Sample records for cross river state

  1. An Evaluation of the Science Education Component of the Cross River State Science and Technical Education Project

    ERIC Educational Resources Information Center

    Ekuri, Emmanuel Etta

    2012-01-01

    The Cross River State Science and Technical Education Project was introduced in 1992 by edict number 9 of 20 December 1991, "Cross River State Science and Technical Education Board Edit, 20 December, 1991", with the aim of improving the quality of science teaching and learning in the state. As the success of the project depends…

  2. Lecturers' Perception of Research Activities for Knowledge Production in Universities in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Uchendu, C. C.; Osim, R. O.; Odigwe, F. N.; Alade, F. N.

    2014-01-01

    This study examined lecturers' perception of research activities for knowledge production in universities in Cross River State, Nigeria. Two hypotheses were isolated to give direction to this investigation. 240 university lecturers were sampled from a population of 1,868 from the two universities in Cross River State, using stratified random…

  3. Occupational Stress and Management Strategies of Secondary School Principals in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Anyanwu, Joy; Ezenwaji, Ifeyinwa; Okenjom, Godian; Enyi, Chinwe

    2015-01-01

    The study aimed at finding out sources and symptoms of occupational stress and management strategies of principals in secondary schools in Cross River State, Nigeria. Descriptive survey research design was adopted for the study with a population of 420 principals (304 males and 116 females) in secondary schools in Cross River State, Nigeria. Three…

  4. Youth Empowerment in Higher Education for Sustainable Development of Developing Communities in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Ekpiken, William E.; Ukpabio, Godfrey U.

    2015-01-01

    This paper was an attempt to examine youth empowerment in higher education for sustainable development of developing communities in Cross River State in Nigeria. In Cross River State developing communities, youths are in the majority and form a very strong formidable force in the society we live, study, but are not empowered while in school nor…

  5. On the Far Bank: The Effects of Gap Crossing on Operational Reach

    DTIC Science & Technology

    2015-05-25

    operations. 15. SUBJECT TERMS United States Army; Gap crossing; River crossing; Operational reach; Operation Market -Garden; Operation Plunder...3 Case Study: Operation Market Garden...successful gap crossing. The Allied failure in Operation Market -Garden during World War II showed that successfully crossing a river such as the Waal does

  6. Curriculum Review Evaluation on Entrepreneurial Education in Cross River State Higher Institutions

    ERIC Educational Resources Information Center

    Ambekeh, Udida Lucy

    2013-01-01

    This study investigated curriculum organization and delivery towards functional entrepreneurial education transformation of students in Higher Institutions in Cross River State -- Nigeria. To guide the conduct of this study, two research questions and one hypothesis were formulated. Proportionate stratified sampling technique was used in the…

  7. Italian river crossing; Horizontal drilling meets pipeline project criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-06-01

    The River Piave flows out of the Italian Alps, crossing the Veneto farmlands on its way to the Adriatic Sea. It is an important commerce-carrying waterway. SNAM, the Italian state gas pipeline company, wanted to install a 22-in. pipeline across the Piave just north of Venice. The method chosen for crossing the river had to meet several important criteria. InArc had used its river crossing method on seven previous SNAM projects and recommended the Piave crossing should be drilled. This paper describes the use of this horizontal drilling method for this application.

  8. Analysis of stated preference survey data for river-crossing travel behavior in the Portland/Vancouver metropolitan area

    DOT National Transportation Integrated Search

    1997-01-01

    The MPO in the Southwest Washington and Oregon initiated a major activity and travel behavior survey from the Spring of 1994 to the Fall 1994, including the Stated Preference survey for river-crossing trip behavior. The purpose of the survey is to ga...

  9. Entrepreneurial Training Needs of Illiterate Women in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Ingwu, Emmanuel U.; Okey, Stella-Maris A.

    2013-01-01

    In order to improve on the curriculum and participation rate of adult learners in the current Adult Basic Education (ABE) program in Nigeria, this explorative study investigated the entrepreneurial (or vocational) training needs of illiterate women in Cross River State (CRS). Three research questions were posed to elicit from the participants…

  10. Academic Staff Utilization of Information and Communication Technology and Knowledge Creation in Cross River State Universities

    ERIC Educational Resources Information Center

    Ekpoh, Uduak Imo; Etor, Comfort Robert

    2012-01-01

    This study examined academic staff utilization of Information and Communication Technology (ICT) in knowledge creation in universities in Cross River State. The study was guided by two research questions and one hypothesis. A questionnaire was developed, validated and used for data collection from a sample of 300 academic staff. Descriptive…

  11. Marketing Strategies and Students' Enrolment in Private Secondary Schools in Calabar Municipality, Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Uchendu, Chika C.; Nwafor, Innocent A.; Nwaneri, Mary G.

    2015-01-01

    The study investigated marketing strategies and students' enrolment in private secondary schools in Calabar Municipality, Cross River State. One research question was raised and two null hypotheses formulated to guide the study. Thirty two (32) school administrators in 32 private secondary schools in the study area constitute the study population…

  12. Prevalence, Causes and Effects of Bullying in Tertiary Institutions in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Ada, Mary Juliana; Okoli, Georgina; Obeten, Okoi Okorn; Akeke, M. N. G.

    2016-01-01

    This research is an evaluation of the impact of causes, consequences and effects of bullying in academic setting on student academic performance in tertiary institutions in Cross River State, Nigeria. The research made use of purposive and random sampling techniques made up of 302 students. Questionnaire served as the data collection instrument.…

  13. Teacher Factors and Perceived Assessment Practices Needs of Social Studies Teachers in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Ekuri, Emmanuel Etta; Egbai, Julius Michael; Ita, Caroline Iserome

    2011-01-01

    This study evaluated perceived assessment practices needs among social studies teachers in Cross River State, Nigeria, in relation to some teacher factors (attitude towards social studies, sex, teaching experience and educational qualification). Subjects who participated in this study were 297 social studies teachers (144 males and 153 females)…

  14. Politics of Leadership and Implementation of Educational Policies and Programmes of Tertiary Institutions in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Ekpiken, W. E.; Ifere, Francis O.

    2015-01-01

    This paper examines issues of politics of leadership and implementation of Educational policies and programmes of tertiary institutions in Cross River State with a view to determine the problems are situated and suggest the way forward. It examines the concept of politics of education, concept of leadership, meaning of planning and generation of…

  15. Assessing Teaching Readiness of University Students in Cross River State, Nigeria: Implications for Managing Teacher Education Reforms

    ERIC Educational Resources Information Center

    Akuegwu, B. A.; Edet, A. O.; Uchendu, C. C.; Ekpoh, U. I.

    2011-01-01

    This ex-post-facto designed study was geared towards assessing the readiness of would-be teachers in universities in Cross River State for the teaching profession, and how reforms can be managed to strengthen this. Three hypotheses were isolated to give direction to this investigation. 200 students from the two universities in the state…

  16. Resource Availability and Distribution in Public and Private Special Education Schools in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Ntukidem, Peter James; Ntukidem, Eno Peter; Eyo, Eno Etudor

    2011-01-01

    This study investigated the availability and distribution of staff and facilities/equipment in private and public special needs schools in Cross River State. Sixty-nine (69) teachers and three (3) principals of these schools constituted the sample size of the study. One hypothesis and one research question were postulated to guide the study. The…

  17. Entrepreneurship Education and Career Intentions of Tertiary Education Students in Akwa Ibom and Cross River States, Nigeria

    ERIC Educational Resources Information Center

    Ekpoh, Uduak Imo; Edet, Aniefiok Oswald

    2011-01-01

    This paper explores the impact of entrepreneurship education on career intentions among 500 students drawn from two universities in Akwa Ibom and Cross River States of Nigeria. The study adopted a survey design. Two research questions and two hypotheses were raised for the study. Data were collected using a structured questionnaire titled…

  18. Public Perception of the Millennium Development Goals on Access to Safe Drinking Water in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Eni, David D.; Ojong, William M.

    2014-01-01

    This study evaluated the public perception of Millennium Development Goals (MDGs) of environmental sustainability with focus on the MDG target which has to do with reducing the proportion of people without access to safe drinking water in Cross River State, Nigeria. The stratified and systematic sampling techniques were adopted for the study,…

  19. Western and Traditional Educational Background of Midwives and Delivery Pain Control among Women in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Oyira, Emilia James; Emon, Umoe Duke; Essien, N. C.; Ekpenyong, Affiong Onoyom

    2015-01-01

    This study sought to investigate western and traditional educational background of midwives with regard to their effectiveness in delivery pain control in Cross River State-Nigeria. To achieve this purpose, two null hypotheses were formulated to guide the investigation. The study adopted the survey design. The sample consisted of 360 post-natal…

  20. Sports Participation and Social Personality Variable of Students in Secondary Schools in Central Senatorial District of Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Edim, M. E.; Odok, E. A.

    2015-01-01

    The main thrust of this study was to investigate sports participation and social personality variable of students in secondary schools in Central Senatorial District of Cross River State, Nigeria. To achieve the purpose of this study, one hypothesis was formulated to guide the study. Literature review was carried out according to the variable of…

  1. Instructional Supervisory Practices and Teachers' Role Effectiveness in Public Secondary Schools in Calabar South Local Government Area of Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Sule, Mary Anike; Eyiene, Ameh; Egbai, Mercy E.

    2015-01-01

    The study investigated the relationship between instructional supervisory practices and teachers' role effectiveness in public secondary schools in Calabar South Local Government Area of Cross River State. Two null hypotheses were formulated to guide the study. Ex-post facto research design was adopted for the study. The population of the study…

  2. Comparative Analysis of Selected Motor Fitness Profile of Football Referees in Cross River and AKWA IBOM States, Nigeria

    ERIC Educational Resources Information Center

    Ogabor, J. O.; Sanusi, M.; Saulawa, A. I.

    2015-01-01

    The purpose of this study was to compare selected motor fitness profile of football referees in Cross River and Akwa Ibom States. Motor fitness profiles compared were running speed and agility of the referees. Standardized equipment and procedures were employed in the tests. To achieve the objectives of the study, two research hypotheses were…

  3. Promoting Peace Education for Behaviourial Changes in Public Secondary Schools in Calabar Municipality Council Area, Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Uko, E. S.; Igbineweka, P. O.; Odigwe, F. N.

    2015-01-01

    This study aimed at investigating the promotion of peace education for behavioural changes in public secondary schools in Calabar Municipal Council Area of Cross River State. A descriptive survey design was adopted for the study. A set of questionnaire items were validated and used for the collection of data involving 310 respondents, selected…

  4. Bridging Policy Implementation Gaps in Nigerian Education System: A Case Study of Universal Basic Education Programme in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Ogbiji, Joseph Etiongbie; Ogbiji, Sylvanus Achua

    2016-01-01

    This research focuses on identifying policy gaps in the implementation of Universal Basic Education (UBE) programme in Nigeria, with Cross River State being the study area. The three research questions used for the research center on the extent of the freeness of the UBE, the extent to which the programme has stimulated educational consciousness…

  5. Evaluation of Cross River State Access of Matching Grants for the Implementation of UBE Policies between 2010 and 2014

    ERIC Educational Resources Information Center

    Enu, Donald Bette; Opoh, Fredrick Awhen; Esu, A. E. O.

    2016-01-01

    This study focused on the evaluation of access of matching grants for the implementation of UBE policies in upper basic in Cross River State, Nigeria. To achieve the purpose of this study, a research question was posed to guide the study. Data were generated from SUBEB office and downloaded from UBE web site (www.ubec.com). The result was…

  6. Influence of Marital Stressors on Role Performance of Married Academic Women in Tertiary Institutions in Cross River State and Need for Counselling Therein

    ERIC Educational Resources Information Center

    Okpechi, Philip A.; Usani, Michael Okoi

    2015-01-01

    This study investigated the influence of marital stressors on role performance of married academic women of tertiary institutions in Cross River State. In order to accomplish the purpose of the study, two objectives and corresponding two hypotheses were postulated to guide the study. The survey research design was adopted in the study. A total of…

  7. Cheating Tendency in Examinations among Secondary School Students in Nigeria: A Case Study of Schools in the Odukpani Local Government Area, Cross River State

    ERIC Educational Resources Information Center

    Bisong, Nonso Ngozika; Akpama, Felicia; Edet, Pauline B.

    2009-01-01

    This study is designed to examine cheating tendency among secondary school students in Nigeria, with evidence from schools in the Odukpani Local Government Area of Cross River State. A total of 331 respondents in Senior Secondary 3 classes were randomly selected from 10 post-primary schools in the area. A survey questionnaire was used to elicit…

  8. The Influence of In-Service Training, Seminars and Workshops Attendance by Social Studies Teachers on Academic Performance of Students in Junior Secondary Schools In Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Essien, Ekpenyong Essien; Akpan, Okon Edem; Obot, Imo Martin

    2016-01-01

    This research examined the influence of in-service training, seminar and workshop attendance by social studies teachers on students' academic performance in Cross River State, Nigeria. To achieve the purpose of this study, one hypothesis was formulated to direct the study. Ex-post facto research design was adopted for the study. A sample of five…

  9. Understanding whose births get registered: a cross sectional study in Bauchi and Cross River states, Nigeria.

    PubMed

    Adi, Atam E; Abdu, Tukur; Khan, Amir; Rashid, Musa Haruna; Ebri, Ubi E; Cockcroft, Anne; Andersson, Neil

    2015-03-13

    It is a recognized child right to acquire a name and a nationality, and birth registration may be necessary to allow access to services, but the level of birth registration is low in Nigeria. A household survey about management of childhood illnesses provided an opportunity to examine actionable determinants of birth registration of children in Bauchi and Cross River states of Nigeria. Trained field teams visited households in a stratified random cluster sample of 90 enumeration areas in each state. They administered a questionnaire to women 14-49 years old which included questions about birth registration of their children 0-47 months old and about socio-economic and other factors potentially related to birth registration, including education of the parents, poverty (food sufficiency), marital status of the mother, maternal antenatal care and place of delivery of the last pregnancy. Bivariate then multivariate analysis examined associations with birth registration. Facilitators later conducted separate male and female focus group discussions in the same 90 communities in each state, discussing the reasons for the findings about levels of birth registration. Nearly half (45%) of 8602 children in Cross River State and only a fifth (19%) of 9837 in Bauchi State had birth certificates (seen or unseen). In both states, children whose mothers attended antenatal care and who delivered in a government health facility in their last pregnancy were more likely to have a birth certificate, as were children of more educated parents, from less poor households, and from urban communities. Focus group discussions revealed that many people did not know about birth certificates or where to get them, and parents were discouraged from getting birth certificates because of the unofficial payments involved. There are low levels of birth registration in Bauchi and Cross River states, particularly among disadvantaged households. As a result of this study, both states have planned interventions to increase birth registration, including closer collaboration between the National Population Commissions and state health services.

  10. A Cultural Resources Inventory of the Pearl River Basin, Louisiana and Mississippi. Volume II.

    DTIC Science & Technology

    1982-04-01

    its environs. 11 Finlay , A. ca. Map of the State of Louisiana. (L.S.U.) 1820 The boundaries of St. Tammany and Washington Parishes are defined. Carez...crossing the Pearl River. Author Unknown 1822 Mississippi. (M.S.U.) Several trails are shown crossing the Pearl River. Ford, N . Columbia, Monticello, and...Jackson, Mississippi are depicted. The Choctaw agency is shown at the northern part of the Pearl. County boundaries are defined. j Finlay , A. 1824

  11. Adaptive management of flows from dams: a win-win framework for water users

    USGS Publications Warehouse

    Irwin, Elise R.

    2013-01-01

    Alabama is blessed with more than 77,000 miles of rivers and streams that carve through the terrestrial landscape of the state. When you think about it, every road you drive on crosses a river and many of our major cities are located on the bank of a river. In fact, Alabama's capital cities - Cahawba (Dallas County; 1820-1826), Tuscaloosa (Tuscaloosa County; 1826-1846), and Montgomery County; 1846-present) - were all located on major rivers. It is estimated by the U.S. Geological Survey that 10 percent of the freshwater resources in the continental United States flows through Alabama. When you look at a map of its hydrology, the state is blue!

  12. Evaluation of pulmonary tuberculosis case detection improvement with the deployment of XpertMTB/Rif in the tuberculosis control program of cross River State, Nigeria.

    PubMed

    Ochang, Ernest Afu; Emanghe, Ubleni E; Ewa, Atana; Otu, Akaninyene; Offor, Jonah B; Odo, Micheal; Etokidem, Aniekan; Afirima, Barinadaa; Owuna, Oju Eni; Obeten, Sunday M; Meremikwu, Martin M

    2017-01-01

    Global indices show that Nigeria has the highest tuberculosis (TB)-related mortality rate. Overdependence on Ziehl-Neelsen (ZN) smear microscopy for diagnosis and human immunodeficiency virus (HIV)/AIDS has limited control efforts. The new polymerase chain reaction-based XpertMTB/Rif (Cepheid Inc., CA, USA), which detects Mycobacterium tuberculosis and rifampicin resistance, was introduced in Cross River State in 2014. We evaluated the increment in pulmonary TB case detection following introduction of XpertMTB/Rif into the Cross River State TB control program. Data from three XpertMTB/Rif centers in Cross River were prospectively collected from June 2014 to December 2015. One spot specimen and one early morning sputum specimen were collected from each patient and tested using microscopy while one specimen was used for XpertMTB/Rif. A total of 2326 patients comprising 47.4.0% (1103) males and 52.6% (1223) females were evaluated. Their mean age was 38.8 years (range 4-89 years); 42.6% (991) were HIV positive and 50.9% (1183) HIV negative, and for 6.5% (158) HIV status was unknown. XpertMTB/Rif detected M. tuberculosis in 22.9% (534) of patients, while 16.8% (391) were ZN smear positive. Smear microscopy missed 24.5% (131/534) of cases (P < 0.0001). When patients where categorized according to HIV status, XpertMTB/Rif detected 23.7% (280/1183) and ZN smear microscopy detected 18.5% (219/1183) of HIV-negative patients. XpertMTB/Rif detected 21.5% (213/991) and ZN smear 14.1% (140/991) of HIV-positive patients. TB case detection was significantly higher in HIV-negative patients than in HIV-positive patients when either XpertMTB/Rif and/or ZN was used (P = 0.018 and 0.012, respectively). The use of XpertMTB/Rif has significantly increased TB case detection and data in Cross River State. Scale-up of additional strategies such as culture is still required to improve TB detection in HIV patients.

  13. Developing an Approach to Prioritize River Restoration using Data Extracted from Flood Risk Information System Databases.

    NASA Astrophysics Data System (ADS)

    Vimal, S.; Tarboton, D. G.; Band, L. E.; Duncan, J. M.; Lovette, J. P.; Corzo, G.; Miles, B.

    2015-12-01

    Prioritizing river restoration requires information on river geometry. In many states in the US detailed river geometry has been collected for floodplain mapping and is available in Flood Risk Information Systems (FRIS). In particular, North Carolina has, for its 100 Counties, developed a database of numerous HEC-RAS models which are available through its Flood Risk Information System (FRIS). These models that include over 260 variables were developed and updated by numerous contractors. They contain detailed surveyed or LiDAR derived cross-sections and modeled flood extents for different extreme event return periods. In this work, over 4700 HEC-RAS models' data was integrated and upscaled to utilize detailed cross-section information and 100-year modelled flood extent information to enable river restoration prioritization for the entire state of North Carolina. We developed procedures to extract geomorphic properties such as entrenchment ratio, incision ratio, etc. from these models. Entrenchment ratio quantifies the vertical containment of rivers and thereby their vulnerability to flooding and incision ratio quantifies the depth per unit width. A map of entrenchment ratio for the whole state was derived by linking these model results to a geodatabase. A ranking of highly entrenched counties enabling prioritization for flood allowance and mitigation was obtained. The results were shared through HydroShare and web maps developed for their visualization using Google Maps Engine API.

  14. Consistent initial conditions for the Saint-Venant equations in river network modeling

    NASA Astrophysics Data System (ADS)

    Yu, Cheng-Wei; Liu, Frank; Hodges, Ben R.

    2017-09-01

    Initial conditions for flows and depths (cross-sectional areas) throughout a river network are required for any time-marching (unsteady) solution of the one-dimensional (1-D) hydrodynamic Saint-Venant equations. For a river network modeled with several Strahler orders of tributaries, comprehensive and consistent synoptic data are typically lacking and synthetic starting conditions are needed. Because of underlying nonlinearity, poorly defined or inconsistent initial conditions can lead to convergence problems and long spin-up times in an unsteady solver. Two new approaches are defined and demonstrated herein for computing flows and cross-sectional areas (or depths). These methods can produce an initial condition data set that is consistent with modeled landscape runoff and river geometry boundary conditions at the initial time. These new methods are (1) the pseudo time-marching method (PTM) that iterates toward a steady-state initial condition using an unsteady Saint-Venant solver and (2) the steady-solution method (SSM) that makes use of graph theory for initial flow rates and solution of a steady-state 1-D momentum equation for the channel cross-sectional areas. The PTM is shown to be adequate for short river reaches but is significantly slower and has occasional non-convergent behavior for large river networks. The SSM approach is shown to provide a rapid solution of consistent initial conditions for both small and large networks, albeit with the requirement that additional code must be written rather than applying an existing unsteady Saint-Venant solver.

  15. Sediment transport and deposition on a river-dominated tidal flat: An idealized model study

    USGS Publications Warehouse

    Sherwood, Christopher R.; Chen, Shih-Nan; Geyer, W. Rockwell; Ralston, David K.

    2010-01-01

    A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL < 1, leading to more trapping for the faster settling classes. Sensitivity studies show that including stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.

  16. Sele coastal plain flood risk due to wave storm and river flow interaction

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub-critical simulation, the boundary condition is a known downstream WSE, in this case the elevated water level due to wave setup, wind setup and inverted barometer, while the upstream boundary condition consisted in WSE corresponding to river discharges associated to different return periods. The results of the simulations evidence, for the last 10 kilometers of the river, the burst of critical inundation scenarios even with moderate flow discharge, if associated with concurrent storm surge which increase the water level at the river mouth, obstructing normal flow discharge.

  17. Estimating Peak-Flow Frequency Statistics for Selected Gaged and Ungaged Sites in Naturally Flowing Streams and Rivers in Idaho

    DOT National Transportation Integrated Search

    2017-03-01

    Reliable estimates of the magnitude and frequency of floods are needed by Federal, regional, State, and local infrastructure designers and water-resource managers for the design of highway, road, and other bridge crossings of rivers, delineation of f...

  18. Medical Department, United States Army. Wound Ballistics for World War II.

    DTIC Science & Technology

    1962-01-01

    Georgia Island at Zanana Beach between 2 and 6 July to pro- ceed to a line of departure on the Barike River. After considerable fighting, with heavy...1 mile of the Barike River along the Munda trail. At 1100 hours on 19 July, when the battalion was advancing along this trail, it came under...automatic weapons fire at the Barike River; several men were killed and several wounded. The river was not crossed until 20 July, CASUALTY SURVEY, NEW GEORGIA

  19. Modelling the flooding capacity of a Polish Carpathian river: A comparison of constrained and free channel conditions

    NASA Astrophysics Data System (ADS)

    Czech, Wiktoria; Radecki-Pawlik, Artur; Wyżga, Bartłomiej; Hajdukiewicz, Hanna

    2016-11-01

    The gravel-bed Biała River, Polish Carpathians, was heavily affected by channelization and channel incision in the twentieth century. Not only were these impacts detrimental to the ecological state of the river, but they also adversely modified the conditions of floodwater retention and flood wave passage. Therefore, a few years ago an erodible corridor was delimited in two sections of the Biała to enable restoration of the river. In these sections, short, channelized reaches located in the vicinity of bridges alternate with longer, unmanaged channel reaches, which either avoided channelization or in which the channel has widened after the channelization scheme ceased to be maintained. Effects of these alternating channel morphologies on the conditions for flood flows were investigated in a study of 10 pairs of neighbouring river cross sections with constrained and freely developed morphology. Discharges of particular recurrence intervals were determined for each cross section using an empirical formula. The morphology of the cross sections together with data about channel slope and roughness of particular parts of the cross sections were used as input data to the hydraulic modelling performed with the one-dimensional steady-flow HEC-RAS software. The results indicated that freely developed cross sections, usually with multithread morphology, are typified by significantly lower water depth but larger width and cross-sectional flow area at particular discharges than single-thread, channelized cross sections. They also exhibit significantly lower average flow velocity, unit stream power, and bed shear stress. The pattern of differences in the hydraulic parameters of flood flows apparent between the two types of river cross sections varies with the discharges of different frequency, and the contrasts in hydraulic parameters between unmanaged and channelized cross sections are most pronounced at low-frequency, high-magnitude floods. However, because of the deep incision of the river, both cross section types are typified by a similar, low potential for the retention of floodwater in floodplain areas. The study indicated that even though river restoration has only begun here, it already brings beneficial effects for flood risk management, reducing flow energy and shear forces exerted on the bed and banks of the channel in unmanaged river reaches. Only within wide, unmanaged channel reaches can the flows of low-frequency, high-magnitude floods be conveyed with relatively low shear forces exerted on the channel boundary. In contrast, in channelized reaches, flow velocity and shear forces are substantially higher, inevitably causing bank erosion and channel incision.

  20. Male responsibility and maternal morbidity: a cross-sectional study in two Nigerian states.

    PubMed

    Andersson, Neil; Omer, Khalid; Caldwell, Dawn; Dambam, Mohammed Musa; Maikudi, Ahmed Yahya; Effiong, Bassey; Ikpi, Edet; Udofia, Etuk; Khan, Amir; Ansari, Umaira; Ansari, Noor; Hamel, Candyce

    2011-12-21

    Nigeria continues to have high rates of maternal morbidity and mortality. This is partly associated with lack of adequate obstetric care, partly with high risks in pregnancy, including heavy work. We examined actionable risk factors and underlying determinants at community level in Bauchi and Cross River States of Nigeria, including several related to male responsibility in pregnancy. In 2009, field teams visited a stratified (urban/rural) last stage random sample of 180 enumeration areas drawn from the most recent censuses in each of Bauchi and Cross River states. A structured questionnaire administered in face-to-face interviews with women aged 15-49 years documented education, income, recent birth history, knowledge and attitudes related to safe birth, and deliveries in the last three years. Closed questions covered female genital mutilation, intimate partner violence (IPV) in the last year, IPV during the last pregnancy, work during the last pregnancy, and support during pregnancy. The outcome was complications in pregnancy and delivery (eclampsia, sepsis, bleeding) among survivors of childbirth in the last three years. We adjusted bivariate and multivariate analysis for clustering. The most consistent and prominent of 28 candidate risk factors and underlying determinants for non-fatal maternal morbidity was intimate partner violence (IPV) during pregnancy (ORa 2.15, 95%CIca 1.43-3.24 in Bauchi and ORa 1.5, 95%CI 1.20-2.03 in Cross River). Other spouse-related factors in the multivariate model included not discussing pregnancy with the spouse and, independently, IPV in the last year. Shortage of food in the last week was a factor in both Bauchi (ORa 1.66, 95%CIca 1.22-2.26) and Cross River (ORa 1.32, 95%CIca 1.15-1.53). Female genital mutilation was a factor among less well to do Bauchi women (ORa 2.1, 95%CIca 1.39-3.17) and all Cross River women (ORa 1.23, 95%CIca 1.1-1.5). Enhancing clinical protocols and skills can only benefit women in Nigeria and elsewhere. But the violence women experience throughout their lives--genital mutilation, domestic violence, and steep power gradients--is accentuated through pregnancy and childbirth, when women are most vulnerable. IPV especially in pregnancy, women's fear of husbands or partners and not discussing pregnancy are all within men's capacity to change.

  1. Changes in cross-section geometry and channel volume in two reaches of the Kankakee River in Illinois, 1959-94

    USGS Publications Warehouse

    Terrio, Paul J.; Nazimek, John E.

    1997-01-01

    The upstream reaches of the Kankakee River in Indiana have been channelized, straightened, and ditched to facilitate agriculture; the downstream reaches of the river in Illinois have not been so altered. Concerns about the adjustments of this low-gradient river in response to these disturbances have led to studies of sedimentation along the Kankakee River in Illinois. The U.S. Geological Survey (USGS) began a study in 1992 to determine sedimentation characteristics of the Kankakee River in Illinois. As part of this study, changes in channel cross-section geometry and channel volume were determined by comparing measurements of cross-section geometry over time in two reaches of the Kankakee River. The study documents some of the adjustments of the Kankakee River to land-use changes and channelization in the upstream drainage area. The timing, magnitude, and process of adjustment are of interest in developing a better understanding of how alluvial stream systems in agricultural areas respond to disturbances in the drainage area. The data used for the study included cross-section measurements made by two State of Illinois agencies from 1959 to 1980 and measurements made by the USGS in 1994. The analyses indicated a net aggradation of about 133,600 cubic yards (yd3) of sediment in the Momence Wetlands reach, a naturally meandering reach of the river, from 1980 to 1994. Aggradation occurred at 25 cross sections in this reach, and scour occurred at 10 cross sections. All but one of the cross sections in the upstream third of the reach indicated aggradation, whereas aggradation and scour were found in the middle and downstream thirds of the reach. The magnitude of change was greatest in the middle third of the reach and was least in the downstream third of the reach. A net aggradation of approximately 298,600 yd3 of sediment was indicated for the Six-Mile Pool, a pooled reach of the river upstream from a dam, from 1978 to 1994. Approximately 182,900 yd3 of sediment accumulated from 1980 to 1994, and approximately 115,700 yd3 of sediment accumulated from 1978 to 1980. Most of the aggradation occurred in the middle third of the Six-Mile Pool reach.

  2. Flood-plain and channel aggradation of selected bridge sites in the Iowa and Skunk River basins, Iowa

    USGS Publications Warehouse

    Eash, D.A.

    1996-01-01

    Flood-plain and channel-aggradation rates were estimated at 10 bridge sites on the Iowa River upstream of Coralville Lake and at two bridge sites in the central part of the Skunk River Basin. Four measurement methods were used to quantify aggradation rates: (1) a dendrogeomorphic method that used tree-age data and sediment-deposition depths, (2) a bridge-opening cross-section method that compared historic and recent cross sections of bridge openings, (3) a stage-discharge rating-curve method that compared historic and recent stages for the 5-year flood discharge and the average discharge, and (4) nine sediment pads that were installed on the Iowa River flood plain at three bridge sites in the vicinity of Marshalltown. The sediment pads were installed prior to overbank flooding in 1993. Sediments deposited on the pads as a result of the 1993 flood ranged in depth from 0.004 to 2.95 feet. Measurement periods used to estimate average aggradation rates ranged from 1 to 98 years and varied among methods and sites. The highest aggradation rates calculated for the Iowa River Basin using the dendrogeomorphic and rating- curve measurement methods were for the State Highway 14 crossing at Marshalltown, where these highest rates were 0.045 and 0.124 feet per year, respectively. The highest aggradation rates calculated for the Skunk River Basin were for the U.S. Highway 63 crossing of the South Skunk River near Oskaloosa, where these highest rates were 0.051 and 0.298 feet per year, respectively.

  3. Factors Influencing the Impacts on Security of Manning Military Posts on the United States-Mexico Border from 1865 to 1916

    DTIC Science & Technology

    2007-06-15

    illegally cross the Sabine River to immigrate into Mexico. Tensions increased. Santa Anna, who had his hands full with uprisings in other Mexican...stretching from about Nacogdoches on Sabine River around San Antonio to the west and returning east at Corpus Christi on the Gulf of Mexico. Mexico...not fumigate. State health officials traveled from house-to- house inoculating anyone without proof of prior vaccination . Additionally, because the

  4. HIV prevalence and risk behaviours among men having sex with men in Nigeria.

    PubMed

    Merrigan, Mike; Azeez, Aderemi; Afolabi, Bamgboye; Chabikuli, Otto Nzapfurundi; Onyekwena, Obinna; Eluwa, George; Aiyenigba, Bolatito; Kawu, Issa; Ogungbemi, Kayode; Hamelmann, Christoph

    2011-02-01

    To evaluate HIV and syphilis prevalence among men who have sex with men (MSM) in Nigeria, and assess their HIV-related risk behaviours and exposure to HIV prevention interventions. Cross-sectional study using respondent-driven sampling conducted in Lagos, Kano and Cross River states, Nigeria, between July and September 2007. A total of 879 MSM participated, 293 from each state. Eight participants (1.1%, CI 0.1% to 2.2%) in Cross River, 27 (9.3%, CI 5.7% to 15.4%) in Kano and 74 (17.4%, CI 12.3% to 23.2%) in Lagos tested positive for HIV. No syphilis was detected. The median age was 22 years. MSM reported an average of 4.2 male anal sex partners in the past 6 months. Between 24.4% (Lagos) and 36.0% (Kano) of MSM reported selling sex to other men. Up to 49.7% of MSM reported sex with a girlfriend and ≤ 6.5% purchased sex from female sex workers. Consistent condom use in commercial sex with other men over the past 6 months ranged from 28.0% (Cross River) to 34.3% (Kano), in contrast to between 23.9% (Kano) and 45.8% (Lagos) for non-commercial sex. Associations with HIV positivity included age in the three states, having been the receptive partner in anal sex in the past 6 months in Lagos and in Lagos and Kano feeling at risk of HIV. Large differentials in HIV prevalence between states together with high mobility, inconsistent condom use and behavioural links with female sex partners, have the potential for further HIV transmission within MSM networks, and between MSM and the general population.

  5. Flood characteristics for the New River in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.; Cunningham, M.K.

    1994-01-01

    The frequency and magnitude of flooding of the New River in the New River Gorge National River was studied. A steady-state, one-dimensional flow model was applied to the study reach. Rating curves, cross sections, and Manning's roughness coefficients that were used are presented in this report. Manning's roughness coefficients were evaluated by comparing computed elevations (from application of the steady-state, one-dimensional flow model) to rated elevations at U.S. Geological Survey (USGS) streamflow-gaging stations and miscellaneous-rating sites. Manning's roughness coefficients ranged from 0.030 to 0.075 and varied with hydraulic depth. The 2-, 25-, and 100-year flood discharges were esti- mated on the basis of information from flood- insurance studies of Summers County, Fayette County, and the city of Hinton, and flood-frequency analysis of discharge records for the USGS streamflow-gaging stations at Hinton and Thurmond. The 100-year discharge ranged from 107,000 cubic feet per second at Hinton to 150,000 cubic feet per second at Fayette.

  6. Simulations of Flooding on Pea River and Whitewater Creek in the Vicinity of the Proposed Elba Bypass at Elba, Alabama

    USGS Publications Warehouse

    Hedgecock, T. Scott

    2003-01-01

    A two-dimensional finite-element surface-water model was used to study the effects of proposed modifications to the State Highway 203 corridor (proposed Elba Bypass/relocated U.S. Highway 84) on water-surface elevations and flow distributions during flooding in the Pea River and Whitewater Creek Basins at Elba, Coffee County, Alabama. Flooding was first simulated for the March 17, 1990, flood, using the 1990 flood-plain conditions to calibrate the model to match measured data collected by the U.S. Geological Survey and the U.S. Army Corps of Engineers after the flood. After model calibration, the effects of flooding were simulated for four scenarios: (1) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, highway, and levee conditions; (2) floods having the 50- and 100-year recurrence intervals for the existing flood-plain and levee conditions with the State Highway 203 embankment and bridge removed; (3) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, and highway conditions with proposed modifications (elevating) to the levee; and (4) floods having the 50- and 100-year recurrence intervals for the proposed conditions reflecting the Elba Bypass and modified levee. The simulation of floodflow for the Pea River and Whitewater Creek flood of March 17, 1990, in the study reach compared closely to flood profile data obtained after the flood. The flood of March 17, 1990, had an estimated peak discharge of 58,000 cubic feet per second at the gage (just below the confluence) and was estimated to be between a 50-year and 100-year flood event. The estimated peak discharge for Pea River and Whitewater Creek was 40,000 and 42,000 cubic feet per second, respectively. Simulation of floodflows for the 50-year flood (51,400 cubic feet per second) at the gage for existing flood-plain, bridge, highway, and levee conditions indicated that about 31 percent of the peak flow was conveyed by the State Highway 203 bridge over Whitewater Creek, approximately 12 percent overtopped the State Highway 203 embankment, and about 57 percent was conveyed by the Pea River flood plain east of State Highway 125. For this simulation, flow from Pea River (2,380 cubic feet per second) overtopped State Highway 125 and crossed over into the Whitewater Creek flood plain north of State Highway 203, creating one common flood plain. The water-surface elevation estimated at the downstream side of the State Highway 203 bridge crossing Whitewater Creek was 202.82 feet. The girders for both the State Highway 203 and U.S. Highway 84 bridges were partially submerged, but U.S. Highway 84 was not overtopped. For the 100-year flood (63,500 cubic feet per second) at the gage, the simulation indicated that about 25 percent of the peak flow was conveyed by the State Highway 203 bridge over Whitewater Creek, approximately 24 percent overtopped the State Highway 203 embankment, and about 51 percent was conveyed by the Pea River flood plain east of State Highway 125. The existing levee adjacent to Whitewater Creek was overtopped by a flow of 3,200 cubic feet per second during the 100-year flood. For this simulation, flow from Pea River (6,710 cubic feet per second) overtopped State Highway 125 and crossed over into the Whitewater Creek flood plain north of State Highway 203. The water-surface elevation estimated at the downstream side of the State Highway 203 bridge crossing Whitewater Creek was 205.60 feet. The girders for both the State Highway 203 and U.S. Highway 84 bridges were partially submerged, and the west end of the U.S. Highway 84 bridge was overtopped. Simulation of floodflows for the 50-year flood at the gage for existing flood-plain and levee conditions, but with the State Highway 203 embankment and bridge removed, yielded a lower water-surface elevation (202.90 feet) upstream of this bridge than that computed for the existing conditions. For the 100-year flood, the simulation indi

  7. Geologic history of the Colorado River: Chapter C in The Colorado River region and John Wesley Powell (Professional Paper 669)

    USGS Publications Warehouse

    Hunt, Charles B.

    1969-01-01

    John Wesley Powell clearly recognized that the spectacular features of the Colorado River - its many grand canyons - were dependent upon the structural history of the mountainous barriers crossed by the river. He conceived of three different historical relationships between rivers and structural features: (1) Newly uplifted land surfaces have rivers that flow down the initial slope of the uplift; these relationships he termed consequent. (2) A river may be older than an uplift that it crosses because it has been able to maintain its course by eroding downward as the uplift progresses; this relationship he named antecedent. (3) An uplifted block may have been buried by younger deposits upon which a river becomes established. The river, in cutting downward, uncovers the uplifted block and becomes incised into it; this relationship he called superimposed.The geologic history of the Colorado River involves all three relationships. In addition, although the position of the river course through a particular structural barrier may have been the result of superposition, the depth of the canyon at that point may be largely due to renewed uplift of the barrier; such deepening of the canyon, therefore, is due to antecedence. The problem of the Colorado River remains today very much as G. K. Gilbert stated it nearly 100 years ago: "How much is antecedent and how much is superimposed?" The question must be asked separately for each stretch of the river.

  8. Directional Gila River crossing saves construction, mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saylor, L.A.

    1994-12-01

    Directional drilled river crossing technology gained a new convert this fall as El Paso Natural Gas Co. (EPNG) replaced a washed out 10 3/4-in. line that crossed the Gila River and two irrigation canals near Yuma, Ariz. The 1,650-ft bore, the company's first drilled river crossing, saved both construction costs and environmental reporting and mitigation expenses. This paper reviews the planning, engineering, and equipment used to install this river pipeline crossing.

  9. Providing Academic Leadership in Universities in Cross River State, Nigeria: Assessment of Departmental Heads' Effectiveness

    ERIC Educational Resources Information Center

    Akuegwu, Basil A.; Nwi-ue, Felix D.

    2017-01-01

    This study assessed Heads of Departments' effectiveness in providing academic leadership at the departmental level. I research question and 2 hypotheses were formulated to give direction to this investigation. Survey design was adopted for the study. The population of the study comprised 110 Heads of Departments from 2 universities in Cross River…

  10. Beyond the Gap: A Historical Perspective on World War II River Crossings

    DTIC Science & Technology

    2013-05-23

    crossing’s defense, and provide sufficient space to organize the vehicles as they cross from the friendly side. The bridgehead commander has many tasks...combat units are across and back into the fight, the senior commander still have work to do in the space behind the crossing sites, called the rear...Procedure,” Gilbert R. Cook Papers , Box 9, Dwight D. Eisenhower Presidential Library, Abilene, Kansas, 110. The document stated that field manuals and

  11. State Highway 9 wildlife crossings monitoring – annual report year 1.

    DOT National Transportation Integrated Search

    2017-02-02

    This research evaluates the effectiveness of the SH 9 Colorado River South Wildlife & Safety Improvement Project, including two wildlife overpasses, and five wildlife underpasses connected with 10.4 miles of wildlife exclusion fencing in Grand County...

  12. Effect of Free Maternal Health Care Program on Health-seeking Behaviour of Women during Pregnancy, Intra-partum and Postpartum Periods in Cross River State of Nigeria: A Mixed Method Study.

    PubMed

    Edu, Betta Chimaobim; Agan, Thomas U; Monjok, Emmanuel; Makowiecka, Krystyna

    2017-06-15

    Increasing the percentage of maternal health service utilization in health facilities, through cost-removal policy is important in reducing maternal deaths. The Cross River State Government of Nigeria introduced a cost-removal policy in 2009, under the umbrella of "PROJECT HOPE" where free maternal health services are provided. Since its inception, there has been no formal evaluation of its effectiveness. This study aims to evaluate the effect of the free maternal health care program on the health care-seeking behaviours of pregnant women in Cross River State, Nigeria. A mixed method approach (quantitative and qualitative methods) was used to describe the effect of free maternal health care intervention. The quantitative component uses data on maternal health service utilisation obtained from PROJECT HOPE and Nigeria Demographic Health Survey. The qualitative part uses Focus Group Discussions to examine women's perception of the program. Results suggest weak evidence of change in maternal health care service utilization, as 95% Confidence Intervals overlap even though point estimate suggest increase in utilization. Results of quantitative data show increase in the percentage of women accessing maternal health services. This increase is greater than the population growth rate of Cross River State which is 2.9%, from 2010 to 2013. This increase is likely to be a genuine increase in maternal health care utilisation. Qualitative results showed that women perceived that there have been increases in the number of women who utilize Antenatal care, delivery and Post Partum Care at health facilities, following the removal of direct cost of maternal health services. There is urban and rural differences as well as between communities closer to health facility and those further off. Perceived barriers to utilization are indirect cost of service utilization, poor information dissemination especially in rural areas, perceived poor quality of care at facilities including drug and consumables stock-outs, geographical barriers, inadequate health work force, and poor attitude of skilled health workers and lack of trust in the health system. Reasons for Maternal health care utilisation even under a cost-removal policy is multi-factorial. Therefore, in addition to fee-removal, the government must be committed to addressing other deterrents so as to significantly increase maternal health care service utilisation.

  13. River habitat assessment for ecological restoration of Wei River Basin, China.

    PubMed

    Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia

    2018-04-11

    As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.

  14. Aerial view of the entire bridge crossing the Tennessee River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial view of the entire bridge crossing the Tennessee River looking up river. The swing bridge, when open, permits river navigational traffic to ply the river. Construction of a replacement bridge, to be located 93.27 feet down river, has now started. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  15. Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary)

    NASA Astrophysics Data System (ADS)

    Kiss, Tímea; Fiala, Károly; Sipos, György

    2008-06-01

    In the last few years an increase in the frequency and magnitude of floods was detected on the Tisza River, endangering large areas of Hungary. The causes of these record floods were complex, including both natural and human induced factors. This paper focuses on river management works and their effect on planimetric and cross-sectional parameters, with special attention to the flood conductivity changes to the river channel. During 19th century river regulation works, half of the total length of the Tisza River was altered by cut-offs, while in the 20th century mostly revetments and groynes were constructed. Subsequently, horizontal and vertical channel parameters have changed considerably due to semi-natural bed processes. In order to reveal changes, hydrological map series (1842, 1890, 1929, 1957, 1976 and 1999) and cross-sectional surveys from the same dates were analysed. Prior to the intensive human interventions (before 1890s) the river's course was highly sinuous with some very sharp bends. Due to cut-offs both the length and sinuosity of the Tisza River decreased by 35%, while the lengths of straight sections and the river's slope doubled. As a consequence the river incised by up to 3.8 m until the 1929 survey, resulting better flood conductivity, which improved flood safety. In the 1920s river management favoured bank stabilisation in order to stop the lateral migration of the channel. Despite these measures, meander development has continued, however, in a distorted manner. This is reflected by the opposing processes of lengthening centre-line on the one hand and gradually decreasing radius of curvature on the other. These processes can be explained by the continuous development of natural point-bars on the convex bank, and the lack of lateral retreat on the concave stabilised bank. The width of the river decreased by 17-45%, while its mean and maximum depth increased by 5-48%. The area of cross-sections influenced by revetments decreased by 6-19%, resulting in a 6-15% decline in flood conductivity. The non-stabilised sections were influenced by upstream revetments. Therefore, their parameters show similar changes, but with a smaller rate. At present, the flood conductivity of the channel is worse than it was in its natural state. In all, it was found that the ongoing process of cross-sectional distortion is a significant factor in increasing flood stage and hazard, and high floods can be expected more frequently in the future partly due to this factor.

  16. Childhood Malnutrition is Associated with Maternal Care During Pregnancy and Childbirth: A Cross-Sectional Study in Bauchi and Cross River States, Nigeria.

    PubMed

    Hamel, Candyce; Enne, Joseph; Omer, Khalid; Ayara, Ndem; Yarima, Yahaya; Cockcroft, Anne; Andersson, Neil

    2015-02-20

    Malnutrition remains an important cause of childhood morbidity and mortality; the levels of childhood malnutrition in Nigeria are among the highest in the world. The literature supports many direct and indirect causes of malnutrition, but few studies have examined the link between maternal care during pregnancy and childbirth and childhood malnutrition. This study examines this potential link in Bauchi and Cross River states in Nigeria. In 2011, a household survey collected information about children under four years old and their mothers' last pregnancy. Trained fieldworkers measured mid-upper arm circumference (MUAC) of children aged 6-47 months. We examined associations with childhood malnutrition in bivariate and multivariate analysis. Some 4.4% of 3643 children in Cross River, and 14.7% of 2706 in Bauchi were malnourished (MUAC z-score). In both states, a child whose mother had fewer than four government antenatal care visits was more likely to be malnourished (Cross River: OR 1.85, 95%CIca 1.33-2.55; Bauchi: OR 1.29, 95%CIca 1.02-1.63). In Bauchi, a child whose mother who rarely or never discussed pregnancy and childbirth with her husband (OR 1.34, 95%CIca 1.07-1.68), and who did not have her last delivery attended by a skilled health worker was more likely to be malnourished (OR 1.50, 95%CIca 1.09-2.07). These findings, if confirmed in other studies, suggest that poor care of women in pregnancy and childbirth could pose a longer term risk to the health of the child, as well as increasing immediate risks for both mother and child. Significance for public healthChildhood malnutrition is a public health priority, accounting for almost 1/5 of global disease burden among children under five years old. Many studies have examined risk factors for childhood malnutrition, but few have examined the link between maternal care during pregnancy and childbirth and childhood malnutrition. This study, albeit a cross-sectional design, provides evidence of a link between poor care during pregnancy and childbirth and childhood malnutrition in two states of Nigeria. This is important for public health because it suggests another benefit of caring for women during pregnancy and childbirth. This could not only reduce maternal and child perinatal mortality, but also have benefits for the longer-term health and development of children. This finding could be useful for paternal advocacy; it may motivate men to support their wives during pregnancy and childbirth since through this support, fathers can also protect the future development of their children.

  17. OBLIQUE VIEW OF EAST AND NORTH SIDES OF FIRE PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF EAST AND NORTH SIDES OF FIRE PUMP HOUSE, LOCK CONTROL HOUSES IN BACKGROUND, VIEW TOWARDS SOUTHWEST - Ortona Lock, Lock No. 2, Fire Pump House, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  18. Child Survival Strategies: Assessment of Knowledge and Practice of Rural Women of Reproductive Age in Cross River State, Nigeria.

    PubMed

    Etokidem, Aniekan Jumbo; Johnson, Ofonime

    2016-01-01

    Introduction . Nigeria is one of the five countries that account for about 50% of under-five mortality in the world. The objective of this study was to assess the knowledge and practice of child survival strategies among rural community caregivers in Cross River State of Nigeria. Materials and Methods . This descriptive cross-sectional survey used a pretested questionnaire to obtain information from 150 women of reproductive age. Data analysis was done using SPSS version 20. Results . The child survival strategy known to most of the respondents was oral rehydration therapy as indicated by 98% followed by female education by 73.3% and immunization by 67.3%. Only 20% of the respondents had adequate knowledge of frequency of weighing a child while only 32.7% knew that breastfeeding should be continued even if the child had diarrhea. More respondents with nonformal education (83.3%) practiced exclusive breastfeeding of their last children compared to respondents with primary education (77.3%), secondary education (74.2%), and tertiary education (72.2%). Conclusion . Although respondents demonstrated adequate knowledge and practice of most of the strategies, there was evidence of gaps, including myths and misconceptions that could mar efforts towards reducing child morbidity and mortality in the state.

  19. The Application of the Specific Gage Technique and Aerial Photographs in Kaskaskia River Degradation Studies

    NASA Astrophysics Data System (ADS)

    Du, X.

    2008-12-01

    The Kaskaskia River basin contains 136,000 acres of bottomland forest, the largest contiguous tract of bottomland forest remaining in the state of Illinois. Since the 1960's, the Carlyle Lake Dam impoundment and channelization activities have altered the natural hydrologic and ecological equilibrium of the Kaskaskia River. Morphological changes of the river channel have necessitated conservation and restoration efforts to create and maintain the sustainability, diversity, health, and connectivity of the river watershed. This study utilized the specific gage technique and historical aerial photographs to investigate the spatial and temporal changes of the river. Historical daily discharge and daily stage data from the Carlyle (1966 to 2002) and Venedy Station gages (1984 to 2003) were analyzed. Logs of daily discharge data were used to generate annual rating curves. The best fit equations were produced from annual rating regressions. A stage associated with a chosen reference discharge, the minimum available discharge (MAD), was calculated. A stage decreasing/increasing trend was used as a primary indicator of channel bed incision/aggradation. Pseudo specific gage analysis (PSGA) was used to model channel cross sectional geometry changes over time. PSGA applied similar procedures as compared to the specific gage technique. Instead of using the stage variable, PSGA utilized cross sectional width, cross-sectional area, mean velocity and gage height individually. At each gage, the historical change of each cross sectional parameter was plotted against the log of discharge. Ratings of specific stages, specific cross sectional width, specific depth, specific area, and specific velocity associated with the chosen discharge, MAD, were produced. The decreasing/increasing trend of each parameter mentioned above corresponded with changes of channel cross sectional geometries over time. Historical aerial photographs were also used to assess the bankfull channel width changing rates during the pre and post modification period. The statistical significance of the regression trendlines from the specific gage analyses and PSGA was tested. Results suggested that there was no significant channel bed incision trend near the river gages within the studied time period. A statistically significant increase in channel width changing rates was found during post-modification period. Following the channelization and dam construction on the Kaskaskia River, substantial channel bed widening has accelerated bank erosion and associated channel morphology change, which has consequently resulted in a net loss of riparian habitat in this important bottomland forest corridor in southern Illinois, USA.

  20. Ground beetle communities in a mountain river subjected to restoration: The Raba River, Polish Carpathians.

    PubMed

    Bednarska, Agnieszka J; Wyżga, Bartłomiej; Mikuś, Paweł; Kędzior, Renata

    2018-01-01

    Effects of passive restoration of mountain rivers on the organisms inhabiting exposed riverine sediments are considerably less understood than those concerning aquatic biota. Thus, the effects of a recovery of the Raba River after abandonment of maintenance of its channelization scheme on ground beetle (Coleoptera: Carabidae) communities were investigated by comparing 6 unmanaged cross-sections and 6 cross-sections from adjacent channelized reaches. In each cross-section, ground beetles were collected from 12 sampling sites in spring, summer, and autumn, and 8 habitat parameters characterizing the cross-sections and sampling sites were determined. Within a few years after abandonment of the Raba River channelization scheme, the width of this gravel-bed river increased up to three times and its multi-thread pattern became re-established. Consequently, unmanaged river cross-sections had significantly larger channel width and more low-flow channels and eroding cutbanks than channelized cross-sections. Moreover, sampling sites in the unmanaged cross-sections were typified by significantly steeper average surface slope and larger average distance from low-flow channels than the sites in channelized cross-sections. In total, 3992 individuals from 78 taxa were collected during the study. The ground beetle assemblages were significantly more abundant and richer in species in the unmanaged than in the channelized cross-sections but no significant differences in carabid diversity indices between the two cross-section types were recorded. Redundancy Analysis indicated active river zone width as the only variable explaining differences in abundance and species richness among the cross-sections. Multiple regression analysis indicated species diversity to predominantly depend on the degree of plant cover and substrate grain size. The study showed that increased availability of exposed sediments in the widened river reaches allowed ground beetles to increase their abundance and species richness within a few years after the onset of river restoration, but more time may be needed for development of more diverse carabid communities. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ground-penetrating radar methods used in surface-water discharge measurements

    USGS Publications Warehouse

    Haeni, F.P.; Buursink, Marc L.; Costa, John E.; Melcher, Nick B.; Cheng, Ralph T.; Plant, William J.

    2000-01-01

    In 1999, an experiment was conducted to see if a combination of complementary radar methods could be used to calculate the discharge of a river without having any of the measuring equipment in the water. The cross-sectional area of the 183-meter wide Skagit River in Washington State was measured using a ground-penetrating radar (GPR) system with a single 100-MHz antenna. A van-mounted, side-looking pulsed-Doppler radar system was used to collect water-surface velocity data across the same section of the river. The combined radar data sets were used to calculate the river discharge and the results compared closely to the discharge measurement made by using the standard in-water measurement techniques.

  2. Conservation biology of the Cross River gorilla (Gorilla gorilla diehli)

    NASA Astrophysics Data System (ADS)

    Bergl, Richard Alexander

    The Cross River gorilla (Gorilla gorilla diehli), a recently revived fourth subspecies of gorilla, is the most endangered and poorly studied ape taxon. Only about 300 Cross River gorillas remain and these gorillas occur in at least eleven different localities. This dissertation presents a population-wide assessment of threats to this population based on molecular genetic data, satellite imagery and demographic modeling. I used DNA extracted from non-invasively collected fecal samples to amplify eleven microsatellite loci for population genetic analysis. Microsatellite data suggested that a complex population structure is present in the Cross River gorilla, with three genetically identifiable subpopulations present. Though levels of gene flow between certain subpopulations were low, there is evidence that reproductive contact persists between many of the subpopulations. The genetic data also demonstrate that levels of diversity in the Cross River population are not evenly distributed across subpopulations, and that one subpopulation has higher levels of variability than the others. In a genus-wide comparison, levels of genetic diversity in the Cross River gorilla were comparable to those of the similarly small populations of the mountain gorilla ( Gorilla beringei beringei) in Bwindi and the Virunga volcanoes, but showed lower levels of diversity than a sample from a large, continuous population of Gorilla gorilla gorilla at Mondika, Central African Republic. Genetic data also showed strong evidence of a population bottleneck in the Cross River gorilla, but not in the other three gorilla populations examined. I used analysis of remotely-sensed data from the Landsat satellite to assess the extent and pattern of land cover distribution across the Cross River gorilla's range. Considerable potential gorilla habitat remains within the range of the Cross River gorilla and each gorilla locality is at least tenuously connected by forest. Finally, I developed a model-based population viability analysis for the Cross River gorilla. Demographic modeling suggested that both population structure and variables associated with female reproductive output most influence population growth in the Cross River gorilla. Taken together, the results of my study are encouraging for the conservation of the Cross River gorilla population, and highlight the resilience of these animals in the face of human activities. Conservation efforts should promote connectivity between gorilla localities and foster the growth of their population. The methods I applied could provide useful insights into patterns of population structure and migration for a wide range of animal taxa.

  3. 78 FR 8595 - Investigations Regarding Eligibility To Apply for Worker Adjustment Assistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    .../10/13 01/09/13 Locations in NY) (State/One- Stop). 82330 Plastics Dynamics Inc. Kent, WA 01/10/13 01/08/13 (State/One-Stop). 82331 Harte-Hanks Incorporated Austin, TX 01/10/13 01/09/13 (Workers). 82332 River Valley Newspaper Group La Crosse, WI 01/10/13 01/04/13 (Workers). [[Page 8596

  4. OBLIQUE VIEW OF NORTH AND EAST SIDES OF NORTHWEST CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF NORTH AND EAST SIDES OF NORTHWEST CONTROL HOUSE WITH SOUTHWEST CONTROL HOUSE IN BACKGROUND, VIEW TOWARDS SOUTH - Ortona Lock, Lock No. 2, Machinery and Control Houses, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  5. VIEW OF NORTH SIDE OF NORTHEAST CONTROL HOUSE WITH SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF NORTH SIDE OF NORTHEAST CONTROL HOUSE WITH SOUTHEAST CONTROL HOUSE IN BACKGROUND, LOCK UNDER REPAIR, VIEW TOWARDS SOUTH - Ortona Lock, Lock No. 2, Machinery and Control Houses, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  6. A critical needs assessment for collaborative ecotourism development linked to protected areas in Cross River State, Nigeria

    Treesearch

    Jeffrey J. Brooks; John Neary; Blessing E. Asuquo

    2007-01-01

    Nigeria has abundant natural resources, and the nation, working with its partners over the years, has made large strides toward conservation of this natural wealth, but the future of Nigeria's natural resources remains uncertain.

  7. Plans, Trains, and Automobiles: Big River Crossing Issues in a Small Community

    DOT National Transportation Integrated Search

    1999-01-01

    This paper addresses cross-cutting topics associated with the replacement of a : regional Mississippi River crossing along the Great River Road. The breadth and : depth of issues define the ease with which transportation problems can be solved. : In ...

  8. Water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the lower White River and the Puyallup River estuary, Washington, August-October 2002

    USGS Publications Warehouse

    Ebbert, James C.

    2003-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1°C (degrees Celsius) at river mile 4.9 and 19.6°C at river mile 1.8 exceeded the water-quality standard of 18°C at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River.Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The lower limit allowed by the water-quality standard is 8 mg/L. Concentrations of dissolved oxygen measured in a cross section of the Puyallup River estuary at high tide on September 12, 2002, ranged from 9.9 to 10.2 mg/L in fresh water at the surface and from 8.1 to 8.4 mg/L in salt water near the riverbed. These values were within limits set by Washington State water-quality standards for dissolved oxygen of 8 mg/L in fresh water and 6 mg/L in marine water.

  9. Profile surveys along Henrys Fork, Idaho, and Logan River and Blacksmith Fork, Utah

    USGS Publications Warehouse

    Herron, William Harrison

    1916-01-01

    In order to determine the location of undeveloped water powers the United States Geological Survey has from time to time, alone and in cooperation with State organizations, made surveys and profiles of some of the rivers of the United States that are adapted to the development of power by low or medium heads of 20 to 100 feet.The surveys are made by means of plane table and stadia. Elevations are based on heights derived from primary or precise levels of the United States Geological Survey. The maps/are made in the field, and show not only the outlines of the river banks, the islands, the positions of rapids/falls, shoals, and existing dams, and the crossings of all ferries and roads, but the contours of banks to an elevation high enough to indicate the possibility of using the stream. The elevations of the various bench marks left are noted on the field sheets in their proper positions. The figures given with the gaging stations shown on the maps indicate the elevation of the zero of the gage.

  10. 27 CFR 9.185 - Texoma.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...; and (2) Texarkana, Tex.; Ark.; Okla.; La., 1953, revised 1972. (c) Boundary. The Texoma viticultural... the Red River eastward along the Texas-Oklahoma State line, passes onto the Texarkana map, and... Texarkana map crosses the county line; then (4) Continues southwest in a straight line for approximately 13...

  11. 27 CFR 9.185 - Texoma.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...; and (2) Texarkana, Tex.; Ark.; Okla.; La., 1953, revised 1972. (c) Boundary. The Texoma viticultural... the Red River eastward along the Texas-Oklahoma State line, passes onto the Texarkana map, and... Texarkana map crosses the county line; then (4) Continues southwest in a straight line for approximately 13...

