Most experiments are performed at a target station positioned over a deep pit, so as to reduce the background created by backscattered neutrons. Recent experiments will be described; these include: measurements of n-p scattering total cross sections from En= 90 to 1800 keV to determine the n-p effective range parameter; the response of the plastic scintillator BC-418 below 1 MeV to low-energy recoil protons; n-p radiative capture cross sections important for our understanding of nucleosynthesis approximately 2 minutes after the occurrence of the Big Bang; γ-ray spectroscopy following inelastic neutron scattering to study nuclear structure relevant to double-β decay and to understand the role of phonon-coupled excitations in weakly deformed nuclei; and measurements of neutron elastic and inelastic scattering cross sections for nuclei that are important for energy production and for our global understanding of the interaction of neutrons with matter.

  13. Laboratory Spectroscopy of Fluorinated Molecules for Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Godin, Paul Joseph

    Temperature-dependent absorption cross-sections are presented for five fluorinated molecules considered to be greenhouse gases due to being radiatively active in the mid-infrared. The molecules studied are perfluorotributylamine (PFTBA), 2,2,3,3,3- pentafluoropropanol (PFPO), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), perfluorodecalin (PFDC), and 2H,3H-perfluoropentane (HFC-43-10mee). HFIP is a fluorinated liquid commonly used as a specialty solvent for some polar polymers and in organic synthesis. PFTBA, PFPO, and HFC-43-10mee are commonly used in electronic and industrial applications. PFDC is capable of dissolving large quantities of gases, making it useful for a variety of medical applications. Experimental absorption cross-sections were derived from Fourier transform infrared spectra recorded from 530 to 3400 cm ?1 with a resolution of 0.1 cm ?1 over a temperature range of 298 to 360 K. These results were compared to theoretical density functional theory (DFT) calculations and previously published experimental measurements made at room temperature. Theoretical DFT calculations were performed using the B3LYP method and a minimum basis set of 6-311+G(d,p). The calculations have determined the optimized geometrical configuration, infrared intensities, and wavenumbers of the harmonic frequencies for different ground-state configurations due to the presence of internal rotors. As the population of each configuration changes with temperature, changes in the experimental spectra were used to make accurate band assignments. From these band assignments, the DFT spectra were calibrated to match the experimental spectra, increasing the accuracy of the DFT prediction outside of the experimental range. Using the adjusted DFT-calculated spectra, the wavenumber range was extended beyond the experimental range to calculate radiative efficiencies and global warming potentials. When using only the experimental range, the new values agreed with previously published values. However, when the range was extended using the DFT spectra, the radiative efficiency and global warming potential were increased, suggesting that the current values are underestimating the climate impacts of these species. Additionally, work done on building a multipass White cell is presented. This new system can be used in the future to resolve weak lines to extract line parameters needed for atmospheric trace gas retrievals.

  14. Architectural analysis and predicted functional capability of the human latissimus dorsi muscle.

    PubMed

    Gerling, Michael E; Brown, Stephen H M

    2013-08-01

    The latissimus dorsi is primarily considered a muscle with actions at the shoulder, despite its widespread attachments at the spine. There is some dispute regarding the potential contribution of this muscle to lumbar spine function. The architectural design of a muscle is one of the most accurate predictors of muscle function; however, detailed architectural data on the latissimus dorsi muscle are limited. Therefore, the aim of this study was to quantify the architectural properties of the latissimus dorsi muscle and model mechanical function in light of these new data. One latissimus dorsi muscle was removed from each of 12 human cadavers, separated into regions, and micro-dissected for quantification of fascicle length, sarcomere length, and physiological cross-sectional area. From these data, sarcomere length operating ranges were modelled to determine the force-length characteristics of latissimus dorsi across the spine and shoulder ranges of motion. The physiological cross-sectional area of latissimus dorsi was 5.6±0.5 cm2 and normalized fascicle length was 26.4±1.0 cm, indicating that this muscle is designed to produce a moderate amount of force over a large range of lengths. Measured sarcomere length in the post-mortem neutral spine posture was nearly optimal at 2.69±0.06 μm. Across spine range of motion, biomechanical modelling predicted latissimus dorsi acts across both the ascending and descending limbs of the force-length curve during lateral bend, and primarily at or near the plateau region (where maximum force generation is possible) during flexion/extension and axial twist. Across shoulder range of motion, latissimus dorsi acts primarily on the plateau region and descending limbs of the force length curve during both flexion/extension and abduction/adduction. These data provide novel insights into the ability of the latissimus dorsi muscle to generate force and change length throughout the spine and shoulder ranges of motion. In addition, these findings provide an improved understanding of the spine and shoulder positions at which the force-generating capacity of this muscle can become jeopardized, and consequently how this may affect its spine-stabilizing ability. © 2013 Anatomical Society.

  15. Architectural analysis and predicted functional capability of the human latissimus dorsi muscle

    PubMed Central

    Gerling, Michael E; Brown, Stephen H M

    2013-01-01

    The latissimus dorsi is primarily considered a muscle with actions at the shoulder, despite its widespread attachments at the spine. There is some dispute regarding the potential contribution of this muscle to lumbar spine function. The architectural design of a muscle is one of the most accurate predictors of muscle function; however, detailed architectural data on the latissimus dorsi muscle are limited. Therefore, the aim of this study was to quantify the architectural properties of the latissimus dorsi muscle and model mechanical function in light of these new data. One latissimus dorsi muscle was removed from each of 12 human cadavers, separated into regions, and micro-dissected for quantification of fascicle length, sarcomere length, and physiological cross-sectional area. From these data, sarcomere length operating ranges were modelled to determine the force–length characteristics of latissimus dorsi across the spine and shoulder ranges of motion. The physiological cross-sectional area of latissimus dorsi was 5.6 ± 0.5 cm2 and normalized fascicle length was 26.4 ± 1.0 cm, indicating that this muscle is designed to produce a moderate amount of force over a large range of lengths. Measured sarcomere length in the post-mortem neutral spine posture was nearly optimal at 2.69 ± 0.06 μm. Across spine range of motion, biomechanical modelling predicted latissimus dorsi acts across both the ascending and descending limbs of the force–length curve during lateral bend, and primarily at or near the plateau region (where maximum force generation is possible) during flexion/extension and axial twist. Across shoulder range of motion, latissimus dorsi acts primarily on the plateau region and descending limbs of the force length curve during both flexion/extension and abduction/adduction. These data provide novel insights into the ability of the latissimus dorsi muscle to generate force and change length throughout the spine and shoulder ranges of motion. In addition, these findings provide an improved understanding of the spine and shoulder positions at which the force-generating capacity of this muscle can become jeopardized, and consequently how this may affect its spine-stabilizing ability. PMID:23758053

  16. Nucleon-Nucleon Total Cross Section

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2008-01-01

    The total proton-proton and neutron-proton cross sections currently used in the transport code HZETRN show significant disagreement with experiment in the GeV and EeV energy ranges. The GeV range is near the region of maximum cosmic ray intensity. It is therefore important to correct these cross sections, so that predictions of space radiation environments will be accurate. Parameterizations of nucleon-nucleon total cross sections are developed which are accurate over the entire energy range of the cosmic ray spectrum.

  17. Information processing of earth resources data

    NASA Technical Reports Server (NTRS)

    Zobrist, A. L.; Bryant, N. A.

    1982-01-01

    Current trends in the use of remotely sensed data include integration of multiple data sources of various formats and use of complex models. These trends have placed a strain on information processing systems because an enormous number of capabilities are needed to perform a single application. A solution to this problem is to create a general set of capabilities which can perform a wide variety of applications. General capabilities for the Image-Based Information System (IBIS) are outlined in this report. They are then cross-referenced for a set of applications performed at JPL.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlburg, Jill; Corones, James; Batchelor, Donald

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individualmore » features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC integrated planning document (IPPA, 2000), represents a significant opportunity for the DOE Office of Science to further the understanding of fusion plasmas to a level unparalleled worldwide.« less

  19. Infrared thermal imaging of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Watt, David; Mchugh, John

    1990-01-01

    A technique for analyzing infrared atmospheric images to obtain cross-wind measurement is presented. The technique is based on Taylor's frozen turbulence hypothesis and uses cross-correlation of successive images to obtain a measure of the cross-wind velocity in a localized focal region. The technique is appealing because it can possibly be combined with other IR forward look capabilities and may provide information about turbulence intensity. The current research effort, its theoretical basis, and its applicability to windshear detection are described.

  20. Moving target parameter estimation of SAR after two looks cancellation

    NASA Astrophysics Data System (ADS)

    Gan, Rongbing; Wang, Jianguo; Gao, Xiang

    2005-11-01

    Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.

  1. Enzymatically cross-linked injectable alginate-g-pyrrole hydrogels for neovascularization.

    PubMed

    Devolder, Ross; Antoniadou, Eleni; Kong, Hyunjoon

    2013-11-28

    Microparticles capable of releasing protein drugs are often incorporated into injectable hydrogels to minimize their displacement at an implantation site, reduce initial drug burst, and further control drug release rates over a broader range. However, there is still a need to develop methods for releasing drug molecules over extended periods of time, in order to sustain the bioactivity of drug molecules at an implantation site. In this study, we hypothesized that a hydrogel formed through the cross-linking of pyrrole units linked to a hydrophilic polymer would release protein drugs in a more sustained manner, because of an enhanced association between cross-linked pyrrole groups and the drug molecules. To examine this hypothesis, we prepared hydrogels of alginate substituted with pyrrole groups, alginate-g-pyrrole, through a horse-radish peroxidase (HRP)-activated cross-linking of the pyrrole groups. The hydrogels were encapsulated with poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with vascular endothelial growth factor (VEGF). The resulting hydrogel system released VEGF in a more sustained manner than Ca(2+) alginate or Ca(2+) alginate-g-pyrrole gel systems. Finally, implantations of the VEGF-releasing HRP-activated alginate-g-pyrrole hydrogel system on chicken chorioallantoic membranes resulted in the formation of blood vessels in higher densities and with larger diameters, compared to other control conditions. Overall, the drug releasing system developed in this study will be broadly useful for regulating release rates of a wide array of protein drugs, and further enhance the quality of protein drug-based therapies. © 2013 Elsevier B.V. All rights reserved.

  2. Analog signal processing for optical coherence imaging systems

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    Optical coherence tomography (OCT) and optical coherence microscopy (OCM) are non-invasive optical coherence imaging techniques, which enable micron-scale resolution, depth resolved imaging capability. Both OCT and OCM are based on Michelson interferometer theory. They are widely used in ophthalmology, gastroenterology and dermatology, because of their high resolution, safety and low cost. OCT creates cross sectional images whereas OCM obtains en face images. In this dissertation, the design and development of three increasingly complicated analog signal processing (ASP) solutions for optical coherence imaging are presented. The first ASP solution was implemented for a time domain OCT system with a Rapid Scanning Optical Delay line (RSOD)-based optical signal modulation and logarithmic amplifier (Log amp) based demodulation. This OCT system can acquire up to 1600 A-scans per second. The measured dynamic range is 106dB at 200A-scan per second. This OCT signal processing electronics includes an off-the-shelf filter box with a Log amp circuit implemented on a PCB board. The second ASP solution was developed for an OCM system with synchronized modulation and demodulation and compensation for interferometer phase drift. This OCM acquired micron-scale resolution, high dynamic range images at acquisition speeds up to 45,000 pixels/second. This OCM ASP solution is fully custom designed on a perforated circuit board. The third ASP solution was implemented on a single 2.2 mm x 2.2 mm complementary metal oxide semiconductor (CMOS) chip. This design is expandable to a multiple channel OCT system. A single on-chip CMOS photodetector and ASP channel was used for coherent demodulation in a time domain OCT system. Cross-sectional images were acquired with a dynamic range of 76dB (limited by photodetector responsivity). When incorporated with a bump-bonded InGaAs photodiode with higher responsivity, the expected dynamic range is close to 100dB.

  3. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system.

    PubMed

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2015-07-01

    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.

  4. Corner-cutting mining assembly

    DOEpatents

    Bradley, J.A.

    1981-07-01

    This invention resulted from a contract with the United States Department of Energy and relates to a mining tool. More particularly, the invention relates to an assembly capable of drilling a hole having a square cross-sectional shape with radiused corners. In mining operations in which conventional auger-type drills are used to form a series of parallel, cylindrical holes in a coal seam, a large amount of coal remains in place in the seam because the shape of the holes leaves thick webs between the holes. A higher percentage of coal can be mined from a seam by a means capable of drilling holes having a substantially square cross section. It is an object of this invention to provide an improved mining apparatus by means of which the amount of coal recovered from a seam deposit can be increased. Another object of the invention is to provide a drilling assembly which cuts corners in a hole having a circular cross section. These objects and other advantages are attained by a preferred embodiment of the invention.

  5. Biological Incident Operations: A Guide for Law Enforcement

    DTIC Science & Technology

    2004-09-01

    organisms. Bacteria can vary in size and shape and some have the capability of forming spores . Spores are much hardier since they are more capable of...unintentional dissemination of a biological agent occurred in the anthrax mailings (October 2001) when anthrax spores cross-contaminated machinery...indicate the presence of Bacillus anthracis (anthrax) and Yersinia pestis (plague). Washington DC emergency personnel responded to the incident. As a

  6. Munitions Executive Summit 2010 Held in San Diego, California on February 8-10, 2010

    DTIC Science & Technology

    2010-02-10

    INDUSTRIAL CAPABILITIES · Mr. Dick Hammett , President, Winchester Ammunition AMMUNITION ENTERPRISE CROSS SERVICE PANEL PANEL CHAIR: BG Jonathan...complacency 7 Aligning Commercial Industrial Capabilities with Munitions Requirements & Resources Dick Hammett , President, Winchester Ammunition...Immature – Quantum Dot FPAs maturing – Devices have been demonstrated under less than optimal conditions – Measured results equate to less than 0.1

  7. Capabilities for Learning to Read: An Investigation of Social and Economic Effects for Grade 6 Learners in Southern and East Africa

    ERIC Educational Resources Information Center

    Smith, Michele; Barrett, Angeline M.

    2011-01-01

    This paper considers what multilevel modelling approaches to analysing large scale cross-national surveys of education quality can tell us about the capabilities that support primary school children in learning to read. The impact of pupil background characteristics on achievement in reading towards the end of the primary cycle in sub-Saharan…

  8. 2009 Ground Robotics Capabilities Conference and Exhibition

    DTIC Science & Technology

    2009-03-26

    adaptability to varying social cues and context – ARL via the Robotics Collaborative Technology Alliance program • Autonomy is “conditional” … largely...roadmaps, alliances and robotics organizations have been established to synchronize development efforts • Many emerging robotics capabilities can...Crossing Plan ( B2B ) 1. Target Customer 2. Compelling Reason to Buy 3. Whole Product 4. Partners & Allies 5. Distribution 6. Pricing 7. Competition 8

  9. A comparison of digital zero-crossing and charge-comparison methods for neutron/γ-ray discrimination with liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.

    2015-10-01

    In this paper, we have compared the performances of the digital zero-crossing and charge-comparison methods for n/γ discrimination with liquid scintillation detectors at low light outputs. The measurements were performed with a 2″×2″ cylindrical liquid scintillation detector of type BC501A whose outputs were sampled by means of a fast waveform digitizer with 10-bit resolution, 4 GS/s sampling rate and one volt input range. Different light output ranges were measured by operating the photomultiplier tube at different voltages and a new recursive algorithm was developed to implement the digital zero-crossing method. The results of our study demonstrate the superior performance of the digital zero-crossing method at low light outputs when a large dynamic range is measured. However, when the input range of the digitizer is used to measure a narrow range of light outputs, the charge-comparison method slightly outperforms the zero-crossing method. The results are discussed in regard to the effects of the quantization noise and the noise filtration performance of the zero-crossing filter.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore » instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less

  11. [Support vector machine?assisted diagnosis of human malignant gastric tissues based on dielectric properties].

    PubMed

    Zhang, Sa; Li, Zhou; Xin, Xue-Gang

    2017-12-20

    To achieve differential diagnosis of normal and malignant gastric tissues based on discrepancies in their dielectric properties using support vector machine. The dielectric properties of normal and malignant gastric tissues at the frequency ranging from 42.58 to 500 MHz were measured by coaxial probe method, and the Cole?Cole model was used to fit the measured data. Receiver?operating characteristic (ROC) curve analysis was used to evaluate the discrimination capability with respect to permittivity, conductivity, and Cole?Cole fitting parameters. Support vector machine was used for discriminating normal and malignant gastric tissues, and the discrimination accuracy was calculated using k?fold cross? The area under the ROC curve was above 0.8 for permittivity at the 5 frequencies at the lower end of the measured frequency range. The combination of the support vector machine with the permittivity at all these 5 frequencies combined achieved the highest discrimination accuracy of 84.38% with a MATLAB runtime of 3.40 s. The support vector machine?assisted diagnosis is feasible for human malignant gastric tissues based on the dielectric properties.

  12. Evolution of Software-Only-Simulation at NASA IV and V

    NASA Technical Reports Server (NTRS)

    McCarty, Justin; Morris, Justin; Zemerick, Scott

    2014-01-01

    Software-Only-Simulations have been an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations that have ranged from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).This paper describes the evolution of ITCs technologies and processes that have been utilized to design, implement, and deploy end-to-end simulation environments for various NASA missions. A comparison of mission simulators are discussed with focus on technology and lessons learned in complexity, hardware modeling, and continuous integration. The paper also describes the methods for executing the missions unmodified flight software binaries (not cross-compiled) for verification and validation activities.

  13. Automatic detection of Parkinson's disease in running speech spoken in three different languages.

    PubMed

    Orozco-Arroyave, J R; Hönig, F; Arias-Londoño, J D; Vargas-Bonilla, J F; Daqrouq, K; Skodda, S; Rusz, J; Nöth, E

    2016-01-01

    The aim of this study is the analysis of continuous speech signals of people with Parkinson's disease (PD) considering recordings in different languages (Spanish, German, and Czech). A method for the characterization of the speech signals, based on the automatic segmentation of utterances into voiced and unvoiced frames, is addressed here. The energy content of the unvoiced sounds is modeled using 12 Mel-frequency cepstral coefficients and 25 bands scaled according to the Bark scale. Four speech tasks comprising isolated words, rapid repetition of the syllables /pa/-/ta/-/ka/, sentences, and read texts are evaluated. The method proves to be more accurate than classical approaches in the automatic classification of speech of people with PD and healthy controls. The accuracies range from 85% to 99% depending on the language and the speech task. Cross-language experiments are also performed confirming the robustness and generalization capability of the method, with accuracies ranging from 60% to 99%. This work comprises a step forward for the development of computer aided tools for the automatic assessment of dysarthric speech signals in multiple languages.

  14. Propulsion

    NASA Astrophysics Data System (ADS)

    Smith, P. K.

    1993-06-01

    Current requirements for missile systems increasingly stress the need for stealth capability. For the majority of missile systems and missions, the exhaust plume is likely to be the major contributor to overall missile signature, especially considering the recent developments in low emission and low Radar Cross Section coatings for motor bodies. This implies the need for the lowest possible rocket exhaust signature over a wide range of frequencies from the UV through visible and IR to microwave and radio frequencies. The choice of propellant type, Double Base; Composite etc, plays a significant part in determining the exhaust signature of the rocket motor as does the selection of inert materials for liners, inhibitors, and nozzles. It is also possible with certain propellants to incorporate additives which reduce exhaust signature either by modifying the chemistry or the afterburning plume or more significantly by suppressing secondary combustion and hence dramatically reducing plume temperature. The feasibility of plume signature control on the various missions envisaged by the missile designer is considered. The choice of propellant type and hardware components to give low signature is discussed together with performance implications. Signature reduction results obtained over a wide range of frequencies are also presented.

  15. Progress on Background-Limited Membrane-Isolated TES Bolometers for Far-IR/Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kenyon, M.; Day, P. K.; Bradford, C. M.; Bock, J. J.; Leduc, H. G.

    2006-01-01

    To determine the lowest attainable phonon noise equivalent power (NEP) for membrane-isolation bolometers, we fabricated and measured the thermal conductance of suspended Si3N4 beams with different geometries via a noise thermometry technique. We measured beam cross-sectional areas ranging from 0.35 x 0.5 (micro)m(sup 2) to 135 x 1.0 (micro)m(sup 2) and beam lengths ranging from (micro)m to 8300 (micro)m. The measurements directly imply that membrane-isolation bolometers are capable of reaching a phonon noise equivalent power (NEP) of 4 x 10(sup -20)W/Hz(sup 1)/O . This NEP adequate for the Background-Limited Infrared-Submillimeter Spectrograph (BLISS) proposed for the Japanese SPICA observatory, and adequate for NASA's SAFIR observatory, a 10-meter, 4 K telescope to be deployed at L2. Further, we measured the heat capacity of a suspended Si3N4 membrane and show how this result implies that one can make membrane-isolation bolometers with a response time which is fast enough for BLISS.

  16. Cross-hemisphere migration of a 25 g songbird

    PubMed Central

    Bairlein, Franz; Norris, D. Ryan; Nagel, Rolf; Bulte, Marc; Voigt, Christian C.; Fox, James W.; Hussell, David J. T.; Schmaljohann, Heiko

    2012-01-01

    The northern wheatear (Oenanthe oenanthe) is a small (approx. 25 g), insectivorous migrant with one of the largest ranges of any songbird in the world, breeding from the eastern Canadian Arctic across Greenland, Eurasia and into Alaska (AK). However, there is no evidence that breeding populations in the New World have established overwintering sites in the Western Hemisphere. Using light-level geolocators, we demonstrate that individuals from these New World regions overwinter in northern sub-Sahara Africa, with Alaskan birds travelling approximately 14 500 km each way and an eastern Canadian Arctic bird crossing a wide stretch of the North Atlantic (approx. 3500 km). These remarkable journeys, particularly for a bird of this size, last between one to three months depending on breeding location and season (autumn/spring) and result in mean overall migration speeds of up to 290 km d−1. Stable-hydrogen isotope analysis of winter-grown feathers sampled from breeding birds generally support the notion that Alaskan birds overwinter primarily in eastern Africa and eastern Canadian Arctic birds overwinter mainly in western Africa. Our results provide the first evidence of a migratory songbird capable of linking African ecosystems of the Old World with Arctic regions of the New World. PMID:22337504

  17. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.

  18. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow

    PubMed Central

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2012-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584

  19. Cross-hemisphere migration of a 25 g songbird.

    PubMed

    Bairlein, Franz; Norris, D Ryan; Nagel, Rolf; Bulte, Marc; Voigt, Christian C; Fox, James W; Hussell, David J T; Schmaljohann, Heiko

    2012-08-23

    The northern wheatear (Oenanthe oenanthe) is a small (approx. 25 g), insectivorous migrant with one of the largest ranges of any songbird in the world, breeding from the eastern Canadian Arctic across Greenland, Eurasia and into Alaska (AK). However, there is no evidence that breeding populations in the New World have established overwintering sites in the Western Hemisphere. Using light-level geolocators, we demonstrate that individuals from these New World regions overwinter in northern sub-Sahara Africa, with Alaskan birds travelling approximately 14 500 km each way and an eastern Canadian Arctic bird crossing a wide stretch of the North Atlantic (approx. 3500 km). These remarkable journeys, particularly for a bird of this size, last between one to three months depending on breeding location and season (autumn/spring) and result in mean overall migration speeds of up to 290 km d(-1). Stable-hydrogen isotope analysis of winter-grown feathers sampled from breeding birds generally support the notion that Alaskan birds overwinter primarily in eastern Africa and eastern Canadian Arctic birds overwinter mainly in western Africa. Our results provide the first evidence of a migratory songbird capable of linking African ecosystems of the Old World with Arctic regions of the New World.

  20. A triple-mode hexa-standard reconfigurable TI cross-coupled ΣΔ modulator

    NASA Astrophysics Data System (ADS)

    Prakash A. V, Jos; Jose, Babita R.; Mathew, Jimson; Jose, Bijoy A.

    2017-07-01

    Hardware reconfigurability is an attractive solution for modern multi-standard wireless systems. This paper analyses the performance and implementation of an efficient triple-mode hexa-standard reconfigurable sigma-delta (∑Δ) modulator designed for six different wireless communication standards. Enhanced noise-shaping characteristics and increased digitisation rate, obtained by time-interleaved cross-coupling of ∑Δ paths, have been utilised for the modulator design. Power/hardware efficiency and the capability to acclimate the requirements of wide hexa-standard specifications are achieved by introducing an advanced noise-shaping structure, the dual-extended architecture. Simulation results of the proposed architecture using Hspice shows that the proposed modulator obtains a peak signal-to-noise ratio of 83.4/80.2/67.8/61.5/60.8/51.03 dB for hexa-standards, i.e. GSM/Bluetooth/GPS/WCDMA/WLAN/WiMAX standards with significantly less hardware and low operating frequency. The proposed architecture is implemented in 45 nm CMOS process using a 1 V supply and 0.7 V input range with a power consumption of 1.93 mW. Both architectural- and transistor-level simulation results prove the effectiveness and feasibility of this architecture to accomplish multi-standard cellular communication characteristics.

  1. Analysis of a Neutronic Experiment on a Simulated Mercury Spallation Neutron Target Assembly Bombarded by Giga-Electron-Volt Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maekawa, Fujio; Meigo, Shin-ichiro; Kasugai, Yoshimi

    2005-05-15

    A neutronic benchmark experiment on a simulated spallation neutron target assembly was conducted by using the Alternating Gradient Synchrotron at Brookhaven National Laboratory and was analyzed to investigate the prediction capability of Monte Carlo simulation codes used in neutronic designs of spallation neutron sources. The target assembly consisting of a mercury target, a light water moderator, and a lead reflector was bombarded by 1.94-, 12-, and 24-GeV protons, and the fast neutron flux distributions around the target and the spectra of thermal neutrons leaking from the moderator were measured in the experiment. In this study, the Monte Carlo particle transportmore » simulation codes NMTC/JAM, MCNPX, and MCNP-4A with associated cross-section data in JENDL and LA-150 were verified based on benchmark analysis of the experiment. As a result, all the calculations predicted the measured quantities adequately; calculated integral fluxes of fast and thermal neutrons agreed approximately within {+-}40% with the experiments although the overall energy range encompassed more than 12 orders of magnitude. Accordingly, it was concluded that these simulation codes and cross-section data were adequate for neutronics designs of spallation neutron sources.« less

  2. Experimental Aeroheating Study of Mid-L/D Entry Vehicle Geometries: NASA LaRC 20-Inch Mach 6 Air Tunnel Test 6966

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2014-01-01

    Aeroheating data on mid lift-to-drag ratio entry vehicle configurations has been obtained through hypersonic wind tunnel testing. Vehicles of this class have been proposed for high-mass Mars missions, such as sample return and crewed exploration, for which the conventional sphere-cone entry vehicle geometries of previous Mars missions are insufficient. Several configurations were investigated, including elliptically-blunted cylinders with both circular and elliptical cross sections, biconic geometries based on launch vehicle dual-use shrouds, and parametrically-optimized analytic geometries. Testing was conducted at Mach 6 over a range of Reynolds numbers sufficient to generate laminar, transitional, and turbulent flow. Global aeroheating data were obtained using phosphor thermography. Both stream-wise and cross-flow transition occured on different configurations. Comparisons were made with laminar and turbulent computational predictions generated with an algebraic turbulence model. Predictions were generally in good agreement in regions of laminar or fully-turbulent flow; however for transitional cases, the lack of a transition onset prediction capability produced less accurate comparisons. The data obtained in this study are intended to be used for prelimary mission design studies and the development and validation of computational methods.

  3. Ionospheric dynamo theory for production of far ultraviolet emissions on Uranus

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Warren, J. A.; Clarke, J. T.

    1989-01-01

    A model is presented to explain diffuse FUV emissions from the outer planets, specifically Uranus, in excess of those diffuse emissions that are currently explainable by scattering of sunlight and/or excitation by photoelectrons. These electroglow emissions in H Ly-alpha and H2 bands, which occur in the sunlit hemisphere slightly above the homopause, appear to require particle excitation in the 10- to 50-eV range. An in situ mechanism for accelerating photoelectrons (and ions is proposed, involving neutral wind dynamo generation of field-aligned currents analogous to what occurs in the earth's equatorial E and F regions. Sufficiently strong field-aligned currents are found in the model calculation for Uranus to produce a potential drop of about 100 eV or greater between the F peak and homopause, concentrated at lower altitudes, and capable in principle of accelerating photoelectrons (and ions) to the 10- to 50-eV energies required to explain the observed emissions. The fact that the excitation and ionization cross sections are larger than elastic scattering cross sections in an H2 atmosphere at these energies makes in situ acceleration feasible for the production of UV on the outer planets.

  4. Improving environmental performance through unit-level organizational citizenship behaviors for the environment: A capability perspective.

    PubMed

    Alt, Elisa; Spitzeck, Heiko

    2016-11-01

    Organizational citizenship behaviors for the environment (OCBEs) are increasingly advocated as a means of complementing formal practices in improving environmental performance. Adopting a capability perspective, we propose that a firm's employee involvement capability translates into environmental performance through the manifestation of unit-level OCBEs, and that this relationship is amplified by a shared vision capability. In a cross-country and multi-industry sample of 170 firms, we find support for our hypotheses, shedding light on contextual determinants of OCBEs, and on how firms may engender a positive relationship between top-down environmental initiatives and bottom-up behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. White Sands Missile Range Overview & Introduction: Test Capabilities Briefing

    DTIC Science & Technology

    2011-11-07

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Army Test and Evaluation Command (ATEC),White Sands Missile Range,White Sands Missile Range,NM,88002...5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...solar radiation, icing, salt fog, etc. • Instrumented for system performance / diagnostics  Climatics testing capabilities • Fixed and mobile test

  6. Current Testing Capabilities at the NASA Ames Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Ramsey, Alvin; Tam, Tim; Bogdanoff, David; Gage, Peter

    1999-01-01

    Capabilities for designing and performing ballistic range tests at the NASA Ames Research Center are presented. Computational tools to assist in designing and developing ballistic range models and to predict the flight characteristics of these models are described. A CFD code modeling two-stage gun performance is available, allowing muzzle velocity, maximum projectile base pressure, and gun erosion to be predicted. Aerodynamic characteristics such as drag and stability can be obtained at speeds ranging from 0.2 km/s to 8 km/s. The composition and density of the test gas can be controlled, which allows for an assessment of Reynolds number and specific heat ratio effects under conditions that closely match those encountered during planetary entry. Pressure transducers have been installed in the gun breech to record the time history of the pressure during launch, and pressure transducers have also been installed in the walls of the range to measure sonic boom effects. To illustrate the testing capabilities of the Ames ballistic ranges, an overview of some of the recent tests is given.

  7. Multifractal Cross Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi-Qiang; Gao, Xing-Lu; Zhou, Wei-Xing; Stanley, H. Eugene

    Complex systems are composed of mutually interacting components and the output values of these components usually exhibit long-range cross-correlations. Using wavelet analysis, we propose a method of characterizing the joint multifractal nature of these long-range cross correlations, a method we call multifractal cross wavelet analysis (MFXWT). We assess the performance of the MFXWT method by performing extensive numerical experiments on the dual binomial measures with multifractal cross correlations and the bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, we find the empirical joint multifractality of MFXWT to be in approximate agreement with the theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the wide spanning range of the multifractal spectrum. We also apply the MFXWT method to stock market indices, and in pairs of index returns and volatilities we find an intriguing joint multifractal behavior. The tests on surrogate series also reveal that the cross correlation behavior, particularly the cross correlation with zero lag, is the main origin of cross multifractality.

  8. Innovations in using virtual reality to study how children cross streets in traffic: evidence for evasive action skills.

    PubMed

    Morrongiello, Barbara A; Corbett, Michael; Milanovic, Melissa; Pyne, Sarah; Vierich, Robin

    2015-08-01

    Children in middle childhood are at an increased risk for injury in pedestrian environments. This study examined whether they are capable of showing evasive action (ie, adjusting crossing speed) to avoid injury when crossing streets. The study used a fully immersive virtual reality (VR) system interfaced with a three-dimensional movement measurement system so that the actual crossing behaviour of 7-10-year-old children under different traffic conditions could be precisely measured. Relating outcomes to that which would have been obtained based on using the approach of estimating walking speed and assuming a constant speed provided insights into the realised benefits of the current movement monitoring VR system. Controlling for age and sex, children showed evasive action, crossing more quickly as traffic conditions became more risky. Using an average and assuming a constant walking speed underestimated actual walking speed, failing to capture evasive action and leading to overestimation of children being hit compared with the actual incidence of hits. VR technology is a valuable tool for assessing child pedestrian behaviour. However, systems need to allow the child to cross the street so their level of pedestrian skill is appropriately measured. The current findings provide the first evidence that children are capable of implementing evasive action in reaction to risky traffic conditions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Hybrid nanoporous silicon optical biosensor architectures for biological sample analysis

    NASA Astrophysics Data System (ADS)

    Bonanno, Lisa M.; Zheng, Hong; DeLouise, Lisa A.