  12. 27 CFR 9.185 - Texoma.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...; and (2) Texarkana, Tex.; Ark.; Okla.; La., 1953, revised 1972. (c) Boundary. The Texoma viticultural... the Red River eastward along the Texas-Oklahoma State line, passes onto the Texarkana map, and... Texarkana map crosses the county line; then (4) Continues southwest in a straight line for approximately 13...

  13. 27 CFR 9.185 - Texoma.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...; and (2) Texarkana, Tex.; Ark.; Okla.; La., 1953, revised 1972. (c) Boundary. The Texoma viticultural... the Red River eastward along the Texas-Oklahoma State line, passes onto the Texarkana map, and... Texarkana map crosses the county line; then (4) Continues southwest in a straight line for approximately 13...

  14. 27 CFR 9.185 - Texoma.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...; and (2) Texarkana, Tex.; Ark.; Okla.; La., 1953, revised 1972. (c) Boundary. The Texoma viticultural... the Red River eastward along the Texas-Oklahoma State line, passes onto the Texarkana map, and... Texarkana map crosses the county line; then (4) Continues southwest in a straight line for approximately 13...

  15. Investigation of Pier Scour in Coarse-Bed Streams in Montana, 2001 through 2007

    DOT National Transportation Integrated Search

    2011-01-01

    Determination of pier-scour potential is an important consideration in the hydraulic analysis and design of highway bridges that cross streams, rivers, and other waterways in the United States. A primary goal of ongoing research in the field of bridg...

  16. Changes in contraceptive use following integration of family planning into ART Services in Cross River State, Nigeria.

    PubMed

    McCarraher, Donna R; Vance, Gwyneth; Gwarzo, Usman; Taylor, Douglas; Chabikuli, Otto Nzapfurundi

    2011-12-01

    One strategy for meeting the contraceptive needs of HIV-positive women is to integrate family planning into HIV services. In 2008 in Cross River State, Nigeria,family planning was integrated into antiretroviral (ART) services in five local government areas. A basic family planning/HIV integration model was implemented in three of these areas, and an enhanced model in the other two. We conducted baseline interviews in 2008 and follow-up interviews 12-14 months later with 274 female ART clients aged 18-45 in 2009 across the five areas. Unmet need for contraception was high at baseline (28-35 percent). We found that modern contraceptive use rose in the enhanced and basic groups; most of the increase was in consistent condom use. Despite an increase in family planning counseling by ART providers, referrals to family planning services for noncondom methods were low. We conclude by presenting alternative strategies for family planning/HIV integration in settings where large families and low contraceptive use are normative.

  17. Strengthening primary healthcare through community involvement in Cross River State, Nigeria: a descriptive study

    PubMed Central

    Adie, Hilary; Igbang, Thomas; Otu, Akaninyene; Braide, Ekanem; Okon, Okpok; Ikpi, Edet; Joseph, Charles; Desousa, Alexander; Sommerfeld, Johannes

    2014-01-01

    Introduction In preparation for implementation of primary healthcare (PHC) services in Cross River State, a study to identify perceptions of communities and health systems concerning such interventions was conducted. Methods Existing PHC practices were documented through observation and document reviews, including facility checklists at frontline levels. Perceptions of consumers and providers on PHC were elucidated through 32 Focus Group Discussions (FGDs) and 78 semi-structured questionnaires. Results There was some level of implementation of the Nigerian PHC policy in the study districts. However, this policy emphasized curative instead of preventive services. Private partners perceived healthcare programmes as largely donor driven with poor release of allocations for health by government. Conclusion Both providers and consumers presented similar perceptions on the current PHC implementation and similar perspectives on services to be prioritized. These common views together with their on-going participatory experience are important platforms for strengthening community participation in the delivery of PHC. PMID:25237418

  18. OBLIQUE VIEW OF SOUTH AND WEST SIDES OF SOUTHWEST CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF SOUTH AND WEST SIDES OF SOUTHWEST CONTROL HOUSE WITH NORTHWEST CONTROL HOUSE AND BUILDING NO. 52 IN BACKGROUND, VIEW TOWARDS NORTH - Ortona Lock, Lock No. 2, Machinery and Control Houses, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  19. National Smart Water Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaulieu, R A

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and themore » western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.« less

  20. Shallow stratigraphy of the Skagit River Delta, Washington, derived from sediment cores

    USGS Publications Warehouse

    Grossman, Eric E.; George, Douglas A.; Lam, Angela

    2011-01-01

    Sedimentologic analyses of 21 sediment cores, ranging from 0.4 to 9.6 m in length, reveal that the shallow geologic framework of the Skagit River Delta, western Washington, United States, has changed significantly since 1850. The cores collected from elevations of 3.94 to -2.41 m (relative to mean lower low water) along four cross-shore transects between the emergent marsh and delta front show relatively similar environmental changes across an area spanning ~75 km2. Offshore of the present North Fork Skagit River and South Fork Skagit River mouths where river discharge is focused by diked channels through the delta, the entire 5–7-km-wide tidal flats are covered with 1–2 m of cross-bedded medium-to-coarse sands. The bottoms of cores, collected in these areas are composed of mud. A sharp transition from mud to a cross-bedded sand unit indicates that the tidal flats changed abruptly from a calm environment to an energetic one. This is in stark contrast to the Martha's Bay tidal flats north of the Skagit Bay jetty that was completed in the 1940s to protect the newly constructed Swinomish Channel from flooding and sedimentation. North of the jetty, mud ranging from 1 to 2 m thick drapes a previously silt- and sand-rich tidal flat. The silty sand is a sediment facies that would be expected there where North Fork Skagit River sedimentation occurred prior to jetty emplacement. This report describes the compositional and textural properties of the sediment cores by using geophysical, photographic, x-radiography, and standard sediment grain-size and carbon-analytical methods. The findings help to characterize benthic habitat structure and sediment transport processes and the environmental changes that have occurred across the nearshore of the Skagit River Delta. The findings will be useful for quantifying changes to nearshore marine resources, including impacts resulting from diking, river-delta channelization, shoreline development, and natural variations in fluvial-sediment inputs. These results also provide important quantitative data on the amount of sediment delivered to the nearshore from the Skagit River for use in calculating sediment budgets for application to watershed planning and wetland and coastal-ecosystem restoration.

  1. Optimal cross-sectional sampling for river modelling with bridges: An information theory-based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridolfi, E.; Napolitano, F., E-mail: francesco.napolitano@uniroma1.it; Alfonso, L.

    2016-06-08

    The description of river topography has a crucial role in accurate one-dimensional (1D) hydraulic modelling. Specifically, cross-sectional data define the riverbed elevation, the flood-prone area, and thus, the hydraulic behavior of the river. Here, the problem of the optimal cross-sectional spacing is solved through an information theory-based concept. The optimal subset of locations is the one with the maximum information content and the minimum amount of redundancy. The original contribution is the introduction of a methodology to sample river cross sections in the presence of bridges. The approach is tested on the Grosseto River (IT) and is compared to existingmore » guidelines. The results show that the information theory-based approach can support traditional methods to estimate rivers’ cross-sectional spacing.« less

  2. Changes in chemical quality of the Arkansas River in Oklahoma and Arkansas (1946-52)

    USGS Publications Warehouse

    Dover, T.B.; Geurin, J.W.

    1953-01-01

    Systematic chemical quality-of-water investigations have been carried on in both Oklahoma and Arkansas by the Geological Survey in cooperation with State and Federal agencies during the past several years. Results of the Survey's quality-of-water investigations are usually published in the annual Water-Supply Papers. However, as the Geological Survey has made no sediment investigations in the Arkansas River Basin in Oklahoma and Arkansas, the published data do not include information on sediment concentrations or loads. This report attempts to summarize information collected to date in the Arkansas River Basin of the two States, and to show as clearly as possible from present information how the chemical quality of water in the Arkansas River changes downstream from the Oklahoma-Kansas State line to its confluence with the Mississippi River, and how it is affected by tributary inflows. Additional information is being collected and further studies are planned. Hence, the conclusions reached herein may be modified by more adequate information at a later date. The Arkansas River enters Oklahoma near Newkirk on the northern boundary just east of the 97th meridian, crosses the State in a general southeasterly direction flowing past Tulsa, enters Arkansas at its western boundary north of the 35th parallel near Fort Smith, still flowing in a general southeasterly direction past Little Rock near the center of the State, and empties into the Mississippi River east of Dumas. The Arkansas River is subject to many types of pollution downstream from the Oklahoma-Kansas State line, and its inferior quality along with an erratic flow pattern has caused it to be largely abandoned as a source of municipal and industrial water supply. At the present time, the Arkansas River is not directly used as a source of public supply in any part of the basin in either Oklahoma or Arkansas. In general, the river water increases in chemical concentration downstream from the Oklahoma-Kansas State line to Tulsa, due mainly to tributary inflow from the Salt Fork Arkansas River and the Cimarron River, both streams being sources of large amounts of both natural and artificial pollution. A decrease in chemical concentration is noted downstream from Tulsa due to tributary inflow from the Verdigris, Neosho, and Illinois rivers with an increase in chemical concentration then noted due to tributary inflow from the Canadian River which is largely artificial pollution. A steady decrease in concentration is then noted as the river progresses through Arkansas to the Mississippi River, as all major tributaries below the Canadian River have a dilution effect upon the chemical concentration of the Arkansas River water. Proposals for storage and regulating reservoirs on the Arkansas River in both Oklahoma and Arkansas have been made by the Corps of Engineers and others. Additional proposals are being considered in the present Arkansas-White-Red River Basin Inter-Agency Committee studies. If constructed, these reservoirs will provide an opportunity for control of flow and beneficial use of Arkansas River water, both at and downstream from these sites. Impoundment alone will greatly reduce the extremes in water quality, and by reasonable control of municipal and industrial wastes, the water would be comparable in quality to many existing basin municipal and industrial supplies. (available as photostat copy only)

  3. Safety evaluation model of urban cross-river tunnel based on driving simulation.

    PubMed

    Ma, Yingqi; Lu, Linjun; Lu, Jian John

    2017-09-01

    Currently, Shanghai urban cross-river tunnels have three principal characteristics: increased traffic, a high accident rate and rapidly developing construction. Because of their complex geographic and hydrological characteristics, the alignment conditions in urban cross-river tunnels are more complicated than in highway tunnels, so a safety evaluation of urban cross-river tunnels is necessary to suggest follow-up construction and changes in operational management. A driving risk index (DRI) for urban cross-river tunnels was proposed in this study. An index system was also constructed, combining eight factors derived from the output of a driving simulator regarding three aspects of risk due to following, lateral accidents and driver workload. Analytic hierarchy process methods and expert marking and normalization processing were applied to construct a mathematical model for the DRI. The driving simulator was used to simulate 12 Shanghai urban cross-river tunnels and a relationship was obtained between the DRI for the tunnels and the corresponding accident rate (AR) via a regression analysis. The regression analysis results showed that the relationship between the DRI and the AR mapped to an exponential function with a high degree of fit. In the absence of detailed accident data, a safety evaluation model based on factors derived from a driving simulation can effectively assess the driving risk in urban cross-river tunnels constructed or in design.

  4. Initial river test of a monostatic RiverSonde streamflow measurement system

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; ,

    2003-01-01

    A field experiment was conducted on May 7-8, 2002 using a CODAR RiverSonde UHF radar system at Vernalis, California on the San Joaquin River. The monostatic radar configuration on one bank of the river, with the antennas looking both upriver and downriver, provided very high-quality data. Estimates of both along-river and cross-river surface current were generated using several models, including one based on normal-mode analysis. Along-river surface velocities ranged from about 0.6 m/s at the river banks to about 1.0 m/s near the middle of the river. Average cross-river surface velocities were 0.02 m/s or less.

  5. Modeling Water-Surface Elevations and Virtual Shorelines for the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Magirl, Christopher S.; Breedlove, Michael J.; Webb, Robert H.; Griffiths, Peter G.

    2008-01-01

    Using widely-available software intended for modeling rivers, a new one-dimensional hydraulic model was developed for the Colorado River through Grand Canyon from Lees Ferry to Diamond Creek. Solving one-dimensional equations of energy and continuity, the model predicts stage for a known steady-state discharge at specific locations, or cross sections, along the river corridor. This model uses 2,680 cross sections built with high-resolution digital topography of ground locations away from the river flowing at a discharge of 227 m3/s; synthetic bathymetry was created for topography submerged below the 227 m3/s water surface. The synthetic bathymetry was created by adjusting the water depth at each cross section up or down until the model?s predicted water-surface elevation closely matched a known water surface. This approach is unorthodox and offers a technique to construct one-dimensional hydraulic models of bedrock-controlled rivers where bathymetric data have not been collected. An analysis of this modeling approach shows that while effective in enabling a useful model, the synthetic bathymetry can differ from the actual bathymetry. The known water-surface profile was measured using elevation data collected in 2000 and 2002, and the model can simulate discharges up to 5,900 m3/s. In addition to the hydraulic model, GIS-based techniques were used to estimate virtual shorelines and construct inundation maps. The error of the hydraulic model in predicting stage is within 0.4 m for discharges less than 1,300 m3/s. Between 1,300-2,500 m3/s, the model accuracy is about 1.0 m, and for discharges between 2,500-5,900 m3/s, the model accuracy is on the order of 1.5 m. In the absence of large floods on the flow-regulated Colorado River in Grand Canyon, the new hydraulic model and the accompanying inundation maps are a useful resource for researchers interested in water depths, shorelines, and stage-discharge curves for flows within the river corridor with 2002 topographic conditions.

  6. Low shear stress gravel-bed river

    USGS Publications Warehouse

    Milhous, Robert T.

    1997-01-01

    A low stress gravel bed river is a river where the cross-sectional average dimensionless shear stress (??*) rarely exceeds 0.047. That is the case for the Gunnison River below Delta in Western Colorado. The cross-sectional average ??* in the Gunnison River has not exceeded 0.047, except at one cross section during one year, in the 87 years of record. A ??* of 0.047 is the critical ??* in the bed-load equation considered to be most applicable to gravel/cobble bed rivers (the Meyer-Peter, Mueller equation). According to this equation, there has been no bed-material movement in the Gunnison River since 1920; in fact there has been bed-material movement and this movement is biologically important. Bed-material is moved when the ??* is 0.016 or larger. Streamflows that cause a ??* of at least 0.016 maintain the aquatic habitat in a low shear stress river.

  7. Eolian sand transport pathways in the southwestern United States: Importance of the Colorado River and local sources

    USGS Publications Warehouse

    Muhs, D.R.; Reynolds, R.L.; Been, J.; Skipp, G.

    2003-01-01

    Geomorphologists have long recognized that eolian sand transport pathways extend over long distances in desert regions. Along such pathways, sediment transport by wind can surmount topographic obstacles and cross major drainages. Recent studies have suggested that three distinct eolian sand transport pathways exist (or once existed) in the Mojave and Sonoran Desert regions of the southwestern United States. One hypothesized pathway is colian sand transport from the eastern Mojave Desert of California into western Arizona, near Parker, and would require sand movement across what must have been at least a seasonally dry Colorado River valley. We tested this hypothesis by mineralogical, geochemical and magnetic analyses of eolian sands on both sides of the Colorado River, as well as sediment from the river itself. Results indicate that dunes on opposite sides of the Colorado River are mineralogically distinct: eastern California dunes are feldspar-rich whereas western Arizona dunes are quartz-rich, derived from quartz-rich Colorado River sediments. Because of historic vegetation changes, little new sediment from the Colorado River is presently available to supply the Parker dunes. Based on this study and previous work, the Colorado River is now known to be the source of sand for at least three of the major dune fields of the Sonoran Desert of western Arizona and northern Mexico. On the other hand, locally derived alluvium appears to be a more important source of dune fields in the Mojave Desert of California. Although many geomorphologists have stressed the importance of large fluvial systems in the origin of desert dune fields, few empirical data actually exist to support this theory. The results presented here demonstrate that a major river system in the southwestern United States is a barrier to the migration of some dune fields, but essential to the origin of others. Published by Elsevier Science Ltd.

  8. A Televised Entertainment-Education Drama to Promote Positive Discussion about Organ Donation

    ERIC Educational Resources Information Center

    Khalil, Georges E.; Rintamaki, Lance S.

    2014-01-01

    This article investigates pathways between the exposure to an entertainment-education (E-E) television drama called "Three Rivers" and positive discussion of organ donation among viewers of the drama in the United States. A cross-sectional survey was conducted using an online advertising for a period of one week. Survey participants…

  9. Employment Status, Curriculum and College of Agriculture Graduates' Entrepreneurial Behaviour in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Arikpo, Abam

    2011-01-01

    The study investigated the difference in entrepreneurial behaviour of self employed College of Agriculture graduates "vis-à-vis" their counterparts who were either government employed, organised private sector employed, or unemployed. The samples (80 College of Agriculture graduates) were purposively drawn from all College of Agriculture…

  10. Environmental Awareness and School Sanitation in Calabar Metropolis of Cross Rivers State, Nigeria

    ERIC Educational Resources Information Center

    Anijaobi-Idem, F. N.; Ukata, B. N.; Bisong, N. N

    2015-01-01

    This descriptive survey designed study explored the influence of environmental awareness on secondary school sanitation in Calabar Metropolis. 1 hypothesis was formulated to direct the investigation. 300 subjects made up of 30 principals and 270 teachers constituted the sample drawn from the population of principals and teachers in secondary…

  11. The global switch from trivalent oral polio vaccine (tOPV) to bivalent oral polio vaccine (bOPV): facts, experiences and lessons learned from the south-south zone; Nigeria, April 2016.

    PubMed

    Bassey, Bassey Enya; Braka, Fiona; Vaz, Rui Gama; Komakech, William; Maleghemi, Sylvester Toritseju; Koko, Richard; Igbu, Thompson; Ireye, Faith; Agwai, Sylvester; Akpan, Godwin Ubong; Tegegne, Sisay Gashu; Mohammed, Abdul-Aziz Garba; Okocha-Ejeko, Angela

    2018-01-27

    The globally synchronized switch from trivalent Oral Polio Vaccine (tOPV) to bivalent Oral Polio Vaccine (bOPV) took place in Nigeria on April 18th 2016. The country is divided into six geopolitical zones. This study reports the experiences and lessons learned from the switch process in the six states that make up Nigeria's south-south geopolitical zone. This was a descriptive retrospective review of Nigeria's switch plan and structures used for implementing the tOPV-bOPV switch in the south-south zone. Nigeria's National Polio Emergency Operation Centre (NPEOC) protocols, global guidelines and reports from switch supervisors during the switch were used to provide background information for this study. Quantitative data were derived from reviewing switch monitoring and validation documents as submitted to the NPEOC RESULTS: The switch process took place in all 3078 Health Facilities (HFs) and 123 Local Government Areas (LGAs) that make up the six states in the zone. A total of $139,430 was used for this process. The 'healthcare personnel' component received the highest budgetary allocation (59%) followed by the 'logistics' component (18%). Akwa Ibom state was allocated the highest number of healthcare personnel and hence received the most budgetary allocation compared to the six states (total healthcare personnel = 458, total budgetary allocation = $17,428). Validation of the switch process revealed that eight HFs in Bayelsa, Cross-River, Edo and Rivers states still possessed tOPV in cold-chain while six HFs in Cross-River and Rivers states had tOPV out of cold-chain but without the 'do not use' sticker. Akwa-Ibom was the only state in the zone to have bOPV and Inactivated Polio Vaccine (IPV) available in all its HFs monitored. The Nigerian tOPV-bOPV switch was successful. For future Oral Polio Vaccine (OPV) withdrawals, implementation of the switch plan would be more feasible with an earlier dissemination of funds from global donor organizations, which would greatly aid timely planning and preparations. Increased budgetary allocation to the 'logistics' component to accommodate unexpected hikes in transportation prices and the general inefficiencies with power supply in the country is also advised.

  12. Power of Streams and Power of Management: How Community and Fluvial Science Work Together for Massachusetts Rivers

    NASA Astrophysics Data System (ADS)

    Hatch, C. E.; Mabee, S. B.; Slovin, N. B.; Vogel, E.; Gartner, J. D.; Gillett, N.; Warner, B. P.

    2015-12-01

    In the Northeastern U.S., the most costly damages from intense storm events were impacts to road-stream crossings. In steep post-glacial terrain, erosion by floodwater and entrained sediment is the largest destructive force during intense storms, and the most likely driver of major morphological changes to riverbanks and channels. Steam power analysis is a tool that can successfully quantify floodwater energy that caused damage afterward, however, prediction of which reaches or watersheds may experience future impacts remains uncertain. We must better determine how states with thousands of river miles may better prioritize flood mitigation studies, crossing replacements, or other infrastructure upgrades for future flood resilience within resource constraints. This challenged us to develop a statewide-scale scientific method for screening waterways and translating the results into effective policies for river corridor management. Here we present a method based on stream power analysis using widely-available 10-m DEMs and stream flow data to identify locations with extreme high or low stream power values (i.e., >300 W⁄m2 or <60 W⁄m2) or abrupt changes in these values. We used this information to identify potential areas of erosion or deposition in the Deerfield River watershed in Massachusetts and Vermont, then compared it to areas where damage occurred during Tropical Storm Irene. We show that areas of increasing (with respect to distance downstream) and high stream power are prone to landslides, bank failures, and other pulse sediment inputs in flood events. These are also the focal points of wood input to rivers, which combined with increased sediment load, makes culverts in these reaches especially prone to failure. Integration of this information into state databases allows communities to prioritize and make land-use decisions that are informed by the fluvial geomorphic workings of the larger watershed, but that have powerful local implications. Outreach and educational programs focused on stream power and fluvial systems for river practitioners and politicians at all levels align communities' attitudes about their rivers and result in ecologically sound, more flood resilient policies and practices.

  13. 3. ENVIRONMENT, FROM SOUTH, SHOWING RIVER ROAD RIDGE CARRYING CASSELMAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ENVIRONMENT, FROM SOUTH, SHOWING RIVER ROAD RIDGE CARRYING CASSELMAN RIVER ROAD OVER CASSELMAN RIVER - River Road Bridge, Crossing Casselman River on Casselman River Road, Grantsville, Garrett County, MD

  14. Impact of a large flood on mountain river habitats, channel morphology, and valley infrastructure

    NASA Astrophysics Data System (ADS)

    Hajdukiewicz, Hanna; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Radecki-Pawlik, Artur

    2016-11-01

    The Biała River, Polish Carpathians, was considerably modified by channelization and channel incision in the twentieth century. To restore the Biała, establishing an erodible corridor was proposed in two river sections located in its mountain and foothill course. In these sections, longer, unmanaged channel reaches alternate with short, channelized reaches; and channel narrowing and incision increases in the downstream direction. In June 2010 an 80-year flood occurred on the river; and this study aims at determining its effects on physical habitat conditions for river biota, channel morphology, and valley-floor infrastructure. Surveys of 10 pairs of closely located, unmanaged and channelized cross sections, performed in 2009 and in the late summer 2010, allowed us to assess the flood-induced changes to physical habitat conditions. A comparison of channel planforms determined before (2009) and after (2012) the flood provided information on the degree of channel widening as well as changes in the width of particular elements of the river's active zone in eight stretches of the Biała. The impact of the flood on valley-floor infrastructure was confronted with the degree of river widening in unmanaged and channelized river reaches. Before the flood, unmanaged cross sections were typified by finer bed material and greater lateral variability in depth-averaged and near-bed flow velocity than channelized cross sections. The flood tended to equalize habitat conditions in both types of river cross sections, obliterating differences (in particular physical habitat parameters) between channelized and unmanaged channel reaches. River widening mostly reflected an increase in the area of channel bars, whereas the widening of low-flow channels was less pronounced. A comparison of channel planform from 2009 and 2012 indicated that intense channel incision typical of downstream sections limited river widening by the flood. Active channel width increased by half in the unmanaged cross sections and by one-third in the channelized cross sections. However, damage to the valley-floor infrastructure was practically limited to the channelized river reaches with reinforced channel banks. This indicates incompetent management of riparian areas rather than the degree of river widening as a principal reason for the economic losses during the flood.

  15. Geomorphic change on the Missouri River during the flood of 2011: Chapter I in 2011 Floods of the Central United States

    USGS Publications Warehouse

    Schenk, Edward R.; Skalak, Katherine J.; Benthem, Adam J.; Dietsch, Benjamin J.; Woodward, Brenda K.; Wiche, Gregg J.; Galloway, Joel M.; Nustad, Rochelle A.; Hupp, Cliff R.

    2014-01-01

    The 2011 flood on the Missouri River was one of the largest floods since the river became regulated by a series of high dams in the mid-20th century (greater than 150,000 cubic feet per second during the peak). The flood persisted through most of the summer, eroding river banks, adding sand to sandbars, and moving the thalweg of the channel in many places. The U.S. Geological Survey monitored and assessed the changes in two reaches of the Missouri River: the Garrison Reach in North Dakota, bounded by the Garrison Dam and the Lake Oahe Reservoir, and the Recreational Reach along the boundary of South Dakota and Nebraska bounded upstream by the Gavins Point Dam and extending downstream from Ponca, Nebraska. Historical cross-section data from the Garrison Dam closure until immediately before the flood indicate that the upper reaches of the river near the dam experienced rapid erosion, channel incision, and island/sandbar loss following the dam closure. The erosion, incision, and land loss lessened with time. Conversely, the lower reach near the Lake Oahe Reservoir slackwaters became depositional with channel in-filling and sandbar growth through time as the flow slowed upon reaching the reservoir. Preliminary post-flood results in the Garrison Reach indicate that the main channel has deepened at most cross-sections whereas sandbars and islands have grown vertically. Sandbars and the thalweg migrated within the Recreational Reach, however net scouring and aggradation was minimal. Changes in the two-dimensional area of sandbars and islands are still being assessed using high-resolution satellite imagery. A sediment balance can be constructed for the Garrison Reach using cross-sections, bathymetric data, sand traps for wind-blown material, a quasi-three-dimensional numerical model, and dating of sediment cores. Data collection and analysis for a reach-scale sediment balance and a concurrent analysis of the effects of riparian and island vegetation on sediment deposition currently (2014) is ongoing.

  16. Evaluation of a floating fish guidance structure at a hydrodynamically complex river junction in the Sacramento-San Joaquin River Delta, California, USA

    USGS Publications Warehouse

    Romine, Jason G.; Perry, Russell W.; Pope, Adam C.; Stumpner, Paul; Liedtke, Theresa L.; Kumagai, Kevin K; Reeves, Ryan L

    2016-01-01

    Survival of out-migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento–San Joaquin River delta, California, USA, varies by migration route. Survival of salmonids that enter the interior and southern Delta can be as low as half that of salmonids that remain in the main-stem Sacramento River. Reducing entrainment into the higher-mortality routes, such as Georgiana Slough, should increase overall survival. In spring 2014, a floating fish-guidance structure (FFGS) designed to reduce entrainment into Georgiana Slough was deployed just upstream of the Georgiana Slough divergence. We used acoustic telemetry to evaluate the effect of the FFGS on Chinook entrainment to Georgiana Slough. At intermediate discharge (200–400 m3 s–1), entrainment into Georgiana Slough was five percentage points lower when the FFGS was in the on state (19.1% on; 23.9% off). At higher discharge (>400 m3 s–1), entrainment was higher when the FFGS was in the on state (19.3% on; 9.7% off), and at lower discharge (0–200 m3 s–1) entrainment was lower when the FFGS was in the on state (43.7% on; 47.3% off). We found that discharge, cross-stream fish position, time of day, and proportion of flow remaining in the Sacramento River contributed to the probability of being entrained to Georgiana Slough.

  17. A (very) Simple Model for the Aspect Ratio of High-Order River Basins

    NASA Astrophysics Data System (ADS)

    Shelef, E.

    2017-12-01

    The structure of river networks dictates the distribution of elevation, water, and sediments across Earth's surface. Despite its intricate shape, the structure of high-order river networks displays some surprising regularities such as the consistent aspect ratio (i.e., basin's width over length) of river basins along linear mountain fronts. This ratio controls the spacing between high-order channels as well as the spacing between the depositional bodies they form. It is generally independent of tectonic and climatic conditions and is often attributed to the initial topography over which the network was formed. This study shows that a simple, cross-like channel model explains this ratio via a requirement for equal elevation gain between the outlets and drainage-divides of adjacent channels at topographic steady state. This model also explains the dependence of aspect ratio on channel concavity and the location of the widest point on a drainage divide.

  18. Surveying Cross Sections of the Kootenai River Between Libby Dam, Montana, and Kootenay Lake, British Columbia, Canada

    USGS Publications Warehouse

    Barton, Gary J.; Moran, Edward H.; Berenbrock, Charles

    2004-01-01

    The declining population of Kootenai River white sturgeon, which was listed as an Endangered Species in 1994, has prompted a recovery team to assess the feasibility of various habitat enhancement scenarios to reestablish white sturgeon populations. As the first phase in this assessment, the U.S. Geological Survey collected stream channel cross-section and longitudinal data during 2002—03 at about 400 locations along the Kootenai River from Libby Dam near Libby, Montana, to where the river empties into Kootenay Lake near Creston, British Columbia, Canada. Survey control stations with a horizontal and vertical accuracy of less than 0.1 foot were established using a global positioning system (GPS) prior to collection of stream channel cross-section data along the Kootenai River. A total of 245 cross sections were surveyed. Six cross sections upstream from Kootenai Falls were surveyed using a total station where the river was too shallow or dangerous to navigate by vessel. The remaining 239 cross sections were surveyed by interfacing real-time GPS equipment with an echo sounder to obtain bathymetric data and with a laser range- finder to obtain streambank data. These data were merged, straightened, ordered, and reduced in size to be useful. Spacing between these cross sections ranged from about 600 feet in the valley flat near Deep Creek and Shorty Island and near bridges to as much as several miles in other areas. These stream channel cross sections will provide information that can be used to develop hydraulic flow models of the Kootenai River from Libby Dam, Montana, to Queens Bay on Kootenay Lake in British Columbia, Canada.

  19. Statistical, time series, and fractal analysis of full stretch of river Yamuna (India) for water quality management.

    PubMed

    Parmar, Kulwinder Singh; Bhardwaj, Rashmi

    2015-01-01

    River water is a major resource of drinking water on earth. Management of river water is highly needed for surviving. Yamuna is the main river of India, and monthly variation of water quality of river Yamuna, using statistical methods have been compared at different sites for each water parameters. Regression, correlation coefficient, autoregressive integrated moving average (ARIMA), box-Jenkins, residual autocorrelation function (ACF), residual partial autocorrelation function (PACF), lag, fractal, Hurst exponent, and predictability index have been estimated to analyze trend and prediction of water quality. Predictive model is useful at 95% confidence limits and all water parameters reveal platykurtic curve. Brownian motion (true random walk) behavior exists at different sites for BOD, AMM, and total Kjeldahl nitrogen (TKN). Quality of Yamuna River water at Hathnikund is good, declines at Nizamuddin, Mazawali, Agra D/S, and regains good quality again at Juhikha. For all sites, almost all parameters except potential of hydrogen (pH), water temperature (WT) crosses the prescribed limits of World Health Organization (WHO)/United States Environmental Protection Agency (EPA).

  20. Pentzien lays diagonal cross of Potomac for Columbia gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klinger, O.

    1976-05-01

    One of the most unusual pipeline river crossings was completed last fall by Pentzien, Inc., for Columbia LNG Corp. on the Potomac River at Bryans Road, MD, 22 miles south of Washington, DC. Part of a line delivering regasified Algerian LNG to Virginia and Pennsylvania, this crossing would have been only 7896 ft straight across the river; however, to obtaining necessary country authorization without excessively delaying the project, the line was laid diagonally 19,500 ft across the river at a cost about two-thirds more than for a straight-line crossing. The concrete-coated 36-in.-diam pipe for the project was so heavy thatmore » each transport truck could handle only a single 40-ft length at a time. Laser beams on each side of the river were used to guide both the dredging and pipelaying operations.« less

  1. Brown Trout removal effects on short-term survival and movement of Myxobolus cerebralis-resistant rainbow trout

    USGS Publications Warehouse

    Fetherman, Eric R.; Winkelman, Dana L.; Bailey, Larissa L.; Schisler, George J.; Davies, K.

    2015-01-01

    Following establishment of Myxobolus cerebralis (the parasite responsible for salmonid whirling disease) in Colorado, populations of Rainbow Trout Oncorhynchus mykissexperienced significant declines, whereas Brown Trout Salmo trutta densities increased in many locations across the state, potentially influencing the success of M. cerebralis-resistant Rainbow Trout reintroductions. We examined the effects of Brown Trout removal on the short-term (3-month) survival and movement of two crosses of reintroduced, M. cerebralis-resistant Rainbow Trout in the Cache la Poudre River, Colorado. Radio frequency identification passive integrated transponder tags and antennas were used to track movements of wild Brown Trout and stocked Rainbow Trout in reaches where Brown Trout had or had not been removed. Multistate mark–recapture models were used to estimate tagged fish apparent survival and movement in these sections 3 months following Brown Trout removal. A cross between the German Rainbow Trout and Colorado River Rainbow Trout strains exhibited similar survival and movement probabilities in the reaches, suggesting that the presence of Brown Trout did not affect its survival or movement. However, a cross between the German Rainbow Trout and Harrison Lake Rainbow Trout exhibited less movement from the reach in which Brown Trout had been removed. Despite this, the overall short-term benefits of the removal were equivocal, suggesting that Brown Trout removal may not be beneficial for the reintroduction of Rainbow Trout. Additionally, the logistical constraints of conducting removals in large river systems are substantial and may not be a viable management option in many rivers.

  2. The Impact of Incessant Strike Actions and Industrial Disputes in Cross River University of Technology and Its Effect on Students Motivation to Learning

    ERIC Educational Resources Information Center

    Orok-Duke, Orok Ekpo; Sackey, Jacob; Usiabulu, Michael; Bassey, Okpa Inah

    2016-01-01

    The purpose of this study was to find out the impact of incessant strike actions and industrial disputes in Cross River University of Technology and its effect on students' motivation to learning. Over the years, a considerable amount of effort has been put on ground in order to run the Cross River University of Technology devoid of financial…

  3. Theatre of Rural Empowerment: The Example of Living Earth Nigeria Foundation's Community Theatre Initiative in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Betiang, Liwhu

    2010-01-01

    About 60% of Nigerians live in rural areas with poor access roads and health facilities, near-absent communication media, unemployment, alienation and disempowerment by the political leadership. This scenario has excluded the rural Nigerian from meaningful participation in development action. A bottom-up participatory approach to…

  4. Environmental Security in Botswana

    DTIC Science & Technology

    2011-10-01

    concerns are vital to state survival. Upstream diversions of river water, poaching of wildlife or uncontrolled immigration can destroy ecosystems that would...gratefully accepted. Executing its first mission in October, 1987 the BDF immediately made positive impacts and dramatically reduced poaching ...experience large scale, organized cross-border poaching which overwhelmed the Botswana Department of Wildlife and National Parks. By 1987 the situation

  5. VIEW OF UPSTREAM (EAST) SIDES OF UPPER (EAST) END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF UPSTREAM (EAST) SIDES OF UPPER (EAST) END OF LOCK, SOUTHEAST AND NORTHEAST CONTROL HOUSES, LOCK UNDER REPAIR, BUILDING NOS. 51, 52 AND SOUTHWEST CONTROL HOUSE IN BACKGROUND, VIEW TOWARDS WEST-NORTHWEST - Ortona Lock, Lock No. 2, Machinery and Control Houses, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  6. Transforming Nigerian Youth Leadership Capacities in Secondary Schools through Principals' Managerial Role Effectiveness

    ERIC Educational Resources Information Center

    Edet, Aniefiok Oswald; Ekpoh, Uduak Imo; Uko, Esther Samuel

    2015-01-01

    The study examined principals' management role effectiveness of secondary schools for youth leadership in Calabar Education Zone of Cross River State. The study employed survey research design. The target population comprised all 158 principals in both public and private secondary schools in the study area. The sample selected through random…

  7. Correlates of Unemployed Graduates' Perceptions of the Importance of Entrepreneurial Education in Poverty Alleviation in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Ekuri, E. E.; Alade, F. O.; Sule, M.; Odigwe, F. N.

    2013-01-01

    Drawing from the empirical research on unemployment among young graduates and the question of economic relevance of curricula of the tertiary education in Nigeria, this investigation was carried out to answer the following research question: Will unemployed graduates' perceptions of the importance of entrepreneurial education in poverty…

  8. Complete velocity distribution in river cross-sections measured by acoustic instruments

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.; ,

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  9. Constructing river stage-discharge rating curves using remotely sensed river cross-sectional inundation areas and river bathymetry

    NASA Astrophysics Data System (ADS)

    Pan, Feifei; Wang, Cheng; Xi, Xiaohuan

    2016-09-01

    Remote sensing from satellites and airborne platforms provides valuable data for monitoring and gauging river discharge. One effective approach first estimates river stage from satellite-measured inundation area based on the inundation area-river stage relationship (IARSR), and then the estimated river stage is used to compute river discharge based on the stage-discharge rating (SDR) curve. However, this approach is difficult to implement because of a lack of data for constructing the SDR curves. This study proposes a new method to construct the SDR curves using remotely sensed river cross-sectional inundation areas and river bathymetry. The proposed method was tested over a river reach between two USGS gauging stations, i.e., Kingston Mines (KM) and Copperas Creek (CC) along the Illinois River. First a polygon over each of two cross sections was defined. A complete IARSR curve was constructed inside each polygon using digital elevation model (DEM) and river bathymetric data. The constructed IARSR curves were then used to estimate 47 river water surface elevations at each cross section based on 47 river inundation areas estimated from Landsat TM images collected during 1994-2002. The estimated water surface elevations were substituted into an objective function formed by the Bernoulli equation of gradually varied open channel flow. A nonlinear global optimization scheme was applied to solve the Manning's coefficient through minimizing the objective function value. Finally the SDR curve was constructed at the KM site using the solved Manning's coefficient, channel cross sectional geometry and the Manning's equation, and employed to estimate river discharges. The root mean square error (RMSE) in the estimated river discharges against the USGS measured river discharges is 112.4 m3/s. To consider the variation of the Manning's coefficient in the vertical direction, this study also suggested a power-law function to describe the vertical decline of the Manning's coefficient with the water level from the channel bed lowest elevation to the bank-full level. The constructed SDR curve with the vertical variation of the Manning's coefficient reduced the RMSE in the estimated river discharges to 83.9 m3/s. These results indicate that the method developed and tested in this study is effective and robust, and has the potential for improving our ability of remote sensing of river discharge and providing data for water resources management, global water cycle study, and flood forecasting and prevention.

  10. 4. ENVIRONMENT, FROM NORTH, SHOWING RIVER ROAD BRIDGE CARRYING CASSELMAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. ENVIRONMENT, FROM NORTH, SHOWING RIVER ROAD BRIDGE CARRYING CASSELMAN RIVER ROAD OVER CASSELMAN RIVER, WITH MARYLAND GEOLOGICAL SURVEY STREAM-GAUGING STATION AT NORTHEAST CORNER OF BRIDGE - River Road Bridge, Crossing Casselman River on Casselman River Road, Grantsville, Garrett County, MD

  11. Peer Pressure and Tobacco Smoking among Undergraduate Students of the University of Calabar, Cross River State

    ERIC Educational Resources Information Center

    Ukwayi, Joseph K.; Eja, Ojong Felix; Unwanede, Chibuzo C.

    2012-01-01

    Peer pressure becomes a perturbing and problematic phenomenon as children grow seeing their peers as role models. Peer pressure is a social institution that modifies adolescents' behaviours by making them indulge in risky behaviour such as smoking at early age. This phenomenon has indeed found its way into our tertiary institutions and among our…

  12. 78 FR 49603 - Norfolk Southern Railway Company-Abandonment Exemption-in Marengo County, Ala

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... crossing of the mouth of Devil's Run Slough where the slough joins the Black Warrior River) and milepost... Run Slough at the request of the United States Coast Guard (USCG), because USCG views the bridge... environmental issues,\\2\\ formal expressions of intent to file an OFA under 49 CFR 1152.27(c)(2),\\3\\ and trail...

  13. A Science-Technology-Society Paradigm and Cross River State Secondary School Students' Scientific Literacy: Problem Solving and Decision Making

    ERIC Educational Resources Information Center

    Umoren, Grace

    2007-01-01

    The aim of this study was to investigate the effect of Science-Technology-Society (STS) curriculum on students' scientific literacy, problem solving and decision making. Four hundred and eighty (480) Senior Secondary two science and non-science students were randomly selected from intact classes in six secondary schools in Calabar Municipality of…

  14. Delivery Pain Anxiety/Fear Control between Midwives among Women in Cross River State, Nigeria

    ERIC Educational Resources Information Center

    Oyira, Emilia James; Mgbekem, Mary; Osuchukwu, Easther Chukwudi; Affiong, Ekpenyong Onoyom; Lukpata, Felicia E.; Ojong-Alasia, Mary Manyo

    2016-01-01

    Objective: To examine background of midwives the effectiveness in delivery pain and anxiety/fear control of expectant mothers in Nigeria. Methods: Two null hypotheses were formulated. The survey design with sample of 360 post-natal women was selected from a population of 78,814 through the polio immunization registers of selected health center in…

  15. Crossing the River: A Conceptual Framework for Response to Chaos

    DTIC Science & Technology

    2012-03-01

    LAPD Los Angeles Police Department NIMS...February 28, 1997, the Los Angeles Police Department became involved in the largest police gun battle in the United States. In a matter of 44 minutes...of the Raleigh Police Department , as well as the City of Raleigh for supporting me in this journey. Without Chief Dolan’s support, I could not

  16. Stream channel cross sections for a reach of the Boise River in Ada County, Idaho

    USGS Publications Warehouse

    Hortness, Jon E.; Werner, Douglas C.

    1999-01-01

    The Federal Emergency Management Agency produces maps of areas that are likely to be inundated during major floods, usually the 100-year, or 1-percent probability, flood. The maps, called Flood Insurance Rate Maps, are used to determine flood insurance rates for homes, businesses, or other structures located in flood-prone areas. State and local governments also use these maps for help with, among other things, development planning and disaster mitigation. During the period October 1997 through December 1998, the initial phase of a hydraulic analysis project of the Boise River from Barber Dam to the Ada/Canyon County boundary, the U.S. Geological Survey collected stream channel cross-section data at 238 locations along the river and documented 108 elevation reference marks established for horizontal and vertical control. In the final phase of the project, the Survey will use these data to determine water-surface elevations for the 10-, 50-, 100-, and 500-year floods and to define floodway limits. The Federal Emergency Management Agency will use the results of this hydraulic analysis to update the 100- and 500-year flood boundaries and the floodway limits on their Flood Insurance Rate Maps.

  17. Situk River Hydrology Following Closure of Russell Fiord by Hubbard Glacier

    DTIC Science & Technology

    2011-03-01

    and in- vestigate potential channel erosion, the impacts on the Old Situk River crossing and Situk Lake, and the potential influence of log jams and...52 Log jams ...crossing and Situk Lake (the upstream source of the Situk River), and the potential impacts of log jams and channel migration. ERDC/CRREL TR-11-5 4 2

  18. Pesticide concentrations in water and in suspended and bottom sediments in the New and Alamo rivers, Salton Sea Watershed, California, April 2003

    USGS Publications Warehouse

    LeBlanc, Lawrence A.; Orlando, James L.; Kuivila, Kathryn

    2004-01-01

    This report contains pesticide concentration data for water, and suspended and bed sediment samples collected in April 2003 from twelve sites along the New and Alamo Rivers in the Salton Sea watershed, in southeastern California. The study was done in collaboration with the California State Regional Water Quality Control Board, Colorado River Region, to assess inputs of current-use pesticides associated with water and sediment into the New and Alamo Rivers. Five sites along the New River and seven sites along the Alamo River, downstream of major agricultural drains, were selected and covered the lengths of the rivers from the international boundary to approximately 1.5 km from the river mouths. Sampling from bridges occurred at seven of the twelve sites. At these sites, streamflow measurements were taken. These same sites were also characterized for cross-stream homogeneity by measuring dissolved oxygen, pH, specific conductance, temperature, and suspended solids concentration at several vertical (depths) and horizontal (cross-stream) points across the river. Large volume water samples (200?300 L) were collected for isolation of suspended sediments by flow-through centrifugation. Water from the outflow of the flow-through centrifuge was sampled for the determination of aqueous pesticide concentrations. In addition, bottom sediments were sampled at each site. Current-use pesticides and legacy organochlorine compounds (p,p'-DDT, p,p'-DDE and p,p'-DDD) were extracted from sediments and measured via gas chromatography/mass spectrometry (GC/MS). Organic carbon and percentage of fines were also determined for suspended and bottom sediments. Cross-stream transects of dissolved constituents and suspended sediments showed that the rivers were fairly homogeneous at the sites sampled. Streamflow was higher at the outlet sites, with the Alamo River having higher flow (1,240 cfs) than the New River (798 cfs). Twelve current-use pesticides, one legacy organochlorine compound (p,p'-DDE), and the additive piperonyl butoxide were detected in water samples. Trifluralin was found in the highest concentration of all detected compounds (68.5?599 ng/L) at all sites in both rivers, except for the international boundary sites. Atrazine was also detected in high concentration (51.0?285 ng/L) at several sites. The outlet sites had among the highest numbers of pesticides detected and the international boundary sites had the lowest numbers of pesticides detected for both rivers. The numbers of pesticides detected were greater for the Alamo River than for the New River. Six current-use pesticides and two legacy organochlorines (p,p'-DDE and p,p'-DDD) were found associated with suspended and bed sediments. The DDT metabolite p,p'-DDE was detected in all suspended and bed sediments from the Alamo River, but only at two sites in the New River. Dacthal, chlorpyrifos, pendimethalin, and trifluralin were the most commonly detected current-use pesticides. Trifluralin was the compound found in the highest concentrations in suspended (14.5?120 ng/g) and bed (1.9?9.0 ng/g) sediments. The sites along the Alamo River had more frequent detections of pesticides in suspended and bed sediments when compared with the New River sites. The greatest number of pesticides that were detected in suspended sediments (seven) were in the samples from the Sinclair Road and Harris Road sites. For bottom sediments, the Alamo River outlet site had the greatest number of pesticide detections (eight).

  19. Use of dye tracing in water-resources investigations in Wyoming, 1967-94

    USGS Publications Warehouse

    Wilson, J.F.; Rankl, J.G.

    1996-01-01

    During 1967-94, the U.S. Geological Survey made numerous applications of dye tracing for water-resources investigations in Wyoming. Many of the dye tests were done in cooperation with other agencies. Results of all applications, including some previously unpublished, are described. A chronology of past applications in Wyoming and a discussion of potential future applications are included. Time-of-travel and dispersion measurements were made in a 113-mile reach of the Wind/Bighorn River below Boysen Dam; a 117-mile reach of the Green River upstream from Fontenelle Reservoir and a 70-mile reach downstream; parts of four tributaries to the Green (East Fork River, 39 miles; Big Sandy River, 112 miles; Horse Creek, 14 miles; and Blacks Fork, 14 miles); a 75-mile reach of the Little Snake River along the Wyoming-Colorado State line; and a 95-mile reach of the North Platte River downstream from Casper. Reaeration measurements were made during one of the time-of-travel measurements in the North Platte River. Sixty-eight dye-dilution measurements of stream discharge were made at 22 different sites. These included 17 measurements for verifying the stage-discharge relations for streamflow-gaging stations on North and South Brush Creeks near Saratoga, and total of 29 discharge measurements at 12 new stations at remote sites on steep, rough mountain streams crossing limestone outcrops in northeastern Wyoming. The largest discharge measured by dye tracing was 2,300 cubic feet per second. In karst terrane, four losing streams-North Fork Powder River, North Fork Crazy Woman Creek, Little Tongue River, and Smith Creek-were dye-tested. In the Middle Popo Agie River, a sinking stream in Sinks Canyon State Park, a dye test verified the connection of the sink (Sinks of Lander Cave) to the rise, where flow in the stream resumes.

  20. Uranium transport in the Walker River Basin, California and Nevada

    USGS Publications Warehouse

    Benson, L.V.; Leach, D.L.

    1979-01-01

    During the summer of 1976 waters from tributaries, rivers, springs and wells were sampled in the Walker River Basin. Snow and sediments from selected sites were also sampled. All samples were analyzed for uranium and other elements. The resulting data provide an understanding of the transport of uranium within a closed hydrologic basin as well as providing a basis for the design of geochemical reconnaissance studies for the Basin and Range Province of the Western United States. Spring and tributary data are useful in locating areas containing anomalous concentrations of uranium. However, agricultural practices obscure the presence of known uranium deposits and render impossible the detection of other known deposits. Uranium is extremely mobile in stream waters and does not appear to sorb or precipitate. Uranium has a long residence time (2500 years) in the open waters of Walker Lake; however, once it crosses the sediment-water interface, it is reduced to the U(IV) state and is lost from solution. Over the past two million years the amount of uranium transported to the terminal point of the Walker River system may have been on the order of 4 ?? 108 kg. This suggests that closed basin termini are sites for significant uranium accumulations and are, therefore, potential sites of uranium ore deposits. ?? 1979.

  1. 19. 'Transverse Bracing, 3 180'61/2' c. to c. End ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. 'Transverse Bracing, 3 - 180'-6-1/2' c. to c. End Pins Sing. Tr. Thro' Spans, C.O. 839 10th Crossing Sacramento River, C.O. 840 11th Crossing Sacramento River, C.O. 841 13th Crossing Sacramento River, Sacramento Division, So. Pac. Co., The Phoenix Bridge Co., C.O's. 839, 840 & 841, Drawing #4, Eng'r - C. Scheidl, Draftsman - B. Heald, Scale 1' = 1'-0', April 13th 1901.' - Southern Pacific Railroad Shasta Route, Bridge No. 310.58, Milepost 310.58, Sims, Shasta County, CA

  2. Determination of channel capacity of the Mokelumne River downstream from Camanche Dam, San Joaquin and Sacramento Counties, California

    USGS Publications Warehouse

    Simpson, R.G.

    1972-01-01

    This study evaluates the adequacy of a 39-mile reach of the Mokelumne River in San Joaquin and Sacramento Counties, California, to carry planned flood releases between Camanche Reservoir and the Bensons Ferry Bridge near Thornton. The flood releases from Camanche Reservoir are to be restricted, insofar as possible, so that the flows in the Mokelumne River will not exceed 5,000 cfs (cubic feet per second) as measured at the gaging station below Camanche Dam. Areas of inundation and computed floodwater profiles are based on channel conditions in late 1970 and on observed water-surface profiles during flood releases of about 5,000 cfs in January 1969 and January 1970. The inundated area shown on the maps (appendix A) and the water-surface elevations indicated on the cross sections (appendix G) are for the flood releases of those dates. The following conclusions are contingent on there being no levee failures during periods of high flow and no significant channel changes since the flood release of January 1970. 1. High tides in San Francisco Bay and, to a greater degree, flood stages on the Cosumnes River, cause backwater in the study reach. Severe backwater conditions occurring simultaneously with a flow of 5,000 cfs in the Mokelumne River can increase the flood stage 4 to 6 feet at Bensons Ferry Bridge (cross section 1). Backwater effects decrease in an upstream direction and are less than 0.5 foot at cross section 35, a river distance of 8.6 miles upstream from cross section 1, and 1.5 miles downstream from the Peltier Road bridge. 2. In the reach between cross sections 1 and 35, a 5,000 cfs release from Camanche Reservoir with maximum backwater effect (measured at cross section 1 at the mouth of the Cosumnes River) is confined within the natural or leveed banks except on the right bank flood plain between cross sections 12 and 19. 3. Upstream from cross section 35, there is overbank flooding at a flow of 5,000 cfs between cross sections 48 and 51, and 62 and 67.5. An increase in flow from 5,000 to 6,000 cfs will cause flooding between cross sections 43 and 47, 52 and 56, and 73 and 85. 4. A discharge of 5,000 cfs will pass through all bridge openings in the study reach except that of the Western Pacific Railroad Co. bridge at cross section 4. If large amounts of debris lodge on the railroad bridge when backwater from the Cosumnes River occurs, the debris could cause higher stages and flooding along the right bank between cross sections 5 and 12.

  3. Simulation of unsteady flow and solute transport in a tidal river network

    USGS Publications Warehouse

    Zhan, X.

    2003-01-01

    A mathematical model and numerical method for water flow and solute transport in a tidal river network is presented. The tidal river network is defined as a system of open channels of rivers with junctions and cross sections. As an example, the Pearl River in China is represented by a network of 104 channels, 62 nodes, and a total of 330 cross sections with 11 boundary section for one of the applications. The simulations are performed with a supercomputer for seven scenarios of water flow and/or solute transport in the Pearl River, China, with different hydrological and weather conditions. Comparisons with available data are shown. The intention of this study is to summarize previous works and to provide a useful tool for water environmental management in a tidal river network, particularly for the Pearl River, China.

  4. Synthesis of natural flows at selected sites in and near the Milk River basin, Montana, 1928-89

    USGS Publications Warehouse

    Cary, L.E.; Parrett, Charles

    1995-01-01

    Natural monthly streamflows were synthesized for the years 1928-89 at 2 sites in the St. Mary River Basin and 11 sites in the Milk River Basin in north- central Montana. The sites are represented as nodes in a streamflow accounting model being developed by the Bureau of Reclamation for the Milk River Basin. Recorded flows at most sites have been affected by human activities, including reservoir storage and irrigation diversions. The flows at the model nodes were corrected for the effects of these activities to obtain synthesized flows. The synthesized flows at nodes with seasonal and short-term records were extended using a statistical technique. The methods of synthesis varied, depending on upstream activities and information available. Flows at sites in the St. Mary River Basin and at the Milk River at Eastern Crossing of International Boundary pre- viously had been synthesized. The flows at mainstem sites downstream from the Milk River at Eastern Crossing were synthesized by adding synthesized natural runoff from intervening drainage areas to natural flows for Milk River at Eastern Crossing. Natural runoff from intervening drainage areas was estimated by multiplying recorded flows at selected index gaging stations on tributary streams by the ratio of the intervening drainage area to the combined drainage area of the index stations. The recorded flows for Milk River at Western Crossing of International Boundary and for Peoples Creek near Dodson, Montana, were assumed to be natural flows. The synthesized annual flows at the mouth of the Milk River compared favorably with the recorded flows near the mouth when the effects of upstream irrigation were considered.

  5. Habitat use by a freshwater dolphin in the low-water season

    USGS Publications Warehouse

    Braulik, Gill T.; Reichert, Albert P.; Ehsan, Tahir; Khan, Samiullah; Northridge, Simon P.; Alexander, Jason S.; Garstang, Richard

    2012-01-01

    1. Many river dolphin populations are most vulnerable during the low-water season when habitat is limited. Indus River dolphin habitat selection in the dry season was investigated using Generalized Linear Models of dolphin distribution and abundance in relation to physical features of river geomorphology and channel geometry in cross-section. 2. Dolphins selected locations in the river with significantly greater mean depth, maximum depth, cross-sectional area, and hydraulic radius, and significantly narrower river width and a lower degree of braiding than areas where dolphins were absent. They were also recorded with higher frequency at river constrictions and at confluences. 3. Channel cross-sectional area was the most important factor affecting dolphin presence and abundance, with the area of water below 1 m in depth exerting the greatest influence. Indus dolphins avoided channels with small cross-sectional area (2), presumably owing to the risk of entrapment and reduced foraging opportunities. 4. Channel geometry had a greater ability to explain dolphin distribution than river geomorphology; however, both analyses indicated similar types of habitat selection. The dolphin–habitat relationships identified in the river geomorphology analysis were scale-dependent, indicating that dolphin distribution is driven by the occurrence of discrete small-scale features, such as confluences and constrictions, as well as by broader-scale habitat complexes. 5. There are numerous plans to impound or extract more water from the Indus River system. If low-water season flows are allowed to decrease further, the amount of deeper habitat will decline, there may be insufficient patches of suitable habitat to support the dolphin population through the low-water season, and dolphins may become isolated within deeper river sections, unable or unwilling to traverse through shallows between favourable patches of habitat.

  6. Measurements of velocity and discharge, Grand Canyon, Arizona, May 1994

    USGS Publications Warehouse

    Oberg, Kevin A.; Fisk, Gregory G.; ,

    1995-01-01

    The U.S. Geological Survey (USGS) evaluated the feasibility of utilizing an acoustic Doppler current profiler (ADCP) to collect velocity and discharge data in the Colorado River in Grand Canyon, Arizona, in May 1994. An ADCP is an instrument that can be used to measure water velocity and discharge from a moving boat. Measurements of velocity and discharge were made with an ADCP at 54 cross sections along the Colorado River between the Little Colorado River and Diamond Creek. Concurrent measurements of discharge with an ADCP and a Price-AA current meter were made at three U.S. Geological Survey streamflow-gaging stations: Colorado River above the Little Colorado River near Desert View, Colorado River near Grand Canyon, and Colorado River above Diamond Creek near Peach Springs. Discharges measured with an ADCP were within 3 percent of the rated discharge at each streamflow-gaging station. Discharges measured with the ADCP were within 4 percent of discharges measured with a Price-AA meter, except at the Colorado River above Diamond Creek. Vertical velocity profiles were measured with the ADCP from a stationary position at four cross sections along the Colorado River. Graphs of selected vertical velocity profiles collected in a cross section near National Canyon show considerable temporal variation among profile.

  7. 25. VIEW OF McGREGOR BRIDGE (18811936), CROSSING THE MERRIMACK RIVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW OF McGREGOR BRIDGE (1881-1936), CROSSING THE MERRIMACK RIVER AT BRIDGE STREET, LOOKING SOUTHEAST. NORTH ELEVATION OF DOUBLE-DECKED, THREE-SPAN DOUGLAS PATENT PARABOLIC IRON TRUSS ERECTED BY CORRUGATED METAL COMPANY (BERLIN IRON BRIDGE COMPANY, BERLIN, CT) From 'Bridge Street Bridge', photographer and date unknown. - Notre Dame Bridge, Spanning Merrimack River on Bridge Street, Manchester, Hillsborough County, NH

  8. Channel adjustments to historical disturbances along the lower Brazos and Sabine Rivers, south-central USA

    NASA Astrophysics Data System (ADS)

    Heitmuller, Franklin T.

    2014-01-01

    Historical channel adjustments are documented and discussed in context with anthropogenic disturbances along two meandering, coastal plain rivers - the lower Brazos and Sabine Rivers in the south-central United States. Hard-copy streamflow-measurement notes of the U.S. Geological Survey were utilized to render historical cross sections (1925-2007) at nine gauging stations, which were complemented with repeat photographs and flood-frequency analysis to assess trajectories of channel change and interpret causative mechanisms. Downstream- and upstream-propagating disturbances caused episodes of channel-bed incision and aggradation at different locations for distinct time periods along both rivers. Incision associated with upstream dams is detected, but channels are compensated downstream with sediment inputs from lateral channel migration and tributaries. In one case, temporary aggradation along the Brazos River at Waco was likely caused by a combination of dam construction and regional soil erosion. Channel-bed incision on the lowermost Brazos River is unrelated to dams, but is associated with instream aggregate extraction, possibly in conjunction with downstream channelization. On the Sabine River, extensive aggradation during the 1930s might be associated with logging activities (1880s-1930s), but whether the cause is pervasive regional-scale hillslope erosion or local-scale mill-site activities is indeterminate. Following passage of this sediment, the river generally recovered to pre-disturbance conditions and has exhibited stability despite a mainstem reservoir. Translation of this sediment slug is attenuated by a transition to a flood-prone, distributary-dominated system downstream of the Holocene-Pleistocene terrace onlap position. Additional findings include cross-channel hingepoints separating thalweg incision from simultaneous point-bar or bank accretion at meander bends, which indicates channel adjustment occurs along non-cohesive beds in preference to cohesive or artificially reinforced banks. Also, flood reduction has resulted in bankfull stages that are higher than levels associated with the post-regulation 2-year return period. Finally, vegetation encroachment along banks since the 1970s coupled with reduced flooding along the lower Brazos River has promoted bank accretion deposits that, when fully developed, serve as morphologic indicators of the post-regulation 1- to 2-year return period stage.

  9. Comparison of methods for determining streamflow requirements for aquatic habitat protection at selected sites on the Assabet and Charles Rivers, Eastern Massachusetts, 2000-02

    USGS Publications Warehouse

    Parker, Gene W.; Armstrong, David S.; Richards, Todd A.

    2004-01-01

    Four methods used to determine streamflow requirements for habitat protection at nine critical riffle reaches in the Assabet River and Charles River Basins were compared. The methods include three standard setting techniques?R2Cross, Wetted Perimeter, and Tennant?and a diagnostic method, the Range of Variability Approach. One study reach is on the main stem of the Assabet River, four reaches are on tributaries to the Assabet River (Cold Harbor Brook, Danforth Brook, Fort Meadow Brook, and Elizabeth Brook), three are on the main stem of the Charles River, and one is on a tributary to the Charles River (Mine Brook). The strength of the R2Cross and Wetted-Perimeter methods is that they may be applied at ungaged locations whereas the Tennant method and the Range of Variability Approach require a period of streamflow record for analysis. Fish community assessments conducted at or near riffle sites in flowing reaches of the Assabet River and Charles River Basins were used to indicate ecological conditions. The fish communities in the main stem and tributary reaches of both the Assabet and Charles River Basins indicated degraded aquatic ecosystems. However, the degree of degradation differs between the two basins. The extreme predominance of tolerant, generalist species in the Charles River fish community demon-strates the cumulative impacts of flow, habitat, and water-chemistry degradation, combined with the effects of nearby impoundments and changing land use. The range of discharges for nine ungaged riffle reaches defined by the median R2Cross 3-of-3 criteria, R2Cross 2-of-3 criteria, and Wetted-Perimeter streamflow requirements, was 0.86 cubic foot per second per square mile, 0.18 cubic foot per second per square mile, and 0.23 cubic foot per second per square mile, respectively. Application of R2Cross and Wetted-Perimeter methods to sites with altered streamflows or at sites that are riffles only at low to moderate flows can result in a greater variability of streamflow requirements than would result if the methods were applied to riffles on natural channels with unaltered streamflows. The R2Cross 2-of-3 criteria and the Wetted-Perimeter streamflow requirements for the Assabet and Charles River sites show narrower interquartile ranges and lower median streamflow requirements than for 10 index streamflow-gaging stations in southern New England. This is especially evident for the R2Cross 2-of-3 criteria and Wetted-Perimeter results that were close to half of the flow requirements determined at the 10 southern New England stations. The R2Cross and Wetted-Perimeter methods were also compared to the Range of Variability Approach analysis and the Tennant Method. The median R2Cross 3-of-3 criteria streamflow requirement for the nine riffles is close to the 75th percentile of the monthly mean flows during the summer low-flow period from six streamflow-gaging stations near the Assabet and Charles River Basins having mostly unaltered flow. This streamflow requirement is close to the median Tennant 40-percent-flow requirement for good habitat condi-tion for the same six nearby stations. The R2Cross 2-of-3 criteria and Wetted-Perimeter results were less than the 25th-percentile of monthly mean flows during the summer months for the six stations. These streamflow requirements are in the poor habitat range as indicated by a Tennant analysis of the same six stations. These comparisons indicate that the R2Cross and Wetted-Perimeter methods underestimate streamflow requirements when applied to sites in smaller drainage areas and channels that are runs at higher flows.

  10. Sand-storage changes in the Colorado River downstream from the Paria and Little Colorado rivers, April 1994 to August 1995

    USGS Publications Warehouse

    Graf, Julia B.; Marlow, Jonathan E.; Rigas, Patricia D.; Jansen, Samuel M.D.

    1997-01-01

    Sixty-six cross sections on the Colorado River in 11-kilometer reachesdownstream from the Paria and Little Colorado Rivers were monitoredfrom June 1992 to August 1995 to provide data to evaluate the effectof releases from Glen Canyon Dam on channel-sand storage and fordevelopment of multidimensional flow and sediment-transport models.Most of the network of monumented cross sections was established andfirst measured JuneSeptember 1992. Data collected from June 1992through February 1994 were published in a previous report. Crosssections downstream from the Paria River were remeasured six timesbetween April 1994 and August 1995. Most sections downstream from theLittle Colorado River were remeasured four times in the same timeperiod. Each measurement consisted of 10 passes across the section,and data presented are the mean section and the standard deviationfrom the mean. Measured depths were converted to bed elevations usingwater-surface elevations measured or estimated for each reach. A linemarked at regular intervals was strung across the river between thesection end points and used to provide horizontal-position control. AWilcoxon rank-sum test was applied to the data, and bed-elevationdifferences between successive measurements that were statisticallysignificant at the 5-percent significance level were identified andused to compute the difference in cross-sectional area frommeasurement to measurement. Changes in sand storage computed forselected cross sections are presented. Changes in area at most of theselected cross sections during the period presented in this reportwere smaller than those measured during the period covered bythe previous report. The largest changes over the monitoring periodpresented in this report were measured at section p22 (+115 squaremeters) downstream from the Paria River and at sections lb1 (+209square meters) and lc2 (156 square meters) downstream from theLittle Colorado River. This report presents selected data from themeasurements made from April 1994 through August 1995 in graphicalform and describes the electronic form of the entire data set.

  11. Traditional medicine used in childbirth and for childhood diarrhoea in Nigeria's Cross River State: interviews with traditional practitioners and a statewide cross-sectional study

    PubMed Central

    Sarmiento, Iván; Zuluaga, Germán; Andersson, Neil

    2016-01-01

    Objectives Examine factors associated with use of traditional medicine during childbirth and in management of childhood diarrhoea. Design Cross-sectional cluster survey, household interviews in a stratified last stage random sample of 90 census enumeration areas; unstructured interviews with traditional doctors. Setting Oil-rich Cross River State in south-eastern Nigeria has 3.5 million residents, most of whom depend on a subsistence agriculture economy. Participants 8089 women aged 15–49 years in 7685 households reported on the health of 11 305 children aged 0–36 months in July–August 2011. Primary and secondary outcome measures Traditional medicine used at childbirth and for management of childhood diarrhoea; covariates included access to Western medicine and education, economic conditions, engagement with the modern state and family relations. Cluster-adjusted analysis relied on the Mantel-Haenszel procedure and Mantel extension. Results 24.1% (1371/5686) of women reported using traditional medicine at childbirth; these women had less education, accessed antenatal care less, experienced more family violence and were less likely to have birth certificates for their children. 11.3% (615/5425) of young children with diarrhoea were taken to traditional medical practitioners; these children were less likely to receive BCG, to have birth certificates, to live in households with a more educated head, or to use fuel other than charcoal for cooking. Education showed a gradient with decreasing use of traditional medicine for childbirth (χ2 135.2) and for childhood diarrhoea (χ2 77.2). Conclusions Use of traditional medicine is associated with several factors related to cultural transition and to health status, with formal education playing a prominent role. Any assessment of the effectiveness of traditional medicine should anticipate confounding by these factors, which are widely recognised to affect health in their own right. PMID:27094939

  12. Traditional medicine used in childbirth and for childhood diarrhoea in Nigeria's Cross River State: interviews with traditional practitioners and a statewide cross-sectional study.

    PubMed

    Sarmiento, Iván; Zuluaga, Germán; Andersson, Neil

    2016-04-19

    Examine factors associated with use of traditional medicine during childbirth and in management of childhood diarrhoea. Cross-sectional cluster survey, household interviews in a stratified last stage random sample of 90 census enumeration areas; unstructured interviews with traditional doctors. Oil-rich Cross River State in south-eastern Nigeria has 3.5 million residents, most of whom depend on a subsistence agriculture economy. 8089 women aged 15-49 years in 7685 households reported on the health of 11,305 children aged 0-36 months in July-August 2011. Traditional medicine used at childbirth and for management of childhood diarrhoea; covariates included access to Western medicine and education, economic conditions, engagement with the modern state and family relations. Cluster-adjusted analysis relied on the Mantel-Haenszel procedure and Mantel extension. 24.1% (1371/5686) of women reported using traditional medicine at childbirth; these women had less education, accessed antenatal care less, experienced more family violence and were less likely to have birth certificates for their children. 11.3% (615/5425) of young children with diarrhoea were taken to traditional medical practitioners; these children were less likely to receive BCG, to have birth certificates, to live in households with a more educated head, or to use fuel other than charcoal for cooking. Education showed a gradient with decreasing use of traditional medicine for childbirth (χ(2) 135.2) and for childhood diarrhoea (χ(2) 77.2). Use of traditional medicine is associated with several factors related to cultural transition and to health status, with formal education playing a prominent role. Any assessment of the effectiveness of traditional medicine should anticipate confounding by these factors, which are widely recognised to affect health in their own right. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. 13. A streetcar crosses the Cuyahoga River in the waning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. A streetcar crosses the Cuyahoga River in the waning days of Cleveland's trolley age. Copy of photograph taken by Herbert H. Harwood, Jr., Baltimore, Maryland, photo courtesy Mr. Harwood - Detroit Superior High Level Bridge, Cleveland, Cuyahoga County, OH

  14. Heavy metal profile of water, sediment and freshwater cat fish, Chrysichthys nigrodigitatus (Siluriformes: Bagridae), of Cross River, Nigeria.

    PubMed

    Ayotunde, Ezekiel Olatunji; Offem, Benedict Obeten; Ada, Fidelis Bekeh

    2012-09-01

    Cross River serves as a major source of drinking water, transportation, agricultural activities and fishing in Cross River State, Nigeria. Since there is no formal control of effluents discharged into the river, it is important to monitor the levels of metals contaminants in it, thus assessing its suitability for domestic and agricultural use. In order to determine this, three sampling stations designated as Ikom (Station I), Obubra Ogada (Station II) and Calabar (Station III) were randomly selected to study. For this, ten samples of the freshwater Silver Catfish (Chryshchythys nigrogitatus) (29.4-39.5cm SL, 310-510g), sediment and water were collected from each sampling Station from June 2009-June 2010. The heavy metals profiles ofZn, Cu, Fe, Co, Pb, Cd and Cr, in water, sediments and fish muscle were analyzed by atomic absorption spectrophotometry (AAS). In fish, the heavy metals concentration was found to be Cu>Fe>Zn>Cu>Pb>Cd>Co; the highest mean concentration of Copper (0.297 +/- 0.022 microg/g), Cadmium (0.011 +/- 0.007 microg/g), Iron (0.371 +/- 0.489 microg/g), Lead (0.008 +/- 0.008 microg/g), were determined for the fish. In water, the order was found to be Fe>Pb>Zn>Cu>Cr>Cd>Co; the highest mean concentration of Iron (0.009 +/- 0.00) microg/g), Copper (0.015 +/- 0.01 microg/g), Lead (0.0002 +/- 0.00 microg/g) Cadmium (0.0006 +/- 0.001 microg/g), Zinc (0.0036 +/- 0.003 microg/g), were observed in the surface water, respectively. The highest mean concentration of Copper (0.037 +/- 0.03 microg/g), Iron (0.053 +/- 0.04 microg/g), Lead (0.0002 +/- 0.00 microg/g), Cobalt (0.0002 +/- 0.00 microg/g), Cadmium (0.0006 +/- 0.001 microg/g) and Zinc (.009 +/- 0.0015 microg/g) was observed in the bottom water. In sediments, the concentration order found was Zn>Fe>Cu>Pb>Co>Cd; the highest mean concentration of 0.057 +/- 0.04 microg/g, 0.043 +/- 0.03 microg/g, 0.0006 +/- 0.00 microg/g, 0.0002 +/- 0.00 microg/g, 0.0009 +/- 0.00 microg/g, 0.099 +/- 0.00404 microg/g in Iron, Copper, Lead, Cobalt, Cadmium and Zinc were observed in the sediment, respectively; Chromium was not detected in the sediment for the whole sampling area. Most of the heavy metals were below the maximum allowable levels set by the WHO, FEPA and USEPA, except Zinc which mean concentration of 0.099 +/- 0.00404 microg/g was above the recommended limit of 0.0766 microg/g of USEPA in the sediment at Ikom. This implies that the waste assimilation capacity of the river is high, a phenomenon that could be ascribed to dilution, sedimentation and continuous water exchange. This is an indication that an urban and industrial waste discharged into the Cross River has a significant effect on the ecological balance of the river. Thus fish species from the Cross River harvested are safe for human consumption.

  15. Water-quality conditions in the New River, Imperial County, California

    USGS Publications Warehouse

    Setmire, James G.

    1979-01-01

    The New River, when entering the United States at Calexico, Calif., often contains materials which have the appearance of industrial and domestic wastes. Passage of some of these materials is recognized by a sudden increase in turbidity over background levels and the presence of white particulate matter. Water samples taken during these events are usually extremely high in organic content. During a 4-day reconnaissance of water quality in May 1977, white-to-brown extremely turbid water crossed the border on three occasions. On one of these occasions , the water was intensively sampled. The total organic-carbon concentration ranged from 80 to 161 milligrams per liter (mg/l); dissolved organic carbon ranged from 34 to 42 mg/l, and the chemical oxygen demand was as high as 510 mg/l. River profiles showed a dissolved-oxygen sag, with the length of the zone of depressed dissolved-oxygen concentrations varying seasonally. During the summer months, dissolved-oxygen concentrations in the river were lower and the zone of depressed dissolved-oxygen concentrations was longer. The largest increases in dissolved-oxygen concentration from reaeration occurred at the three drop structures and the rock weir near Seeley. The effects of oxygen demanding materials crossing the border extended as far as Highway 80, 19.5 miles downstream from the international boundary at Calexico. Fish kills and anaerobic conditions were also detected as far as Highway 80. Standard bacteria indicator tests for fecal contamination showed a very high health-hazard potential near the border. (Woodard-USGS)

  16. Feasibility of estimate sediment yield in the non-sediment monitoring station area - A case study of Alishan River watershed,Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, ChiaChi; Chan, HsunChuan; Jia, YaFei; Zhang, YaoXin

    2017-04-01

    Due to the steep topography, frail geology and concentrated rainfall in wet season, slope disaster occurred frequently in Taiwan. In addition, heavy rainfall induced landslides in upper watersheds. The sediment yield on the slopeland affects the sediment transport in the river. Sediment deposits on the river bed reduce the river cross section and change the flow direction. Furthermore, it generates risks to residents' lives and property in the downstream. The Taiwanese government has been devoting increasing efforts on the sedimentary management issues and on reduction in disaster occurrence. However, due to the limited information on the environmental conditions in the upper stream, it is difficult to set up the sedimentary monitoring equipment. This study used the upper stream of the Qingshuei River, the Alishan River, as a study area. In August 2009, Typhoon Morakot caused the sedimentation of midstream and downstream river courses in the Alishan River. Because there is no any sediment monitoring stations within the Alishan River watershed, the sediment yield values are hard to determine. The objective of this study is to establish a method to analyze the event-landslide sediment transport in the river on the upper watershed. This study numerically investigated the sediment transport in the Alishan River by using the KINEROS 2 model developed by the United States Department of Agriculture and the CCHE1D model developed by the National Center for Computational Hydroscience and Engineering. The simulated results represent the morphology changes in the Alishan River during the typhoon events. The results consist of a critical strategy reference for the sedimentary management for the Alishan River watershed.

  17. 33 CFR 165.540 - Regulated Navigation Area; Cape Fear River, Northeast Cape Fear River, Wilmington, North Carolina.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Carolina Power & Light Company (CP&L) overhead power line crossing). (4) Passing Lane and Anchorage Basin... Buoy 56 (LL 30830) and approximately 590 feet downstream of the CP&L overhead power line crossing...

  18. 33 CFR 165.540 - Regulated Navigation Area; Cape Fear River, Northeast Cape Fear River, Wilmington, North Carolina.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Carolina Power & Light Company (CP&L) overhead power line crossing). (4) Passing Lane and Anchorage Basin... Buoy 56 (LL 30830) and approximately 590 feet downstream of the CP&L overhead power line crossing...

  19. 33 CFR 165.540 - Regulated Navigation Area; Cape Fear River, Northeast Cape Fear River, Wilmington, North Carolina.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Carolina Power & Light Company (CP&L) overhead power line crossing). (4) Passing Lane and Anchorage Basin... Buoy 56 (LL 30830) and approximately 590 feet downstream of the CP&L overhead power line crossing...

  20. 33 CFR 165.540 - Regulated Navigation Area; Cape Fear River, Northeast Cape Fear River, Wilmington, North Carolina.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Carolina Power & Light Company (CP&L) overhead power line crossing). (4) Passing Lane and Anchorage Basin... Buoy 56 (LL 30830) and approximately 590 feet downstream of the CP&L overhead power line crossing...

  1. 33 CFR 165.540 - Regulated Navigation Area; Cape Fear River, Northeast Cape Fear River, Wilmington, North Carolina.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Carolina Power & Light Company (CP&L) overhead power line crossing). (4) Passing Lane and Anchorage Basin... Buoy 56 (LL 30830) and approximately 590 feet downstream of the CP&L overhead power line crossing...

  2. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Detail, Vertical Cross Bracing-End Detail - Cumberland Covered Bridge, Spanning Mississinewa River, Matthews, Grant County, IN

  3. An acoustic doppler current profiler survey of flow velocities in Detroit River, a connecting channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to survey flow velocities in Detroit River from July 8-19, 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. More than 3.5 million point velocities were measured at 130 cross sections. Cross sections were generally spaced about 1,800 ft apart along the river from the head of Detroit River at the outlet of Lake St. Clair to the mouth of Detroit River on Lake Erie. Two transects were surveyed at each cross section, one in each direction across the river. Along each transect, velocity profiles were generally obtained 0.8-2.2 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved though the internet and extracted to column-oriented data files.

  4. Physical Model Study of Cross Vanes and Ice

    DTIC Science & Technology

    2009-08-01

    spacing since, in the pre-scour state, experiments and the HEC - RAS hydraulic model (USACE 2002b) found that water surface ele- vation merged with the...docs/eng-manuals/em1110- 2-1612/toc.htm. USACE (2002b) HEC - RAS , Hydraulic Reference Manual. US Army Corps of Engineers Hydrologic Engineering Center...Currently little design guidance is available for constructing these structures on ice-affected rivers . This study used physical and numerical

  5. Water-quality trend analysis and sampling design for the Souris River, Saskatchewan, North Dakota, and Manitoba

    USGS Publications Warehouse

    Vecchia, Aldo V.

    2000-01-01

    The Souris River Basin is a 24,600-square-mile basin located in southeast Saskatchewan, north-central North Dakota, and southwest Manitoba.  The Souris River Bilateral Water Quality Monitoring Group, formed in 1989 by the governments of Canada and the United States, is responsible for documenting trends in water quality in the Souris River and making recommendations for monitoring future water-quality conditions.  This report presents results of a study conducted for the Bilateral Water Quality Monitoring Group by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, to analyze historic trends in water quality in the Souris River and to determine efficient sampling designs for monitoring future trends.  U.S. Geological Survey and Environment Canada water-quality data collected during 1977-96 from four sites near the boundary crossings between Canada and the United States were included in the trend analysis. A parametric time-series model was developed for detecting trends in historic constituent concentration data.  The model can be applied to constituents that have at least 90 percent of observations above detection limits of the analyses, which, for the Souris River, includes most major ions and nutrients and many trace elements.  The model can detect complex nonmonotonic trends in concentration in the presence of complex interannual and seasonal variability in daily discharge.  A key feature of the model is its ability to handle highly irregular sampling intervals.  For example, the intervals between concentration measurements may be be as short as 10 days to as long as several months, and the number of samples in any given year can range from zero to 36. Results from the trend analysis for the Souris River indicated numerous trends in constituent concentration.  The most significant trends at the two sites located near the upstream boundary crossing between Saskatchewan and North Dakota consisted of increases in concentrations of most major ions, dissolved boron, and dissolved arsenic during 1987-91 and decreases in concentrations of the same constituents during 1992-96.  Significant trends at the two sites located near the downstream boundary crossing between North Dakota and Manitoba included increases in dissolved sodium, dissolved chloride, and total phosphorus during 1977-86, decreases in dissolved oxygen and dissolved boron and increases in total phosphorus and dissolved iron during 1987-91, and a decrease in total phosphorus during 1992-96. The time-series model also was used to determine the sensitivity of various sampling designs for monitoring future water-quality trends in the Souris River.  It was determined that at least two samples per year are required in each of three seasons--March through June, July through October, and November through February--to obtain reasonable sensitivity for detecting trends in each season.  In addition, substantial improvements occurred in sensitivity for detecting trends by adding a third sample for major ions and trace elements in March through June, adding a third sample for nutrients in July through October, and adding a third sample for nutrients, trace elements, and dissolved oxygen in November through February.

  6. Flood-inundation map and water-surface profiles for floods of selected recurrence intervals, Consumnes River and Deer Creek, Sacramento County, California

    USGS Publications Warehouse

    Guay, Joel R.; Harmon, Jerry G.; McPherson, Kelly R.

    1998-01-01

    The damage caused by the January 1997 floods along the Cosumnes River and Deer Creek generated new interest in planning and managing land use in the study area. The 1997 floodflow peak, the highest on record and considered to be a 150-year flood, caused levee failures at 24 locations. In order to provide a technical basis for floodplain management practices, the U.S. Goelogical Survey, in cooperation with the Federal Emergency Management Agency, completed a flood-inundation map of the Cosumnes River and Deer Creek drainage from Dillard Road bridge to State Highway 99. Flood frequency was estimated from streamflow records for the Cosumnes River at Michigan Bar and Deer Creek near Sloughhouse. Cross sections along a study reach, where the two rivers generally flow parallel to one another, were used with a step-backwater model (WSPRO) to estimate the water-surface profile for floods of selected recurrence intervals. A flood-inundation map was developed to show flood boundaries for the 100-year flood. Water-surface profiles were developed for the 5-, 10-, 50-, 100-, and 500-year floods.

  7. Hybridization of two megacephalic map turtles (testudines: emydidae: Graptemys) in the Choctawhatchee River drainage of Alabama and Florida

    USGS Publications Warehouse

    Godwin, James; Lovich, Jeffrey E.; Ennen, Joshua R.; Kreiser, Brian R.; Folt, Brian; Lechowicz, Chris

    2014-01-01

    Map turtles of the genus Graptemys are highly aquatic and rarely undergo terrestrial movements, and limited dispersal among drainages has been hypothesized to drive drainage-specific endemism and high species richness of this group in the southeastern United States. Until recently, two members of the megacephalic “pulchra clade,” Graptemys barbouri andGraptemys ernsti, were presumed to be allopatric with a gap in both species' ranges in the Choctawhatchee River drainage. In this paper, we analyzed variation in morphology (head and shell patterns) and genetics (mitochondrial DNA and microsatellite loci) from G. barbouri, G. ernsti, and Graptemys sp. collected from the Choctawhatchee River drainage, and we document the syntopic occurrence of those species and back-crossed individuals of mixed ancestry in the Choctawhatchee River drainage. Our results provide a first counter-example to the pattern of drainage-specific endemism in megacephalic Graptemys. Geologic events associated with Pliocene and Pleistocene sea level fluctuations and the existence of paleo-river systems appear to have allowed the invasion of the Choctawhatchee system by these species, and the subsequent introgression likely predates any potential human-mediated introduction.

  8. Graph Theory-Based Technique for Isolating Corrupted Boundary Conditions in Continental-Scale River Network Hydrodynamic Simulation

    NASA Astrophysics Data System (ADS)

    Yu, C. W.; Hodges, B. R.; Liu, F.

    2017-12-01

    Development of continental-scale river network models creates challenges where the massive amount of boundary condition data encounters the sensitivity of a dynamic nu- merical model. The topographic data sets used to define the river channel characteristics may include either corrupt data or complex configurations that cause instabilities in a numerical solution of the Saint-Venant equations. For local-scale river models (e.g. HEC- RAS), modelers typically rely on past experience to make ad hoc boundary condition adjustments that ensure a stable solution - the proof of the adjustment is merely the sta- bility of the solution. To date, there do not exist any formal methodologies or automated procedures for a priori detecting/fixing boundary conditions that cause instabilities in a dynamic model. Formal methodologies for data screening and adjustment are a critical need for simulations with a large number of river reaches that draw their boundary con- dition data from a wide variety of sources. At the continental scale, we simply cannot assume that we will have access to river-channel cross-section data that has been ade- quately analyzed and processed. Herein, we argue that problematic boundary condition data for unsteady dynamic modeling can be identified through numerical modeling with the steady-state Saint-Venant equations. The fragility of numerical stability increases with the complexity of branching in river network system and instabilities (even in an unsteady solution) are typically triggered by the nonlinear advection term in Saint-Venant equations. It follows that the behavior of the simpler steady-state equations (which retain the nonlin- ear term) can be used to screen the boundary condition data for problematic regions. In this research, we propose a graph-theory based method to isolate the location of corrupted boundary condition data in a continental-scale river network and demonstrate its utility with a network of O(10^4) elements. Acknowledgement: This research is supported by the National Science Foundation un- der grant number CCF-1331610.

  9. 55. CROSS SECTION OF POWER HOUSE, EXHIBIT L, SANTA ANA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. CROSS SECTION OF POWER HOUSE, EXHIBIT L, SANTA ANA RIVER NO. 1 PROJECT, APR. 30, 1945. SCE drawing no. 523199 (sheet no. 9, for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  10. Hydraulic characteristics of the New River in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.; Appel, David H.

    1989-01-01

    Traveltime, dispersion, water-surface and streambed profiles, and cross-section data were collected for use in application of flow and solute-transport models to the New River in the New River Gorge National River, West Virginia. Dye clouds subjected to increasing and decreasing flow rates (unsteady flow) showed that increasing flows shorten the cloud and decreasing flows lengthen the cloud. After the flow rate was changed and the flow was again steady, traveltime and dispersion characteristics were determined by the new rate of flow. Seven stage/streamflow relations identified the general changes of stream geometry throughout the study reach. Channel cross sections were estimated for model input. Low water and streambed profiles were developed from surveyed water surface elevations and water depths. (USGS)

  11. A televised entertainment-education drama to promote positive discussion about organ donation.

    PubMed

    Khalil, Georges E; Rintamaki, Lance S

    2014-04-01

    This article investigates pathways between the exposure to an entertainment-education (E-E) television drama called Three Rivers and positive discussion of organ donation among viewers of the drama in the United States. A cross-sectional survey was conducted using an online advertising for a period of one week. Survey participants included 1325 adults living in the United States, who had viewed the first episode of Three Rivers on television. Data were collected on recall of events in the storyline, perceived entertainment value, perceived accuracy of the presented health information, rejection of organ donation myths and positive discussion of organ donation and the storyline. Covariates were registration for organ donation, membership to the donation or transplant community and demographic variables. Results show that viewers with high recall of the storyline were more likely to reject myths about organ donation and engage in pro-donation discussions with others. Perceived entertainment value and perceived accuracy acted as mediators in such relationships. The insertion of accurate health information in television drama may be effective in promoting positive discussions about organ donation and myth rejection. Recall of events from the televised E-E drama Three Rivers, entertainment value and accuracy perception were associated with positive discussion.

  12. A New Approach to Scaling Channel Width in Bedrock Rivers and its Implications for Modeling Fluvial Incision

    NASA Astrophysics Data System (ADS)

    Finnegan, N. J.; Roe, G.; Montgomery, D. R.; Hallet, B.

    2004-12-01

    The fundamental role of bedrock channel incision on the evolution of mountainous topography has become a central concept in tectonic geomorphology over the past decade. During this time the stream power model of bedrock river incision has immerged as a valuable tool for exploring the dynamics of bedrock river incision in time and space. In most stream power analyses, river channel width--a necessary ingredient for calculating power or shear stress per unit of bed area--is assumed to scale solely with discharge. However, recent field-based studies provide evidence for the alternative view that channel width varies locally, much like channel slope does, in association with spatial changes in rock uplift rate and erodibility. This suggests that simple scaling relations between width and discharge, and hence estimates of stream power, don't apply in regions where rock uplift and erodibility vary spatially. It also highlights the need for an alternative to the traditional assumptions of hydraulic geometry to further investigation of the coupling between bedrock river incision and tectonic processes. Based on Manning's equation, basic mass conservation principles, and an assumption of self-similarity for channel cross sections, we present a new relation for scaling the steady-state width of bedrock river channels as a function of discharge (Q), channel slope (S), and roughness (Ks): W \\propto Q3/8S-3/16Ks1/16. In longitudinally simple, uniform-concavity rivers from the King Range in coastal Northern California, the model emulates traditional width-discharge relations that scale channel width with the square root of discharge. More significantly, our relation describes river width trends for the Yarlung Tsangpo in SE Tibet and the Wenatchee River in the Washington Cascades, both rivers that narrow considerably as they incise terrain with spatially varied rock uplift rates and/or lithology. We suggest that much of observed channel width variability is a simple consequence of the tendency for water to flow faster in steeper reaches and therefore maintain smaller channel cross sections. We demonstrate that using conventional scaling relations for bedrock channel width can significantly underestimate stream power variability in bedrock channels, and that our model improves estimates of spatial patterns of bedrock incision rates.

  13. 76 FR 63858 - Drawbridge Operation Regulation; Trent River, New Bern, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... River Bridge Runs. This deviation allows the bridge to remain in the closed position to ensure safe..., Docket Operations, telephone 202-366-9826. SUPPLEMENTARY INFORMATION: The Neuse River Bridge Run... River, mile 0.0, at New Bern, NC. The route of the three Neuse River Bridge Run races cross the bridge...

  14. Changes in channel geometry of six eruption-affected tributaries of the Lewis River, 1980-82, Mount St. Helens, Washington

    USGS Publications Warehouse

    Martinson, H.A.; Finneran, S.D.; Topinka, L.J.

    1984-01-01

    The May 18, 1980, eruption of Mount St. Helens generated a lateral blast, lahars and tephra deposits that altered tributary channels in the Lewis River drainage basin. In order to assess potential flood hazards, study channel adjustments, and construct a sediment budget for the perturbed drainages on the east and southeast flanks of the volcano, channel cross sections were monumented and surveyed on Pine Creek, Muddy River, and Smith Creek during September and October of 1980. Additional cross sections were monumented and surveyed on Swift Creek, Bean Creek, and Clearwater Creek during the summer of 1981. The network of 88 channel cross sections has been resurveyed annually. Selected cross sections have been surveyed more frequently, following periods of higher flow. The repetitive cross-section surveys provide measurements of bank erosion or accretion and of channel erosion or aggradation. The report presents channel cross-section profiles constructed from the survey data collected during water years 1980-82. (USGS)

  15. Assessing sedimentation rates at Usumacinta and Grijalva river basin (Southern Mexico) using OSL and suspended sediment load analysis: A study from the Maya Classic Period

    NASA Astrophysics Data System (ADS)

    Munoz-Salinas, E.; Castillo, M.; Sanderson, D.; Kinnaird, T.; Cruz-Zaragoza, E.

    2013-12-01

    Studying sedimentation rates on floodplains is key to understanding environmental changes occurred through time in river basins. The Usumacinta and Grijalva rivers flow most of their travel through the southern part of Mexico, forming a large river basin, crossing the states of Chiapas and Tabasco. The Usumacinta-Grijalva River Basin is within the 10 major rivers of North America, having a basin area of ~112 550 km2. We use the OSL technique for dating two sediment profiles and for obtaining luminescence signals in several sediment profiles located in the streambanks of the main trunk of the Usumacinta and Grijalva rivers. We also use mean annual values of suspended sediment load spanning ~50 years to calculate the sedimentation rates. Our OSL dating results start from the 4th Century, when the Maya Civilization was at its peak during the Classic Period. Sedimentation rates show a notable increase at the end of the 19th Century. The increase of the sedimentation rates seems to be related to changes in land uses in the Sierra Madre de Chiapas and Altos de Chiapas, based on deforestation and land clearing for developing new agrarian and pastoral activities. We conclude that the major environmental change in the basin of the Usumacinta and Grijalva Rivers since the Maya Classic Period was generated since the last Century as a result of an intense anthropogenic disturbance of mountain rain forest in Chiapas.

  16. 1. Photocopy of engineering drawing (original in the Office of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of engineering drawing (original in the Office of the Cuyahoga County Engineer)--1907 NORTH ROCKY RIVER BRIDGE--PROPOSED DESIGN--REINFORCED CONCRETE: AN ALTERNATIVE DESIGN FOR THE DETROIT AVENUE CROSSING - Rocky River Bridge, Spanning Beaver Dam River, Rocky River, Cuyahoga County, OH

  17. Bathymetric surveys at Highway Bridges Crossing the Missouri River in Kansas City, Missouri, using a multibeam echo sounder, 2010.

    DOT National Transportation Integrated Search

    2010-11-01

    Bathymetric surveys were conducted by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, on the Missouri River in the vicinity of nine bridges at seven highway crossings in Kansas City, Missouri, in March 2010....

  18. Influence of Marital Status on Attitude of Midwives towards OSCE and Their Performance in the Examination in Akwa Ibom and Cross River States, Nigeria

    ERIC Educational Resources Information Center

    Duke, Emon Umoe; Mgbekem, Mary Achi; Nsemo, Alberta David; Ojong-Alacia, Mary Manyo; Nkwonta, Chigozie A.; Mobolaji-Olajide, O. M.

    2015-01-01

    This quantitative study investigated the influence of marital status on the midwives' attitude towards OSCE and how this affects their performance in the examination. Two hypotheses guided the study. HO 1 sort to find out if there exist a significant influence of marital status of midwives on their attitude towards OSCE as well as performance in…

  19. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Joint, Vertical Cross Bracing End Detail - Ceylon Covered Bridge, Limberlost Park, spanning Wabash River at County Road 900 South, Geneva, Adams County, IN

  20. Missouri river navigation : data on commodity shipments for four states served by the Missouri river and two states served by both the Missouri and Mississippi rivers.

    DOT National Transportation Integrated Search

    2009-01-15

    GAO determined: (1) the annual and total tonnage of commodity shipments for each state served by the Missouri River, and (2) the comparable tonnage of commodity shipments transported on the Mississippi River for states served by both the Missouri and...

  1. Water quality in the New River from Calexico to the Salton Sea, Imperial County, California

    USGS Publications Warehouse

    Setmire, James G.

    1984-01-01

    The New River enters the United States at Calexico, Calif., after it crosses the international boundary. Water-quality data from routine collection indicated that the New River was degraded by high organic and bacterial content. Intensive sampling for chemical and physical constituents and properties of the river was done May 9-13, 1977, to quantify the chemical composition of the water and to identify water-quality problems. Concentrations of total organic carbon in the New River at Calexico ranged from 80 to 161 milligrams per liter and dissolved organic carbon ranged from 34 to 42 milligrams per liter; the maximum chemical oxygen demand was 510 milligrams per liter. Intensive sampling for chemical and biological characteristics was done in the New River from May 1977 to June 1978 to determine the occurrence of the organic material and its effects on downstream water quality. Dissolved-oxygen concentration was measured along longitudinal profiles of the river from Calexico to the Salton Sea. A dissolved-oxygen sag downstream from the Calexico gage varied seasonally. The sag extended farther downstream and had lower concentrations of dissolved oxygen during the summer months than during the winter months. The sag of zero dissolved-oxygen concentration extended 26 miles in July 1977. In December 1976, the sag extended 20 miles but the minimum dissolved-oxygen concentration was 2.5 milligrams per liter. The greatest diel (24-hour) variation in dissolved-oxygen concentration occurred in the reach from the Calexico gage to Lyons Crossing, 8.8 miles downstream. High concentrations of organic material were detected as far as Highway 80, 19.5 miles downstream from the international boundary. Biological samples analyzed for benthic invertebrates showed that water at the Calexico and Lyons Crossing sites, nearest the international boundary, was of such poor quality that very few bottom-dwelling organisms could survive. Although the water was of poor quality at Keystone Road, 36 miles downstream, it was able to support a benthic community. The April sample had more than 9,150 organisms on a multiplate sampler, 8,770 of which were of one species. Farther downstream at the Westmorland gage, the water quality, as indicated by the number and diversity of organisms, had improved over that at the Keystone site. The Alamo River at its outlet to the Salton Sea--the control site--had the greatest diversity of all the study sites. This diversity, when compared with the diversity at the Westmorland gage, indicated that the effects of the degraded water quality observed at the New River at Calexico are detected as far as 62 miles downstream. Standard bacteria indicator tests indicate that fecal contamination exists in the New River. Counts of fecal coliform bacteria ranged from 180,000 to 2,800,000 colonies per 100 milliliters for the 20-mile reach from Calexico to Highway 80, and fecal streptococcal bacteria ranged from 5,000 to 240,000 colonies per 100 milliliters.

  2. 77 FR 57024 - Drawbridge Operation Regulation; Tombigbee River, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... lift span bridge across the Tombigbee River at Naheola, Marengo and Choctaw Counties, Alabama. The... MNBR vertical lift span bridge crosses the Tombigbee River at mile 128.6 (Black Warrior Tombigbee... Meridian and Bigbee Railroad (MNBR) vertical lift span bridge across the Tombigbee River, mile 128.6 (Black...

  3. 77 FR 25655 - Drawbridge Operation Regulation; Tombigbee River, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... Meridian and Bigbee Railroad (MNBR) vertical lift span bridge across the Tombigbee River at Naheola... The MNBR vertical lift span bridge crosses the Tombigbee River at mile 128.6 (Black Warrior Tombigbee... Railroad (MNBR) vertical lift span bridge across the Tombigbee River, mile 128.6 (Black Warrior Tombigbee...

  4. Measurement of stream channel habitat using sonar

    USGS Publications Warehouse

    Flug, Marshall; Seitz, Heather; Scott, John

    1998-01-01

    An efficient and low cost technique using a sonar system was evaluated for describing channel geometry and quantifying inundated area in a large river. The boat-mounted portable sonar equipment was used to record water depths and river width measurements for direct storage on a laptop computer. The field data collected from repeated traverses at a cross-section were evaluated to determine the precision of the system and field technique. Results from validation at two different sites showed average sample standard deviations (S.D.s) of 0.12 m for these complete cross-sections, with coefficient of variations of 10%. Validation using only the mid-channel river cross-section data yields an average sample S.D. of 0.05 m, with a coefficient of variation below 5%, at a stable and gauged river site using only measurements of water depths greater than 0.6 m. Accuracy of the sonar system was evaluated by comparison to traditionally surveyed transect data from a regularly gauged site. We observed an average mean squared deviation of 46.0 cm2, considering only that portion of the cross-section inundated by more than 0.6 m of water. Our procedure proved to be a reliable, accurate, safe, quick, and economic method to record river depths, discharges, bed conditions, and substratum composition necessary for stream habitat studies.

  5. Developing and testing a framework for alternative ownership, tenure and governance strategies for the proposed Detroit-Windsor River crossing : phase I report, February 2009.

    DOT National Transportation Integrated Search

    2009-02-01

    This study focuses on a proposed international crossing across the Detroit River, connecting the cities of Detroit, Michigan and Windsor, Canada, and replacing the current Ambassador Bridge and Detroit-Windsor Tunnel, both built during the late 1920s...

  6. 75 FR 78228 - Takes of Marine Mammals Incidental to Specified Activities; Columbia River Crossing Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... (Zalophus californianus), and harbor seals (Phoca vitulina). Specified Activities CRC is proposing a...-water bents, consisting of one to three drilled shafts. The permanent in-water piers of both the Columbia River and North Portland Harbor crossings will be constructed using drilled shafts, rather than...

  7. Publications - RI 2011-3B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    structural cross sections for the Kavik River map area, Alaska Authors: Wallace, W.K., Wartes, M.A., Decker Kavik River map area, Alaska: Alaska Division of Geological & Geophysical Surveys Report of area, Alaska (144.0 M) Sheet 2 Interpretations of seismic reflection data and structural cross sections

  8. Battle Analysis: Rapido River Crossing, Offensive, Deliberate Attack, River Crossing, January 1944

    DTIC Science & Technology

    1984-05-01

    Even the few employed were difficult to use due to the slippery surface and the lack of handrails. Direct and indirect fire chewed them up. The...were placed in the water and went down quickly, sometimes carrying men loaded with heavy combat equipment. 42 mmmimm^^mtm—mm^ elm ^tmmMMM

  9. Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China

    NASA Astrophysics Data System (ADS)

    You, Xingying; Tang, Jinwu

    2017-06-01

    Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of {<}{4}, a gradient {>}1.2‱, a silty clay content of the concave bank {>}{9.5}%, and a median diameter of the bed sediment {>}{0.158} mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river reaches; long river reaches without barrier properties should be systematically planned and regulated; drastic bank collapse and sandbar shrinking should be urgently controlled to prevent the loss of barrier effects.

  10. Potential interaction between transport and stream networks over the lowland rivers in Eastern India.

    PubMed

    Roy, Suvendu; Sahu, Abhay Sankar

    2017-07-15

    Extension of transport networks supports good accessibility and associated with the development of a region. However, transport lines have fragmented the regional landscape and disturbed the natural interplay between rivers and their floodplains. Spatial analysis using multiple buffers provides information about the potential interaction between road and stream networks and their impact on channel morphology of a small watershed in the Lower Gangetic Plain. Present study is tried to understand the lateral and longitudinal disconnection in headwater stream by rural roads with the integration of geoinformatics and field survey. Significant (p < 0.001) growth of total road length and number of road-stream crossing in the last five decades (1970s-2010s) contribute to making longitudinal and lateral disconnection in the fluvial system of Kunur River Basin. Channel geometry from ten road-stream crossings shows significant (p = 0.01) differences between upstream and downstream of crossing structure and created problems like downstream scouring, increased drop height at outlet, formation of stable bars, severe bank erosion, and make barriers for river biota. The hydro-geomorphic processes are also adversely affected due to lateral disconnection and input of fine to coarse sediments from the river side growth of unpaved road (1922%). Limited streamside development, delineation of stream corridor, regular monitoring and engineering efficiency for the construction of road and road-stream crossing might be effective in managing river geomorphology and riverine landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Location and timing of river-aquifer exchanges in six tributaries to the Columbia River in the Pacific Northwest of the United States

    USGS Publications Warehouse

    Konrad, C.P.

    2006-01-01

    The flow of water between rivers and contiguous aquifers influences the quantity and quality of water resources, particularly in regions where precipitation and runoff are unevenly distributed through the year, such as the Columbia Basin (CB) in northwestern United States. Investigations of basin hydrogeology and gains and losses of streamflow for six rivers in the CB were reviewed to characterize general patterns in the timing and location of river-aquifer exchanges at a reach-scale (0.5-150 km) and to identify geologic and geomorphic features associated with the largest exchanges. Ground-water discharge to each river, or the gain in streamflow, was concentrated spatially: more than one-half of the total gains along each river segment were contributed from reaches that represented no more than 30% of the total segment length with the largest and most concentrated gains in rivers in volcanic terrains. Fluvial recharge of aquifers, or losses of streamflow, was largest in rivers in sedimentary basins where unconsolidated sediments form shallow aquifers. Three types of geologic or geomorphic features were associated with the largest exchanges: (1) changes in the thickness of unconsolidated aquifers; (2) contacts between lithologic units that represent contrasts in permeability; and (3) channel forms that increase the hydraulic gradient or cross-sectional area of flow paths between a river and shallow ground-water. The down-valley component of ground-water flow and its vertical convergence on or divergence from a riverbed account for large streamflow gains in some reaches and contrast with the common assumption of lateral ground-water discharge to a river that penetrates completely through the aquifer. Increased ground-water discharge was observed during high-flow periods in reaches of four rivers indicating that changes in ground-water levels can be more important than stage fluctuations in regulating the direction and magnitude of river-aquifer exchanges and that assumptions about ground-water discharge during high flow periods used for base-flow separation must be verified. Given the variety of geologic terrains in the CB, the spatial and temporal patterns of river-aquifer exchanges provide a framework for investigations in other regions that includes a focus on reaches where the largest exchanges are likely to occur, integration of ground-water and surface-water data, and verification of assumptions regarding ground-water flow direction and temporal variation of exchanges. ?? 2006 Elsevier B.V. All rights reserved.

  12. Overview of the Colorado River Canyon from the helicopter pad. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of the Colorado River Canyon from the helicopter pad. View of the Nevada side where new bridge will cross canyon, view northwest - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  13. 2. VIEW OF NORTH FACE SHOWING SUBSTRUCTURE AND ABUTMENTS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF NORTH FACE SHOWING SUBSTRUCTURE AND ABUTMENTS OF BRIDGE CROSSING THE SOUTH FORK OF THE TUOLUMNE RIVER. - South Fork Tuolumne River Bridge, Spanning South Fork Tuolumne River on Tioga Road, Mather, Tuolumne County, CA

  14. Earth Observations taken by Expedition 38 crewmember

    NASA Image and Video Library

    2014-02-22

    ISS038-E-057979 (22 Feb. 2014) --- This image, photographed by one of the Expedition 38 crew members aboard the International Space Station, shows the city of Green Bay, Wisconsin at the southern end of icebound Green Bay. This arm of Lake Michigan is six miles wide as seen in this view. The heavy snowfalls of the winter of 2014 cover the landscape. Combined with low sun illumination of a winter day, all surfaces appear as shades of gray. Fields appear brighter (top right, lower right), the cityscape (lower half of the image) appears as a checkerboard of grays, and forests (top left) appear dark. The center of the city lies on the Fox River, one of the few larger rivers in the United States that flow north. Open water appears as dark patches at the mouth of the river where a power station emits warm water. Thinner (grayer) ice can be detected where slightly warmer water extends from the river mouth towards Long Tail Point, an ancient shoreline of the bay. Crews aboard the space station do not usually take such detailed photographs because of the difficulty of getting sharp images with long lenses (in this case a 1000mm lens). Streets and bridges crossing the Fox River appear quite clearly.

  15. 77 FR 1020 - Regulated Navigation Area; S99 Alford Street Bridge Rehabilitation Project, Mystic River, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ...-AA11 Regulated Navigation Area; S99 Alford Street Bridge Rehabilitation Project, Mystic River, MA... Mystic River under and surrounding the S99 Alford Street Bridge which crosses the Mystic River between... construction workers by restricting vessel traffic during periods where the bridge is being repaired. DATES...

  16. Geomorphology of the lower Copper River, Alaska

    USGS Publications Warehouse

    Brabets, T.P.

    1996-01-01

    The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1996, 11 bridges were located along this section of the highway. These bridges cross parts or all of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. At the peak outflow rate from Van Cleve Lake, the flow of the Copper River will increase an additional 140,000 and 190,000 cubic feet per second. Bedload sampling and continuous seismic reflection were used to show that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lakes, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow- gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake, long-term flow characteristics of the lower Copper River were synthesized. Historical discharge and cross-section data indicate that as late as 1970, most of the flow of the lower Copper River was through the first three bridges of the Copper River Highway as it begins to traverse the alluvial flood plain. In the mid 1980's, a percentage of the flow had shifted away from these three bridges and in 1995, only 51 percent of the flow of the Copper River passed through them. Eight different years of aerial photography of the lower Copper River were analyzed using Geographical Information System techniques. This analysis indicated that no major channel changes were caused by the 1964 earthquake. A flood in 1981 that had a recurrence interval of more than 100 years caused significant channel changes in the lower Copper River. A probability analysis of the lower Copper River indicated stable areas and the long-term locations of channels. By knowing the number of times a particular area has been occupied by water and the last year an area was occupied by water, areas of instability can be located. A Markov analysis of the lower Copper River indicated that the tendency of the flood plain is to remain in its current state. Large floods of the magnitude of the 1981 event are believed to be the cause of major changes in the lower Copper River.

  17. Geomorphology of the lower Copper River, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.

    1997-01-01

    The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1995, 11 bridges were located along this section of the highway. These bridges cross parts of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. When the outflow rate from Van Cleve Lake reaches it peak, the flow of the Copper River will increase between 150,000 to 190,000 cubic feet per second. Data collected by bedload sampling and continuous seismic reflection indicated that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lake, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow-gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake, long-term flow characteristics of the lower Copper River were synthesized. Historical discharge and cross-section data indicate that as late as 1970, most of the flow of the lower Copper River was through the first three bridges of the Copper River Highway as it begins to traverse the alluvial flood plain. In the mid 1980's, a percentage of the flow had shifted away from these three bridges and in 1995, only 51 percent of the flow of the Copper River passed through them. Eight different years of aerial photography of the lower Copper River were analyzed using Geographical Information System techniques. This analysis indicated that no major channel changes were caused by the 1964 earthquake. However, a flood in 1981 that had a recurrence interval of more than 100 years caused significant channel changes in the lower Copper River. A probability analysis of the lower Copper River indicated stable areas and the long-term locations of channels. By knowing the number of times a particular area has been occupied by water and the last year an area was occupied by water, areas of instability can be located. A Markov analysis of the lower Copper River indicated that the tendency of the flood plain is to remain in its current state. Large floods of the magnitude of the 1981 event are believed to be the cause of major changes in the lower Copper River.

  18. 78 FR 36212 - Availability of Application for the Proposal To Replace the Existing Movable I-5 Bridge Across...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... materials for the Columbia River Crossing. The document contained an incorrect phone number for the Columbia... Columbia River Crossing.'' (78 FR 26380). Mistakenly, the phone number for the person listed in the FOR FURTHER INFORMATION CONTACT section was incorrect. The correct phone number for Gary Greene, Columbia...

  19. Study on the Flexibility in Cross-Border Water Resources Cooperation Governance

    NASA Astrophysics Data System (ADS)

    Liu, Zongrui; Wang, Teng; Zhou, Li

    2018-02-01

    Flexible strategy is very important to cross-border cooperation in international rivers water resources, which may be employed to reconcile contradictions and ease conflicts. Flexible characters of cross-border cooperation in international rivers water resources could be analyzed and revealed, using flexible strategic management framework, by taking international cooperation protocols related to water from Transboundary Freshwater Disputes Database (TFDD) as samples from the number of cooperation issues, the amount of management layers and regulator agencies in cooperation organization and the categories of income (cost) distribution (allocation) mode. The research demonstrates that there are some flexible features of cross-border cooperation in international rivers water resources: Riparian countries would select relative diversification strategies related to water, tend to construct a flexible cooperation organization featured with moderate hierarchies from vertical perspective and simplified administrations from horizontal perspective, and adopt selective inducement modes to respect ‘joint and several liability’.

  20. Analysis and classification of topographic flow steering and inferred geomorphic processes as a function of discharge in a mountain river

    NASA Astrophysics Data System (ADS)

    Gore, J.; Pasternack, G. B.; Wiener, J.

    2016-12-01

    Process-based river classification tends to be done at reach to catchment scales assuming channels are uniform and thus differentiated by the simple specific stream power metric. In fact, mountain rivers are highly variable at subreach scales to the point that local topographic steering may be the dominant control on geomorphic processes. This study presents a new framework for characterizing how stage-dependent topographic steering varies continuously down a river, leading to a classification of subreach landforms on the basis of the geomorphic mechanism of flow convergence routing. The two remote mountain river segments were located in the 3480-km2 Yuba River, with the upper South Yuba having a substantial sediment supply from legacy hydraulic gold mining and the mainstem Yuba downstream of New Bullards Bar Dam having a restricted sediment supply. Meter-scale DEMs were produced for both cases using airborne LiDAR and survey data. DEMs were slope detrended to focus the analysis on cross-sectional variability. DEMs were then heavily smoothed to allow for automated tracing of the valley centerline, and then cross-sectional rectangles were spaced every 5 m. The average width (W) and detrended bed elevation (Z) of the wetted area was computed from the DEM for each raster for 6-7 different river stages. Both width and cross-sectionally averaged bed elevation were standardized. The product of these two variables was computed as a measure of cross-sectional area, and is termed the geomorphic covariance (Czw) series when plotted along each river corridor. Cwz was then used to classify each cross-section as one of five distinct landform types: nozzle, wide bar, normal channel, constricted pool, and oversized pool- with this classification varying with discharge such that a section could, for example, function as a nozzle during low flow but an oversized pool at high flow, or any other combination. Longitudinal profiles of bed elevation, width, covariance, and landform type were analyzed for their stage-dependent patterns to understand their geomorphic significance and to contrast the two rivers. This new method may be the first example of a hierarchical, process-based classification at the subreach scale in which one mechanism is assessed for how it varies not only in space, but as a function of discharge.

  1. A televised entertainment-education drama to promote positive discussion about organ donation

    PubMed Central

    Khalil, Georges E.; Rintamaki, Lance S.

    2014-01-01

    This article investigates pathways between the exposure to an entertainment-education (E-E) television drama called Three Rivers and positive discussion of organ donation among viewers of the drama in the United States. A cross-sectional survey was conducted using an online advertising for a period of one week. Survey participants included 1325 adults living in the United States, who had viewed the first episode of Three Rivers on television. Data were collected on recall of events in the storyline, perceived entertainment value, perceived accuracy of the presented health information, rejection of organ donation myths and positive discussion of organ donation and the storyline. Covariates were registration for organ donation, membership to the donation or transplant community and demographic variables. Results show that viewers with high recall of the storyline were more likely to reject myths about organ donation and engage in pro-donation discussions with others. Perceived entertainment value and perceived accuracy acted as mediators in such relationships. The insertion of accurate health information in television drama may be effective in promoting positive discussions about organ donation and myth rejection. Recall of events from the televised E-E drama Three Rivers, entertainment value and accuracy perception were associated with positive discussion. PMID:24399264

  2. Pore-Water Chemistry and Hydrology in a Spring-Fed River: Implications for Hyporheic Control of Nutrient Cycling and Speleogenesis

    NASA Astrophysics Data System (ADS)

    Kurz, M. J.; Martin, J. B.; Cohen, M. J.

    2010-12-01

    Hyporheic exchange is important for nutrient cycling in rivers, but little is known about the magnitude of this process in karst systems or its influence on speleogenesis and the formation of river channels. We use four pore-water depth profiles to assess nutrient and carbonate processing in the hyporheic zone (HZ) of the Ichetucknee River (north-central, Florida). Co-located pairs of stilling wells equipped with conductivity, temperature, depth (CTD) sensors are used to continuously monitor the hydraulic gradients within the HZ to determine flow directions and temporal variability of groundwater exchange. The Ichetucknee River is sourced from six major and numerous small springs which discharge from the karstic Floridan Aquifer. Downstream and diel variations in nitrate concentrations, specific conductivity and calcite saturation state reflect in-stream processing, but hyporheic exchange should also influence the overall dynamics of nutrient and carbonate fluxes in the river. Our depth profiles and stilling wells are located at four sites in a cross-channel transect and extend through unconsolidated sediment to the solid carbonate of the Floridan Aquifer 35-156 cm below the river bed. Decreasing DOC, pH, and DO concentrations and increased DIC are indicative of organic carbon remineralization in the shallow sediments. Increasing alkalinity, Ca concentrations, specific conductivity and decreasing calcite saturation state indicate carbonate dissolution being driven by the decreasing pH. Decreasing nitrate concentrations indicate denitrification and increasing phosphate concentration could be a result of carbonate dissolution or OC remineralization. Most of these changes appear to occur in the upper 60cm of sediment, below which many concentrations return to values observed in the groundwater, suggesting water discharges from the Floridan Aquifer at the base of the sediment. Hydraulic head is higher in the pore waters than the river indicating groundwater then discharges to the river. Initial modeling of the system indicates that flow through the channel sediment moves horizontally and discharges into the river through the incised channel rather than upwards through the most reactive hyporheic sediments. While differences in chemical composition between the pore water and river water suggest the chemically altered pore water could affect chemical composition of the river it remains unclear the relative fractions of ground water and chemically altered pore water that flow into the river. Future work will attempt to quantify the magnitude of these exchanges over a range of hydrologic conditions.

  3. Cross-Sectional Data for Selected Reaches of the Chattahoochee River within the Chattahoochee River National Recreation Area, Georgia, 2004

    USGS Publications Warehouse

    Dalton, Melinda S.

    2006-01-01

    This report presents hydrologic data for selected reaches of the Chattahoochee River within the Chattahoochee River National Recreation Area (CRNRA). Data about transect location, width, depth, and velocity of flow for selected reaches of the river are presented in tabular form. The tables contain measurements collected from shoal and run habitats identified as critical sites for the CRNRA. In shoal habitats, measurements were collected while wading using a digital flowmeter and laser range finder. In run habitats, measurements were collected using acoustic Doppler current profiling. Fifty-three transects were established in six reaches throughout the CRNRA; 24 in shoal habitat, 26 in run habitat, and 3 in pool habitat. Illustrations in this report contain information about study area location, hydrology, transect locations, and cross-sectional information. A study area location figure is followed by figures identifying locations of transects within each individual reach. Cross-sectional information is presented for each transect, by reach, in a series of graphs. The data presented herein can be used to complete preliminary habitat assessments for the Chattahoochee River within the CRNRA. These preliminary assessments can be used to identify reaches of concern for future impacts associated with continual development in the Metropolitan Atlanta area and potential water allocation agreements between Georgia, Florida, and Alabama.

  4. 36 CFR 7.71 - Delaware Water Gap National Recreation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of L. R. 45012 (commonly known as the River Road). Loop Two is approximately 6 miles long and begins at the northwest end of Loop One; it goes northeasterly between the Delaware River and River Road for about one mile until it crosses River Road; then southwesterly along the ridge which is south of Hidden...

  5. 36 CFR 7.71 - Delaware Water Gap National Recreation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of L. R. 45012 (commonly known as the River Road). Loop Two is approximately 6 miles long and begins at the northwest end of Loop One; it goes northeasterly between the Delaware River and River Road for about one mile until it crosses River Road; then southwesterly along the ridge which is south of Hidden...

  6. 36 CFR 7.71 - Delaware Water Gap National Recreation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of L. R. 45012 (commonly known as the River Road). Loop Two is approximately 6 miles long and begins at the northwest end of Loop One; it goes northeasterly between the Delaware River and River Road for about one mile until it crosses River Road; then southwesterly along the ridge which is south of Hidden...

  7. 36 CFR 7.71 - Delaware Water Gap National Recreation Area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of L. R. 45012 (commonly known as the River Road). Loop Two is approximately 6 miles long and begins at the northwest end of Loop One; it goes northeasterly between the Delaware River and River Road for about one mile until it crosses River Road; then southwesterly along the ridge which is south of Hidden...

  8. 36 CFR 7.71 - Delaware Water Gap National Recreation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of L. R. 45012 (commonly known as the River Road). Loop Two is approximately 6 miles long and begins at the northwest end of Loop One; it goes northeasterly between the Delaware River and River Road for about one mile until it crosses River Road; then southwesterly along the ridge which is south of Hidden...

  9. Earth observations during STS-60 mission.

    NASA Image and Video Library

    1994-02-11

    STS060-90-028 (3-11 Feb 1994) --- This view is centered over Rome and covers approximately 3,600 square miles. Anzio, the site of the January 22, 1944, Allied landing in Central Italy, is on the coast at the lower left. The coastal protuberance near the center is Ostia. This Roman Empire port on the Tiber River silted in and was covered over. It is now an archeological site and a tourist attraction. Southeast of the mouth of the Tiber is the Pontine Marsh. These marshlands were drained in the 1930's and have been converted to farmland. Volcanism formed the land in the region. It is evidenced in the circular caldera lakes visible. Castel Gandolfo, part of the Papal State, is on Lake Albano toward the bottom of the frame. Rome was founded during the Bronze Age on a river crossing. The road from the coast along the river was the main route for the early salt trade. The city became the capital of modern Italy in 1861. It has undergone explosive growth since World War II and now has a population of over three million people. Leonardo da Vinci (Fiumicino) Airport, the main international airport, is visible near the coast north of the Tiber River.

  10. Baseline for Monitoring Water Resources Along Kabul and Indus Rivers of Pakistan for Potential Terrorist Contamination

    NASA Astrophysics Data System (ADS)

    Hamidullah, S.; Tariq, S.; Shah, M. T.; Bishop, M. P.; Kamp, U.; Olsenholler, J.