    2010-02-01

    This work focuses on demonstrating proof-of-concept for a novel nanoparticle optical signal amplification scheme employing hybrid porous silicon (PSi) sensors. We are investigating the development of target responsive hydrogels integrated with PSi optical transducers. These hybrid-PSi sensors can be designed to provide a tunable material response to target concentration ranging from swelling to complete chain dissolution. The corresponding refractive index changes are significant and readily detected by the PSi transducer. However, to increase signal to noise, lower the limit of detection, and provide a visual read out capability, we are investigating the incorporation of high refractive index nanoparticles (NP) into the hydrogel for optical signal amplification. These NPs can be nonspecifically encapsulated, or functionalized with bioactive ligands to bind polymer chains or participate in cross linking. In this work, we demonstrate encapsulation of high refractive index QD nanoparticles into a 5wt% polyacrylamide hydrogel crosslinked with N,N'-methylenebisacrylamide (BIS) and N,N Bis-acryloyl cystamine (BAC). A QD loading (~0.29 wt%) produced a 2X larger optical shift compared to the control. Dissolution of disulphide crosslinks, using Tris[2-carboxyethyl] phosphine (TCEP) reducing agent, induced gel swelling and efficient QD release. We believe this hybrid sensor concept constitutes a versatile technology platform capable of detecting a wide range of bio/chemical targets provided target analogs can be linked to the polymer backbone and crosslinks can be achieved with target responsive multivalent receptors, such a antibodies. The optical signal amplification scheme will enable a lower limit of detection sensitivity not yet demonstrated with PSi technology and colorimetric readout visible to the naked eye.

  10. Design of lipid nanocapsule delivery vehicles for multivalent display of recombinant Env trimers in HIV vaccination.

    PubMed

    Pejawar-Gaddy, Sharmila; Kovacs, James M; Barouch, Dan H; Chen, Bing; Irvine, Darrell J

    2014-08-20

    Immunization strategies that elicit antibodies capable of neutralizing diverse virus strains will likely be an important part of a successful vaccine against HIV. However, strategies to promote robust humoral responses against the native intact HIV envelope trimer structure are lacking. We recently developed chemically cross-linked lipid nanocapsules as carriers of molecular adjuvants and encapsulated or surface-displayed antigens, which promoted follicular helper T-cell responses and elicited high-avidity, durable antibody responses to a candidate malaria antigen. To apply this system to the delivery of HIV antigens, Env gp140 trimers with terminal his-tags (gp140T-his) were anchored to the surface of lipid nanocapsules via Ni-NTA-functionalized lipids. Initial experiments revealed that the large (409 kDa), heavily glycosylated trimers were capable of extracting fluid phase lipids from the membranes of nanocapsules. Thus, liquid-ordered and/or gel-phase lipid compositions were required to stably anchor trimers to the particle membranes. Trimer-loaded nanocapsules combined with the clinically relevant adjuvant monophosphoryl lipid A primed high-titer antibody responses in mice at antigen doses ranging from 5 μg to as low as 100 ng, whereas titers dropped more than 50-fold over the same dose range when soluble trimer was mixed with a strong oil-in-water adjuvant comparator. Nanocapsule immunization also broadened the number of distinct epitopes on the HIV trimer recognized by the antibody response. These results suggest that nanocapsules displaying HIV trimers in an oriented, multivalent presentation can promote key aspects of the humoral response against Env immunogens.

  11. Mathematical and Statistical Software Index.

    DTIC Science & Technology

    1986-08-01

    geometric) mean HMEAN - harmonic mean MEDIAN - median MODE - mode QUANT - quantiles OGIVE - distribution curve IQRNG - interpercentile range RANGE ... range mutliphase pivoting algorithm cross-classification multiple discriminant analysis cross-tabul ation mul tipl e-objecti ve model curve fitting...Statistics). .. .. .... ...... ..... ...... ..... .. 21 *RANGEX (Correct Correlations for Curtailment of Range ). .. .. .... ...... ... 21 *RUMMAGE II (Analysis

  12. Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danon, Yaron; Nazarewicz, Witold; Talou, Patrick

    2013-02-18

    This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implementmore » innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.« less

  13. Access from Space: A New Perspective on NASA's Space Transportation Technology Requirements and Opportunities

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    2004-01-01

    The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.

  14. Three-dimensional Radar Imaging of a Building

    DTIC Science & Technology

    2012-12-01

    spotlight configuration and H-V ( cross ) polarization as seen from two different aspect angles. The feature colors correspond to their brightness... cross - ranges but at different heights. This effect may create significant confusion in image interpretation and result in missed target detections...over a range of azimuth angles ( centered at  = 0°) and elevation angles ( centered at 0), creating cross -range and height resolution, while

  15. Cross-Platform Mobile Application Development: A Pattern-Based Approach

    DTIC Science & Technology

    2012-03-01

    Additionally, developers should be aware of different hardware capabilities such as external SD cards and forward facing cameras. Finally, each...applications are written. Additionally, developers should be aware of different hardware capabilities such as external SD cards and forward facing cameras... iTunes library, allowing the user to update software and manage content on each device. However, in iOS5, the PC Free feature removes this constraint

  16. Safe Operations of Unmanned Systems for Reconnaissance in Complex Environments Army Technology Objective (SOURCE ATO)

    DTIC Science & Technology

    2011-04-25

    must adapt its planning to vehicle size, shape, wheelbase, wheel and axle configuration, the specific obstacle-crossing capabilities of the vehicle...scalability of the ANS is a consequence of making each sensing modality capable of performing reasonable perception tasks while allowing a wider...autonomous system design achieves flexibility by exploiting redundant sensing modalities where possible, and by a decision-making process that

  17. Exploring Propulsion System Requirements for More and All-Electric Helicopters

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2015-01-01

    Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as vehicles, missions and systems identified that are best suited to take advantage of their unique characteristics.

  18. Exploring Propulsion System Requirements for More and All-Electric Helicopters

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2015-01-01

    Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as identify vehicles, missions and systems that are best suited to take advantage of their unique characteristics.

  19. Cross-Sectional Transport Imaging in a Multijunction Solar Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haegel, Nancy M.; Ke, Chi-Wen; Taha, Hesham

    2015-06-14

    Combining highly localized electron-beam excitation at a point with the spatial resolution capability of optical near-field imaging, we have imaged carrier transport in a cross-sectioned multijunction (GaInP/GaInAs/Ge) solar cell. We image energy transport associated with carrier diffusion throughout the full width of the middle (GaInAs) cell and luminescent coupling from point excitation in the top cell GaInP to the middle cell. Supporting cathodoluminescence and near-field photoluminescence measurements demonstrate excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results as well as transport limitations on the spatial resolution of cross-sectional measurements.

  20. Report to Congress on Sustainable Ranges, 2011

    DTIC Science & Technology

    2011-07-01

    Interoperation of live participants and their operational systems. `` Realistic LVC representations of non-participant friendly warfighting capabilities...across the full range of military operations (ROMO). `` Realistic LVC representations of opposing forces (OPFOR), neutral, and factional entities that...entities. `` Suitable representations of the real world environment where the warfighting capabilities exist. Table 2-2 Live, Virtual, and

  1. A research study for the preliminary definition of an aerophysics free-flight laboratory facility

    NASA Technical Reports Server (NTRS)

    Canning, Thomas N.

    1988-01-01

    A renewed interest in hypervelocity vehicles requires an increase in the knowledge of aerodynamic phenomena. Tests conducted with ground-based facilities can be used both to better understand the physics of hypervelocity flight, and to calibrate and validate computer codes designed to predict vehicle performance in the hypervelocity environment. This research reviews the requirements for aerothermodynamic testing and discusses the ballistic range and its capabilities. Examples of the kinds of testing performed in typical high performance ballistic ranges are described. We draw heavily on experience obtained in the ballistics facilities at NASA Ames Research Center, Moffett Field, California. Prospects for improving the capabilities of the ballistic range by using advanced instrumentation are discussed. Finally, recent developments in gun technology and their application to extend the capability of the ballistic range are summarized.

  2. Terahertz wide aperture reflection tomography.

    PubMed

    Pearce, Jeremy; Choi, Hyeokho; Mittleman, Daniel M; White, Jeff; Zimdars, David

    2005-07-01

    We describe a powerful imaging modality for terahertz (THz) radiation, THz wide aperture reflection tomography (WART). Edge maps of an object's cross section are reconstructed from a series of time-domain reflection measurements at different viewing angles. Each measurement corresponds to a parallel line projection of the object's cross section. The filtered backprojection algorithm is applied to recover the image from the projection data. To our knowledge, this is the first demonstration of a reflection computed tomography technique using electromagnetic waves. We demonstrate the capabilities of THz WART by imaging the cross sections of two test objects.

  3. Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors.

    PubMed

    Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho

    2017-10-04

    We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.

  4. Technical Note: A direct ray-tracing method to compute integral depth dose in pencil beam proton radiography with a multilayer ionization chamber.

    PubMed

    Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois

    2016-12-01

    To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45 × 45 mm 2 field-of-view) of 9 × 9 spots capable of crossing the phantoms (210 MeV). The exit beam was collected by a MLIC to sample the integral depth dose (IDD MLIC ). PRs of an electron-density and of a head phantom were acquired by moving the couch to obtain multiple 45 × 45 mm 2 frames. To map the corresponding range errors, the two-dimensional set of IDD MLIC was compared with (i) the integral depth dose computed by the treatment planning system (TPS) by both analytic (IDD TPS ) and Monte Carlo (IDD MC ) algorithms in a volume of water simulating the MLIC at the CT, and (ii) the integral depth dose directly computed by a simple ray-tracing algorithm (IDD direct ) through the same CT data. The exact spatial position of the spot pattern was numerically adjusted testing different in-plane positions and selecting the one that minimized the range differences between IDD direct and IDD MLIC . Range error mapping was feasible by both the TPS and the ray-tracing methods, but very sensitive to even small misalignments. In homogeneous regions, the range errors computed by the direct ray-tracing algorithm matched the results obtained by both the analytic and the Monte Carlo algorithms. In both phantoms, lateral heterogeneities were better modeled by the ray-tracing and the Monte Carlo algorithms than by the analytic TPS computation. Accordingly, when the pencil beam crossed lateral heterogeneities, the range errors mapped by the direct algorithm matched better the Monte Carlo maps than those obtained by the analytic algorithm. Finally, the simplicity of the ray-tracing algorithm allowed to implement a prototype procedure for automated spatial alignment. The ray-tracing algorithm can reliably replace the TPS method in MLIC PR for in vivo range verification and it can be a key component to develop software tools for spatial alignment and correction of CT calibration.

  5. Three-Dimensional Multiscale, Multistable, and Geometrically Diverse Microstructures with Tunable Vibrational Dynamics Assembled by Compressive Buckling.

    PubMed

    Ning, Xin; Wang, Heling; Yu, Xinge; Soares, Julio A N T; Yan, Zheng; Nan, Kewang; Velarde, Gabriel; Xue, Yeguang; Sun, Rujie; Dong, Qiyi; Luan, Haiwen; Lee, Chan Mi; Chempakasseril, Aditya; Han, Mengdi; Wang, Yiqi; Li, Luming; Huang, Yonggang; Zhang, Yihui; Rogers, John

    2017-04-11

    Microelectromechanical systems remain an area of significant interest in fundamental and applied research due to their wide ranging applications. Most device designs, however, are largely two-dimensional and constrained to only a few simple geometries. Achieving tunable resonant frequencies or broad operational bandwidths requires complex components and/or fabrication processes. The work presented here reports unusual classes of three-dimensional (3D) micromechanical systems in the form of vibratory platforms assembled by controlled compressive buckling. Such 3D structures can be fabricated across a broad range of length scales and from various materials, including soft polymers, monocrystalline silicon, and their composites, resulting in a wide scope of achievable resonant frequencies and mechanical behaviors. Platforms designed with multistable mechanical responses and vibrationally de-coupled constituent elements offer improved bandwidth and frequency tunability. Furthermore, the resonant frequencies can be controlled through deformations of an underlying elastomeric substrate. Systematic experimental and computational studies include structures with diverse geometries, ranging from tables, cages, rings, ring-crosses, ring-disks, two-floor ribbons, flowers, umbrellas, triple-cantilever platforms, and asymmetric circular helices, to multilayer constructions. These ideas form the foundations for engineering designs that complement those supported by conventional, microelectromechanical systems, with capabilities that could be useful in systems for biosensing, energy harvesting and others.

  6. Characterization of the OPAL LiDAR under controlled obscurant conditions

    NASA Astrophysics Data System (ADS)

    Cao, Xiaoying; Church, Philip; Matheson, Justin

    2016-05-01

    Neptec Technologies' OPAL-120 3D LiDAR is optimized for obscurant penetration. The OPAL-120 uses a scanning mechanism based on the Risley prism pair. The scan patterns are created by rotating two prisms under independent motor control. The geometry and material properties of the prisms define the conical field-of-view of the sensor, which can be built to between 60 to 120 degrees. The OPAL-120 was recently evaluated using a controlled obscurant chamber capable of generating clouds of obscurants over a depth of 22m. Obscurants used in this investigation include: Arizona road dust, water fog, and fog-oil. The obscurant cloud optical densities were monitored with a transmissometer. Optical depths values ranged from an upper value of 6 and progressively decreased to 0. Targets were positioned at the back of the obscurant chamber at a distance of 60m from the LiDAR. The targets are made of a foreground array of equally spaced painted wood stripes in front of a solid background. Reflectivity contrasts were achieved with foreground/background combinations of white/white, white/black and black/white. Data analysis will be presented on the effect of optical densities on range and cross-range resolution, and accuracy. The analysis includes the combinations of all obscurant types and target reflectivity contrasts.

  7. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  8. Cross-cultural communication capabilities of U.S. military trainers: host nation perspective.

    PubMed

    Mahmood, Maysaa; Alameri, Ali; Jawad, Shakir; Alani, Yasir; Zuerlein, Scott; Nakano, Gregg; Anderson, Warner; Beadling, Charles

    2013-06-01

    A survey was conducted to assess trainee perception of the cross-cultural communication competency of U.S. military trainers and their satisfaction with the training they received. Findings from the survey show that U.S. military trainers rely significantly on local interpreters. This indicates variability in the ability of the trainers to communicate effectively with host nation partners, the variability being dependent on the capabilities of the individual interpreter. The findings illustrate the importance of providing military health personnel with training on how to work effectively with interpreters. The use of supplementary resources such as electronic translation devises when the interpreter is not capable of conveying health-related training information with the desired level of accuracy is recommended. Expanding the availability of general cultural training, which provides baseline information on local values, traditions, and customs in addition to health-specific cultural orientation, is also recommended to help military health trainers customize their training content and methods to fit the local environment. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  9. Study of Command and Control (C&C) Structures on the Employment of Collaborative Engagement Capability (CEC) on Land Systems

    DTIC Science & Technology

    2012-09-01

    especially the sophisticated sea- skimming missiles that take advantage of the earth’s spherical nature as well the “sea clutter” that obstructs...radar capabilities such as the radar scanning range and ability to filter sea clutter to detect sea- skimming missile. The longer the range and the more...sea clutter Compact, cluttered with buildings, residents Common Threats Long-range sea skimming missiles Projectiles Platform Large platform

  10. Effects of Climate Change and Urban Development on Army Training Capabilities: Firing Ranges and Maneuver Areas

    DTIC Science & Technology

    2016-08-01

    ER D C TR -1 6- 1 Integrated Climate Assessment for Army Enterprise Planning Effects of Climate Change and Urban Development on Army...ERDC TR-16-1 January 2016 Effects of Climate Change and Urban Development on Army Training Capabilities Firing Ranges and Maneuver Areas Michelle E... changes associated with climate and urban development might affect the ability of Army installa- tions to continue to conduct training on firing ranges

  11. Creation of the new industry-standard space test of laser retroreflectors for the GNSS and LAGEOS

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Delle Monache, G. O.; Currie, D. G.; Vittori, R.; Cantone, C.; Garattini, M.; Boni, A.; Martini, M.; Lops, C.; Intaglietta, N.; Tauraso, R.; Arnold, D. A.; Pearlman, M. R.; Bianco, G.; Zerbini, S.; Maiello, M.; Berardi, S.; Porcelli, L.; Alley, C. O.; McGarry, J. F.; Sciarretta, C.; Luceri, V.; Zagwodzki, T. W.

    2011-03-01

    We built a new experimental apparatus (the “Satellite/lunar laser ranging Characterization Facility”, SCF) and created a new test procedure (the SCF-Test) to characterize and model the detailed thermal behavior and the optical performance of cube corner laser retroreflectors in space for industrial and scientific applications. The primary goal of these innovative tools is to provide critical design and diagnostic capabilities for Satellites Laser Ranging (SLR) to Galileo and other GNSS (Global Navigation Satellite System) constellations. The capability will allow us to optimize the design of GNSS laser retroreflector payloads to maximize ranging efficiency, to improve signal-to-noise conditions in daylight and to provide pre-launch validation of retroreflector performance under laboratory-simulated space conditions. Implementation of new retroreflector designs being studied will help to improve GNSS orbits, which will then increase the accuracy, stability, and distribution of the International Terrestrial Reference Frame (ITRF), to provide better definition of the geocenter (origin) and the scale (length unit).Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of the SLR retroreflector payload under thermal conditions produced with a close-match solar simulator. The apparatus includes infrared cameras for non-invasive thermometry, thermal control and real-time movement of the payload to experimentally simulate satellite orientation on orbit with respect to both solar illumination and laser interrogation beams. These unique capabilities provide experimental validation of the space segment for SLR and Lunar Laser Ranging (LLR).We used the SCF facility and the SCF-Test to perform a comprehensive, non-invasive space characterization of older generation, back-coated retroreflectors of the GIOVE-A and -B (Galileo In-Orbit Validation Elements) and the GPS-35 and -36 designs. First, using a full GPS flight model at laser wavelengths of 532 and 632 nm, we found its “effective optical cross section” in air, under isothermal conditions, to be six times lower than the Retroreflector Standard for GNSS satellites (100 × 106 m2 at 20,000 km altitude for GPS and 180 × 106 m2 for Galileo at 23,200 km altitude), issued by the International Laser Ranging Service (ILRS). Under the simulated thermal and space conditions of the SCF, we also showed that in some space configurations the “effective optical cross section” is further reduced, by the thermal degradation of the FFDP. Using the same SCF-Test configuration on an individual GIOVE prototype cube, we measured severe thermal degradation in optical performance, which appears to be caused by the retroreflector metal coating and the non-optimized thermal conductance of the mounting.Uncoated retroreflectors with proper mounting can minimize thermal degradation and significantly increase the optical performance, and as such, are emerging as the recommended design for modern GNSS satellites. The COMPASS-M1, GLONASS-115 GNSS satellites use uncoated cubes. They provide better efficiency than those on GPS and GIOVE, including better daylight ranging performance. However, these retroreflectors were not characterized in the laboratory under space conditions prior to launch, so we have no basis to evaluate how well they were optimized for future GNSS satellites. SCF-Testing, under a non-disclosure agreement between INFN-LNF and the European Space Agency (ESA), of prototype uncoated cubes for the first four Galileo satellites to be launched (named “IOV”, In-Orbit Validation satellites) is a major step forward. An SCF-Test performed on a LAGEOS (LAser GEOdynamics Satellite) engineering model retroreflector array provided by NASA, showed the good space performance on what is now a reference ILRS payload standard. The IOV and LAGEOS measurements demonstrated the effectiveness of the SCF-Test as an LRA diagnostic, optimization and validation tool in use by NASA, ESA and ASI.

  12. Quantitative enzyme-linked immunosorbent assay for determination of polychlorinated biphenyls in environmental soil and sediment samples.

    PubMed

    Johnson, J C; Van Emon, J M

    1996-01-01

    An enzyme-linked immunosorbent assay (ELISA) for the quantitative determination of Aroclors 1242, 1248, 1254, and 1260 in soil and sediments was developed and its performance compared with that of gas chromatography (GC). The detection limits for Aroclors 1242 and 1248 in soil are 10.5 and 9 ng/g, respectively. The assay linear dynamic range is 50-1333 ng/g. Cross-reactivity of the assay with 37 structurally related potential cocontaminants in environmental soil samples was examined; none of the chlorinated anisoles, benzenes, or phenols exhibited >3% cross-reactivity, with <0.1% cross-reactivity being the norm. Soil spike recoveries of 107% and 104% were obtained for Aroclors 1242 and 1248, respectively, for a spike level of 5 mg/kg, with corresponding relative standard deviations of 14% and 17%. One hundred forty-eight environmental soil, sediment, and paper pulp samples, obtained from two EPA listed Superfund sites, were analyzed by ELISA and standard GC methods. Samples were extracted for ELISA analysis by shaking with methanol. Additional extractions of the same samples were performed either with supercritical carbon dioxide or by Soxhlet extraction with methanol. ELISA results for both the supercritical fluid and the Soxhlet extracts were in close agreement with the GC results, while the ELISA results for the methanol shake extracts were not. The data for the environmental samples demonstrated the capability of the ELISA to provide accurate results and reinforced the dependence of any detection method, including ELISA, on appropriate extraction procedures.

  13. Research at the University of Kentucky Accelerator Laboratory

    DOE PAGES

    Hicks, S. F.; Kovash, M. A.

    2017-10-26

    The Department of Physics and Astronomy at the University of Kentucky operates a 7-MV CN Van de Graaff accelerator that produces primary beams of protons, deuterons, and helium ions. An in-terminal pulsing and bunching system operates at 1.875 MHz and is capable of providing 1 ns beam bunches at an average current of several microamperes. Nearly all ongoing research programs involve secondary pulsed neutrons produced with gas cells containing deuterium or tritium, as well as with a variety of solid targets. Most experiments are performed at a target station positioned over a deep pit, so as to reduce the backgroundmore » created by backscattered neutrons. Here, recent experiments will be described; these include: measurements of n-p scattering total cross sections from E n = 90 to 1800 keV to determine the n-p effective range parameter; the response of the plastic scintillator BC-418 below 1 MeV to low-energy recoil protons; n-p radiative capture cross sections important for our understanding of nucleosynthesis approximately 2 minutes after the occurrence of the Big Bang; γ-ray spectroscopy following inelastic neutron scattering to study nuclear structure relevant to double-β decay and to understand the role of phonon-coupled excitations in weakly deformed nuclei; and measurements of neutron elastic and inelastic scattering cross sections for nuclei that are important for energy production and for our global understanding of the interaction of neutrons with matter.« less

  14. Research at the University of Kentucky Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, S. F.; Kovash, M. A.

    The Department of Physics and Astronomy at the University of Kentucky operates a 7-MV CN Van de Graaff accelerator that produces primary beams of protons, deuterons, and helium ions. An in-terminal pulsing and bunching system operates at 1.875 MHz and is capable of providing 1 ns beam bunches at an average current of several microamperes. Nearly all ongoing research programs involve secondary pulsed neutrons produced with gas cells containing deuterium or tritium, as well as with a variety of solid targets. Most experiments are performed at a target station positioned over a deep pit, so as to reduce the backgroundmore » created by backscattered neutrons. Here, recent experiments will be described; these include: measurements of n-p scattering total cross sections from E n = 90 to 1800 keV to determine the n-p effective range parameter; the response of the plastic scintillator BC-418 below 1 MeV to low-energy recoil protons; n-p radiative capture cross sections important for our understanding of nucleosynthesis approximately 2 minutes after the occurrence of the Big Bang; γ-ray spectroscopy following inelastic neutron scattering to study nuclear structure relevant to double-β decay and to understand the role of phonon-coupled excitations in weakly deformed nuclei; and measurements of neutron elastic and inelastic scattering cross sections for nuclei that are important for energy production and for our global understanding of the interaction of neutrons with matter.« less

  15. Multiple scattering effects on the Linear Depolarization Ratio (LDR) measured during CaPE by a Ka-band air-borne radar

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Meneghini, Robert

    1993-01-01

    Air-borne radar measurements of thunderstorms were made as part of the CaPE (Convection and Precipitation/Electrification) experiment in Florida in July 1991. The radar has two channels, X-band (10 GHz) and Ka-band (34.5 GHz), and is capable of measuring cross-polarized returns as well as co-polarized returns. In stratiform rain, the cross-polarized components can be observed only at the bright band region and from the surface reflection. The linear depolarization ratios (LDR's) measured at X-band and Ka-band at the bright band are nearly equal. In convective rain, however, the LDR in Ka-band often exceeds the X-band LDR by several dB, and sometimes by more than 10 dB, reaching LDR values of up to -5 dB over heavy convective rain. For randomly oriented hydrometeors, such high LDR values cannot be explained by single scattering from non-spherical scattering particles alone. Because the LDR by single backscatter depends weakly on the wavelength, the difference between the Ka-band and X-band LDR's suggests that multiple scattering effects prevail in the Ka-band LDR. In order to test this inference, the magnitude of the cross-polarized component created by double scattering was calculated using the parameters of the airborne radar, which for both frequencies has beamwidths of 5.1 degrees and pulse widths of 0.5 microsecond. Uniform rain beyond the range of 3 km is assumed.

  16. A comparison of two embedded programming techniques for high rep rate coherent Doppler lidars

    NASA Astrophysics Data System (ADS)

    Arend, Mark F.; Abdelazim, Sameh; Lopez, Miguel; Moshary, Fred

    2013-05-01

    Two FPGA embedded programming approaches are considered and compared for a 20 kHz pulse repetition rate coherent Doppler lidar system which acquires return signals at 400 Msamples/second and operates with signal to noise ratios as low as -20 dB. In the first approach, the acquired return signal is gated in time and the square modulus of the fast Fourier transform is accumulated for each of the range gates, producing a series of power spectra as a function of range. Wind speed decisions based on numerical estimators can then be made after transferring the range gated accumulated power spectra to a host computer, enabling the line of sight wind speed as a function of range gate to be calculated and stored for additional processing. In the second FPGA approach, a digital IQ demodulator and down sampler reduces the data flow requirements so that an autocorrelation matrix representing a pre-selected number of lags can be accumulated, allowing for the process of range gating to be explored on the host computer. The added feature of the second approach is that it allows for an additional capability to adjust the range gate period dynamically as the state of the atmospheric boundary layer (e.g. backscatter coefficient and stability condition) changes. A simple manual beam scanning technique is used to calculate the wind field vector which is graphically displayed on time-height cross section plots. A comparison to other observed and modeled information is presented suggesting the usefulness for the characterization of microscale meteorology.

  17. All-digital full waveform recording photon counting flash lidar

    NASA Astrophysics Data System (ADS)

    Grund, Christian J.; Harwit, Alex

    2010-08-01

    Current generation analog and photon counting flash lidar approaches suffer from limitation in waveform depth, dynamic range, sensitivity, false alarm rates, optical acceptance angle (f/#), optical and electronic cross talk, and pixel density. To address these issues Ball Aerospace is developing a new approach to flash lidar that employs direct coupling of a photocathode and microchannel plate front end to a high-speed, pipelined, all-digital Read Out Integrated Circuit (ROIC) to achieve photon-counting temporal waveform capture in each pixel on each laser return pulse. A unique characteristic is the absence of performance-limiting analog or mixed signal components. When implemented in 65nm CMOS technology, the Ball Intensified Imaging Photon Counting (I2PC) flash lidar FPA technology can record up to 300 photon arrivals in each pixel with 100 ps resolution on each photon return, with up to 6000 range bins in each pixel. The architecture supports near 100% fill factor and fast optical system designs (f/#<1), and array sizes to 3000×3000 pixels. Compared to existing technologies, >60 dB ultimate dynamic range improvement, and >104 reductions in false alarm rates are anticipated, while achieving single photon range precision better than 1cm. I2PC significantly extends long-range and low-power hard target imaging capabilities useful for autonomous hazard avoidance (ALHAT), navigation, imaging vibrometry, and inspection applications, and enables scannerless 3D imaging for distributed target applications such as range-resolved atmospheric remote sensing, vegetation canopies, and camouflage penetration from terrestrial, airborne, GEO, and LEO platforms. We discuss the I2PC architecture, development status, anticipated performance advantages, and limitations.

  18. Archival Research Capabilities of the WFIRST Data Set

    NASA Astrophysics Data System (ADS)

    Szalay, Alexander

    WFIRST's unique combination of a large (~0.3 deg2) field of view and HST-like angular resolution and sensitivity in the near infrared will produce spectacular new insights into the origins of stars, galaxies, and structure in the cosmos. We propose a WFIRST Archive Science Investigation Team (SIT-F) to define an archival, query, and analysis system that will enable scientific discovery in all relevant areas of astrophysics and maximize the overall scientific yield of the mission. Guest investigators (GIs), guest observers (GOs), the WFIRST SIT's, WFIRST Science Center(s), and astronomers using data from other surveys will all benefit from the extensive, easy, fast and reliable use of the WFIRST archives. We propose to develop the science requirements for the archive and work to understand its interactions with other elements of the WFIRST mission. To accomplish this, we will conduct case studies to derive performance requirements for the WFIRST archives. These will clarify what is needed for GIs to make important scientific discoveries across a broad range of astrophysics. While other SITs will primarily address the science capabilities of the WFIRST instruments, we will look ahead to the science enabling capabilities of the WFIRST archives. We will demonstrate how the archive can be optimized to take advantage of the extraordinary science capabilities of the WFIRST instruments as well as major space and ground observatories to maximize the science return of the mission. We will use the "20 queries" methodology, formulated by Jim Gray, to cover the most important science analysis patterns and use these to establish the performance required of the WFIRST archive. The case studies will be centered on studying galaxy evolution as a function of cosmic time, environment and intrinsic properties. The analyses will require massive angular and spatial cross correlations between key galaxy properties to search for new fundamental scaling relations that may only become apparent when exploring a database of 108 galaxies with multiband photometry and grism spectroscopy. The case studies will require (i) the creation of a unified WFIRST object catalog consisting of data cross-matched to external catalogs, (ii) an easy-to-access, scalable database, utilizing the latest data discovery and querying techniques, (iii) in situ analyses of large and/or complex data, (iv) identification of links to supporting data and enabling queries spanning WFIRST and other databases, (v) combining simulations with modeling software. To accomplish these objectives, we will prototype a system capable of executing complex user-defined scripts including database access to a shared computational facility with tools for joining WFIRST to other surveys, also enabling comparisons to physical models. Our organizational plan divides the work into several general areas where our team members have specific expertise: (a) apply the 20 queries methodology to derive performance and functionality requirements, (b) develop a practical interactive server-side query system, built on our SDSS experience, (c) apply advanced cross-matching techniques, (d) create mock WFIRST imaging and grism data, (e) develop high level cross correlation tools, (e) optimize scripting systems using high-level languages (iPython), (f) perform close integration of cosmological simulations with observational data, (g) apply advanced machine learning techniques. Our efforts will be coordinated with the WFIRST Science Center (WSC), the other SITs, and the broader community in a manner consistent with direction and review of the Project Office. We will publish our results as milestones are reached, and issue progress reports on a regular basis. We will represent SIT-F at all relevant meetings including meetings of the other SITs (SITs A-E), and participate in "Big Data" conferences to interact with others in the field and learn new techniques that might be applicable to WFIRST.

  19. Six-Message Electromechanical Display System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2007-01-01

    A proposed electromechanical display system would be capable of presenting as many as six distinct messages. In the proposed system, each display element would include a cylinder having a regular hexagonal cross section.