    2002-05-01

    Baseline for Monitoring Water Resources Along Kabul and Indus Rivers of Pakistan for Potential Terrorist Contamination Terrorism has temporarily constrained the dynamism of the world it was enjoying before September 11, 2001, but also has opened avenues for people of all ethnicities, creeds, and professions to join hands in combating it. Scientific efforts to combat terrorism are likely to lead to better use of existing scientific knowledge as well as to discoveries that will increase world organization, interconnectivity, and peace promotion. Afghanistan and surrounding regions are major focal points for current anti-terrorist activities of the USA and its allies, including Pakistan. The United States, Pakistan, and Afghanistan have shared many similar political objectives, as well as differences, in cold war and post-cold-war eras, reflected by variable provisions of material aid. It is well recognized that understanding Afghanistan requires comprehension of the Pakistan situation as well, especially for common resources. Water is paramount because it is absolutely vital, but can be contaminated by internal or cross-border terrorism. The Kabul and Indus rivers originate in the Hindu Kush - Himalaya ranges. The Kabul River flows from Afghanistan into Pakistan, and after irrigating Peshawar basin, joins the Indus. The Indus, after its origin in Tibet and flow through the Indian Himalaya, enters Pakistan and flows south as the irrigation lifeblood of the country. Any terroristic addition of radioactive nuclides or contaminants to either river could dramatically impact the dependent riverine ecologies. Monitoring cells thus need to be established at locations in Afghanistan and Pakistan to assess base-line river variances for possible future contamination by terrorists. This paper presents a general view and the physical and chemical parameters of parts of the two rivers, and of the surrounding underground water in Peshawar Basin, including pH, conductivity, total dissolved solids, major elements, trace elements, heavy metals and oxygen isotopes. Data are mostly within allowed limits of US-EPA for surface and underground water. Oxygen isotopes confirm the dangers of contamination from the Kabul River to underground water. Heavy metals were determined through spectrophotometery, however, modern geophysical methods are cheaper and quicker and can be applied at monitoring stations. With Kabul river and its surroundings as examples, similar theory and practice can be applied to rivers within the United States and other parts of the world.

  11. An overview of historical channel adjustment and selected hydraulic values in the Lower Sabine and Lower Brazos River Basins, Texas and Louisiana

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Greene, Lauren E.; John D. Gordon, John D.

    2010-01-01

    The Sabine and Brazos are alluvial rivers; alluvial rivers are dynamic systems that adjust their geometry in response to changes in streamflow (discharge) and sediment load. In fluvial geomorphology, the term 'channel adjustment' refers to river channel changes in three geometric dimensions: (1) channel slope (profile); (2) the outline or shape, such as meandering or braided, projected on a horizontal plane (planform); and (3) cross-sectional form (shape). The primary objective of the study was to investigate how the channel morphology of these rivers has changed in response to reservoirs and other anthropogenic disturbances that have altered streamflow and sediment load. The results of this study are expected to aid ecological assessments in the lower Sabine River and lower Brazos River Basins for the Texas Instream Flow Program. Starting in the 1920s, several dams have been constructed on the Sabine and Brazos Rivers and their tributaries, and numerous bridges have been built and sometimes replaced multiple times, which have changed the natural flow regime and reduced or altered sediment loads downstream. Changes in channel geometry over time can reduce channel conveyance and thus streamflow, which can have adverse ecological effects. Channel attributes including cross-section form, channel slope, and planform change were evaluated to learn how each river's morphology changed over many years in response to natural and anthropogenic disturbances. Climate has large influence on the hydrologic regimes of the lower Sabine and lower Brazos River Basins. Equally important as climate in controlling the hydrologic regime of the two river systems are numerous reservoirs that regulate downstream flow releases. The hydrologic regimes of the two rivers and their tributaries reflect the combined influences of climate, flow regulation, and drainage area. Historical and contemporary cross-sectional channel geometries at 15 streamflow-gaging stations in the lower Sabine and lower Brazos River Basins were evaluated. An in-depth discussion of results from streamflow-gaging station 08028500 Sabine River near Bon Weir, Tex., is featured here as an example of the analyses that were done at each station.

  12. Subsurface stratigraphic cross sections of cretaceous and lower tertiary rocks in the Wind River Basin, central Wyoming: Chapter 9 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.

    2007-01-01

    The stratigraphic cross sections presented in this report were constructed as part of a project conducted by the U.S. Geological Survey to characterize and evaluate the undiscovered oil and gas resources of the Wind River Basin (WRB) in central Wyoming. The primary purpose of the cross sections is to show the stratigraphic framework and facies relations of Cretaceous and lower Tertiary rocks in this large, intermontane structural and sedimentary basin, which formed in the Rocky Mountain foreland during the Laramide orogeny (Late Cretaceous through early Eocene time). The WRB is nearly 200 miles (mi) long, 70 mi wide, and encompasses about 7,400 square miles (mi2) (fig. 1). The basin is structurally bounded by the Owl Creek and Bighorn Mountains on the north, the Casper arch on the east, the Granite Mountains on the south, and the Wind River Range on the west.

  13. Criteria and tools for determining drainage divide stability

    NASA Astrophysics Data System (ADS)

    Forte, Adam M.; Whipple, Kelin X.

    2018-07-01

    Watersheds are the fundamental organizing units in landscapes and thus the controls on drainage divide location and mobility are an essential facet of landscape evolution. Additionally, many common topographic analyses fundamentally assume that river network topology and divide locations are largely static, allowing channel profile form to be interpreted in terms of spatio-temporal patterns of rock uplift rate relative to base level, climate, or rock properties. Recently however, it has been suggested that drainage divides are more mobile than previously thought and that divide mobility, and resulting changes in drainage area, could potentially confound interpretations of river profiles. Ultimately, reliable metrics are needed to diagnose the mobility of divides as part of routine landscape analyses. One such recently proposed metric is cross-divide contrasts in χ, a proxy for steady-state channel elevation, but cross-divide contrasts in a number of topographic metrics show promise. Here we use a series of landscape evolution simulations in which we induce divide mobility under different conditions to test the utility of a suite of topographic metrics of divide mobility and for comparison with natural examples in the eastern Greater Caucasus Mountains, the Kars Volcanic Plateau, and the western San Bernadino Mountains. Specifically, we test cross-divide contrasts in mean gradient, mean local relief, channel bed elevation, and χ all measured at, or averaged upstream of, a reference drainage area. Our results highlight that cross-divide contrasts in χ only faithfully reflect current divide mobility when uplift, rock erodibility, climate, and catchment outlet elevation are uniform across both river networks on either side of the divide, otherwise a χ-anomaly only indicates a possible future divide instability. The other metrics appear to be more reliable representations of current divide motion, but in natural landscapes, only cross-divide contrasts in mean gradient and local relief appear to consistently provide useful information. Multiple divide metrics should be considered simultaneously and across-divide values of all metrics examined quantitatively as visual assessment is not sufficiently reliable in many cases. We provide a series of Matlab tools built using TopoToolbox to facilitate routine analysis.

  14. "Broken-Off Like Limbs from a Tree": Fractured Identity in Caryl Phillips's "Crossing the River (1993)"

    ERIC Educational Resources Information Center

    Labidi, Abid Larbi

    2016-01-01

    My major purpose in studying Caryl Phillips's widely acclaimed novel "Crossing the River" is to examine, through a close textual analysis, the severe identity crisis inflicted upon slaves under the three-century long slavery institution. I explore how slaves' tragic rift of separation from their African homelands led to a disastrous loss…

  15. Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences

    NASA Astrophysics Data System (ADS)

    Umar, M.; Rhoads, Bruce L.; Greenberg, Jonathan A.

    2018-01-01

    Although past work has noted that contrasts in turbidity often are detectable on remotely sensed images of rivers downstream from confluences, no systematic methodology has been developed for assessing mixing over distance of confluent flows with differing surficial suspended sediment concentrations (SSSC). In contrast to field measurements of mixing below confluences, satellite remote-sensing can provide detailed information on spatial distributions of SSSC over long distances. This paper presents a methodology that uses remote-sensing data to estimate spatial patterns of SSSC downstream of confluences along large rivers and to determine changes in the amount of mixing over distance from confluences. The method develops a calibrated Random Forest (RF) model by relating training SSSC data from river gaging stations to derived spectral indices for the pixels corresponding to gaging-station locations. The calibrated model is then used to predict SSSC values for every river pixel in a remotely sensed image, which provides the basis for mapping of spatial variability in SSSCs along the river. The pixel data are used to estimate average surficial values of SSSC at cross sections spaced uniformly along the river. Based on the cross-section data, a mixing metric is computed for each cross section. The spatial pattern of change in this metric over distance can be used to define rates and length scales of surficial mixing of suspended sediment downstream of a confluence. This type of information is useful for exploring the potential influence of various controlling factors on mixing downstream of confluences, for evaluating how mixing in a river system varies over time and space, and for determining how these variations influence water quality and ecological conditions along the river.

  16. Reinforcement Learning Multi-Agent Modeling of Decision-Making Agents for the Study of Transboundary Surface Water Conflicts with Application to the Syr Darya River Basin

    NASA Astrophysics Data System (ADS)

    Riegels, N.; Siegfried, T.; Pereira Cardenal, S. J.; Jensen, R. A.; Bauer-Gottwein, P.

    2008-12-01

    In most economics--driven approaches to optimizing water use at the river basin scale, the system is modelled deterministically with the goal of maximizing overall benefits. However, actual operation and allocation decisions must be made under hydrologic and economic uncertainty. In addition, river basins often cross political boundaries, and different states may not be motivated to cooperate so as to maximize basin- scale benefits. Even within states, competing agents such as irrigation districts, municipal water agencies, and large industrial users may not have incentives to cooperate to realize efficiency gains identified in basin- level studies. More traditional simulation--optimization approaches assume pre-commitment by individual agents and stakeholders and unconditional compliance on each side. While this can help determine attainable gains and tradeoffs from efficient management, such hardwired policies do not account for dynamic feedback between agents themselves or between agents and their environments (e.g. due to climate change etc.). In reality however, we are dealing with an out-of-equilibrium multi-agent system, where there is neither global knowledge nor global control, but rather continuous strategic interaction between decision making agents. Based on the theory of stochastic games, we present a computational framework that allows for studying the dynamic feedback between decision--making agents themselves and an inherently uncertain environment in a spatially and temporally distributed manner. Agents with decision-making control over water allocation such as countries, irrigation districts, and municipalities are represented by reinforcement learning agents and coupled to a detailed hydrologic--economic model. This approach emphasizes learning by agents from their continuous interaction with other agents and the environment. It provides a convenient framework for the solution of the problem of dynamic decision-making in a mixed cooperative / non-cooperative environment with which different institutional setups and incentive systems can be studied so to identify reasonable ways to reach desirable, Pareto--optimal allocation outcomes. Preliminary results from an application to the Syr Darya river basin in Central Asia will be presented and discussed. The Syr Darya River is a classic example of a transboundary river basin in which basin-wide efficiency gains identified in optimization studies have not been sufficient to induce cooperative management of the river by the riparian states.

  17. Historical Resources Evaluation, St. Paul District Locks and Dams on the Mississippi River and Two Structures at St. Anthony Falls; Locks and Dams in Minnesota, Wisconsin and Northern Iowa.

    DTIC Science & Technology

    1983-09-01

    assistant, Charles Babbage Institute for the History of Information Processing, University of Minnesota, 1982. Teaching assistant, Department of...History, 18.4 (June 1935): 375-388. ’ clumbsily written account of Charles Lane Colman and his shirgle factory in LaCrosse, which eventually became...8217..: : . . . . . .. - y :. ,, . .. , . Twining, Charles E. Downriver: Orrin H. Ingram and the Empire Lumber Company. Madison: The State Historical Society of

  18. Cross-section, velocity, and bedload data at two erosion sites on the Tanana River near Fairbanks, Alaska, 1979

    USGS Publications Warehouse

    Burrows, Robert L.

    1980-01-01

    In an effort to relate river processes to vertical and lateral erosion at two sites on the Tanana River in the vicinity of Fairbanks, Alaska, measurements of depth, velocity, and bedload-transport rates were made at several sections at each site. To facilitate comparison of the river processes and ongoing erosion, compilation and graphic presentation of the velocity distributions and bedload-transport rates are presented in conjunction with cross-section configuration immediately adjacent to the area of erosion. Dry sieve analyses of the bedload samples give particle-size distribution. Approximately 85 to 95% of the material in transport at both sites was in the sand range (>0.062 millimeter <2.0 millimeter). (USGS)

  19. Hydrologic Analysis and Two-Dimensional Simulation of Flow at State Highway 17 crossing the Gasconade River near Waynesville, Missouri

    USGS Publications Warehouse

    Huizinga, Richard J.

    2008-01-01

    In cooperation with the Missouri Department of Transportation, the U.S. Geological Survey determined hydrologic and hydraulic parameters for the Gasconade River at the site of a proposed bridge replacement and highway realignment of State Highway 17 near Waynesville, Missouri. Information from a discontinued streamflow-gaging station on the Gasconade River near Waynesville was used to determine streamflow statistics for analysis of the 25-, 50-, 100-, and 500-year floods at the site. Analysis of the streamflow-gaging stations on the Gasconade River upstream and downstream from Waynesville indicate that flood peaks attenuate between the upstream gaging station near Hazelgreen and the Waynesville gaging station, such that the peak discharge observed on the Gasconade River near Waynesville will be equal to or only slightly greater (7 percent or less) than that observed near Hazelgreen. A flood event occurred on the Gasconade River in March 2008, and a flood measurement was obtained near the peak at State Highway 17. The elevation of high-water marks from that event indicated it was the highest measured flood on record with a measured discharge of 95,400 cubic feet per second, and a water-surface elevation of 766.18 feet near the location of the Waynesville gaging station. The measurements obtained for the March flood resulted in a shift of the original stage-discharge relation for the Waynesville gaging station, and the streamflow statistics were modified based on the new data. A two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Gasconade River in the vicinity of State Highway 17. A model was developed that represents existing (2008) conditions on State Highway 17 (the 'model of existing conditions'), and was calibrated to the floods of March 20, 2008, December 4, 1982, and April 14, 1945. Modifications were made to the model of existing conditions to create a model that represents conditions along the same reach of the Gasconade River with preliminary proposed replacement bridges and realignment of State Highway 17 (the 'model of proposed conditions'). The models of existing and proposed conditions were used to simulate the 25-, 50-, 100-, and 500-year recurrence floods, as well as the March 20, 2008 flood. Results from the model of proposed conditions show that the proposed replacement structures and realignment of State Highway 17 will result in additional backwater upstream from State Highway 17 ranging from approximately 0.18 foot for the 25-year flood to 0.32 foot for the 500-year flood. Velocity magnitudes in the proposed overflow structures were greater than in the existing structures [by as much as 4.9 feet per second in the left (west) overflow structure for the 500-year flood], and shallow, high-velocity flow occurs at the upstream edges of the abutments of the proposed overflow structures in the 100- and 500-year floods where flow overtops parts of the existing road embankment that will be left in place in the proposed scenario. Velocity magnitude in the main channel of the model of proposed conditions increased by a maximum of 1.2 feet per second over the model of existing conditions, with the maximum occurring approximately 1,500 feet downstream from existing main channel structure J-802.

  20. The geologic story of the Great Plains

    USGS Publications Warehouse

    Trimble, Donald E.

    1980-01-01

    For more than half a century after Lewis and Clark crossed the country in 1805-6, the Great Plains was the testing ground of frontier America here America grew to maturity (fig. 1). In 1805-7, explorer Zebulon Pike crossed the southcentral Great Plains, following the Arkansas River from near Great Bend, Kans., to the Rocky Mountains. In later years, Santa Fe traders, lured by the wealth of New Mexican trade, followed Pike's path as far as Bents Fort, Colo., where they turned southwestward away from the river route. Those pioneers who later crossed the plains on the Oregon Trail reached the Platte River near the place that would become Kearney, Nebr., by a nearly direct route from Independence, Mo., and followed the Platte across the central part of the Great Plains.

  1. Geology of the Knife River area, North Dakota

    USGS Publications Warehouse

    Benson, William Edward

    1953-01-01

    The Knife River area, consisting of six 15-minute quadrangles, includes the lower half of the Knife River valley in west-central North Dakota. The area, in the center of the Williston Basin, is underlain by the Tongue River member of the Fort Union formation (Paleocene) and the Golden Valley formation (Eocene). The Tongue River includes beds equivalent to the Sentinel Butte shale; the Golden Valley formation, which receives its first detailed description in this report, consists of two members, a lower member of gray to white sandy kaolin clay and an upper member of cross-bedded micaceous sandstone. Pro-Tongue River rocks that crop out in southwestern North Dakota include the Ludlow member of the Fort Union formation, the Cannonball marine formation (Paleocene) and the Hell Creek, Fox Hills, and Pierre formations, all upper Cretaceous. Post-Golden Valley rocks include the White River formation (Oligocene) and gravels on an old planation surface that may be Miocene or Pliocent. Surficial deposits include glacial and fluvial deposits of Pleistocene age and alluvium, dune sand, residual silica, and landslide blocks of Recent age. Three ages of glacial deposits can be differentiated, largely on the basis of three fills, separated by unconformities, in the Knife River valley. All three are of Wisconsin age and probably represent the Iowan, Tazewell, and Mankato substages. Deposits of the Cary substage have not been identified either in the Knife River area or elsewhere in southern North Dakota. Iowan glacial deposits form the outermost drift border in North Dakota. Southwest of this border are a few scattered granite boulders that are residual from the erosion of either the White River formation or a pre-Wisconsin till. The Tazewell drift border cannot be followed in southern North Dakota. The Mankato drift border can be traced in a general way from the South Dakota State line northwest across the Missouri River and through the middle of the Knife River area. The major land forms of southwestern North Dakota are: (1) high buttes that stand above (2) a gravel-capped planation surface and (3) a gently-rolling upland; below the upland surface are (4) remnants of a broad valley stage of erosion into which (5) modern valleys have been cut. The broad valley profiles of many streams continue east across the Missouri River trench and are part of a former drainage system that flowed into Hudson Bay. Crossing the divides are (6) large trenches, formed when the former northeast-flowing streams were dammed by the glacier and diverted to the southeast. The largest diversion valley is occupied by the Missouri River; another diversion system, now largely abandoned, extends from the Killdeer Mountains southwest to the mouth of Porcupine Creek in Sioux County. By analogy with South Dakota, most of the large diversion valleys are thought to have been cut in Illinoian time. Numerous diversion valleys of Illinoian to late Wisconsin age cut across the divides. Other Pleistocene land forms include ground and moraines, kames, and terraces. Land forms of Recent age include dunes, alluvial terraces, floodplains, and several types of landslide blocks. One type of landslide, called rockslide slump, has not previously been described. Drainage is well adjusted to the structure, most of the streams flowing down the axes of small synclines. The bedrock formations have been gently folded into small domes and synclines that interrupt a gentle northward regional dip into the Williston Basin. Three episodes of deformation affected southwestern North Dakota in Tertiary time: (1) intra-Paleocene, involving warping and minor faulting; (2) post-Eocene, involving uplift and tilting; (2) Oligocene, involving uplift and gentle folding. Mineral resources include ceramic clay, sand and gravel and lignite coal. The Knife River area is the largest lignite-producing district in the United States.

  2. Method based on the Laplace equations to reconstruct the river terrain for two-dimensional hydrodynamic numerical modeling

    NASA Astrophysics Data System (ADS)

    Lai, Ruixun; Wang, Min; Yang, Ming; Zhang, Chao

    2018-02-01

    The accuracy of the widely-used two-dimensional hydrodynamic numerical model depends on the quality of the river terrain model, particularly in the main channel. However, in most cases, the bathymetry of the river channel is difficult or expensive to obtain in the field, and there is a lack of available data to describe the geometry of the river channel. We introduce a method that originates from the grid generation with the elliptic equation to generate streamlines of the river channel. The streamlines are numerically solved with the Laplace equations. In the process, streamlines in the physical domain are first computed in a computational domain, and then transformed back to the physical domain. The interpolated streamlines are integrated with the surrounding topography to reconstruct the entire river terrain model. The approach was applied to a meandering reach in the Qinhe River, which is a tributary in the middle of the Yellow River, China. Cross-sectional validation and the two-dimensional shallow-water equations are used to test the performance of the river terrain generated. The results show that the approach can reconstruct the river terrain using the data from measured cross-sections. Furthermore, the created river terrain can maintain a geometrical shape consistent with the measurements, while generating a smooth main channel. Finally, several limitations and opportunities for future research are discussed.

  3. Method For Identifying Sedimentary Bodies From Images And Its Application To Mineral Exploration

    NASA Technical Reports Server (NTRS)

    Wilkinson, Murray Justin (Inventor)

    2006-01-01

    A method is disclosed for identifying a sediment accumulation from an image of a part of the earth's surface. The method includes identifying a topographic discontinuity from the image. A river which crosses the discontinuity is identified from the image. From the image, paleocourses of the river are identified which diverge from a point where the river crosses the discontinuity. The paleocourses are disposed on a topographically low side of the discontinuity. A smooth surface which emanates from the point is identified. The smooth surface is also disposed on the topographically low side of the point.

  4. Multiple crossings of a large glacial river by Canada Lynx (Lynx canadensis)

    Treesearch

    D. Feierabend; K. Kielland

    2014-01-01

    Rivers may act as barriers to the movement of terrestrial mammals, which could limit dispersal and gene flow. Glacial rivers are particularly hazardous because of the cold water temperature and swift current. Yet, we determined that 2 Canada Lynx (Lynx canadensis) equipped with GPS collars repeatedly swam across the main channel of the Tanana River in interior Alaska...

  5. Channel geometry and hydrologic data for six eruption-affected tributaries of the Lewis River, Mount St. Helens, Washington, water years 1983-84

    USGS Publications Warehouse

    Martinson, H.A.; Hammond, H.E.; Mast, W.W.; Mango, P.D.

    1986-01-01

    The May 18, 1980, eruption of Mount St. Helens generated a lateral blast, lahars, and tephra deposits that altered stream channels in the Lewis River drainage basin. In order to assess potential flood hazards, monitor channel adjustments, and construct a sediment budget for disturbed drainages on the east and southeast flanks of the volcano, channel cross sections were monumented and surveyed on Pine Creek, Muddy River, and Smith Creek during September and October of 1980. Additional cross sections were monumented and surveyed on Swift Creek, Bean Creek , and Clearwater Creek during 1981. This network of channel cross sections has been resurveyed annually. Selected cross sections have been surveyed more frequently, following periods of higher flow. Longitudinal stream profiles of the low-water thalweg and (or) water surfaces were surveyed periodically for selected short reaches of channel. Corresponding map views for these reaches were constructed using the survey data and aerial photographs. This report presents plots of channel cross-section profiles, longitudinal stream profiles, and channel maps constructed from survey data collected during water years 1983-84. (USGS)

  6. Evaluating Connectivity for two mid-sized mammals Across Riparian Corridors using Wildlife Crossing Monitoring and Species Distribution Modeling

    NASA Astrophysics Data System (ADS)

    Jeong, S.

    2016-12-01

    The movement of wildlife can be constrained by river renovation projects owing to the presence of artificial structures. This study evaluates lateral connectivity, the ability to cross from habitat on one side of the river, through riparian vegetation, embankments, and the river to the other, of two mammal species, the leopard cat (Felis bengalensis euptilura) and water deer (Hydropotes inermis). We used 34 months of monitoring on 250 m stream segments on the Seom river, in South Korea to model the lateral connectivity of the stream between suitable habitats on either side of the steam. Habitat suitability within the landscape was determined using species distribution modelingand was used to determine where we thought the animals would want to pass across the river. We compared the predicted crossing locations to observed crossings.We assessed lateral connectivity suitability with maximum entropy and logistic regression models, and species' presences detected from snow tracking, heat sensor cameras, and scat or other signs, as well as landscape variables. Leopard cats prefer upland forest, while water deer prefer the forest edge and riparian corridor. For both target species, the best riparian habitats were characterized by the presence of vegetation cover on the embankment and by at least one side of an embankment being adjacent to farmland or forest cover. The lateral connectivity for the two target species showed different requirements. Water deer cross through large culverts with an openness ratio of 0.7 or under bridges, whereas leopard cats utilized drainage pipes and culvert boxes with a much smaller openness ratio. Stream reaches located close to a river tributary had the highest connectivity values, and areas modeled as good habitat for both species thatlink watershed and riparian habitats showed high connectivity values. Artifacts such as steep banks, concrete embankments, and adjacent roads were found to degrade the lateral connectivity of wildlife. These outcomes can be used to identify suitable riparian wildlife habitats of mammals, to evaluate lateral connectivity of riparian corridors for mammals, and to develop criteria for river conservation and restoration in highly urbanized developing countries. [

  7. River-Based Experiential Learning: the Bear River Fellows Program

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Shirley, B.; Roark, M. F.

    2012-12-01

    The Department of Civil and Environmental Engineering, Outdoor Recreation, and Parks and Recreation programs at Utah State University (USU) have partnered to offer a new, unique river-based experiential learning opportunity for undergraduates called the Bear River Fellows Program. The program allows incoming freshmen Fellows to experience a river first hand during a 5-day/4-night river trip on the nearby Bear River two weeks before the start of their first Fall semester. As part of the program, Fellows will navigate the Bear River in canoes, camp along the banks, interact with local water and environmental managers, collect channel cross section, stream flow, vegetation cover, and topological complexity data, meet other incoming freshmen, interact with faculty and graduate students, develop boating and leadership skills, problem solve, and participate as full members of the trip team. Subsequently, Fellows will get paid as undergraduate researchers during their Fall and Spring Freshman semesters to analyze, synthesize, and present the field data they collect. The program is a collaborative effort between two USU academic units and the (non-academic) division of Student Services and supports a larger National Science Foundation funded environmental modelling and management project for the lower Bear River, Utah watershed. We have advertised the program via Facebook and emails to incoming USU freshmen, received 35 applications (60% women), and accepted 5 Fellows into the program (3 female and 2 male). The river trip departs August 14, 2012. The poster will overview the Bear River Fellows Program and present qualitative and preliminary outcomes emerging from the trip and Fellows' work through the Fall semester with the field data they collect. We will also undertake more rigorous and longer longitudinal quantitative evaluation of Program outcomes (for example, in problem-solving and leadership) both in Spring 2013 and in subsequent 2013 and 2014 offerings of the program.

  8. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 1999-2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwabe, Lawrence; Tiley, Mark; Perkins, Raymond R.

    2000-11-01

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchananmore » 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.« less

  9. The Tools, Approaches and Applications of Visual Literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria

    ERIC Educational Resources Information Center

    Ecoma, Victor

    2016-01-01

    The paper reflects upon the tools, approaches and applications of visual literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria. The objective of the discourse is to examine how the visual arts training and practice equip students with skills in visual literacy through methods of production, materials and…

  10. Assessing the Importance of Cross-Stream Transport in Bedload Flux Estimates from Migrating Dunes: Colorado River, Grand Canyon National Park

    NASA Astrophysics Data System (ADS)

    Leary, K. P.; Buscombe, D.; Schmeeckle, M.; Kaplinski, M. A.

    2017-12-01

    Bedforms are ubiquitous in sand-bedded rivers, and understanding their morphodynamics is key to quantifying bedload transport. As such, mechanistic understanding of the spatiotemporal details of sand transport through and over bedforms is paramount to quantifying total sediment flux in sand-bedded river systems. However, due to the complexity of bedform field geometries and migration in natural settings, our ability to relate migration to bedload flux, and to quantify the relative role of tractive and suspended processes in their dynamics, is incomplete. Recent flume and numerical investigations indicate the potential importance of cross-stream transport, a process previously regarded as secondary and diffusive, to the three-dimensionality of bedforms and spatially variable translation and deformation rates. This research seeks to understand and quantify the importance of cross-stream transport in bedform three-dimensionality in a field setting. This work utilizes a high-resolution (0.25 m grid) data set of bedforms migrating in the channel of the Colorado River in Grand Canyon National Park. This data set comprises multi-beam sonar surveys collected at 3 different flow discharges ( 283, 566, and 1076 m3/s) along a reach of the Colorado River just upstream of the Diamond Creek USGS gage. Data were collected every 6 minutes almost continuously for 12 hours. Using bed elevation profiles (BEPs), we extract detailed bedform geometrical data (i.e. bedform height, wavelength) and spatial sediment flux data over a suite of bedforms at each flow. Coupling this spatially extensive data with a generalized Exner equation, we conduct mass balance calculations that evaluate the possibility, and potential importance, of cross-stream transport in the spatial variability of translation and deformation rates. Preliminary results suggest that intra-dune cross-stream transport can partially account for changes in the planform shape of dunes and may play an important role in spatially variable translation and deformation rates. Parameterization of cross-stream sediment transport could lead to accounting for ambiguities in bedload flux calculations caused by dune deformation, which in turn could significantly improve overall calculation of bedload and total load sediment transport in sand bedded rivers.

  11. Isopycnal deepening of an under-ice river plume in coastal waters: Field observations and modeling

    NASA Astrophysics Data System (ADS)

    Li, S. Samuel; Ingram, R. Grant

    2007-07-01

    The Great Whale River, located on the southeast coast of Hudson Bay in Canada, forms a large river plume under complete landfast ice during early spring. Short-term fluctuations of plume depth have motivated the present numerical study of an under-ice river plume subject to tidal motion and friction. We introduce a simple two-layer model for predicting the vertical penetration of the under-ice river plume as it propagates over a deepening topography. The topography is idealized but representative. Friction on the bottom surface of the ice cover, on the seabed, and at the plume interface is parameterized using the quadratic friction law. The extent of the vertical penetration is controlled by dimensionless parameters related to tidal motion and river outflow. Model predictions are shown to compare favorably with under-ice plume measurements from the river mouth. This study illustrates that isopycnal deepening occurs when the ice-cover vertical motion creates a reduced flow cross-section during the ebbing tide. This results in supercritical flow and triggers the downward plume penetration in the offshore. For a given river discharge, the freshwater source over a tidal cycle is unsteady in terms of discharge velocity because of the variation in the effective cross-sectional area at the river mouth, through which freshwater flows.

  12. Channel erosion surveys along TAPS route, Alaska, 1974

    USGS Publications Warehouse

    Childers, Joseph; Jones, Stanley H.

    1975-01-01

    Repeated site surveys and aerial photographs at 26 stream crossings along the trans-Alaska pipeline system (TAPS) route during the period 1969-74 provide chronologie records of channel changes that predate pipeline-related construction at the sites. The 1974 surveys and photographs show some of the channel changes wrought by construction of the haul road from the Yukon River to Prudhoe Bay and by construction of camps and working pads all along the pipeline route. No pipeline crossings were constructed before 1975. These records of channel changes together with flood and icing measurements are part of the United States Department of the lnterior's continuing surveillance program to document the hydrologic aspects of the trans-Alaska pipeline and its environmental impacts.

  13. Endocrine activity in an urban river system and the biodegradation of estrogen-like endocrine disrupting chemicals through a bio-analytical approach using DRE- and ERE-CALUX bioassays.

    PubMed

    Vandermarken, T; Croes, K; Van Langenhove, K; Boonen, I; Servais, P; Garcia-Armisen, T; Brion, N; Denison, M S; Goeyens, L; Elskens, M

    2018-06-01

    The Zenne River, crossing the Brussels region (Belgium) is an extremely urbanized river impacted by both domestic and industrial effluents. The objective of this study was to monitor the occurrence and activity of Endocrine Active Substances (EAS) in river water and sediments in the framework of the Environmental Quality Standards Directive (2008/105/EC and 2013/39/EU). Activities were determined using Estrogen and Dioxin Responsive Elements (ERE and DRE) Chemical Activated Luciferase Gene Expression (CALUX) bioassays. A potential contamination source of estrogen active compounds was identified in the river at an industrial area downstream from Brussels with a peak value of 938 pg E2 eq./L water (above the EQS of 0.4 ng/L) and 195 pg E2 eq./g sediment. Estrogens are more abundantly present in the sediments than in the dissolved phase. Principal Component Analysis (PCA) showed high correlations between Suspended Particulate Matter (SPM), Particulate (POC) and Dissolved Organic Carbon (DOC) and estrogenic EAS. The dioxin fractions comply with previous data and all were above the United States Environmental Protection Agency (US EPA) low-level risk, with one (42 pg TCDD eq./g sediment) exceeding the high-level risk value for mammals. The self-purifying ability of the Zenne River regarding estrogens was examined with an in vitro biodegradation experiment using the bacterial community naturally present in the river. Hill coefficient and EC 50 values (Effective Concentration at 50%) revealed a process of biodegradation in particulate and dissolved phase. The estrogenic activity was decreased by 80%, demonstrating the ability of self-purification of estrogenic compounds in the Zenne River. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Calculating e-flow using UAV and ground monitoring

    NASA Astrophysics Data System (ADS)

    Zhao, C. S.; Zhang, C. B.; Yang, S. T.; Liu, C. M.; Xiang, H.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Shao, N. F.; Yu, Q.

    2017-09-01

    Intense human activity has led to serious degradation of basin water ecosystems and severe reduction in the river flow available for aquatic biota. As an important water ecosystem index, environmental flows (e-flows) are crucial for maintaining sustainability. However, most e-flow measurement methods involve long cycles, low efficiency, and transdisciplinary expertise. This makes it impossible to rapidly assess river e-flows at basin or larger scales. This study presents a new method to rapidly assessing e-flows coupling UAV and ground monitorings. UAV was firstly used to calculate river-course cross-sections with high-resolution stereoscopic images. A dominance index was then used to identify key fish species. Afterwards a habitat suitability index, along with biodiversity and integrity indices, was used to determine an appropriate flow velocity with full consideration of the fish spawning period. The cross-sections and flow velocity values were then combined into AEHRA, an e-flow assessment method for studying e-flows and supplying-rate. To verify the results from this new method, the widely used Tennant method was employed. The root-mean-square errors of river cross-sections determined by UAV are less than 0.25 m, which constitutes 3-5% water-depth of the river cross-sections. In the study area of Jinan city, the ecological flow velocity (VE) is equal to or greater than 0.11 m/s, and the ecological water depth (HE) is greater than 0.8 m. The river ecosystem is healthy with the minimum e-flow requirements being always met when it is close to large rivers, which is beneficial for the sustainable development of the water ecosystem. In the south river channel of Jinan, the upstream flow mostly meets the minimum e-flow requirements, and the downstream flow always meets the minimum e-flow requirements. The north of Jinan consists predominantly of artificial river channels used for irrigation. Rainfall rarely meets the minimum e-flow and irrigation water requirements. We suggest that the water shortage problem can be partly solved by diversion of the Yellow River. These results can provide useful information for ecological operations and restoration. The method used in this study for calculating e-flow based on a combination of UAV and ground monitoring can effectively promote research progress into basin e-flow, and provide an important reference for e-flow monitoring around the world.

  15. Chemical quality of surface water in the Allegheny River basin, Pennsylvania and New York

    USGS Publications Warehouse

    McCarren, Edward F.

    1967-01-01

    The Allegheny River is the principal source of water to many industries and to communities in the upper Ohio River Valley. The river and its many tributaries pass through 19 counties in northwestern and western Pennsylvania. The population in these counties exceeds 3 million. A major user of the Allegheny River is the city of Pittsburgh, which has a population greater than The Allegheny River is as basic to the economy of the upper Ohio River Valley in western Pennsylvania as are the rich deposits of bituminous coal, gas, and oil that underlie the drainage basin. During the past 5 years many streams that flow into the Allegheny have been low flowing because of droughts affecting much of the eastern United States. Consequently, the concentration of solutes in some streams has been unusually high because of wastes from coal mines and oil wells. These and other water-quality problems in the Allegheny River drainage basin are affecting the economic future of some areas in western Pennsylvania. Because of environmental factors such as climate, geology, and land and water uses, surface-water quality varies considerably throughout the river basin. The natural quality of headwater streams, for example, is affected by saltwater wastes from petroleum production. One of the streams most affected is Kinzua Creek, which had 2,900 parts per million chloride in a sample taken at Westline on September 2, 1959. However, after such streams as the Conewango, Brokenstraw, Tionesta, Oil, and French Creeks merge with the Allegheny River, the dissolved-solids and chloride concentrations are reduced by dilution. Central segments of the main river receive water from the Clarion River, Redbank, Mahoning, and Crooked Creeks after they have crossed the coal fields of west-central Pennsylvania. At times, therefore, these streams carry coal-mine wastes that are acidic. The Kiskiminetas River, which crosses these coal fields, discharged sulfuric acid into the Allegheny at a rate of 299 tons a day during the 1962 water year (October 1, 1961, to September 30, 1962). Mine water affects the quality of the Allegheny River most noticeably in its lower part where large withdrawals are made by the Pittsburgh Water Company at Aspinwall and the Wilkinsburg-Penn Joint Water Authority at Nadine. At these places raw river water is chemically .treated in modern treatment plants to control such objectionable characteristics as acidity and excessive concentrations of iron and manganese. Dissolved-solids content in the river varies along its entire length. In its upper reaches the water of the Allegheny River is a sodium chloride type, and at low flow, the sodium chloride is more than half the dissolved solids. In its lower reaches the water is a calcium sulfate .type, and at low flow the calcium sulfate is more than half the dissolved solids. In middle segments of the river from Franklin to Kittanning, water is more dilute and of a mixed type. Many small and several larger streams in the upper basin--such as the Conewango, Brokenstraw, Kinzua, Tionesta, and French Creeks--support large populations of game-fish. Even in segments of the Clarion River, Mahoning, and Redbank Creeks, which are at times affected by coal-mine wastes, fish are present. Although different species withstand varying amounts of contaminants in water, the continued presence of the fish indicates that the water is relatively pure and suitable for recreation and many other uses.

  16. On the derivation of flow rating curves in data-scarce environments

    NASA Astrophysics Data System (ADS)

    Manfreda, Salvatore

    2018-07-01

    River monitoring is a critical issue for hydrological modelling that relies strongly on the use of flow rating curves (FRCs). In most cases, these functions are derived by least-squares fitting which usually leads to good performance indices, even when based on a limited range of data that especially lack high flow observations. In this context, cross-section geometry is a controlling factor which is not fully exploited in classical approaches. In fact, river discharge is obtained as the product of two factors: 1) the area of the wetted cross-section and 2) the cross-sectionally averaged velocity. Both factors can be expressed as a function of the river stage, defining a viable alternative in the derivation of FRCs. This makes it possible to exploit information about cross-section geometry limiting, at least partially, the uncertainty in the extrapolation of discharge at higher flow values. Numerical analyses and field data confirm the reliability of the proposed procedure for the derivation of FRCs.

  17. 27 CFR 9.210 - Lehigh Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Lehigh River in the city of Jim Thorpe; then (8) Proceed east-northeasterly in a straight line to the... along Interstate 80 through Stroudsburg to the west bank of the Delaware River; then (15) Proceed south (downstream) along the west bank of the Delaware River, and, crossing onto the Northampton County map...

  18. 9. VIEW FROM MANY PARKS CURVE (ON TRAIL RIDGE ROAD) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW FROM MANY PARKS CURVE (ON TRAIL RIDGE ROAD) OF HORSESHOE PARK, SHOWING FALL RIVER ROAD FAINTLY AT LEFT AT BASE OF SHEEP MOUNTAIN AND CROSSING ALLUVIAL FAN FROM LAWN LAKE FLOOD. - Fall River Road, Between Estes Park & Fall River Pass, Estes Park, Larimer County, CO

  19. Profile surveys in the Colorado River basin in Wyoming, Utah, Colorado, and New Mexico

    USGS Publications Warehouse

    Herron, William Harrison

    1917-01-01

    In connection with studies of the utilization of rivers the United States Geological Survey has from time to time made surveys and profiles of some of the more important streams of the country and published the results in its series of water-supply papers. In some parts of the country these surveys were made chiefly to determine the location of power sites on streams adapted to the development of power by low or medium heads of 20 to 100 feet; in others the purpose of the surveys was more closely related to the possibility of storing water at certain points and diverting it for use in irrigation.The earlier surveys, such as those of Green River above Fontenelle, Wyo., made in 1909 (Pls. I-V) were of a reconnaissance type and as a rule show no contours along the banks. The later surveys are typified by that of the Gila in the vicinity of Cliff and Redrock, N. Mex., made in 1915 (Pls. XLI-XLIII) and show conditions in much greater detail. These later surveys were made by means of plane table and stadia. Elevations are based on heights derived from primary or precise levels of the United States Geological Survey. The maps are made in the field and show not only the outlines of river banks, the islands, the positions of rapids, falls, shoals, and existing dams, and the crossings of all ferries and roads, but the contours of banks to an elevation high enough to indicate the possibility of using the stream.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenderfer, Heida L.; Thom, Ronald M.; Borde, Amy B.

    This report is the second annual report of a six-year project to evaluate the cumulative effects of habitat restoration projects in the Columbia River Estuary, conducted by Pacific Northwest National Laboratory's Marine Sciences Laboratory, NOAA's National Marine Fisheries Service Pt. Adams Biological Field Station, and the Columbia River Estuary Study Taskforce for the US Army Corps of Engineers. In 2005, baseline data were collected on two restoration sites and two associated reference sites in the Columbia River estuary. The sites represent two habitat types of the estuary--brackish marsh and freshwater swamp--that have sustained substantial losses in area and that maymore » play important roles for salmonids. Baseline data collected included vegetation and elevation surveys, above and below-ground biomass, water depth and temperature, nutrient flux, fish species composition, and channel geometry. Following baseline data collection, three kinds of restoration actions for hydrological reconnection were implemented in several locations on the sites: tidegate replacements (2) at Vera Slough, near the city of Astoria in Oregon State, and culvert replacements (2) and dike breaches (3) at Kandoll Farm in the Grays River watershed in Washington State. Limited post-restoration data were collected: photo points, nutrient flux, water depth and temperature, and channel cross-sections. In subsequent work, this and additional post-restoration data will be used in conjunction with data from other sites to estimate net effects of hydrological reconnection restoration projects throughout the estuary. This project is establishing methods for evaluating the effectiveness of individual projects and a framework for assessing estuary-wide cumulative effects including a protocol manual for monitoring restoration and reference sites.« less

  1. 11. Photocopy of photograph (original copy in Edison collection). Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph (original copy in Edison collection). Photographer and date unknown, although photo taken prior to 1930 reconstruction of Project flumes. VIEW OF ORIGINAL SOUTH FORK OF THE TULE RIVER MIDDLE FORK "BOX" WOOD FLUME BRANCH SHOWING NORTH FORK OF TULE RIVER MIDDLE FORK CROSSING. VIEW TO NORTHWEST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  2. Detailed cross sections of the Eocene Green River Formation along the north and east margins of the Piceance Basin, western Colorado, using measured sections and drill hole information

    USGS Publications Warehouse

    Johnson, Ronald C.

    2014-01-01

    This report presents two detailed cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado, constructed from eight detailed measured sections, fourteen core holes, and two rotary holes. The Eocene Green River Formation in the Piceance Basin contains the world’s largest known oil shale deposit with more than 1.5 billion barrels of oil in place. It was deposited in Lake Uinta, a long-lived saline lake that once covered much of the Piceance Basin and the Uinta Basin to the west. The cross sections extend across the northern and eastern margins of the Piceance Basin and are intended to aid in correlating between surface sections and the subsurface in the basin.

  3. Man versus Rivers: the lost equilibrium of the Tisza River due to engineering works

    NASA Astrophysics Data System (ADS)

    Kiss, Timea; Fiala, Károly

    2016-04-01

    The direct and indirect human impacts alter the catchment and the channel characteristics, which will result in further hydro-morphological alterations of rivers. The modified fluvial environment will create new hydrological hazards for the society, so for the successful and sustainable hazard and risk management it is important to evaluate the equilibrium and sensitivity of rivers. The aim of the paper is to evaluate the hydrological and morphological effects of engineering works along the Tisza River, Hungary. Based on the trends of the different fluvial processes the equilibrium of the river will be evaluated to ground further engineering works. The Tisza River, was one of the first systematically regulated rivers in Europe. In the late 19th century artificial cut-offs were made, shortening the river by ca. 30%. The hydrology and the morphology of the Tisza adapted to this, as the channel became temporarily wider and deeper (by 20-25%). The cut-offs had an effect on the channel for ca. 60-70 years. Simultaneously, artificial levees were built, thus the overbank floodplain aggradation became more intensive (from 0.02-0.07 cm/y to 0.3-0.8 mm/y). The floodplain aggradation became higher by 2-4 times since 1970's, as the vegetation became denser. However, in the 21st c. the floodplain vegetation became so uncontrollably dense, that the pattern and rate of accumulation changed again, and now it is limited just to the banks. So the levee could be considered as continuous disturbing factor, besides, the unmanaged floodplain vegetation appeared as a new disturbing force accelerating the processes. In the 20th century revetments were constructed to stop the lateral migration of the channel. This resulted in channel distortion, as it became sharper and the cross-sectional area decreased by 28%. As revetments were constructed along ca. 51% of the channel, the meandering channel forms became replaced features characteristic in incising rivers, for example point-bars disappeared and mass movements became common, especially in the 21st c. As the channel becomes too narrow and confined, the landslides erode the revetments too, thus a natural channel-widening will took place. Thus, the Tisza aligned to the new hydro-morphology after the artificial cut-offs within few decades, and within the given energy and slope conditions the river reached an equilibrium state. However in the 21st c. there are several evidences on the non-equilibrium state: the height and frequency of floods increase, their discharge decreases; the slope of the river declines; and the specific stream power increases. Morphological sign of the lost equilibrium is the vertical and horizontal distortion of the channel (caused by revetments!) and the decreasing flood conductivity of the floodplain (caused by dense, unmanaged floodplain vegetation). The rate of these processes refers to accelerating equilibrium loss. Thus the state of the Tisza could be referred as "non-equilibrium" or "pseudo-equilibrium". Therefore, if further engineering works will be planned, it must be considered that the river might give unexpected hydro-morphological responses on any disturbance.

  4. Utilization of Information and Communication Technology (ICT) Resources and Job Effectiveness among Library Staff in the University of Calabar and Cross River University of Technology, Nigeria

    ERIC Educational Resources Information Center

    Ntui, Aniebiet Inyang; Inyang, Comfort Linus

    2015-01-01

    This study investigated utilization of Information and Communication Technology (ICT) resources and job effectiveness among library staff in the University of Calabar and Cross River University of Technology, Nigeria. To achieve the purpose of this study, four hypotheses were formulated to guide the study. Ex-post facto research design was adopted…

  5. Floods in Starkweather Creek basin, Madison, Wisconsin

    USGS Publications Warehouse

    Lawrence, Carl L.; Holmstrom, Barry K.

    1972-01-01

    The reaches evaluated are (1) Starkweather Creek and West Branch Starkweather Creek, for a distance of 6.0 river miles from the mouth at Lake Monona upstream to the U.S. Highway 51 crossing north of Truax Field; and (2) East Branch Starkweather Creek (2.8 river miles), from its confluence with the West Branch near Milwaukee Street upstream to a point near the Interstate Highway 90-94 crossing.

  6. Derivation and Application of Idealized Flow Conditions in River Network Simulation

    NASA Astrophysics Data System (ADS)

    Afshari Tork, S.; Fekete, B. M.

    2015-12-01

    Stream flow information is essential for many applications across broad range of scales, e.g. global water balances, engineering design, flood forecasting, environmental management, etc. Quantitative assessment of flow dynamics of natural streams, requires detailed knowledge of all the geometrical and geophysical variables (e.g. bed-slope, bed roughness, etc.) along river reaches. Simplifying the river bed geometries could reduce both the computational burden implementing flow simulations and challenges in assembling the required data, especially for large domains. Average flow conditions expressed as empirical "at-a-station" hydraulic geometry relationships between key channel components, (i.e. water depth, top-width, flow velocity, flow area against discharge) have been studied since 60's. Recent works demonstrated that power-function as idealized riverbed geometry whose parameters are correlated to those of exponential relationship between mean water depth and top-width, are consistent with empirical "at-a-station" relations.US Geological Surveys' National Water Information System web-interface provides huge amount of river discharge and corresponding stage height data from several thousands of streamflow monitoring stations over United States accompanied by river survey summaries providing additional flow informations (width, mean velocity, cross-sectional area). We conducted a series of analyses to indentify consistent data daily monitoring and corresponding survey records that are suitable to refine our current understanding of how the "at-a-station" properties of river channels relate to channel forming characteristics (e.g. riverbed slope, flow regime, geology, etc.). The resulting ~1,200 actively operating USGS stations with over ~225,000 corresponding survery records (almost 200 survey per gauge on average) is the largest river survey database ever studied in the past.Our presentation will show our process assembling our river monitoring and survey data base and we will present our first results translating "at-a-station" relations into he hydraulic geometry of river channels based on idealized power-law riverbed geometries. We also will also present a series of application (e.g. improved flow rounting, simplyfied river surveying).

  7. Iron Status of Pregnant Women in Rural and Urban Communities of Cross River State, South-South Nigeria.

    PubMed

    Okafor, I M; Okpokam, D C; Antai, A B; Usanga, E A

    2017-03-06

    Anaemia in pregnancy is a major public health problem in Nigeria. Iron deficiency is one of the major causes of anaemia in pregnancy.  Inadequate iron intake during pregnancy can be dangerous to both baby and mother. Iron status of pregnant women was assessed in two rural and one urban communities in Cross River State Nigeria. Packed cell volume, haemoglobin, mean cell haemoglobin, mean cell haemoglobin concentration, red cell count, serum iron, total iron binding capacity, transferrin saturation, serum ferritin, soluble transferrin receptor and soluble transferrin receptor/ferritin ratio were measured in plasma/serum of 170 pregnant women within the age range of 15-45 years. Seventy participants were from antenatal clinic of University of Calabar Teaching Hospital Calabar (urban community), 50 from St Joseph Hospital Ikot Ene (rural community) in Akpabuyo Local Government Area and the remaining 50 from University of Calabar Teaching Hospital   extension clinic in Okoyong (rural community), Odukpani Local Government Area of Cross River state. The prevalence of   anaemia, iron deficiency, iron depletion and iron deficiency anaemia were found to be significantly higher among pregnant women from the two rural communities when compared to the urban community. it was also observed that  the prevalence of  anaemia, iron deficiency, iron depletion and iron deficiency anaemia   were significantly higher (p<0.05) among pregnant women from Akpabuyo   38(76.00%),   20(40.00%),   23(46.0%)   ,   16(32.00%)   respectively followed   by  Okoyong 24(48.0%),  20(40.0%),  16(32.0%),  6(12.0)     and  then  those  from     Calabar  14(20%), 12(17.90%) , 14(20.0%).  The mean haemoglobin and haematocrit were significantly reduced in pregnant women from the two rural communities. Serum iron, serum ferritin and transferrin saturation showed no significant difference while total iron binding capacity and soluble transferrin receptor significantly increased among pregnant women from Okoyong when compared to those from Calabar. It was also shown that pregnant women in their third trimesters and multigravidae had the highest prevalence of iron depletion and iron deficiency anaemia while prevalence of iron deficiency and anaemia were higher in primigravidae and the pregnant women in their second trimester. In conclusion, this study has shown that the prevalence of anaemia and iron deficiency anaemia are higher among pregnant women in the rural communities when compared to those in the urban areas.

  8. Historical Channel Adjustment and Estimates of Selected Hydraulic Values in the Lower Sabine River and Lower Brazos River Basins, Texas and Louisiana

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Greene, Lauren E.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, evaluated historical channel adjustment and estimated selected hydraulic values at U.S. Geological Survey streamflow-gaging stations in the lower Sabine River Basin in Texas and Louisiana and lower Brazos River Basin in Texas to support geomorphic assessments of the Texas Instream Flow Program. Channel attributes including cross-section geometry, slope, and planform change were evaluated to learn how each river's morphology changed over the years in response to natural and anthropogenic disturbances. Historical and contemporary cross-sectional channel geometries at several gaging stations on each river were compared, planform changes were assessed, and hydraulic values were estimated including mean flow velocity, bed shear stress, Froude numbers, and hydraulic depth. The primary sources of historical channel morphology information were U.S. Geological Survey hard-copy discharge-measurement field notes. Additional analyses were done using computations of selected flow hydraulics, comparisons of historical and contemporary aerial photographs, comparisons of historical and contemporary ground photographs, evaluations of how frequently stage-discharge rating curves were updated, reviews of stage-discharge relations for field measurements, and considerations of bridge and reservoir construction activities. Based on historical cross sections at three gaging stations downstream from Toledo Bend Reservoir, the lower Sabine River is relatively stable, but is subject to substantial temporary scour-and-fill processes during floods. Exceptions to this characterization of relative stability include an episode of channel aggradation at the Sabine River near Bon Wier, Texas, during the 1930s, and about 2 to 3 feet of channel incision at the Sabine River near Burkeville, Texas, since the late 1950s. The Brazos River, at gaging stations downstream from Waco, Texas, has adjusted to a combination of hydrologic, sedimentary, and anthropogenic controls. Since the 1960s, numerous point bars have vertically accreted and vegetation has encroached along the channel margins, which probably promotes channel-bed incision to compensate for a reduction in cross-sectional area. Channel incision was detected at all gaging stations along the Brazos River, and the depth of incision is greatest in the lowermost gaging stations, exemplified by about 5 feet of channel-bed incision between 1993 and 2004 at Richmond, Texas. One notable exception to this pattern of incision was a period of aggradation at U.S. Geological Survey gaging station 08096500 Brazos River at Waco, Texas, during the late 1920s and 1930s, probably associated with upstream dam construction. Lateral channel migration rates along the Brazos River determined from aerial photographs are greatest between Waco and Hempstead, Texas, with numerous bends moving an average of more than 10 feet per year. Migration rates at selected bends downstream from Hempstead were measured as less than 10 feet per year, on average. Two tributaries of the Brazos River, the Little and Navasota Rivers, also were investigated for historical channel adjustment. The Little River near Cameron, Texas (08106500) has incised its channel bed about 12 feet since 1949, and the lower Navasota River shows complex adjustment to bridge construction activities and a channel avulsion.

  9. Hydraulic-Geometry Relations for Rivers in Coastal and Central Maine

    USGS Publications Warehouse

    Dudley, Robert W.

    2004-01-01

    Hydraulic-geometry relations (curves) were derived for 15 sites on 12 rivers in coastal and central Maine on the basis of site-specific (at-a-station) hydraulic-geometry relations and hydraulic models. At-a-station hydraulic-geometry curves, expressed as well-established power functions, describe the relations between channel geometry, velocity, and flow at a given point on a river. The derived at-a-station hydraulic-geometry curves indicate that, on average, a given increase in flow at a given river cross section in the study area will be nearly equally conveyed by increases in velocity and channel cross-sectional area. Regional curves describing the bankfull streamflow and associated channel geometry as functions of drainage area were derived for use in stream-channel assessment and restoration projects specific to coastal and central Maine. Regional hydraulic-geometry curves were derived by combining hydraulic-geometry information for 15 river cross sections using bankfull flow as the common reference streamflow. The exponents of the derived regional hydraulic-geometry relations indicate that, in the downstream direction, most of the conveyance of increasing contribution of flow is accommodated by an increase in cross-sectional area?with about 50 percent of the increase in flow accommodated by an increase in channel width, and 32 percent by an increase in depth. The remaining 18 percent is accommodated by an increase in streamflow velocity. On an annual-peak-series basis, results of this study indicate that the occurrence of bankfull streamflow for rivers in Maine is more frequent than the 1.5-year streamflow. On a flow-duration basis, bankfull streamflow for rivers in coastal and central Maine is equaled or exceeded approximately 8.1 percent of the time on mean?or about 30 days a year. Bankfull streamflow is roughly three times that of the mean annual streamflow for the sites investigated in this study. Regional climate, snowmelt hydrology, and glacial geology may play important roles in dictating the magnitude and frequency of occurrence of bankfull streamflows observed for rivers in coastal and central Maine.

  10. Accumulated state of the Yukon River watershed: part I critical review of literature.

    PubMed

    Dubé, Monique G; Muldoon, Breda; Wilson, Julie; Maracle, Karonhiakta'tie Bryan

    2013-07-01

    A consistent methodology for assessing the accumulating effects of natural and manmade change on riverine systems has not been developed for a whole host of reasons including a lack of data, disagreement over core elements to consider, and complexity. Accumulated state assessments of aquatic systems is an integral component of watershed cumulative effects assessment. The Yukon River is the largest free flowing river in the world and is the fourth largest drainage basin in North America, draining 855,000 km(2) in Canada and the United States. Because of its remote location, it is considered pristine but little is known about its cumulative state. This review identified 7 "hot spot" areas in the Yukon River Basin including Lake Laberge, Yukon River at Dawson City, the Charley and Yukon River confluence, Porcupine and Yukon River confluence, Yukon River at the Dalton Highway Bridge, Tolovana River near Tolovana, and Tanana River at Fairbanks. Climate change, natural stressors, and anthropogenic stresses have resulted in accumulating changes including measurable levels of contaminants in surface waters and fish tissues, fish and human disease, changes in surface hydrology, as well as shifts in biogeochemical loads. This article is the first integrated accumulated state assessment for the Yukon River basin based on a literature review. It is the first part of a 2-part series. The second article (Dubé et al. 2013a, this issue) is a quantitative accumulated state assessment of the Yukon River Basin where hot spots and hot moments are assessed outside of a "normal" range of variability. Copyright © 2012 SETAC.

  11. [A health survey in riverine communities in Amazonas State, Brazil].

    PubMed

    Gama, Abel Santiago Muri; Fernandes, Tiótrefis Gomes; Parente, Rosana Cristina Pereira; Secoli, Silvia Regina

    2018-02-19

    Population-based health surveys are important tools for identifying disease determinants, especially in regions with widely dispersed populations and low health system coverage. The aim of this study was to describe the principal methodological aspects and to describe the socioeconomic, demographic, and health characteristics of the riverine populations of Coari, Amazonas State, Brazil. This was a population-based cross-sectional study in river-dwelling communities in the rural area of Coari, from April to July 2015. The probabilistic cluster sample consisted of 492 individuals. The results showed that the majority of the river-dwellers were females (53%), had up to 9 years of schooling (68.5%), and earned a monthly family income equivalent to one-third the minimum wage. The health problems reported in the previous 30 days featured conditions involving pain (45.2%). The main healthcare resources were allopathic medicines (70.3%), exceeding herbal remedies (44.3%). The river-dwellers travel an average of 60.4km and take some 4.2 hours to reach the urban area of Coari. The riverine population generally presents low economic status and limited access to the urban area. Health problems are mostly solved with allopathic medicines. Geographic characteristics, as barriers to access to health services and to improvements in living conditions for the riverine population, can limit the collection of epidemiological data on these populations.

  12. 77 FR 20718 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... Bridge crosses the Willamette River at mile 11.7 and provides 90 feet of vertical clearance above... schedule that governs the Broadway Bridge across the Willamette River, mile 11.7, at Portland, OR. This deviation is necessary to accommodate the Bridge to Brews foot race scheduled for April 15, 2012. This...

  13. 77 FR 41685 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... deviation is necessary to accommodate Portland's Big Float event. This deviation allows the bridge to remain... of the Big Float event. The Hawthorne Bridge crosses the Willamette River at mile 13.1 and provides 49 feet of vertical clearance above Columbia River Datum 0.0 while in the closed position. Vessels...

  14. Map showing quarries, mines, prospects, and sample data in and near the James River Face Wilderness, Bedford and Rockbridge counties, Virginia

    USGS Publications Warehouse

    Gazdik, Gertrude C.; Ross, Robert B.

    1982-01-01

    The area, on the crest of the Blue Ridge Mountains, is drained by small tributaries of the James River.  Altitudes range from 600 ft where U.S. Route 501 crosses the James River to 3,073 ft on Highcock Knob.

  15. 49 CFR 194.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... crosses a major river or other navigable waters, which, because of the velocity of the river flow and vessel traffic on the river, would require a more rapid response in case of a worst case discharge or..., because of its velocity and vessel traffic, would require a more rapid response in case of a worst case...

  16. 49 CFR 194.5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... crosses a major river or other navigable waters, which, because of the velocity of the river flow and vessel traffic on the river, would require a more rapid response in case of a worst case discharge or..., because of its velocity and vessel traffic, would require a more rapid response in case of a worst case...

  17. 49 CFR 194.5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... crosses a major river or other navigable waters, which, because of the velocity of the river flow and vessel traffic on the river, would require a more rapid response in case of a worst case discharge or..., because of its velocity and vessel traffic, would require a more rapid response in case of a worst case...

  18. 77 FR 53141 - Drawbridge Operation Regulation; Columbia River, Vancouver, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... lift-spans. This deviation allows height-restricted lifts which will reduce the vertical clearance... which cross the Columbia River at mile 106.5 only be required to lift to a reduced height of 130 feet above Columbia River Datum for a 30 day period. The height restricted lifts are necessary to facilitate...

  19. Deg Xinag. Ingalik Noun Dictionary (Preliminary).

    ERIC Educational Resources Information Center

    Kari, James, Comp.

    This dictionary contains lists of nouns in the Deg Xinag or Ingalik language as spoken in the Yukon River villages of Anvik, Shageluk, and Holy Cross, and the Kuskokwim River village of Stony River. After a presentation of the Ingalik alphabet, the nouns, with English equivalents, are listed according to the following categories: mammals; fish;…

  20. Strategies and equipment for sampling suspended sediment and associated toxic chemicals in large rivers - with emphasis on the Mississippi River

    USGS Publications Warehouse

    Meade, R.H.; Stevens, H.H.

    1990-01-01

    A Lagrangian strategy for sampling large rivers, which was developed and tested in the Orinoco and Amazon Rivers of South America during the early 1980s, is now being applied to the study of toxic chemicals in the Mississippi River. A series of 15-20 cross-sections of the Mississippi mainstem and its principal tributaries is sampled by boat in downstream sequence, beginning upriver of St. Louis and concluding downriver of New Orleans 3 weeks later. The timing of the downstream sampling sequence approximates the travel time of the river water. Samples at each cross-section are discharge-weighted to provide concentrations of dissolved and suspended constituents that are converted to fluxes. Water-sediment mixtures are collected from 10-40 equally spaced points across the river width by sequential depth integration at a uniform vertical transit rate. Essential equipment includes (i) a hydraulic winch, for sensitive control of vertical transit rates, and (ii) a collapsible-bag sampler, which allows integrated samples to be collected at all depths in the river. A section is usually sampled in 4-8 h, for a total sample recovery of 100-120 l. Sampled concentrations of suspended silt and clay are reproducible within 3%.

  1. 33 CFR 117.1081 - Black River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1081 Black River. The drawspan of the Canadian Pacific Railroad Bridge, mile 1.0, at La Crosse, Wisconsin is operated by remote operator located at the...

  2. 33 CFR 117.1081 - Black River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1081 Black River. The drawspan of the Canadian Pacific Railroad Bridge, mile 1.0, at La Crosse, Wisconsin is operated by remote operator located at the...

  3. Hydrologic conditions, habitat characteristics, and occurrence of fishes in the Apalachicola River floodplain, Florida; second annual report of progress, October 1993-September 1994

    USGS Publications Warehouse

    Light, Helen M.; Darst, Melanie R.; Grubbs, J.W.

    1995-01-01

    This report describes progress and interim results of the second year of a 4-year study. The purpose of the 4-year study is to describe aquatic habitat types in the Apalachicola River floodplain and quantify the amount of habitat inundated by the river at various stages. Final results will be used to determine possible effects of altered flows on floodplain habitats and their associated fish communities. The study is being conducted by the U.S. Geological Survey in cooperation with the Northwest Florida Water Management District as part of a comprehensive study of water needs throughout two large river basins in Florida, Georgia, and Alabama. By the end of the second year, approxi- mately 80 to 90 percent of field data collection was completed. Water levels at 56 floodplain and main channel locations at study sites were read numerous times during low water and once or twice during high water. Rating curves estimating the relationship between stage at a floodplain site and flow of the Apalachicola River at Chattahoochee are presented for 3 sites in the upper river. Elevation, substrate type, and amount of vegetative structure were described at 27 cross sections representing eight different floodplain tributary types at upper, middle, and lower river study sites. A summary of substrate and structure information from all cross sections is presented. Substrate and structure characteristics of floodplain habitats inundated when river flow was at record low flow, mean annual low flow, and mean flow are described for 3 cross sections in the upper river. Digital coverage of high-altitude infra-red aerial photography was processed for use in a Geographic Information System which will be used to map aquatic habitats in the third year of the study. A summary of the literature on fish utilization of floodplain habitats is described. Eighty-one percent of the species collected in the main channel of the Apalachicola River are known to occur in floodplain habitats of eastern rivers.

  4. 38. Historic photograph, photographer unknown, c. 1944. VIEW SHOWING BURROS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Historic photograph, photographer unknown, c. 1944. VIEW SHOWING BURROS (OR MULES) CROSSING BRIDGE, LOOKING NORTHEAST. - Verde River Sheep Bridge, Spanning Verde River (Tonto National Forest), Cave Creek, Maricopa County, AZ

  5. Studying the Permian Cross-section (Volga Region) Using Chemical and Isotopic Investigations

    NASA Astrophysics Data System (ADS)

    Gareev, B. I.; Batalin, G. A.; Nurgalieva, N. G.; Nourgaliev, D. K.

    2016-12-01

    This paper presents a study of international important site: the cross-section of Permian system's Urzhumian Stagein the ravine "Pechischy". Outcrop is located on the right bank of the Volga River (about 10 km West of Kazan). Ithas local, regional and planetary correlation features and also footprints of different geographical scale events.The main objective in the research is the deep study of sediments using chemical and isotopic investigations. XRFspectrometer was used for chemical investigations of samples. Chemistry of carbonates and clastic rocks includesthe analysis of chemical elements, compounds, petrochemical (lithogeochemical) modules for the interpretationof the genesis of lithotypes. For the review of the geochemistry of stable isotopes of carbon (oxygen) we usedIRMS. The main objective is the nature of the isotope fractionation issues, to addressing the issues of stratigraphyand paleogeography.The measurements have shown the variability of chemical parameters in cross-section. It gives us opportunity tosee small changes in sedimentation and recognize the factors that influence to the process.The work was carried out according to the Russian Government's Program of Competitive Growth of KazanFederal University, supported by the grant provided to the Kazan State University for performing the state programin the field of scientific research.

  6. 77 FR 22551 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... Tributary 5, Puyallup River (overflow through golf course between State Route 162 and Puyallup River... Waterway via numerous flow paths), Puyallup River (with consideration of levees), Puyallup River (without..., State, or regional entities. These proposed elevations are used to meet the floodplain management...

  7. Incidence of Fusarium moniliforme Sheld. in Zea mays L. in the rainforest zone of Nigeria.

    PubMed

    Iloba, C

    1979-01-01

    45 seed samples from 7 states of the rainforest zone of Nigeria (Ogun, Ondo, Oyo, Bendel, Anambra, Imo, and Cross River) were screened for phytopathogen incidence. Whereas Drechslera maydis was found in 30 and Cephalosporium maydis in 79% of the samples were infected by Fusarium moniliforme, with 70% of the samples showing heavy infection. In view of the widespread nature of this economically important fungus on maize in the main cultivation area of Nigeria, the necessity for routine laboratory seed health tests is clearly indicated.

  8. Hydraulic conditions of flood flows in a Polish Carpathian river subjected to variable human impacts

    NASA Astrophysics Data System (ADS)

    Radecki-Pawlik, Artur; Czech, Wiktoria; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Ruiz-Villanueva, Virginia

    2016-04-01

    Channel morphology of the Czarny Dunajec River, Polish Carpathians, has been considerably modified as a result of channelization and gravel-mining induced channel incision, and now it varies from a single-thread, incised or regulated channel to an unmanaged, multi-thread channel. We investigated effects of these distinct channel morphologies on the conditions for flood flows in a study of 25 cross-sections from the middle river course where the Czarny Dunajec receives no significant tributaries and flood discharges increase little in the downstream direction. Cross-sectional morphology, channel slope and roughness of particular cross-section parts were used as input data for the hydraulic modelling performed with the 1D steady-flow HEC-RAS model for discharges with recurrence interval from 1.5 to 50 years. The model for each cross-section was calibrated with the water level of a 20-year flood from May 2014, determined shortly after the flood on the basis of high-water marks. Results indicated that incised and channelized river reaches are typified by similar flow widths and cross-sectional flow areas, which are substantially smaller than those in the multi-thread reach. However, because of steeper channel slope in the incised reach than in the channelized reach, the three river reaches differ in unit stream power and bed shear stress, which attain the highest values in the incised reach, intermediate values in the channelized reach, and the lowest ones in the multi-thread reach. These patterns of flow power and hydraulic forces are reflected in significant differences in river competence between the three river reaches. Since the introduction of the channelization scheme 30 years ago, sedimentation has reduced its initial flow conveyance by more than half and elevated water stages at given flood discharges by about 0.5-0.7 m. This partly reflects a progressive growth of natural levees along artificially stabilized channel banks. By contrast, sediments of natural levees deposited along the multi-thread channel and subsequently eroded in the course of lateral channel migration and floodplain reworking; as a result, they do not reduce the conveyance of floodplain flows in this reach. This study was performed within the scope of the Research Project DEC-2013/09/B/ST10/00056 financed by the National Science Centre of Poland.

  9. Fish tissue contamination in the mid-continental great rivers of the United States

    EPA Science Inventory

    The great rivers of the central United States (Upper Mississippi, Missouri and Ohio rivers) are significant economic and cultural resources, but their ecological condition is not well quantified. The Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP...

  10. Mapping the impact of river regulation on carbon dynamics using coupled field surveys and remotely-sensed optical properties

    NASA Astrophysics Data System (ADS)

    Kuhn, C.; Butman, D. E.

    2016-12-01

    Many river-reservoir networks are already managed for ecological targets such as stream temperature regulation, but less is known about how management choices alter the quantity and composition of dissolved organic carbon as well as the concentration of dissolved carbon gases. Understanding these ecological impacts is critical to informing water resources management, especially in light of the global hydropower boom and the increased interest in dam removal in the United States. Here we present results from a field survey and remote sensing imagery analysis quantifying a suite of water quality variables. With this approach, we evaluate spatial differences in carbon signals above, and below eight mainstem dams located on the Columbia and Snake Rivers. Dissolved methane and carbon dioxide concentrations were in excess of atmospheric levels with occasional carbon dioxide undersaturation being observed in the Snake River. CH4 and CO2 δ13C values shifted between the mainstem and the tributaries reflecting changes in carbon sources and processes. Satellite-retrieved estimates of CDOM and chlorophyll-a were compared to in situ measurements to enable surface mapping of concentrations at broader spatial scales. Our technical approach blends cloud-based data fusion techniques and machine learning to link ground-collected observations to remote sensing imagery in order to produce spatially-explicit, cross-scale estimates of carbon dynamics in a large, highly regulated river system. These findings test the feasibility of coupling remote sensing with field-based measurements to observe the complex impacts of run-of-the river impoundments to aquatic carbon cycling.

  11. Hydraulic analysis of Chenango River, Broome County, New York in relation to state highway plan

    USGS Publications Warehouse

    Dunn, Bernard

    1981-01-01

    Hydraulic analyses of the 50- and 100-year floods in a 3.2 mile reach of the Chenango River in the towns of Fenton and Chenango in New York were made to determine the effects of two alternative bridge designs on flood levels. Neither design would cause more than a 0.1-foot increase in water level of the 50-year flood nor more than a 0.2-foot increase in water level of the 100-year flood above levels that would occur during these floods under present channel conditions. The discharges used in the analyses were 55,200 cubic feet per second for the 50-year flood and 63,000 cubic feet per second for the 100-year flood. Mean flow velocities and water-surface elevations at 17 cross sections are given for both bridge designs and are compared with those that would occur under present conditions. (USGS)

  12. 78 FR 48315 - Drawbridge Operation Regulation; Lewis and Clark River, Astoria, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Operation Regulation; Lewis and Clark River, Astoria, OR AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Lewis and Clark Bridge which crosses the Lewis and Clark River, mile 1.0... Transportation has requested that the Lewis and Clark Drawbridge, mile 1.0, remain in the closed position and not...

  13. 1. View of north tower, facing northwest from dike on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of north tower, facing northwest from dike on north bank of the Columbia River. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA

  14. 78 FR 21064 - Drawbridge Operation Regulations; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    .... This deviation is necessary to accommodate Portland's Rock-n-Roll Half Marathon. This deviation allows... of the Rock-n-Roll Half Marathon event. The Hawthorne Bridge crosses the Willamette River at mile 13...

  15. Uncertainties in selected river water quality data

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.

    2007-02-01

    Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise from natural or anthropogenic causes. Empirical quality of river water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this paper is to assess the uncertainties in selected river water quality data, i.e. suspended sediment, nitrogen fraction, phosphorus fraction, heavy metals and biological compounds. The methodology used to structure the uncertainty is based on the empirical quality of data and the sources of uncertainty in data (van Loon et al., 2005). A literature review was carried out including additional experimental data of the Elbe river. All data of compounds associated with suspended particulate matter have considerable higher sampling uncertainties than soluble concentrations. This is due to high variability within the cross section of a given river. This variability is positively correlated with total suspended particulate matter concentrations. Sampling location has also considerable effect on the representativeness of a water sample. These sampling uncertainties are highly site specific. The estimation of uncertainty in sampling can only be achieved by taking at least a proportion of samples in duplicates. Compared to sampling uncertainties, measurement and analytical uncertainties are much lower. Instrument quality can be stated well suited for field and laboratory situations for all considered constituents. Analytical errors can contribute considerably to the overall uncertainty of river water quality data. Temporal autocorrelation of river water quality data is present but literature on general behaviour of water quality compounds is rare. For meso scale river catchments (500-3000 km2) reasonable yearly dissolved load calculations can be achieved using biweekly sample frequencies. For suspended sediments none of the methods investigated produced very reliable load estimates when weekly concentrations data were used. Uncertainties associated with loads estimates based on infrequent samples will decrease with increasing size of rivers.

  16. Explanatory characteristics for nutrient concentrations and loads in the Sava River Catchment and cross-regionally

    NASA Astrophysics Data System (ADS)

    Levi, L.; Cvetkovic, V.; Destouni, G.

    2015-12-01

    This study compiles estimates of waterborne nutrient concentrations and loads in the Sava River Catchment (SRC). Based on this compilation, we investigate hotspots of nutrient inputs and retention along the river, as well as concentration and load correlations with river discharge and various human drivers of excess nutrient inputs to the SRC. For cross-regional assessment and possible generalization, we also compare corresponding results between the SRC and the Baltic Sea Drainage Basin (BSDB). In the SRC, one small incremental subcatchment, which is located just downstream of Zagreb and has the highest population density among the SRC subcatchments, is identified as a major hotspot for net loading (input minus retention) of both total nitrogen (TN) and total phosphorus (TP) to the river and through it to downstream areas of the SRC. The other SRC subcatchments exhibit relatively similar characteristics with smaller net nutrient loading. The annual loads of both TN and TP along the Sava River exhibit dominant temporal variability with considerably higher correlation with annual river discharge (R2 = 0.51 and 0.28, respectively) than that of annual average nutrient concentrations (R2 = 0.0 versus discharge for both TN and TP). Nutrient concentrations exhibit instead dominant spatial variability with relatively high correlation with population density among the SRC subcatchments (R2=0.43-0.64). These SRC correlation characteristics compare well with corresponding ones for the BSDB, even though the two regions are quite different in their hydroclimatic, agricultural and wastewater treatment conditions. Such cross-regional consistency in dominant variability type and explanatory catchment characteristics may be a useful generalization basis, worthy of further investigation, for at least first-order estimation of nutrient concentration and load conditions in less data-rich regions.

  17. Spawning migration movements of Lost River and shortnose suckers in the Williamson and Sprague Rivers, Oregon, following the removal of Chiloquin Dam-2009 Annual Report

    USGS Publications Warehouse

    Ellsworth, Craig M.; VanderKooi, Scott P.

    2011-01-01

    The Chiloquin Dam was located at river kilometer (rkm) 1.3 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River suckers (Deltistes luxatus), shortnose suckers (Chasmistes brevirostris), and other fish in the Sprague River. Our research objectives in 2009 were to evaluate adult catostomid spawning migration patterns using radio telemetry to identify and describe shifts in spawning area distribution and migration behavior following the removal of Chiloquin Dam in 2008. We attached external radio transmitters to 58 Lost River suckers and 59 shortnose suckers captured at the Williamson River fish weir. A total of 17 radio-tagged Lost River suckers and one radio-tagged shortnose sucker were detected approaching the site of the former Chiloquin Dam but only two radio-tagged fish (one male Lost River sucker and one female Lost River sucker) were detected crossing upstream of the dam site. A lower proportion of radio-tagged shortnose suckers were detected migrating into the Sprague River when compared with previous years. Detections on remote passive integrated transponder (PIT) tag arrays located in the Sprague River show that although the proportion of fish coming into the Sprague River is small when compared to the number of fish crossing the Williamson River fish weir, the number of fish migrating upstream of the Chiloquin Dam site increased exponentially in the first year since its removal. These data will be used in conjunction with larval production and adult spawning distribution data to evaluate the effectiveness of dam removal in order to provide increased access to underutilized spawning habitat located further upstream in the Sprague River and to reduce the crowding of spawning fish below the dam site.

  18. Persistent organic pollutants in fish tissue in the mid-continental great rivers of the United States

    EPA Science Inventory

    The great rivers of the central United States (Upper Mississippi, Missouri, and Ohio rivers) are significant economic and cultural resources, but their ecological condition is not well quantified. The Environmental Monitoring and Assessment Program for Great River Ecosystems (EMA...

  19. Flood Control, Mississippi River, La Crosse, Wisconsin.

    DTIC Science & Technology

    1975-10-01

    end SuP.,tifle) S TYPE OF REPORT & PERIOD COVEkr FINAL ENVIRONMENTAL IMPACT STATEMENT FLOOD CONTROL MISSISSIPPI RIVER LA CROSSE, WISCONSIN Pinal FIq 6...PERFORMING ORG. REPORT NUMBER 7. AUTHOR(e) 0 CONTRACT OR GRANT NUMBER( s ) 9 PERFORMING ORGANIZATION NAME AND ADrRESS 10. PROGRAM ELEMENT. PROJECT, T...rev s eflA ff r,,.e.. ind IdeInify by block rnmber) "-The proposed action is a flood control project consisting of levees, road raises, flood wall

  20. Flood effects provide evidence of an alternate stable state caused by dam management on the Upper Missouri River

    NASA Astrophysics Data System (ADS)

    Skalak, K.; Benthem, A.; Hupp, C. R.; Schenk, E.; Galloway, J.; Nustad, R.

    2016-12-01

    We examine how historic flooding in May 2011 affected the geomorphic adjustments (incision, island loss, delta formation etc.) created by dam regulation along the approximately 120 km free flowing reach of the Upper Missouri River bounded upstream by the Garrison Dam (1953) and downstream by Lake Oahe Reservoir (1959) near the City of Bismarck, ND. The largest flood since dam regulation occurred in May 2011. Flood releases from the Garrison Dam began in May 2011 and lasted until October, peaking with a flow of more than 4200 m3/s. Channel cross-section data and aerial imagery before and after the flood were compared to historic rates of channel change to assess the relative impact of the flood on the river morphology. Results indicate that the flood caused continued loss of islands in the reach just below the dam and an increase in island area downstream. Changes in channel capacity changes varied along the Garrison Segment as a result of the flood. The thalweg, which has been stable since the mid-1970s, did not migrate. And channel morphology, as defined by a newly developed shoaling metric which quantifies the degree of channel braiding, indicates significant longitudinal variability in response to the flood. These results show that the 2011 flood exacerbates some geomorphic trends caused by the dam while reversing others. We conclude that dam management created an alternate geomorphic and related ecological stable state which does not revert towards pre-dam conditions in response to the flood of record. This suggests that more active management, which includes sediment transport as well as flow modification, is necessary to restore the river towards pre-dam conditions and help create or maintain habitat for endangered species.

  1. 77 FR 12493 - Revisions to the California State Implementation Plan, Feather River Air Quality Management District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... the California State Implementation Plan, Feather River Air Quality Management District AGENCY... limited disapproval of revisions to the Feather River Air Quality Management District (FRAQMD) portion of.... * * * * * (c) * * * (378) * * * (i) * * * (E) Feather River Air Quality Management District. (1) Rule 3.22...

  2. 3. View of north tower, facing north across the main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of north tower, facing north across the main channel of the Columbus River from Clover Island. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA

  3. 78 FR 24676 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    .... This deviation is necessary to accommodate the Rose Festival Rock N Roll Half Marathon. [[Page 24677... associated with the Rose Festival Rock N Roll Half Marathon. The Steel Bridge crosses the Willamette River at...

  4. Groundwater-flow model for the Wood River Valley aquifer system, south-central Idaho

    USGS Publications Warehouse

    Fisher, Jason C.; Bartolino, James R.; Wylie, Allan H.; Sukow, Jennifer; McVay, Michael

    2016-06-27

    Subsurface outflow beneath the Big Wood River near Stanton Crossing. Temporal changes in aquifer storage are most affected by areal recharge and groundwater pumping, and also contribute to changes in streamflow gains.

  5. Simplified stratigraphic cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Dietrich, John D.; Johnson, Ronald C.

    2013-01-01

    Thirteen stratigraphic cross sections of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado are presented in this report. Originally published in a much larger and more detailed form by Self and others (2010), they are shown here in simplified, page-size versions that are easily accessed and used for presentation purposes. Modifications to the original versions include the elimination of the detailed lithologic columns and oil-yield histograms from Fischer assay data and the addition of ground-surface lines to give the depth of the various oil shale units shown on the cross section.

  6. A Multi-Site Knowledge Attitude and Practice Survey of Ebola Virus Disease in Nigeria

    PubMed Central

    Iliyasu, Garba; Ogoina, Dimie; Otu, Akan A.; Dayyab, Farouq M.; Ebenso, Bassey; Otokpa, Daniel; Rotifa, Stella; Olomo, Wisdom T.; Habib, Abdulrazaq G.

    2015-01-01

    Background The 2014 Ebola Virus Disease (EVD) outbreak was characterised by fear, misconceptions and irrational behaviours. We conducted a knowledge attitude and practice survey of EVD in Nigeria to inform implementation of effective control measures. Methods Between July 30th and September 30th 2014, we undertook a cross sectional study on knowledge, attitude and practice (KAP) of Ebola Virus Disease (EVD) among adults of the general population and healthcare workers (HCW) in three states of Nigeria, namely Bayelsa, Cross River and Kano states. Demographic information and data on KAP were obtained using a self-administered standardized questionnaire. The percentage KAP scores were categorised as good and poor. Independent predictors of good knowledge of EVD were ascertained using a binary logistic regression model. Results Out of 1035 study participants with median age of 32 years, 648 (62.6%) were males, 846 (81.7%) had tertiary education and 441 (42.6%) were HCW. There were 218, 239 and 578 respondents from Bayelsa, Cross River and Kano states respectively. The overall median percentage KAP scores and interquartile ranges (IQR) were 79.46% (15.07%), 95.0% (33.33%) and 49.95% (37.50%) respectively. Out of the 1035 respondents, 470 (45.4%), 544(52.56%) and 252 (24.35%) had good KAP of EVD defined using 80%, 90% and 70% score cut-offs respectively. Independent predictors of good knowledge of EVD were being a HCW (Odds Ratio-OR-2.89, 95% Confidence interval-CI of 1.41–5.90), reporting ‘moderate to high fear of EVD’ (OR-2.15, 95% CI-(1.47–3.13) and ‘willingness to modify habit’ (OR-1.68, 95% CI-1.23–2.30). Conclusion Our results reveal suboptimal EVD-related knowledge, attitude and practice among adults in Nigeria. To effectively control future outbreaks of EVD in Nigeria, there is a need to implement public sensitization programmes that improve understanding of EVD and address EVD-related myths and misconceptions, especially among the general population. PMID:26317535

  7. Morphological changes of Gumara River channel over 50 years, upper Blue Nile basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Abate, Mengiste; Nyssen, Jan; Steenhuis, Tammo S.; Moges, Michael M.; Tilahun, Seifu A.; Enku, Temesgen; Adgo, Enyew

    2015-06-01

    In response to anthropogenic disturbances, alluvial rivers adjust their geometry. The alluvial river channels in the upper Blue Nile basin have been disturbed by human-induced factors since a longtime. This paper examines channel adjustment along a 38-km stretch of the Gumara River which drains towards Lake Tana and then to the Blue Nile. Over a 50 years period, agriculture developed rapidly in the catchment and flooding of the alluvial plain has become more frequent in recent times. The objectives of this study were to document the changes in channel planform and cross-section of the Gumara River and to investigate whether the changes could have contributed to the frequent flooding or vice versa. Two sets of aerial photographs (1957 and 1980) were scanned, and then orthorectified. Recent channel planform information was extracted from SPOT images of 2006 and Google Earth. Channel planform and bed morphology (vertical changes) were determined for these nearly 50 years period. The vertical changes were determined based on aggradation along a permanent structure, historic information on river cross-sections at a hydrological gauging station, and field observations. The results indicate that the lower reach of Gumara near its mouth has undergone major planform changes. A delta with approx. 1.12 km2 of emerged land was created between 1957 and 1980 and an additional 1 km2 of land has been added between 1980 and 2006. The sinuosity of the river changed only slightly: negatively (-1.1% i.e. meandering decreased) for the period from 1957 to 1980 and positively (+3.0%) for the period 1980-2006. Comparison of cross-sections at the hydrological gauging station showed that the deepest point in the river bed aggraded by 2.91 m for the period 1963-2009. The importance of sediment deposition in the stream and on its banks is related to land degradation in the upper catchment, and to artificial rising of Lake Tana level that creates a backwater effect and sediment deposition in Gumara River. Direct anthropogenic impacts (irrigation activities and building of dykes along the river banks) have contributed to the huge deposition in the river bed. Where the abstraction of water for irrigation is intensive, seepage water through the banks has contributed to river bank failure. In general, this study showed that changes to the planform at the mouth of the river and to the riverbed level are substantial. Moreover, the study indicated that the flood carrying capacity of the Gumara River channel has diminished in recent times.

  8. Stability evaluation of modernized bank protections in a culvert construction

    NASA Astrophysics Data System (ADS)

    Cholewa, Mariusz; Plesiński, Karol; Kamińska, Katarzyna; Wójcik, Izabela

    2018-02-01

    The paper presents stability evaluation of the banks of the Wilga River on a chosen stretch in Koźmice Wielkie, Małopolska Province. The examined stretch included the river bed upstream from the culvert on a district road. The culvert construction, built over four decades ago, was disassembled in 2014. The former construction, two pipes that were 1.4 m in diameter, was entirely removed. The investor decided to build a new construction in the form of insitu poured reinforced concrete with a 4 x 2 m cross section. Change of geometry and different location in relation to the river current caused increase in the flow velocity and, as a consequence, erosion of both protected and natural banks. Groundwater conditions were determined based on the geotechnical tests that were carried out on soil samples taken from the banks and the river bed. Stability calculations of natural slopes of the Wilga River and the ones protected with riprap indicate mistakes in the design project concerning construction of the river banks. The purpose of the study was to determine the stability of the Wilga River banks on a selected section adjacent to the rebuilt culvert. Stability of a chosen cross section was analysed in the paper. Presented conclusions are based on the results of geotechnical tests and numerical calculations.

  9. Tropical storm Irene flood of August 2011 in northwestern Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Olson, Scott A.; Massey, Andrew J.

    2016-09-02

    The simulated 1-percent AEP discharge water-surface elevations (nonregulatory) from recent (2015–16) hydraulic models for river reaches in the study area, which include the Deerfield, Green, and North Rivers in the Deerfield River Basin and the Hoosic River in the Hoosic River Basin, were compared with water-surface profiles in the FISs. The water-surface elevation comparisons were generally done downstream and upstream from bridges, dams, and major tributaries. The simulated 1-percent AEP discharge water-surface elevations of the recent hydraulic studies averaged 2.2, 2.3, 0.3, and 0.7 ft higher than water-surface elevations in the FISs for the Deerfield, Green, North, and Hoosic Rivers, respectively. The differences in water-surface elevations between the recent (2015–16) hydraulic studies and the FISs likely are because of (1) improved land elevation data from light detection and ranging (lidar) data collected in 2012, (2) detailed surveying of hydraulic structures and cross sections throughout the river reaches in 2012–13 (reflecting structure and cross section changes during the last 30–35 years), (3) updated hydrology analyses (30–35 water years of additional peak flow data at streamgages), and (4) high-water marks from the 2011 tropical storm Irene flood being used for model calibration.

  10. A novel dendrochronological approach reveals drivers of carbon sequestration in tree species of riparian forests across spatiotemporal scales.

    PubMed

    Rieger, Isaak; Kowarik, Ingo; Cherubini, Paolo; Cierjacks, Arne

    2017-01-01

    Aboveground carbon (C) sequestration in trees is important in global C dynamics, but reliable techniques for its modeling in highly productive and heterogeneous ecosystems are limited. We applied an extended dendrochronological approach to disentangle the functioning of drivers from the atmosphere (temperature, precipitation), the lithosphere (sedimentation rate), the hydrosphere (groundwater table, river water level fluctuation), the biosphere (tree characteristics), and the anthroposphere (dike construction). Carbon sequestration in aboveground biomass of riparian Quercus robur L. and Fraxinus excelsior L. was modeled (1) over time using boosted regression tree analysis (BRT) on cross-datable trees characterized by equal annual growth ring patterns and (2) across space using a subsequent classification and regression tree analysis (CART) on cross-datable and not cross-datable trees. While C sequestration of cross-datable Q. robur responded to precipitation and temperature, cross-datable F. excelsior also responded to a low Danube river water level. However, CART revealed that C sequestration over time is governed by tree height and parameters that vary over space (magnitude of fluctuation in the groundwater table, vertical distance to mean river water level, and longitudinal distance to upstream end of the study area). Thus, a uniform response to climatic drivers of aboveground C sequestration in Q. robur was only detectable in trees of an intermediate height class and in taller trees (>21.8m) on sites where the groundwater table fluctuated little (≤0.9m). The detection of climatic drivers and the river water level in F. excelsior depended on sites at lower altitudes above the mean river water level (≤2.7m) and along a less dynamic downstream section of the study area. Our approach indicates unexploited opportunities of understanding the interplay of different environmental drivers in aboveground C sequestration. Results may support species-specific and locally adapted forest management plans to increase carbon dioxide sequestration from the atmosphere in trees. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Decadal changes in channel morphology of a freely meandering river—Powder River, Montana, 1975–2016

    USGS Publications Warehouse

    Moody, John A.; Meade, Robert H.

    2018-03-19

    Few studies exist on the long-term geomorphic effects of floods. However, the U.S. Geological Survey (USGS) was able to begin such a study after a 50-year recurrence interval flood in 1978 because 20 channel cross sections along a 100-kilometer reach of river were established in 1975 and 1977 as part of a study for a proposed dam on Powder River in southeastern Montana. These cross-section measurements (data for each channel cross section are available at the USGS ScienceBase website) have been repeated about 30 times during four decades (1975–2016) and provide a unique dataset for understanding long-term changes in channel morphology caused by an extreme flood and a spectrum of annual floods.Changes in channel morphology of a 100-kilometer reach of Powder River are documented in a series of narratives for each channel cross section that include a time series of photographs as a record of these changes. The primary change during the first decade (1975–85) was the rapid vertical growth of a new inset flood plain within the flood-widened channel. Changes during the second decade (1985–95) were characterized by slower growth of the flood plain, and the effects of ice-jam floods typical of a northward-flowing river. Changes during the third decade (1995–2005) showed little vertical growth of the inset flood plain, which had reached a height that limited overbank deposition. And changes during the final decade (2005–16) covered in this report showed that, because the new inset flood plain had reached a limiting height, the effects of the large annual flood of 2008 (largest flood since 1978) were relatively small compared to smaller floods in previous decades. Throughout these four decades, the riparian vegetation, which interacts with the river, has undergone a gradual but substantial change that may have lasting effects on the channel morphology.

  12. Hydrologic conditions and hazards in the Kennicott River basin, Wrangell-St. Elias National Park Preserve, Alaska

    USGS Publications Warehouse

    Rickman, R.L.; Rosenkrans, D.S.

    1997-01-01

    McCarthy, Alaska, is on the Kennicott River, about 1 mile from the terminus of Kennicott Glacier in the Wrangell-St. Elias National Park and Preserve. Most visitors to McCarthy and the park cross the West Fork Kennicott River using a hand-pulled tram and cross the East Fork Kennicott River on a temporary footbridge. Outburst floods from glacier-dammed lakes result in channel erosion, aggradation, and migration of the Kennicott River, which disrupt transportation links, destroy property, and threaten life. Hidden Creek Lake, the largest of six glacier-dammed lakes in the Kennicott River Basin, has annual outbursts that cause the largest floods on the Kennicott River. Outbursts from Hidden Creek Lake occur from early fall to mid-summer, and lake levels at the onset of the outbursts have declined between 1909 and 1995. Criteria for impending outbursts for Hidden Creek Lake include lake stage near or above 3,000 to 3,020 feet, stationary or declining lake stage, evidence of recent calving of large ice blocks from the ice margin, slush ice and small icebergs stranded on the lakeshore, and fresh fractures in the ice-margin region. The lower Kennicott Glacier has thinned and retreated since about 1860. The East and West Fork Kennicott River channels migrated in response to changes in the lower Kennicott Glacier. The largest channel changes occur during outburst floods from Hidden Creek Lake, whereas channel changes from the other glacier-dammed lake outbursts are small. Each year, the West Fork Kennicott River conveys a larger percentage of the Kennicott Glacier drainage than it did the previous year. Outburst floods on the Kennicott River cause the river stage to rise over a period of several hours. Smaller spike peaks have a very rapid stage rise. Potential flood magnitude was estimated by combining known maximum discharges from Hidden Creek Lake and Lake Erie outburst floods with a theoretical large regional flood. Flood hazard areas at the transportation corridor were delineated, and possible future geomorphological changes were hypothesized. McCarthy, Alaska, is on the Kennicott River, about 1 mile from the terminus of Kennicott Glacier in the Wrangell-St. Elias National Park and Preserve. Most visitors to McCarthy and the park cross the West Fork Kennicott River using a hand-pulled tram and cross the East Fork Kennicott River on a temporary footbridge. Outburst floods from glacier-dammed lakes result in channel erosion, aggradation, and migration of the Kennicott River, which disrupt transportation links, destroy property, and threaten life. Hidden Creek Lake, the largest of six glacier-dammed lakes in the Kennicott River Basin, has annual outbursts that cause the largest floods on the Kennicott River. Outbursts from Hidden Creek Lake occur from early fall to mid-summer, and lake levels at the onset of the outbursts have declined between 1909 and 1995. Criteria for impending outbursts for Hidden Creek Lake include lake stage near or above 3,000 to 3,020 feet, stationary or declining lake stage, evidence of recent calving of large ice blocks from the ice margin, slush ice and small icebergs stranded on the lakeshore, and fresh fractures in the ice-margin region. The lower Kennicott Glacier has thinned and retreated since about 1860. The East and West Fork Kennicott River channels migrated in response to changes in the lower Kennicott Glacier. The largest channel changes occur during outburst floods from Hidden Creek Lake, whereas channel changes from the other glacier-dammed lake outbursts are small. Each year, the West Fork Kennicott River conveys a larger percentage of the Kennicott Glacier drainage than it did the previous year. Outburst floods on the Kennicott River cause the river stage to rise over a period of several hours. Smaller spike peaks have a very rapid stage rise. Potential flood magnitude was estimated by combining known maximum discharges from Hidden Creek Lake and Lake Erie outburst floods with

  13. Detailed north-south cross section showing environments of deposition, organic richness, and thermal maturities of lower Tertiary rocks in the Uinta Basin, Utah

    USGS Publications Warehouse

    Johnson, Ronald C.

    2014-01-01

    The Uinta Basin of northeast Utah has produced large amounts of hydrocarbons from lower Tertiary strata since the 1960s. Recent advances in drilling technologies, in particular the development of efficient methods to drill and hydraulically fracture horizontal wells, has spurred renewed interest in producing hydrocarbons from unconventional low-permeability dolomite and shale reservoirs in the lacustrine, Eocene Green River Formation. The Eocene Green River Formation was deposited in Lake Uinta, a long-lived saline lake that occupied the Uinta Basin, the Piceance Basin to the east, and the intervening Douglas Creek arch. The focus of recent drilling activity has been the informal Uteland Butte member of the Green River Formation and to a much lesser extent the overlying R-0 oil shale zone of the Green River Formation. Initial production rates ranging from 500 to 1,500 barrels of oil equivalent per day have been reported from the Uteland Butte member from horizontal well logs that are as long as 4,000 feet (ft);. The cross section presented here extends northward from outcrop on the southern margin of the basin into the basin’s deep trough, located just south of the Uinta Mountains, and transects the area where this unconventional oil play is developing. The Monument Butte field, which is one of the fields located along this line of section, has produced hydrocarbons from conventional sandstone reservoirs in the lower part of the Green River Formation and underlying Wasatch Formation since 1981. A major fluvial-deltaic system entered Lake Uinta from the south, and this new line of section is ideal for studying the effect of the sediments delivered by this drainage on hydrocarbon reservoirs in the Green River Formation. The cross section also transects the Greater Altamont-Bluebell field in the deepest part of the basin, where hydrocarbons have been produced from fractured, highly overpressured marginal lacustrine and fluvial reservoirs in the Green River, Wasatch, and North Horn Formations since 1970. Datum for the cross section is sea level so that hydrocarbon source rocks and reservoir rocks could be integrated into the structural framework of the basin.

  14. Crossing a River in a Canoe--How Complicated Can It Get?

    ERIC Educational Resources Information Center

    O'Shea, M. J.

    2010-01-01

    We consider several strategies a paddler may use when paddling a canoe across a flowing river. In particular we look at the case where the paddler keeps their canoe pointed at their chosen destination on the opposite bank of the river. In combination with the downstream flow, the canoe follows a curved path whose shape is determined by a…

  15. Water resources of the River Rouge basin southeastern Michigan

    USGS Publications Warehouse

    Knutilla, R.L.

    1971-01-01

    The River Rouge basin is characterized by moderately hilly topography to the northwest graduating to a relatively level land surface to the south east.Stream gradients near the northwestern basin divide are relatively steep; but many become more steep in reaches where they cross beach lines of former glacial lakes. In the lower reaches of the River Rouge gradients lessen.

  16. Metal poisons for criticality in waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, T.G.; Goslen, A.Q.

    1996-12-31

    Many of the wastes from processing fissile materials contain metals that may serve as neutron poisons. It would be advantageous to the criticality evaluation of these wastes to demonstrate that the poisons remain with the fissile materials and to demonstrate an always safe poison-to-fissile ratio. The first task, demonstrating that the materials stay together, is the job of the chemist; the second, calculating an always safe ratio, is an object of this paper. In an earlier study, the authors demonstrated safe ratios for iron, manganese, and chromium oxides to {sup 235}U. In these studies, the Hansen-Roach 16-group cross sections weremore » used with the Savannah River site code HRXN. Multiplication factors were computed, and safe ratios were defined such that the adjusted neutron multiplication factors (k values) were <0.95. These safe weight ratios were Fe:{sup 235}U - 77:1; Mn:{sup 235}U - 30:1; and Cr:{sup 235}U - 52:1. Palmer has shown that for certain mixtures of aluminum, iron, and zirconium with {sup 235}U, the computed infinite multiplication factors may differ by as much as 20% with different cross sections and processing systems. Parks et al. have further studied these mixtures and state, {open_quotes}...these metal/uranium mixtures are very sensitive to the metal cross-section data in the intermediate-energy range and the processing methods that are used.{close_quotes} They conclude with a call for more experimental data. The purpose of this study is to reexamine earlier work with cross sections and processing codes used at Westinghouse Savannah River Company today. This study will focus on {sup 235}U mixtures with iron, manganese and chromium. Sodium will be included in the list of poisons because it is abundant in many of the waste materials.« less

  17. Regional Hydraulic Geometry Curves of the Northern Cascade Mountains, Chelan and King Counties, Washington State, USA

    NASA Astrophysics Data System (ADS)

    Gasperi, J. T.; McClung, J. M.; Hanson, D. L.

    2006-12-01

    The USDA-Natural Resources Conservation Service has developed regional hydraulic geometry curves relating drainage area to bankfull top width, mean depth and cross-sectional area for the east and west sides of the northern Cascade Mountains in Chelan and King Counties, Washington. NRCS surveyed 10 channel reaches with drainage areas from 1 to 1000 square miles within the Wenatchee River drainage of Chelan County and 10 channel reaches with drainage areas of 1 to 100 square miles within the Cedar and Green River drainages of King County. Selection criteria for stream reaches required a minimum of 20 years of USGS stream gage discharge records, unregulated flows and safe access. Survey data were collected with a Sokkia Total Station during low flow conditions from August 2004 to September 2005. NRCS measured a channel cross-section at each of the USGS stream gage sites and two or three additional cross-sections up and downstream. The authors also collected samples of bed material for gradation analysis and estimation of Manning's roughness coefficient, n. Bankfull elevations were estimated based on visual identification of field indicators and USGS flood discharges for the 50% exceedance probability event. Field data were evaluated with the Ohio DNR Reference Reach spreadsheet to determine bankfull top width, mean depth and cross-sectional area. We applied a simple linear regression to the data following USGS statistical methods to evaluate the closeness of fit between drainage area and bankfull channel dimensions. The resulting R2 values of 0.83 to 0.93 for the eastern Cascade data of Chelan County and 0.71 to 0.88 for the western Cascade data of King County indicate a close association between drainage area and bankfull channel dimensions for these two sets of data.

  18. Scaling properties reveal regulation of river flows in the Amazon through a forest reservoir

    NASA Astrophysics Data System (ADS)

    Salazar, Juan Fernando; Villegas, Juan Camilo; María Rendón, Angela; Rodríguez, Estiven; Hoyos, Isabel; Mercado-Bettín, Daniel; Poveda, Germán

    2018-03-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir hypothesis to describe the natural capacity of river basins to regulate river flows through land-atmosphere interactions (mainly precipitation recycling) that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.

  19. Barriers to and determinants of the use of intermittent preventive treatment of malaria in pregnancy in Cross River State, Nigeria: a cross-sectional study.

    PubMed

    Ameh, Soter; Owoaje, Eme; Oyo-Ita, Angela; Kabiru, Caroline W; Akpet, Obaji E O; Etokidem, Aniekan; Enembe, Okokon; Ekpenyong, Nnette

    2016-05-04

    Malaria in pregnancy (MIP) has serious consequences for the woman, unborn child and newborn. The use of sulfadoxine-pyrimethamine for the intermittent preventive treatment of malaria in pregnancy (SP-IPTp) is low in malaria endemic areas, including some regions of Nigeria. However, little is known about pregnant women's compliance with the SP-IPTp national guidelines in primary health care (PHC) facilities in the south-south region of Nigeria. The aim of this study was to identify the barriers to and determinants of the use of SP-IPTp among pregnant women attending ANC in PHC facilities in Cross River State, south-south region of Nigeria. A cross-sectional survey was conducted in 2011 among 400 ANC attendees aged 15-49 years recruited through multistage sampling. Binary logistic regression was used to determine the factors associated with the use of SP-IPTp in the study population. Use of SP-IPTp was self-reported by 41% of the total respondents. Lack of autonomy in the households to receive sulfadoxine-pyrimethamine (SP) during ANC was the main barrier to use of IPTp (83%). Other barriers were stock-outs of free SP (33%) and poor supervision of SP ingestion by directly observed treatment among those who obtained SP from ANC clinics (36/110 = 33%). In the multivariate logistic regression, the odds of using SP-IPTp was increased by the knowledge of the use of insecticide treated nets (ITNs) (OR = 2.13, 95% CI: 1.70-3.73) and SP (OR = 22.13, 95% CI: 8.10-43.20) for the prevention of MIP. Use of ITNs also increased the odds of using SP-IPTp (OR = 2.38, 95% CI: 1.24-12.31). Use of SP-IPTp was low and was associated with knowledge of the use of ITNs and SP as well as the use of ITNs for the prevention of MIP. There is a need to strengthen PHC systems and address barriers to the usage of SP-IPTp in order to reduce the burden of MIP.

  20. Birds of the St. Croix River valley: Minnesota and Wisconsin

    USGS Publications Warehouse

    Faanes, Craig A.

    1981-01-01

    The St. Croix River Valley encompasses nearly 11,550 km2 in east-central Minnesota and northwestern Wisconsin. A wide range of habitats are available for birds including upland oak, lowland deciduous, maple-basswood, lowland and upland coniferous forests, natural basin wetlands, and grasslands. Situated in the north-central region of the United States, the valley is a biological 'crossroads' for many species. Because of the mixed affinities of plant communities, the valley includes the northern and southern range limits for a number of species. Also, because the valley lies near the forest-prairie transition zone, many typical western breeding species (e.g. pintail, western meadowlark, yellow-headed blackbird) breed in proximity to typical eastern species such as tufted titmouse, eastern meadowlark, and cardinal. From 1966 to 1980, I conducted extensive surveys of avian distribution and abundance in the St. Croix River Valley. I have supplemented the results of these surveys with published and unpublished observations contributed by many ornithologists. These additional data include compilations from Christmas Bird Counts sponsored by the National Audubon Society and from the Breeding Bird Survey coordinated by the U.S. Fish and Wildlife Service. Three hundred fourteen species have been recorded in the study area; data are presented on the migration period, nesting season distribution, winter distribution, relative abundance, and habitat use of each species. Recognizing the uniqueness of the area, and its importance not only to wildlife but also to man, the U.S. Congress designated the St. Croix a National Scenic Riverway. This action provided a considerable degree of protection to lands along and directly adjacent to the river. Unfortunately, no similar legal measure exists to protect lands away from the river. With the exception of the northern quarter of the St. Croix River Valley, agricultural interests have made significant inroads into the habitat base. The continuing expansion of the nearby Minneapolis-St. Paul metropolitan region has degraded or destroyed many woodlots, upland fields, and wetlands. In numerous instances, degradation of natural habitats has influenced the abundance and distribution of bird species. Because of these changes, both the Federal government and State Departments of Natural Resources have listed several species in various categories based on their current status. In the St. Croix River Valley, seven species are endangered, eight are threatened, and 29 are watch or priority status in either or both states. Data presented in this report are of value to land managers, land use specialists, and ornithologists, in assessing current and projected habitat alterations on the avifauna of this valley. The St. Croix River bisects a large region of western Wisconsin and east central Minnesota that exhibits a wide range of habitat types. This region supports not only birds, but many mammals, fishes, reptiles and amphibians, and several thousand species of vascular and nonvascular plants. The river itself is relatively clean through most of its course, and its natural flow is interrupted by only two small dams. Because the river lies within a 1-day drive of nearly 10 million people (Waters 1977), use of the area for recreational purposes is extremely heavy. Recreational pursuits include sunbathing, boating, and wild river kayaking in the summer, and ice fishing and cross-country skiing in the winter. The large number of unique and highly fragile habitats that exist there may never be compatible with the uses and abuses of the land that go with expanding human populations. Through the efforts of a number of citizens concerned with the quality of their environment and the foresightedness of several local, State, and Federal legislators, a portion of the upper St. Croix River Valley (hereafter termed 'the Valley') was established as a National Wild and Scenic River. Through establishment of t

  1. Attributes for NHDPlus Catchments (Version 1.1): Basin Characteristics, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents basin characteristics, compiled for every catchment in NHDPlus for the conterminous United States. These characteristics are basin shape index, stream density, sinuosity, mean elevation, mean slope, and number of road-stream crossings. The source data sets are the U.S. Environmental Protection Agency's NHDPlus and the U.S. Census Bureau's TIGER/Line Files. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  2. Base (100-year) flood elevations for selected sites in Marion County, Missouri

    USGS Publications Warehouse

    Southard, Rodney E.; Wilson, Gary L.

    1998-01-01

    The primary requirement for community participation in the National Flood Insurance Program is the adoption and enforcement of floodplain management requirements that minimize the potential for flood damages to new construction and avoid aggravating existing flooding conditions. This report provides base flood elevations (BFE) for a 100-year recurrence flood for use in the management and regulation of 14 flood-hazard areas designated by the Federal Emergency Management Agency as approximate Zone A areas in Marion County, Missouri. The one-dimensional surface-water flow model, HEC-RAS, was used to compute the base (100-year) flood elevations for the 14 Zone A sites. The 14 sites were located at U.S., State, or County road crossings and the base flood elevation was determined at the upstream side of each crossing. The base (100-year) flood elevations for BFE 1, 2, and 3 on the South Fork North River near Monroe City, Missouri, are 627.7, 579.2, and 545.9 feet above sea level. The base (100-year) flood elevations for BFE 4, 5, 6, and 7 on the main stem of the North River near or at Philadelphia and Palmyra, Missouri, are 560.5, 539.7, 504.2, and 494.4 feet above sea level. BFE 8 is located on Big Branch near Philadelphia, a tributary to the North River, and the base (100-year) flood elevation at this site is 530.5 feet above sea level. One site (BFE 9) is located on the South River near Monroe City, Missouri. The base (100-year) flood elevation at this site is 619.1 feet above sea level. Site BFE 10 is located on Bear Creek near Hannibal, Missouri, and the base (100-year) elevation is 565.5 feet above sea level. The four remaining sites (BFE 11, 12, 13, and 14) are located on the South Fabius River near Philadelphia and Palmyra, Missouri. The base (100-year) flood elevations for BFE 11, 12, 13, and 14 are 591.2, 578.4, 538.7, and 506.9 feet above sea level.

  3. A 184-year record of river meander migration from tree rings, aerial imagery, and cross sections

    NASA Astrophysics Data System (ADS)

    Schook, Derek M.; Rathburn, Sara L.; Friedman, Jonathan M.; Wolf, J. Marshall

    2017-09-01

    Channel migration is the primary mechanism of floodplain turnover in meandering rivers and is essential to the persistence of riparian ecosystems. Channel migration is driven by river flows, but short-term records cannot disentangle the effects of land use, flow diversion, past floods, and climate change. We used three data sets to quantify nearly two centuries of channel migration on the Powder River in Montana. The most precise data set came from channel cross sections measured an average of 21 times from 1975 to 2014. We then extended spatial and temporal scales of analysis using aerial photographs (1939-2013) and by aging plains cottonwoods along transects (1830-2014). Migration rates calculated from overlapping periods across data sets mostly revealed cross-method consistency. Data set integration revealed that migration rates have declined since peaking at 5 m/year in the two decades after the extreme 1923 flood (3000 m3/s). Averaged over the duration of each data set, cross section channel migration occurred at 0.81 m/year, compared to 1.52 m/year for the medium-length air photo record and 1.62 m/year for the lengthy cottonwood record. Powder River peak annual flows decreased by 48% (201 vs. 104 m3/s) after the largest flood of the post-1930 gaged record (930 m3/s in 1978). Declining peak discharges led to a 53% reduction in channel width and a 29% increase in sinuosity over the 1939-2013 air photo record. Changes in planform geometry and reductions in channel migration make calculations of floodplain turnover rates dependent on the period of analysis. We found that the intensively studied last four decades do not represent the past two centuries.

  4. A 184-year record of river meander migration from tree rings, aerial imagery, and cross sections

    USGS Publications Warehouse

    Schook, Derek M.; Rathburn, Sara L.; Friedman, Jonathan M.; Wolf, J. Marshall

    2017-01-01

    Channel migration is the primary mechanism of floodplain turnover in meandering rivers and is essential to the persistence of riparian ecosystems. Channel migration is driven by river flows, but short-term records cannot disentangle the effects of land use, flow diversion, past floods, and climate change. We used three data sets to quantify nearly two centuries of channel migration on the Powder River in Montana. The most precise data set came from channel cross sections measured an average of 21 times from 1975 to 2014. We then extended spatial and temporal scales of analysis using aerial photographs (1939–2013) and by aging plains cottonwoods along transects (1830–2014). Migration rates calculated from overlapping periods across data sets mostly revealed cross-method consistency. Data set integration revealed that migration rates have declined since peaking at 5 m/year in the two decades after the extreme 1923 flood (3000 m3/s). Averaged over the duration of each data set, cross section channel migration occurred at 0.81 m/year, compared to 1.52 m/year for the medium-length air photo record and 1.62 m/year for the lengthy cottonwood record. Powder River peak annual flows decreased by 48% (201 vs. 104 m3/s) after the largest flood of the post-1930 gaged record (930 m3/s in 1978). Declining peak discharges led to a 53% reduction in channel width and a 29% increase in sinuosity over the 1939–2013 air photo record. Changes in planform geometry and reductions in channel migration make calculations of floodplain turnover rates dependent on the period of analysis. We found that the intensively studied last four decades do not represent the past two centuries

  5. Engineer Company Force Structure Force Modularization in Support of Decisive Action. Does the Corps of Engineers Need to Re-Structure Engineer Construction Companies Again in order to Support Decisive Actions?

    DTIC Science & Technology

    2012-05-16

    Regional Command RCP Route Clearance Platoon RSOI Reception, Staging, Onward Movement, Integration SBCT Stryker Brigade Combat Team TOE Table of...Point (ASPs), and field hospital platforms; prepare river crossing sites; and support port repair due to Hydraulic Excavator (HYEX), provides force...platforms, FARPS, supply routes, roads, control points, fire bases, tank ditches, ASPs, and field hospital platforms; prepare river crossing sites; and

  6. 11. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING NORTH. THE HYDRO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING NORTH. THE HYDRO PLANT CENTER SITS ON THE EDGE OF RAVINE WHICH IS ACTUALLY THE BEGINNING OF THE GRAND CANAL. THE CROSS-CUT STEAM PLANT IS THE LARGE WHITE BUILDING JUST WEST OF THE HYDRO PLANT, WITH THE TRANSMISSION SWITCHYARD IN BETWEEN. THE OTHER BUILDINGS ARE SALT RIVER PROJECT FABRICATION AND EQUIPMENT SHOPS Photographer unknown, August 22, 1958 - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  7. 17. 'Southern Pacific Company Pacific System, 3 180'61/2' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. 'Southern Pacific Company - Pacific System, 3 - 180'-6-1/2' c. to c. end pins S. Tr. Thro. Spans, 10th, 11th and 13th Crossings of Sacramento River, also for 1 - 180'-6-1/2' c. to c. end pins S. Tr. Thro. Span, 8th Crossing Sacramento River, The Phoenixville Bridge Co., Phoenixville Pa., Apr. 9th, 1901.' - Southern Pacific Railroad Shasta Route, Bridge No. 310.58, Milepost 310.58, Sims, Shasta County, CA

  8. From the Roer to the Elbe With the 1st Medical Group: Medical Support of the Deliberate River Crossing

    DTIC Science & Technology

    1992-01-01

    Hall, in his special study on the 1st Medical Group in World War II, reminds us that procedures for treating the wounded have evolved considerably...describes for us the difficulties confronted in river-crossing operations, where the removal and flow of casualties runs counter to the general flow of...25 The expansion beyond the Rhine bridgehead ............ 43 vii 1. 2. 3. 4. 1. 2. PREFACE The seeds of this paper were first planted in

  9. 77 FR 29897 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... traffic associated with the Rose Parade in Portland, Oregon. This deviation allows the upper deck of the... with the Rose Parade. The Steel Bridge crosses the Willamette River at mile 12.1 and is a double-deck...

  10. 77 FR 23547 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Columbia River Crossing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... at Astoria, Oregon. Coastal tides influence the flow rate and river level up to Bonneville Dam at.... Contractor schedules, weather, materials, and equipment could also influence construction duration. CRC would...

  11. 7. REMAINS OF PLANK WALL WITHIN CANAL CONSTRUCTED TO PROTECT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. REMAINS OF PLANK WALL WITHIN CANAL CONSTRUCTED TO PROTECT OUTSIDE CANAL BANK, LOOKING SOUTHWEST. NOTE CROSS SUPPORT POLES EXTENDING TO HILLSIDE. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  12. Geologic Map of the North Cascade Range, Washington

    USGS Publications Warehouse

    Haugerud, Ralph A.; Tabor, Rowland W.

    2009-01-01

    The North Cascade Range, commonly referred to as the North Cascades, is the northern part of the Cascade Range that stretches from northern California into British Columbia, where it merges with the Coast Mountains of British Columbia at the Fraser River. The North Cascades are generally characterized by exposure of plutonic and metamorphic rocks in contrast to the volcanic terrain to the south. The rocks of the North Cascades are more resistant to erosion, display greater relief, and show evidence of more pronounced uplift and recent glaciation. Although the total length of the North Cascade Range, extending north from Snoqualmie Pass in Washington, is about 200 mi (320 km), this compilation map at 1:200,000 scale covers only that part (~150 mi) in the United States. The compilation map is derived mostly from eight 1:100,000-scale quadrangle maps that include all of the North Cascade Range in Washington and a bit of the mostly volcanic part of the Cascade Range to the south (fig. 1, sheet 2). Overall, the area represented by this compilation is about 12,740 mi2 (33,000 km2). The superb alpine scenery of the North Cascade Range and its proximity to major population centers has led to designation of much of the area for recreational use or wilderness preservation. A major part of the map area is in North Cascade National Park. Other restricted use areas are the Alpine Lakes, Boulder River, Clearwater, Glacier Peak, Henry M. Jackson, Lake Chelan-Sawtooth, Mount Baker, Noisy-Diobsud, Norse Peak, and Pasayten Wildernesses and the Mount Baker, Lake Chelan, and Ross Lake National Recreation Areas. The valleys traversed by Washington State Highway 20 east of Ross Lake are preserved as North Cascades Scenic Highway. The map area is traversed by three major highways: U.S. Interstate 90, crossing Snoqualmie Pass; Washington State Highway 2, crossing Stevens Pass; and Washington State Highway 20, crossing Washington Pass. Major secondary roads, as well as a network of U.S. Forest Service roads and a few private roads mainly used for logging, are restricted mostly to the flanks of the range. Although much of the mountainous core is inaccessible to automobiles, numerous trails serve the foot or horse traveler.

  13. Radar Altimetry for Hydrological Modeling and Monitoring in the Zambezi River Basin

    NASA Astrophysics Data System (ADS)

    Michailovsky, C. I.; Berry, P. A.; Smith, R. G.; Bauer-Gottwein, P.

    2011-12-01

    Hydrological model forecasts are subject to large uncertainties stemming from uncertain input data, model structure, parameterization and lack of sufficient calibration/validation data. For real-time or near-real-time applications data assimilation techniques such as the Ensemble Kalman Filter (EnKF) can be used to reduce forecast uncertainty by updating model states as new data becomes available. The use of remote sensing data is attractive for such applications as it provides wide geographical coverage and continuous time-series without the typically long delays that exist in obtaining in-situ data. River discharge is one of the main hydrological variables of interest, and while it cannot currently be directly measured remotely, water levels in rivers can be obtained from satellite based radar altimetry and converted to discharge through rating curves. This study aims to give a realistic assessment of the improvements that can be derived from the use of satellite radar altimetry measurements from the Envisat mission for discharge monitoring and modeling on the basin scale for the Zambezi River. The altimetry data used is the Radar AlTimetry (RAT) product developed at the Earth and Planetary Remote Sensing Laboratory at the De Montfort University. The first step in analyzing the data is the determination of potential altimetry targets which are the locations at which the Envisat orbit and the river network cross in order to select data points corresponding to surface water. The quality of the water level time-series is then analyzed for all targets and the exploitable targets identified. Rating curves are derived from in-situ or remotely-sensed data depending on data-availability at the various locations and discharge time-series are established. A Monte Carlo analysis is carried out to assess the uncertainties on the computed discharge. It was found that having a single cross-section and associated discharge measurement at one point in time significantly reduces discharge uncertainty. To assess improvements in model predictions, a model of the Zambezi River basin based on remote sensing data is set up with the Soil and Water Assessment Tool and calibrated with available in-situ data. The discharge data from altimetry is then used in an EnKF framework to update discharge in the model as it runs. The method showed improvements in prediction uncertainties for short lead times.

  14. Measurement of bridge scour at the SR-32 crossing of the Sacramento River at Hamilton City, California, 1987-92

    USGS Publications Warehouse

    Blodgett, J.C.; Harris, Carroll D.; ,

    1993-01-01

    A study of the State Route 32 crossing of the Sacramento River near Hamilton City, California, is being made to determine those channel and bridge factors that contribute to scour at the site. Three types of scour data have been measured-channel bed (natural) scour, constriction (general) scour, and local (bridge-pier induced) scour. During the years 1979-93, a maximum of 3.4 ft of channel bed scour, with a mean of 1.4 ft, has been measured. Constriction scour, which may include channel bed scour, has been measured at the site nine times during the years 1987-92. The calculated amount of constriction scour ranged from 0.2 to 3.0 ft, assuming the reference is the mean bed elevation. Local scour was measured four times at the site in 1991 and 1992 and ranged from -2.1 (fill) to 11.6 ft , with the calculated amounts dependent on the bed reference elevation and method of computation used. Surveys of the channel bed near the bridge piers indicate the horizontal location of lowest bed elevation (maximum depth of scour) may vary at least 17 ft between different surveys at the same pier and most frequently is located downstream from the upstream face of the pier.