  20. Optimization of Photoactive Protein Z for Fast and Efficient Site-Specific Conjugation of Native IgG

    PubMed Central

    2015-01-01

    Antibody conjugates have been used in a variety of applications from immunoassays to drug conjugates. However, it is becoming increasingly clear that in order to maximize an antibody’s antigen binding ability and to produce homogeneous antibody-conjugates, the conjugated molecule should be attached onto IgG site-specifically. We previously developed a facile method for the site-specific modification of full length, native IgGs by engineering a recombinant Protein Z that forms a covalent link to the Fc domain of IgG upon exposure to long wavelength UV light. To further improve the efficiency of Protein Z production and IgG conjugation, we constructed a panel of 13 different Protein Z variants with the UV-active amino acid benzoylphenylalanine (BPA) in different locations. By using this panel of Protein Z to cross-link a range of IgGs from different hosts, including human, mouse, and rat, we discovered two previously unknown Protein Z variants, L17BPA and K35BPA, that are capable of cross-linking many commonly used IgG isotypes with efficiencies ranging from 60% to 95% after only 1 h of UV exposure. When compared to existing site-specific methods, which often require cloning or enzymatic reactions, the Protein Z-based method described here, utilizing the L17BPA, K35BPA, and the previously described Q32BPA variants, represents a vastly more accessible and efficient approach that is compatible with nearly all native IgGs, thus making site-specific conjugation more accessible to the general research community. PMID:25121619

  1. Optimization of photoactive protein Z for fast and efficient site-specific conjugation of native IgG.

    PubMed

    Hui, James Z; Tsourkas, Andrew

    2014-09-17

    Antibody conjugates have been used in a variety of applications from immunoassays to drug conjugates. However, it is becoming increasingly clear that in order to maximize an antibody's antigen binding ability and to produce homogeneous antibody-conjugates, the conjugated molecule should be attached onto IgG site-specifically. We previously developed a facile method for the site-specific modification of full length, native IgGs by engineering a recombinant Protein Z that forms a covalent link to the Fc domain of IgG upon exposure to long wavelength UV light. To further improve the efficiency of Protein Z production and IgG conjugation, we constructed a panel of 13 different Protein Z variants with the UV-active amino acid benzoylphenylalanine (BPA) in different locations. By using this panel of Protein Z to cross-link a range of IgGs from different hosts, including human, mouse, and rat, we discovered two previously unknown Protein Z variants, L17BPA and K35BPA, that are capable of cross-linking many commonly used IgG isotypes with efficiencies ranging from 60% to 95% after only 1 h of UV exposure. When compared to existing site-specific methods, which often require cloning or enzymatic reactions, the Protein Z-based method described here, utilizing the L17BPA, K35BPA, and the previously described Q32BPA variants, represents a vastly more accessible and efficient approach that is compatible with nearly all native IgGs, thus making site-specific conjugation more accessible to the general research community.

  2. The n_TOF facility: Neutron beams for challenging future measurements at CERN

    NASA Astrophysics Data System (ADS)

    Chiaveri, E.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The CERN n_TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n_TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental program and the range of possible measurements has been expanded with the construction of a second experimental area (EAR-2), located 20 m on the vertical of the n_TOF spallation target. This upgrade, which benefits from a neutron flux 30 times higher than in EAR-1, provides a substantial extension in measurement capabilities, opening the possibility to collect data on neutron cross-section of isotopes with short half-lives or available in very small amounts. This contribution will outline the main characteristics of the n_TOF facility, with special emphasis on the new experimental area. In particular, we will discuss the innovative features of the EAR-2 neutron beam that make possible to perform very challenging measurements on short-lived radioisotopes or sub-mg samples, out of reach up to now at other neutron facilities around the world. Finally, the future perspectives of the facility will be presented.

  3. Autonomous system for launch vehicle range safety

    NASA Astrophysics Data System (ADS)

    Ferrell, Bob; Haley, Sam

    2001-02-01

    The Autonomous Flight Safety System (AFSS) is a launch vehicle subsystem whose ultimate goal is an autonomous capability to assure range safety (people and valuable resources), flight personnel safety, flight assets safety (recovery of valuable vehicles and cargo), and global coverage with a dramatic simplification of range infrastructure. The AFSS is capable of determining current vehicle position and predicting the impact point with respect to flight restriction zones. Additionally, it is able to discern whether or not the launch vehicle is an immediate threat to public safety, and initiate the appropriate range safety response. These features provide for a dramatic cost reduction in range operations and improved reliability of mission success. .

  4. Short-range contacts govern the performance of industry-relevant battery cathodes

    NASA Astrophysics Data System (ADS)

    Morelly, Samantha L.; Alvarez, Nicolas J.; Tang, Maureen H.

    2018-05-01

    Fundamental understanding of how processing affects composite battery electrode structure and performance is still lacking, especially for industry-relevant electrodes with low fractions of inactive material. This work combines rheology, electronic conductivity measurements, and battery rate capability tests to prove that short-range electronic contacts are more important to cathode rate capability than either ion transport or long-range electronic conductivity. LiNi0.33Mn0.33Co0.33O2, carbon black, and polyvinylidene difluoride in 1-methyl-2-pyrrolidinone represent a typical commercial electrode with <5.5 wt% inactive material. Dry-mixing carbon black with active material decreases the relative fraction of bulk (free) carbon, as shown by small angle oscillatory shear and microscopy. More free carbon leads to a stronger gel network (more long-range particle contacts) and higher electronic conductivity of the dried films. Improvements in battery rate capability at constant electrode porosity do not correlate to electronic conductivity, but rather show an optimum fraction of free carbon. Simple comparison of rate capability in electrodes with increased total carbon loading (3 wt%) shows improvement for all fractions of free carbon. These results clearly indicate that ion transport cannot be limiting and highlight the critical importance of short-range electronic contacts for controlling battery performance.

  5. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineer Joey Mercer reviews flight paths using the UAS traffic management research platform UTM coordinator app to verify and validate flight paths.

  6. Experienced migratory songbirds do not display goal-ward orientation after release following a cross-continental displacement: an automated telemetry study.

    PubMed

    Kishkinev, Dmitry; Heyers, Dominik; Woodworth, Bradley K; Mitchell, Greg W; Hobson, Keith A; Norris, D Ryan

    2016-11-23

    The ability to navigate implies that animals have the capability to compensate for geographical displacement and return to their initial goal or target. Although some species are capable of adjusting their direction after displacement, the environmental cues used to achieve this remain elusive. Two possible cues are geomagnetic parameters (magnetic map hypothesis) or atmospheric odour-forming gradients (olfactory map hypothesis). In this study, we examined both of these hypotheses by surgically deactivating either the magnetic or olfactory sensory systems in experienced white-throated sparrows (Zonotrichia albicollis) captured in southern Ontario, Canada, during spring migration. Treated, sham-treated, and intact birds were then displaced 2,200 km west to Saskatchewan, Canada. Tracking their initial post-displacement migration using an array of automated VHF receiving towers, we found no evidence in any of the groups for compensatory directional response towards their expected breeding grounds. Our results suggest that white-throated sparrows may fall back to a simple constant-vector orientation strategy instead of performing true navigation after they have been geographically displaced to an unfamiliar area during spring migration. Such a basic strategy may be more common than currently thought in experienced migratory birds and its occurrence could be determined by habitat preferences or range size.

  7. AIRS Retrieval Validation During the EAQUATE

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Cuomo, Vincenzo; Taylor, Jonathan P.; Barnet, Christopher D.; DiGirolamo, Paolo; Pappalardo, Gelsomina; Larar, Allen M.; Liu, Xu; Newman, Stuart M.

    2006-01-01

    Atmospheric and surface thermodynamic parameters retrieved with advanced hyperspectral remote sensors of Earth observing satellites are critical for weather prediction and scientific research. The retrieval algorithms and retrieved parameters from satellite sounders must be validated to demonstrate the capability and accuracy of both observation and data processing systems. The European AQUA Thermodynamic Experiment (EAQUATE) was conducted mainly for validation of the Atmospheric InfraRed Sounder (AIRS) on the AQUA satellite, but also for assessment of validation systems of both ground-based and aircraft-based instruments which will be used for other satellite systems such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) from the NPOESS Preparatory Project and the following NPOESS series of satellites. Detailed inter-comparisons were conducted and presented using different retrieval methodologies: measurements from airborne ultraspectral Fourier transform spectrometers, aircraft in-situ instruments, dedicated dropsondes and radiosondes, and ground based Raman Lidar, as well as from the European Center for Medium range Weather Forecasting (ECMWF) modeled thermal structures. The results of this study not only illustrate the quality of the measurements and retrieval products but also demonstrate the capability of these validation systems which are put in place to validate current and future hyperspectral sounding instruments and their scientific products.

  8. A Unique, Optically Accessible Flame Tube Facility for Lean Combustor Studies

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Wey, Chowen C.; Bianco, Jean

    1995-01-01

    A facility that allows interrogation of combusting flows by advanced diagnostic methods and instrumentation has been developed at the NASA Lewis Research Center. An optically accessible flame tube combustor is described which has high temperature, pressure, and air flow capabilities. The windows in the combustor measure 3.8 cm axially by 5.1 cm radially, providing 67% optical access to the 7.6 cm x 7.6 cm cross section flow chamber. Advanced gas analysis instrumentation is available through a gas chromatography/mass spectrometer system (GC/MS), which has on-line capability for heavy hydrocarbon measurement with resolution to the parts per billion level. The instrumentation allows one to study combusting flows and combustor subcomponents, such as fuel injectors and air swirlers. Planar Laser Induced Fluorescence (PLIF) can measure unstable combustion species, which cannot be obtained with traditional gas sampling. This type of data is especially useful to combustion modellers. The optical access allows measurements to have high spatial and temporal resolution. GC/MS data and PLIF images of OH- are presented from experiments using a lean direct injection (LDI) combustor burning Jet-A fuel at inlet temperatures ranging from 810 K to 866 K, combustor pressures up to 1380 kPa, and equivalence ratios from 0.41 to 0.59.

  9. Experienced migratory songbirds do not display goal-ward orientation after release following a cross-continental displacement: an automated telemetry study

    PubMed Central

    Kishkinev, Dmitry; Heyers, Dominik; Woodworth, Bradley K.; Mitchell, Greg W.; Hobson, Keith A.; Norris, D. Ryan

    2016-01-01

    The ability to navigate implies that animals have the capability to compensate for geographical displacement and return to their initial goal or target. Although some species are capable of adjusting their direction after displacement, the environmental cues used to achieve this remain elusive. Two possible cues are geomagnetic parameters (magnetic map hypothesis) or atmospheric odour-forming gradients (olfactory map hypothesis). In this study, we examined both of these hypotheses by surgically deactivating either the magnetic or olfactory sensory systems in experienced white-throated sparrows (Zonotrichia albicollis) captured in southern Ontario, Canada, during spring migration. Treated, sham-treated, and intact birds were then displaced 2,200 km west to Saskatchewan, Canada. Tracking their initial post-displacement migration using an array of automated VHF receiving towers, we found no evidence in any of the groups for compensatory directional response towards their expected breeding grounds. Our results suggest that white-throated sparrows may fall back to a simple constant-vector orientation strategy instead of performing true navigation after they have been geographically displaced to an unfamiliar area during spring migration. Such a basic strategy may be more common than currently thought in experienced migratory birds and its occurrence could be determined by habitat preferences or range size. PMID:27876843

  10. The IBA Rhodotron: an industrial high-voltage high-powered electron beam accelerator for polymers radiation processing

    NASA Astrophysics Data System (ADS)

    Van Lancker, Marc; Herer, Arnold; Cleland, Marshall R.; Jongen, Yves; Abs, Michel

    1999-05-01

    The Rhodotron is a high-voltage, high-power electron beam accelerator based on a design concept first proposed in 1989 by J. Pottier of the French Atomic Agency, Commissariat à l'Energie Atomique (CEA). In December 1991, the Belgian particle accelerator manufacturer, Ion Beam Applications s.a. (IBA) entered into an exclusive agreement with the CEA to develop and industrialize the Rhodotron. Electron beams have long been used as the preferential method to cross-link a variety of polymers, either in their bulk state or in their final form. Used extensively in the wire and cable industry to toughen insulating jackets, electron beam-treated plastics can demonstrate improved tensile and impact strength, greater abrasion resistance, increased temperature resistance and dramatically improved fire retardation. Electron beams are used to selectively cross-link or degrade a wide range of polymers in resin pellets form. Electron beams are also used for rapid curing of advanced composites, for cross-linking of floor-heating and sanitary pipes and for cross-linking of formed plastic parts. Other applications include: in-house and contract medical device sterilization, food irradiation in both electron and X-ray modes, pulp processing, electron beam doping of semi-conductors, gemstone coloration and general irradiation research. IBA currently markets three models of the Rhodotron, all capable of 10 MeV and alternate beam energies from 3 MeV upwards. The Rhodotron models TT100, TT200 and TT300 are typically specified with guaranteed beam powers of 35, 80 and 150 kW, respectively. Founded in 1986, IBA, a spin-off of the Cyclotron Research Center at the University of Louvain (UCL) in Belgium, is a pioneer in accelerator design for industrial-scale production.

  11. Treatment of Nuclear Data Covariance Information in Sample Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiler, Laura Painton; Adams, Brian M.; Wieselquist, William

    This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on developing a sampling capability that can handle the challenges of generating samples from nuclear cross-section data. The covariance information between energy groups tends to be very ill-conditioned and thus poses a problem using traditional methods for generated correlated samples. This report outlines a method that addresses the sample generation from cross-section matrices.

  12. Can’t We All Just Get Along? Improving the Law Enforcement-Intelligence Community Relationship

    DTIC Science & Technology

    2007-06-01

    program that honored analysts, executives, authors, and agencies for exceptional intelligence writing and products. Some cross- pollination between...enforcement was primarily still reactive rather than proactive.8 There was more evidence of cross- pollination between local law enforcement and members of...capability, infrastructure, and other conventional foreign intelligence problems. Over the years, these CD analysts had little if any interaction or

  13. Crossing at the Speed of Change

    DTIC Science & Technology

    2016-06-10

    prowess. They built complicated structures and durable roads, much of which exists still today. A military force unparalleled in their time, the Romans... structures displaying their expertise and capability to could cross any obstacle at will was equally important. This was exemplified by the first recorded...constructing a bridge out of timber , complete with protective works upstream.5 Details of the bridge were found in Caesar’s personal record of his

  14. Warriors from the Sky: US Army Airborne Operational Art in Normandy

    DTIC Science & Technology

    2017-05-25

    capabilities required for conducting a cross- Channel joint forcible entry operation. This included the identification of specific missions for the airborne...cross- Channel joint forcible entry operation. This included the identification of specific missions for the airborne forces. As a result, the airborne...Operation Market Garden, Holland 1944 (HQ, 82 Airborne Division: Feb 1946), 4. Market Garden, following the invasion in Normandy, was the first

  15. Multimedia-Based Integration of Cross-Layer Techniques

    DTIC Science & Technology

    2014-06-01

    wireless networks play a critical role in net-centric warfare, including the sharing of the time-sensitive battlefield information among military nodes for...layer protocols are key enablers in effectively deploying the military wireless network. This report discusses the design of cross-layer protocols...2 1.0 INTRODUCTION 1.1 Motivation The Air Force (AF) Wireless Networks (also denoted as military networks in this report) must be capable of

  16. Building a Capabilities Network to Improve Disaster Preparation Efforts in the European Command (EUCOM) Area of Responsibility

    DTIC Science & Technology

    2012-12-01

    10) International Federation of the Red Cross and Red Crescent ...........40 (11) International Orthodox Christian Charities...International Federation of the Red Cross IOCC International Orthodox Christian Charities IRC International Rescue Committee IRT International Relief...review of the various NGOs is not without limitations. The first limitation is the examination of a fraction (25) of the NGOs that provide relief

  17. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    NASA Astrophysics Data System (ADS)

    Brandt, C.; Thakur, S. C.; Tynan, G. R.

    2016-04-01

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculations are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.

  18. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Max-Planck-Institute for Plasma Physics, Wendelsteinstr. 1, D-17491 Greifswald; Thakur, S. C.

    2016-04-15

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculationsmore » are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.« less

  19. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species

    PubMed Central

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Background: Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Material & Methods: Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Results: Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Conclusion: Cross-neutralizing activities partly correlate with the phylogenetic distance of the virus species. Cross-neutralizing activities against the species BBLV and DUVV of phylogroup 1 were demonstrated, in line with previous results of cross-neutralizing activities against ABLV and EBLV-1 and -2. Potential partial cross-neutralizing activities against more distant lyssavirus species like selected MOKV strains need further research. PMID:25483634

  20. Improvements and Extensions for Joint Polar Satellite System Algorithms

    NASA Astrophysics Data System (ADS)

    Grant, K. D.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing of the old POES system managed by NOAA. JPSS satellites carry sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is the Common Ground System (CGS), and provides command, control, and communications (C3), data processing and product delivery. CGS's data processing capability provides environmental data products (Sensor Data Records (SDRs) and Environmental Data Records (EDRs)) to the NOAA Satellite Operations Facility. The first satellite in the JPSS constellation, S-NPP, was launched in October 2011. The second satellite, JPSS-1, is scheduled for launch in January 2017. During a satellite's calibration and validation (Cal/Val) campaign, numerous algorithm updates occur. Changes identified during Cal/Val become available for implementation into the operational system for both S-NPP and JPSS-1. In addition, new capabilities, such as higher spectral and spatial resolution, will be exercised on JPSS-1. This paper will describe changes to current algorithms and products as a result of S-NPP Cal/Val and related initiatives for improved capabilities. Improvements include Cross Track Infrared Sounder high spectral processing, extended spectral and spatial ranges for Ozone Mapping and Profiler Suite ozone Total Column and Nadir Profiles, and updates to Vegetation Index, Snow Cover, Active Fires, Suspended Matter, and Ocean Color. Updates will include Sea Surface Temperature, Cloud Mask, Cloud Properties, and other improvements.

  1. Relationship between quality improvement processes and clinical performance.

    PubMed

    Damberg, Cheryl L; Shortell, Stephen M; Raube, Kristiana; Gillies, Robin R; Rittenhouse, Diane; McCurdy, Rodney K; Casalino, Lawrence P; Adams, John

    2010-08-01

    To examine the association between performance on clinical process measures and intermediate outcomes and the use of chronic care management processes (CMPs), electronic medical record (EMR) capabilities, and participation in external quality improvement (QI) initiatives. Cross-sectional analysis of linked 2006 clinical performance scores from the Integrated Healthcare Association's pay-for-performance program and survey data from the 2nd National Study of Physician Organizations among 108 California physician organizations (POs). Controlling for differences in PO size, organization type (medical group or independent practice association), and Medicaid revenue, we used ordinary least squares regression analysis to examine the association between the use of CMPs, EMR capabilities, and external QI initiatives and performance on the following 3 clinical composite measures: diabetes management, processes of care, and intermediate outcomes (diabetes and cardiovascular). Greater use of CMPs was significantly associated with clinical performance: among POs using more than 5 CMPs, we observed a 3.2-point higher diabetes management score on a performance scale with scores ranging from 0 to 100 (P <.001), while for each 1.0-point increase on the CMP index, we observed a 1.0-point gain in intermediate outcomes (P <.001). Participation in external QI initiatives was positively associated with improved delivery of clinical processes of care: a 1.0-point increase on the QI index translated into a 1.4-point gain in processes-of-care performance (P = .02). No relationship was observed between EMR capabilities and performance. Greater investments in CMPs and QI interventions may help POs raise clinical performance and achieve success under performance-based accountability schemes.

  2. JPL self pulsed laser surface measurement system development. [large space deployed antenna structures

    NASA Technical Reports Server (NTRS)

    Berdahl, M.

    1980-01-01

    The use of a self pulsed laser system for accurately describing the surface shape of large space deployed antenna structures was evaluated. Tests with a breadboard system verified functional operation with short time resolution on the order of .2 mm, nonambiguous ranging, and a maximum range capability on the order of 150 m. The projected capability of the system is resolution of less than .1 mm over a reasonable time period and a range extension to over 300 m.

  3. Microchannel plate detector technology potential for LUVOIR and HabEx

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Schindhelm, E. R.; Harwit, A.; Fleming, B. T.; France, K. C.; Green, J. C.; McCandliss, S. R.; Harris, W. M.

    2017-08-01

    Microchannel plate (MCP) detectors have been the detector of choice for ultraviolet (UV) instruments onboard many NASA missions. These detectors have many advantages, including high spatial resolution (<20 μm), photon counting, radiation hardness, large formats (up to 20 cm), and ability for curved focal plane matching. Novel borosilicate glass MCPs with atomic layer deposition combine extremely low backgrounds, high strength, and tunable secondary electron yield. GaN and combinations of bialkali/alkali halide photocathodes show promise for broadband, higher quantum efficiency. Cross-strip anodes combined with compact ASIC readout electronics enable high spatial resolution over large formats with high dynamic range. The technology readiness levels of these technologies are each being advanced through research grants for laboratory testing and rocket flights. Combining these capabilities would be ideal for UV instruments onboard the Large UV/Optical/IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HABEX) concepts currently under study for NASA's Astrophysics Decadal Survey.

  4. Tunable CW diode-pumped Tm,Ho:YLiF4 laser operating at or near room temperature

    NASA Technical Reports Server (NTRS)

    Mcguckin, Brendan T. (Inventor); Menzies, Robert T. (Inventor)

    1995-01-01

    A conversion efficiency of 42% and slope efficiency of 60% relative to absorbed pump power are obtained from a continuous wave diode-pumped Tm,Ho:YLiF4 laser at 2 microns with output power of 84 mW at a crystal temperature of 275 K. The emission spectrum is etalon tunable over a range of7 nm (16.3/cm) centered on 2.067 microns with fine tuning capability of the transition frequency with crystal temperature at a measured rate of -0.03/(cm)K. The effective emission cross-section is measured to be 5 x 10(exp -21) cm squared. These and other aspects of the laser performance are disclosed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications. Single frequency output and frequency stabilization are achieved using an intracavity etalon in conjunction with an external reference etalon.

  5. A regional assessment of information technology sophistication in Missouri nursing homes.

    PubMed

    Alexander, Gregory L; Madsen, Richard; Wakefield, Douglas

    2010-08-01

    To provide a state profile of information technology (IT) sophistication in Missouri nursing homes. Primary survey data were collected from December 2006 to August 2007. A descriptive, exploratory cross-sectional design was used to investigate dimensions of IT sophistication (technological, functional, and integration) related to resident care, clinical support, and administrative processes. Each dimension was used to describe the clinical domains and demographics (ownership, regional location, and bed size). The final sample included 185 nursing homes. A wide range of IT sophistication is being used in administrative and resident care management processes, but very little in clinical support activities. Evidence suggests nursing homes in Missouri are expanding use of IT beyond traditional administrative and billing applications to patient care and clinical applications. This trend is important to provide support for capabilities which have been implemented to achieve national initiatives for meaningful use of IT in health care settings.

  6. Solid state instrumentation concepts for earth resource observation

    NASA Technical Reports Server (NTRS)

    Richard, H. L.

    1982-01-01

    Late in 1980, specifications were prepared for detail design definition of a six band solid state multispectral instrument having three visible (VIS), one near infrared (NIR), and two short wave infrared (SWIR) bands. This instrument concept, known as the Multispectral Linear Array (MLA), also offered increased spatial resolution, on board gain and offset correction, and additional operational modes which would allow for cross track and stereoscopic viewing as well as a multialtitude operational capability. A description is presented of a summary of some of the salient features of four different MLA design concepts, as developed by four American companies. The designs ranged from the use of multiple refractive telescopes utilizing three groups of focal plane detectors electronic correlation processing for achieving spatial registration, and incorporating palladium silicide (PdSi) SWIR detectors, to a four-mirror all-reflective telecentric system utilizing a beam splitter for spatial registration.

  7. Bistetrazine-cyanines as double-clicking fluorogenic two-point binder or crosslinker probes.

    PubMed

    Kormos, Attila; Koehler, Christine; Fodor, Eszter; Rutkai, Zsófia; Martin, Maddison; Mező, Gábor; Lemke, Edward; Kele, Péter

    2018-04-20

    Fluorogenic probes are capable of minimizing background fluorescence of unreacted and non-specifically adsorbed reagents. The preceding years have brought substantial developments in the design and synthesis of bioorthogonally applicable fluorogenic systems mainly based on the quenching effects of azide and tetrazine moieties. The modulation power exerted by these bioorthogonal motifs typically becomes less efficient on more conjugated systems, i.e. on probes with red-shifted emission wavelength. In order to reach efficient quenching, i.e. fluorogenicity even in the red range of the spectrum, We present the synthesis, fluorogenic and conjugation characterization of bistetrazine-cyanine probes with emission maxima between 600-620 nm. The probes can bind to genetically altered proteins harboring an 11-amino acid peptide tag with two appending cyclooctyne motifs. Moreover, we also demonstrate the use of these bistetrazines as fluorogenic, covalent cross-linkers between monocyclooctynylated proteins. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Single-shot ultrafast tomographic imaging by spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Matlis, N. H.; Axley, A.; Leemans, W. P.

    2012-10-01

    Computed tomography has profoundly impacted science, medicine and technology by using projection measurements scanned over multiple angles to permit cross-sectional imaging of an object. The application of computed tomography to moving or dynamically varying objects, however, has been limited by the temporal resolution of the technique, which is set by the time required to complete the scan. For objects that vary on ultrafast timescales, traditional scanning methods are not an option. Here we present a non-scanning method capable of resolving structure on femtosecond timescales by using spectral multiplexing of a single laser beam to perform tomographic imaging over a continuous range of angles simultaneously. We use this technique to demonstrate the first single-shot ultrafast computed tomography reconstructions and obtain previously inaccessible structure and position information for laser-induced plasma filaments. This development enables real-time tomographic imaging for ultrafast science, and offers a potential solution to the challenging problem of imaging through scattering surfaces.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, Adam

    Within the 3 year POP we propose to continue to test and further develop the fission spectrometers, to do development tests and full data acquisition run at the national laboratory neutron beam facilities, to measure correlated fission fragment yields at low neutron energies with 235 U fission targets, and make these data available to the nuclear community. The spectrometer development will be both on the university based r\\prototype and on the National Laboratory Spectrometer, and measurements will be performed with both. Over the longer time frame of the collaboration, we will take data over a range of low energies, andmore » use other fission targets available to the laboratory. We will gather energy specific fragment distributions and reaction cross sections. We will further develop the data acquisition capabilities to take correlated fission fragment'gamma ray/neurton data, all on an event-by-event basis. This really is an enabling technology.« less

  10. Reagent-Free Programming of Shape-Memory Behavior in Gelatin by Electron Beams: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Riedel, Stefanie; Mayr, Stefan G.

    2018-02-01

    Recent years have seen a paradigm shift in biomaterials toward stimuli-responsive switchable systems that actively interact with their environment. This work demonstrates how to turn the ubiquitous off-the-shelf material gelatin into such a smart biomaterial. This is achieved by realizing the shape-memory effect, viz., a temperature-induced transition from a secondary into a primary shape that has been programmed in the first place merely by exposure to energetic electrons without addition of potentially hazardous cross-linkers. While this scenario is experimentally quantified for exemplary actuators, a theoretical framework capable of unraveling the molecular foundations and predicting experiments is also presented. It particularly employs molecular dynamics modeling based on force fields that are also derived within this work. Implementing this functionality into a highly accepted material, these findings open an avenue for large-scale application in a broad range of areas.

  11. Elastic modulus measurements at variable temperature: Validation of atomic force microscopy techniques

    NASA Astrophysics Data System (ADS)

    Natali, Marco; Reggente, Melania; Passeri, Daniele; Rossi, Marco

    2016-06-01

    The development of polymer-based nanocomposites to be used in critical thermal environments requires the characterization of their mechanical properties, which are related to their chemical composition, size, morphology and operating temperature. Atomic force microscopy (AFM) has been proven to be a useful tool to develop techniques for the mechanical characterization of these materials, thanks to its nanometer lateral resolution and to the capability of exerting ultra-low loads, down to the piconewton range. In this work, we demonstrate two techniques, one quasi-static, i.e., AFM-based indentation (I-AFM), and one dynamic, i.e., contact resonance AFM (CR-AFM), for the mechanical characterization of compliant materials at variable temperature. A cross-validation of I-AFM and CR-AFM has been performed by comparing the results obtained on two reference materials, i.e., low-density polyethylene (LDPE) and polycarbonate (PC), which demonstrated the accuracy of the techniques.

  12. Container weld identification using portable laser scanners

    NASA Astrophysics Data System (ADS)

    Taddei, Pierluigi; Boström, Gunnar; Puig, David; Kravtchenko, Victor; Sequeira, Vítor

    2015-03-01

    Identification and integrity verification of sealed containers for security applications can be obtained by employing noninvasive portable optical systems. We present a portable laser range imaging system capable of identifying welds, a byproduct of a container's physical sealing, with micrometer accuracy. It is based on the assumption that each weld has a unique three-dimensional (3-D) structure which cannot be copied or forged. We process the 3-D surface to generate a normalized depth map which is invariant to mechanical alignment errors and that is used to build compact signatures representing the weld. A weld is identified by performing cross correlations of its signature against a set of known signatures. The system has been tested on realistic datasets, containing hundreds of welds, yielding no false positives or false negatives and thus showing the robustness of the system and the validity of the chosen signature.

  13. Validation of the theoretical domains framework for use in behaviour change and implementation research.

    PubMed

    Cane, James; O'Connor, Denise; Michie, Susan

    2012-04-24

    An integrative theoretical framework, developed for cross-disciplinary implementation and other behaviour change research, has been applied across a wide range of clinical situations. This study tests the validity of this framework. Validity was investigated by behavioural experts sorting 112 unique theoretical constructs using closed and open sort tasks. The extent of replication was tested by Discriminant Content Validation and Fuzzy Cluster Analysis. There was good support for a refinement of the framework comprising 14 domains of theoretical constructs (average silhouette value 0.29): 'Knowledge', 'Skills', 'Social/Professional Role and Identity', 'Beliefs about Capabilities', 'Optimism', 'Beliefs about Consequences', 'Reinforcement', 'Intentions', 'Goals', 'Memory, Attention and Decision Processes', 'Environmental Context and Resources', 'Social Influences', 'Emotions', and 'Behavioural Regulation'. The refined Theoretical Domains Framework has a strengthened empirical base and provides a method for theoretically assessing implementation problems, as well as professional and other health-related behaviours as a basis for intervention development.

  14. Effect of present technology on airship capabilities

    NASA Technical Reports Server (NTRS)

    Madden, R. T.

    1975-01-01

    The effect is presented of updating past airship designs using current materials and propulsion systems to determine new airship performance and productivity capabilities. New materials and power plants permit reductions in the empty weights and increases in the useful load capabilities of past airship designs. The increased useful load capability results in increased productivity for a given range, i.e., either increased payload at the same operating speed or increased operating speed for the same payload weight or combinations of both. Estimated investment costs and operating costs are presented to indicate the significant cost parameters in estimating transportation costs of payloads in cents per ton mile. Investment costs are presented considering production lots of 1, 10 and 100 units. Operating costs are presented considering flight speeds and ranges.

  15. Progress on China nuclear data processing code system

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Wu, Xiaofei; Ge, Zhigang; Li, Songyang; Wu, Haicheng; Wen, Lili; Wang, Wenming; Zhang, Huanyu

    2017-09-01

    China is developing the nuclear data processing code Ruler, which can be used for producing multi-group cross sections and related quantities from evaluated nuclear data in the ENDF format [1]. The Ruler includes modules for reconstructing cross sections in all energy range, generating Doppler-broadened cross sections for given temperature, producing effective self-shielded cross sections in unresolved energy range, calculating scattering cross sections in thermal energy range, generating group cross sections and matrices, preparing WIMS-D format data files for the reactor physics code WIMS-D [2]. Programming language of the Ruler is Fortran-90. The Ruler is tested for 32-bit computers with Windows-XP and Linux operating systems. The verification of Ruler has been performed by comparison with calculation results obtained by the NJOY99 [3] processing code. The validation of Ruler has been performed by using WIMSD5B code.

  16. ExoCross: Spectra from molecular line lists

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Al-Refaie, Ahmed; Tennyson, Jonathan

    2018-03-01

    ExoCross generates spectra and thermodynamic properties from molecular line lists in ExoMol, HITRAN, or several other formats. The code is parallelized and also shows a high degree of vectorization; it works with line profiles such as Doppler, Lorentzian and Voigt and supports several broadening schemes. ExoCross is also capable of working with the recently proposed method of super-lines. It supports calculations of lifetimes, cooling functions, specific heats and other properties. ExoCross converts between different formats, such as HITRAN, ExoMol and Phoenix, and simulates non-LTE spectra using a simple two-temperature approach. Different electronic, vibronic or vibrational bands can be simulated separately using an efficient filtering scheme based on the quantum numbers.

  17. The Economics and Psychology of Inequality and Human Development*

    PubMed Central

    Cunha, Flavio; Heckman, James J.

    2009-01-01

    Recent research on the economics of human development deepens understanding of the origins of inequality and excellence. It draws on and contributes to personality psychology and the psychology of human development. Inequalities in family environments and investments in children are substantial. They causally affect the development of capabilities. Both cognitive and noncognitive capabilities determine success in life but to varying degrees for different outcomes. An empirically determined technology of capability formation reveals that capabilities are self-productive and cross-fertilizing and can be enhanced by investment. Investments in capabilities are relatively more productive at some stages of a child’s life cycle than others. Optimal child investment strategies differ depending on target outcomes of interest and on the nature of adversity in a child’s early years. For some configurations of early disadvantage and for some desired outcomes, it is efficient to invest relatively more in the later years of childhood than in the early years. PMID:20209045

  18. Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System

    NASA Technical Reports Server (NTRS)

    West, Tristram O.; Brown, Molly E.; Duren, Riley M.; Ogle, Stephen M.; Moss, Richard H.