  15. Potential effects of deepening the St. Johns River navigation channel on saltwater intrusion in the surficial aquifer system, Jacksonville, Florida

    USGS Publications Warehouse

    Bellino, Jason C.; Spechler, Rick M.

    2013-01-01

    The U.S. Army Corps of Engineers (USACE) has proposed dredging a 13-mile reach of the St. Johns River navigation channel in Jacksonville, Florida, deepening it to depths between 50 and 54 feet below North American Vertical Datum of 1988. The dredging operation will remove about 10 feet of sediments from the surficial aquifer system, including limestone in some locations. The limestone unit, which is in the lowermost part of the surficial aquifer system, supplies water to domestic wells in the Jacksonville area. Because of density-driven hydrodynamics of the St. Johns River, saline water from the Atlantic Ocean travels upstream as a saltwater “wedge” along the bottom of the channel, where the limestone is most likely to be exposed by the proposed dredging. A study was conducted to determine the potential effects of navigation channel deepening in the St. Johns River on salinity in the adjacent surficial aquifer system. Simulations were performed with each of four cross-sectional, variable-density groundwater-flow models, developed using SEAWAT, to simulate hypothetical changes in salinity in the surficial aquifer system as a result of dredging. The cross-sectional models were designed to incorporate a range of hydrogeologic conceptualizations to estimate the effect of uncertainty in hydrogeologic properties. The cross-sectional models developed in this study do not necessarily simulate actual projected conditions; instead, the models were used to examine the potential effects of deepening the navigation channel on saltwater intrusion in the surficial aquifer system under a range of plausible hypothetical conditions. Simulated results for modeled conditions indicate that dredging will have little to no effect on salinity variations in areas upstream of currently proposed dredging activities. Results also indicate little to no effect in any part of the surficial aquifer system along the cross section near River Mile 11 or in the water-table unit along the cross section near River Mile 8. Salinity increases of up to 4.0 parts per thousand (ppt) were indicated by the model incorporating hydrogeologic conceptualizations with both a semiconfining bed over the limestone unit and a preferential flow layer within the limestone along the cross section near River Mile 8. Simulated increases in salinity greater than 0.2 ppt in this area were generally limited to portions of the limestone unit within about 75 feet of the channel on the north side of the river. The potential for saltwater to move from the river channel to the surficial aquifer system is limited, but may be present in areas where the head gradient from the aquifer to the river is small or negative and the salinity of the river is sufficient to induce density-driven advective flow into the aquifer. In some areas, simulated increases in salinity were exacerbated by the presence of laterally extensive semiconfining beds in combination with a high-conductivity preferential flow zone in the limestone unit of the surficial aquifer system and an upgradient source of saline water, such as beneath the salt marshes near Fanning Island. The volume of groundwater pumped in these areas is estimated to be low; therefore, saltwater intrusion will not substantially affect regional water supply, although users of the surficial aquifer system east of Dames Point along the northern shore of the river could be affected. Proposed dredging operations pose no risk to salinization of the Floridan aquifer system; in the study area, the intermediate confining unit ranges in thickness from more than 300 to about 500 feet and provides sufficient hydraulic separation between the surficial and Floridan aquifer systems.

  16. Using thermochonology to validate a balanced cross section along the Karnali River, far-western Nepal

    NASA Astrophysics Data System (ADS)

    Battistella, C.; Robinson, D.; McQuarrie, N.; Ghoshal, S.

    2017-12-01

    Multiple valid balanced cross sections can be produced from mapped surface and subsurface data. By integrating low temperature thermochronologic data, we are better able to predict subsurface geometries. Existing valid balanced cross section for far western Nepal are few (Robinson et al., 2006) and do not incorporate thermochronologic data because the data did not exist. The data published along the Simikot cross section along the Karnali River since then include muscovite Ar, zircon U-Th/He and apatite fission track. We present new mapping and a new valid balanced cross section that takes into account the new field data as well as the limitations that thermochronologic data places on the kinematics of the cross section. Additional constrains include some new geomorphology data acquired since 2006 that indicate areas of increased vertical uplift, which indicate locations of buried ramps in the Main Himalayan thrust and guide the locations of Lesser Himalayan ramps in the balanced cross section. Future work will include flexural modeling, new low temperature thermochronometic data, and 2-D thermokinematic models from a sequentially forward modeled balanced cross sections in far western Nepal.

  17. Base flow (1966-2005) and streamflow gain and loss (2006) of the Brazos River, McLennan County to Fort Bend County, Texas

    USGS Publications Warehouse

    Turco, Michael J.; East, Jeffery W.; Milburn, Matthew S.

    2007-01-01

    During 2006?07, the U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board, did a study to quantify historical (water years 1966?2005) base flow and streamflow gains and losses from two streamflow-measuring surveys (March and August 2006) in the Brazos River from McLennan County to Fort Bend County, Texas. The Brazos River is hydraulically connected to the Brazos River alluvium aquifer, which in turn is hydraulically connected to several underlying aquifers, the outcrops of which occur in laterally adjacent layers generally parallel to the coast (major aquifers, Carrizo-Wilcox and Gulf Coast, and minor aquifers, Queen City, Sparta, and Yegua-Jackson). Hydrograph separation was done using the USGS computer program Hydrograph Separation and Analysis with historical streamflow from 10 USGS gaging stations, three on the Brazos River and seven on selected tributaries to the Brazos River. Streamflow data for computation of gains and losses were collected in March 2006 from 36 sites on the Brazos River and 19 sites on 19 tributaries to the Brazos River; and in August 2006 from 28 sites on the Brazos River and 16 sites on tributaries. Hydrograph separation and associated analyses indicate an appreciable increase in base flow as a percentage of streamflow in the reach of the Brazos River that crosses the outcrops of the Carrizo-Wilcox, Queen City, Sparta, and Yegua-Jackson aquifers compared to that in the adjacent upstream reach (on average from about 43 percent to about 60 percent). No increase in base flow as a percentage of streamflow in the reach of the Brazos River crossing the Gulf Coast aquifer compared to that in the adjacent upstream reach was indicated. Streamflow gains and losses computed for March 2006 for 35 reaches defined by pairs of sites on the Brazos River indicated that five reaches were verifiably gaining streamflow (computed gain exceeded potential flow measurement error) and none were verifiably losing streamflow. Four of the five gaining reaches are in the outcrop areas of the Carrizo-Wilcox and Yegua-Jackson aquifers. The results of the synoptic gain and loss surveys are consistent with the results of the base-flow analysis of historical streamflow. Appreciable increases in streamflow, apparently the result of increases in base flow, occur in the reach of the Brazos River that crosses the outcrops of the Carrizo-Wilcox, Queen City, Sparta, and Yegua-Jackson aquifers.

  18. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Basin Characteristics, 2002 Geospatial_Data_Presentation_Form: tabular digital data

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents basin characteristics for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). These characteristics are reach catchment shape index, stream density, sinuosity, mean elevation, mean slope and number of road-stream crossings. The source data sets are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011) and the U.S. Census Bureau's TIGER/Line Files (U.S. Census Bureau,2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  19. Comparison of Extreme Precipitation Return Levels using Spatial Bayesian Hierarchical Modeling versus Regional Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Love, C. A.; Skahill, B. E.; AghaKouchak, A.; Karlovits, G. S.; England, J. F.; Duren, A. M.

    2017-12-01

    We compare gridded extreme precipitation return levels obtained using spatial Bayesian hierarchical modeling (BHM) with their respective counterparts from a traditional regional frequency analysis (RFA) using the same set of extreme precipitation data. Our study area is the 11,478 square mile Willamette River basin (WRB) located in northwestern Oregon, a major tributary of the Columbia River whose 187 miles long main stem, the Willamette River, flows northward between the Coastal and Cascade Ranges. The WRB contains approximately two ­thirds of Oregon's population and 20 of the 25 most populous cities in the state. The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams and extreme precipitation estimates are required to support risk­ informed hydrologic analyses as part of the USACE Dam Safety Program. Our intent is to profile for the USACE an alternate methodology to an RFA that was developed in 2008 due to the lack of an official NOAA Atlas 14 update for the state of Oregon. We analyze 24-hour annual precipitation maxima data for the WRB utilizing the spatial BHM R package "spatial.gev.bma", which has been shown to be efficient in developing coherent maps of extreme precipitation by return level. Our BHM modeling analysis involved application of leave-one-out cross validation (LOO-CV), which not only supported model selection but also a comprehensive assessment of location specific model performance. The LOO-CV results will provide a basis for the BHM RFA comparison.

  20. Utilization of Intermittent Preventive Treatment of Malaria by Pregnant Women in Rivers State, Nigeria

    PubMed Central

    Tobin-West, Charles I; Asuquo, Eme O

    2013-01-01

    Background: This study was conducted to assess the level of intermittent preventive treatment of malaria in pregnancy (IPTp) in Rivers State, Nigeria, to identify obstacles prohibiting utilization in order to make recommendations for improved uptake and malaria control in general. Methods: A cross-sectional study was carried out in November 2008 among 339 pregnant women and those who had delivered children in the last 1 year, using a multistage sampling method. Data were analyzed using the Epi-Info version 6.04d statistical software package and hypothesis tests were conducted to compare summary statistics at 95% significance level. Results: Most of the respondents (76.4%) had knowledge that malaria was caused by mosquitoes and was harmful in pregnancy. Although majority of the pregnant women (80.8%) attended antenatal care clinics, knowledge of the correct use of SP was low (32.6%) and only 62.8% took malaria preventive treatment. Of these, 58.4% took SP, while nearly a third, 31.8%, took chloroquine. Only 16.4% took their SP at the health facility directly observed by health workers according to the national guidelines. The commonest reason for not preventing malaria was that they were not sick during the period of pregnancy. Conclusions: Misconceptions about IPTp persist among women known to have attended antenatal care clinics, resulting in only a minority of pregnant women receiving IPTp as recommended by national guidelines. Efforts directed at awareness creation on the new malaria prevention and treatment policy are therefore necessary to enhance the uptake of IPT in pregnancy in Rivers State. Further studies are however, needed to evaluate the knowledge and practices of health care workers on the new malaria treatment policy. PMID:23412963

  1. An acoustic doppler current profiler survey of flow velocities in St. Clair River, a connecting channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to measure flow velocities in St. Clair River during a survey in May and June of 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. The survey provides 2.7 million point velocity measurements at 104 cross sections. Sections are spaced about 1,630 ft apart along the river from Port Huron to Algonac, Michigan, a distance of 28.6 miles. Two transects were obtained at each cross section, one in each direction across the river. Along each transect, velocity profiles were obtained 2-4 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved through the internet and extracted to column-oriented data files.

  2. 78 FR 45278 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ...) District Commander's overview of current project issues within the Rock Island District; and (3... MISSISSIPPI RIVER COMMISSION Sunshine Act Meeting AGENCY HOLDING THE MEETINGS: Mississippi River... Landing, La Cross, WI STATUS: Open to the public. MATTERS TO BE CONSIDERED: (1) Summary report by...

  3. 78 FR 21063 - Drawbridge Operation Regulations; Snohomish River and Steamboat Slough, Everett, and Marysville, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    .... This deviation is necessary to accommodate the Total Health Events Heroes Half Marathon. This deviation... Events Heroes Half Marathon. The SR 529 Bridges which cross the Snohomish River at mile 3.6 provide 38...

  4. Use of Infrasound for evaluating potentially hazardous conditions for barge transit on the Mississippi River at Vicksburg, Mississippi

    NASA Astrophysics Data System (ADS)

    McKenna, M. H.; Simpson, C. P.; Jordan, A. M.

    2017-12-01

    Navigating the Mississippi River in Vicksburg, MS is known to be difficult for barge traffic in even the best of conditions due to the river's sharp bend 2 km north of the Highway 80 Bridge. When river levels rise, the level of difficulty in piloting barges under the bridge rises. Ongoing studies by the U.S. Army Engineer Research and Development Center (ERDC) are investigating infrasound as a means to correlate the low frequency acoustics generated by the river with the presence of hazardous conditions observed during flood stage, i.e., rough waters and high currents, which may lead to barge-bridge impacts. The Denied Area Monitoring and Exploitation of Structures (DAMES) Array at the ERDC Vicksburg, MS campus is a persistent seismic-acoustic array used for structural monitoring and explosive event detection. The DAMES Array is located 4.3 km from the Mississippi River/Highway 80 Bridge junction and recorded impulsive sub-audible acoustic signals, similar to an explosive event, from barge-bridge collisions that occurred between 2011 and 2017. This study focuses on five collisions that occurred during January 2016, which resulted in closing the river for barge transit and the Highway 80 Bridge for rail transit for multiple days until safety inspections were completed. The Highway 80 Bridge in Vicksburg, MS is the only freight-crossing over the Mississippi River between Baton Rouge, LA and Memphis, TN, meaning delays from these closings have significant impacts on all transit of goods throughout the Southeastern United States. River basin data and regional meteorological data have been analyzed to find correlations between the river conditions in January 2016, and recorded infrasound data with the aim of determining the likelihood that hazardous conditions are present on the river. Frequency-wavenumber analysis was used to identify the transient signals associated with the barge-bridge impacts and calculate the backazimuth to their source. Then, with the use of Sandia National Laboratory's Infratool, the collected infrasound data were analyzed before, during, and after each collision to identify patterns in the continuous-wave acoustics associated with the river's turbulence at the bend in the river 2 km north of the bridge. Permission to publish was granted by Director, Geotechnical and Structures Laboratory.

  5. 78 FR 79434 - Sabine River Authority of Texas and Sabine River Authority, State of Louisiana; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2305-036] Sabine River Authority of Texas and Sabine River Authority, State of Louisiana; Notice of Availability of the Final Environmental Impact Statement for the Toledo Bend Hydroelectric Project In accordance with the National Environmental Policy Act of 1969 and the...

  6. Commemorative naming in the United States

    USGS Publications Warehouse

    ,

    1999-01-01

    Naming is a basic human tendency; it allows us to perceive the distinct identities of people and places and conveys those characteristics that make them unique. The name of a geographic feature can describe spectacular physical attributes (such as the Grand Canyon or Half Dome in Yosemite National Park), indicate cultural or historical significance (such as Washington Crossing on the Delaware River), or commemorate a worthy individual (such as the Hudson River, named for Henry Hudson, the explorer). Names have many different origins, and regardless of the type of name, they give us a greater familiarity with our surroundings and a sense of belonging to our environment. Naming rivers, mountains, and valleys after individuals was one way settlers marked the land; it signified their lives on these lands were important and, in addition to being a point of reference, usually satisfied the need for stability and enhanced the general concept of sense of place. Even today, naming geographic features after individuals helps us to recognize their special achievements and contributions to the physical or cultural landscape. However, what may be most significant about the present commemorative naming decisions is their permanence. It is important for us to realize that the commemorative names assigned today may last for centuries.

  7. Commemorative Naming in the United States

    USGS Publications Warehouse

    ,

    1998-01-01

    Naming is a basic human tendency; it allows us to perceive the distinct identities of people and places and conveys those characteristics that make them unique. The name of a geographic feature can describe spectacular physical attributes (such as the Grand Canyon or Half Dome in Yosemite National Park), indicate cultural or historical significance (such as Washington Crossing on the Delaware River), or commemorate a worthy individual (such as the Hudson River, named for Henry Hudson, the explorer). Names have many different origins, and regardless of the type of name, they give us a greater familiarity with our surroundings and a sense of belonging to our environment. Naming rivers, mountains, and valleys after individuals was one way settlers marked the land; it signified their lives on these lands were important and, in addition to being a point of reference, usually satisfied the need for stability and enhanced the general concept of sense of place. Even today, naming geographic features after individuals helps us to recognize their special achievements and contributions to the physical or cultural landscape. However, what may be most significant about the present commemorative naming decisions is their permanence. It is important for us to realize that the commemorative names assigned today may last for centuries.

  8. Hyperspectral proximal sensing of Salix Alba trees in the Sacco river valley (Latium, Italy).

    PubMed

    Moroni, Monica; Lupo, Emanuela; Cenedese, Antonio

    2013-10-29

    Recent developments in hardware and software have increased the possibilities and reduced the costs of hyperspectral proximal sensing. Through the analysis of high resolution spectroscopic measurements at the laboratory or field scales, this monitoring technique is suitable for quantitative estimates of biochemical and biophysical variables related to the physiological state of vegetation. Two systems for hyperspectral imaging have been designed and developed at DICEA-Sapienza University of Rome, one based on the use of spectrometers, the other on tunable interference filters. Both systems provide a high spectral and spatial resolution with low weight, power consumption and cost. This paper describes the set-up of the tunable filter platform and its application to the investigation of the environmental status of the region crossed by the Sacco river (Latium, Italy). This was achieved by analyzing the spectral response given by tree samples, with roots partly or wholly submerged in the river, located upstream and downstream of an industrial area affected by contamination. Data acquired is represented as reflectance indices as well as reflectance values. Broadband and narrowband indices based on pigment content and carotenoids vs. chlorophyll content suggest tree samples located upstream of the contaminated area are 'healthier' than those downstream.

  9. Change detection of riverbed movements using river cross-sections and LiDAR data

    NASA Astrophysics Data System (ADS)

    Vetter, Michael; Höfle, Bernhard; Mandlburger, Gottfried; Rutzinger, Martin

    2010-05-01

    Today, Airborne LiDAR derived digital terrain models (DTMs) are used for several aspects in different scientific disciplines, such as hydrology, geomorphology or archaeology. In the field of river geomorphology, LiDAR data sets can provide information on the riverine vegetation, the level and boundary of the water body, the elevation of the riparian foreland and their roughness. The LiDAR systems in use for topographic data acquisition mainly operate with wavelengths of at least 1064nm and, thus, are not able to penetrate water. LiDAR sensors with two wavelengths are available (bathymetric LiDAR), but they can only provide elevation information of riverbeds or lakes, if the water is clear and the minimum water depth exceeds 1.5m. In small and shallow rivers it is impossible to collect information of the riverbed, regardless of the used LiDAR sensor. In this article, we present a method to derive a high-resolution DTM of the riverbed and to combine it with the LiDAR DTM resulting in a watercourse DTM (DTM-W) as a basis for calculating the changes in the riverbed during several years. To obtain such a DTM-W we use river cross-sections acquired by terrestrial survey or echo-sounding. First, a differentiation between water and land has to be done. A highly accurate water surface can be derived by using a water surface delineation algorithm, which incorporates the amplitude information of the LiDAR point cloud and additional geometrical features (e.g. local surface roughness). The second step is to calculate a thalweg line, which is the lowest flow path in the riverbed. This is achieved by extracting the lowest point of each river cross section and by fitting a B-spline curve through those points. In the next step, the centerline of the river is calculated by applying a shrinking algorithm of the water boundary polygon. By averaging the thalweg line and the centerline, a main flow path line can be computed. Subsequently, a dense array of 2D-profiles perpendicular to the flow path line is defined and the heights are computed by linear interpolation of the original cross sections. Thus, a very dense 3D point cloud of the riverbed is obtained from which a grid model of the river bed can be calculated applying any suitable interpolation technique like triangulation, linear prediction or inverse distance mapping. In a final step, the river bed model and the LiDAR DTM are combined resulting in a watercourse DTM. By computing different DTM-Ws from multiple cross section data sets, the volume and the magnitude of changes in the riverbed can be estimated. Hence, the erosion or accumulation areas and their volume changes during several years can be quantified.

  10. Data collection for a time-of-travel and dispersion study on the Coosa River near Childersburg, Alabama

    USGS Publications Warehouse

    Gardner, R.A.

    1985-01-01

    Approximately 2,300 dye-tracer samples were collected and analyzed during a 5-day time-of-travel study on a 23-mile reach of the Coosa River between Logan Martin and Lay dams near Childersburg, Alabama, October 27 to 31, 1984. Rhodamine WT was used as the tracer-dye. Unsteady flow conditions prevailed in the study reach. The rate of movement of the dye cloud between sampling cross sections ranged from 0.15 to 1.36 feet per second. The average rate of movement of the dye cloud between the injection cross section and the downstream sampling cross section was 0.42 foot per second. (USGS)

  11. Evolution of geometric and hydraulic parameters as function of discharge in two streams in the National Petroleum Reserve-Alaska

    NASA Astrophysics Data System (ADS)

    Vas, D. A.; Toniolo, H. A.; Bailey, J.; Kemnitz, R.

    2013-12-01

    Abstract The National Petroleum Reserve-Alaska (NPR-A) is a vast 22.8 million acre area that extends from the foot hills of the Brooks Range to the Beaufort Sea. The United States Department of Interior, Bureau of Land Management (BLM) in association with University of Alaska Fairbanks (UAF) is conducting hydrological research to establish baseline conditions to aid future infrastructure development related to oil and gas in the NPR-A region. Field measurements (discharge, cross-sectional area, top width, water slope) were carried out in Spring 2011, 2012 and 2013, during receding water levels in the streams when the flows were ice-free. The river gauges are located approximately 15 miles south of the rivers mouth on Beaufort Sea and 13 miles from each other. The contributing watershed areas upstream of the gauging stations are 620 and 128 square miles for Judy Creek and Ublutuoch River respectively. The streams have very different channel characteristics and sediment loads. The Judy Creek channel is somewhat unstable; bed sediment contains sand and fine gravel with a heavy sediment load during spring. Bed sediment on Ublutuoch River mainly comprise of coarse gravel, with heavily brush-vegetated steep banks and very limited sediment load during spring. We present a preliminary set of hydraulic geometric relationships describing the variation of channel width, depth, and velocity as function of discharge at the gauging sites on the rivers. Empirical equations indicate that exponents for channel width have similar values in both rivers (approximately 0.38), while exponents for velocity display different values and signs. Exponents for channel depth range from 0.55 to 0.71. Differences in prevailing sediment transport conditions seem to be, at least partially, responsible for the variation in the exponents. Additionally, roughness coefficients are reported.

  12. Application of the Newtonian nudging data assimilation method for the Biebrza River flow model

    NASA Astrophysics Data System (ADS)

    Miroslaw-Swiatek, Dorota

    2010-05-01

    Data assimilation provides a tool for integrating observations of spatially distributed environmental variables with model predictions. In this paper a simple data assimilation technique, the Newtonian nudging to individual observations method, has been implemented in the 1D St. Venant equations. The method involves adding a term to the prognostic equation. This term is proportional to the difference between the value calculated in the model at a given point in time and space and the one resulted from observations. Improving the model with available measurement observations is accomplished by adequate weighting functions, that can incorporate prior knowledge about the spatial and temporal variability of the state variables being assimilated. The article contains a description of the numerical model, which employs the finite element method (FEM) to solve the 1D St. Venant equations modified by the ‘nudging' method. The developed model was applied to the Biebrza River, situated in the north-eastern part of Poland, flowing through the last extensive, fairly undisturbed river-marginal peatland in Europe. A 41 km long reach of the Lower Biebrza River described by 68 cross-sections was selected for the study. The observed water stage collected by automatic sensors was the subject of the data assimilation in the Newtonian nudging to individual observations method. The water level observation data were collected in four observation points along a river with time interval 6 hours for one year. The obtained results show a prediction with no nudging and influence of the nudging term on water stages forecast. The developed model enables integrating water stage observation with an unsteady river flow model for improved water level prediction.

  13. Re-examining data-intensive surface water models with high-resolution topography derived from unmanned aerial system photogrammetry

    NASA Astrophysics Data System (ADS)

    Pai, H.; Tyler, S.

    2017-12-01

    Small, unmanned aerial systems (sUAS) are quickly becoming a cost-effective and easily deployable tool for high spatial resolution environmental sensing. Land surface studies from sUAS imagery have largely focused on accurate topographic mapping, quantifying geomorphologic changes, and classification/identification of vegetation, sediment, and water quality tracers. In this work, we explore a further application of sUAS-derived topographic mapping to a two-dimensional (2-d), depth-averaged river hydraulic model (Flow and Sediment Transport with Morphological Evolution of Channels, FaSTMECH) along a short, meandering reach of East River, Colorado. On August 8, 2016, we flew a sUAS as part of the Center for Transformative Environmental Monitoring Programs with a consumer-grade visible camera and created a digital elevation map ( 1.5 cm resolution; 5 cm accuracy; 500 m long river corridor) with Agisoft Photoscan software. With the elevation map, we created a longitudinal water surface elevation (WSE) profile by manually delineating the bank-water interface and river bathymetry by applying refraction corrections for more accurate water depth estimates, an area of ongoing research for shallow and clear river systems. We tested both uncorrected and refraction-corrected bathymetries with the steady-state, 2-d model, applying sensitivities for dissipation parameters (bed roughness and eddy characteristics). Model performance was judged from the WSE data and measured stream velocities. While the models converged, performance and insights from model output could be improved with better bed roughness characterization and additional water depth cross-validation for refraction corrections. Overall, this work shows the applicability of sUAS-derived products to a multidimensional river model, where bathymetric data of high resolution and accuracy are key model input requirements.

  14. Diverse Approaches to Implement and Monitor River Restoration: A Comparative Perspective in France and Germany

    NASA Astrophysics Data System (ADS)

    Morandi, Bertrand; Kail, Jochem; Toedter, Anne; Wolter, Christian; Piégay, Hervé

    2017-11-01

    River restoration is a main emphasis of river management in European countries. Cross-national comparisons of its implementation are still rare in scientific literature. Based on French and German national censuses, this study compares river restoration practices and monitoring by analysing 102 French and 270 German projects. This comparison aims to draw a spatial and temporal framework of restoration practices in both countries to identify potential drivers of cross-national similarities and differences. The results underline four major trends: (1) a lag of almost 15 years in river restoration implementation between France and Germany, with a consequently higher share of projects in Germany than in France, (2) substantial similarities in restored reach characteristics, short reach length, small rivers, and in "agricultural" areas, (3) good correspondences between stressors identified and restoration measures implemented. Morphological alterations were the most important highlighted stressors. River morphology enhancement, especially instream enhancements, were the most frequently implemented restoration measures. Some differences exist in specific restoration practices, as river continuity restoration were most frequently implemented in French projects, while large wood introduction or channel re-braiding were most frequently implemented in German projects, and (4) some quantitative and qualitative differences in monitoring practices and a significant lack of project monitoring, especially in Germany compared to France. These similarities and differences between Germany and France in restoration application and monitoring possibly result from a complex set of drivers that might be difficult to untangle (e.g., environmental, technical, political, cultural).

  15. Diverse Approaches to Implement and Monitor River Restoration: A Comparative Perspective in France and Germany.

    PubMed

    Morandi, Bertrand; Kail, Jochem; Toedter, Anne; Wolter, Christian; Piégay, Hervé

    2017-11-01

    River restoration is a main emphasis of river management in European countries. Cross-national comparisons of its implementation are still rare in scientific literature. Based on French and German national censuses, this study compares river restoration practices and monitoring by analysing 102 French and 270 German projects. This comparison aims to draw a spatial and temporal framework of restoration practices in both countries to identify potential drivers of cross-national similarities and differences. The results underline four major trends: (1) a lag of almost 15 years in river restoration implementation between France and Germany, with a consequently higher share of projects in Germany than in France, (2) substantial similarities in restored reach characteristics, short reach length, small rivers, and in "agricultural" areas, (3) good correspondences between stressors identified and restoration measures implemented. Morphological alterations were the most important highlighted stressors. River morphology enhancement, especially instream enhancements, were the most frequently implemented restoration measures. Some differences exist in specific restoration practices, as river continuity restoration were most frequently implemented in French projects, while large wood introduction or channel re-braiding were most frequently implemented in German projects, and (4) some quantitative and qualitative differences in monitoring practices and a significant lack of project monitoring, especially in Germany compared to France. These similarities and differences between Germany and France in restoration application and monitoring possibly result from a complex set of drivers that might be difficult to untangle (e.g., environmental, technical, political, cultural).

  16. Dynamic reorganization of river basins.

    PubMed

    Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu

    2014-03-07

    River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology.

  17. Analysis of river planforms in the New Madrid region and possible relations to tectonic warping across the loess bluffs and within the meander belt of the Mississippi River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.A.; Mayer, L.

    1993-03-01

    Stream channel planforms measured from such streams as the Hatchie (H), L'Anguille (LA), St. Francis, White (W) and Little Red (LR) rivers provide a way to study influences of topographic warping between the loess bluffs that bound the Mississippi river valley. Planforms are analyzed using sinuosity, Richardson analysis, and pattern. Pattern changes include transitions from braided to meandering and meandering to straight. Sinuosities of the W and LR rivers show a transition from low sinuosity, [1.3, 1.4] to higher sinuosity [2.6, 2.8], over a short distance, as they cross the bluffs from the uplands to the Western Lowlands. On themore » east, the Hatchie changes from a braided to meandering pattern upon crossing the bluffs. Its sinuosity varies from a low of about 1.4 to a high of 2.2, coincident with a marsh area. The LA river flows on the west side of Crowley's Ridge and is paralleled by the St. Francis river on the east. These rivers, with very different drainage areas and sinuosities, show matching meander bends at similar wavelengths along Crowley's Ridge. The bends are about 10 km in 1/2 wavelength suggesting some extraordinary influence on pattern perpendicular to the ridge. Richardson analysis indicates that features with a 1/2 wavelength of 2 km may control several rivers' bending patterns. These features are analyzed to determine their spatial relations with one another.« less

  18. 5. View of south tower, facing northnortheast from south bank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of south tower, facing north-northeast from south bank of the Columbia River. Center tower and north tower in background, lower right. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA

  19. Economic impact for the region of replacement of the Merchants Bridge.

    DOT National Transportation Integrated Search

    2016-01-01

    The Merchants Memorial Mississippi Rail Bridge and MacArthur Bridge over the Mississippi River make up the most heavily used Mississippi River rail crossing in the country. A large contributor to the popularity of the Merchants Bridge is its accessib...

  20. 77 FR 64592 - Tongue River Railroad Company, Inc.-Rail Construction and Operation-in Custer, Powder River and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    .... Colstrip Alternative--This route would leave the existing Cow Creek branch of BNSF at Colstrip, crossing Cow Creek and Rosebud Creek as it heads south and east, following the Greenleaf Creek valley to the...

  1. The Expression of Backwater Dynamics in the Morphology, Kinematics and Deposit Architecture of Fluvio-deltaic Channels

    NASA Astrophysics Data System (ADS)

    Fernandes, A. M.; Smith, V.

    2017-12-01

    A downstream reduction in bed material flux is associated with the backwater zone, where rivers in their terminal reaches deepen to respond to the sea-level in the receiving basin. This downstream change in sediment transport is reflected in: a) lateral channel mobility, and b) sedimentology and stratigraphic architecture of composite depositional bodies that are left behind. Here we draw comparisons between the Mississippi River and the Trinity River (TX), in terms of bar morphologies and composition, and lateral mobility of these rivers. Across the backwater transition, both rivers display a slight increase in lateral migration rates, followed by substantial decrease lateral migration in the terminal reaches. Both rivers also display predominantly symmetrical channel cross-sections, coincident with very small migration rates in the terminal reaches. We will discuss how the divergence in sediment transport flux across the backwater zone relates to the volume and shape of bank-attached bars, which in turn relates to the cross-sectional shapes of the channels as well as their lateral migrations rates, and ultimately defines the internal architecture of the composite channel deposits that result. Furthermore, we draw comparisons between the morphologies of bank-attached bars and channels in rivers and submarine channels to present insights into how the dominant mode of sediment transport in these different environments ultimately controls the morphologies and kinematics of these channels.

  2. Scaling up watershed model parameters - flow and load simulations of the Edisto River basin

    Treesearch

    Toby Feaster; Stephen Benedict; Jimmy Clark; Paul Bradley; Paul Conrads

    2016-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are among the highest recorded in the United States. As part of an ongoing effort by the U.S. Geological Survey to expand...

  3. Cross Cultural Watershed Partners. Activities Manual.

    ERIC Educational Resources Information Center

    Stapp, William B.; And Others

    The Global Rivers Environmental Education Network (GREEN) has developed this manual of background information and activities for teachers and students who are interested in adding a cross cultural component to their watershed education program, or who wish to include an environmental context to their cross cultural experience. The instructional…

  4. An analysis of river bank slope and unsaturated flow effects on bank storage.

    PubMed

    Doble, Rebecca; Brunner, Philip; McCallum, James; Cook, Peter G

    2012-01-01

    Recognizing the underlying mechanisms of bank storage and return flow is important for understanding streamflow hydrographs. Analytical models have been widely used to estimate the impacts of bank storage, but are often based on assumptions of conditions that are rarely found in the field, such as vertical river banks and saturated flow. Numerical simulations of bank storage and return flow in river-aquifer cross sections with vertical and sloping banks were undertaken using a fully-coupled, surface-subsurface flow model. Sloping river banks were found to increase the bank infiltration rates by 98% and storage volume by 40% for a bank slope of 3.4° from horizontal, and for a slope of 8.5°, delay bank return flow by more than four times compared with vertical river banks and saturated flow. The results suggested that conventional analytical approximations cannot adequately be used to quantify bank storage when bank slope is less than 60° from horizontal. Additionally, in the unconfined aquifers modeled, the analytical solutions did not accurately model bank storage and return flow even in rivers with vertical banks due to a violation of the dupuit assumption. Bank storage and return flow were also modeled for more realistic cross sections and river hydrograph from the Fitzroy River, Western Australia, to indicate the importance of accurately modeling sloping river banks at a field scale. Following a single wet season flood event of 12 m, results showed that it may take over 3.5 years for 50% of the bank storage volume to return to the river. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  5. Feeding the hungry river: Fluvial morphodynamics and the entrainment of artificially inserted sediment at the dammed river Isar, Eastern Alps, Germany

    NASA Astrophysics Data System (ADS)

    Heckmann, Tobias; Haas, Florian; Abel, Judith; Rimböck, Andreas; Becht, Michael

    2017-08-01

    Dams interrupt the sediment continuum in rivers by retaining the bedload; combined with flow diversion, bedload retention in tributaries and river engineering measures, this causes a bedload deficit leading to changes in river planform and morphodynamics, with potentially detrimental downstream effects. As part of the SedAlp joint project (Sediment management in Alpine basins: integrating sediment continuum, risk mitigation and hydropower), this study investigates changes within a section of the dammed river Isar between the Sylvenstein reservoir and the city of Bad Tölz. We use a multi-method approach on a range of spatial and temporal scales. First, we analysed historical maps and aerial photos to analyse river planform and landcover changes within the river corridor of the whole study area on a temporal scale of over 100 years. Results show that major changes occurred before the construction of the Sylvenstein reservoir, suggesting that present morphodynamics represent the reaction to different disturbances on different time scales. Second, changes in mean bed elevation of cross profiles regularly surveyed by the water authorities are analysed in light of artificial sediment insertion and floods; they are also used to estimate the sediment budget of river reaches between consecutive cross profiles. Results suggest stability and a slight tendency towards incision, especially near the Sylvenstein reservoir; further downstream, the sediment balance was positive. Third, we acquired multitemporal aerial photos using an unmanned aerial vehicle and generated high-resolution digital elevation models to show how sediment artificially inserted in the river corridor is entrained. Depending on the position of the artificial deposits in relation to the channel, the deposits are entrained during floods of different return periods.

  6. Hydrodynamic and sedimentological controls governing formation of fluvial levees

    NASA Astrophysics Data System (ADS)

    Johnston, G. H.; Edmonds, D. A.; David, S. R.; Czuba, J. A.

    2017-12-01

    Fluvial levees are familiar features found on the margins of river channels, yet we know little about what controls their presence, height, and shape. These attributes of levees are important because they control sediment transfer from channel to floodplain and flooding patterns along a river system. Despite the familiarity and importance of levees, there is a surprising lack of basic geomorphic data on fluvial levees. Because of this we seek to understand: 1) where along rivers do levees tend to occur?; 2) what geomorphic and hydrodynamic variables control cross-sectional shape of levees? We address these questions by extracting levee shape from LiDAR data and by collecting hydrodynamic and sedimentological data from reaches of the Tippecanoe River, the White River, and the Muscatatuck River, Indiana, USA. Fluvial levees are extracted from a 1.5-m resolution LiDAR bare surface model and compared to hydrological, sedimentological, and geomorphological data from USGS stream gages. We digitized banklines and extracted levee cross-sections to calculate levee slope, taper, height, e-folding length, and e-folding width. To answer the research questions, we performed a multivariable regression between the independent variables—channel geometry, sediment grain size and concentration, flooding conditions, and slope—and the dependent levee variables. We find considerable variation in levee presence and shape in our field data. On the Muscatatuck River levees occur on 30% of the banks compared to 10% on the White River. Moreover, levees on the Muscatatuck are on average 3 times wider than the White River. This is consistent with the observation that the Muscatatuck is finer-grained compared to the White River and points to sedimentology being an important control on levee geomorphology. Future work includes building a morphodynamic model to understand how different hydrodynamic and geomorphic conditions control levee geometry.

  7. Effects of slope smoothing in river channel modeling

    NASA Astrophysics Data System (ADS)

    Kim, Kyungmin; Liu, Frank; Hodges, Ben R.

    2017-04-01

    In extending dynamic river modeling with the 1D Saint-Venant equations from a single reach to a large watershed there are critical questions as to how much bathymetric knowledge is necessary and how it should be represented parsimoniously. The ideal model will include the detail necessary to provide realism, but not include extraneous detail that should not exert a control on a 1D (cross-section averaged) solution. In a Saint-Venant model, the overall complexity of the river channel morphometry is typically abstracted into metrics for the channel slope, cross-sectional area, hydraulic radius, and roughness. In stream segments where cross-section surveys are closely spaced, it is not uncommon to have sharp changes in slope or even negative values (where a positive slope is the downstream direction). However, solving river flow with the Saint-Venant equations requires a degree of smoothness in the equation parameters or the equation set with the directly measured channel slopes may not be Lipschitz continuous. The results of non-smoothness are typically extended computational time to converge solutions (or complete failure to converge) and/or numerical instabilities under transient conditions. We have investigated using cubic splines to smooth the bottom slope and ensure always positive reference slopes within a 1D model. This method has been implemented in the Simulation Program for River Networks (SPRNT) and is compared to the standard HEC-RAS river solver. It is shown that the reformulation of the reference slope is both in keeping with the underlying derivation of the Saint-Venant equations and provides practical numerical stability without altering the realism of the simulation. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  8. Water-quality data for the Ohio River from New Cumberland Dam to Pike Island Dam, West Virginia and Ohio, June-November 1992

    USGS Publications Warehouse

    Miller, Kimberly F.; Faulkenburg, C.W.; Chambers, D.B.; Waldron, M.C.

    1995-01-01

    This report contains water-quality data for the Ohio River, collected during the summer and fall of 1992, from river mile 51.1 (3.3 miles upstream from New Cumberland Dam) to river mile 84.0 (0.2 miles upstream from Pike Island Dam). The data were collected to assess the effects of hydropower development on water quality. Water quality was determined by a combination of repeated synoptic field measurements and laboratory analyses. Synoptic measurements were made along a longitudinal transect with 18 mid-channel sampling sites; cross-sectional transects of water quality were measured at 5 of these sites. Water-quality measurements also were made at two sites located on the back-channel (Ohio) side of Browns Island. Water temperature, dissolved oxygen concentration, pH, and specific conductance were measured at each longitudinal-transect and back-channel sampling site. Longitudinal-transect and back-channel stations were sampled at three depths (about 3.3 feet below the surface of the water, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three or four detailed vertical pro- files of the same characteristics. Water samples were collected from three depths at the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phyto- plankton photosynthetic pigments chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi disk transparency) were made at pigment-sampling locations whenever light and river-surface conditions were appropriate. Synoptic sampling usually was completed in 12 hours or less and was repeated seven times between June 25 and November 6, 1992.

  9. Healthcare waste management practices and safety indicators in Nigeria.

    PubMed

    Oyekale, Abayomi Samuel; Oyekale, Tolulope Olayemi

    2017-09-25

    Adequate management of healthcare waste (HCW) is a prerequisite for efficient delivery of healthcare services. In Nigeria, there are several constraints militating against proper management of HCW. This is raising some environmental concerns among stakeholders in the health sector. In this study, we analyzed the practices of HCW management and determinants of risky/safe indices of HCW disposal. The study used the 2013/2014 Service Delivery Indicator (SDI) data that were collected from 2480 healthcare facilities in Nigeria. Descriptive statistics, Principal Component Analysis (PCA) and Ordinary Least Square (OLS) regression were used to analyze the data. The results showed that 52.20% and 38.21% of the sampled healthcare facilities from Cross River and Bauchi states possessed guidelines for HCW management, respectively. Trainings on management of HCW were attended by 67.18% and 53.19% of the healthcare facilities from Cross River and Imo states, respectively. Also, 32.32% and 29.50% of healthcare facilities from rural and urban areas previously sent some of their staff members for trainings on HCW management, respectively. Sharp and non-sharp HCW were burnt in protected pits in 45.40% and 45.36% of all the sampled healthcare facilities, respectively. Incinerators were reported to be functional in only 2.06% of the total healthcare facilities. In Bauchi and Kebbi states, 23.58% and 21.05% of the healthcare facilities respectively burnt sharp HCW without any protection. Using PCA, computed risky indices for disposal of sharp HCW were highest in Bayelsa state (0.3070) and Kebbi state (0.2172), while indices of risky disposal of non-sharp HCW were highest in Bayelsa state (0.2868) and Osun state (0.2652). The OLS results showed that at 5% level of significance, possession of medical waste disposal guidelines, staff trainings on HCW management, traveling hours from the facilities to local headquarters and being located in rural areas significantly influenced indices of risky/safe medical waste disposal (p < 0.05). The study concluded that there was low compliance with standard HCW management. It was recommended that possession of HCW management guidelines, staff training on HCW disposal and provision of requisite equipment for proper treatment of HCW would promote environmental safety in HCW disposal.

  10. Teachers' Level of Awareness of 21st Century Occupational Roles in Rivers State Secondary Schools

    ERIC Educational Resources Information Center

    Uche, Chineze M.; Kaegon, Leesi E. S. P.; Okata, Fanny Chiemezie

    2016-01-01

    This study investigated the teachers' level of awareness of 21st century occupational roles in Rivers state secondary schools. Three research questions and three hypotheses guided the study. The population of study comprised of 247 public secondary schools and 57 private secondary schools in Port Harcourt metropolis of Rivers state which gave a…

  11. Crayfish fauna of the Tennessee River drainage in Mississippi, including new state species records

    Treesearch

    Susan B. Adams; Christopher A. Taylor; Chris Lukhaup

    2010-01-01

    We present new state records for 3 crayfish species in the Tennessee River basin in Mississippi, and the first drainage-specific distributional information in the state for a fourth. The species - Cambarus girardianus, Cambarus rusticiformis, Orconectes spinosus, and Orconectes wright, - are all known from the Tennessee River basin in Tennessee, while all but O....

  12. New records of Mansonella ozzardi: a parasite that is spreading from the state of Amazonas to previously uninfected areas of the state of Acre in the Purus River region

    PubMed Central

    Adami, Yara Leite; Rodrigues, Gabriel; Alves, Marilene Costa; Moraes, Mario Augusto Pinto; Banic, Dalma Maria; Maia-Herzog, Marilza

    2013-01-01

    Mansonella ozzardi infections are common in the riverside communities along the Solimões, Negro and Purus Rivers in the state of Amazonas (AM). However, little is known about the presence of this parasite in communities located in regions bordering AM and the state of Acre. The prevalence rate of M. ozzardi infections was determined in blood samples from volunteers according to the Knott method. A total of 355 volunteers from six riverine communities were enrolled in the study and 65 (18.3%) were found to be infected with M. ozzardi. As expected, most of the infections (25%) occurred in individuals involved in agriculture, cattle rearing and fishing and an age/sex group analysis revealed that the prevalence increased beginning in the 40-50-years-of-age group and reached 33% in both sexes in individuals over 50 years of age. Based on the described symptomatology, articular pain and headache were found to be significantly higher among infected individuals (56 and 65% prevalence, respectively, p < 0.05). Sera from volunteers were subjected to ELISA using a cocktail of recombinant proteins from Onchocerca volvulus to evaluate the specificity of the test in an endemic M. ozzardi region. No cross-reactions between M. ozzardi-infected individuals and recombinant O. volvulus proteins were detected, thus providing information on the secure use of this particular cocktail in areas where these parasites are sympatric. PMID:24141966

  13. Influence of urban area on the water quality of the Campo River basin, Paraná State, Brazil.

    PubMed

    Carvalho, K Q; Lima, S B; Passig, F H; Gusmão, L K; Souza, D C; Kreutz, C; Belini, A D; Arantes, E J

    2015-12-01

    The Campo River basin is located on the third plateau of the Paraná State or trap plateau of Paraná, at the middle portion between the rivers Ivaí and Piquiri, southern Brazil, between the coordinates 23° 53 and 24° 10' South Latitude and 52° 15' and 52° 31' West Longitude. The basin has 384 Km² area, being 247 km² in the municipality of Campo Mourão and 137 km² in the municipality of Peabiru, in Paraná State. The Campo River is a left bank tributary of the Mourão River, which flows into the Ivaí River. The objective of this study was to monitor water quality in the Km 119 River and the Campo River, tributaries of the Mourão River, with monthly collection of water samples to determine pH, temperature, turbidity, biochemical oxygen demand, dissolved oxygen, fecal coliforms, total solids, total nitrogen, ammoniacal nitrogen, nitrite, nitrate and total phosphorus. The results obtained were compared with the indices established by the environmental legislation and applied in the determination of the Water Quality Index (WQI) used by the Water Institute of Paraná State, regulating environmental agency. Poor water quality in these rivers presents a worrying scenario for the region, since this river is the main source of water supply for the public system. Results of organic matter, fecal coliforms and total phosphorus were higher than the limits established by Resolution CONAMA 357/2005 to river class 2, specially at downstream of the Km 119 River and the Campo River, due to the significant influence of the urban anthropic activity by the lack of tertiary treatment and also rural by the lack of basic sanitation in this area. Results of WQI of Km 119 River and do Campo River indicated that water quality can be classified as average in 71% and good in 29% of the sites evaluated.

  14. Extent and frequency of inundation of Schuylkill River flood plain from Conshohocken to Philadelphia, Pennsylvania

    USGS Publications Warehouse

    Alter, A.T.

    1966-01-01

    Information on flood conditions plays an important part in the development and use of river valleys. This report presents maps, profiles, and flood-frequency relations developed from past flood experience on the Schuylkill River from Conshohocken to Philadelphia, Pa. The maps and profiles are used to define the areal extent and depth of flooding of the August 24, 1933, and August 19, 1955, floods. The flood of October 4, 1869, which is the greatest flood known on the lower Schuylkill River, is presented on the flood profile and on the ten cross sections. The area inundated by the 1869 flood is not defined because insufficient data are available and because hydrologic and hydraulic conditions have undoubtedly changed to such an extent that such a definition would have little present significance. The basic flood data were prepared to aid individuals, organizations, and governmental agencies in making sound decisions for the safe and economical development of the lower Schuylkill River valley. Recommendations for land use, or suggestions for limitations of land use, are not made in this report.The responsibility for planning for the optimum land use in the flood plain and the implementation of flood-plain regulations to achieve such optimum use rests with the State and local interests. The preparation of this report was undertaken after consultation with representatives of the Philadelphia City Planning Commission and the Montgomery County Planning Commission who expressed the need for flood-plain information and their willingness to consider floodplain regulations.The area covered by this report extends downstream along the Schuylkill River from Plymouth Dam in Conshohocken to the mouth of Wissahickon Creek in Philadelphia. Flooding along Wissahickon Creek is not included in the report. The reach studied extends from 13.0 miles to 21.0 miles upstream from the river mouth. All river distances used in the report are river miles upstream from the mouth of the Schuylkill River as used by the Corps of Engineer, U.S. Army and by the U.S. Geological Survey (Bogart, 1960, p. 194). For the convenience of users a tabulation of river miles of selected points upstream from the mouth of the Schuylkill River is included at the end of this report (table 1).

  15. Setting Preferences of High and Low Use River Recreationists: How Different are They?

    NASA Astrophysics Data System (ADS)

    Kainzinger, Silvia; Arnberger, Arne; Burns, Robert C.

    2016-11-01

    Whitewater boaters often choose a river based on their preferences for attributes important for their trip experience. This study explored whether preferences and tradeoffs of whitewater boaters for social, resource, and managerial attributes of riverscapes differ among a high and a low use river in the United States by employing a stated choice approach. River trip scenarios were displayed using verbal descriptions and computer-generated photographs. Results indicate that use levels were more important for boaters on the low use river, whereas river difficulty and river access fee was of higher importance for the high use river boaters, who are more involved in this whitewater activity. Preferences for waiting times and trip length did not differ between the samples. Findings suggest that whitewater boaters of high and low use rivers have a different tradeoff behavior among river setting attributes, which has implications for river recreation management.

  16. SPRR WATER SETTLING RESERVOIR. VIEW LOOKING NORTHEAST. INTERSTATE HIGHWAY 8 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPRR WATER SETTLING RESERVOIR. VIEW LOOKING NORTHEAST. INTERSTATE HIGHWAY 8 BRIDGE CROSSES THE COLORADO RIVER BEYOND THE RESERVOIR. THE OCEAN-TO-OCEAN HIGHWAY BRIDGE AND THE 1924 SPRR BRIDGE ARE AT THE RIGHT EDGE OF THE IMAGE ABOVE THE INTERSTATE BRIDGE. FORT YUMA IS SEEN BEYOND THE INTERSTATE ON INDIAN HILL IN CALIFORNIA. THE SINGLE AUTO IS PARKED ON THE SITE OF THE SPRR HOTEL. - Southern Pacific Railroad Water Settling Reservoir, Yuma Crossing, south bank of Colorado River at foot of Madison Avenue, Yuma, Yuma County, AZ

  17. Water quality of the tidal Potomac River and Estuary; hydrologic data report supplement, 1979 through 1981 water years

    USGS Publications Warehouse

    Coupe, R.H.; Webb, W.E.

    1984-01-01

    This report is a companion report to the U.S. Geological Survey 1979, 1980, and 1981 Hydrologic Data Reports of the tidal Potomac River and Estuary. It contains values of biochemical oxygen demand and specific rate constants, incident light and light attenuation measurements; numbers of phytoplankton, fecal coliform and fecal streptococci, cross-sectional averages from field measurements of dissolved oxygen, pH, specific conductance , and temperature data; and cross-sectional averages of chlorophyll data. Sewage treatment plant loads are also included. (USGS)

  18. Application of High-resolution Aerial LiDAR Data in Calibration of a Two-dimensional Urban Flood Simulation

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.; Goska, R.; Chen, B.; Krajewski, W. F.; Young, N.; Weber, L.

    2009-12-01

    In June 2008, the state of Iowa experienced an unprecedented flood event which resulted in an economic loss of approximately $2.88 billion. Flooding in the Iowa River corridor, which exceeded the previous flood of record by 3 feet, devastated several communities, including Coralville and Iowa City, home to the University of Iowa. Recognizing an opportunity to capture a unique dataset detailing the impacts of the historic flood, the investigators contacted the National Center for Airborne Laser Mapping (NCALM), which performed an aerial Light Detection and Ranging (LiDAR) survey along the Iowa River. The survey, conducted immediately following the flood peak, provided coverage of a 60-mile reach. The goal of the present research is to develop a process by which flood extents and water surface elevations can be accurately extracted from the LiDAR data set and to evaluate the benefit of such data in calibrating one- and two-dimensional hydraulic models. Whereas data typically available for model calibration include sparsely distributed point observations and high water marks, the LiDAR data used in the present study provide broad-scale, detailed, and continuous information describing the spatial extent and depth of flooding. Initial efforts were focused on a 10-mile, primarily urban reach of the Iowa River extending from Coralville Reservoir, a United States Army Corps of Engineers flood control project, downstream through the Coralville and Iowa City. Spatial extent and depth of flooding were estimated from the LiDAR data. At a given cross-sectional location, river channel and floodplain measurements were compared. When differences between floodplain and river channel measurements were less than a standard deviation of the vertical uncertainty in the LiDAR survey, floodplain measurements were classified as flooded. A flood water surface DEM was created using measurements classified as flooded. A two-dimensional, depth-averaged numerical model of a 10-mile reach of the Iowa River corridor was developed using the United States Bureau of Reclamation SRH-2D hydraulic modeling software. The numerical model uses an unstructured numerical mesh and variable surface roughness, assigned according to observed land use and cover. The numerical model was calibrated using inundation extents and water surface elevations derived from the LiDAR data. It was also calibrated using high water marks and land survey data collected daily during the 2008 flood. The investigators compared the two calibrations to evaluate the benefit of high-resolution LiDAR data in improving the accuracy of a two-dimensional urban flood simulation.

  19. Solute Response To Arid-Climate Managed-River Flow During Storm Events

    NASA Astrophysics Data System (ADS)

    McLean, B.; Shock, E.

    2006-12-01

    Storm pulses are widely used in unmanaged, temperate and subtropical river systems to resolve in-stream surface and subsurface flow components. Resulting catchment-scale hydrochemical mixing models yield insight into mechanisms of solute transport. Managed systems are far more complicated due to the human need for high quality water resources, which drives processes that are superimposed on most, if not all, of the unmanaged components. As an example, an increasingly large portion of the water supply for the Phoenix metropolitan area is derived from multiple surface water sources that are impounded, diverted and otherwise managed upstream from the urban core that consumes the water and produces anthropogenic impacts. During large storm events this managed system is perturbed towards natural behavior as it receives inputs from natural hydrologic pathways in addition to impervious surfaces and storm water drainage channels. Our goals in studying managed river systems during this critical transition state are to determine how the well- characterized behavior of natural systems break down as the system responds then returns to its managed state. Using storm events as perturbations we can contrast an arid managed system with the unmanaged system it approaches during the storm event. In the process, we can extract geochemical consequences specifically related to unknown urban components in the form of chemical fingerprints. The effects of river management on solute behavior were assessed by taking advantage of several anomalously heavy winter storm events in late 2004 and early 2005 using a rigorous sampling routine. Several hundred samples collected between January and October 2005 were analyzed for major ion, isotopic, and trace metal concentrations with 78 individual measurements for each sample. The data are used to resolve managed watershed processes, mechanisms of solute transport and river mixing from anthropogenic inputs. Our results show that concentrations of major solutes change slowly and are independent of discharge downstream from the dams on two major tributaries. This is indicative of reservoir release water. In addition, a third input is derived from the Colorado River via the Central Arizona Project canal system. Cross plots including concentrations of solutes such as nitrate and sulfate from downstream of the confluence indicate at least three end-member sources, as do Piper diagrams using major anion and cation data. Dynamic contributions from natural event water and urban inputs can be resolved from the slowly changing release water, and may dictate the short-term transport of pollutants during the storm-induced transition state.

  20. Final Section of Australia's Moomba-Sydney line completed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ives, G. Jr.

    1976-12-01

    Newham-Techint Gas Line JV, a joint venture between Techint Engineering (Australia) Inc. and Eric Newham (Wallerawang) Pty. Ltd., has finished construction of the final 58-mile leg of the Moomba-Sydney gas line. More than half the line is owned by The Pipeline Authority (a goverment department); the remainder belongs to the privately owned Australian Gas Light Co. Along the right-of-way, the terrain varies from an open farm belt to some 28 miles of rugged sandstone requiring blasting and drilling. In addition, the excessive number of river (2) and stream (43) crossings presented considerable problems to work crews. At the river-crossing sections,more » the pipe was installed (with a minimum of 3-ft cover) in the dry after crews temporarily dammed the river.« less

  1. Release of Lariat Peanut

    USDA-ARS?s Scientific Manuscript database

    Lariat is a high-oleic runner-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) that has enhanced Sclerotinia blight and pod rot tolerance when compared to the cultivar Red River Runner. Lariat (experimental designation ARSOK-R35) is the result of a cross between cultivar Red River Ru...

  2. White River National Forest Hanging Lake transportation and operations study

    DOT National Transportation Integrated Search

    2017-05-01

    Hanging Lake is a recreation site located on land managed by the U.S. Forest Service (USFS) under the jurisdiction of the White River National Forests Eagle-Holy Cross Ranger District. Due to its increasing popularity over the past few years, the ...

  3. Seismic evaluation of the Tennessee River Bridges on Interstate 24 in Western Kentucky.

    DOT National Transportation Integrated Search

    2006-09-01

    This report presents the seismic evaluation of the approaches and parallel bridges on I-24 crossing the Tennessee River between Marshall and Livingston counties in Western Kentucky. The main bridges are steel tied-arch bridges. The bridges are situat...

  4. MODAS Validation in Littoral Areas Using GRASP

    DTIC Science & Technology

    2002-09-30

    result (4 hr) is guiding new work on calculation efficiency. Figure 4. Near-optimal coordinated passive search plan against a complex transitor ... Transitor tracks form a river of roughly parallel potential paths. The two searcher tracks criss- cross this river like shoe lacings over much of

  5. 75 FR 68022 - Notice of Final Federal Agency Actions on Proposed Highway in Illinois

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... Crossing over the Fox River between Illinois Route 31 and Illinois Route 25 in Kane County, Illinois. Those... trail across the Fox River from Illinois Route 31 (IL 31) to Illinois Route 25 (IL 25); a distance of 0...

  6. Carbon Dynamics on the Louisiana Continental Shelf and Cross-Shelf Feeding of Hypoxia

    EPA Science Inventory

    Large-scale hypoxia regularly develops during the summer on the Louisiana continental shelf. Traditionally, hypoxia has been linked to the vast winter and spring nutrient inputs from the Mississippi River and its distributary, the Atchafalaya River. However, recent studies indica...

  7. Flood prediction, its risk and mitigation for the Babura River with GIS

    NASA Astrophysics Data System (ADS)

    Tarigan, A. P. M.; Hanie, M. Z.; Khair, H.; Iskandar, R.

    2018-03-01

    This paper describes the flood prediction along the Babura River, the catchment of which is within the comparatively larger watershed of the Deli River which crosses the centre part of Medan City. The flood plain and ensuing inundation area were simulated using HECRAS based on the available data of rainfall, catchment, and river cross-sections. The results were shown in a GIS format in which the city map of Medan and other infrastructure layers were stacked for spatial analysis. From the resulting GIS, it can be seen that 13 sub-districts were likely affected by the flood, and then the risk calculation of the flood damage could be estimated. In the spirit of flood mitigation thoughts, 6 locations of evacuation centres were identified and 15 evacuation routes were recommended to reach the centres. It is hoped that the flood prediction and its risk estimation in this study will inspire the preparedness of the stakeholders for the probable threat of flood disaster.

  8. Long-term behaviour and cross-correlation water quality analysis of the River Elbe, Germany.

    PubMed

    Lehmann, A; Rode, M

    2001-06-01

    This study analyses weekly data samples from the river Elbe at Magdeburg between 1984 and 1996 to investigate the changes in metabolism and water quality in the river Elbe since the German reunification in 1990. Modelling water quality variables by autoregressive component models and ARIMA models reveals the improvement of water quality due to the reduction of waste water emissions since 1990. The models are used to determine the long-term and seasonal behaviour of important water quality variables. Organic and heavy metal pollution parameters showed a significant decrease since 1990, however, no significant change of chlorophyll-a as a measure for primary production could be found. A new procedure for testing the significance of a sample correlation coefficient is discussed, which is able to detect spurious sample correlation coefficients without making use of time-consuming prewhitening. The cross-correlation analysis is applied to hydrophysical, biological, and chemical water quality variables of the river Elbe since 1984. Special emphasis is laid on the detection of spurious sample correlation coefficients.

  9. Cathodic protection for pipelines crossing the Mackenzie River at Norman Wells, Northwest Territories, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiskel, B.J.; Wozniewski, A.

    This paper reports on an oil production facility at Norman Wells, N.W.T. The production is centered around the Mackenzie River with oil being produced from wells located on natural and artificial islands as well as from wells located on the mainland. Pipelines have been installed beneath the river to route production from the islands back to the central processing plant on the mainland. Cathodic protection was required for the pipelines crossing the Mackenzie River to prevent external corrosion in an environmentally sensitive area. Several difficulties were encountered in preparing an optimum cathodic design due to the unique production scheme, permafrostmore » and logistical problems associated with the northern location. An innovative approach was therefore required for the design, installation and testing of the cathodic protection system. This paper describes evolution of the cathodic protection system from a conventional one to a system utilizing a close groundbed concept and unique current return path.« less

  10. A comprehensive one-dimensional numerical model for solute transport in rivers

    NASA Astrophysics Data System (ADS)

    Barati Moghaddam, Maryam; Mazaheri, Mehdi; MohammadVali Samani, Jamal

    2017-01-01

    One of the mechanisms that greatly affect the pollutant transport in rivers, especially in mountain streams, is the effect of transient storage zones. The main effect of these zones is to retain pollutants temporarily and then release them gradually. Transient storage zones indirectly influence all phenomena related to mass transport in rivers. This paper presents the TOASTS (third-order accuracy simulation of transient storage) model to simulate 1-D pollutant transport in rivers with irregular cross-sections under unsteady flow and transient storage zones. The proposed model was verified versus some analytical solutions and a 2-D hydrodynamic model. In addition, in order to demonstrate the model applicability, two hypothetical examples were designed and four sets of well-established frequently cited tracer study data were used. These cases cover different processes governing transport, cross-section types and flow regimes. The results of the TOASTS model, in comparison with two common contaminant transport models, shows better accuracy and numerical stability.

  11. Channel Bank Cohesion and the Maintenance of Suspension Rivers

    NASA Astrophysics Data System (ADS)

    Dunne, K. B. J.; Jerolmack, D. J.

    2017-12-01

    Gravel-bedded rivers organize their channel geometry and grain size such that transport is close to the threshold of motion at bankfull. Sand-bedded rivers, however, typically maintain bankfull fluid shear (or Shields) stresses far in excess of threshold; there is no widely accepted explanation for these "suspension rivers". We propose that all alluvial rivers are at the threshold of motion for their erosion-limiting material, i.e., the structural component of the river cross-section that is most difficult to mobilize. The entrainment threshold of gravel is large enough that bank cohesion has little influence on gravel-bed rivers. Sand, however, is the most easily entrained material; silt and clay can raise the entrainment threshold of sand by orders of magnitude. We examine a global dataset of river channel geometry and show that the shear stress range for sand-bedded channels is entirely within the range of entrainment thresholds for sand-mud mixtures - suggesting that rivers that suspend their sandy bed material are still threshold rivers in terms of bank material. We then present new findings from a New Jersey coastal-plain river examining if and how river-bank toe composition controls hydraulic geometry. We consider the toe because it is the foundation of the river bank, and its erosion leads to channel widening. Along a 20-km profile of the river we measure cross-section geometry, bed slope, and bed and bank composition, and we explore multiple methods of measuring the threshold shear stress of the the river-bank toe in-situ. As the composition of the river bed transitions from gravel to sand, we see preliminary evidence of a shift from bed-threshold to bank-threshold control on hydraulic geometry. We also observe that sub-bankfull flows are insufficient to erode (cohesive) bank materials, even though transport of sand is active at nearly all flows. Our findings highlight the importance of focusing on river-bank toe material, which in the studied stream is always submerged. The toe is more compacted and more resistant to erosion than the subaerially-exposed upper bank. We find mounting evidence that sand-bedded rivers are much like gravel-bedded river; they are near-threshold channels in which the suspended load does not play a controlling role in the determination of equilibrium hydraulic geometry.

  12. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 24. Seismic Refraction Tomography for Volume Analysis of Saturated Alluvium in the Straight Creek Drainage and Its Confluence With Red River, Taos County, New Mexico

    USGS Publications Warehouse

    Powers, Michael H.; Burton, Bethany L.

    2007-01-01

    As part of a research effort directed by the New Mexico Environment Department to determine pre-mining water quality of the Red River at a molybdenum mining site in northern New Mexico, we used seismic refraction tomography to create subsurface compressional-wave velocity images along six lines that crossed the Straight Creek drainage and three that crossed the valley of Red River. Field work was performed in June 2002 (lines 1-4) and September 2003 (lines 5-9). We interpreted the images to determine depths to the water table and to the top of bedrock. Depths to water and bedrock in boreholes near the lines correlate well with our interpretations based on seismic data. In general, the images suggest that the alluvium in this area has a trapezoidal cross section. Using a U.S. Geological Survey digital elevation model grid of surface elevations of this region and the interpreted elevations to water table and bedrock obtained from the seismic data, we generated new models of the shape of the buried bedrock surface and the water table through surface interpolation and extrapolation. Then, using elevation differences between the two grids, we calculated volumes of dry and wet alluvium in the two drainages. The Red River alluvium is about 51 percent saturated, whereas the much smaller volume of alluvium in the tributary Straight Creek is only about 18 percent saturated. When combined with average ground-water velocity values, the information we present can be used to determine discharge of Straight Creek into Red River relative to the total discharge of Red River moving past Straight Creek. This information will contribute to more accurate models of ground-water flow, which are needed to determine the pre-mining water quality in the Red River.

  13. Reduced channel conveyance on the Wichita River at Wichita Falls, Texas, 1900-2009

    USGS Publications Warehouse

    Winters, Karl; Baldys, Stanley; Schreiber, Russell

    2010-01-01

    Recent floods on the Wichita River at Wichita Falls, Texas, have reached higher stages compared to historical floods of similar magnitude discharges. The U.S. Geological Survey (USGS) has operated streamflow-gaging station 07312500 Wichita River at Wichita Falls, Tex., since 1938 and flood measurements near the location of the present gage were first made in 1900. Floods recorded in 2007 and 2008 at this gaging station, including the record flood of June 30, 2007, reached higher stages compared to historical floods before 1972 of similar peak discharges. For flood measurements made at stages of more than 18 feet, peak stages were about 1 to 3 feet higher compared to peak stages of similar peak discharges measured before 1972. Flood measurements made at stages of more than 18 feet also indicate a decrease in the measured mean velocity from about 3.5 to about 2.0 feet per second from 1941 to 2008. The increase in stage and decrease in streamflow velocity for similar magnitude floods indicates channel conveyance has decreased over time. A study to investigate the causes of reduced channel conveyance in the Wichita River reach from Loop 11 downstream to River Road in Wichita Falls was done by the USGS in cooperation with the City of Wichita Falls. Historical photographs indicate substantial growth of riparian vegetation downstream from Loop 11 between 1950 and 2009. Aerial photographs taken between 1950 and 2008 also indicate an increase in riparian vegetation. Twenty-five channel cross sections were surveyed by the USGS in this reach in 2009. These cross sections were located at bridge crossings or collocated with channel cross sections previously surveyed in 1986 for use in a floodplain mapping study by the Federal Emergency Management Agency. Four channel cross sections 3,400 to 11,900 feet downstream from Martin Luther King Jr. Boulevard indicate narrowing of the channel. The remaining channel cross sections surveyed in 2009 by the USGS compared favorably with cross sections surveyed in 1986 for the Federal Emergency Management Agency, with no substantial differences noted. Comparison of channel cross sections surveyed in 2009 to those from historic bridge plans indicate no change in cross section has occurred at most of the bridges from Loop 11 downstream to River Road in Wichita Falls, except for obstructions noted at the Scott Avenue bridge and Martin Luther King Jr. bridge. Although obstructions in the channel at these bridges only partially block flow, they could also be contributing to reduced channel conveyance. Step-backwater profiles were used by the USGS to verify channel roughness. The main channel roughness coefficients (Manning's n values) from 2009 surveys were virtually unchanged from those used in a 1991 hydraulic model done for the Federal Emergency Management Agency. The average overbank roughness coefficient (Manning's n value) was 0.15, more than double the value of 0.06 used in the 1991 hydraulic model. Increased overbank vegetation has resulted in higher stages conveying the same amount of discharge, particularly for discharges more than 4,000 cubic feet per second.

  14. Analysis of mutagenic activity of biohazardous organics in Kanawha River sediments. Technical completion report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A.R.; Waldron, M.C.

    1988-01-01

    Residual chemical contamination of Kanawha River sediments may constitute a health hazard. Sediment cores have been analyzed using a coupled bioassay/chemical fractionation procedure. Both bacterial mutagenicity and sister chromatid exchange (SCE) analyses were conducted on sediment samples. Pocatalico River sediments extracts showed no response in either bacterial mutagenicity assay or SCE assay. Extracts from Armour Creek and the Kanawha River induced mutagenicities in the presence of S9 enzymes. The same extracts produced a significant increase in human chromosomal cross-over events.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Shiraj; Ganguly, Auroop R; Bandyopadhyay, Sharba

    Cross-spectrum analysis based on linear correlations in the time domain suggested a coupling between large river flows and the El Nino-Southern Oscillation (ENSO) cycle. A nonlinear measure based on mutual information (MI) reveals extrabasinal connections between ENSO and river flows in the tropics and subtropics, that are 20-70% higher than those suggested so far by linear correlations. The enhanced dependence observed for the Nile, Amazon, Congo, Paran{acute a}, and Ganges rivers, which affect large, densely populated regions of the world, has significant impacts on inter-annual river flow predictabilities and, hence, on water resources and agricultural planning.

  16. Butterfly Dam, Cross section AA/South Elevation at Movable Leaf, Longitudinal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Butterfly Dam, Cross section A-A/South Elevation at Movable Leaf, Longitudinal Section B-B - Chicago Sanitary and Ship Canal, Butterfly Dam, Illinois Waterway River Mile 293.1, Lockport, Will County, IL

  17. Achievement of Abraham Maslow's Needs Hierarchy Theory among Teachers: Implications for Human Resource Management in the Secondary School System in Rivers State

    ERIC Educational Resources Information Center

    Adiele, E.E.; Abraham, Nath. M.

    2013-01-01

    The study investigated the achievement of Abraham Maslow's need hierarchy theory among secondary school teachers in Rivers State. A 25-item questionnaire was designed, validated and administered on a sample of 500 teachers drawn from 245 secondary schools in Rivers State. The result revealed that secondary school teachers indicated insignificant…

  18. Sedimentation Impacts Modeling for the Lower Elwha River

    NASA Astrophysics Data System (ADS)

    Beggs, M.; Kosaka, M.; Sigel, A.; Vandermause, R.; Lauer, J. W.

    2012-12-01

    The removal of Glines Canyon and Elwha Dams from the Elwha River, northwest Washington, is intended to restore natural geomorphic and ecological processes to the Elwha River basin. Prior to the start of dam removal, over 16 million cubic meters of sediment had accumulated in the reservoirs above the two dams. As dam removal progresses, a portion of this sediment will erode and then be deposited on the downstream river bed and floodplain. To address uncertainty in downstream response to the project, the United States Bureau of Reclamation is implementing an adaptive management plan that relies upon continuous monitoring of water levels at a set of stream gages along the river. To interpret the monitoring data and allow for rapid assessment of the rate of downstream sedimentation, we developed rating curves at several locations along the lower Elwha River. The curves consider a range of possible sedimentation scenarios, each involving different sedimentation levels and/or locations. One scenario considers sedimentation primarily in the river channel, another considers sedimentation primarily on the floodplain, and a third considers both possibilities in tandem. We modeled these scenarios using two separate approaches. First, we modified the cross sections in an existing U.S. Army Corps of Engineers HEC-RAS model to represent possible changes associated with geomorphic adjustment to the dam removals. In-channel sedimentation was assumed to occur as a constant fraction of the bankfull depth at any given section, thereby focusing geomorphic change in relatively deep pool areas. In the HEC-RAS model, off-channel sedimentation was assumed uniform. The HEC-RAS model showed that both low-flow and flood hydraulics are much more sensitive to plausible levels of in-channel sedimentation than to plausible levels of overbank sedimentation. The wide floodplain, complex secondary channels, and geomorphic evolution since the original cross sections were surveyed raise some questions regarding the validity of our 1-D HEC-RAS results and motivated our second approach, which involved developing an independent 2-D hydraulic model using the U.S. Bureau of Reclamation SRH-2d program. This model had the added benefit of being able to utilize more recently surveyed bathymetric and topographic data. The 2-D model was used to improve the representation of spatial variability of likely floodplain sedimentation. For this, we used a preliminary run of the program to characterize the water surface elevation for a typical flood event. We then used the modeled water surface as an input for an eight direction pour point determination of flow direction in ArcGIS. This allowed us to approximate the flow distance from the main channel along streamlines crossing the floodplain. Using observed levee morphology, we developed an ad-hoc exponential function for overbank sedimentation as a function of flow distance from the channel. This tended to focus deposition on natural levees at the upstream side of point bars or meander necks. Despite the more narrowly focused zone of floodplain sedimentation, however, the results were consistent with the 1-D result that in-channel sedimentation is like to have a greater relative impact on system-wide hydraulics than does overbank sedimentation.

  19. Application of acoustic velocity meters for gaging discharge of three low-velocity tidal streams in the St. Johns River basin, northeast Florida

    USGS Publications Warehouse

    Sloat, J.V.; Gain, W.S.

    1995-01-01

    Index-velocity data collected with acoustic velocity meters, stage data, and cross-sectional area data were used to calculate discharge at three low-velocity, tidal streamflow stations in north-east Florida. Discharge at three streamflow stations was computed as the product of the channel cross-sectional area and the mean velocity as determined from an index velocity measured in the stream using an acoustic velocity meter. The tidal streamlflow stations used in the study were: Six Mile Creek near Picolata, Fla.; Dunns Creek near Satsuma, Fla.; and the St. Johns River at Buffalo Bluff. Cross-sectional areas at the measurement sections ranged from about 3,000 square feet at Six Mile Creek to about 18,500 square feet at St. Johns River at Buffalo Bluff. Physical characteristics for all three streams were similar except for drainage area. The topography primarily is low-relief, swampy terrain; stream velocities ranged from about -2 to 2 feet per second; and the average change in stage was about 1 foot. Instantaneous discharge was measured using a portable acoustic current meter at each of the three streams to develop a relation between the mean velocity in the stream and the index velocity measured by the acoustic velocity meter. Using least-squares linear regression, a simple linear relation between mean velocity and index velocity was determined. Index velocity was the only significant linear predictor of mean velocity for Six Mile Creek and St. Johns River at Buffalo Bluff. For Dunns Creek, both index velocity and stage were used to develop a multiple-linear predictor of mean velocity. Stage-area curves for each stream were developed from bathymetric data. Instantaneous discharge was computed by multiplying results of relations developed for cross-sectional area and mean velocity. Principal sources of error in the estimated discharge are identified as: (1) instrument errors associated with measurement of stage and index velocity, (2) errors in the representation of mean daily stage and index velocity due to natural variability over time and space, and (3) errors in cross-sectional area and mean-velocity ratings based on stage and index velocity. Standard errors for instantaneous discharge for the median cross-sectional area for Six Mile Creek, Dunns Creek, and St. Johns River at Buffalo Bluff were 94,360, and 1,980 cubic feet per second, respectively. Standard errors for mean daily discharge for the median cross-sectional area for Six Mile Creek, Dunns Creek, and St. Johns River at Buffalo Bluff were 25, 65, and 455 cubic feet per second, respectively. Mean daily discharge at the three sites ranged from about -500 to 1,500 cubic feet per second at Six Mile Creek and Dunns Creek and from about -500 to 15,000 cubic feet per second on the St. Johns River at Buffalo Bluff. For periods of high discharge, the AVM index-velocity method tended to produce estimates accurate with 2 to 6 percent. For periods of moderate discharge, errors in discharge may increase to more than 50 percent. At low flows, errors as a percentage of discharge increase toward infinity.

  20. Managing Environmental Flows for Impounded Rivers in Semi-Arid Regions- A Habitat Suitability Index (HSI) Approach for the Assessment of River Habitat for Salmonid Populations

    NASA Astrophysics Data System (ADS)

    Pai, H.; Sivakumaran, K.; Villamizar, S. R.; Flanagan, J.; Guo, Q.; Harmon, T. C.

    2013-12-01

    Balancing ecosystem health in water-scarce, agriculturally dominated river basins remains a challenge. In dry water years, maintaining conditions for restored and sustained indigenous fish populations (a frequently used indicator for ecosystem health) is particularly challenging. Competing human demands include urban and agricultural water supplies, hydropower, and flood control. In many semi-arid regions, increasing drought intensity and frequency under future climate scenarios will combine with population increases to water scarcity. The goal of this work is to better understand how reservoir releases affect fish habitat and overall river aquatic ecosystem quality. Models integrating a diverse array of physical and biological processes and system state are used to forecast the river ecosystem response to changing drivers. We propose a distributed parameter-based Habitat Suitability Index (HSI) approach for assessing fish habitat quality. Our river ecosystem HSI maps are based on a combination of the following: (1) In situ data describing stream flow and water quality conditions; (2) Spatial observations, including surveyed cross-sections, aerial imagery and digital elevation maps (DEM) of the river and its riparian corridor; and (3) Simulated spatially distributed water depths, flow velocities, and temperatures estimated from 1D and 2D river flow and temperature models (HEC-RAS and CE-QUAL-W2, respectively). With respect to (2), image processing schemes are used to classify and map key habitat features, namely riparian edge and shallow underwater vegetation. HSI maps can be modified temporally to address specific life cycle requirements of indicator fish species. Results are presented for several reaches associated with the San Joaquin River Restoration Project, focusing on several components of the Chinook salmon life cycle. HSI maps and interpretations are presented in the context of a range of prescribed reservoir release hydrographs linked to California water year descriptors (wet, dry, critical low, etc.). Implications are discussed with respect to effective reservoir operation (requisite flow releases and temperature) and restorative actions (e.g., riparian vegetation) in the context of habitat suitability.

  1. 76 FR 79098 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... County. Approximately 0.9 mile +3089 downstream of Black Angus Lane. Redwater River Approximately 1,200... Crosse County, Wisconsin, and Incorporated Areas Docket No. FEMA-B-1155 Black River Approximately 0.5... Federal Domestic Assistance No. 97.022, ``Flood Insurance.'') Dated: December 5, 2011. Sandra K. Knight...

  2. 75 FR 59188 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... of South Sioux the Missouri River. City. Approximately 200 feet None +1092 downstream of West 29th...) Effective Modified Tuscola County, Michigan (All Jurisdictions) Cass River Approximately 180 feet +635 +634 City of Vassar, downstream of the CSX Township of Tuscola, Railroad crossing. At Kirk Road, extended...

  3. 27 CFR 9.112 - Arkansas Mountain.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... eastward along Highway 71 until it crosses Rock Creek. (v) Then northeastward along Rock Creek to Petit Jean Creek. (vi) Then generally northeastward and eastward along Petit Jean Creek until it becomes the Petit Jean River (on the Russellville map). (vii) Then generally eastward along the Petit Jean River...

  4. 27 CFR 9.112 - Arkansas Mountain.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... eastward along Highway 71 until it crosses Rock Creek. (v) Then northeastward along Rock Creek to Petit Jean Creek. (vi) Then generally northeastward and eastward along Petit Jean Creek until it becomes the Petit Jean River (on the Russellville map). (vii) Then generally eastward along the Petit Jean River...

  5. 27 CFR 9.112 - Arkansas Mountain.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... eastward along Highway 71 until it crosses Rock Creek. (v) Then northeastward along Rock Creek to Petit Jean Creek. (vi) Then generally northeastward and eastward along Petit Jean Creek until it becomes the Petit Jean River (on the Russellville map). (vii) Then generally eastward along the Petit Jean River...

  6. 27 CFR 9.112 - Arkansas Mountain.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... eastward along Highway 71 until it crosses Rock Creek. (v) Then northeastward along Rock Creek to Petit Jean Creek. (vi) Then generally northeastward and eastward along Petit Jean Creek until it becomes the Petit Jean River (on the Russellville map). (vii) Then generally eastward along the Petit Jean River...

  7. CROSS-INDUCTION OF PYRENE AND PHENANTHRENE IN MYCOBACTERIUM SP. ISOLATED FROM POLYCYCLIC AROMATIC HYDROCARBON CONTAMINATED RIVER SEDIMENTS

    EPA Science Inventory

    A polycyclic aromatic hydrocarbon (PAH)-degrading culture enriched from contaminated river sediments and a Mycobacterium sp. isolated from the enrichment were tested to investigate the possible synergistic and antagonistic interactions affecting the degradation of pyrene in the p...

  8. Field evaluation of the error arising from inadequate time averaging in the standard use of depth-integrating suspended-sediment samplers

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Wright, Scott A.; Melis, Theodore S.

    2011-01-01

    Several common methods for measuring suspended-sediment concentration in rivers in the United States use depth-integrating samplers to collect a velocity-weighted suspended-sediment sample in a subsample of a river cross section. Because depth-integrating samplers are always moving through the water column as they collect a sample, and can collect only a limited volume of water and suspended sediment, they collect only minimally time-averaged data. Four sources of error exist in the field use of these samplers: (1) bed contamination, (2) pressure-driven inrush, (3) inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration, and (4) inadequate time averaging. The first two of these errors arise from misuse of suspended-sediment samplers, and the third has been the subject of previous study using data collected in the sand-bedded Middle Loup River in Nebraska. Of these four sources of error, the least understood source of error arises from the fact that depth-integrating samplers collect only minimally time-averaged data. To evaluate this fourth source of error, we collected suspended-sediment data between 1995 and 2007 at four sites on the Colorado River in Utah and Arizona, using a P-61 suspended-sediment sampler deployed in both point- and one-way depth-integrating modes, and D-96-A1 and D-77 bag-type depth-integrating suspended-sediment samplers. These data indicate that the minimal duration of time averaging during standard field operation of depth-integrating samplers leads to an error that is comparable in magnitude to that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. This random error arising from inadequate time averaging is positively correlated with grain size and does not largely depend on flow conditions or, for a given size class of suspended sediment, on elevation above the bed. Averaging over time scales >1 minute is the likely minimum duration required to result in substantial decreases in this error. During standard two-way depth integration, a depth-integrating suspended-sediment sampler collects a sample of the water-sediment mixture during two transits at each vertical in a cross section: one transit while moving from the water surface to the bed, and another transit while moving from the bed to the water surface. As the number of transits is doubled at an individual vertical, this error is reduced by ~30 percent in each size class of suspended sediment. For a given size class of suspended sediment, the error arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration depends only on the number of verticals collected, whereas the error arising from inadequate time averaging depends on both the number of verticals collected and the number of transits collected at each vertical. Summing these two errors in quadrature yields a total uncertainty in an equal-discharge-increment (EDI) or equal-width-increment (EWI) measurement of the time-averaged velocity-weighted suspended-sediment concentration in a river cross section (exclusive of any laboratory-processing errors). By virtue of how the number of verticals and transits influences the two individual errors within this total uncertainty, the error arising from inadequate time averaging slightly dominates that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. Adding verticals to an EDI or EWI measurement is slightly more effective in reducing the total uncertainty than adding transits only at each vertical, because a new vertical contributes both temporal and spatial information. However, because collection of depth-integrated samples at more transits at each vertical is generally easier and faster than at more verticals, addition of a combination of verticals and transits is likely a more practical approach to reducing the total uncertainty in most field situatio

  9. Climate Compatible Development in the Mongolia Steppe: analysis of vulnerability and adaptation response to global changes

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Togtokh, C.; Galvin, K. A.

    2015-12-01

    INTRODUCTION: Climate change and variability, market and policy changes are shaping pastoral communities' decisions on what pathways their future livelihoods will take and how the steppe landscapes and river basins, are managed. Recent droughts and damaging winter storms (zuds) of the past two decades have exacerbated the situation and undermined the natural capital on which the pastoral livelihoods depend upon. River basins are critical natural resources well-being of social-ecological systems in Mongolia. River basins provide the ecosystem services which support pastoral communities and industrial and urban development. Green development strategies are strongly dependent on water resources. Consequently, integrated planning of river basin management is needed to maintain these critical ecosystem services to meet the multiple needs of livelihoods of communities in these basins and to support sustainable development activities within the basins. For this study our team worked in nine sums (i.e., county level administrative areas) in three river basins in two provinces (aimags) to collect household data from 144 households. We also collected census data from the aimags and national level to understand trends at the level of ecosystems and river basins. We have selected 3 sums in each river basis, representing forest steppe, steppe and desert steppe regions for comparison across river basins and ecological zones. FINDINGS: Integrated planning efforts would be enhanced through, one, use of a social-ecological framework and, two, the development of a cross-ministerial working group to address natural resource considerations. Across the three basins agriculture, pastoral, industrial, and urban needs vie for similar ecosystem services. The natural capital and ecosystem services of these basins need to be assessed to understand the vulnerability and capacity of the resources. The most frequently listed "best coping strategy" across all ecosystem types was for herders to have better cooperation, both among themselves and with administrators. They frequently expressed the idea that people working alone can't accomplish anything in comparison to when they work together. Development of cross ministry and cross-sectoral working groups were viewed as one such mechanism.

  10. Water-quality data for the Ohio River from New Cumberland Dam to Pike Island Dam, West Virginia and Ohio, May-October 1993

    USGS Publications Warehouse

    Miller, K.F.; Messinger, Terence; Waldron, M.C.; Faulkenburg, C.W.

    1996-01-01

    This report contains water-quality data for the Ohio River from river mile 51.1 (3.3 miles upstream from New Cumberland Dam) to river mile 84.0 (0.2 miles upstream from Pike Island Dam) that were collected during the summer and fall of 1993. The data were collected to establish the water quality of the Ohio River and to use in assessing the proposed effects of hydropower development on the water quality of the Ohio River. Water quality was determined by a combination of repeated synoptic field measurements, continuous-record monitoring, and laboratory analyses. Synoptic measurements were made along a longitudinal transect with 18 mid-channel sampling sites; cross-sectional transects of water-quality measurements were made at 5 of these sites. Water-quality measurements also were made at two sites located on the back-channel (Ohio) side of Browns Island. At each longitudinal-transect and back-channel sampling site, measurements were made of specific conductance, pH, water temperature, and dissolved oxygen conentration. Longitudinal-transect and back-channel stations were sampled at four depths (at the surface, about 3.3 feet below the surface, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three to four detailed vertical profiles of the same characteristics. Water samples were collected from three depths at the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phytoplankton photosynthetic pigments chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi-disk transparency) were made at pigment-sampling locations whenever light and river-surface conditions were appropriate. Synoptic sampling usually was completed in 12 hours or less and was repeated 10 times from May through October 1993. Continuous-record monitoring of water quality consisted of hourly measurements of specific conductance, pH, water temperature, and dissolved oxygen concentration, made at a depth of 6.6 feet upstream and downstream of New Cumberland Dam. Continuous monitors were operated from May through October 1993.

  11. Water-quality data for the Ohio River from Willow Island Dam to Belleville Dam, West Virginia and Ohio, May-October 1993

    USGS Publications Warehouse

    Miller, K.F.

    1996-01-01

    This report contains water-quality data for the Ohio River from river mile 160.6 (1.1 mile upstream from Willow Island Dam) to river mile 203.6 (0.3 mile upstream from Belleville Dam) that were collected during the summer and fall of 1993. The data were collected to establish the water quality of the Ohio River and to use in assessing the proposed effects of hydropower development on the water quality of the Ohio River. Water quality was monitored by a combination of synoptic field measurements, laboratory analyses, and continuous- record monitoring. Field measurements of water- quality characteristics were made along a longitudinal transect with 24 mid-channel sampling sites; cross-sectional transects of water-quality measurements were made at six of these sites. Water-quality measurements also were made at six sites located on the back-channel (West Virginia) sides of Marietta, Muskingum, and Blennerhassett Islands. At each longitudinal-transect and back- channel sampling site, measurements of specific conductance, pH, water temperature, and dissolved oxygen concentration were made at three depths (about 3.3 feet below the surface of the water, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three to four detailed vertical profiles of the same characteristics. Water samples were collected at three depths in the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phytoplankton chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi disk transparency) were made at phytoplankton- pigment-sampling locations whenever light and river-surface conditions were appropriate. Each synoptic sampling event was completed in 2 days or less. The entire network was sampled 10 times from May 24 to October 27, 1993. Continuous-record monitoring of water quality consisted of hourly measurments of specific conductance, pH, water temperature, and dissolved oxygen concentration that were made at a depth of 6.6 feet at the ends of the upstream and downstream wingwalls at Willow Island Dam. Continuous-record monitors were operated from May through October 1993.

  12. 78 FR 30870 - Nomination of Existing Marine Protected Areas to the National System of Marine Protected Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... Reserve Big Flat State Marine Conservation Area Big River Estuary State Marine Conservation Area Bird Rock... Conservation Area Navarro River Estuary State Marine Conservation Area Painted Cave (Santa Cruz Island) State... Marine Conservation Area Ten Mile Estuary State Marine Conservation Area Ten Mile State Marine Reserve...

  13. Variational Assimilation of Sparse and Uncertain Satellite Data For 1D Saint-Venant River Models

    NASA Astrophysics Data System (ADS)

    Garambois, P. A.; Brisset, P.; Monnier, J.; Roux, H.

    2016-12-01

    Profusion of satellites are providing increasingly accurate measurements of continental water cyle, and water bodies variations while in situ observability is declining. The future Surface Water and Ocean Topography (SWOT) mission will provide maps of river surface elevations widths and slopes with an almost global coverage and temporal revisits. This will offer the possibility to address a larger variety of inverse problems in surface hydrology. Data assimilation techniques, that are broadly used in several scientific fields, aim to optimally combine models, system observations and prior information. Variational assimilation consists in iterative minimization of a discrepency measure between model outputs and observations, here for retrieving boundary conditions and parameters of a 1D Saint Venant model. Nevertheless, inferring river discharge and hydraulic parameters thanks to the observation of river surface is not straightforward. This is particularly true in the case of sparse and uncertain observations of flow state variables since they are governed by nonlinear physical processes. This paper investigates the identifiability of hydraulic controls given sparse and uncertain satellite observations of a river. The identifiability of river discharge alone and with roughness is tested for several spatio temporal patterns of river observations, including SWOT like observations. A new 1D Shallow water model with variational data assimilation, within the DassFlow chain is presented as well as postprocessing and observation operator dedicated to the future SWOT and SWOT simulator data. In view to decrease inverse problem dimensionality discharge is represented in a reduced basis. Moreover we introduce an original and reduced parametrization of the flow resistance that can account for various flow regimes along with a cross section design dedicated to remote sensing. We show which discharge temporal frequencies can be identified w.r.t observation ones and at which accuracy. Eventually the important question of the discharge identifiability potential between observation times and depending on the spatio-temporal sampling is adressed with respect to the wave lengths of the hydrological signals.

  14. Limiting the development of riparian vegetation in the Isère River: physical and numerical modelling study

    NASA Astrophysics Data System (ADS)

    Claude, Nicolas; El Kadi Abderrezzak, Kamal; Duclercq, Marion; Tassi, Pablo; Leroux, Clément

    2017-04-01

    The Isère River (France) has been strongly impacted during the 19th and 20th centuries by human activities, such as channelization, sediment dredging and damming. The hydrology and river morphodynamic have been significantly altered, thereby leading to riverbed incision, a decrease in submersion frequency of gravel bars and an intense development of riparian vegetation on the bars. The flood risk has increased due to the reduction of the flow conveyance of the river, and the ecological status of the river has been degraded. To face these issues, a research program involving EDF and French state authorities has been recently initiated. Modification of the current hydrology, mainly controlled by dams, and definition of a new bed cross-sectional profile, are expected to foster the submersion frequency and mobility of the bars, thus limiting the riparian development. To assess the performance of these mitigating solutions, a physical and numerical modelling study has been conducted, applied to a 2 km long reach of the Isère River. The experimental setup consists of an undistorted movable bed designed to ensure the similarity of the Froude number and initial conditions for sediment particle motion. The resulting physical model is 35 m long and 2.6 m wide, with sand mixture composed of three grain size classes. The numerical simulations performed with the Telemac Modelling System (www.opentelemac.org) show, for the current morphology, a limited sediment mobility and submersion for flow discharge lower than 400 m3/s, confirming that the actual conditions in the Isère River promote the development of riparian vegetation. Different new bed geometry profiles have been evaluated using the numerical model. Then two configurations, one based on the creation of deflecting bedforms in the thalweg and one based on the transformation of the long bars into small central bars, have been selected and modelled with the physical model.

  15. OPERATION COBRA. Deliberate Attack, Exploitation

    DTIC Science & Technology

    1984-05-25

    to attack Sens, then continue to Troyes , on the Seine River. CCA was in the north, crossing the Loing River at Souppes against light resistance and...advanced from Troyes and prepared positions close to Sens. Under strong artillery support, a task force from CCA (TF Oden) attacked the enemy frontally...movement towards the Seine River on 24 August with an advance toward Troyes . Facing the combat command were what remained of the 51st SS Brigade, light

  16. River bed Elevation Changes and Increasing Flood Hazards in the Nisqually River at Mount Rainier National Park, Washington

    NASA Astrophysics Data System (ADS)

    Halmon, S.; Kennard, P.; Beason, S.; Beaulieu, E.; Mitchell, L.

    2006-12-01

    Mount Rainier, located in Southwestern Washington, is the most heavily glaciated volcano of the Cascade Mountain Range. Due to the large quantities of glaciers, Mount Rainier also has a large number of braided rivers, which are formed by a heavy sediment load being released from the glaciers. As sediment builds in the river, its bed increases, or aggrades,its floodplain changes. Some contributions to a river's increased sediment load are debris flows, erosion, and runoff, which tend to carry trees, boulders, and sediment downstream. Over a period of time, the increased sediment load will result in the river's rise in elevation. The purpose of this study is to monitor aggradation rates, which is an increase in height of the river bed, in one of Mount Rainier's major rivers, the Nisqually. The studied location is near employee offices and visitor attractions in Longmire. The results of this study will also provide support to decision makers regarding geological hazard reduction in the area. The Nisqually glacier is located on the southern side of the volcano, which receives a lot of sunlight, thus releasing large amounts of snowmelt and sediment in the summer. Historical data indicate that several current features which may contribute to future flooding, such as the unnatural uphill slope to the river, which is due to a major depositional event in the late 1700s where 15 ft of material was deposited in this area. Other current features are the glaciers surrounding the Nisqually glacier, such as the Van Trump and Kaultz glaciers that produced large outbursts, affecting the Nisqually River and the Longmire area in 2001, 2003, and 2005. In an effort to further explore these areas, the research team used a surveying device, total station, in the Nisqually River to measure elevation change and angles of various positions within ten cross sections along the Longmire area. This data was then put into GIS for analyzation of its current sediment level and for comparison to previous cross sections, which were in 1993 and 2005. Results of the data analysis revealed changes in altitude of the sediment, as well as new areas of built up sediment. For example, a 7 foot increase in elevation, which was not revealed in the 2005 data, indicated there was an increased amount of debris that traveled from upstream. Further data will be obtained once all the cross sections are completed and data is closer analyzed.

  17. A systematic overview of the coincidences of river sinuosity changes and tectonically active structures in the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Petrovszki, Judit; Székely, Balázs; Timár, Gábor

    2012-12-01

    As tectonic movements change the valley slope (low-gradient reaches of valleys, in sedimentary basins), the alluvial rivers, as sensitive indicators, respond to these changes, by varying their courses to accommodate this forcing. In our study sinuosity values, a commonly used characteristic parameter to detect river pattern changes, were studied for the major rivers in the Pannonian Basin in order to reveal neotectonic influence on their planform shape. Our study area comprises the entire Pannonian Basin (330,000 km2) located in eastern Central-Europe, bounded by the Alps, Carpathians and Dinarides. The studied rivers were mostly in their natural meandering state before the main river regulations of the 19th century. The last quasi-natural, non-regulated river planforms were surveyed somewhat earlier, during the Second Military Survey of the Habsburg Empire. Using the digitized river sections of that survey, the sinuosities of the rivers were calculated with different sample section sizes ranging from 5 km to 80 km. Depending on the bank-full discharge, also a 'most representative' section size is given, which can be connected to the neotectonic activity. In total, the meandering reaches of 28 rivers were studied; their combined length is 7406 km. The places where the river sinuosity changed were compared to the structural lines of the "Atlas of the present-day geodynamics of the Pannonian Basin" (Horváth et al., 2006). 36 junctions along 26 structural lines were identified where the fault lines of this neotectonic map crossed the rivers. Across these points the mean sinuosity changed. Depending on the direction of the relative vertical movements, the sinuosity values increased or decreased. There were some points, where the sinuosity changed in an opposite way. Along these sections, the rivers belong to the range of unorganized meandering or there are lithological margins. Assuming that the rivers indicate on-going faulting accurately, some places were found, where positioning of the faults of the neotectonic map could be improved according to the sinuosity jumps. However, some significant sinuosity changes cannot be correlated to known faults. In these cases other factors may play a role (e.g., hydrological changes, increase of sediment discharge also can modify sinuosity). In order to clarify the origin of these changes seismic sections and other geodynamical information should be analyzed to prove or disprove tectonic relationship if hydrological reasons can be excluded.

  18. Abundance and reproduction of toads (Bufo) along a regulated river in the southwestern United States: Importance of flooding in riparian ecosystems

    Treesearch

    H. L. Bateman; M. J. Harner; A. Chung-MacCoubrey

    2008-01-01

    Abundance and size of toads (Bufo woodhousii and B. cognatus) were related to precipitation, river flow, and groundwater over 7 years along the Middle Rio Grande, a regulated river in the semi-arid southwestern United States. Toads were monitored in riparian areas at 12 sites spanning 140 km of river during summers 2000­2006....

  19. Nest site ecology of the Cross River gorilla at the Kagwene Gorilla Sanctuary, Cameroon, with special reference to anthropogenic influence.

    PubMed

    De Vere, Ruth A; Warren, Ymke; Nicholas, Aaron; Mackenzie, Mary E; Higham, James P

    2011-03-01

    The Cross River gorilla is the most endangered of all Great Apes. It is currently found in 14 apparently geographically separate and increasingly isolated populations, which face severe threats from habitat loss and the bushmeat trade. Recent years have seen greater efforts to conserve the Cross River gorilla across the landscape, but details of the ecology of individual populations that might help in conservation initiatives are lacking. Here, we report on the production of the first habitat map for the recently created Kagwene Gorilla Sanctuary (KGS), Cameroon, and the results of an analysis of nest site preferences of the gorillas that live there. Qualitative vegetation assessments were made to assign various categories to the topstory and understory throughout the sanctuary, and nest sites constructed between January 2006 and March 2008 were re-visited and assessed for possible site preferences. The habitat map revealed significant anthropogenic impact, with only 57% of the KGS being relatively undisturbed primary forest. Analysis of nest sites showed that ground nests are constructed preferentially in the dry season, on precipitous slopes, in light gaps and clearings, with an understory of mixed herbs. Tree nests are predominantly built in the wet season, in primary forest with saplings as the preferred understory. Gorillas avoid nesting in grasslands and farms, which visibly fragment the remaining forest in the sanctuary. The results have implications for the conservation and management of the Cross River gorilla at KGS, and offer new insight into the nesting ecology of this subspecies. 2010 Wiley-Liss, Inc.

  20. Temporal Differences in Flow Depth and Velocity Distributions and Hydraulic Microhabitats Near Bridges of the Lower Platte River, Nebraska, 1934-2006

    USGS Publications Warehouse

    Ginting, Daniel; Zelt, Ronald B.

    2008-01-01

    As part of a collaborative study of the cumulative impacts on stream and riparian ecology of water and channel management practices in the lower Platte River, Nebraska, this report describes a study by the U.S. Geological Survey in cooperation with the Lower Platte South Natural Resources District that summarizes: (1) temporal differences in distribution of streamflow depth, velocity, and microhabitats among five discrete 11-water-year periods 1934-44, 1951-61, 1966-76, 1985-95, and 1996-2006, and (2) the effects of bridge proximity on distribution of streamflow depth, velocity, and microhabitat of the Platte River when cross sections were measured at a similar discharge. The scope of the study included the four presently (2008) active streamflow-gaging stations located near bridges over the lower Platte River at North Bend, near Leshara, near Ashland, and at Louisville, Nebraska, and the most downstream streamflow-gaging station within the central Platte River segment near Duncan, Nebraska. Generally, in cases where temporal differences in streamflow depth and velocity were evident, at least one of the water-year periods from 1934 through 1995 had deeper streamflow than the recent water-year period (1996-2006). Temporal differences in distributions of streamflow depth were not strongly associated with differences in either climatic conditions or the maximum peak flow that occurred prior to the latest discharge measurement during each period. The relative cross-sectional area of most hydraulic niches did not differ among the water-year periods. Part of this apparent uniformity likely was an artifact of the broad microhabitat classification used for this study. In cases where temporal differences in relative cross-sectional area of hydraulic niches were evidenced, the differences occurred during high- and low-flow conditions, not during median flow conditions. The temporal differences in relative cross-sectional area were found more frequently for hydraulic niches defined by moderate and fast velocities than for hydraulic niches defined by slow velocities. Generally, any significant increase or decrease in the relative cross-sectional areas of hydraulic niches during the water-year periods from 1934 through 1995 had disappeared during the most recent water-year period, 1996-2006. Deep-Swift niche was the predominant hydraulic niche for all near-bridge sites on the lower Platte River for high- and median-flow conditions. The Deep-Swift niche also was the predominant niche for the near-bridge sites near Ashland and at Louisville for low-flow conditions; for the near-bridge sites at North Bend and near Leshara, streamflow cross-sectional areas during low-flow conditions were shared among the Shallow-Moderate, Intermediate-Moderate, Intermediate-Swift, and Deep-Swift hydraulic niches. For the near-bridge site near Duncan, the site farthest downstream in the central Platte River system, the Deep-Swift hydraulic niche was predominant only during high-flow conditions; during median- and low-flow conditions the relative cross-sectional area was shared among the Shallow-Slow, Shallow-Moderate, Intermediate-Moderate, and Intermediate-Swift hydraulic niches. Significant temporal differences in the relative cross-sectional area of the Deep-Swift hydraulic niche were found for sites near the two farthest downstream bridges near Ashland and at Louisville, but only for low-flow conditions. The Deep-Swift microhabitat was of special interest because it is the preferred hydraulic habitat during the adult life of the endangered pallid sturgeon (Scaphirhynchus albus). Temporal differences in relative cross-sectional areas of the Glide low-flow geomorphic microhabitat that contained the Deep-Swift hydraulic niche also indicated that relative cross-sectional areas of the Glide during the 1951-61 and 1996-2006 water-year periods were lower than during the 1966-76 period. The temporal differences indicated that any significant temporal chang

  1. Out of Africa: the importance of rivers as human migration corridors

    NASA Astrophysics Data System (ADS)

    Ramirez, J. A.; Coulthard, T. J.; Rogerson, M.; Barton, N.; Bruecher, T.

    2013-12-01

    The route and timing of Homo sapiens exiting Africa remains uncertain. Corridors leading out of Africa through the Sahara, the Nile Valley, and the Red Sea coast have been proposed as migration routes for anatomically modern humans 80,000-130,000 years ago. During this time climate conditions in the Sahara were wetter than present day, and monsoon rainfall fed rivers that flowed across the desert landscape. The location and timing of these rivers may have supported human migration northward from central Africa to the Mediterranean coast, and onwards to Europe or Asia. Here, we use palaeoclimate rainfall and a hydrological model to spatially simulate and quantitatively test the existence of three major rivers crossing the Sahara from south to north during the time of human migration. We provide evidence that, given realistic underlying climatology, the well-known Sahabi and Kufrah rivers very likely flowed across modern day Libya and reached the coast. More unexpectedly an additional river crossed the core of the Sahara through Algeria (Irharhar river) and flowed into the Chotts basin. The Irharhar river is unique, because it links locations in central Africa experiencing monsoon climates with temperate coastal Mediterranean environments where food and resources were likely abundant. From an ecological perspective, this little-known corridor may prove to be the most parsimonious migration route. Support for the Irharar as a viable migration corridor is provided by its geographic proximity to middle Stone Age archaeological artefacts found in North Africa. Our new, highly novel approach provides the first quantitative analysis of the likelihood that rivers occurred during the critical period of human migration out of Africa. Simulated probability of surface water in North Africa during the last interglacial and the location of tools and ornaments from the Middle Stone Age.

  2. Interventions and Interactions: Understanding Coupled Human-Water Dynamics for Improved Water Resources Management in the Himalayas

    NASA Astrophysics Data System (ADS)

    Crootof, A.

    2017-12-01

    Understanding coupled human-water dynamics offers valuable insights to address fundamental water resources challenges posed by environmental change. With hydropower reshaping human-water interactions in mountain river basins, there is a need for a socio-hydrology framework—which examines two-way feedback loops between human and water systems—to more effectively manage water resources. This paper explores the cross-scalar interactions and feedback loops between human and water systems in river basins affected by run-of-the-river hydropower and highlights the utility of a socio-hydrology perspectives to enhance water management in the face of environmental change. In the Himalayas, the rapid expansion of run-of-the-river hydropower—which diverts streamflow for energy generation—is reconfiguring the availability, location, and timing of water resources. This technological intervention in the river basin not only alters hydrologic dyanmics but also shapes social outcomes. Using hydropower development in the highlands of Uttarakhand, India as a case study, I first illustrate how run-of-the-river projects transform human-water dynamics by reshaping the social and physical landscape of a river basin. Second, I emphasize how examining cross-scalar feedbacks among structural dynamics, social outcomes, and values and norms in this coupled human-water system can inform water management. Third, I present hydrological and social literature, raised separately, to indicate collaborative research needs and knowledge gaps for coupled human-water systems affected by run-of-the-river hydropower. The results underscore the need to understand coupled human-water dynamics to improve water resources management in the face of environmental change.

  3. 76 FR 76115 - Revisions to the California State Implementation Plan, Feather River Air Quality Management District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... the California State Implementation Plan, Feather River Air Quality Management District AGENCY... limited disapproval of revisions to the Feather River Air Quality Management District (FRAQMD) portion of..., Regulatory Planning and Review The Office of Management and Budget (OMB) has exempted this regulatory action...

  4. EPA New England Trains 30 Federal and State Environmental Workers on the National Rivers and Streams Assessment

    EPA Pesticide Factsheets

    The USEPA held a four-day training session last week at the EPA Chelmsford Laboratory for approximately 30 state & federal workers participating in the EPA National Rivers & Streams Assessment, the 3rd nationwide survey of the condition of rivers & streams

  5. Conservation status of Colorado River cutthroat trout

    Treesearch

    Michael K. Young; R. Nick Schmal; Thomas W. Kohley; Victoria G. Leonard

    1996-01-01

    Though biologists recognize that populations of Colorado River cutthroat trout have declined, the magnitude of the loss remains unquantified. We obtained information from state and federal biologists and from state databases to determine the current distribution and status of populations of Colorado River cutthroat trout. Recent population extinctions have been...

  6. 27 CFR 9.139 - Santa Lucia Highlands.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... boundary follows Limekiln Creek for approximately 1.25 miles northeast to the 100 foot elevation. (2) Then following the 100 foot contour in a southeasterly direction for approximately 1 mile, where the boundary... approximately 6.50 miles, to the point where the 160 foot elevation crosses River Road. (6) Then following River...

  7. 27 CFR 9.139 - Santa Lucia Highlands.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... boundary follows Limekiln Creek for approximately 1.25 miles northeast to the 100 foot elevation. (2) Then following the 100 foot contour in a southeasterly direction for approximately 1 mile, where the boundary... approximately 6.50 miles, to the point where the 160 foot elevation crosses River Road. (6) Then following River...

  8. 27 CFR 9.139 - Santa Lucia Highlands.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... boundary follows Limekiln Creek for approximately 1.25 miles northeast to the 100 foot elevation. (2) Then following the 100 foot contour in a southeasterly direction for approximately 1 mile, where the boundary... approximately 6.50 miles, to the point where the 160 foot elevation crosses River Road. (6) Then following River...

  9. Seismic evaluation of the Cumberland River Bridges on I-24 in Western Kentucky.

    DOT National Transportation Integrated Search

    2006-09-01

    The main objective of this study is to assess the structural integrity of the I-24 parallel bridges at the Cumberland River crossing in western Kentucky. Due to its importance, the bridge is evaluated for the 250-year event and the maximum credible 5...

  10. Variability of Ecosystem State in Rivers Containing Natural Dams: A Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Reynolds, Z. A.

    2015-12-01

    Flooding, and the resulting economic damage to roads and property, is associated with natural dams such as beaver dams or log jams. For this reason, humans often remove natural dams; however, river reaches with natural dams provide very different ecosystem services in comparison with free-flowing river reaches. Therefore, the goal of this project is to assess the differences in ecosystem state between these different river reach types in the northeastern United States. We focused on differences in basic chemistry (e.g., dissolved oxygen, pH, temperature, and organic carbon) to assess the impact of natural dams on river ecosystem state. Study sites include rivers in the White Mountains and southeastern New Hampshire at locations with beaver dams, beaver ponds, beaver meadows, log jams, and free-flowing reaches. Dissolved oxygen, ORP, pH, temperature, and conductivity were measured in the field with a YSI Professional Plus meter. Water samples were collected for subsequent laboratory analysis of total organic carbon with a Shimadzu TOC-L. Preliminary results show that the chemistry of river water varies with feature type. Most significantly, dissolved oxygen concentrations are highest in free-flowing reaches and lowest in beaver ponds. Although beaver ponds are often associated with lower pH, due the increased concentration of organic acids, some beaver ponds can increase pH when compared to free-flowing reaches on the same river. Early results also show that water chemistry returns quickly to the chemistry typical of the free-flowing river reaches after being altered by a natural dam. Overall, natural dams create a river system that has more heterogeneity, and therefore has opportunities to provide more ecosystem functions, than a purely free-flowing river; this can increase the number of supported instream and riparian species. By increasing the understanding of how natural dams affect the chemistry of river water, river engineers can improve their decisions on how to remove problematic natural dams that increase flooding risks; they can also investigate possibilities to mimic the ecosystem state generated by natural dams in places where these dams are regularly removed.

  11. Peak streamflows and runoff volumes for the Central United States, February through September, 2011: Chapter C in 2011 floods of the central United States

    USGS Publications Warehouse

    Holmes, Robert R.; Wiche, Gregg J.; Koenig, Todd A.; Sando, Steven K.

    2013-01-01

    During 2011, excessive precipitation resulted in widespread flooding in the Central United States with 33 fatalities and approximately $4.2 billion in damages reported in the Souris/Red River of the North (Souris/Red) and Mississippi River Basins. At different times, beginning in late February 2011 and extending through September 2011, various rivers in these basins had major flooding, with some locations receiving multiple rounds of flooding. Peak streamflow records were broken at 105 streamgages in the Souris/Red and Mississippi River Basins and annual runoff volume records set at 47 of the 211 streamgages analyzed for annual runoff. For the period of 1950 through 2011, the Ohio River provided almost one-half of the annual runoff at Vicksburg; the Missouri River contributed less than one-fourth, and the lower Mississippi River less than one-fourth. Those relative contribution patterns also occurred in 1973 and 2011, with the notable exception of the decrease in contribution of the lower Mississippi River tributaries and the increase in contribution from the upper Missouri River Basin in 2011 as compared to 1973 and the long-term average from 1950 to 2011.

  12. Survival and reproduction of myxobolus cerebralis-resistant Rainbow Trout introduced to the colorado river and increased resistance of age-0 progeny

    USGS Publications Warehouse

    Winkelman, Dana L.; Fetherman, Eric R.; Baerwald, Melinda R.; Schisler, George J.

    2014-01-01

    Myxobolus cerebralis caused severe declines in rainbow trout populations across Colorado following its introduction in the 1980s. One promising approach for the recovery of Colorado’s rainbow trout populations has been the production of rainbow trout that are genetically resistant to the parasite. We introduced one of these resistant crosses, known as the GR×CRR (cross between the German Rainbow [GR] and Colorado River Rainbow [CRR] trout strains), to the upper Colorado River. The abundance, survival, and growth of the stocked GR×CRR population was examined to determine if GR×CRRs had contributed offspring to the age-0 population, and determine whether these offspring displayed increased resistance and survival characteristics compared to their wild CRR counterparts. Apparent survival of the introduced GR×CRR over the entire study period was estimated to be 0.007 (±0.001). Despite low survival of the GR×CRRs, age-0 progeny of the GR×CRR were encountered in years 2008 through 2011. Genetic assignments revealed a shift in the genetic composition of the rainbow trout fry population over time, with CRR fish comprising the entirety of the fry population in 2007, and GR-cross fish comprising nearly 80% of the fry population in 2011. A decrease in average infection severity (myxospores fish−1) was observed concurrent with the shift in the genetic composition of the rainbow trout fry population, decreasing from an average of 47,708 (±8,950) myxospores fish−1 in 2009 to 2,672 (±4,379) myxospores fish−1 in 2011. Results from this experiment suggest that the GR×CRR can survive and reproduce in rivers with a high prevalence of M. cerebralis. In addition, reduced myxospore burdens in age-0 fish indicated that stocking this cross may ultimately lead to an overall reduction in infection prevalence and severity in the salmonid populations of the upper Colorado River.

  13. Survival and Reproduction of Myxobolus cerebralis-Resistant Rainbow Trout Introduced to the Colorado River and Increased Resistance of Age-0 Progeny

    PubMed Central

    Fetherman, Eric R.; Winkelman, Dana L.; Baerwald, Melinda R.; Schisler, George J.

    2014-01-01

    Myxobolus cerebralis caused severe declines in rainbow trout populations across Colorado following its introduction in the 1980s. One promising approach for the recovery of Colorado’s rainbow trout populations has been the production of rainbow trout that are genetically resistant to the parasite. We introduced one of these resistant crosses, known as the GR×CRR (cross between the German Rainbow [GR] and Colorado River Rainbow [CRR] trout strains), to the upper Colorado River. The abundance, survival, and growth of the stocked GR×CRR population was examined to determine if GR×CRRs had contributed offspring to the age-0 population, and determine whether these offspring displayed increased resistance and survival characteristics compared to their wild CRR counterparts. Apparent survival of the introduced GR×CRR over the entire study period was estimated to be 0.007 (±0.001). Despite low survival of the GR×CRRs, age-0 progeny of the GR×CRR were encountered in years 2008 through 2011. Genetic assignments revealed a shift in the genetic composition of the rainbow trout fry population over time, with CRR fish comprising the entirety of the fry population in 2007, and GR-cross fish comprising nearly 80% of the fry population in 2011. A decrease in average infection severity (myxospores fish−1) was observed concurrent with the shift in the genetic composition of the rainbow trout fry population, decreasing from an average of 47,708 (±8,950) myxospores fish−1 in 2009 to 2,672 (±4,379) myxospores fish−1 in 2011. Results from this experiment suggest that the GR×CRR can survive and reproduce in rivers with a high prevalence of M. cerebralis. In addition, reduced myxospore burdens in age-0 fish indicated that stocking this cross may ultimately lead to an overall reduction in infection prevalence and severity in the salmonid populations of the upper Colorado River. PMID:24811066

  14. The effects of the Chesapeake Bay impact crater on the geologic framework and the correlation of hydrogeologic units of southeastern Virginia, south of the James River

    USGS Publications Warehouse

    Powars, David S.

    2000-01-01

    About 35 million years ago, a large comet or meteor slammed into the shallow shelf on the western margin of the Atlantic Ocean, creating the Chesapeake Bay impact crater. This report, the second in a series, refines the geologic framework of southeastern Virginia, south of the James River in and near the impact crater, and presents evidence for the existence of a pre-impact James River structural zone. The report includes detailed correlations of core lithologies with borehole geophysical logs; the correlations provide the foundation for the compilation of stratigraphic cross sections. These cross sections are tied into the geologic framework of the lower York-James Peninsula as presented in the first report in the series, Professional Paper 1612

  15. Reach-scale characterization of large woody debris in a low-gradient, Midwestern U.S.A. river system

    NASA Astrophysics Data System (ADS)

    Martin, Derek J.; Pavlowsky, Robert T.; Harden, Carol P.

    2016-06-01

    Addition of large woody debris (LWD) to rivers has increasingly become a popular stream restoration strategy, particularly in river systems of the Midwestern United States. However, our knowledge of LWD dynamics is mostly limited to high gradient montane river systems, or coastal river systems. The LWD-related management of low-gradient, Midwestern river systems is thus largely based on higher gradient analogs of LWD dynamics. This research characterizes fluvial wood loads and investigates the relationships between fluvial wood, channel morphology, and sediment deposition in a relatively low-gradient, semiconfined, alluvial river. The LWD and channel morphology were surveyed at nine reaches along the Big River in southeastern Missouri to investigate those relationships in comparison to other regions. Wood loads in the Big River are low (3-114 m3/100 m) relative to those of higher gradient river systems of the Pacific Northwest, but high relative to lower-gradient river systems of the Eastern United States. Wood characteristics such as size and orientation suggest that the dominant LWD recruitment mechanism in the Big River is bank erosion. Also, ratios of wood geometry to channel geometry show that the Big River maintains a relatively high wood transport capacity for most of its length. Although LWD creates sites for sediment storage, the overall impact on reach-scale sediment storage in the Big River is low (< 4.2% of total in-channel storage). However, wood loads, and thus opportunities for sediment storage, have the potential to grow in the future as Midwestern riparian forests mature. This study represents the first of its kind within this particular type of river system and within this region and thus serves as a basis for understanding fluvial wood dynamics in low-gradient river systems of the Midwestern United States.

  16. Spatio-temporal variations in age structures of a partially re-established population of northern river otters (Lontra canadensis)

    USGS Publications Warehouse

    Barrett, Dominic A.; Leslie, David M.

    2012-01-01

    Examination of age structures and sex ratios is useful in the management of northern river otters (Lontra canadensis) and other furbearers. Reintroductions and subsequent recolonizations of river otters have been well documented, but changes in demographics between expanding and established populations have not been observed. As a result of reintroduction efforts, immigration from Arkansas and northeastern Texas, and other efforts, river otters have become partially reestablished throughout eastern and central Oklahoma. Our objective was to examine age structures of river otters in Oklahoma and identify trends that relate to space (watersheds, county) and time (USDA Animal and Plant Health Inspection Service county trapping records). We predicted that river otters in western areas of the state were younger than river otters occurring farther east. From 2005–2007, we obtained salvaged river otter carcasses from federal and state agencies, and we live-captured other river otters using leg hold traps. Seventy-two river otters were sampled. Overall, sex ratios were skewed toward females (1F∶0.8M), but they did not differ among spatiotemporal scales examined. Teeth were removed from salvaged and live-captured river otters (n  =  63) for aging. One-year old river otters represented the largest age class (30.2%). Proportion of juveniles (<1 y old) in Oklahoma (19.0%) was less than other states. Mean age of river otters decreased from east-to-west in the Arkansas River and its tributaries. Mean age of river otters differed between the Canadian River Watershed (0.8 y) and the Arkansas River Watershed (2.9 y) and the Canadian River Watershed and the Red River Watershed (2.4 y). Proportion of juveniles did not differ among spatiotemporal scales examined. Similar to age structure variations in other mammalian carnivores, colonizing or growing western populations of river otters in Oklahoma contained younger ages than more established eastern populations.

  17. 37. BRIDGE 115, SMITH RIVER MIDDLE FORK OREGON STATE HIGHWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. BRIDGE 1-15, SMITH RIVER MIDDLE FORK OREGON STATE HIGHWAY 199. JOSEPHINE COUNTY, OREGON. LOOKING SSW. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  18. 40. CAVEMAN BRIDGE, ROGUE RIVER, OREGON STATE HIGHWAY 199. GRANTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. CAVEMAN BRIDGE, ROGUE RIVER, OREGON STATE HIGHWAY 199. GRANTS PASS, JOSEPHINE COUNTY, OREGON. LOOKING S. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  19. 39. CAVEMAN BRIDGE, ROGUE RIVER, OREGON STATE HIGHWAY 199. GRANTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. CAVEMAN BRIDGE, ROGUE RIVER, OREGON STATE HIGHWAY 199. GRANTS PASS, JOSEPHINE COUNTY, OREGON. LOOKING SW. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  20. 6. BRIDGE LOOKING SOUTH FROM CROWN POINT STATE PARK SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. BRIDGE LOOKING SOUTH FROM CROWN POINT STATE PARK SHOWING SURROUNDING DEVELOPMENT FROM CONSTRUCTION OF DAM - Columbia River Bridge at Grand Coulee Dam, Spanning Columbia River at State Route 155, Coulee Dam, Okanogan County, WA

  1. Water quality of the tidal Potomac River and Estuary: Hydrologic Data Reports supplement, 1979 through 1981 water years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coupe, R.H. Jr.; Webb, W.E.