    2013-01-01

    Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify capabilities of a carbon monitoring system and the system components needed to develop the capabilities. Capabilities that enable the effective application of a carbon monitoring system for monitoring and management purposes may include: reconciling carbon stocks and fluxes, developing consistency across spatial and temporal scales, tracking horizontal movement of carbon, attribution of emissions to originating sources, cross-sectoral accounting, uncertainty quantification, redundancy and policy relevance. Focused research is needed to integrate these capabilities for sustained estimates of carbon stocks and fluxes. Additionally, if monitoring is intended to inform management decisions, management priorities should be considered prior to development of a monitoring system.

  19. The Cosmic Dust Analyzer for Cassini

    NASA Technical Reports Server (NTRS)

    Bradley, James G.; Gruen, Eberhard; Srama, Ralf

    1996-01-01

    The Cosmic Dust Analyzer (CDA) is designed to characterize the dust environment in interplanetary space, in the Jovian and in the Saturnian systems. The instrument consists of two major components, the Dust Analyzer (DA) and the High Rate Detector (HRD). The DA has a large aperture to provide a large cross section for detection in low flux environments. The DA has the capability of determining dust particle mass, velocity, flight direction, charge, and chemical composition. The chemical composition is determined by the Chemical Analyzer system based on a time-of-flight mass spectrometer. The DA is capable of making full measurements up to one impact/second. The HRD contains two smaller PVDF detectors and electronics designed to characterize dust particle masses at impact rates up to 10(exp 4) impacts/second. These high impact rates are expected during Saturn ring, plane crossings.

  20. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  1. 33 CFR 164.37 - Equipment: Vessels of 10,000 gross tons or more.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to the radar system under § 164.35(a), a second marine radar system that operates independently of... subject to 46 U.S.C. 3708, the dual radar system required by this part must have a short range capability and a long range capability; and each radar must have true north features consisting of a display that...

  2. 33 CFR 164.37 - Equipment: Vessels of 10,000 gross tons or more.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to the radar system under § 164.35(a), a second marine radar system that operates independently of... subject to 46 U.S.C. 3708, the dual radar system required by this part must have a short range capability and a long range capability; and each radar must have true north features consisting of a display that...

  3. 33 CFR 164.37 - Equipment: Vessels of 10,000 gross tons or more.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to the radar system under § 164.35(a), a second marine radar system that operates independently of... subject to 46 U.S.C. 3708, the dual radar system required by this part must have a short range capability and a long range capability; and each radar must have true north features consisting of a display that...

  4. 33 CFR 164.37 - Equipment: Vessels of 10,000 gross tons or more.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to the radar system under § 164.35(a), a second marine radar system that operates independently of... subject to 46 U.S.C. 3708, the dual radar system required by this part must have a short range capability and a long range capability; and each radar must have true north features consisting of a display that...

  5. 33 CFR 164.37 - Equipment: Vessels of 10,000 gross tons or more.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to the radar system under § 164.35(a), a second marine radar system that operates independently of... subject to 46 U.S.C. 3708, the dual radar system required by this part must have a short range capability and a long range capability; and each radar must have true north features consisting of a display that...

  6. Long-range correlation and market segmentation in bond market

    NASA Astrophysics Data System (ADS)

    Wang, Zhongxing; Yan, Yan; Chen, Xiaosong

    2017-09-01

    This paper investigates the long-range auto-correlations and cross-correlations in bond market. Based on Detrended Moving Average (DMA) method, empirical results present a clear evidence of long-range persistence that exists in one year scale. The degree of long-range correlation related to maturities has an upward tendency with a peak in short term. These findings confirm the expectations of fractal market hypothesis (FMH). Furthermore, we have developed a method based on a complex network to study the long-range cross-correlation structure and applied it to our data, and found a clear pattern of market segmentation in the long run. We also detected the nature of long-range correlation in the sub-period 2007-2012 and 2011-2016. The result from our research shows that long-range auto-correlations are decreasing in the recent years while long-range cross-correlations are strengthening.

  7. Cross-Linguistic Differences in Bilinguals' Fundamental Frequency Ranges

    ERIC Educational Resources Information Center

    Ordin, Mikhail; Mennen, Ineke

    2017-01-01

    Purpose: We investigated cross-linguistic differences in fundamental frequency range (FFR) in Welsh-English bilingual speech. This is the first study that reports gender-specific behavior in switching FFRs across languages in bilingual speech. Method: FFR was conceptualized as a behavioral pattern using measures of span (range of fundamental…

  8. Target Detection Routine (TADER). User’s Guide.

    DTIC Science & Technology

    1987-09-01

    o System range capability subset (one record - omitted for standoff SLAR and penetrating system) o System inherent detection probability subset ( IELT ...records, i.e., one per element type) * System capability modifier subset/A=1, E=1 ( IELT records) o System capability modifier subset/A=1, E=2 ( IELT ...records) s System capability modifier subset/A=2, E=1 ( IELT records) o System capability modifier subset/A=2, E=2 ( IELT records) Unit Data Set (one set

  9. Supersonic Wind Tunnel Capabilities Expanded Into Subsonic Region

    NASA Technical Reports Server (NTRS)

    Roeder, James W., Jr.

    1997-01-01

    The operating envelope of the Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) at the NASA Lewis Research Center was recently expanded to include operation at subsonic test section speeds. This new capability generates test section air speeds ranging from Mach 0.05 to 0.35 (32 to 240 kn). Most of the expansion in air speed range was obtained by running the tunnel's main compressor at much lower speeds than ever before. The compressor drive system, consisting of four large electric motors, was run with only one or two motors energized to obtain the lower compressor speed range. This new capability makes the 10x10 SWT more versatile and gives U.S. researchers an enhanced ability to perform subsonic propulsion and aerodynamic testing.

  10. Tumbleweed: A New Paradigm for Surveying the Surface of Mars for In-Situ Resources

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Behar, A. E.; Jones, J. A.; Carsey, F.; Hajos, G. A.; Flick, J. J.; Antol, J.

    2004-01-01

    Inflatable and rigid Tumbleweeds are wind-propelled long-range vehicles based on well-developed and field tested technology. Different Tumbleweed configurations can provide the capability to operate in varying terrains and accommodate a wide range of instrument packages making them suitable for autonomous surveys for in-situ natural resources. Tumbleweeds are lightweight and relatively inexpensive, making them very attractive for multiple deployments or piggy-backing on larger missions. Modeling and testing have shown that a 6 meter diameter Tumbleweed is capable of climbing 25 degree hills, traveling over 1 meter diameter boulders, and ranging over a thousand kilometers. Tumble-weeds have a potential payload capability of about 10 kg with approximately 10-20 Watts of power. Stopping for measurements can be accomplished using partial deflation or other braking mechanisms.

  11. High voltage capability electrical coils insulated with materials containing SF.sub.6 gas

    DOEpatents

    Lanoue, Thomas J.; Zeise, Clarence L.; Wagenaar, Loren; Westervelt, Dean C.

    1988-01-01

    A coil is made having a plurality of layers of adjacent metal conductor windings subject to voltage stress, where the windings have insulation therebetween containing a small number of minute disposed throughout its cross-section, where the voids are voids filled with SF.sub.6 gas to substitute for air or other gaseous materials in from about 60% to about 95% of the cross-sectional void volume in the insulation, thus incorporating an amount of SF.sub.6 gas in the cross-section of the insulation effective to substantially increase corona inception voltages.

  12. Finite element analysis of a composite crash box subjected to low velocity impact

    NASA Astrophysics Data System (ADS)

    Shaik Dawood, M. S. I.; Ghazilan, A. L. Ahmad; Shah, Q. H.

    2017-03-01

    In this work, finite element analyses using LS-DYNA had been carried out to investigate the energy absorption capability of a composite crash box. The analysed design incorporates grooves to the cross sectional shape and E-Glass/Epoxy as design material. The effects of groove depth, ridge lines, plane width, material properties, wall thickness and fibre orientation had been quantitatively analysed and found to significantly enhance the energy absorption capability of the crash box.

  13. Tolerance design of patient-specific range QA using the DMAIC framework in proton therapy.

    PubMed

    Rah, Jeong-Eun; Shin, Dongho; Manger, Ryan P; Kim, Tae Hyun; Oh, Do Hoon; Kim, Dae Yong; Kim, Gwe-Ya

    2018-02-01

    To implement the DMAIC (Define-Measure-Analyze-Improve-Control) can be used for customizing the patient-specific QA by designing site-specific range tolerances. The DMAIC framework (process flow diagram, cause and effect, Pareto chart, control chart, and capability analysis) were utilized to determine the steps that need focus for improving the patient-specific QA. The patient-specific range QA plans were selected according to seven treatment site groups, a total of 1437 cases. The process capability index, C pm was used to guide the tolerance design of patient site-specific range. For prostate field, our results suggested that the patient range measurements were capable at the current tolerance level of ±1 mm in clinical proton plans. For other site-specific ranges, we analyzed that the tolerance tends to be overdesigned to insufficient process capability calculated by the patient-specific QA data. The customized tolerances were calculated for treatment sites. Control charts were constructed to simulate the patient QA time before and after the new tolerances were implemented. It is found that the total simulation QA time was decreased on average of approximately 20% after establishing new site-specific range tolerances. We simulated the financial impact of this project. The QA failure for whole process in proton therapy would lead up to approximately 30% increase in total cost. DMAIC framework can be used to provide an effective QA by setting customized tolerances. When tolerance design is customized, the quality is reasonably balanced with time and cost demands. © 2017 American Association of Physicists in Medicine.

  14. Transparent oxygen and water vapor barriers for flexible electronics using semi-crystalline polymer matrix thin films

    NASA Astrophysics Data System (ADS)

    Sehgal, Akhil

    Electronic components such as organic light emitting diodes (OLED) and photo-voltaics have been of more focus with the advancement of technology. These electronics are susceptible to degradable in the presence of gases such as water vapor and oxygen. Being that these gases are constituents of the atmosphere and can be found in nearly every environment, certain protocols must take place to mitigate the issues that occur. New generation electronics are sensitive to oxidation and corrosion in the presence of extremely low concentrations of moisture and oxygen and therefore the development and improvements of gas barriers are vital for advancements in electronics technology. The improvements of appliances such as flexible solar cells and OLEDs require barriers that need to be flexible in order to achieve high longevity. The area of research has been focused on designing flexible polymer films with composite nanoparticles and cross-linking agents that have low permeability to moisture and oxygen gas. The polymers studied are in the family of methacrylates. Due to the properties of methacrylate polymers, it has been proposed that they are capable of having efficient barrier properties due to their ability to cross link and form crystalline structures with low chain mobility. The change in intensities of the FTIR peaks of different functional groups indicates the cross-linking and crystallinity of the polymer films. The UV-Vis data indicates high transparency of the films. SEM images of the films show continuous and well cured surfaces with minimal deviations, pores and defects. The addition of cross-linking agents and nanoparticles increased polymerization and cross-linking of the methacrylate polymer chains, therefore increasing inter-chain density and long range order. The incorporation of these additives increased the crystallinity of the films and by decreasing the distances and number of voids between polymer chains along with having minimal sorption sites for gases to bond to, the ability of gases such as moisture and oxygen to penetrate through the films has decreased.

  15. Next Generation Tanker: Optimizing Air Refueling Capabilities in 2030 with a Divested KC-10 Fleet

    DTIC Science & Technology

    2015-06-19

    and Acquisition of Our Next Generation Tanker (No. AFIT/ GMO /ENS/02E-15). 33 Appendix A: Advanced Air Refueling Capability Concepts Standard... advantage of advanced technologies for the purpose of increasing aircraft range. This capability could allow basing of forces and operations outside

  16. Analysis of 27 antibiotic residues in raw cow's milk and milk-based products--validation of Delvotest® T.

    PubMed

    Bion, Cindy; Beck Henzelin, Andrea; Qu, Yajuan; Pizzocri, Giuseppe; Bolzoni, Giuseppe; Buffoli, Elena

    2016-01-01

    Delvotest® T was evaluated for its capability at detecting residues of 27 antibiotics in raw cow's milk and in some dairy ingredients (skimmed and full-cream milk powders). The kit was used as a screening tool for the qualitative determination of antibiotics from different families in a single test. Results delivered by such a method are expressed as 'positive' or 'negative', referring to the claimed screening target concentration (STC). Validation was conducted according to the European Community Reference Laboratories' (CRLs) residues guidelines of 20 January 2010 and performed by two laboratories, one located in Europe and the other in Asia. Five criteria were evaluated including detection capability at STC, false-positive (FP) rate, false-negative (FN) rate, robustness and cross-reactivity using visual reading and Delvoscan®. STCs were set at or below the corresponding maximum residue limit (MRL), as fixed by European Regulation EC No. 37/2010. Four antibiotics (nafcillin, oxytetracycline, tetracycline and rifaximin) out of 27 had a false-negative rate ranging from 1.7% to 4.9%; however, it was still compliant with the CRLs' requirements. Globally, Delvotest T can be recommended for the analysis of the surveyed antibiotics in raw cow's milk, skimmed and full-cream milk powders. Additional compounds were tested such as sulfamethazine, spiramycin and erythromycin; however, detection at the corresponding MRL was not achievable and these compounds were removed from the validation. Other drugs from the sulfonamide, aminoglycoside or macrolide families not detected by the test at the MRL were not evaluated in this study. Regarding the reliability of this rapid test to milk-based preparations, additional experiments should be performed on a larger range of compounds and samples to validate the Delvotest T in such matrices.

  17. Mountain and Cold Weather Warfighting: Critical Capability for the 21st Century

    DTIC Science & Technology

    2008-05-22

    guidance, and sage advice. His extensive and detailed understanding of mountain warfare, the former Soviet Union and Afghanistan, and his knowledge ...not brooding about the grimness of nature, they are apt to exult in their mastery of it…Most adults are excellent cross-country skiers . Even the...training apparatus had not prepared them for such conditions. The Finns moved well cross-country in the snow and cold. They were proficient skiers

  18. A probabilistic methodology for radar cross section prediction in conceptual aircraft design

    NASA Astrophysics Data System (ADS)

    Hines, Nathan Robert

    System effectiveness has increasingly become the prime metric for the evaluation of military aircraft. As such, it is the decision maker's/designer's goal to maximize system effectiveness. Industry and government research documents indicate that all future military aircraft will incorporate signature reduction as an attempt to improve system effectiveness and reduce the cost of attrition. Today's operating environments demand low observable aircraft which are able to reliably take out valuable, time critical targets. Thus it is desirable to be able to design vehicles that are balanced for increased effectiveness. Previous studies have shown that shaping of the vehicle is one of the most important contributors to radar cross section, a measure of radar signature, and must be considered from the very beginning of the design process. Radar cross section estimation should be incorporated into conceptual design to develop more capable systems. This research strives to meet these needs by developing a conceptual design tool that predicts radar cross section for parametric geometries. This tool predicts the absolute radar cross section of the vehicle as well as the impact of geometry changes, allowing for the simultaneous tradeoff of the aerodynamic, performance, and cost characteristics of the vehicle with the radar cross section. Furthermore, this tool can be linked to a campaign theater analysis code to demonstrate the changes in system and system of system effectiveness due to changes in aircraft geometry. A general methodology was developed and implemented and sample computer codes applied to prototype the proposed process. Studies utilizing this radar cross section tool were subsequently performed to demonstrate the capabilities of this method and show the impact that various inputs have on the outputs of these models. The F/A-18 aircraft configuration was chosen as a case study vehicle to perform a design space exercise and to investigate the relative impact of shaping parameters on radar cross section. Finally, two unique low observable configurations were analyzed to examine the impact of shaping for stealthiness.

  19. 75 FR 28663 - Government-Owned Inventions, Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ...- Destruct Capability. NASA Case No. GSC-15464-1: Optical Wave-Front Recovery for Active and Adaptive Imaging Control. NASA Case No. GSC-15732-1: Wind and Temperature Spectrometer with Crossed Small-Deflection Energy...

  20. Un profil de compétences pour les professeurs d'informatique de l'enseignement secondaire camerounais

    NASA Astrophysics Data System (ADS)

    Fouda Ndjodo, Marcel; Ngah, Virginie Blanche; Zobo, Erick Patrick

    2013-07-01

    A competency profile for teachers of Computer Science in Cameroonian secondary education - In 1998, the Cameroonian government decided to introduce Computer Science as a school subject. To implement this decision, it began to train teachers of Computer Science according to the same training model used for teachers of other disciplines. Despite the consensus that seems to be emerging from the scientific community regarding the need to give priority to a cross-disciplinary use of information and communication technologies (ICT) in primary and secondary education, some countries, such as Cameroon, have opted to teach Computer Science. While such a political choice might in principle appear to be inappropriate for the development of students' ICT skills, the article shows that it nevertheless introduces teachers into the system who have a predisposition to act as catalysts for the pedagogical integration of ICT. Such a development could occur provided these teachers are trained in a range of additional skills - those proposed in the article - which would enable them to contribute effectively. If this approach were implemented, sub-Saharan countries such as Cameroon would, in their Computer Science teachers, have access to human resources capable of quickly generalising the cross-disciplinary use of ICT in the education system.

  1. A New ECR Ion Source for Nuclear Astrophysics Studies

    NASA Astrophysics Data System (ADS)

    Cesaratto, John M.

    2008-10-01

    The Laboratory for Experimental Nuclear Astrophysics (LENA) is a low energy facility designed to study nuclear reactions of astrophysical interest at energies which are important for nucleosysthesis. In general, these reactions have extremely small cross sections, requiring intense beams and efficient detection systems. Recently, a new, high intensity electron-cyclotron-resonance (ECR) ion source has been constructed (based on a design by Wills et al.[1]), which represents a substantial improvement in the capabilities of LENA. Beam is extracted from an ECR plasma excited at 2.45 GHz and confined by an array of permanent magnets. It has produced H^+ beams in excess of 1 mA on target over the energy range 100 - 200 keV, which greatly increases our ability to measure small cross sections. Initial measurements will focus on the ^23Na(p,γ)^24Mg reaction, which is of interest in a variety of astrophysical scenarios. The present uncertainty in the rate of this reaction is the result of an unobserved resonance expected at Elab =144 keV, which should be detectable using beams from the new ECR source. In collaboration with Arthur E. Champagne and Thomas B. Clegg, University of North Carolina, Chapel Hill and TUNL. [3pt] [1] J. S. C. Wills et al., Rev. Sci. Instrum. 69, 65 (1999).

  2. Imaging Cajal’s neuronal avalanche: how wide-field optical imaging of the point-spread advanced the understanding of neocortical structure–function relationship

    PubMed Central

    Frostig, Ron D.; Chen-Bee, Cynthia H.; Johnson, Brett A.; Jacobs, Nathan S.

    2017-01-01

    Abstract. This review brings together a collection of studies that specifically use wide-field high-resolution mesoscopic level imaging techniques (intrinsic signal optical imaging; voltage-sensitive dye optical imaging) to image the cortical point spread (PS): the total spread of cortical activation comprising a large neuronal ensemble evoked by spatially restricted (point) stimulation of the sensory periphery (e.g., whisker, pure tone, point visual stimulation). The collective imaging findings, combined with supporting anatomical and electrophysiological findings, revealed some key aspects about the PS including its very large (radius of several mm) and relatively symmetrical spatial extent capable of crossing cytoarchitectural borders and trespassing into other cortical areas; its relationship with underlying evoked subthreshold activity and underlying anatomical system of long-range horizontal projections within gray matter, both also crossing borders; its contextual modulation and plasticity; the ability of its relative spatiotemporal profile to remain invariant to major changes in stimulation parameters; its potential role as a building block for integrative cortical activity; and its ubiquitous presence across various cortical areas and across mammalian species. Together, these findings advance our understanding about the neocortex at the mesoscopic level by underscoring that the cortical PS constitutes a fundamental motif of neocortical structure–function relationship. PMID:28630879

  3. Imaging Cajal's neuronal avalanche: how wide-field optical imaging of the point-spread advanced the understanding of neocortical structure-function relationship.

    PubMed

    Frostig, Ron D; Chen-Bee, Cynthia H; Johnson, Brett A; Jacobs, Nathan S

    2017-07-01

    This review brings together a collection of studies that specifically use wide-field high-resolution mesoscopic level imaging techniques (intrinsic signal optical imaging; voltage-sensitive dye optical imaging) to image the cortical point spread (PS): the total spread of cortical activation comprising a large neuronal ensemble evoked by spatially restricted (point) stimulation of the sensory periphery (e.g., whisker, pure tone, point visual stimulation). The collective imaging findings, combined with supporting anatomical and electrophysiological findings, revealed some key aspects about the PS including its very large (radius of several mm) and relatively symmetrical spatial extent capable of crossing cytoarchitectural borders and trespassing into other cortical areas; its relationship with underlying evoked subthreshold activity and underlying anatomical system of long-range horizontal projections within gray matter, both also crossing borders; its contextual modulation and plasticity; the ability of its relative spatiotemporal profile to remain invariant to major changes in stimulation parameters; its potential role as a building block for integrative cortical activity; and its ubiquitous presence across various cortical areas and across mammalian species. Together, these findings advance our understanding about the neocortex at the mesoscopic level by underscoring that the cortical PS constitutes a fundamental motif of neocortical structure-function relationship.

  4. Simultaneous topography-guided PRK followed by corneal collagen cross-linking for keratoconus.

    PubMed

    Kymionis, George D; Kontadakis, Georgios A; Kounis, George A; Portaliou, Dimitra M; Karavitaki, Alexandra E; Magarakis, Michael; Yoo, Sonia; Pallikaris, Ioannis G

    2009-09-01

    To present the results after simultaneous photorefractive keratectomy (PRK) followed by corneal collagen cross-linking (CXL) for progressive keratoconus. Twelve patients (14 eyes) with progressive keratoconus were prospectively treated with customized topography-guided PRK with the Pulzar Z1 (wavelength 213 nm, CustomVis) immediately followed by corneal collagen CXL with the use of riboflavin and ultraviolet A irradiation. Mean follow-up was 10.69+/-5.95 months (range: 3 to 16 months). Mean preoperative spherical equivalent refraction (SE) was -3.03+/-3.23 diopters (D) and defocus was 4.67+/-3.29 D; at last follow-up SE and defocus were statistically significantly reduced to -1.29+/-2.05 D and 3.04+/-2.53 D, respectively (P<.01). Preoperative mean (logMAR) uncorrected visual acuity was 0.99+/-0.81 and best spectacle-corrected visual acuity was 0.21+/-0.19, which improved postoperatively to 0.16+/-0.15 and 0.11+/-0.15, respectively. The mean steepest keratometry was reduced from 48.20+/-3.40 D preoperatively to 45.13+/-1.80 D at last follow-up. Simultaneous PRK followed by CXL seems to be a promising treatment capable of offering functional vision in patients with keratoconus. Copyright 2009, SLACK Incorporated.

  5. Lagrangian coherent structure assisted path planning for transoceanic autonomous underwater vehicle missions.

    PubMed

    Ramos, A G; García-Garrido, V J; Mancho, A M; Wiggins, S; Coca, J; Glenn, S; Schofield, O; Kohut, J; Aragon, D; Kerfoot, J; Haskins, T; Miles, T; Haldeman, C; Strandskov, N; Allsup, B; Jones, C; Shapiro, J

    2018-03-15

    Transoceanic Gliders are Autonomous Underwater Vehicles (AUVs) for which there is a developing and expanding range of applications in open-seas research, technology and underwater clean transport. Mature glider autonomy, operating depth (0-1000 meters) and low energy consumption without a CO 2 footprint enable evolutionary access across ocean basins. Pursuant to the first successful transatlantic glider crossing in December 2009, the Challenger Mission has opened the door to long-term, long-distance routine transoceanic AUV missions. These vehicles, which glide through the water column between 0 and 1000 meters depth, are highly sensitive to the ocean current field. Consequently, it is essential to exploit the complex space-time structure of the ocean current field in order to plan a path that optimizes scientific payoff and navigation efficiency. This letter demonstrates the capability of dynamical system theory for achieving this goal by realizing the real-time navigation strategy for the transoceanic AUV named Silbo, which is a Slocum deep-glider (0-1000 m), that crossed the North Atlantic from April 2016 to March 2017. Path planning in real time based on this approach has facilitated an impressive speed up of the AUV to unprecedented velocities resulting in major battery savings on the mission, offering the potential for routine transoceanic long duration missions.

  6. Measurements of the radar cross section and Inverse Synthetic Aperture Radar (ISAR) images of a Piper Navajo at 9.5 GHz and 49 GHz

    NASA Astrophysics Data System (ADS)

    Dinger, R.; Kinzel, G.; Lam, W.; Jones, S.

    1993-01-01

    Studies were conducted of the enhanced radar cross section (RCS) and improved inverse synthetic aperture radar (ISAR) image quality that may result at millimeter-wave (mmw) frequencies. To study the potential for mmw radar in these areas, a program was initiated in FY-90 to design and fabricate a 49.0- to 49.5-GHz stepped-frequency radar. After conducting simultaneous measurements of the RCS of an airborne Piper Navajo twin-engine aircraft at 9.0 and 49.0 GHz, the RCS at 49.0 GHz was always found to be higher than at 9.0 GHz by an amount that depended on the target aspect angle. The largest increase was 19 dB and was measured at nose-on incidence; at other angles of incidence, the increase ranged from 3 to 10 dB. The increase averaged over a 360-degree aspect-angle change was 7.2 dB. The 49.0-GHz radar has demonstrated a capability to gather well-calibrated millimeter-wave RCS data of flying targets. In addition, the successful ISAR images obtainable with short aperture time suggest that 49.0-GHz radar may have a role to play in noncooperative target identification (NCTI).

  7. Self-Healing Phase Change Salogels with Tunable Gelation Temperature.

    PubMed

    Karimineghlani, Parvin; Palanisamy, Anbazhagan; Sukhishvili, Svetlana A

    2018-05-02

    Chemically cross-linked polymer matrices have demonstrated strong potential for shape stabilization of molten phase change materials (PCM). However, they are not designed to be fillable and removable from a heat exchange module for an easy replacement with new PCM matrices and lack self-healing capability. Here, a new category of shapeable, self-healing gels, "salogels", is introduced. The salogels reversibly disassemble in a high-salinity environment of a fluid inorganic PCM [lithium nitrate trihydrate (LNH)], at a preprogrammed temperature. LNH was employed as a high latent heat PCM and simultaneously as a solvent, which supported the formation of a network of polyvinyl alcohol (PVA) chains via physical cross-linking through poly(amidoamine) dendrimers of various generations. The existence of hydrogen bonding and the importance of low-hydration state of PVA for the efficient gelation were experimentally confirmed. The thermal behavior of PCM salogels was highly reversible and repeatable during multiple heating/cooling cycles. Importantly, the gel-sol transition temperature could be precisely controlled within a range of temperature above LNH's melting point by the choice of dendrimer generation and their concentration. Shape stabilization and self-healing properties of the salogels, taken together with tunability of their temperature-induced fluidization make these materials attractive for thermal energy storage applications that require on-demand removal and replacement of used inorganic PCM salt hydrates.

  8. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    DOE PAGES

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; ...

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore » instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less

  9. A study on artificial rare earth (RE2O3) based neutron absorber.

    PubMed

    Kim, Kyung-O; Kyung Kim, Jong

    2015-11-01

    A new concept of a neutron absorption material (i.e., an artificial rare earth compound) was introduced for criticality control in a spent fuel storage system. In particular, spent nuclear fuels were considered as a potential source of rare earth elements because the nuclear fission of uranium produces a full range of nuclides. It was also found that an artificial rare earth compound (RE2O3) as a High-Level Waste (HLW) was naturally extracted from pyroprocessing technology developed for recovering uranium and transuranic elements (TRU) from spent fuels. In this study, various characteristics (e.g., activity, neutron absorption cross-section) were analyzed for validating the application possibility of this waste compound as a neutron absorption material. As a result, the artificial rare earth compound had a higher neutron absorption probability in the entire energy range, and it can be used for maintaining sub-criticality for more than 40 years on the basis of the neutron absorption capability of Boral™. Therefore, this approach is expected to vastly improve the efficiency of radioactive waste management by simultaneously keeping HLW and spent nuclear fuel in a restricted space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Flight test of MMW radar for brown-out helicopter landing

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Kolinko, Vladimir; Otto, Gregory P.; Lovberg, John A.

    2012-06-01

    Trex Enterprises and US Army RDECOM CERDEC Night Vision Electronic Sensors Directorate developed and tested helicopter radar to aid in brown-out landing situations. A brown-out occurs when sand and dust kicked up by the helicopter rotors impair the pilot's vision. Millimeter-wave (MMW) radiation penetrates sand and dust with little loss or scattering, and radar at this frequency can provide a pilot with an image of the intended landing zone. The Brown-out Situational Awareness System (BSAS) is a frequency-modulated, continuous-wave radar that measures range to the ground across a conical field-of-view and uses that range information to create an image for the pilot. The BSAS collected imagery from a helicopter in a blowing sand environment with obstacles including ditches, hills, posts, poles, wires, buildings and vehicles. The BSAS proved the capability to form images of the ground through heavy blowing sand and resolve images of some obstacles. The BSAS also attempted to differentiate flat ground from bumpy ground with limited success at some viewing angles. The BSAS test imagery includes some artifacts formed by high radar cross-section targets in the field-of-view or sidelobes. The paper discusses future improvements that could limit these artifacts.

  11. Amplifier based broadband pixel for sub-millimeter wave imaging

    NASA Astrophysics Data System (ADS)

    Sarkozy, Stephen; Drewes, Jonathan; Leong, Kevin M. K. H.; Lai, Richard; Mei, X. B. (Gerry); Yoshida, Wayne; Lange, Michael D.; Lee, Jane; Deal, William R.

    2012-09-01

    Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter wave systems, sub-millimeter wave systems have been hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report a broadband pixel operating from 300 to 340 GHz, biased off a single 2 V power supply. Over this frequency range, the amplifiers provide > 40 dB gain and <8 dB noise figure, representing the current state-of-art performance capabilities. This pixel is enabled by revolutionary enhancements to indium phosphide (InP) high electron mobility transistor technology, based on a sub-50 nm gate and indium arsenide composite channel with a projected maximum oscillation frequency fmax>1.0 THz. The first sub-millimeter wave-based images using active amplification are demonstrated as part of the Joint Improvised Explosive Device Defeat Organization Longe Range Personnel Imager Program. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brownout problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.

  12. Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting.

    PubMed

    Yan, Leiming; Wu, Jisi; Zhang, Lei; Liu, Xinli; Zhou, Kechao; Su, Bo

    2017-06-01

    Porous titanium scaffolds with long-range lamellar structure were fabricated using a novel bidirectional freeze casting method. Compared with the ordinarily porous titanium materials made by traditional freeze casting, the titanium walls can offer the structure of ordered arrays with parallel to each other in the transverse cross-sections. And titanium scaffolds with different pore width, wall size and porosity can be synthesized in terms of adjusting the fabrication parameters. As the titanium content was increased from 15vol.% to 25vol.%, the porosity and pore width decreased from 67±3% to 50±2% and 80±10μm to 67±7μm, respectively. On the contrary, as the wall size was increased from 18±2μm to 30±3μm, the compressive strength and stiffness were increased from 58±8MPa to 162±10MPa and from 2.5±0.7GPa to 6.5±0.9GPa, respectively. The porous titanium scaffolds with long-range lamellar structure and controllable pore structure produced in present work will be capable of having potential application as bone tissue scaffold materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. NASA's New High Intensity Solar Environment Test Capability

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.

    2012-01-01

    Across the world, new spaceflight missions are being designed and executed that will place spacecraft and instruments into challenging environments throughout the solar system. To aid in the successful completion of these new missions, NASA has developed a new flexible space environment test platform. The High Intensity Solar Environment Test (HISET) capability located at NASA fs Marshall Space Flight Center provides scientists and engineers with the means to test spacecraft materials and systems in a wide range of solar wind and solar photon environments. Featuring a solar simulator capable of delivering approximately 1 MW/m2 of broad spectrum radiation at maximum power, HISET provides a means to test systems or components that could explore the solar corona. The solar simulator consists of three high-power Xenon arc lamps that can be operated independently over a range of power to meet test requirements; i.e., the lamp power can be greatly reduced to simulate the solar intensity at several AU. Integral to the HISET capability are charged particle sources that can provide a solar wind (electron and proton) environment. Used individually or in combination, the charged particle sources can provide fluxes ranging from a few nA/cm2 to 100s of nA/cm2 over an energy range of 50 eV to 100 keV for electrons and 100 eV to 30 keV for protons. Anchored by a high vacuum facility equipped with a liquid nitrogen cold shroud for radiative cooling scenarios, HISET is able to accommodate samples as large as 1 meter in diameter. In this poster, details of the HISET capability will be presented, including the wide ]ranging configurability of the system.

  14. IL-15 induces CD8+ T cells to acquire functional NK receptors capable of modulating cytotoxicity and cytokine secretion.

    PubMed

    Correia, Margareta P; Costa, Alexandra V; Uhrberg, Markus; Cardoso, Elsa M; Arosa, Fernando A

    2011-05-01

    During the last years several authors have described a small population of CD8+ T cells expressing NK receptors (NKRs). Although their origin remains largely unknown, we have recently demonstrated that IL-15 is capable of inducing NKR expression in purified human CD8+CD56- T cells. In this study we show that IL-15-driven NKR induction in CD8+ T cells was linked with CD56 de novo acquisition, consistent with an effector-memory phenotype, increased anti-apoptotic levels, high granzyme B/perforin expression and with the ability of displaying in vitro NK-like cytotoxicity. Interestingly, dissection of NKR functional outcome in IL-15-cultured CD8+ T cells revealed: (i) that NKG2D cross-linking was able per se to upregulate degranulation levels and (ii) that KIR and NKG2A cross-linking upregulated secretion of cytokines such as IFN-γ, TNF-α, IL-1β and IL-10. These results suggest that IL-15 is capable of differentiating CD8+ T cells into NK-like T cells displaying a regulatory phenotype. Copyright © 2010 Elsevier GmbH. All rights reserved.

  15. Smart repeater system for communications interoperability during multiagency law enforcement operations

    NASA Astrophysics Data System (ADS)

    Crutcher, Richard I.; Jones, R. W.; Moore, Michael R.; Smith, S. F.; Tolley, Alan L.; Rochelle, Robert W.

    1997-02-01

    A prototype 'smart' repeater that provides interoperability capabilities for radio communication systems in multi-agency and multi-user scenarios is being developed by the Oak Ridge National Laboratory. The smart repeater functions as a deployable communications platform that can be dynamically reconfigured to cross-link the radios of participating federal, state, and local government agencies. This interconnection capability improves the coordination and execution of multi-agency operations, including coordinated law enforcement activities and general emergency or disaster response scenarios. The repeater provides multiple channels of operation in the 30-50, 118-136, 138-174, and 403-512 MHz land mobile communications and aircraft bands while providing the ability to cross-connect among multiple frequencies, bands, modulation types, and encryption formats. Additionally, two telephone interconnects provide links to the fixed and cellular telephone networks. The 800- and 900-MHz bands are not supported by the prototype, but the modular design of the system accommodates future retrofits to extend frequency capabilities with minimal impact to the system. Configuration of the repeater is through a portable personal computer with a Windows-based graphical interface control screen that provides dynamic reconfiguration of network interconnections and formats.

  16. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Precision Hawk pilot launches UAS Lancaster Mark 3, one of 11 vehicles in the UTM TCL2 demonstration that will fly beyond line of sight of the pilot in command in Nevada test.

  17. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineers Priya Venkatesan and Joey Mercer review flight paths using the UAS traffic management research platform at flight operations mission control at NASA’s UTM TCL2 test.

  18. Very fast doped LaBr.sub.3 scintillators and time-of-flight PET

    DOEpatents

    Shah, Kanai S.

    2006-10-31

    The present invention concerns very fast scintillator materials capable of resolving the position of an annihilation event within a portion of a human body cross-section. In one embodiment, the scintillator material comprises LaBr.sub.3 doped with cerium. Particular attention is drawn to LaBr.sub.3 doped with a quantity of Ce that is chosen for improving the timing properties, in particular the rise time and resultant timing resolution of the scintillator, and locational capabilities of the scintillator.

  19. Feasibility study of using statistical process control to customized quality assurance in proton therapy.

    PubMed

    Rah, Jeong-Eun; Shin, Dongho; Oh, Do Hoon; Kim, Tae Hyun; Kim, Gwe-Ya

    2014-09-01

    To evaluate and improve the reliability of proton quality assurance (QA) processes and, to provide an optimal customized tolerance level using the statistical process control (SPC) methodology. The authors investigated the consistency check of dose per monitor unit (D/MU) and range in proton beams to see whether it was within the tolerance level of the daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to improve the patient-specific QA process in proton beams by using process capability indices. The authors established a customized tolerance level of ±2% for D/MU and ±0.5 mm for beam range in the daily proton QA process. In the authors' analysis of the process capability indices, the patient-specific range measurements were capable of a specification limit of ±2% in clinical plans. SPC methodology is a useful tool for customizing the optimal QA tolerance levels and improving the quality of proton machine maintenance, treatment delivery, and ultimately patient safety.

  20. Stability and Curving Performance of Conventional and Advanced Rail Transit Vehicles

    DOT National Transportation Integrated Search

    1984-01-01

    Analytical studies are presented which compare the curving performance and speed capability of conventional rail transit trucks with self steering (cross-braced) and forced steering (linkages between carbody and wheelsets) radial trucks. Truck curvin...

  1. Instruments for Deep Space Weather Prediction and Science

    NASA Astrophysics Data System (ADS)

    DeForest, C. E.; Laurent, G.

    2018-02-01

    We discuss remote space weather monitoring system concepts that could mount on the Deep Space Gateway and provide predictive capability for space weather events including SEP events and CME crossings, and advance heliophysics of the solar wind.

  2. INTEGRATED SCIENCE FOR ECOSYSTEM CHALLENGES - ISEC

    EPA Science Inventory

    In support of the National Science and Technology Council's cross-Agency priority of Integrated Science for Ecological Challenges (ISEC) EPA is conducting research to improve capabilities in the area of regional vulnerability assessment and ecological forecasting. EPA's research...

  3. The Heart of the New SACE

    ERIC Educational Resources Information Center

    Gibbons, J. A.

    2006-01-01

    The SACE Review proposes that a set of knowledge, skills and dispositions called capabilities should form the core of the new SACE. As the Review emphasises, there must be widespread, systematic research and discussion on the range and nature of the capabilities. The SACE Review suggests five capabilities as a basis for discussion. This paper is…

  4. TEMPEST: A three-dimensional time-dependence computer program for hydrothermal analysis: Volume 1, Numerical methods and input instructions: Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, D.S.; Eyler, L.L.

    TEMPEST offers simulation capabilities over a wide range of hydrothermal problems that are definable by input instructions. These capabilities are summarized by categories as follows: modeling capabilities; program control; and I/O control. 10 refs., 22 figs., 2 tabs. (LSP)

  5. Self-repairable polyurethane networks by atmospheric carbon dioxide and water.

    PubMed

    Yang, Ying; Urban, Marek W

    2014-11-03

    Sugar moieties were incorporated into cross-linked polyurethane (PUR) networks in an effort to achieve self-repairing in the presence of atmospheric carbon dioxide (CO2) and water (H2O). When methyl-α-D-glucopyranoside (MGP) molecules are reacted with hexamethylene diisocyanate trimer (HDI) and polyethylene glycol (PEG) to form cross-linked MGP-polyurethane (PUR) networks, these materials are capable of self-repairing in air. This process requires atmospheric amounts of CO2 and H2O, thus resembling plant behavior of carbon fixation during the photosynthesis cycle. Molecular processes responsible for this unique self-repair process involve physical diffusion of cleaved network segments as well as the formation of carbonate and urethane linkages. Unlike plants, MGP-PUR networks require no photo-initiated reactions, and they are thus capable of repair in darkness under atmospheric conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enabling Cross-Platform Clinical Decision Support through Web-Based Decision Support in Commercial Electronic Health Record Systems: Proposal and Evaluation of Initial Prototype Implementations

    PubMed Central

    Zhang, Mingyuan; Velasco, Ferdinand T.; Musser, R. Clayton; Kawamoto, Kensaku

    2013-01-01

    Enabling clinical decision support (CDS) across multiple electronic health record (EHR) systems has been a desired but largely unattained aim of clinical informatics, especially in commercial EHR systems. A potential opportunity for enabling such scalable CDS is to leverage vendor-supported, Web-based CDS development platforms along with vendor-supported application programming interfaces (APIs). Here, we propose a potential staged approach for enabling such scalable CDS, starting with the use of custom EHR APIs and moving towards standardized EHR APIs to facilitate interoperability. We analyzed three commercial EHR systems for their capabilities to support the proposed approach, and we implemented prototypes in all three systems. Based on these analyses and prototype implementations, we conclude that the approach proposed is feasible, already supported by several major commercial EHR vendors, and potentially capable of enabling cross-platform CDS at scale. PMID:24551426

  7. The international performance of healthcare systems in population health: capabilities of pooled cross-sectional time series methods.

    PubMed

    Reibling, Nadine

    2013-09-01

    This paper outlines the capabilities of pooled cross-sectional time series methodology for the international comparison of health system performance in population health. It shows how common model specifications can be improved so that they not only better address the specific nature of time series data on population health but are also more closely aligned with our theoretical expectations of the effect of healthcare systems. Three methodological innovations for this field of applied research are discussed: (1) how dynamic models help us understand the timing of effects, (2) how parameter heterogeneity can be used to compare performance across countries, and (3) how multiple imputation can be used to deal with incomplete data. We illustrate these methodological strategies with an analysis of infant mortality rates in 21 OECD countries between 1960 and 2008 using OECD Health Data. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Bypass of a psoralen DNA interstrand cross-link by DNA polymerases beta, iota, and kappa in vitro

    PubMed Central

    Smith, Leigh A.; Makarova, Alena V.; Samson, Laura; Thiesen, Katherine E.; Dhar, Alok; Bessho, Tadayoshi

    2012-01-01

    Repair of DNA inter-strand cross-links in mammalian cells involves several biochemically distinctive processes, including the release of one of the cross-linked strands and translesion DNA synthesis (TLS). In this report, we investigated in vitro TLS activity of psoralen DNA inter-strand cross-link by three DNA repair polymerases, DNA polymerase beta, kappa and iota. DNA polymerase beta is capable of bypassing a psoralen cross-link with a low efficiency. Cell extracts prepared from DNA polymerase beta knockout mouse embryonic fibroblast showed a reduced bypass activity of the psoralen cross-link and purified DNA polymerase beta restored the bypass activity. In addition, DNA polymerase iota mis-incorporated thymine across the psoralen cross-link and DNA polymerase kappa extended these mis-paired primer ends, suggesting that DNA polymerase iota may serve as an inserter and DNA polymerase kappa may play a role as an extender in the repair of psoralen DNA inter-strand cross-links. The results demonstrated here indicate that multiple DNA polymerases could participate in TLS steps in mammalian DNA inter-strand cross-link repair. PMID:23106263

  9. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels

    NASA Astrophysics Data System (ADS)

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike

    2013-06-01

    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  10. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    PubMed

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  11. Focal-Plane Imaging of Crossed Beams in Nonlinear Optics Experiments

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Herring, G. C.

    2007-01-01

    An application of focal-plane imaging that can be used as a real time diagnostic of beam crossing in various optical techniques is reported. We discuss two specific versions and demonstrate the capability of maximizing system performance with an example in a combined dual-pump coherent anti-Stokes Raman scattering interferometric Rayleigh scattering experiment (CARS-IRS). We find that this imaging diagnostic significantly reduces beam alignment time and loss of CARS-IRS signals due to inadvertent misalignments.

  12. Cross Validation of Selection of Variables in Multiple Regression.

    DTIC Science & Technology

    1979-12-01

    55 vii CROSS VALIDATION OF SELECTION OF VARIABLES IN MULTIPLE REGRESSION I Introduction Background Long term DoD planning gcals...028545024 .31109000 BF * SS - .008700618 .0471961 Constant - .70977903 85.146786 55 had adequate predictive capabilities; the other two models (the...71ZCO F111D Control 54 73EGO FlIID Computer, General Purpose 55 73EPO FII1D Converter-Multiplexer 56 73HAO flllD Stabilizer Platform 57 73HCO F1ID

  13. Hydrogen Peroxide Activated Quinone Methide Precursors with Enhanced DNA Cross-Linking Capability and Cytotoxicity towards Cancer Cells

    PubMed Central

    Wang, Yibin; Fan, Heli; Balakrishnan, Kumudha; Lin, Zechao; Cao, Sheng; Chen, Wenbing; Fan, Yukai; Guthrie, Quibria A.; Sun, Huabing; Teske, Kelly A.; Gandhi, Varsha; Arnold, Leggy A.; Peng, Xiaohua

    2017-01-01

    Quinone methide (QM) formation induced by endogenously generated H2O2 is attractive for biological and biomedical applications. To overcome current limitations due to low biological activity of H2O2-activated QM precursors, we are introducing herein several new arylboronates with electron donating substituents at different positions of benzene ring and/or different neutral leaving groups. The reaction rate of the arylboronate esters with H2O2 and subsequent bisquinone methides formation and DNA cross-linking was accelerated with the application of Br as a leaving group instead of acetoxy groups. Additionally, a donating group placed meta to the nascent exo-methylene group of the quinone methide greatly improves H2O2-induced DNA interstrand cross-link formation as well as enhances the cellular activity. Multiple donating groups decrease the stability and DNA cross-linking capability, which lead to low cellular activity. A cell-based screen demonstrated that compounds 2a and 5a with a OMe or OH group dramatically inhibited the growth of various tissue-derived cancer cells while normal cells were less affected. Induction of H2AX phosphorylation by these compounds in CLL lymphocytes provide evidence for a correlation between cell death and DNA damage. The compounds presented herein showed potent anticancer activities and selectivity, which represent a novel scaffold for anticancer drug development. PMID:28388522

  14. Physical and Numerical Model Studies of Cross-flow Turbines Towards Accurate Parameterization in Array Simulations

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.

    2014-12-01

    Cross-flow turbines, often referred to as vertical-axis turbines, show potential for success in marine hydrokinetic (MHK) and wind energy applications, ranging from small- to utility-scale installations in tidal/ocean currents and offshore wind. As turbine designs mature, the research focus is shifting from individual devices to the optimization of turbine arrays. It would be expensive and time-consuming to conduct physical model studies of large arrays at large model scales (to achieve sufficiently high Reynolds numbers), and hence numerical techniques are generally better suited to explore the array design parameter space. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries (e.g., grid resolution into the viscous sublayer on turbine blades), the turbines' interaction with the energy resource (water current or wind) needs to be parameterized, or modeled. Models used today--a common model is the actuator disk concept--are not able to predict the unique wake structure generated by cross-flow turbines. This wake structure has been shown to create "constructive" interference in some cases, improving turbine performance in array configurations, in contrast with axial-flow, or horizontal axis devices. Towards a more accurate parameterization of cross-flow turbines, an extensive experimental study was carried out using a high-resolution turbine test bed with wake measurement capability in a large cross-section tow tank. The experimental results were then "interpolated" using high-fidelity Navier--Stokes simulations, to gain insight into the turbine's near-wake. The study was designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. The end product of this work will be a cross-flow turbine actuator line model to be used as an extension to the OpenFOAM computational fluid dynamics (CFD) software framework, which will likely require modifications to commonly-used dynamic stall models, in consideration of the turbines' high angle of attack excursions during normal operation.

  15. Superconductive microstrip exhibiting negative differential resistivity

    DOEpatents

    Huebener, R.P.; Gallus, D.E.

    1975-10-28

    A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

  16. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    NASA Technical Reports Server (NTRS)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  17. Mariner Jupiter/Saturn LCSSE thruster/valve assembly and injection propulsion unit rocket engine assemblies: 0.2-lbf T/VA development and margin limit test report

    NASA Technical Reports Server (NTRS)

    Clark, E. C.

    1975-01-01

    Thruster valve assemblies (T/VA's) were subjected to the development test program for the combined JPL Low-Cost Standardized Spacecraft Equipment (LCSSE) and Mariner Jupiter/Saturn '77 spacecraft (MJS) programs. The development test program was designed to achieve the following program goals: (1) demonstrate T/VA design compliance with JPL Specifications, (2) to conduct a complete performance Cf map of the T/VA over the full operating range of environment, (3) demonstrate T/VA life capability and characteristics of life margin for steady-state limit cycle and momentum wheel desaturation duty cycles, (4) verification of structural design capability, and (5) generate a computerized performance model capable of predicting T/VA operation over pressures ranging from 420 to 70 psia, propellant temperatures ranging from 140 F to 40 F, pulse widths of 0.008 to steady-state operation with unlimited duty cycle capability, and finally predict the transient performance associated with reactor heatup during any given duty cycle, start temperature, feed pressure, and propellant temperature conditions.

  18. Development of a single-tube loop-mediated isothermal amplification assay for detection of four pathogens of bacterial meningitis.

    PubMed

    Huy, Nguyen Tien; Hang, Le Thi Thuy; Boamah, Daniel; Lan, Nguyen Thi Phuong; Van Thanh, Phan; Watanabe, Kiwao; Huong, Vu Thi Thu; Kikuchi, Mihoko; Ariyoshi, Koya; Morita, Kouichi; Hirayama, Kenji

    2012-12-01

    Several loop-mediated isothermal amplification (LAMP) assays have been developed to detect common causative pathogens of bacterial meningitis (BM). However, no LAMP assay is reported to detect Streptococcus agalactiae and Streptococcus suis, which are also among common pathogens of BM. Moreover, it is laborious and expensive by performing multiple reactions for each sample to detect bacterial pathogen. Thus, we aimed to design and develop a single-tube LAMP assay capable of detecting multiple bacterial species, based on the nucleotide sequences of the 16S rRNA genes of the bacteria. The nucleotide sequences of the 16S rRNA genes of main pathogens involved in BM were aligned to identify conserved regions, which were further used to design broad range specific LAMP assay primers. We successfully designed a set of broad range specific LAMP assay primers for simultaneous detection of four species including Staphylococcus aureus, Streptococcus pneumoniae, S. suis and S. agalactiae. The broad range LAMP assay was highly specific without cross-reactivity with other bacteria including Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. The sensitivity of our LAMP assay was 100-1000 times higher compared with the conventional PCR assay. The bacterial species could be identified after digestion of the LAMP products with restriction endonuclease DdeI and HaeIII. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Large-Scale Ionospheric Effects Related to Electron-Gyro Harmonics: What We Have Learned from HAARP.

    NASA Astrophysics Data System (ADS)

    Watkins, B. J.; Fallen, C. T.; Secan, J. A.

    2014-12-01

    The HAARP ionospheric modification facility has unique capabilities that enable a wide range of HF frequencies with transmit powers ranging from very low to very high values. We will review a range of experiment results that illustrate large-scale ionospheric effects when the HF frequencies used are close to electron gyro-harmoncs and we focus mainly on the 3rd and 4th harmonics. The data are primarily from the UHF diagnosticc radar and total electron content (TEC) observations through the heated topside ionosphere. Radar data for HF frequencies just above and just below gyro harmoncs show significant differences in radar scatter cross-section that suggest differing plasma processes, and this effect is HF power dependent with some effects only observable with full HF power. For the production of artificial ionization in the E-region when the HF frequency is near gyro-harmoncs the results differ significantly for relatively small (50 kHz) variations in the HF frequency. We show how slow FM scans in conjunction with gyro-harmonic effects are effective in producing artificial ionization in the lower ionosphere.In the topside ionosphere enhanced density and upward fluxes have been observed and these may act as effective ducts for the propagation of VLF waves upward into the magneosphere. Experimental techniques have been developed that may be used to continuously maintain these effects in the topside ionossphere.

  20. Power law cross-correlations between price change and volume change of Indian stocks

    NASA Astrophysics Data System (ADS)

    Hasan, Rashid; Mohammed Salim, M.

    2017-05-01

    We study multifractal long-range correlations and cross-correlations of daily price change and volume change of 50 stocks that comprise Nifty index of National Stock Exchange, Mumbai, using MF-DFA and MF-DCCA methods. We find that the time series of price change are uncorrelated, whereas anti-persistent long-range multifractal correlations are found in volume change series. We also find antipersistent long-range multifractal cross-correlations between the time series of price change and volume change. As multifractality is a signature of complexity, we estimate complexity parameters of the time series of price change, volume change, and cross-correlated price-volume change by fitting the fourth-degree polynomials to their multifractal spectra. Our results indicate that the time series of price change display high complexity, whereas the time series of volume change and cross-correlated price-volume change display low complexity.

  1. User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels

    USGS Publications Warehouse

    Bennett, James P.

    2001-01-01

    This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (<0.0625 millimeter). As part of data input, the user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport process. There are no restrictions in the use of the model as to numbers of channels, channel junctions, cross sections per channel, or points defining the cross sections. Following completion of the simulation computations, the GUI accommodates display of longitudinal plots of either bed elevation and size composition, or of transport rate and size composition of the various components, for individual channels and selected times during the simulation period. For individual cross sections, the GUI also allows display of time series of transport rate and size composition of the various components and of bed elevation and size composition.

  2. Preliminary Structural Design Considerations and Mass Efficiencies for Lunar Surface Manipulator Concepts

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Mikulas, Martin M.; Doggett, William R.

    2008-01-01

    The mass and sizing characteristics of manipulators for Lunar and Mars planetary surface applications are investigated by analyzing three structural configurations: a simple cantilevered boom with a square tubular cross-section; a hybrid cable/boom configuration with a square tubular cross-section support structure; and a hybrid cable/boom configuration with a square truss cross-section support structure. Design procedures are developed for the three configurations and numerical examples are given. A new set of performance parameters are developed that relate the mass of manipulators and cranes to a loading parameter. These parameters enable the masses of different manipulator configurations to be compared over a wide range of design loads and reach envelopes (radii). The use of these parameters is demonstrated in the form of a structural efficiency chart using the newly considered manipulator configurations. To understand the performance of Lunar and Mars manipulators, the design procedures were exercised on the three manipulator configurations assuming graphite/epoxy materials for the tubes and trusses. It is also assumed that the actuators are electric motor, gear reduction systems. Numerical results for manipulator masses and sizes are presented for a variety of manipulator reach and payload mass capabilities. Results are presented that demonstrate the sensitivity of manipulator mass to operational radius, tip force, and actuator efficiency. The effect of the value of gravitational force on the ratio of manipulator-mass to payload-mass is also shown. Finally, results are presented to demonstrate the relative mass reduction for the use of graphite/epoxy compared to aluminum for the support structure.

  3. Novel laser communications transceiver with internal gimbal-less pointing and tracking

    NASA Astrophysics Data System (ADS)

    Chalfant, Charles H., III; Orlando, Fred J., Jr.; Gregory, Jeff T.; Sulham, Clifford; O'Neal, Chad B.; Taylor, Geoffrey W.; Craig, Douglas M.; Foshee, James J.; Lovett, J. Timothy

    2002-12-01

    This paper describes a novel laser communications transceiver for use in multi-platform satellite networks or clusters that provides internal pointing and tracking technique allowing static mounting of the transceiver subsystems and minimal use of mechanical stabilization techniques. This eliminates the need for the large, power hungry, mechanical gimbals that are required for laser cross-link pointing, acquisition and tracking. The miniature transceiver is designed for pointing accuracies required for satellite cross-link distances of between 500 meters to 5000 meters. Specifically, the designs are targeting Air Force Research Lab's TechSat21 Program, although alternative transceiver configurations can provide for much greater link distances and other satellite systems. The receiver and transmitter are connected via fiber optic cabling from a separate electronics subsystem containing the optoelectronics PCBs, thereby eliminating active optoelectronic elements from the transceiver's mechanical housing. The internal acquisition and tracking capability is provided by an advanced micro-electro-mechanical system (MEMS) and an optical design that provides a specific field-of-view based on the satellite cluster's interface specifications. The acquisition & tracking control electronics will utilize conventional closed loop tracking techniques. The link optical power budget and optoelectronics designs allow use of transmitter sources with output powers of near 100 mW. The transceiver will provide data rates of up to 2.5 Gbps and operate at either 1310 nm or 1550 nm. In addition to space-based satellite to satellite cross-links, we are planning to develop a broad range of applications including air to air communications between highly mobile airborne platforms and terrestrial fixed point to point communications.

  4. Ship-bridge collision monitoring system based on flexible quantum tunneling composite with cushioning capability

    NASA Astrophysics Data System (ADS)

    Zheng, Qiaofeng; Han, Baoguo; Ou, Jinping

    2018-07-01

    In this paper, a ship-bridge collision monitoring system based on flexible quantum tunneling composite (QTC) with cushioning capability is proposed by investigating the sensing capability and positioning capability of QTC to collisions. QTCs with different rubber matrix and thickness were fabricated, and collision tests between steel ball and QTCs sensors were designed to simulate ship-bridge collision. The results show that QTCs have a sensing range over 50 MPa with stress resolution ranging between 0.017 and 0.13 MPa, enough to achieve the full-time monitoring of ship-bridge collision. The system has instant and repeatable respond to impact load, and can accurately position the collisions. Moreover, QTC can remarkably absorb the kinetic energy during collisions, exhibiting excellent cushioning capability. These findings indicate the proposed ship-bridge collision monitoring system has great potential for application to detecting collision information such as collision occurrence and duration, impact load and collision location, as well as providing basis for citizen evacuation, post-accident damage estimation and rescue strategy.

  5. Cross-cultural relevance of the Interpersonal Theory of suicide across Korean and U.S. undergraduate students.

    PubMed

    Suh, Sooyeon; Ebesutani, Chad K; Hagan, Christopher R; Rogers, Megan L; Hom, Melanie A; Ringer, Fallon B; Bernert, Rebecca A; Kim, Soohyun; Joiner, Thomas E

    2017-05-01

    This study investigated the cross-cultural relevance and validity of the Interpersonal Theory of Suicide (ITS) utilizing young adult samples from South Korea (n =554) and the United States (U.S.; n =390). To examine the ITS, all participants completed self-report questionnaires measuring Thwarted Belongingness, Perceived Burdensomeness, and Capability for Suicide. We examined whether each construct significantly predicted the severity of suicidal risk in both samples. We also determined whether the strength of the effects of Thwarted Belongingness and Perceived Burdensomeness on suicidal ideation differed between the two samples due to the greater degree of importance placed on interpersonal relationships in collectivistic cultures such as South Korea. Structural equation modeling was used to examine these hypotheses. Thwarted Belongingness, Perceived Burdensomeness, and Capability for Suicide significantly predicted elevated suicidal risk. However, there were no significant differences in the paths from Thwarted Belongingness or Perceived Burdensomeness to suicide risk between the South Korean and U.S. These findings support the cross-cultural relevance and applicability of the ITS, whereby Thwarted Belongingness and Perceived Burdensomeness serve as indicators of suicide risk in both Western (U.S.) and East Asian (Korean) samples. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Model-Derived Dispersal Pathways from Multiple Source Populations Explain Variability of Invertebrate Larval Supply

    PubMed Central

    Domingues, Carla P.; Nolasco, Rita; Dubert, Jesus; Queiroga, Henrique

    2012-01-01

    Background Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings In this study we test whether dispersal and connectivity patterns generated from a bio-physical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p<0.05) and strong, ranging from 0.34 to 0.81 at time lags of −6 to +5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p<0.001, and r = 0.79, p<0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provide meaningful predictions of the patterns and causes of fine-scale variability in larval supply to marine populations. PMID:22558225

  7. Differences in muscle cross-sectional area and strength between elite senior and college Olympic weight lifters.

    PubMed

    Funato, K; Kanehisa, H; Fukunaga, T

    2000-12-01

    The purpose of this study was to investigate the profiles of muscle cross-sectional area (CSA) and strength capability in relation to lifting ability in Olympic weight lifters. The subjects were 8 elite senior lifters (ESL, age=25.2+/-1.3 years, height=1.64+/-0.03 m, mass=68.6+/-4.2 kg, mean+/-SEM) and 9 college lifters (CL, 20.8+/-0.3 years, 1.67+/-0.03 m, 70.53.4 kg) whose predetermined weight classes were within the same range. The CSAs of elbow or knee extensor and elbow or knee flexor muscles were measured using a B-mode ultrasound apparatus. Concentric and eccentric maximal voluntary forces were determined with an isokinetic dynamometer at a constant velocity of 1.05 rad/sec. The best score of the total mass lifted in the snatch and the clean and jerk lifts was significantly higher in ESL than in CL even in terms of per unit of fat-free mass. There were no significant differences between the two groups in fat-free mass, muscle CSA and force values with the exception that ESL compared to CL showed significantly greater force in concentric knee flexion. However, the ratios of force to muscle CSA (F/CSAs) in concentric and eccentric elbow extensions, eccentric knee extension and concentric knee flexion were significantly higher in ESL than in CL. The present results indicated that the magnitude of muscular development in limbs was similar in elite senior and college lifters whose predetermined weight classes were within the same range. As compared to college lifters, however, elite senior lifters had a higher F/CSA in specific muscle action modes, which might relate to the optimal execution of the Olympic lifts.

  8. High Resolution Spectrograph for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Tull, R. G.; MacQueen, P. J.; Good, J.; Epps, H. W.; HET HRS Team

    1998-12-01

    A fiber fed high-resolution spectrograph (HRS) is under construction for the Hobby-Eberly Telescope (HET). The primary resolving power originally specified, from astrophysical considerations, was R = 60,000 with a fiber of diameter at least 1 arc-second, with full spectral coverage limited only by the combined band-pass of the HET, the optical fiber, and the image detector. This was achieved in the final design with a high blaze angle R-4 echelle mosaic, white pupil design, image slicing, and a large area CCD mosaic illuminated by an eight element refractive camera. Two back-to-back, user selectable first-order diffraction gratings are employed for cross dispersion, to separate echelle spectral orders; the entire spectral range (420 - 1,000 nm) can be covered in as few as two exposures. Critical issues addressed in the design are cross dispersion and order spacing, sky subtraction, echelle and CCD selection, fiber optic feed and scrambling, and image or pupil slicing. In the final design meeting the requirements we exploited the large-area 4096 square CCD, image slicing, and the optical performance of the white-pupil design to acquire a range of 30,000 < R < 120,000 with fibers of diameter 2 and 3 arc-seconds, without sacrificing full spectral coverage. Design details will be presented. Limiting magnitude is projected to be about V = 19 (for S/N = 10) at the nominal R = 60,000 resolving power. The poster display will outline performance characteristics expected in relation to projected astrophysical research capabilities outlined by Sneden et al., in this conference. HRS is supported by generous grants from NSF, NASA, the State of Texas, and private philanthropy, with matching funds granted by the University of Texas and by McDonald Observatory.

  9. An independently addressable microbiosensor array: what are the limits of sensing element density?

    PubMed

    Yu, P; Wilson, G S

    2000-01-01

    A microdisc sensor array, prepared by thin film technology, has been used as a model for miniaturized multi-functional biosensors. It consists of a series of wells, 20 microns in diameter, possessing a 1000 A Pt layer at the bottom that serves as the indicating electrode. The depth of the wells ranged from 2.3-24 microns, depending on the photoresist employed and the spinning speed used to coat the electrode interconnect grid. Ten such wells were arranged in a circular array within an area of radius 130 microns. The center to center distance between any two of the discs ranged from 30 to 155 microns. Each disc is connected by a conductive film line to corresponding pads on the side of the sensor chip. A cylinder placed on top of the chip array formed the electrochemical cell into which a common reference and counter electrode were placed. The reference electrode was operated at ground potential. Prior to the evaluation of enzyme sensors, an assessment of "chemical cross-talk", the perturbation of sensor response resulting from the overlap of proximal diffusion layers, was made using Fe(CN)6(4-). The preliminary conclusion is that the sensing elements probably must be separated by about 100 microns in order to avoid interference from adjacent sensors. A technique was developed for the precision delivery of enzyme and cross-linking agent to the 2.3 microns cavity, having a capacity of 4 pL. This procedure makes possible the preparation of sensor arrays capable of detecting different analytes by employing different enzymes. The sensors gave reasonably rapid (2-4 s) response with linearity (up to about 10 mM. However, the sensors in the center of the array clearly showed the effects of depletion of substrates by the surrounding sensors.

  10. A Canadian Cross-Sectional Survey on Psychosocial Supports for People Living Type 1 or 2 Diabetes: Health-Care Providers' Awareness, Capacity, and Motivation.

    PubMed

    Nichols, Jennica; Vallis, Michael; Boutette, Stephanie; Gall Casey, Carolyn; Yu, Catherine H

    2017-11-09

    Addressing psychosocial issues is critical for diabetes self-management. This work explores health-care professionals' (HCPs') 1) perceived relevance of various psychosocial issues in diabetes management and 2) confidence in working on these issues within their services. An online cross-sectional survey was developed based on the Capacity-Opportunity-Motivation Behaviour Model. It assessed self-rated confidence in supporting patients with psychosocial issues (capability), perceived relevance of these issues (motivation) and facilitators of skill development (opportunity). An e-mail invitation was sent to all Diabetes Canada's professional members, conference delegates and committee members. Qualitative responses were analyzed using thematic analysis. Of the 260 responses received (25% response rate), many were Diabetes Canada professional members (83%) and/or certified diabetes educators (66%). The largest professional groups in the sample were registered nurses (44%) and registered dietitians (33%). All psychosocial issues were perceived as somewhat or extremely important by at least 80% of respondents (range, 80% to 97%). However, HCPs were less confident in supporting their patients with these psychosocial issues; significantly fewer respondents reported that they felt somewhat or extremely confident (range, 26% to 62%). Depression (80%) and anxiety (80%) were the issues in which guidance was most desired. Most respondents wanted some form of formal self-management support training (83%). Preferred training methods included in-person workshops (56%), webinars (56%) and conference sessions (51%). Motivation to address psychosocial issues in diabetes was high, but capacity to do so and opportunity to learn how were both low. These findings can be used to develop a targeted strategy to help address this gap. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  11. Experimental validation of systematically designed acoustic hyperbolic meta material slab exhibiting negative refraction

    NASA Astrophysics Data System (ADS)

    Christiansen, Rasmus E.; Sigmund, Ole

    2016-09-01

    This Letter reports on the experimental validation of a two-dimensional acoustic hyperbolic metamaterial slab optimized to exhibit negative refractive behavior. The slab was designed using a topology optimization based systematic design method allowing for tailoring the refractive behavior. The experimental results confirm the predicted refractive capability as well as the predicted transmission at an interface. The study simultaneously provides an estimate of the attenuation inside the slab stemming from the boundary layer effects—insight which can be utilized in the further design of the metamaterial slabs. The capability of tailoring the refractive behavior opens possibilities for different applications. For instance, a slab exhibiting zero refraction across a wide angular range is capable of funneling acoustic energy through it, while a material exhibiting the negative refractive behavior across a wide angular range provides lensing and collimating capabilities.

  12. Cross-reactive antigens and lectin as determinants of symbiotic specificity in the Rhizobium-clover association.

    PubMed Central

    Dazzo, F B; Hubbell, D H

    1975-01-01

    Cross-reactive antigens of clover roots and Rhizobium trifolii were detected on their cell surfaces by tube agglutination, immunofluorescent, and radioimmunoassay techniques. Anti-clover root antiserum had a higher agglutinating titer with infective strains of R. trifolii than with noninfective strains. The root antiserum previously adsorbed with noninfective R. trifolii cells remained reactive only with infective cells, including infective revertants. When adsorbed with infective cells, the root antiserum was reactive with neither infective nor noninfective cells. Other Rhizobium species incapable of infecting clover did not demonstrate surface antigens cross-reactive with clover. Radioimmunoassay indicated twice as much antigenic cross-reactivity of clover roots and R. trifolii 403 (infective) than R. trifolii Bart A (noninfective). Immunofluorescence with anti-R. trifolii (infective) antiserum was detected on the exposed surface of the root epidermal cells and diminished at the root meristem. The immunofluorescent crossreaction on clover roots was totally removed by adsorption of anti-R. trifolii (infective) antiserum with encapsulated infective cells but not with noninfective cells. The cross-reactive capsular antigens from R. trifolii strains were extracted and purified. The ability of these antigens to induce clover root hair deformation was much greater when they were obtained from the infective than noninfective strains. The cross-reactive capsular antigen of R. trifolii 403 was characterized as a high-molecular-weight (greater than 4.6 times 10(6) daltons), beta-linked, acidic heteropolysaccharide containing 2-deoxyglucose, galactose, glucose, and glucuronic acid. A soluble, nondialyzable, substance (clover lectin) capable of binding to the cross-reactive antigen and agglutinating only infective cells of R. trifolii was extracted from white clover seeds. This lectin was sensitive to heat, Pronase, and trypsin. inhibition studies indicated that 2-deoxyglucose was the most probable haptenic determinant of the cross-reactive capsular antigen capable of binding to the root antiserum and the clover lectin. A model is proposed suggesting the preferential adsorption of infective versus noninfective cells of R. trifolii on the surface of clover roots by a cross-bridging of their common surface antigens with a multivalent clover lectin. Images PMID:55100

  13. An EarthCube Roadmap for Cross-Domain Interoperability in the Geosciences: Governance Aspects

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Couch, A.; Richard, S. M.; Valentine, D. W.; Stocks, K.; Murphy, P.; Lehnert, K. A.

    2012-12-01

    The goal of cross-domain interoperability is to enable reuse of data and models outside the original context in which these data and models are collected and used and to facilitate analysis and modeling of physical processes that are not confined to disciplinary or jurisdictional boundaries. A new research initiative of the U.S. National Science Foundation, called EarthCube, is developing a roadmap to address challenges of interoperability in the earth sciences and create a blueprint for community-guided cyberinfrastructure accessible to a broad range of geoscience researchers and students. Infrastructure readiness for cross-domain interoperability encompasses the capabilities that need to be in place for such secondary or derivative-use of information to be both scientifically sound and technically feasible. In this initial assessment we consider the following four basic infrastructure components that need to be present to enable cross-domain interoperability in the geosciences: metadata catalogs (at the appropriate community defined granularity) that provide standard discovery services over datasets, data access services, models and other resources of the domain; vocabularies that support unambiguous interpretation of domain resources and metadata; services used to access data repositories and other resources including models, visualizations and workflows; and formal information models that define structure and semantics of the information returned on service requests. General standards for these components have been proposed; they form the backbone of large scale integration activities in the geosciences. By utilizing these standards, EarthCube research designs can take advantage of data discovery across disciplines using the commonality in key data characteristics related to shared models of spatial features, time measurements, and observations. Data can be discovered via federated catalogs and linked nomenclatures from neighboring domains, while standard data services can be used to transparently compile composite data products. Key questions addressed in this presentation are: (1) How to define and assess readiness of existing domain information systems for cross-domain re-use? (2) How to determine EarthCube development priorities given a multitude of use cases that involve cross-domain data flows? and (3) How to involve a wider community of geoscientists in the development and curation of cross-domain resources and incorporate community feedback in the CI design? Answering them involves consideration of governance mechanisms for cross-domain interoperability: while domain information systems and projects developed governance mechanisms, managing cross-domain CI resources and supporting cross-domain information re-use hasn't been the development focus at the scale of the geosciences. We present a cross-domain readiness model as enabling effective communication among scientists, governance bodies, and information providers. We also present an initial readiness assessment and a cross-domain connectivity map for the geosciences, and outline processes for eliciting user requirements, setting priorities, and obtaining community consensus.

  14. Building more effective sea level rise models for coastal management

    NASA Astrophysics Data System (ADS)

    Kidwell, D.; Buckel, C.; Collini, R.; Meckley, T.

    2017-12-01

    For over a decade, increased attention on coastal resilience and adaptation to sea level rise has resulted in a proliferation of predictive models and tools. This proliferation has enhanced our understanding of our vulnerability to sea level rise, but has also led to stakeholder fatigue in trying to realize the value of each advancement. These models vary in type and complexity ranging from GIS-based bathtub viewers to modeling systems that dynamically couple complex biophysical and geomorphic processes. These approaches and capabilities typically have the common purpose using scenarios of global and regional sea level change to inform adaptation and mitigation. In addition, stakeholders are often presented a plethora of options to address sea level rise issues from a variety of agencies, academics, and consulting firms. All of this can result in confusion, misapplication of a specific model/tool, and stakeholder feedback of "no more new science or tools, just help me understand which one to use". Concerns from stakeholders have led to the question; how do we move forward with sea level rise modeling? This presentation will provide a synthesis of the experiences and feedback derived from NOAA's Ecological Effects of Sea level Rise (EESLR) program to discuss the future of predictive sea level rise impact modeling. EESLR is an applied research program focused on the advancement of dynamic modeling capabilities in collaboration with local and regional stakeholders. Key concerns from stakeholder engagement include questions about model uncertainty, approaches for model validation, and a lack of cross-model comparisons. Effective communication of model/tool products, capabilities, and results is paramount to address these concerns. Looking forward, the most effective predictions of sea level rise impacts on our coast will be attained through a focus on coupled modeling systems, particularly those that connect natural processes and human response.

  15. PyQuant: A Versatile Framework for Analysis of Quantitative Mass Spectrometry Data*

    PubMed Central

    Mitchell, Christopher J.; Kim, Min-Sik; Na, Chan Hyun; Pandey, Akhilesh

    2016-01-01

    Quantitative mass spectrometry data necessitates an analytical pipeline that captures the accuracy and comprehensiveness of the experiments. Currently, data analysis is often coupled to specific software packages, which restricts the analysis to a given workflow and precludes a more thorough characterization of the data by other complementary tools. To address this, we have developed PyQuant, a cross-platform mass spectrometry data quantification application that is compatible with existing frameworks and can be used as a stand-alone quantification tool. PyQuant supports most types of quantitative mass spectrometry data including SILAC, NeuCode, 15N, 13C, or 18O and chemical methods such as iTRAQ or TMT and provides the option of adding custom labeling strategies. In addition, PyQuant can perform specialized analyses such as quantifying isotopically labeled samples where the label has been metabolized into other amino acids and targeted quantification of selected ions independent of spectral assignment. PyQuant is capable of quantifying search results from popular proteomic frameworks such as MaxQuant, Proteome Discoverer, and the Trans-Proteomic Pipeline in addition to several standalone search engines. We have found that PyQuant routinely quantifies a greater proportion of spectral assignments, with increases ranging from 25–45% in this study. Finally, PyQuant is capable of complementing spectral assignments between replicates to quantify ions missed because of lack of MS/MS fragmentation or that were omitted because of issues such as spectra quality or false discovery rates. This results in an increase of biologically useful data available for interpretation. In summary, PyQuant is a flexible mass spectrometry data quantification platform that is capable of interfacing with a variety of existing formats and is highly customizable, which permits easy configuration for custom analysis. PMID:27231314

  16. One-dimensional photonic crystals for eliminating cross-talk in mid-IR photonics-based respiratory gas sensing

    NASA Astrophysics Data System (ADS)

    Fleming, L.; Gibson, D.; Song, S.; Hutson, D.; Reid, S.; MacGregor, C.; Clark, C.

    2017-02-01

    Mid-IR carbon dioxide (CO2) gas sensing is critical for monitoring in respiratory care, and is finding increasing importance in surgical anaesthetics where nitrous oxide (N2O) induced cross-talk is a major obstacle to accurate CO2 monitoring. In this work, a novel, solid state mid-IR photonics based CO2 gas sensor is described, and the role that 1- dimensional photonic crystals, often referred to as multilayer thin film optical coatings [1], play in boosting the sensor's capability of gas discrimination is discussed. Filter performance in isolating CO2 IR absorption is tested on an optical filter test bed and a theoretical gas sensor model is developed, with the inclusion of a modelled multilayer optical filter to analyse the efficacy of optical filtering on eliminating N2O induced cross-talk for this particular gas sensor architecture. Future possible in-house optical filter fabrication techniques are discussed. As the actual gas sensor configuration is small, it would be challenging to manufacture a filter of the correct size; dismantling the sensor and mounting a new filter for different optical coating designs each time would prove to be laborious. For this reason, an optical filter testbed set-up is described and, using a commercial optical filter, it is demonstrated that cross-talk can be considerably reduced; cross-talk is minimal even for very high concentrations of N2O, which are unlikely to be encountered in exhaled surgical anaesthetic patient breath profiles. A completely new and versatile system for breath emulation is described and the capability it has for producing realistic human exhaled CO2 vs. time waveforms is shown. The cross-talk inducing effect that N2O has on realistic emulated CO2 vs. time waveforms as measured using the NDIR gas sensing technique is demonstrated and the effect that optical filtering will have on said cross-talk is discussed.

  17. What is a global manager?

    PubMed

    Bartlett, C A; Ghoshal, S

    1992-01-01

    To compete around the world, a company needs three strategic capabilities: global-scale efficiency, local responsiveness, and the ability to leverage learning worldwide. No single "global" manager can build these capabilities. Rather, groups of specialized managers must integrate assets, resources, and people in diverse operating units. Such managers are made, not born. And how to make them is--and must be--the foremost question for corporate managers. Drawing on their research with leading transnational corporations, Christopher Bartlett and Sumantra Ghoshal identify three types of global managers. They also illustrate the responsibilities each position involves through a close look at the careers of successful executives: Leif Johansson of Electrolux, Howard Gottlieb of NEC, and Wahib Zaki of Procter & Gamble. The first type is the global business or product-division manager who must build worldwide efficiency and competitiveness. These managers recognize cross-border opportunities and risks as well as link activities and capabilities around the world. The second is the country manager whose unit is the building block for worldwide operations. These managers are responsible for understanding and interpreting local markets, building local resources and capabilities, and contributing to--and participating in--the development of global strategy. Finally, there are worldwide functional specialists--the managers whose potential is least appreciated in many traditional multinational companies. To transfer expertise from one unit to another and leverage learning, these managers must scan the company for good ideas and best practice, cross-pollinate among units, and champion innovations with worldwide applications.

  18. Sensor Alerting Capability

    NASA Astrophysics Data System (ADS)

    Henriksson, Jakob; Bermudez, Luis; Satapathy, Goutam

    2013-04-01

    There is a large amount of sensor data generated today by various sensors, from in-situ buoys to mobile underwater gliders. Providing sensor data to the users through standardized services, language and data model is the promise of OGC's Sensor Web Enablement (SWE) initiative. As the amount of data grows it is becoming difficult for data providers, planners and managers to ensure reliability of data and services and to monitor critical data changes. Intelligent Automation Inc. (IAI) is developing a net-centric alerting capability to address these issues. The capability is built on Sensor Observation Services (SOSs), which is used to collect and monitor sensor data. The alerts can be configured at the service level and at the sensor data level. For example it can alert for irregular data delivery events or a geo-temporal statistic of sensor data crossing a preset threshold. The capability provides multiple delivery mechanisms and protocols, including traditional techniques such as email and RSS. With this capability decision makers can monitor their assets and data streams, correct failures or be alerted about a coming phenomena.

  19. The Slope Imaging Multi-polarization Photon-counting Lidar: an Advanced Technology Airborne Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Dabney, P.; Harding, D. J.; Huss, T.; Valett, S.; Yu, A. W.; Zheng, Y.

    2009-12-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryopshere remote sensing. The SIMPL instrument incorporates a variety of advanced technologies in order to demonstrate measurement approaches of potential benefit for improved airborne laser swath mapping and spaceflight laser altimeter missions. SIMPL incorporates beam splitting, single-photon ranging and polarimetry technologies at green and near-infrared wavelengths in order to achieve simultaneous sampling of surface elevation, slope, roughness and scattering properties, the latter used to differentiate surface types. The transmitter is a 1 nsec pulse width, 11 kHz, 1064 nm microchip laser, frequency doubled to 532 nm and split into four plane-polarized beams using birefringent calcite crystal in order to maintain co-alignment of the two colors. The 16 channel receiver splits the received energy for each beam into the two colors and each color is split into energy parallel and perpendicular to the transmit polarization plane thereby proving a measure of backscatter depolarization. The depolarization ratio is sensitive to the proportions of specular reflection and surface and volume scattering, and is a function of wavelength. The ratio can differentiate, for example, water, young translucent ice, older granular ice and snow. The solar background count rate is controlled by spatial filtering using a pinhole array and by spectral filtering using temperature-controlled narrow bandwidth filters. The receiver is fiber coupled to 16 Single Photon Counting Modules (SPCMs). To avoid range biases due to the long dead time of these detectors the probability of detection per laser fire on each channel is controlled to be below 30%, using mechanical irises and flight altitude. Event timers with 0.1 nsec resolution in combination the narrow transmit pulse yields single photon ranging precision of 8 cm. The high speed, high throughput data system is capable of recording 22 million time-tagged photon detection events per second. At typical aircraft flight speeds, each of the 16 channels acquires a single photon range every 5 to 15 cm along the four profiles providing a highly sampled measure of surface roughness. The nominal flight altitude is 5 km yielding 10 m spacing between the four beam profiles, providing a measure of surface slope at 10 m length scales. The altitude is currently constrained by the low signal level of the NIR cross-polarized channels. SIMPL’s measurement capabilities provide information about surface elevation, roughness, slope and type of value in characterizing ice sheet surfaces and sea ice, including their melt state. Capabilities will be illustrated using data acquired over Lake Erie ice cover in February, 2009.

  20. High accuracy LADAR scene projector calibration sensor development

    NASA Astrophysics Data System (ADS)

    Kim, Hajin J.; Cornell, Michael C.; Naumann, Charles B.; Bowden, Mark H.

    2008-04-01

    A sensor system for the characterization of infrared laser radar scene projectors has been developed. Available sensor systems do not provide sufficient range resolution to evaluate the high precision LADAR projector systems developed by the U.S. Army Research, Development and Engineering Command (RDECOM) Aviation and Missile Research, Development and Engineering Center (AMRDEC). With timing precision capability to a fraction of a nanosecond, it can confirm the accuracy of simulated return pulses from a nominal range of up to 6.5 km to a resolution of 4cm. Increased range can be achieved through firmware reconfiguration. Two independent amplitude triggers measure both rise and fall time providing a judgment of pulse shape and allowing estimation of the contained energy. Each return channel can measure up to 32 returns per trigger characterizing each return pulse independently. Currently efforts include extending the capability to 8 channels. This paper outlines the development, testing, capabilities and limitations of this new sensor system.

  1. Achieving biopolymer synergy in systems chemistry.

    PubMed

    Bai, Yushi; Chotera, Agata; Taran, Olga; Liang, Chen; Ashkenasy, Gonen; Lynn, David G

    2018-05-31

    Synthetic and materials chemistry initiatives have enabled the translation of the macromolecular functions of biology into synthetic frameworks. These explorations into alternative chemistries of life attempt to capture the versatile functionality and adaptability of biopolymers in new orthogonal scaffolds. Information storage and transfer, however, so beautifully represented in the central dogma of biology, require multiple components functioning synergistically. Over a single decade, the emerging field of systems chemistry has begun to catalyze the construction of mutualistic biopolymer networks, and this review begins with the foundational small-molecule-based dynamic chemical networks and peptide amyloid-based dynamic physical networks on which this effort builds. The approach both contextualizes the versatile approaches that have been developed to enrich chemical information in synthetic networks and highlights the properties of amyloids as potential alternative genetic elements. The successful integration of both chemical and physical networks through β-sheet assisted replication processes further informs the synergistic potential of these networks. Inspired by the cooperative synergies of nucleic acids and proteins in biology, synthetic nucleic-acid-peptide chimeras are now being explored to extend their informational content. With our growing range of synthetic capabilities, structural analyses, and simulation technologies, this foundation is radically extending the structural space that might cross the Darwinian threshold for the origins of life as well as creating an array of alternative systems capable of achieving the progressive growth of novel informational materials.

  2. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOEpatents

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  3. Molecular epidemiology and clinical implications of metallo-β-lactamase-producing Pseudomonas aeruginosa isolated from urine.

    PubMed

    Sako, Shinichi; Kariyama, Reiko; Mitsuhata, Ritsuko; Yamamoto, Masumi; Wada, Koichiro; Ishii, Ayano; Uehara, Shinya; Kokeguchi, Susumu; Kusano, Nobuchika; Kumon, Hiromi

    2014-01-01

    We conducted a study on molecular epidemiology and clinical implications of metallo-beta-lactamase (MBL)-producing Pseudomonas aeruginosa isolated from urine. Over a 10-year period from 2001 through 2010, a total of 92 MBL-producing P. aeruginosa urine isolates were collected from patients (one isolate per patient) who were admitted to 5 hospitals in Okayama Prefecture, Japan. When cross-infection was suspected in the hospital, pulsed-field gel electrophoresis was performed. In the resulting dendrogram of 79 MBL-producing P. aeruginosa urine isolates, no identical isolates and 7 pairs of isolates with >80% similarity were found. The biofilm-forming capabilities of 92 MBL-producing P. aeruginosa urine isolates were significantly greater than those of 92 non-MBL-producing urine isolates in a medium of modified artificial urine. The imipenem resistance transferred in 16 of 18 isolates tested, and these frequencies were in the range of 10⁻³ to 10⁻⁹. All of 18 isolates tested belonged to internationally spread sequence type 235 and had 3 gene cassettes of antimicrobial resistance genes in the class 1 integron. The strong biofilm-forming capabilities of MBL-producing P. aeruginosa urine isolates could be seriously implicated in nosocomial infections. To prevent spread of the organism and transferable genes, effective strategies to inhibit biofilm formation in medical settings are needed.

  4. Propagation model for the Land Mobile Satellite channel in urban environments

    NASA Technical Reports Server (NTRS)

    Sforza, M.; Dibernardo, G.; Cioni, R.

    1993-01-01

    This paper presents the major characteristics of a simulation package capable of performing a complete narrow and wideband analysis of the mobile satellite communication channel in urban environments for any given orbital configuration. The wavelength-to-average urban geometrical dimension ratio has required the use of the Geometrical Theory of Diffraction (GTD). For the RF frequency range, the model has been designed to be (1 up to 60 GHz) extended to include effects of non-perfect conductivity and surface roughness. Taking advantage of the inherent capabilities of such a high frequency method, we are able to provide a complete description of the electromagnetic field at the mobile terminal. Using the information made available at the ray-tracer and GTD solver outputs, the Land Mobile Satellite (LMS) urban model can also give a detailed description of the communication channel in terms of power delay profiles, Doppler spectra, channel scattering functions, and so forth. Statistical data, e.g. cumulative distribution functions, level crossing rates or distributions of fades are also provided. The user can access the simulation tool through a Design-CAD user-friendly interface by means of which she can effectively design her own urban layout and run consequently all the envisaged routines. The software is optimized in its execution time so that numerous runs can be achieved in a considerably short time.

  5. Dynamic locomotor capabilities revealed by early dinosaur trackmakers from southern Africa.

    PubMed

    Wilson, Jeffrey A; Marsicano, Claudia A; Smith, Roger M H

    2009-10-06

    A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31 degrees ), and plantigrade and digitigrade foot posture. The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect 'real time' responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors.

  6. Water resources in the Blackstone River basin, Massachusetts

    USGS Publications Warehouse

    Walker, Eugene H.; Krejmas, Bruce E.

    1983-01-01

    The Blackstone River heads in brooks 6 miles northwest of Worcester and drains about 330 square miles of central Massachusetts before crossing into Rhode Island at Woonsocket. The primary source of the Worcester water supply is reservoirs, but for the remaining 23 communities in the basin, the primary source is wells. Bedrock consists of granitic and metamorphic rocks. Till mantles the uplands and extends beneath stratified drift in the valleys. Stratified glacial drift, consisting of clay, silt, and fine sand deposited in lakes and coarse-textured sand and gravel deposited by streams, is found in lowlands and valleys. The bedrock aquifer is capable of sustaining rural domestic supplies throughout the Blackstone River basin. Bedrock wells yield an average of 10 gallons per minute, but some wells, especially those in lowlands where bedrock probably contains more fractures and receives more recharge than in the upland areas, yield as much as 100 gallons per minute. Glacial sand and gravel is the principal aquifer. It is capable of sustaining municipal supplies. Average daily pumpage from this aquifer in the Blackstone River basin was 10.4 million gallons per day in 1978. The median yield of large-diameter wells in the aquifer is 325 gallons per minute. The range of yields from these wells is 45 to 3,300 gallons per minute. The median specific capacity is about 30 gallons per minute per foot of drawdown.

  7. MAUVE/SWIPE: an imaging instrument concept with multi-angular, -spectral, and -polarized capability for remote sensing of aerosols, ocean color, clouds, and vegetation from space

    NASA Astrophysics Data System (ADS)

    Frouin, Robert; Deschamps, Pierre-Yves; Rothschild, Richard; Stephan, Edward; Leblanc, Philippe; Duttweiler, Fred; Ghaemi, Tony; Riedi, Jérôme

    2006-12-01

    The Monitoring Aerosols in the Ultraviolet Experiment (MAUVE) and the Short-Wave Infrared Polarimeter Experiment (SWIPE) instruments have been designed to collect, from a typical sun-synchronous polar orbit at 800 km altitude, global observations of the spectral, polarized, and directional radiance reflected by the earth-atmosphere system for a wide range of applications. Based on the heritage of the POLDER radiometer, the MAUVE/SWIPE instrument concept combines the merits of TOMS for observing in the ultra-violet, MISR for wide field-of-view range, MODIS, for multi-spectral aspects in the visible and near infrared, and the POLDER instrument for polarization. The instruments are camera systems with 2-dimensional detector arrays, allowing a 120-degree field-of-view with adequate ground resolution (i.e., 0.4 or 0.8 km at nadir) from satellite altitude. Multi-angle viewing is achieved by the along-track migration at spacecraft velocity of the 2-dimensional field-of-view. Between the cameras' optical assembly and detector array are two filter wheels, one carrying spectral filters, the other polarizing filters, allowing measurements of the first three Stokes parameters, I. Q, and V, of the incident radiation in 16 spectral bands optimally placed in the interval 350-2200 nm. The spectral range is 350-1050 nm for the MAUVE instrument and 1050-2200 nm for the SWIPE instrument. The radiometric requirements are defined to fully exploit the multi-angular, multi-spectral, and multi-polarized capability of the instruments. These include a wide dynamic range, a signal-to-noise ratio above 500 in all channels at maximum radiance level, i.e., when viewing a surface target of albedo equal to 1, and a noise-equivalent-differential reflectance better than 0.0005 at low signal level for a sun at zenith. To achieve daily global coverage, a pair of MAUVE and SWIPE instruments would be carried by each of two mini-satellites placed on interlaced orbits. The equator crossing time of the two satellites would be adjusted to allow simultaneous observations of the overlapping zone viewed from the two parallel orbits of the twin satellites. Using twin satellites instead of a single satellite would allow measurements in a more complete range of scattering angles. A MAUVE/SWIPE satellite mission would improve significantly the accuracy of ocean color observations from space, and will extend the retrieval of ocean optical properties to the ultra-violet, where they become very sensitive to detritus material and dissolved organic matter. It would also provide a complete description of the scattering and absorption properties of aerosol particles, as well as their size distribution and vertical distribution. Over land, the retrieved bidirectional reflectance function would allow a better classification of terrestrial vegetation and discrimination of surface types. The twin satellite concept, by providing stereoscopic capability, would offer the possibility to analyze the three-dimensional structure and radiative properties of cloud fields.

  8. Reengineering health care: management systems for survivors.

    PubMed

    Griffith, J R

    1994-01-01

    To survive in the coming era, health care organizations must support the powerful concepts of continuous quality improvement with better internal management systems that include: (1) new processes for making decisions from mission to clinical guidelines; (2) hoshin planning, which emphasizes strong financial management and innovation to meet customer needs; (3) new organizations that make cross-disciplinary teams as important as traditional clinical support services; and (4) expanded information covering several new dimensions, including enhanced analytic capability, and supporting both traditional organization and cross-disciplinary teams.

  9. Radar range data signal enhancement tracker

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design, fabrication, and performance characteristics are described of two digital data signal enhancement filters which are capable of being inserted between the Space Shuttle Navigation Sensor outputs and the guidance computer. Commonality of interfaces has been stressed so that the filters may be evaluated through operation with simulated sensors or with actual prototype sensor hardware. The filters will provide both a smoothed range and range rate output. Different conceptual approaches are utilized for each filter. The first filter is based on a combination low pass nonrecursive filter and a cascaded simple average smoother for range and range rate, respectively. Filter number two is a tracking filter which is capable of following transient data of the type encountered during burn periods. A test simulator was also designed which generates typical shuttle navigation sensor data.

  10. A General 3-D Methodology for Quasi-Static Simulation of Drainage and Imbibition: Application to Highly Porous Fibrous Materials

    NASA Astrophysics Data System (ADS)

    Riasi, S.; Huang, G.; Montemagno, C.; Yeghiazarian, L.

    2013-12-01

    Micro-scale modeling of multiphase flow in porous media is critical to characterize porous materials. Several modeling techniques have been implemented to date, but none can be used as a general strategy for all porous media applications due to challenges presented by non-smooth high-curvature solid surfaces, and by a wide range of pore sizes and porosities. Finite approaches like the finite volume method require a high quality, problem-dependent mesh, while particle-based approaches like the lattice Boltzmann require too many particles to achieve a stable meaningful solution. Both come at a large computational cost. Other methods such as pore network modeling (PNM) have been developed to accelerate the solution process by simplifying the solution domain, but so far a unique and straightforward methodology to implement PNM is lacking. We have developed a general, stable and fast methodology to model multi-phase fluid flow in porous materials, irrespective of their porosity and solid phase topology. We have applied this methodology to highly porous fibrous materials in which void spaces are not distinctly separated, and where simplifying the geometry into a network of pore bodies and throats, as in PNM, does not result in a topology-consistent network. To this end, we have reduced the complexity of the 3-D void space geometry by working with its medial surface. We have used a non-iterative fast medial surface finder algorithm to determine a voxel-wide medial surface of the void space, and then solved the quasi-static drainage and imbibition on the resulting domain. The medial surface accurately represents the topology of the porous structure including corners, irregular cross sections, etc. This methodology is capable of capturing corner menisci and the snap-off mechanism numerically. It also allows for calculation of pore size distribution, permeability and capillary pressure-saturation-specific interfacial area surface of the porous structure. To show the capability of this method to numerically estimate the capillary pressure in irregular cross sections, we compared our results with analytical solutions available for capillary tubes with non-circular cross sections. We also validated this approach by implementing it on well-known benchmark problems such as a bundle of cylinders and packed spheres.

  11. Cross-Cultural Group Performance

    ERIC Educational Resources Information Center

    Mitchell, Rebecca; Boyle, Brendan; Nicholas, Stephen

    2011-01-01

    Purpose: This paper aims to explore the assumption that the impact of cultural diversity on knowledge creating capability is consequent to associated differences in knowledge and perspectives, and suggests that these knowledge differences produce their effect by triggering deliberative, collaborative behaviours. Design/methodology/approach: To…

  12. Aeronautical Facilities Catalogue. Volume 1: Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler); Freda, M. S. (Compiler)

    1985-01-01

    Domestic and foreign wind tunnel facilities are enumerated and their technical parameters are described. Data pertinent to managers and engineers are presented. Facilities judged comparable in testing capability are noted and grouped together. Several comprehensive cross-indexes and charts are included.

  13. Augmentation of UK Space Debris Observing Capabilities Using Univiersity Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Herridge, Philip; Brown, David; Crowther, Richard

    2013-08-01

    The study of space debris requires a range of different sensors. Debris population monitoring requires survey, follow-on and characterisation capable sensors. In order to fully participate in space debris measurement the range of sensors available to the UK Space Agency needs to be augmented with additional capability. One source of untapped resource resides within the UK university sector. This paper discusses investigation into extending the optical sensor diversity available to the UK for participation in study of the debris environment through a collaboration between Space Insight Limited, a commercial company providing Space Situational Awareness (SSA) services to the UK Space Agency, and the Astronomy Group at the University of St Andrews.

  14. Initial Validation of Robotic Operations for In-Space Assembly of a Large Solar Electric Propulsion Transport Vehicle

    NASA Technical Reports Server (NTRS)

    Komendera, Erik E.; Dorsey, John T.

    2017-01-01

    Developing a capability for the assembly of large space structures has the potential to increase the capabilities and performance of future space missions and spacecraft while reducing their cost. One such application is a megawatt-class solar electric propulsion (SEP) tug, representing a critical transportation ability for the NASA lunar, Mars, and solar system exploration missions. A series of robotic assembly experiments were recently completed at Langley Research Center (LaRC) that demonstrate most of the assembly steps for the SEP tug concept. The assembly experiments used a core set of robotic capabilities: long-reach manipulation and dexterous manipulation. This paper describes cross-cutting capabilities and technologies for in-space assembly (ISA), applies the ISA approach to a SEP tug, describes the design and development of two assembly demonstration concepts, and summarizes results of two sets of assembly experiments that validate the SEP tug assembly steps.

  15. Improving emergency preparedness and crisis management capabilities in transportation.

    DOT National Transportation Integrated Search

    2009-11-30

    Despite the heightened attention disaster preparedness and emergency management have received over the past decade, serious weaknesses in the United States emergency response capabilities remain at all levels of government and across a wide range ...

  16. Ultra-wideband Radar for Building Interior Imaging

    DTIC Science & Technology

    2008-12-01

    same cross range resolution as a monostatic configuration with an equal number of transmitters and receivers (Ressler et al., 2007). In terms of...By this procedure we ensure a constant cross range resolution across the entire image. 2.2. Measurements setup The one story abandoned barrack...identify its geometry and materials. Two-by-four wooden studs (3.8 cm x 8.9 cm cross -section dimensions) are used for most exterior and interior walls

  17. Advanced Multispectral Scanner (AMS) study. [aircraft remote sensing

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The status of aircraft multispectral scanner technology was accessed in order to develop preliminary design specifications for an advanced instrument to be used for remote sensing data collection by aircraft in the 1980 time frame. The system designed provides a no-moving parts multispectral scanning capability through the exploitation of linear array charge coupled device technology and advanced electronic signal processing techniques. Major advantages include: 10:1 V/H rate capability; 120 deg FOV at V/H = 0.25 rad/sec; 1 to 2 rad resolution; high sensitivity; large dynamic range capability; geometric fidelity; roll compensation; modularity; long life; and 24 channel data acquisition capability. The field flattening techniques of the optical design allow wide field view to be achieved at fast f/nos for both the long and short wavelength regions. The digital signal averaging technique permits maximization of signal to noise performance over the entire V/H rate range.

  18. Dolphin sonar detection and discrimination capabilities

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.

    2004-05-01

    Dolphins have a very sophisticated short range sonar that surpasses all technological sonar in its capabilities to perform complex target discrimination and recognition tasks. The system that the U.S. Navy has for detecting mines buried under ocean sediment is one that uses Atlantic bottlenose dolphins. However, close examination of the dolphin sonar system will reveal that the dolphin acoustic hardware is fairly ordinary and not very special. The transmitted signals have peak-to-peak amplitudes as high as 225-228 dB re 1 μPa which translates to an rms value of approximately 210-213 dB. The transmit beamwidth is fairly broad at about 10o in both the horizontal and vertical planes and the receiving beamwidth is slightly broader by several degrees. The auditory filters are not very narrow with Q values of about 8.4. Despite these fairly ordinary features of the acoustic system, these animals still demonstrate very unusual and astonishing capabilities. Some of the capabilities of the dolphin sonar system will be presented and the reasons for their keen sonar capabilities will be discussed. Important features of their sonar include the broadband clicklike signals used, adaptive sonar search capabilities and large dynamic range of its auditory system.

  19. Status of the R-matrix Code AMUR toward a consistent cross-section evaluation and covariance analysis for the light nuclei

    NASA Astrophysics Data System (ADS)

    Kunieda, Satoshi

    2017-09-01

    We report the status of the R-matrix code AMUR toward consistent cross-section evaluation and covariance analysis for the light-mass nuclei. The applicable limit of the code is extended by including computational capability for the charged-particle elastic scattering cross-sections and the neutron capture cross-sections as example results are shown in the main texts. A simultaneous analysis is performed on the 17O compound system including the 16O(n,tot) and 13C(α,n)16O reactions together with the 16O(n,n) and 13C(α,α) scattering cross-sections. It is found that a large theoretical background is required for each reaction process to obtain a simultaneous fit with all the experimental cross-sections we analyzed. Also, the hard-sphere radii should be assumed to be different from the channel radii. Although these are technical approaches, we could learn roles and sources of the theoretical background in the standard R-matrix.

  20. A study of radar cross section measurement techniques

    NASA Technical Reports Server (NTRS)

    Mcdonald, Malcolm W.

    1986-01-01

    Past, present, and proposed future technologies for the measurement of radar cross section were studied. The purpose was to determine which method(s) could most advantageously be implemented in the large microwave anechoic chamber facility which is operated at the antenna test range site. The progression toward performing radar cross section measurements of space vehicles with which the Orbital Maneuvering Vehicle will be called upon to rendezvous and dock is a natural outgrowth of previous work conducted in recent years of developing a high accuracy range and velocity sensing radar system. The radar system was designed to support the rendezvous and docking of the Orbital Maneuvering Vehicle with various other space vehicles. The measurement of radar cross sections of space vehicles will be necessary in order to plan properly for Orbital Maneuvering Vehicle rendezvous and docking assignments. The methods which were studied include: standard far-field measurements; reflector-type compact range measurements; lens-type compact range measurement; near field/far field transformations; and computer predictive modeling. The feasibility of each approach is examined.

  1. Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-11-01

    The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40MeV up to 50MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides (113,110)Sn, (116m,115m,114m,113m,111,110g,109)In and (115)Cd are reported in the 37-50MeV energy range, for production of (110)Sn and (110g,109)In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS 1.6 nuclear model code as listed in the on-line library TENDL-2014. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Space Assembly of Large Structural System Architectures (SALSSA)

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Watson, Judith J.

    2016-01-01

    Developing a robust capability for Space Assembly of Large Spacecraft Structural System Architectures (SALSSA) has the potential to drastically increase the capabilities and performance of future space missions and spacecraft while significantly reducing their cost. Currently, NASA architecture studies and space science decadal surveys identify new missions that would benefit from SALSSA capabilities, and the technologies that support SALSSA are interspersed throughout the fourteen NASA Technology Roadmaps. However, a major impediment to the strategic development of cross-cutting SALSSA technologies is the lack of an integrated and comprehensive compilation of the necessary information. This paper summarizes the results of a small study that used an integrated approach to formulate a SALSSA roadmap and associated plan for developing key SALSSA technologies.

  3. The effects of crushing speed on the energy-absorption capability of composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    The energy-absorption capability as a function of crushing speed was determined for Thornel 300/Fiberite 934 (Gr/E) and Kevlar-49/Fiberite 934 (K/E) composite material. Circular cross section tube specimens were crushed at quasi-static, 6 m/sec, and 12 m/sec speeds. Ply orientations of the tube specimens were (0/+ or - theta) sub 2 and (+ or - theta) sub 3 where theta=15, 45, and 75 degress. Based on the results of these tests the energy-absortion capability of Gr/E and K/E was determined to be a function of crushing speed. The crushing modes based on exterior appearance of the crushed tubes were unchanged for either material. However, the interlaminar crushing behavior changed with crushing speed.

  4. Feasibility study of using statistical process control to customized quality assurance in proton therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rah, Jeong-Eun; Oh, Do Hoon; Shin, Dongho

    Purpose: To evaluate and improve the reliability of proton quality assurance (QA) processes and, to provide an optimal customized tolerance level using the statistical process control (SPC) methodology. Methods: The authors investigated the consistency check of dose per monitor unit (D/MU) and range in proton beams to see whether it was within the tolerance level of the daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to improve the patient-specific QA process in proton beams by using process capability indices. Results: The authors established a customized tolerance level of ±2% formore » D/MU and ±0.5 mm for beam range in the daily proton QA process. In the authors’ analysis of the process capability indices, the patient-specific range measurements were capable of a specification limit of ±2% in clinical plans. Conclusions: SPC methodology is a useful tool for customizing the optimal QA tolerance levels and improving the quality of proton machine maintenance, treatment delivery, and ultimately patient safety.« less

  5. Improved Wide Operating Temperature Range of LiNiCoAiO2-based Li-ion Cells with Methyl Propionate-based Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Tomcsi, Michael R.; Hwang, C.; Whitcanack, L. D.; Bugga, Ratnakumar V.; Nagata, Mikito; Visco, Vince; Tsukamoto, Hisashi

    2012-01-01

    Demonstration of wide operating temperature range Li-ion electrolytes Methyl propionate-based wide operating temperature range electrolytes were demonstrated to provide dramatic improvement of the low temperature capability of Quallion prototype Li-ion cells (MCMB-LiNiCoAlO2). Some formulations were observed to deliver over 60% of the room temperature capacity using a 5C rate at - 40oC !! Represents over a 4-fold improvement over the baseline electrolyte system. Demonstrated operational capability of a number of systems over a wide temperature range (-40 to +70 C) Demonstrated reasonably good long term cycle life performance at high temperature (i.e., at +40deg and +50 C) A number of formulations containing electrolytes additives (i.e., FEC, VC, LiBOB, and lithium oxalate) have been shown to have enhanced lithium kinetics at low temperature and promising high temperature resilience. Demonstrated good performance in larger capacity (12 Ah) Quallion Li-ion cells with methyl propionate-based electrolytes. Current efforts focused upon performing life studies and the impact upon low temperature capability.

  6. A perspective of synthetic aperture radar for remote sensing

    NASA Technical Reports Server (NTRS)

    Skolnik, M. I.

    1978-01-01

    The characteristics and capabilities of synthetic aperture radar are discussed so as to identify those features particularly unique to SAR. The SAR and Optical images were compared. The SAR is an example of radar that provides more information about a target than simply its location. It is the spatial resolution and imaging capability of SAR that has made its application of interest, especially from spaceborne platforms. However, for maximum utility to remote sensing, it was proposed that other information be extracted from SAR data, such as the cross section with frequency and polarization.

  7. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Drone Co-habitation Services operates a Phantom 3 commercial multi-rotor unmanned aircraft, one of 11 vehicles in the UTM TCL2 demonstration that will fly beyond line of sight of the pilot in command in Nevada test.

  8. UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-06

    Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Karen Bollinger pilot and Nick Atkins of Alaska Center for Unmanned Aircraft Systems Integration program fly Ptarmigan quadcopter, one of 11 vehicles in the UTM TCL2 demonstration that will fly beyond line of sight of the pilot in command in Nevada test.

  9. A Study of Cross-linked Regions of Poly(Vinyl Alcohol) Gels by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2011-07-01

    A poly(vinyl alcohol)-borax cross-linked hydrogel has been studied by Small Angle Neutron Scattering as a function of borax concentration in the wave-vector transfer (Q) range of 0.017 Å-1 to 0.36 Å-1. It is found that as the concentration of borax increases, so does the intensity of scattering in this range. Beyond a borax concentration of 2 mg/ml, the increase in cross-linked PVA chains leads to cross-linked units larger than 150 Å as evidenced by a reduction in intensity in the lower Q region.

  10. Numerical analysis of the dynamic interaction between wheel set and turnout crossing using the explicit finite element method

    NASA Astrophysics Data System (ADS)

    Xin, L.; Markine, V. L.; Shevtsov, I. Y.

    2016-03-01

    A three-dimensional (3-D) explicit dynamic finite element (FE) model is developed to simulate the impact of the wheel on the crossing nose. The model consists of a wheel set moving over the turnout crossing. Realistic wheel, wing rail and crossing geometries have been used in the model. Using this model the dynamic responses of the system such as the contact forces between the wheel and the crossing, crossing nose displacements and accelerations, stresses in rail material as well as in sleepers and ballast can be obtained. Detailed analysis of the wheel set and crossing interaction using the local contact stress state in the rail is possible as well, which provides a good basis for prediction of the long-term behaviour of the crossing (fatigue analysis). In order to tune and validate the FE model field measurements conducted on several turnouts in the railway network in the Netherlands are used here. The parametric study including variations of the crossing nose geometries performed here demonstrates the capabilities of the developed model. The results of the validation and parametric study are presented and discussed.

  11. Quantifying the range of cross-correlated fluctuations using a q- L dependent AHXA coefficient

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Wang, Lin; Chen, Yuming

    2018-03-01

    Recently, based on analogous height cross-correlation analysis (AHXA), a cross-correlation coefficient ρ×(L) has been proposed to quantify the levels of cross-correlation on different temporal scales for bivariate series. A limitation of this coefficient is that it cannot capture the full information of cross-correlations on amplitude of fluctuations. In fact, it only detects the cross-correlation at a specific order fluctuation, which might neglect some important information inherited from other order fluctuations. To overcome this disadvantage, in this work, based on the scaling of the qth order covariance and time delay L, we define a two-parameter dependent cross-correlation coefficient ρq(L) to detect and quantify the range and level of cross-correlations. This new version of ρq(L) coefficient leads to the formation of a ρq(L) surface, which not only is able to quantify the level of cross-correlations, but also allows us to identify the range of fluctuation amplitudes that are correlated in two given signals. Applications to the classical ARFIMA models and the binomial multifractal series illustrate the feasibility of this new coefficient ρq(L) . In addition, a statistical test is proposed to quantify the existence of cross-correlations between two given series. Applying our method to the real life empirical data from the 1999-2000 California electricity market, we find that the California power crisis in 2000 destroys the cross-correlation between the price and the load series but does not affect the correlation of the load series during and before the crisis.

  12. Photovoltaic Systems Test Facilities: Existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Volkmer, K.

    1982-01-01

    A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.

  13. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  14. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas grins, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  15. Comparison Between Folic Acid and gH625 Peptide-Based Functionalization of Fe3O4 Magnetic Nanoparticles for Enhanced Cell Internalization

    NASA Astrophysics Data System (ADS)

    Tudisco, C.; Cambria, M. T.; Giuffrida, A. E.; Sinatra, F.; Anfuso, C. D.; Lupo, G.; Caporarello, N.; Falanga, A.; Galdiero, S.; Oliveri, V.; Satriano, C.; Condorelli, G. G.

    2018-02-01

    A versatile synthetic route based on magnetic Fe3O4 nanoparticle (MNP) prefunctionalization with a phosphonic acid monolayer has been used to covalently bind the gH625 peptide on the nanoparticle surface. gH625 is a membranotropic peptide capable of easily crossing the membranes of various cells including the typical human blood-brain barrier components. A similar synthetic route was used to prepare another class of MNPs having a functional coating based on PEG, rhodamine, and folic acid, a well-known target molecule, to compare the performance of the two cell-penetrating systems (i.e., gH625 and folic acid). Our results demonstrate that the uptake of gH625-decorated MNPs in immortalized human brain microvascular endothelial cells after 24 h is more evident compared to folic acid-functionalized MNPs as evidenced by confocal laser scanning microscopy. On the other hand, both functionalized systems proved capable of being internalized in a brain tumor cell line (i.e., glioblastoma A-172). These findings indicate that the functionalization of MNPs with gH625 improves their endothelial cell internalization, suggesting a viable strategy in designing functional nanostructures capable of first crossing the BBB and, then, of reaching specific tumor brain cells.

  16. Multiscale multifractal detrended cross-correlation analysis of financial time series

    NASA Astrophysics Data System (ADS)

    Shi, Wenbin; Shang, Pengjian; Wang, Jing; Lin, Aijing

    2014-06-01

    In this paper, we introduce a method called multiscale multifractal detrended cross-correlation analysis (MM-DCCA). The method allows us to extend the description of the cross-correlation properties between two time series. MM-DCCA may provide new ways of measuring the nonlinearity of two signals, and it helps to present much richer information than multifractal detrended cross-correlation analysis (MF-DCCA) by sweeping all the range of scale at which the multifractal structures of complex system are discussed. Moreover, to illustrate the advantages of this approach we make use of the MM-DCCA to analyze the cross-correlation properties between financial time series. We show that this new method can be adapted to investigate stock markets under investigation. It can provide a more faithful and more interpretable description of the dynamic mechanism between financial time series than traditional MF-DCCA. We also propose to reduce the scale ranges to analyze short time series, and some inherent properties which remain hidden when a wide range is used may exhibit perfectly in this way.

  17. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators.

    PubMed

    Li, Zhigang; Stan, Liliana; Czaplewski, David A; Yang, Xiaodong; Gao, Jie

    2018-03-05

    Wavelength-selective metamaterial absorbers in the mid-infrared range are demonstrated by using multiple tungsten cross resonators. By adjusting the geometrical parameters of cross resonators in single-sized unit cells, near-perfect absorption with single absorption peak tunable from 3.5 µm to 5.5 µm is realized. The combination of two, three, or four cross resonators of different sizes in one unit cell enables broadband near-perfect absorption at mid-infrared range. The obtained absorption spectra exhibit omnidirectionality and weak dependence on incident polarization. The underlying mechanism of near-perfect absorption with cross resonators is further explained by the optical mode analysis, dispersion relation and equivalent RLC circuit model. Moreover, thermal analysis is performed to study the heat generation and temperature increase in the cross resonator absorbers, while the energy conversion efficiency is calculated for the thermophotovoltaic system made of the cross resonator thermal emitters and low-bandgap semiconductors.

  18. 43 CFR 420.5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... any motorized vehicle (including the standard automobile) designed for or capable of cross-country... lawn tractors, and golf carts while being used for their designed purpose; (4) agricultural, timbering... the Bureau of Reclamation. (c) Reclamation lands mean all lands under the custody and control of the...

  19. 43 CFR 420.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... any motorized vehicle (including the standard automobile) designed for or capable of cross-country... lawn tractors, and golf carts while being used for their designed purpose; (4) agricultural, timbering... the Bureau of Reclamation. (c) Reclamation lands mean all lands under the custody and control of the...

  20. 43 CFR 420.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... any motorized vehicle (including the standard automobile) designed for or capable of cross-country... lawn tractors, and golf carts while being used for their designed purpose; (4) agricultural, timbering... the Bureau of Reclamation. (c) Reclamation lands mean all lands under the custody and control of the...

  1. State-of-the-art technologies for intrusion and obstacle detection for railroad operations

    DOT National Transportation Integrated Search

    2007-07-01

    This report provides an update on the state-of-the-art technologies with intrusion and obstacle detection capabilities for rail rights of way (ROW) and crossings. A workshop entitled Intruder and Obstacle Detection Systems (IODS) for Railroads Requir...

  2. In-silico wear prediction for knee replacements--methodology and corroboration.

    PubMed

    Strickland, M A; Taylor, M

    2009-07-22

    The capability to predict in-vivo wear of knee replacements is a valuable pre-clinical analysis tool for implant designers. Traditionally, time-consuming experimental tests provided the principal means of investigating wear. Today, computational models offer an alternative. However, the validity of these models has not been demonstrated across a range of designs and test conditions, and several different formulas are in contention for estimating wear rates, limiting confidence in the predictive power of these in-silico models. This study collates and retrospectively simulates a wide range of experimental wear tests using fast rigid-body computational models with extant wear prediction algorithms, to assess the performance of current in-silico wear prediction tools. The number of tests corroborated gives a broader, more general assessment of the performance of these wear-prediction tools, and provides better estimates of the wear 'constants' used in computational models. High-speed rigid-body modelling allows a range of alternative algorithms to be evaluated. Whilst most cross-shear (CS)-based models perform comparably, the 'A/A+B' wear model appears to offer the best predictive power amongst existing wear algorithms. However, the range and variability of experimental data leaves considerable uncertainty in the results. More experimental data with reduced variability and more detailed reporting of studies will be necessary to corroborate these models with greater confidence. With simulation times reduced to only a few minutes, these models are ideally suited to large-volume 'design of experiment' or probabilistic studies (which are essential if pre-clinical assessment tools are to begin addressing the degree of variation observed clinically and in explanted components).

  3. Note: A wide temperature range MOKE system with annealing capability.

    PubMed

    Chahil, Narpinder Singh; Mankey, G J

    2017-07-01

    A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K < T < 760 K. The sample stage incorporates a removable platen and copper block with inserted cartridge heater and two thermocouple sensors. It is supported and thermally coupled to a cold finger with two sapphire bars. The sapphire based thermal coupling enables the system to perform at higher temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.

  4. Personalized Vehicle Energy Efficiency & Range Predictor/MyGreenCar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAXENA, SAMVEG

    MyGreenCar provides users with the ability to predict the range capabilities, fuel economy, and operating costs for any vehicle for their individual driving patterns. Users launce the MyGreeCar mobile app on their smartphones to collect their driving patterns over any duration (e.g. serval days, weeks, months, etc) using a phones's locational capabilities. Using vehicle powertrain models for any user-specified vehicle type, MyGreenCar, calculates the component-level energy and power interactions for the chosen vehicle to predict several important quantities, including: 1. For Evs: Alleviating range anxiety 2. Comparing fuel economy, operating costs, and payback time across models and types.

  5. Tradespace and Affordability - Phase 2

    DTIC Science & Technology

    2013-12-31

    infrastructure capacity. Figure 15 locates the thirteen feasible configurations in survivability- mobility capability space (capability levels are scaled...battery power, or display size decreases. Other quantities may be applicable, such as the number of nodes in a scalable-up mobile network or the...limited size of a scalable-down mobile platform. Versatility involves the range of capabilities provided by a system as it is currently configured. A

  6. Representative Structural Element - A New Paradigm for Multi-Scale Structural Modeling

    DTIC Science & Technology

    2016-07-05

    developed by NASA Glenn Research Center based on Aboudi’s micromechanics theories [5] that provides a wide range of capabilities for modeling ...to use appropriate models for related problems based on the capability of corresponding approaches. Moreover, the analyses will give a general...interface of heterogeneous materials but also help engineers to use appropriate models for related problems based on the capability of corresponding

  7. Students' Perceptions of the Usefulness of an E-Book with Annotative and Sharing Capabilities as a Tool for Learning: A Case Study

    ERIC Educational Resources Information Center

    Lim, Ee-Lon; Hew, Khe Foon

    2014-01-01

    E-books offer a range of benefits to both educators and students, including ease of accessibility and searching capabilities. However, the majority of current e-books are repository-cum-delivery platforms of textual information. Hitherto, there is a lack of empirical research that examines e-books with annotative and sharing capabilities. This…

  8. Quantifying and modeling long-range cross correlations in multiple time series with applications to world stock indices

    NASA Astrophysics Data System (ADS)

    Wang, Duan; Podobnik, Boris; Horvatić, Davor; Stanley, H. Eugene

    2011-04-01

    We propose a modified time lag random matrix theory in order to study time-lag cross correlations in multiple time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range power-law cross correlations in the absolute values of returns that quantify risk, and find that they decay much more slowly than cross correlations between the returns. The magnitude of the cross correlations constitutes “bad news” for international investment managers who may believe that risk is reduced by diversifying across countries. We find that when a market shock is transmitted around the world, the risk decays very slowly. We explain these time-lag cross correlations by introducing a global factor model (GFM) in which all index returns fluctuate in response to a single global factor. For each pair of individual time series of returns, the cross correlations between returns (or magnitudes) can be modeled with the autocorrelations of the global factor returns (or magnitudes). We estimate the global factor using principal component analysis, which minimizes the variance of the residuals after removing the global trend. Using random matrix theory, a significant fraction of the world index cross correlations can be explained by the global factor, which supports the utility of the GFM. We demonstrate applications of the GFM in forecasting risks at the world level, and in finding uncorrelated individual indices. We find ten indices that are practically uncorrelated with the global factor and with the remainder of the world indices, which is relevant information for world managers in reducing their portfolio risk. Finally, we argue that this general method can be applied to a wide range of phenomena in which time series are measured, ranging from seismology and physiology to atmospheric geophysics.

  9. Quantifying and modeling long-range cross correlations in multiple time series with applications to world stock indices.

    PubMed

    Wang, Duan; Podobnik, Boris; Horvatić, Davor; Stanley, H Eugene

    2011-04-01

    We propose a modified time lag random matrix theory in order to study time-lag cross correlations in multiple time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range power-law cross correlations in the absolute values of returns that quantify risk, and find that they decay much more slowly than cross correlations between the returns. The magnitude of the cross correlations constitutes "bad news" for international investment managers who may believe that risk is reduced by diversifying across countries. We find that when a market shock is transmitted around the world, the risk decays very slowly. We explain these time-lag cross correlations by introducing a global factor model (GFM) in which all index returns fluctuate in response to a single global factor. For each pair of individual time series of returns, the cross correlations between returns (or magnitudes) can be modeled with the autocorrelations of the global factor returns (or magnitudes). We estimate the global factor using principal component analysis, which minimizes the variance of the residuals after removing the global trend. Using random matrix theory, a significant fraction of the world index cross correlations can be explained by the global factor, which supports the utility of the GFM. We demonstrate applications of the GFM in forecasting risks at the world level, and in finding uncorrelated individual indices. We find ten indices that are practically uncorrelated with the global factor and with the remainder of the world indices, which is relevant information for world managers in reducing their portfolio risk. Finally, we argue that this general method can be applied to a wide range of phenomena in which time series are measured, ranging from seismology and physiology to atmospheric geophysics.

  10. Range Scheduling Aid (RSA)

    NASA Technical Reports Server (NTRS)

    Logan, J. R.; Pulvermacher, M. K.

    1991-01-01

    Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.

  11. Ground truth methods for optical cross-section modeling of biological aerosols

    NASA Astrophysics Data System (ADS)

    Kalter, J.; Thrush, E.; Santarpia, J.; Chaudhry, Z.; Gilberry, J.; Brown, D. M.; Brown, A.; Carter, C. C.

    2011-05-01

    Light detection and ranging (LIDAR) systems have demonstrated some capability to meet the needs of a fastresponse standoff biological detection method for simulants in open air conditions. These systems are designed to exploit various cloud signatures, such as differential elastic backscatter, fluorescence, and depolarization in order to detect biological warfare agents (BWAs). However, because the release of BWAs in open air is forbidden, methods must be developed to predict candidate system performance against real agents. In support of such efforts, the Johns Hopkins University Applied Physics Lab (JHU/APL) has developed a modeling approach to predict the optical properties of agent materials from relatively simple, Biosafety Level 3-compatible bench top measurements. JHU/APL has fielded new ground truth instruments (in addition to standard particle sizers, such as the Aerodynamic particle sizer (APS) or GRIMM aerosol monitor (GRIMM)) to more thoroughly characterize the simulant aerosols released in recent field tests at Dugway Proving Ground (DPG). These instruments include the Scanning Mobility Particle Sizer (SMPS), the Ultraviolet Aerodynamic Particle Sizer (UVAPS), and the Aspect Aerosol Size and Shape Analyser (Aspect). The SMPS was employed as a means of measuring smallparticle concentrations for more accurate Mie scattering simulations; the UVAPS, which measures size-resolved fluorescence intensity, was employed as a path toward fluorescence cross section modeling; and the Aspect, which measures particle shape, was employed as a path towards depolarization modeling.

  12. Planar Imaging of Hydroxyl in a High Temperature, High Pressure Combustion Facility

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.; Ockunzzi, Kelly A.

    1995-01-01

    An optically accessible flame tube combustor is described which has high temperature, pressure, and air flow capabilities. The windows in the combustor measure 3.8 cm axially by 5.1 cm radially, providing 67 percent optical access to the square cross section flow chamber. The instrumentation allows one to examine combusting flows and combustor subcomponents, such as fuel injectors and air swirlers. These internal combustor subcomponents have previously been studied only with physical probes, such as temperature and species rakes. Planar laser-induced fluorescence (PLIF) images of OH have been obtained from this lean burning combustor burning Jet-A fuel. These images were obtained using various laser excitation lines of the OH A yields X (1,0) band for two fuel injector configurations with pressures ranging from 1013 kPa (10 atm) to 1419 kPa (14 atm), and equivalence ratios from 0.41 to 0. 59. Non-uniformities in the combusting flow, attributed to differences in fuel injector configuration, are revealed by these images.

  13. Jet trajectories and surface pressures induced on a body of revolution with various dual jet configurations

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Jakubowski, A. K.; Aoyagi, K.

    1983-01-01

    A jet in a cross flow is of interest in practical situations including jet-powered VTOL aircraft. Three aspects of the problem have received little prior study. First is the effect of the angle of the jet to the crossflow. Second is the performance of dual-jet configurations. The third item for further study is a jet injected from a body of revolution as opposed to a flat plate. The Test Plan for this work was designed to address these three aspects. The experiments were conducted in the 7 x 10 tunnel at NASA Ames at velocities 14.5 - 35.8 m/sec (47.6 - 117.4 ft/sec). Detailed pressure distributions are presented for single and dual jets over a range of velocity ratios from 3 to 8, spacings from 2 to 6 diameters and injection angles of 90, 75 and 60 degrees. Some flowfield measurements are also presented, and it is shown that a simple analysis is capable of predicting the trajectories of the jets.

  14. Tunable CW diode-pumped Tm,Ho:YLiF4 laser operating at or near room temperature

    NASA Technical Reports Server (NTRS)

    Mcguckin, Brendan T. (Inventor); Menzies, Robert T. (Inventor)

    1993-01-01

    A conversion efficiency of 42 percent and slope efficiency of 60 percent relative to absorbed pump power are obtained from a continuous wave diode-pumped Tm,Ho:YLiF4 laser at 2 microns with output power of 84mW at a crystal temperature of 275K. The emission spectrum is etalon tunable over a range of 7nm (16.3 cm(sup -1) centered on 2.067 microns with fine tuning capability of the transition frequency with crystal temperature at a measured rate of -0.03/(cm)K. The effective emission cross-section is measured to be 5 x 10(sup -21) cm squared. These and other aspects of the laser performance are disclosed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications. Single frequency output and frequency stabilization are achieved using an intracavity etalon in conjunction with an external reference etalon.

  15. Pulse Duration of Seeded Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finetti, Paola; Hoppner, Hauke; Allaria, Enrico

    The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL) pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial experimental parameter that needs to be characterized. We measured the pulse shape of an extreme ultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods, one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities. The measurements were carried out at the seededmore » FEL facility FERMI. The FEL temporal pulse characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they were compared to the predictions of a theoretical model. Finally, the measurements allowed a direct observation of the pulse lengthening and splitting at saturation, in agreement with the proposed theory.« less

  16. A two-channel action-potential generator for testing neurophysiologic data acquisition/analysis systems.

    PubMed

    Lisiecki, R S; Voigt, H F

    1995-08-01

    A 2-channel action-potential generator system was designed for use in testing neurophysiologic data acquisition/analysis systems. The system consists of a personal computer controlling an external hardware unit. This system is capable of generating 2 channels of simulated action potential (AP) waveshapes. The AP waveforms are generated from the linear combination of 2 principal-component template functions. Each channel generates randomly occurring APs with a specified rate ranging from 1 to 200 events per second. The 2 trains may be independent of one another or the second channel may be made to be excited or inhibited by the events from the first channel with user-specified probabilities. A third internal channel may be made to excite or inhibit events in both of the 2 output channels with user-specified rate parameters and probabilities. The system produces voltage waveforms that may be used to test neurophysiologic data acquisition systems for recording from 2 spike trains simultaneously and for testing multispike-train analysis (e.g., cross-correlation) software.

  17. Gyrotropic response in the absence of a bias field

    PubMed Central

    Wang, Zhiyu; Wang, Zheng; Wang, Jingyu; Zhang, Bin; Huangfu, Jiangtao; Joannopoulos, John D.; Soljačić, Marin; Ran, Lixin

    2012-01-01

    Electromagnetic materials lacking local time-reversal symmetry, such as gyrotropic materials, are of keen interest and importance both scientifically and technologically. Scientifically, topologically nontrivial phenomena, such as photonic chiral edge states, allow for reflection-free transport even in the presence of large disorder. Technologically, nonreciprocal photonic devices, such as optical isolators and circulators, play critical roles in optical communication and computing technologies because of their ability to eliminate cross-talk and feedback. Nevertheless, most known natural materials that lack local time-reversal symmetry require strong external fields and function only in a limited range of the electromagnetic spectrum. By taking advantage of metamaterials capable of translating the property of unidirectional active electronic circuits into effective dielectric response, we introduce a microwave gyrotropic metamaterial that does not require an external magnetic bias. Strong bulk Faraday-like effects, observed in both simulations and experiments, confirm nonreciprocity of the effective medium. This approach is scalable to many other wavelengths, and it also illustrates an opportunity to synthesize exotic electromagnetic materials. PMID:22847403

  18. NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1985-01-01

    A program was conducted to demonstrate the cycle life capability of welded solar cell modules relative to a soldered solar cell module in a simulated low earth orbit thermal environment. A total of five 18-cell welded (parallel gap resistance welding) modules, three 18-cell soldered modules, and eighteen single cell samples were fabricated using 2 x 4 cm silicon solar cells from ASEC, fused silica cover glass from OCLI, silver plated Invar interconnectors, DC 93-500 adhesive, and Kapton-Kevlar-Kapton flexible substrate material. Zero degree pull strength ranged from 2.4 to 5.7 lbs for front welded contacts (40 samples), and 3.5 to 6.2 lbs for back welded contacts (40 samples). Solar cell cross sections show solid state welding on both front and rear contacts. The 18-cell welded modules have a specific power of 124 W/kg and an area power density of 142 W/sq m (both at 28 C). Three welded and one soldered module were thermal cycle tested in a thermal vacuum chamber simulating a low earth orbit thermal environment.

  19. Atomic Processes in X-ray Photoioinzed Gas

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy

    2005-01-01

    It has long been known that photoionization and photoabsorption play a dominant role in determining the state of gas in nebulae surrounding hot stars and in active galaxies. Recent observations of X-ray spectra demonstrate that these processes are also dominant in highly ionized gas near compact objects, and also affect the transmission of X-rays from the majority of astronomical sources. This has led to new insights into the understanding of what is going on in these sources. It has also pointed out the need for accurate atomic cross sections for photoionization and absorption, notably for processes involving inner shells. The xstar code can be used for calculating the heating, ionization and reprocessing of X-rays by gas in a range of ionization states and temperatures. It has recently been updated to include an improved treatment of inner shell transitions in iron. I will review the capabilities of xstar, the atomic data, and illustrate some applications to recent X-ray spectral observations.

  20. Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU

    NASA Technical Reports Server (NTRS)

    Bougeret, J.-L.; Fainberg, J.; Stone, R. G.

    1984-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.

  1. Performance assessment of FY-3C/MERSI on early orbit

    NASA Astrophysics Data System (ADS)

    Hu, Xiuqing; Xu, Na; Wu, Ronghua; Chen, Lin; Min, Min; Wang, Ling; Xu, Hanlie; Sun, Ling; Yang, Zhongdong; Zhang, Peng

    2014-11-01

    FY-3C/MERSI has some remarkable improvements compared to the previous MERSIs including better spectral response function (SRF) consistency of different detectors within one band, increasing the capability of lunar observation by space view (SV) and the improvement of radiometric response stability of solar bands. During the In-orbit verification (IOV) commissioning phase, early results that indicate the MERSI representative performance were derived, including the signal noise ratio (SNR), dynamic range, MTF, B2B registration, calibration bias and instrument stability. The SNRs at the solar bands (Bands 1-4 and 6-20) was largely beyond the specifications except for two NIR bands. The in-flight calibration and verification for these bands are also heavily relied on the vicarious techniques such as China radiometric calibration sites(CRCS), cross-calibration, lunar calibration, DCC calibration, stability monitoring using Pseudo Invariant Calibration Sites (PICS) and multi-site radiance simulation. This paper will give the results of the above several calibration methods and monitoring the instrument degradation in early on-orbit time.

  2. Stepped frequency ground penetrating radar

    DOEpatents

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  3. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    NASA Technical Reports Server (NTRS)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  4. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics.

    PubMed

    Zhang, Li; Ding, Jun; Zheng, Hanyu; An, Sensong; Lin, Hongtao; Zheng, Bowen; Du, Qingyang; Yin, Gufan; Michon, Jerome; Zhang, Yifei; Fang, Zhuoran; Shalaginov, Mikhail Y; Deng, Longjiang; Gu, Tian; Zhang, Hualiang; Hu, Juejun

    2018-04-16

    The mid-infrared (mid-IR) is a strategically important band for numerous applications ranging from night vision to biochemical sensing. Here we theoretically analyzed and experimentally realized a Huygens metasurface platform capable of fulfilling a diverse cross-section of optical functions in the mid-IR. The meta-optical elements were constructed using high-index chalcogenide films deposited on fluoride substrates: the choices of wide-band transparent materials allow the design to be scaled across a broad infrared spectrum. Capitalizing on a two-component Huygens' meta-atom design, the meta-optical devices feature an ultra-thin profile (λ 0 /8 in thickness) and measured optical efficiencies up to 75% in transmissive mode for linearly polarized light, representing major improvements over state-of-the-art. We have also demonstrated mid-IR transmissive meta-lenses with diffraction-limited focusing and imaging performance. The projected size, weight and power advantages, coupled with the manufacturing scalability leveraging standard microfabrication technologies, make the Huygens meta-optical devices promising for next-generation mid-IR system applications.

  5. ϕ Meson Measurements at RHIC with the PHENIX Detector

    NASA Astrophysics Data System (ADS)

    Sarsour, Murad

    2018-02-01

    The measurement of ϕ mesons provides key information on the phase of the hot and dense medium created in the relativistic heavy ion collisions. It has a relatively small hadronic interaction cross section and is sensitive to the increase of strangeness (strangeness enhancement), a phenomenon associated with soft particles in bulk matter. Measurements in the dilepton channels are especially interesting since leptons interact only electromagnetically, thus carrying the information from their production phase directly to the detector. Measurements in different nucleus-nucleus collisions allow us to perform a systematic study of the nuclear medium effects on ϕ meson production. The PHENIX detector provides the capabilities to measure the ϕ meson production in a wide range of transverse momentum and rapidity to study these effects. In this proceeding, we present measurements of the ϕ mesons in a variety of collision systems at = 200 GeV. In case of small systems, the data are compared with AMPT calculations to study the various cold nuclear medium effects involved in ϕ meson production.

  6. Whirl Flutter Studies for a SSTOL Transport Demonstrator

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Hoffman, Krishna

    2004-01-01

    A proposed new class of aircraft - the Advanced Theater Transport (ATT) will combine strategic range and high payload with 'Super-STOL' (short take-off and landing) capability. It is also proposed to modify a YC-15 into a technology demonstrator with a 20-deg tilt wing; four, eight-bladed propellers; cross-shafted gearboxes and V-22 engines. These constitute a unique combination of design features that potentially affect performance, loads and whirl-mode stability (whirl flutter). NASA Ames Research Center is working with Boeing and Hamilton Sundstrand on technology challenges presented by the concept; the purpose of NASA involvement is to establish requirements for the demonstrator and for early design guidance, with emphasis on whirl flutter. CAMRAD II is being used to study the effects of various design features on whirl flutter, with special attention to areas where such features differ from existing aircraft, notably tiltrotors. Although the stability margins appear to be more than adequate, the concept requires significantly different analytical methods, principally including far more blade modes, than typically used for tiltrotors.

  7. Advances in quantum cascade lasers for security and crime-fighting

    NASA Astrophysics Data System (ADS)

    Normand, Erwan L.; Stokes, Robert J.; Hay, Kenneth; Foulger, Brian; Lewis, Colin

    2010-10-01

    Advances in the application of Quantum Cascade Lasers (QCL) to trace gas detection will be presented. The solution is real time (~1 μsec per scan), is insensitive to turbulence and vibration, and performs multiple measurements in one sweep. The QCL provides a large dynamic range, which is a linear response from ppt to % level. The concentration can be derived with excellent immunity from cross interference. Point sensing sensors developed by Cascade for home made and commercial explosives operate by monitoring key constituents in real time and matching this to a spatial event (i.e. sniffer device placed close to an object or person walking through portal (overt or covert). Programmable signature detection capability allows for detection of multiple chemical compounds along the most likely array of explosive chemical formulation. The advantages of configuration as "point sensing" or "stand off" will be discussed. In addition to explosives this method is highly applicable to the detection of mobile drugs labs through volatile chemical release.

  8. Orbit on demand - Structural analysis finds vertical launchers weigh less

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Cruz, C. I.; Jackson, L. R.; Naftel, J. C.; Wurster, K. E.; Cerro, J. A.

    1985-01-01

    Structural considerations arising from favored design concepts for the next generation on-demand launch vehicles are explored. The two emerging concepts are a two stage fully reusable vertical take-off vehicle (V-2) and a horizontal take-off, two stage subsonic boost launch vehicle (H-2-Sub). Both designs have an 1100 n. mi. cross-range capability, with the V-2 orbiter having small wings with winglets for hypersonic trim and the H-2-Sub requiring larger, swept wings. The rockets would be cryogenic, while airbreathing initial boosters would be either turbofans, turbojets and/or ramjets. Dynamic loading is lower in the launch of a V-2. The TPS is a critical factor due to thinner leading edges than on the Shuttle and may require heat-pipe cooling. Airframe structures made of metal matrix composites have passed finite element simulations of projected loads and can now undergo proof-of-concept tests, although whisker-reinforced materials may be superior once long-whisker technology is developed.

  9. Wind Speed Measurement from Bistatically Scattered GPS Signals

    NASA Technical Reports Server (NTRS)

    Garrison, James L.; Komjathy, Attila; Zavorotny, Valery U.; Katzberg, Stephen J.

    1999-01-01

    Instrumentation and retrieval algorithms are described which use the forward, or bistatically scattered range-coded signals from the Global Positioning System (GPS) radio navigation system for the measurement of sea surface roughness. This roughness is known to be related directly to the surface wind speed. Experiments were conducted from aircraft along the TOPEX ground track, and over experimental surface truth buoys. These flights used a receiver capable of recording the cross correlation power in the reflected signal. The shape of this power distribution was then compared against analytical models derived from geometric optics. Two techniques for matching these functions were studied. The first recognized the most significant information content in the reflected signal is contained in the trailing edge slope of the waveform. The second attempted to match the complete shape of the waveform by approximating it as a series expansion and obtaining the nonlinear least squares estimate. Discussion is also presented on anomalies in the receiver operation and their identification and correction.

  10. Wind Turbine Clutter Mitigation in Coastal UHF Radar

    PubMed Central

    Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness. PMID:24550709

  11. Wind turbine clutter mitigation in coastal UHF radar.

    PubMed

    Yang, Jing; Pan, Chao; Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness.

  12. Pulse Duration of Seeded Free-Electron Lasers

    DOE PAGES

    Finetti, Paola; Hoppner, Hauke; Allaria, Enrico; ...

    2017-06-16

    The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL) pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial experimental parameter that needs to be characterized. We measured the pulse shape of an extreme ultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods, one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities. The measurements were carried out at the seededmore » FEL facility FERMI. The FEL temporal pulse characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they were compared to the predictions of a theoretical model. Finally, the measurements allowed a direct observation of the pulse lengthening and splitting at saturation, in agreement with the proposed theory.« less

  13. Vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors: development and validation of predictive 3-D QSAR models through extensive ligand- and structure-based approaches

    NASA Astrophysics Data System (ADS)

    Ragno, Rino; Ballante, Flavio; Pirolli, Adele; Wickersham, Richard B.; Patsilinakos, Alexandros; Hesse, Stéphanie; Perspicace, Enrico; Kirsch, Gilbert

    2015-08-01

    Vascular endothelial growth factor receptor-2, (VEGFR-2), is a key element in angiogenesis, the process by which new blood vessels are formed, and is thus an important pharmaceutical target. Here, 3-D quantitative structure-activity relationship (3-D QSAR) were used to build a quantitative screening and pharmacophore model of the VEGFR-2 receptors for design of inhibitors with improved activities. Most of available experimental data information has been used as training set to derive optimized and fully cross-validated eight mono-probe and a multi-probe quantitative models. Notable is the use of 262 molecules, aligned following both structure-based and ligand-based protocols, as external test set confirming the 3-D QSAR models' predictive capability and their usefulness in design new VEGFR-2 inhibitors. From a survey on literature, this is the first generation of a wide-ranging computational medicinal chemistry application on VEGFR2 inhibitors.

  14. Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps

    NASA Astrophysics Data System (ADS)

    Belgio, Erica; Kapitonova, Ekaterina; Chmeliov, Jevgenij; Duffy, Christopher D. P.; Ungerer, Petra; Valkunas, Leonas; Ruban, Alexander V.

    2014-07-01

    The light-harvesting antenna of higher plant photosystem II has an intrinsic capability for self-defence against intense sunlight. The thermal dissipation of excess energy can be measured as the non-photochemical quenching of chlorophyll fluorescence. It has recently been proposed that the transition between the light-harvesting and self-defensive modes is associated with a reorganization of light-harvesting complexes. Here we show that despite structural changes, the photosystem II cross-section does not decrease. Our study reveals that the efficiency of energy trapping by the non-photochemical quencher(s) is lower than the efficiency of energy capture by the reaction centres. Consequently, the photoprotective mechanism works effectively for closed rather than open centres. This type of defence preserves the exceptional efficiency of electron transport in a broad range of light intensities, simultaneously ensuring high photosynthetic productivity and, under hazardous light conditions, sufficient photoprotection for both the reaction centre and the light-harvesting pigments of the antenna.

  15. Gyrotropic response in the absence of a bias field.

    PubMed

    Wang, Zhiyu; Wang, Zheng; Wang, Jingyu; Zhang, Bin; Huangfu, Jiangtao; Joannopoulos, John D; Soljačić, Marin; Ran, Lixin

    2012-08-14

    Electromagnetic materials lacking local time-reversal symmetry, such as gyrotropic materials, are of keen interest and importance both scientifically and technologically. Scientifically, topologically nontrivial phenomena, such as photonic chiral edge states, allow for reflection-free transport even in the presence of large disorder. Technologically, nonreciprocal photonic devices, such as optical isolators and circulators, play critical roles in optical communication and computing technologies because of their ability to eliminate cross-talk and feedback. Nevertheless, most known natural materials that lack local time-reversal symmetry require strong external fields and function only in a limited range of the electromagnetic spectrum. By taking advantage of metamaterials capable of translating the property of unidirectional active electronic circuits into effective dielectric response, we introduce a microwave gyrotropic metamaterial that does not require an external magnetic bias. Strong bulk Faraday-like effects, observed in both simulations and experiments, confirm nonreciprocity of the effective medium. This approach is scalable to many other wavelengths, and it also illustrates an opportunity to synthesize exotic electromagnetic materials.

  16. Atmospheric Observations from Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    2008-01-01

    Unmanned Aircraft Systems (UASs) provide a new and exciting avenue for atmospheric observations. NASA has a number of UASs. Amongst these are the Ikhana (24 hrs., 7000 km), the Altair (120 hrs., 6500 km), the Aerosonde (30 hrs., 3000 km), and the Global Hawk (30 hrs., 22,000 km). This presentation provides a brief history of UASs which is followed by a description of their capabilities. The presentation concludes by describing an example mission - the UAS Aura Validation Experiment (UAS-AVE). This mission will be flown on the NASA Global Hawk in the Spring/Summer of 2009. The goals fo the mission are to: 1) provide Aura validation observations, 2) sample the break up of the Arctic polar vortex, 3) observed cross-Pacific transport of aerosols and pollutants such as ozone, and 4) sample intense water advective events that impact the U.S. west coast (atmospheric rivers). Because of their range and duration, UASs provide new and exciting opportunities for atmospheric science.

  17. Military microwaves '84; Proceedings of the Conference, London, England, October 24-26, 1984

    NASA Astrophysics Data System (ADS)

    The present conference on microwave frequency electronic warfare and military sensor equipment developments consider radar warning receivers, optical frequency spread spectrum systems, mobile digital communications troposcatter effects, wideband bulk encryption, long range air defense radars (such as the AR320, W-2000 and Martello), multistatic radars, and multimode airborne and interceptor radars. IR system and subsystem component topics encompass thermal imaging and active IR countermeasures, class 1 modules, and diamond coatings, while additional radar-related topics include radar clutter in airborne maritime reconnaissance systems, microstrip antennas with dual polarization capability, the synthesis of shaped beam antenna patterns, planar phased arrays, radar signal processing, radar cross section measurement techniques, and radar imaging and pattern analysis. Attention is also given to optical control and signal processing, mm-wave control technology and EW systems, W-band operations, planar mm-wave arrays, mm-wave monolithic solid state components, mm-wave sensor technology, GaAs monolithic ICs, and dielectric resonator and wideband tunable oscillators.

  18. Improvement of one-nucleon removal and total reaction cross sections in the Liège intranuclear-cascade model using Hartree-Fock-Bogoliubov calculations

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, Jose Luis; David, Jean-Christophe; Mancusi, Davide; Boudard, Alain; Cugnon, Joseph; Leray, Sylvie

    2017-11-01

    The prediction of one-nucleon-removal cross sections by the Liège intranuclear-cascade model has been improved using a refined description of the matter and energy densities in the nuclear surface. Hartree-Fock-Bogoliubov calculations with the Skyrme interaction are used to obtain a more realistic description of the radial-density distributions of protons and neutrons, as well as the excitation-energy uncorrelation at the nuclear surface due to quantum effects and short-range correlations. The results are compared with experimental data covering a large range of nuclei, from carbon to uranium, and projectile kinetic energies. We find that the new approach is in good agreement with experimental data of one-nucleon-removal cross sections covering a broad range in nuclei and energies. The new ingredients also improve the description of total reaction cross sections induced by protons at low energies, the production cross sections of heaviest residues close to the projectile, and the triple-differential cross sections for one-proton removal. However, other observables such as quadruple-differential cross sections of coincident protons do not present any sizable sensitivity to the new approach. Finally, the model is also tested for light-ion-induced reactions. It is shown that the new parameters can give a reasonable description of the nucleus-nucleus total reaction cross sections at high energies.

  19. Soviet short-range nuclear forces: flexible response or flexible aggression. Student essay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, T.R.

    1987-03-23

    This essay takes a critical look at Soviet short-range nuclear forces in an effort to identify Soviet capabilities to fight a limited nuclear war with NATO. From an analysis of Soviet military art, weapon-system capabilities and tactics, the author concludes that the Soviets have developed a viable limited-nuclear-attack option. Unless NATO reacts to this option, the limited nuclear attack may become favored Soviet option and result in the rapid defeat of NATO.

  20. Major Range and Test Facility Base Summary of Capabilities.

    DTIC Science & Technology

    1983-06-01

    TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A 3,i 4, S °.I i L -. ~ . % o,. ° . - ° . - . .I ¢ PHOTOGRAPH THIS SHEET LEVEL INVENTORY DOCUMENT...NUMBER DOD 3200.11-D 4. TTLE(~dS..tt~t@) S TYPE Of REPORT a PERIO’ COVERED Major Range and Test Facility Base Summary Reference Maerial of Capabilities...Electronic Warfare, Command, Control Communications and Intelligence (C31) Surveillance, Jammers, Radar, Test Facility ZG5 ABETW ACT f~ a "Afie Afr- s 444 eF~f

  1. Summary of photovoltaic system performance models

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Reiter, L. J.

    1984-01-01

    A detailed overview of photovoltaics (PV) performance modeling capabilities developed for analyzing PV system and component design and policy issues is provided. A set of 10 performance models are selected which span a representative range of capabilities from generalized first order calculations to highly specialized electrical network simulations. A set of performance modeling topics and characteristics is defined and used to examine some of the major issues associated with photovoltaic performance modeling. Each of the models is described in the context of these topics and characteristics to assess its purpose, approach, and level of detail. The issues are discussed in terms of the range of model capabilities available and summarized in tabular form for quick reference. The models are grouped into categories to illustrate their purposes and perspectives.

  2. Precision CW laser automatic tracking system investigated

    NASA Technical Reports Server (NTRS)

    Lang, K. T.; Lucy, R. F.; Mcgann, E. J.; Peters, C. J.

    1966-01-01

    Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range.

  3. Guidelines for Applying the Capability Maturity Model Analysis to Connected and Automated Vehicle Deployment

    DOT National Transportation Integrated Search

    2017-11-23

    The Federal Highway Administration (FHWA) has adapted the Transportation Systems Management and Operations (TSMO) Capability Maturity Model (CMM) to describe the operational maturity of Infrastructure Owner-Operator (IOO) agencies across a range of i...

  4. The decay of isotropic magnetohydrodynamics turbulence and the effects of cross-helicity

    NASA Astrophysics Data System (ADS)

    Briard, Antoine; Gomez, Thomas

    2018-02-01

    Decaying homogeneous and isotropic magnetohydrodynamics (MHD) turbulence is investigated numerically at large Reynolds numbers thanks to the eddy-damped quasi-normal Markovian (EDQNM) approximation. Without any background mean magnetic field, the total energy spectrum scales as -3/2$ in the inertial range as a consequence of the modelling. Moreover, the total energy is shown, both analytically and numerically, to decay at the same rate as kinetic energy in hydrodynamic isotropic turbulence: this differs from a previous prediction, and thus physical arguments are proposed to reconcile both results. Afterwards, the MHD turbulence is made imbalanced by an initial non-zero cross-helicity. A spectral modelling is developed for the velocity-magnetic correlation in a general homogeneous framework, which reveals that cross-helicity can contain subtle anisotropic effects. In the inertial range, as the Reynolds number increases, the slope of the cross-helical spectrum becomes closer to -5/3$ than -2$ . Furthermore, the Elsässer spectra deviate from -3/2$ with cross-helicity at large Reynolds numbers. Regarding the pressure spectrum P$ , its kinetic and magnetic parts are found to scale with -2$ in the inertial range, whereas the part due to cross-helicity rather scales in -7/3$ . Finally, the two rd laws for the total energy and cross-helicity are assessed numerically at large Reynolds numbers.

  5. Crossing borders -- the global dimension of rust monitoring

    USDA-ARS?s Scientific Manuscript database

    Rust pathogens are highly mobile trans-boundary organisms capable of rapid, long distance movements, either by wind-assisted or accidental human-mediated transmission. Emergence of new virulent races in one country can very rapidly have implications for other countries or regions. Detection of stem ...

  6. Intellectual Entrepreneurship as a Platform for Transforming Higher Education

    ERIC Educational Resources Information Center

    Beckman, Gary D.; Cherwitz, Richard A.

    2008-01-01

    The thesis of this article is that "Intellectual Entrepreneurship (IE)" provides an intellectually authentic philosophical foundation capable of sustaining cross-campus entrepreneurship education. Drawing upon initiatives begun at The University of Texas at Austin, we document how IE educates "citizen-scholars." Specifically,…

  7. Nanotemplated polyelectrolyte films as porous biomolecular delivery systems

    PubMed Central

    Gand, Adeline; Hindié, Mathilde; Chacon, Diane; van Tassel, Paul R; Pauthe, Emmanuel

    2014-01-01

    Biomaterials capable of delivering controlled quantities of bioactive agents, while maintaining mechanical integrity, are needed for a variety of cell contacting applications. We describe here a nanotemplating strategy toward porous, polyelectrolyte-based thin films capable of controlled biomolecular loading and release. Films are formed via the layer-by-layer assembly of charged polymers and nanoparticles (NP), then chemically cross-linked to increase mechanical rigidity and stability, and finally exposed to tetrahydrofuran to dissolve the NP and create an intra-film porous network. We report here on the loading and release of the growth factor bone morphogenetic protein 2 (BMP-2), and the influence of BMP-2 loaded films on contacting murine C2C12 myoblasts. We observe nanotemplating to enable stable BMP-2 loading throughout the thickness of the film, and find the nanotemplated film to exhibit comparable cell adhesion, and enhanced cell differentiation, compared with a non-porous cross-linked film (where BMP-2 loading is mainly confined to the film surface). PMID:25482416

  8. Quality assessment of noodles made from blends of rice flour and canna starch.

    PubMed

    Wandee, Yuree; Uttapap, Dudsadee; Puncha-arnon, Santhanee; Puttanlek, Chureerat; Rungsardthong, Vilai; Wetprasit, Nuanchawee

    2015-07-15

    Canna starch and its derivatives (retrograded, retrograded debranched, and cross-linked) were evaluated for their suitability to be used as prebiotic sources in a rice noodle product. Twenty percent of the rice flour was replaced with these tested starches, and the noodles obtained were analyzed for morphology, cooking qualities, textural properties, and capability of producing short-chain fatty acids (SCFAs). Cross-linked canna starch could increase tensile strength and elongation of rice noodles. Total dietary fiber (TDF) content of noodles made from rice flour was 3.0% and increased to 5.1% and 7.3% when rice flour was replaced with retrograded and retrograded debranched starches, respectively. Cooking qualities and textural properties of noodles containing 20% retrograded debranched starch were mostly comparable, while the capability of producing SCFAs and butyric acid was superior to the control rice noodles; the cooked noodle strips also showed fewer tendencies to stick together. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nanotemplated polyelectrolyte films as porous biomolecular delivery systems. Application to the growth factor BMP-2.

    PubMed

    Gand, Adeline; Hindié, Mathilde; Chacon, Diane; Van Tassel, Paul R; Pauthe, Emmanuel

    2014-01-01

    Biomaterials capable of delivering controlled quantities of bioactive agents, while maintaining mechanical integrity, are needed for a variety of cell contacting applications. We describe here a nanotemplating strategy toward porous, polyelectrolyte-based thin films capable of controlled biomolecular loading and release. Films are formed via the layer-by-layer assembly of charged polymers and nanoparticles (NP), then chemically cross-linked to increase mechanical rigidity and stability, and finally exposed to tetrahydrofuran to dissolve the NP and create an intra-film porous network. We report here on the loading and release of the growth factor bone morphogenetic protein 2 (BMP-2), and the influence of BMP-2 loaded films on contacting murine C2C12 myoblasts. We observe nanotemplating to enable stable BMP-2 loading throughout the thickness of the film, and find the nanotemplated film to exhibit comparable cell adhesion, and enhanced cell differentiation, compared with a non-porous cross-linked film (where BMP-2 loading is mainly confined to the film surface).

  10. Controlled molecular self-assembly of complex three-dimensional structures in soft materials

    PubMed Central

    Huang, Changjin; Quinn, David; Suresh, Subra

    2018-01-01

    Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. PMID:29255037

  11. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo.

    PubMed

    Sharma, Sunil V; Tong, Xiaoxue; Pubill-Ulldemolins, Cristina; Cartmell, Christopher; Bogosyan, Emma J A; Rackham, Emma J; Marelli, Enrico; Hamed, Refaat B; Goss, Rebecca J M

    2017-08-09

    Marrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C-Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures.Coupling synthetic biology and chemical reactions in cells is a challenging task. The authors engineer bacteria capable of generating bromo-metabolites, develop a mild Suzuki-Miyaura cross-coupling reaction compatible with cell growth and carry out the cross-coupling chemistry in live cell cultures.

  12. Compact and low cross-talk silicon-on-insulator crossing using a periodic dielectric waveguide.

    PubMed

    Feng, Junbo; Li, Qunqing; Fan, Shoushan

    2010-12-01

    We propose and experimentally demonstrate a compact, highly efficient, and negligible cross-talk silicon-on-insulator crossing using a periodic dielectric waveguide. The crossing occupies a footprint of less than 4 μm × 4 μm. Around 0.7 dB insertion loss and lower than -40 dB, cross talk was achieved experimentally over a broad wavelength range.

  13. Parametric Weight Study of Cryogenic Metallic Tanks for the ``Bimodal'' NTR Mars Vehicle Concept

    NASA Astrophysics Data System (ADS)

    Kosareo, Daniel N.; Roche, Joseph M.

    2006-01-01

    A parametric weight assessment of large cryogenic metallic tanks was conducted using the design optimization capabilities in the ANSYS ® finite element analysis code. This analysis was performed to support the sizing of a ``bimodal'' nuclear thermal rocket (NTR) Mars vehicle concept developed at the NASA Glenn Research Center. The tank design study was driven by two load conditions: an in-line, ``Shuttle-derived'' heavy-lift launch with the tanks filled and pressurized, and a burst-test pressure. The main tank structural arrangement is a state-of-the art metallic construction which uses an aluminum-lithium alloy stiffened internally with a ring and stringer framework. The tanks must carry liquid hydrogen in separate launches to orbit where all vehicle components will dock and mate. All tank designs stayed within the available mass and payload volume limits of both the in-line heavy lift and Shuttle derived launch vehicles. Weight trends were developed over a range of tank lengths with varying stiffener cross-sections and tank wall thicknesses. The object of this parametric study was to verify that the proper mass was allocated for the tanks in the overall vehicle sizing model. This paper summarizes the tank weights over a range of tank lengths.

  14. Stand-off detection of explosives vapors by resonance-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Johansson, Ida; Ceco, Ema; Ehlerding, Anneli; Östmark, Henric

    2013-06-01

    This paper describes a system for stand-off vapor detection based on Resonant Raman spectroscopy, RRS. The system is a step towards a RRS LIDAR (Light Detection And Ranging) system, capable of detecting vapors from explosives and explosives precursors at long distances. The current system was used to detect the vapor of nitromethane and mononitrotoluene outdoors in the open air, at a stand-off distance of 11-13 meters. Also, the signal dependence upon irradiation wavelength and sample concentration was studied in controlled laboratory conditions. A tunable Optical Parametric Oscillator pumped by an Nd:YAG laser, with a pulse length of 6 ns, was operated in the UV range of interest, 210-400 nm, illuminating the sample vapor. The backscattered Raman signal was collected by a telescope and a roundto- slit optical fiber was used to transmit collected light to the spectrometer with minimum losses. A gated intensified charge-coupled device (ICCD) registered the spectra. The nitromethane cross section was resonance enhanced more than a factor 30 700, when measured at 220 nm, compared to the 532 nm value. The results show that a decrease in concentration can have a positive effect on the sensitivity of the system, due to a decrease in absorption and selfabsorption in the sample.

  15. Tailoring the thermal conductivity of the powder bed in Electron Beam Melting (EBM) Additive Manufacturing.

    PubMed

    Smith, C J; Tammas-Williams, S; Hernandez-Nava, E; Todd, I

    2017-09-05

    Metallic powder bed additive manufacturing is capable of producing complex, functional parts by repeatedly depositing thin layers of powder particles atop of each other whilst selectively melting the corresponding part cross-section into each layer. A weakness with this approach arises when melting overhanging features, which have no prior melted material directly beneath them. This is due to the lower thermal conductivity of the powder relative to solid material, which as a result leads to an accumulation of heat and thus distortion. The Electron Beam Melting (EBM) process alleviates this to some extent as the powder must first be sintered (by the beam itself) before it is melted, which results in the added benefit of increasing the thermal conductivity. This study thus sought to investigate to what extent the thermal conductivity of local regions in a titanium Ti-6Al-4V powder bed could be varied by imparting more energy from the beam. Thermal diffusivity and density measurements were taken of the resulting sintered samples, which ranged from being loosely to very well consolidated. It was found that the calculated thermal conductivity at two temperatures, 40 and 730 °C, was more than doubled over the range of input energies explored.

  16. The Heliophysics Data Environment Today

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; McGuire, R.; Roberts, D. A.

    2008-01-01

    Driven by the nature of the research questions now most critical to further progress in heliophysics science, data-driven research has evolved from a model once centered on individual instrument Principal investigator groups and a circle of immediate collaborators into a more inclusive and open environment where data gathered ay great public cost must then be findable and useable throughout the broad national and international research community. In this paper and as an introduction to this special session, we will draw a picture of existing and evolving resources throughout the heliophyscs community, the capabilities and data now available to end users, and the relationships and complementarity of different elements in the environment today. We will cite the relative roles of mission and instrument data centers and resident archives, multi-mission data centers, and the growing importance of virtual discipline observatories and cross-cutting services including the evolution of a common data dictionary. We will briefly summarize our view of the most important challenges still faced by users and providers, and our vision in ow the efforts today can evolve into a more and more enabling data framework for the global research community to tap the widest range of existing missions and their data to address a full range of critical science questions from the scale of microphysics to the heliospheric system as a whole.

  17. A double-cusp type electrostatic analyzer for high-cadence ring current ion measurements

    NASA Astrophysics Data System (ADS)

    Ogasawara, K.; Allegrini, F.; Burch, J. L.; Desai, M. I.; Ebert, R. W.; Goldstein, J.; John, J. M.; Livi, S. A.; McComas, D. J.

    2015-12-01

    Detailed observations of a variety of ion species at a sufficiently high temporal resolution are essential to understanding the loss and acceleration processes of ring current ions. For example, CRESS/MICS observations indicated that the energy density of suprathermal O+ exceeds that of H+ in large magnetic storms (Daglis et al., 1997), while the H+ energy density dominates under quiet conditions. However, the primary ion loss processes during the storm recovery phase are still incompletely understood. The mechanisms to accelerate upflowing ions, regularly observed with energies of a few keV at ~1000 km altitude, up to the 100s-keV range in the geospace are also not fully understood. Our novel electrostatic analyzer (ESA) employs a toroidal double-shell structure to cover the entire ring current ion range of ~3-250 keV/Q with high temporal resolution (<1 minute with a necessary counting statistics for the quiet time), while saving significant resources in mass and size. In this presentation, we discuss the operation principle and the proof of concept study of the ESA in terms of numerical calculations and ion beam calibration activities. This presentation comprehensively covers the expected sensor performance important for the in-flight capabilities, such as sensor parameters (G-factor, K-factor, and energy resolution), cross-shell contaminations, and UV background counts.

  18. Measurement of Kα and Kβ fluorescence cross sections for elements in the range 44<=Z<=68 at 59.5 keV

    NASA Astrophysics Data System (ADS)

    Budak, G.; Karabulut, A.; Demir, L.; Sahin, Y.

    1999-09-01

    The Kα and Kβ x-ray fluorescence cross sections have been measured for elements in the range 44<=Z<=68 at an excitation energy of 59.5-keV γ ray from 241Am radioisotope with a Si(Li) detector. A reasonable agreement is found between the present experimental results and the theoretically calculated values based on photoionization cross sections by Scofield using Hartree-Slater and Hartree-Fock central potential theory.

  19. Experimental Cross Sections of Fission Fragments of Thorium-232 Irradiated with Medium-Energy Protons

    NASA Astrophysics Data System (ADS)

    Libanova, O. N.; Golubeva, E. S.; Ermolaev, S. V.; Matushko, V. L.; Botvina, A. S.

    2018-05-01

    This paper is focused on fission of Th-232 nuclei induced by protons with energies ranging from 20 to 140 MeV. This energy range is the most informative for studying the competition between asymmetric and symmetric fission modes. Experimental cross sections of production of radionuclides in thorium targets have been determined a year after irradiation. The corresponding theoretical values are calculated using the cascade-evaporation-fission model. The theoretical and experimental cross sections (literature data included) are compared.

  20. Extrapolative capability of two models that estimating soil water retention curve between saturation and oven dryness.

    PubMed

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Sun, Shiyou

    2014-01-01

    Accurate estimation of soil water retention curve (SWRC) at the dry region is required to describe the relation between soil water content and matric suction from saturation to oven dryness. In this study, the extrapolative capability of two models for predicting the complete SWRC from limited ranges of soil water retention data was evaluated. When the model parameters were obtained from SWRC data in the 0-1500 kPa range, the FX model (Fredlund and Xing, 1994) estimations agreed well with measurements from saturation to oven dryness with RMSEs less than 0.01. The GG model (Groenevelt and Grant, 2004) produced larger errors at the dry region, with significantly larger RMSEs and MEs than the FX model. Further evaluations indicated that when SWRC measurements in the 0-100 kPa suction range was applied for model establishment, the FX model was capable of producing acceptable SWRCs across the entire water content range. For a higher accuracy, the FX model requires soil water retention data at least in the 0- to 300-kPa range to extend the SWRC to oven dryness. Comparing with the Khlosi et al. (2006) model, which requires measurements in the 0-500 kPa range to reproduce the complete SWRCs, the FX model has the advantage of requiring less SWRC measurements. Thus the FX modeling approach has the potential to eliminate the processes for measuring soil water retention in the dry range.

Top