    1984-01-01

    This report is a companion report to the US Geological Survey 1979, 1980, and 1981 Hydrologic Data Reports of the tidal Potomac River and Estuary. The information included in this report contains values of biochemical oxygen demand and specific-rate constants, incident-light and light-attenuation measurements; numbers of phytoplankton, fecal coliform and fecal streptococci; cross-sectional averages from field measurements of dissolved oxygen, pH, specific conductance, and temperature data; and cross-sectional averages of chlorophyll data. Sewage-treatment plant loads are also included. 29 refs., 4 figs., 3 tabs.

  2. A model study of the Haihe river passenger ferry risk based on AHP

    NASA Astrophysics Data System (ADS)

    Du, Jinyin; Xu, Yanming; Du, Chunzhi; Jin, Zhenhua

    2017-05-01

    The core function of maritime is water safety supervision, whose emphasis and difficulty is ferry. In combination with the practical situation of Haihe river passenger ferry operation management, this paper analyzes Haihe river passenger ferry risk from four aspects "human, machinery, environment and management", and establishes the ferry risk index system. By using AHP (Analytic Hierarchy Process), the ferry risk evaluation model is established. By using the ferry model, the application of Ferry Zhengyanfa7 in Tianjin Haihe river crossing is evaluated, whose safety situation is verified to be between "relatively high risk" and "high risk".

  3. Phytophthora Species in Rivers and Streams of the Southwestern United States

    PubMed Central

    Stamler, Rio A.; Sanogo, Soumalia; Goldberg, Natalie P.

    2016-01-01

    ABSTRACT Phytophthora species were isolated from rivers and streams in the southwestern United States by leaf baiting and identified by sequence analysis of internal transcribed spacer (ITS) ribosomal DNA (rDNA). The major waterways examined included the Rio Grande River, Gila River, Colorado River, and San Juan River. The most prevalent species identified in rivers and streams were Phytophthora lacustris and P. riparia, both members of Phytophthora ITS clade 6. P. gonapodyides, P. cinnamomi, and an uncharacterized Phytophthora species in clade 9 were also recovered. In addition, six isolates recovered from the Rio Grande River were shown to be hybrids of P. lacustris × P. riparia. Pathogenicity assays using P. riparia and P. lacustris failed to produce any disease symptoms on commonly grown crops in the southwestern United States. Inoculation of Capsicum annuum with P. riparia was shown to inhibit disease symptom development when subsequently challenged with P. capsici, a pathogenic Phytophthora species. IMPORTANCE Many Phytophthora species are significant plant pathogens causing disease on a large variety of crops worldwide. Closer examinations of streams, rivers, and forest soils have also identified numerous Phytophthora species that do not appear to be phytopathogens and likely act as early saprophytes in aquatic and saturated environments. To date, the Phytophthora species composition in rivers and streams of the southwestern United States has not been evaluated. This article details a study to determine the identity and prevalence of Phytophthora species in rivers and streams located in New Mexico, Arizona, Colorado, Utah, and Texas. Isolated species were evaluated for pathogenicity on crop plants and for their potential to act as biological control agents. PMID:27235435

  4. 15. STRESS SHEET. American Bridge Company, New York Office, 30 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. STRESS SHEET. American Bridge Company, New York Office, 30 Church Street, sheet no. C516, dated March 12, 1928, approved March 16, 1928, order no. F5073. For U.S. Steel Products Company, Pacific Coast Depot. For Southern Pacific Company, Pacific Lines, 1st crossing, Napa River, near Napa, Western Division, customer's order no. 8873-P-28746. Various scales. - Napa River Railroad Bridge, Spanning Napa River, east of Soscol Avenue, Napa, Napa County, CA

  5. Do rivers really obey power-laws? Using continuous high resolution measurements to define bankfull channel and evaluate downstream hydraulic-scaling over large changes in drainage area

    NASA Astrophysics Data System (ADS)

    Scher, C.; Tennant, C.; Larsen, L.; Bellugi, D. G.

    2016-12-01

    Advances in remote-sensing technology allow for cost-effective, accurate, high-resolution mapping of river-channel topography and shallow aquatic bathymetry over large spatial scales. A combination of near-infrared and green spectra airborne laser swath mapping was used to map river channel bathymetry and watershed geometry over 90+ river-kilometers (75-1175 km2) of the Greys River in Wyoming. The day of flight wetted channel was identified from green LiDAR returns, and more than 1800 valley-bottom cross-sections were extracted at regular 50-m intervals. The bankfull channel geometry was identified using a "watershed-based" algorithm that incrementally filled local minima to a "spill" point, thereby constraining areas of local convergence and delineating all the potential channels along the cross-section for each distinct "spill stage." Multiple potential channels in alluvial floodplains and lack of clearly defined channel banks in bedrock reaches challenge identification of the bankfull channel based on topology alone. Here we combine a variety of topological measures, geometrical considerations, and stage levels to define a stage-dependent bankfull channel geometry, and compare the results with day of flight wetted channel data. Initial results suggest that channel hydraulic geometry and basin hydrology power-law scaling may not accurately capture downstream channel adjustments for rivers draining complex mountain topography.

  6. SURVEY OF THE NATION'S NON-WADEABLE STREAMS AND RIVERS

    EPA Science Inventory

    The U.S. EPA is engaging states, tribes and other parties in designing a national survey to assess the condition of non-wadeable rivers and streams. The river survey is one of a series of surveys beng implemented as a partnership among states, tribes and U.S. EPA, with the colla...

  7. U.S. EPA'S SURVEY OF THE NATION'S NON-WADEABLE STREAMS AND RIVERS

    EPA Science Inventory

    The U.S. EPA is engaging states, tribes and other parties in designing a national survey to assess the condition of non-wadeable rivers and streams. The rivers survey is one of a series of surveys being implemented as a partnership among states, tribes and U.S. EPA, with the coll...

  8. An assessment of stressor extent and biological condition in the North American mid-continent great rivers (USA)

    USGS Publications Warehouse

    Angradi, Ted R.; Bolgriend, David W.; Jicha, Terri M.; Pearson, Mark S.; Taylor, Debra L.; Moffett, Mary F.; Blocksom, Karen A.; Walters, David M.; Elonen, Colleen M.; Anderson, Leroy E.; Lazorchak, James M.; Reavie, Euan D.; Kireta, Amy R.; Hill, Brian H.

    2011-01-01

    We assessed the North American mid-continent great rivers (Upper Mississippi, Missouri, and Ohio). We estimated the extent of each river in most- (MDC) or least-disturbed condition (LDC) based on multiple biological response indicators: fish and macroinvertebrate, trophic state based on chlorophyll a, macrophyte cover, and exposure of fish-eating wildlife to toxic contaminants in fish tissue (Hg, total chlordane, total DDT, PCBs). We estimated the extent of stressors on each river including nutrients, suspended solids, sediment toxicity, invasive species, and land use (agriculture and impervious surface). All three rivers had a greater percent of their river length in MDC than in LDC based on fish assemblages. The Upper Mississippi River had the greatest percent of river length with eutrophic status. The Ohio River had the greatest percent of river length with fish with tissue contaminant levels toxic to wildlife. Overall, condition indices based on fish assemblages were more sensitive to stress than macroinvertebrate indices. Compared to the streams in its basin, more of the Upper Mississippi and Missouri Rivers were in MDC for nutrients than the Ohio River. Invasive species (Asian carp and Dreissenid mussels) were less widespread and less abundant on the Missouri River than on the other great rivers. The Ohio River had the most urbanized floodplains (greatest percent impervious surface). The Missouri River had the most floodplain agriculture. The effect of large urban areas on river condition was apparent for several indicators. Ecosystem condition based in fish assemblages, trophic state, and fish tissue contamination was related to land use on the floodplain and at the subcatchment scale. This is the first unbiased bioassessment of the mid-continent great rivers in the United States. The indicators, condition thresholds, results, and recommendations from this program are a starting point for improved future great river assessments.

  9. The ecohealth assessment and ecological restoration division of urban water system in Beijing

    USGS Publications Warehouse

    Liu, J.; Ma, M.; Zhang, F.; Yang, Z.; Domagalski, Joseph L.

    2009-01-01

    Evaluating six main rivers and six lakes in Beihuan water system (BWS) and diagnosing the limiting factors of eco-health were conducted for the ecohealth assessment and ecological restoration division of urban water system (UWS) for Beijing. The results indicated that Jingmi River and Nanchang River were in a healthy state, the degree of membership to unhealthy were 0.358, 0.392, respectively; while Yongding River, Beihucheng River, Liangma River, Tongzi River and six lakes were in an unhealthy state, their degree of membership to unhealthy were between 0.459 and 0.927. The order of that was Liangma > Beihucheng > Tongzi > Yongding > six lakes > Jingmi > Nanchang, in which Liangma Rivers of that was over 0.8. The problems of Rivers and lakes in BWS are different. Jingmi River and Nanchang River were ecotype limiting; Yongding River, Tongzi River and six lakes were water quality and ecotype limiting. Beihucheng River and Liangma River were water quantity, water quality and ecotype limiting. BWS could be divided into 3 restoration divisions, pollution control division including Yongding River, Tongzi River and six lakes; Jingmi River and Nanchang River were ecological restoration zone, while Beihucheng River and Liangma River were in comprehensive improvement zone. Restoration potentiality of Jingmi River and Nanchang River were higher, and Liangma River was hardest to restore. The results suggest a new idea to evaluate the impact of human and environmental factors on UWS. ?? Springer Science+Business Media, LLC 2009.

  10. General weather conditions and precipitation contributing to the 2011 flooding in the Mississippi River and Red River of the North Basins, December 2010 through July 2011: Chapter B in 2011 floods of the central United States

    USGS Publications Warehouse

    Vining, Kevin C.; Chase, Katherine J.; Loss, Gina R.

    2013-01-01

    Excessive precipitation produced severe flooding in the Mississippi River and Red River of the North Basins during spring and summer 2011. The 2011 flooding was caused by weather conditions that were affected in part by a La Niña climate pattern. During the 2010–11 climatological winter (December 2010–February 2011), several low pressure troughs from the Rocky Mountains into the Ohio River subbasin produced large amounts of precipitation. Precipitation was above normal to record amounts in parts of the Missouri River, Red River of the North, and upper Mississippi River subbasins, and mostly normal to below normal in the Ohio River and lower Mississippi River subbasins. During the 2011 climatological spring (March–May 2011), a large low pressure trough over the continental States and a high pressure ridge centered in the vicinity of the Gulf of Mexico combined to produce storms with copious precipitation along frontal boundaries across the Central States. Rain totals recorded during the April 18–28, 2011, precipitation event were more than 8 inches at several locations, while an impressive total of 16.15 inches was recorded at Cape Girardeau, Missouri. Several locations in the Missouri River subbasin had rainfall totals that were nearly one-third to one-half of their 1971–2000 normal annual amounts during a May 16–31, 2011, precipitation event. During June and July, thunderstorm development along frontal boundaries resulted in areas of heavy rain across the Missouri River, Red River of the North, and upper Mississippi River subbasins, while rainfall in the lower Mississippi River subbasin was mostly below normal.

  11. Changes in sinuosities of the rivers at geological structural lines in the Pannonian Basin - Mosaics to the neotectonic image of the region

    NASA Astrophysics Data System (ADS)

    Petrovszki, Judit

    2010-05-01

    In the central, flat area of the Pannonian Basin, there are just few topographic features for neotectonic investigations. However, a lot of meandering rivers flow here, and it is possible to reconstruct their natural, pre-regulation planforms. Using the map sheets of the Second Military Survey of the Habsburg Empire (mid-19th century; Timár et al., 2006), I digitized the meandering rivers on this area. Sinuosities at different sample section lengths were computed in a GIS environment, providing so-called 'sinuosity-spectra' (van Balen et al., 2008) for each point of the analyzed channels. The channel sinuosity of this river systems are analyzed in order to draw conclusions on the neotectonic activity of the Great Hungarian Plain and the other flat areas of the Pannonian Basin. Several points of sinuosity change were identified. To prove, that these are of neotectonic origin, seismic sections crossing the study area, were also analyzed as well as the geodinamical map of the area (Horváth et al., 2006). High sinuosity variations (low to high or high to low), spatially correlated to linear features identified in seismic survey sections, indicating their neotectonic activity (after Ouchi, 1985). We can see two significante sinuosity changes on the Hron/Garam River (Slovakia), one at Tekov and the one at Kéménd. There are faults on the neotectonic map at these points, crossing the river - they are the possible causes of the increasing of the sinuosity. The vertical activity of these structural lines is verified by the sinuosity changes. At the Maros/Mureş River (Romania/Hungary), a significant sinuosity change can also be identified near to the town of Aiud, where the phenomene is just the opposite like in the Hron/Garam river. There is a fault on the neotectonic map crossing the river. Upstream of the river has higher sinuosity values, and after crossing the fault, it decresed. Here also the fault caused the sinuosity changing, so this fault is also an active one. However, there are more case studies, concerning the rivers of the Pannonian Basin, such as the Tisza River (Timár, 2003), the Körös system (Petrovszki and Timár, 2010), the creeks of the Little Hungarian Plain (Zámolyi et al., 2010) and the downstream part of the Danube (Petrovszki, 2010), providing a broader overview of the river-confirmed neotectonic activity of the region. Horváth, F., Bada, G., Windhoffer, G., Csontos, L., Dombrádi, E., Dövényi, P., Fodor, L., Grenerczy, Gy., Síkhegyi, F., Szafián, P., Székely, B., Timár, G., Tóth, L., Tóth, T. (2006): A Pannon-medence jelenkori geodinamikájának atlasza: Euro-konform térképsorozat és magyarázó. Magyar Geofizika 47(4), 133-137. Ouchi, S. (1985): Response of alluvial rivers to slow active tectonic movement. Geol. Soc. Am. Bull. 96, 504-515. Petrovszki, J. (2010): Sinuosity calculations of the Danube River between Paks (Hungary) and Beograd (Serbia). Geophysical Research Abstracts. Vol. 12, EGU2010-4571 Petrovszki, J., Timár, G. (2010): Channel sinuosity of the Körös River system, Hungary/Romania, as possible indicator of the neotectonic activity. Geomorphology, in press, DOI: 10.1016/j.geomorph.2009.11.009. Timár, G. (2003): Controls on channel sinuosity changes: a case study of the Tisza River, the Great Hungarian Plain. Quaternary Sci. Rev. 22, 2199-2207. Timár, G., Molnár, G., Székely, B., Biszak, S., Varga, J., Jankó, A. (2006): Digitized maps of the Habsburg Empire - The map sheets of the second military survey and their georeferenced version. Arcanum, Budapest, 59 p. van Balen, R. T., Kasse, C., Moor, J. (2008): Impact of groundwater flow on meandering; example from the Geul river, the Netherlands. Earth Surf. Process. and Landf. 33(13), 2010-2028. Zámolyi, A., Székely, B., Draganits, E., Timár, G. (2010): Neotectonic control on river sinuosity at the western margin of the Little Hungarian Plain. Geomorph., in press, DOI: 10.1016/j.geomorph.2009.06.028

  12. Putting the environment into the NPV calculation -- Quantifying pipeline environmental costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dott, D.R.; Wirasinghe, S.C.; Chakma, A.

    1996-12-31

    Pipeline projects impact the environment through soil and habitat disturbance, noise during construction and compressor operation, river crossing disturbance and the risk of rupture. Assigning monetary value to these negative project consequences enables the environment to be represented in the project cost-benefit analysis. This paper presents the mechanics and implications of two environmental valuation techniques: (1) the contingent valuation method and (2) the stated preference method. The use of environmental value at the project economic-evaluation stage is explained. A summary of research done on relevant environmental attribute valuation is presented and discussed. Recommendations for further research in the field aremore » made.« less

  13. ALWAYS A RIVER - SUPPLEMENTAL ENVIRONMENTAL EDUCATION CURRICULUM ON THE OHIO RIVER AND WATER GRADES K - 12

    EPA Science Inventory

    This curriculum was developed as a significant component of the project, Always a River: The Ohio River and the American Experience, a six-state collaboration devoted to exploring the historical and cultural development of the Ohio River. The Always a River project is being joint...

  14. 4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROPOSED SECTION OF DIVERSION DAM ACROSS SNAKE RIVER, SHEET 1 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  15. Fluorescence-based proxies for lignin in freshwater dissolved organic matter

    USGS Publications Warehouse

    Hernes, Peter J.; Bergamaschi, Brian A.; Eckard, Robert S.; Spencer, Robert G.M.

    2009-01-01

    Lignin phenols have proven to be powerful biomarkers in environmental studies; however, the complexity of lignin analysis limits the number of samples and thus spatial and temporal resolution in any given study. In contrast, spectrophotometric characterization of dissolved organic matter (DOM) is rapid, noninvasive, relatively inexpensive, requires small sample volumes, and can even be measured in situ to capture fine-scale temporal and spatial detail of DOM cycling. Here we present a series of cross-validated Partial Least Squares models that use fluorescence properties of DOM to explain up to 91% of lignin compositional and concentration variability in samples collected seasonally over 2 years in the Sacramento River/San Joaquin River Delta in California, United States. These models were subsequently used to predict lignin composition and concentration from fluorescence measurements collected during a diurnal study in the San Joaquin River. While modeled lignin composition remained largely unchanged over the diurnal cycle, changes in modeled lignin concentrations were much greater than expected and indicate that the sensitivity of fluorescence-based proxies for lignin may prove invaluable as a tool for selecting the most informative samples for detailed lignin characterization. With adequate calibration, similar models could be used to significantly expand our ability to study sources and processing of DOM in complex surface water systems.

  16. Hyperspectral Proximal Sensing of Salix Alba Trees in the Sacco River Valley (Latium, Italy)

    PubMed Central

    Moroni, Monica; Lupo, Emanuela; Cenedese, Antonio

    2013-01-01

    Recent developments in hardware and software have increased the possibilities and reduced the costs of hyperspectral proximal sensing. Through the analysis of high resolution spectroscopic measurements at the laboratory or field scales, this monitoring technique is suitable for quantitative estimates of biochemical and biophysical variables related to the physiological state of vegetation. Two systems for hyperspectral imaging have been designed and developed at DICEA-Sapienza University of Rome, one based on the use of spectrometers, the other on tunable interference filters. Both systems provide a high spectral and spatial resolution with low weight, power consumption and cost. This paper describes the set-up of the tunable filter platform and its application to the investigation of the environmental status of the region crossed by the Sacco river (Latium, Italy). This was achieved by analyzing the spectral response given by tree samples, with roots partly or wholly submerged in the river, located upstream and downstream of an industrial area affected by contamination. Data acquired is represented as reflectance indices as well as reflectance values. Broadband and narrowband indices based on pigment content and carotenoids vs. chlorophyll content suggest tree samples located upstream of the contaminated area are ‘healthier’ than those downstream. PMID:24172281

  17. Goodenough Spring, Texas, USA: Discharge and water chemistry of a large spring deeply submerged under the binational Amistad Reservoir

    NASA Astrophysics Data System (ADS)

    Kamps, Ray H.; Tatum, Gregg S.; Gault, Mike; Groeger, Alan W.

    2009-06-01

    Goodenough Spring (Texas, USA) is a large spring near the border of the American state of Texas and the Mexican state of Coahuila, discharging into the international Amistad Reservoir on the river Rio Grande (Rio Bravo). Discharge was routinely measured from 1928 until 1968 to partition the flow of the river between the two countries in accordance with water-use treaties. Samples were analyzed for water-quality parameters in 1967-1968 prior to inundation under 45 m of Amistad Reservoir in 1968. Subsequently, discharge has been estimated indirectly by the International Boundary and Water Commission (IBWC). For the first direct measurements of the spring in 37 years, velocity and cross-sectional measurements were made and water samples collected in the summer of 2005 using advanced self-contained underwater breathing apparatus (SCUBA) techniques. Spring discharge was calculated at 2.03 m3 s-1, approximately one-half of the historical mean of 3.94 m3 s-1. In situ and laboratory analyses of samples for temperature, pH, dissolved oxygen, specific conductance, alkalinity, nitrate-nitrogen, dissolved solids, chloride, sulfate, fluoride, phosphorus, calcium, sodium, potassium, magnesium, and iron showed the water quality to be very good for human consumption and crop irrigation. Measurement values are relatively unchanged from those reported 37 years prior.

  18. Biological and ecological science for Wisconsin—A Great Lakes and Rivers State

    USGS Publications Warehouse

    ,

    2018-03-06

    Wisconsin and natural resources go hand-in-hand. Tourism, which generates $19 billion annually and sustains about 200,000 jobs, depends on an abundance of lakes, rivers, shorelines, and woodlands for fishing, hunting, boating, and other outdoor recreation. Rivers and floodplains in the Upper Mississippi Basin, including the Mississippi River, are part of a five-State corridor that generates more than $300 billion annually and sustains millions of manufacturing, tourism, transportation, and agricultural jobs. Wisconsin also is a Great Lakes State with more than 800 miles of shoreline, and the fisheries of lakes Superior and Michigan deliver $185 million annually and provide thousands of jobs.

  19. Flood effects provide evidence of an alternate stable state from dam management on the Upper Missouri River

    USGS Publications Warehouse

    Skalak, Katherine; Benthem, Adam J.; Hupp, Cliff R.; Schenk, Edward R.; Galloway, Joel M.; Nustad, Rochelle A.

    2017-01-01

    We examine how historic flooding in 2011 affected the geomorphic adjustments created by dam regulation along the approximately 120 km free flowing reach of the Upper Missouri River bounded upstream by the Garrison Dam (1953) and downstream by Lake Oahe Reservoir (1959) near the City of Bismarck, ND, USA. The largest flood since dam regulation occurred in 2011. Flood releases from the Garrison Dam began in May 2011 and lasted until October, peaking with a flow of more than 4200 m3 s−1. Channel cross-section data and aerial imagery before and after the flood were compared with historic rates of channel change to assess the relative impact of the flood on the river morphology. Results indicate that the 2011 flood maintained trends in island area with the loss of islands in the reach just below the dam and an increase in island area downstream. Channel capacity changes varied along the Garrison Segment as a result of the flood. The thalweg, which has been stable since the mid-1970s, did not migrate. And channel morphology, as defined by a newly developed shoaling metric, which quantifies the degree of channel braiding, indicates significant longitudinal variability in response to the flood. These results show that the 2011 flood exacerbates some geomorphic trends caused by the dam while reversing others. We conclude that the presence of dams has created an alternate geomorphic and related ecological stable state, which does not revert towards pre-dam conditions in response to the flood of record. This suggests that management of sediment transport dynamics as well as flow modification is necessary to restore the Garrison Segment of the Upper Missouri River towards pre-dam conditions and help create or maintain habitat for endangered species. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  20. A survey of whitewater recreation impacts along five West Virginia rivers

    USGS Publications Warehouse

    Leung, Y.-F.; Marion, J.L.

    1998-01-01

    Results are reported from an assessment of whitewater river recreation impacts at river accesses and recreation sites along five West Virginia rivers: the New, Gauley, Cheat, Tygart, and Shenandoah. Procedures were developed and applied to assess resource conditions on 24 river access roads, 68 river accesses, and 151 recreation sites. The majority of river accesses and recreation sites are located on the New and Gauley rivers, which account for most of the state?s whitewater recreation use. Site conditions are variable. While some river accesses and sites are situated on resistant rocky substrates, many are poorly designed and/or located on erodible soil and sand substrates. Recreation site sizes and other areal measures of site disturbance are quite large, coincident with the large group sizes associated with commercially outfitted whitewater rafting trips. Recommendations are offered for managing river accesses and sites and whitewater visitation and the selection of indicators and standards as part of a Limits of Acceptable Change management process. Procedures and recommendations for continued visitor impact monitoring are also offered.

  1. 47. VIEW NORTH OF LITTLE PATUXENT VALLEY: PARKWAY CROSSES LITTLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. VIEW NORTH OF LITTLE PATUXENT VALLEY: PARKWAY CROSSES LITTLE PATUXENT RIVER BRIDGE, WITH ANNAPOLIS JUNCTION ROAD UNDERPASS IN DISTANCE (COMPARE WITH MD-129-33). (NPS/NCR (cn) 2104-V) - Baltimore-Washington Parkway, Greenbelt, Prince George's County, MD

  2. Recording devices for interconnected grade crossing and intersection signal systems : an informational report.

    DOT National Transportation Integrated Search

    2012-10-01

    Over 15 years ago, the National Transportation Safety Board (NTSB) issued 29 recommendations : to improve safety at active controlled highway-rail grade crossings following the school buscommuter : train collision in Fox River Grove, Illinois. The ob...

  3. 17. VIEW OF SETTLING BASIN, SHOWING FLUME TRACK SPUR CROSSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF SETTLING BASIN, SHOWING FLUME TRACK SPUR CROSSING OVER SETTLING BASIN, SPARE BENT MATERIAL IN RIGHT-HAND FOREGROUND, BYPASS FLUME, AND SHACK #6 IN BACKGROUND, LOOKING NORTHWEST - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  4. 78 FR 11097 - Artificial Island Anchorage No. 2 Partial Closure, Delaware River; Salem, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... 1625-AA00 Artificial Island Anchorage No. 2 Partial Closure, Delaware River; Salem, NJ AGENCY: Coast... safety zone around the southern portion of Anchorage 2 (Artificial Island Anchorage) below position 39... will cross the closed portion of the anchorage. This regulation is necessary to provide for the safety...

  5. 77 FR 47358 - Withdrawal of Notice of Intent To Prepare an Environmental Impact Statement for Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... of Notice of Intent To Prepare an Environmental Impact Statement for Proposed Amendment of Rogue... of land and resource management plans (LRMP) of the Rogue River, Umpqua and Winema National Forests... and operate a natural gas pipeline that crosses the Rogue River, Umpqua and Winema National Forests...

  6. Bulb-T beams with self-consolidating concrete on the Route 33 bridge over the Pamunkey River in Virginia.

    DOT National Transportation Integrated Search

    2008-01-01

    This study evaluated the bulb-T beams made with self-consolidating concrete (SCC) used in the Route 33 Bridge over the Pamunkey River at West Point, Virginia. Before the construction of the bridge, two test beams with SCC similar in cross section to ...

  7. Economic benefits of additional rail bridge capacity: a case study on the benefits of replacing the Merchants Bridge main spans at Saint Louis.

    DOT National Transportation Integrated Search

    2015-11-01

    The Merchants Memorial Mississippi Rail Bridge and MacArthur Bridge over the Mississippi River make up the most heavily : used Mississippi River rail crossing in the country. A large contributor to the popularity of the Merchants Bridge is its : acce...

  8. Hydraulic survey and scour assessment of Bridge 524, Tanana River at Big Delta, Alaska

    USGS Publications Warehouse

    Heinrichs, Thomas A.; Langley, Dustin E.; Burrows, Robert L.; Conaway, Jeffrey S.

    2007-01-01

    Bathymetric and hydraulic data were collected August 26–28, 1996, on the Tanana River at Big Delta, Alaska, at the Richardson Highway bridge and Trans-Alaska Pipeline crossing. Erosion along the right (north) bank of the river between the bridge and the pipeline crossing prompted the data collection. A water-surface profile hydraulic model for the 100- and 500-year recurrence-interval floods was developed using surveyed information. The Delta River enters the Tanana immediately downstream of the highway bridge, causing backwater that extends upstream of the bridge. Four scenarios were considered to simulate the influence of the backwater on flow through the bridge. Contraction and pier scour were computed from model results. Computed values of pier scour were large, but the scour during a flood may actually be less because of mitigating factors. No bank erosion was observed at the time of the survey, a low-flow period. Erosion is likely to occur during intermediate or high flows, but the actual erosion processes are unknown at this time.

  9. Controls on the Origin and Cycling of Riverine Dissolved Inorganic Carbon in the Brazos River, Texas

    NASA Astrophysics Data System (ADS)

    Zeng, F.; Masiello, C. A.; Hockaday, W. C.

    2008-12-01

    Rivers are generally supersaturated in CO2 with respect to the atmosphere. However, there is little agreement on the sources and turnover times of excess CO2 in river waters. This is likely due to varying dominant controls on carbon sources (e.g. geologic setting, climate, land use, or human activities). In this study, we measured carbon isotopic signatures (δ13C and Δ14C) of riverine dissolved inorganic carbon (DIC), as well as solid state cross polarization/magic angle spinning (CP/MAS) 13C nuclear magnetic resonance (NMR) of particulate organic carbon (POC), to determine carbon sources fuelling respiration of the Brazos River in Texas. We found that sources of riverine CO2 varied significantly along the length of the Brazos. In the middle Brazos (between Graham and Waco), which is partially underlain by limestone, riverine DIC had average Δ14C of 74 ‰ and δ13C of -7.5 ‰, suggesting that riverine CO2 is derived almost entirely from contemporary carbon (less than 5 years old) with little evidence of carbonate input, probably due to the damming upstream of Waco. In the lower Brazos (downstream of Bryan), riverine DIC was highly depleted in 14C (average Δ14C = -148.5 ‰) and enriched in 13C (average δ13C= -9.32 ‰), indicative of the presence of old carbonate. Since there is no carbonate bedrock in contact with the river in this area, the most likely source of old carbonate is the shell used in road and building construction throughout the 19th century. Our results suggest that the effect of human activities superimposes and even surpasses the effect of natural controls (e.g. geologic setting and climate) on C cycling in the Brazos.

  10. Predicting Vulnerability of the Integrity and Connectivity Associated with Culverts in Low Order Streams of Northern Michigan

    NASA Astrophysics Data System (ADS)

    King, C. H.; Wagenbrenner, J.; Fedora, M.; Watkins, D.; Watkins, M. K.; Huckins, C.

    2017-12-01

    The Great Lakes Region of North America has experienced more frequent extreme precipitation events in recent decades, resulting in a large number of stream crossing failures. While there are accepted methods for designing stream crossings to accommodate peak storm discharges, less attention has been paid to assessing the risk of failure. To evaluate failure risk and potential impacts, coarse-resolution stream crossing surveys were completed on 51 stream crossings and dams in the North Branch Paint River watershed in Michigan's Upper Peninsula. These inventories determined stream crossing dimensions along with stream and watershed characteristics. Eleven culverts were selected from the coarse surveys for high resolution hydraulic analysis to estimate discharge conditions expected at crossing failure. Watershed attributes upstream of the crossing, including area, slope, and storage, were acquired. Sediment discharge and the economic impact associated with a failure event were also estimated for each stream crossing. Impacts to stream connectivity and fish passability were assessed from the coarse-level surveys. Using information from both the coarse and high-resolution surveys, we also developed indicators to predict failure risk without the need for complex hydraulic modeling. These passability scores and failure risk indicators will help to prioritize infrastructure replacement and improve the overall connectivity of river systems throughout the upper Great Lakes Region.

  11. Establishing Consistent Fish Sampling Methods for Biological Assessments on Inter-state Great Rivers: A Case Study on the Upper Mississippi River.

    EPA Science Inventory

    The use of Indices of Biotic Integrity (IBI) to assess aquatic waters has become an acceptable practice for many Clean Water Act (CWA) agencies. For states that share waters such as Minnesota and Wisconsin along the Mississippi River, the states’ respective IBIs may show vastly d...

  12. Low Frequencies of Interference to EPA Quantitative Polymerase Chain Reaction (qPCR) Methods for Microbial Water Quality Monitoring in U.S. Rivers and Streams and Coastal Waters

    EPA Science Inventory

    In collaboration with U.S States and Tribes, the United States Environmental Protection Agency (EPA) conducts periodic and rotating, statistically based surveys of U.S. rivers and streams (National Rivers and Streams Assessment, NRSA), estuarine and Great Lakes nearshore coastal ...

  13. 33 CFR 125.53 - Requirements for credentials; certain vessels operating on navigable waters of the United States...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Rivers). 125.53 Section 125.53 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... navigable waters of the United States (including the Great Lakes and Western Rivers). (a) Every person... Rivers. (2) Harbor craft, such as water taxis, junk boats, garbage disposal boats, bum boats, supply...

  14. Water-surface profiles of Raccoon River at Des Moines, Iowa

    USGS Publications Warehouse

    Carpenter, Philip J.; Appel, David H.

    1966-01-01

    The Raccoon River., having a drainage area of 3,630 square miles, borders the south edge of the Des Moines downtown business district before flowing into the Des Moines River at mile 201.6. A large residential area and the city airport are separated from downtown Des Moines by the Raccoon River (fig. 1). Five highway bridges and one railroad bridge span the river between the mouth and mile 205.75, the limits of this report (fig. 1). The river is confined to a narrow channel from the mouth to the Chicago, Burlington, and Quincy Railroad bridge (mile 202.6); upstream of this bridge the river is not confined and during high water spreads over a wide flood plain. Fleur Drive, a principal traffic artery to the downtown area, is the only roadway of the five that crosses this wide flood plain. It has been flooded 15 times during the period 1903, 1918-1965.

  15. Archaeological Reconnaissance of the Oliver Lock and Dam Project Area, Tuscaloosa County, Alabama. Phase I.

    DTIC Science & Technology

    1982-09-16

    settlements in the river channel constitute a well developed riverine- horticultural settlement pattern. Unlike the river channel levees, few systematic...and the Choctaws did not follow them, "not caring to cross the river to attack a town of women and children ." The Choctaw dead, numbering twenty...three white children and a black woman. They were pursued to Gun Island, on the Black Warrior, by a group of settlers headed by Thomas Hunter. A

  16. Effect of tides, river flow, and gate operations on entrainment of juvenile salmon into the interior Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Perry, Russell W.; Brandes, Patricia L.; Burau, Jon R.; Sandstrom, Philip T.; Skalski, John R.

    2015-01-01

    Juvenile Chinook Salmon Oncorhynchus tshawytscha emigrating from natal tributaries of the Sacramento River, California, must negotiate the Sacramento-San Joaquin River Delta (hereafter, the Delta), a complex network of natural and man-made channels linking the Sacramento River with San Francisco Bay. Fish that enter the interior and southern Delta—the region to the south of the Sacramento River where water pumping stations are located—survive at a lower rate than fish that use alternative migration routes. Consequently, total survival decreases as the fraction of the population entering the interior Delta increases, thus spurring management actions to reduce the proportion of fish that are entrained into the interior Delta. To better inform management actions, we modeled entrainment probability as a function of hydrodynamic variables. We fitted alternative entrainment models to telemetry data that identified when tagged fish in the Sacramento River entered two river channels leading to the interior Delta (Georgiana Slough and the gated Delta Cross Channel). We found that the probability of entrainment into the interior Delta through both channels depended strongly on the river flow and tidal stage at the time of fish arrival at the river junction. Fish that arrived during ebb tides had a low entrainment probability, whereas fish that arrived during flood tides (i.e., when the river's flow was reversed) had a high probability of entering the interior Delta. We coupled our entrainment model with a flow simulation model to evaluate the effect of nighttime closures of the Delta Cross Channel gates on the daily probability of fish entrainment into the interior Delta. Relative to 24-h gate closures, nighttime closures increased daily entrainment probability by 3 percentage points on average if fish arrived at the river junction uniformly throughout the day and by only 1.3 percentage points if 85% of fish arrived at night. We illustrate how our model can be used to evaluate the effects of alternative water management actions on fish entrainment into the interior Delta.

  17. View of portion of the northeastern United States as seen from Skylab

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An oblique view of a portion of the northeastern United States (41.5N, 91.0W), as photographed from the Skylab space station in Earth orbit by one of the Skylab 4 crewmen. The entire area of New Jersey, eastern Pennsylvania, southeastern New York, and southern New England can be examined in one view. Long Island, New York City, and the lower Hudson River Valley are readily seen in their regional framework. The Boston area, although blurred by clouds, is also included. The snow enhances the contrast, especially of terrain and cultural features. Different levels of clouds can be studied, especially the crossing layers of cirrus in the center of the photograph, with the lower cirrus trending north-south and the upper (probably associated with a jet steam) trending east-west.

  18. Lateral movement and stability of channel banks near four highway crossings in southwestern Mississippi

    USGS Publications Warehouse

    Turnipseed, D. Phil

    1994-01-01

    Channel meandering in alluvial streams has caused localized channel instability that has resulted in bridge failure and loss of human life in Mississippi. The U.S. Geological Survey, in coopera- tion with the Mississippi Department of Transpor- tation, conducted a study to develop a better methodology for defining and estimating channel meandering. For this report, river reaches near four bridge sites with current lateral movement of channel banks were selected for study. The lateral movement of channel banks was studied by mapping meanders from aerial photographs taken at various times, evaluating available discharge measurements, and measuring existing channel geometry and soil strength properties at these sites. Rapid, unre- stricted meander cuts and sandy banks are charac- teristic of the sites. Lateral movement was signi- ficant upstream from all four sites, and only one bridge site did not have significant lateral channel-bank movement during the study period. The development of cutbanks and localized channel-bank erosion have caused unstable conditions at three of the sites. Maps of tops of channel indicate significant lateral movement of channel banks upstream and downstream of all four sites and near the bridges at three of four sites. No significant movement occurred at the U.S. Highway 98 crossing of the Bogue Chitto near Tylertown from 1941 to 1991 despite large floods in 1983 and 1990. Slope stability analyses indicated this site to be marginally stable. The maximum lateral movement indicated from maps of tops of channel banks was 680 feet of northward movement of the right (north) bank of the Homochitto River near the State Highway 33 crossing at Rosetta from 1941 to 1983.

  19. Cross-shore transport of nearshore sediment by river plume frontal pumping

    NASA Astrophysics Data System (ADS)

    Horner-Devine, Alexander R.; Pietrzak, Julie D.; Souza, Alejandro J.; McKeon, Margaret A.; Meirelles, Saulo; Henriquez, Martijn; Flores, Raúl P.; Rijnsburger, Sabine

    2017-06-01

    We present a new mechanism for cross-shore transport of fine sediment from the nearshore to the inner shelf resulting from the onshore propagation of river plume fronts. Onshore frontal propagation is observed in moorings and radar images, which show that fronts penetrate onshore through the nearshore and surf zone, almost to the waterline. During frontal passage a two-layer counterrotating velocity field characteristic of tidal straining is immediately set up, generating a net offshore flow beneath the plume. The seaward flow at depth carries with it high suspended sediment concentrations, which appear to have been generated by wave resuspension in the nearshore region. These observations describe a mechanism by which vertical density stratification can drive exchange of material between the nearshore region and the inner shelf. To our knowledge these are the first observations of this frontal pumping mechanism, which is expected to play an important role in sediment transport near river mouths.

  20. Backwater at bridges and densely wooded flood plains, west fork Amite River near Liberty, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1979-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on West Fork Amite River near Liberty, MS. Water depths , velocities, and discharges through bridge openings on West Fork Amite River near Liberty, MS for floods of December 6, 1971 , and March 25, 1973, are shown, together with peak water-surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on a graph. (USGS).

  1. A subsynoptic-scale kinetic energy study of the Red River Valley tornado outbreak (AVE-SESAME 1)

    NASA Technical Reports Server (NTRS)

    Jedlovec, G. J.; Fuelberg, H. E.

    1981-01-01

    The subsynoptis-scale kinetic energy balance during the Red River Valley tornado outbreak is presented in order to diagnose storm environment interactions. Area-time averaged energetics indicate that horizontal flux convergence provides the major energy source to the region, while cross contour flow provides the greatest sink. Maximum energy variability is found in the upper levels in association with jet stream activity. Area averaged energetics at individual observation times show that the energy balance near times of maximum storm activity differs considerably from that of the remaining periods. The local kinetic energy balance over Oklahoma during the formation of a limited jet streak receives special attention. Cross contour production of energy is the dominant local source for jet development. Intense convection producing the Red River Valley tornadoes may have contributed to this local development by modifying the surrounding environment.

  2. Dye-dispersion study at proposed pumped-storage project on Hudson River at Cornwall, New York

    USGS Publications Warehouse

    Dunn, Bernard; Gravlee, George C.

    1978-01-01

    Data were collected during a dye-dispersion study on a 6-mile, tide-affected reach of the Hudson River near the proposed Cornwall Pumped Storage Project on September 21-22, 1977. The results indicated that complete mixing did not occur during the first tidal cycle but was complete after two or more cycles. The fluorometric dye-tracing procedure was used to determine the dispersion characteristics of the water mass. Rhodamine WT dye, 20-percent solution, was continuously injected on the west side of the river throughout an ebb tide, and its movement was monitored during a 30-hour period. Samples were collected both individually and continuously. Automatic dye samplers were used at selected cross sections near each bank. Bathymetric measurements were made at eight cross sections between Newburgh and West Point to determine the depths. (Woodard-USGS)

  3. Map showing contours on top of the upper Cretaceous Mowry Shale, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1991-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 4,926 of these wells that penetrate the Minnelusa Formation and equivalents.

  4. Map showing structure contours on the top of the upper Jurassic Morrison Formation, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1991-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 2,429 of these wells that penetrate the Minnelusa Formation and equivalents.

  5. 76 FR 22033 - Safety Zone; Red River Safety Zone, Red River, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ...-AAOO Safety Zone; Red River Safety Zone, Red River, MN AGENCY: Coast Guard, DHS. ACTION: Temporary... a temporary safety zone on the Red River, MN. This safety zone is being established to ensure the... Red River in the State of Minnesota north of a line drawn across latitude 46[deg]20'00'' N, including...

  6. 3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROFILE AND ALIGNMENT OF DAM ACROSS WEST CHANNEL OF SNAKE RIVER, SHEET 3 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  7. Sustainable Land Management in the Lim River Basin

    NASA Astrophysics Data System (ADS)

    Grujic, Gordana; Petkovic, Sava; Tatomir, Uros

    2017-04-01

    In the cross-border belt between Serbia and Montenegro are located more than one hundred torrential water flows that belong to the Lim River Basin. Under extreme climate events they turned into floods of destructive power and great energy causing enormous damage on the environment and socio-economic development in the wider region of the Western Balkans. In addition, anthropogenic factors influence the land instability, erosion of river beds and loss of topsoil. Consequently, this whole area is affected by pluvial and fluvial erosion of various types and intensity. Terrain on the slopes over 5% is affected by intensive degree of erosion, while strong to medium degree covers 70% of the area. Moreover, in the Lim River Basin were built several hydro-energetic systems and accumulations which may to a certain extent successfully regulate the water regime downstream and to reduce the negative impact on the processes of water erosion. However, siltation of accumulation reduces their useful volume and threatens the basic functions (water reservoirs), especially those ones for water supply, irrigation and energy production that have lost a significant part of the usable volume due to accumulated sediments. Facing the negative impacts of climate change and human activities on the process of land degradation in the Lim River basin imposes urgent need of adequate preventive and protective measures at the local and regional level, which can be effectively applied only through enhanced cross-border cooperation among affected communities in the region. The following set of activities were analyzed to improve the actual management of river catchment: Identifying priorities in the spatial planning, land use and water resources management while respecting the needs of local people and the communities in the cross border region; development of cooperation and partnership between the local population, owners and users of real estate (pastures, agricultural land, forests, fisheries etc.) and local governments; planning and control of torrential streams and conservation of land, establishing the monitoring system of environmental parameters and its continuous maintenance.

  8. Nitrate Trends in Minnesota Rivers

    USGS Publications Warehouse

    Wall, Dave; Christopherson, Dave; Lorenz, Dave; Martin, Gary

    2013-01-01

    The objective of this study was to assess long-term trends (30 to 35 years) of flow-adjusted concentrations of nitrite+nitrate-N (hereinafter referred to as nitrate) in a way that would allow us to discern changing trends. Recognizing that these trends are commonly different from one river to another river and from one part of the state to another, our objective was to examine as many river monitoring sites across the state as possible for which sufficient long term streamflow and concentration data were available.

  9. Comparison of hydromorphological assessment methods: Application to the Boise River, USA

    NASA Astrophysics Data System (ADS)

    Benjankar, Rohan; Koenig, Frauke; Tonina, Daniele

    2013-06-01

    Recent national and international legislation (e.g., the European Water Framework Directive) identified the need to quantify the ecological condition of river systems as a critical component for an integrated river management approach. An important defining driver of ecological condition is stream hydromorphology. Several methodologies have been proposed from simple table-based approaches to complex hydraulics-based models. In this paper, three different methods for river hydromorphological assessment are applied to the Boise River, United States of America (USA): (1) the German LAWA overview method (Bund/Laender Arbeitsgemeinschaft Wasser/German Working Group on water issues of the Federal States and the Federal Government represented by the Federal Environment Ministry), (2) a special approach for a hydromorphological assessment of urban rivers and (3) a hydraulic-based method. The hydraulic-based method assessed stream conditions from a statistical analysis of flow properties predicted with hydrodynamic modeling. The investigation focuses on comparing the three methods and defining the transferability of the methods among different contexts, Europe and West United States. It also provides comparison of the hydromorphological conditions of an urban and a rural reaches of the Boise River.

  10. Sand deposition in the Colorado River in the Grand Canyon from flooding of the Little Colorado River

    USGS Publications Warehouse

    Wiele, S.M.; Graf, J.B.; Smith, J.D.

    1996-01-01

    Methods for computing the volume of sand deposited in the Colorado River in Grand Canyon National Park by floods in major tributaries and for determining redistribution of that sand by main-channel flows are required for successful management of sand-dependent riparian resources. We have derived flow, sediment transport, and bed evolution models based on a gridded topography developed from measured channel topography and used these models to compute deposition in a short reach of the river just downstream from the Little Colorado River, the largest tributary in the park. Model computations of deposition from a Little Colorado River flood in January 1993 were compared to bed changes measured at 15 cross sections. The total difference between changes in cross-sectional area due to deposition computed by the model and the measured changes was 6%. A wide reach with large areas of recirculating flow and large depressions in the main channel accumulated the most sand, whereas a reach with similar planimetric area but a long, narrow shape and relatively small areas of recirculating flow and small depressions in the main channel accumulated only about a seventh as much sand. About 32% of the total deposition was in recirculation zones, 65% was in the main channel, and 3% was deposited along the channel margin away from the recirculation zone. Overall, about 15% of the total input of sand from this Little Colorado River flood was deposited in the first 3 km below the confluence, suggesting that deposition of the flood-derived material extended for only several tens of kilometers downstream from the confluence.

  11. Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH)

    NASA Astrophysics Data System (ADS)

    Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui

    2016-12-01

    Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.

  12. Calculation of in situ acoustic sediment attenuation using off-the-shelf horizontal ADCPs in low concentration settings

    USGS Publications Warehouse

    Haught, Dan; Venditti, Jeremy G.; Wright, Scott A.

    2017-01-01

    The use of “off-the-shelf” acoustic Doppler velocity profilers (ADCPs) to estimate suspended sediment concentration and grain-size in rivers requires robust methods to estimate sound attenuation by suspended sediment. Theoretical estimates of sediment attenuation require a priori knowledge of the concentration and grain-size distribution (GSD), making the method impractical to apply in routine monitoring programs. In situ methods use acoustic backscatter profile slope to estimate sediment attenuation, and are a more attractive option. However, the performance of in situ sediment attenuation methods has not been extensively compared to theoretical methods. We used three collocated horizontally mounted ADCPs in the Fraser River at Mission, British Columbia and 298 observations of concentration and GSD along the acoustic beams to calculate theoretical and in situ sediment attenuation. Conversion of acoustic intensity from counts to decibels is influenced by the instrument noise floor, which affects the backscatter profile shape and therefore in situ attenuation. We develop a method that converts counts to decibels to maximize profile length, which is useful in rivers where cross-channel acoustic profile penetration is a fraction of total channel width. Nevertheless, the agreement between theoretical and in situ attenuation is poor at low concentrations because cross-stream gradients in concentration, sediment size or GSD can develop, which affect the backscatter profiles. We establish threshold concentrations below which in situ attenuation is unreliable in Fraser River. Our results call for careful examination of cross-stream changes in suspended sediment characteristics and acoustic profiles across a range of flows before in situ attenuation methods are applied in river monitoring programs.

  13. ERS-ENVISAT radar altimetry over the Amazon basin

    NASA Astrophysics Data System (ADS)

    Santos da Silva, J.; Calmant, S.; Rotunno Filho, O. C.; Seyler, F.; Mansur, W. J.; Cochonneau, G.

    2009-12-01

    Since the launch of satellite embarking radar altimeters in the late 80’s, scientists have investigated the feasibility of using these ocean-dedicated data over the continental waters. In fact, satellite radar altimetry is being recognized as a powerful tool to obtain time series of water stage consistent to those obtained by conventional in situ gauge stations. In addition, this technology has been proved to provide reliable information about the dynamics of large water bodies such as lakes and inner seas. However, the results should be deeply examined as we shift the analysis to water levels acquired during satellite crosses over rivers. Yet, hydrologists are still reluctant in using these data, as neither the neces¬sary time sampling nor accuracy is achieved, leading to endless debates in specialized workshops. Noteworthy to highlight, few published studies are dedicated to an in depth assessment of the radar altimetry over rivers, in¬cluding comparisons with water levels at fluviometric gauges. In this work, we present an extensive analysis of the quality of times series of river stages that we have constructed in the Amazon basin for a variety of water bodies such as large rivers, narrow stems, lakes and flooded areas using radar altimeters embarked on¬board ERS-2 and ENVISAT. The approach includes the sensitivity to the raw data processing methodology such as the tracking algorithm, the data selection at the crossings between satellite track and river bed (so-called virtual stations) and correction for off-nadir effects. The VALS toolbox was developed to process altimetry data at virtual stations under the framework of this study. Results of internal validation at cross-overs and external validation by comparison with in situ gauges are presented.

  14. 31. U.S. WORKS PROGRAM GRADE CROSSING PROJECT, (TITLE PAGE) W.P.G.M. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. U.S. WORKS PROGRAM GRADE CROSSING PROJECT, (TITLE PAGE) W.P.G.M. NO-301, WEST BRIDGE STREET. Sheet 1 of 10 - Notre Dame Bridge, Spanning Merrimack River on Bridge Street, Manchester, Hillsborough County, NH

  15. Mapping the response of riparian vegetation to possible flow reductions in the Snake River, Idaho

    USGS Publications Warehouse

    Johnson, W. Carter; Dixon, Mark D.; Simons, Robert W.; Jenson, Susan; Larson, Kevin

    1995-01-01

    This study was initiated to determine the general effects of potential flow reductions in the middle Snake River (Swan Falls Dam downstream to the Idaho-Oregon border) on its riparian vegetation. Considerable water from the river is currently used to irrigate the adjacent Snake River Plain, and increased demand for water in the future is likely. The problem was subdivided into several research components including: field investigation of the existing riparian vegetation and river environment, hydrological modeling to calculate the effects of one flow scenario on hydrological regime, and integration of vegetation and hydrological modeling results with a Geographic Information System (GIs) to map the riverbed, island, and bank conditions under the scenario flow. Field work was conducted in summer 1990. Riparian vegetation along 40 U.S. Geological Survey cross-sections was sampled at approximately 1.25 mile intervals within the 50 mile long study area. Cross-section and flow data were provided by the U.S. Geological. Survey. GIs mapping of land/water cover using ARC/INFO was based on 1987 aerial photographs. Riverbed contour maps were produced by linking cross-section data, topographic contouring software (anudem), and GIs. The maps were used to spatially display shallow areas in the channel likely to become vegetated under reduced flow conditions. The scenario would reduce flow by approximately 20% (160 MAF) and lower the river an average of 0.5 ft. The scenario flow could cause a drop in the elevation of the riparian zone comparable to the drop in mean river level and expansion of the lower riparian zone into shallow areas of the channel. The GIs maps showed that the shallow areas of the channel more likely to become vegetated under the scenario flow are located in wide reaches near islands. Some possible ecological consequences of the scenario flow include a greater area of riparian habitat, reduced flow velocity and sedimentation in shallow channels leading to channel deactivation, increased island visitation and nest predation by predatory mammals due to loss of a water barrier between some islands and banks, and larger populations of alien plant species in the new riparian vegetation.

  16. Channel Width Change as a Potential Sediment Source, Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Lauer, J. W.; Echterling, C.; Lenhart, C. F.; Rausch, R.; Belmont, P.

    2017-12-01

    Turbidity and suspended sediment are important management considerations along the Minnesota River. The system has experience large and relatively consistent increases in both discharge and channel width over the past century. Here we consider the potential role of channel cross section enlargement as a sediment source. Reach-average channel width was digitized from aerial images dated between 1937 and 2015 along multiple sub-reaches of the Minnesota River and its major tributaries. Many of the sub-reaches include several actively migrating bends. The analysis shows relatively consistent increases in width over time, with average increase rates of 0.4 percent per year. Extrapolation to the river network using a regional relationship for cross-sectional area vs. drainage area indicates that large tributaries and main-stem reaches account for most of the bankfull cross-sectional volume in the basin. Larger tributaries and the main stem thus appear more important for widening related sediment production than small tributaries. On a basin-wide basis, widening could be responsible for a gross supply of more sediment than has been gaged at several main-stem sites, indicating that there may be important sinks for both sand and silt/clay size material distributed throughout the system. Sediment storage is probably largest along the lowest-slope reaches of the main stem. While channel width appears to have adjusted relatively quickly in response to discharge and other hydraulic modifications, net storage of sediment in floodplains probably occurs sufficiently slowly that depth adjustment will lag width adjustment significantly. Detailed analysis of the lower Minnesota River using a river segmenting approach allows for a more detailed assessment of reach-scale processes. Away from channel cutoffs, elongation of the channel at eroding bends is consistent with rates observed on other actively migrating rivers. However, the sinuosity increase has been more than compensated by several natural and engineered cutoffs. The sinuosity change away from cutoffs probably plays a relatively modest role in the reach's sediment budget. However, point bars and abandoned oxbow lakes are important zones of sediment storage that may be large enough to account for much of the widening-related production of sand in the reach.

  17. Highway to the Heartland.

    ERIC Educational Resources Information Center

    Turner, James S.

    1991-01-01

    Discusses "Always a River," a joint project of six midwestern state humanities councils that focuses on the Ohio River Valley's history, ecology, and development. Highlights exhibitions to be set up on a river barge that will tour Ohio River towns and cities during 1991. Stresses interrelationships between the river and the communities…

  18. 2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF DRAWING, PLAN, SHEET 5 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  19. DETECTING FOREST STRESS AND DECLINE IN RESPONSE TO INCREASING RIVER FLOW IN SOUTHWEST FLORIDA, USA

    EPA Science Inventory

    Forest stress and decline resulting from increased river flows were investigated in Myakka River State Park (MRSP), Florida, USA. Since 1977, land-use changes around the upper Myakka River watershed have resulted in significant increases in water entering the river, which have...

  20. Fluvial development of the Nete valley during the Late Weichselian and early Holocene: new data from a cross-section south of Kasterlee (NE-Belgium)

    NASA Astrophysics Data System (ADS)

    Beerten, Koen; Van Nieuland, Jasper; Vandenberghe, Dimitri; Deforce, Koen; Rogiers, Bart

    2014-05-01

    The Late Quaternary geomorphology and stratigraphy of the fluvial deposits in the Kleine Nete valley is poorly documented, apart from the classic paper by Munaut and Paulissen (1973) on the palaeo-ecology of this river valley. A good description of the fluvial development within this catchment over longer timescales would help to understand palaeohydrological conditions, as it may give insight into changes in river bed elevation and palaeo-channel morphology. As such, existing hydrological models can be tested for conditions that are different than today, by unlocking the palaeohydrological archive. During road construction works, a cross-section through the Kleine Nete alluvium could be observed, directly (tens of meters) south of the present river course and underneath an abandoned channel that is traceable on historical maps and still visible in the landscape today. The river's alluvium is very thin - the sediment thickness usually does not exceed 2-3 m - while the composition is monotonous, either sand or peat with at a thin loamy layer at the top. Different fluvial facies, including horizontally laminated and cross-bedded sands, channel-fill sands, in-situ (?) peat layers, reworked peat mixed with sand, and loamy alluvium were encountered and sampled for grain-size analysis, palynological analysis and optically stimulated luminescence (OSL) dating. The preliminary results show that vertical aggradation took place during the late Pleniglacial (between ca. 20-16 ka) over a large area (probably by a braided river). This aggradation phase was followed by incision and the development of confined channels that subsequently were filled with basal peat and channel sands during the Late Glacial (ca. 15-12 ka) and the early Holocene (ca. 11 ka). The different dimensions of the observed channels (cross-section and river bed elevation), in comparison with those of the present-day river, suggest that large parts of the alluvial plain were experiencing different hydrological conditions during the Late Glacial and early Holocene than today. We conclude that despite the non-continuous nature of the sedimentary archive in the investigated profile, relevant information with respect to the palaeohydrological evolution of the Nete catchment could be obtained. Reference Munaut, A.V., Paulissen, E., 1973. Evolution et paléo-écologie de la vallée de la Petite Nèthe au cours du post-Würm (Belgique). Extrait des Annales de la Société Géologique de Belgique 96, 301-346.

  1. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C.

    Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities (in situcolonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to “cross-feeding” with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection duringin situcolonization would dictate the responsemore » to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition. IMPORTANCEThe influence of river water-groundwater mixing on hyporheic zone microbial community structure and function is an important but poorly understood component of riverine biogeochemistry. This study employed an experimental approach to gain insight into how such mixing might be expected to influence the biomass, respiration, and composition of hyporheic zone microbial communities. Colonized sands from three different habitats (groundwater, river water, and hyporheic) were “cross-fed” with either groundwater, river water, or DOC-free artificial fluids. We expected that the colonization history would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. By contrast, the major observation was that the riverbed communities had much higher biomass and respiration, as well as a distinct community structure compared with those of the hyporheic and groundwater colonized sands. These results highlight the importance of riverbed microbial metabolism in organic carbon processing in hyporheic corridors.« less

  2. Channel evolution of the Hatchie River near the U.S. Highway 51 crossing in Lauderdale and Tipton counties, West Tennessee

    USGS Publications Warehouse

    Bryan, B.A.

    1989-01-01

    An investigation was conducted to describe the channel cross-section evolution near the bridge crossing of the Hatchie River at U.S. Highway 51 in Lauderdale and Tipton Counties, in West Tennessee. The study also included velocity and discharge distributions near the bridge crossing, and definition of streamflow duration and flood frequencies at the bridge site and comparison of these statistics with flows prior to the bridge collapse. Cross-section measurements at the site indicated that the channel was widening at a rate of 0.8 ft/year from 1931 through about 1975. The channel bed was stable at an elevation of about 235 ft. Construction of a south bound bridge in 1974 and 1975 reduced the effective flow width from about 4,000 to about 1,000 ft. Data collected from 1975 to 1981 indicated that the channel bed degraded to an elevation of about 230 ft and the widening rate increased to about 4.5 ft/year. The channel bed returned to approximately the pre-construction elevation of 235 ft as channel width increased. The widening rate decreased to about 1.8 ft/year from 1981 through 1989. Channel-geometry data indicated that recent channel morphology changes along the toe of the right bank have resulted in continued bank undercutting and bank failure. Cross-section geometry and flow-velocity distributions from measurements made from April 6 through 10, 1989, indicate that there is a high-flow meander pattern through this river reach and that the bridges are located at the point where the current strikes the right bank. (USGS)

  3. Water-Resources Investigations in Wisconsin, 2002

    USGS Publications Warehouse

    Hueschen, K. A.; Jones, S.Z.; Fuller, J.A.

    2002-01-01

    Runoff for rivers in the state ranged from 67 percent of the average annual runoff (1964–2001) at the Kewaunee River site in the northeast part of the state to 160 percent of the average annual runoff (1944–2001) at the Eau Galle River at Spring Valley site in the west central part of the state. Departures of runoff in the 2001 water year as a percent of long-term average runoff in the state (determined using stations with drainage areas greater than 150 square miles and at least 20 years of record) are shown in figure 4.

  4. Velocity-amplified microbial respiration rates in the lower Amazon River: Amazon River respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Nicholas D.; Sawakuchi, Henrique O.; Neu, Vania

    Most measurements of respiration rates in large tropical rivers do not account for the influence of river flow conditions on microbial activity. We developed a ship-board spinning incubation system for measuring O2 drawdown under different rotation velocities and deployed the system along the lower Amazon River during four hydrologic periods. Average respiration rates in incubation chambers rotated at 0.22 and 0.66 m s-1 were 1.4 and 2.4 times higher than stationary chambers, respectively. On average, depth-integrated respiration rates in chambers spun at 0.22 and 0.66 m s-1 accounted for 64 ± 22% and 104 ± 36% of CO2 outgassing rates,more » respectively, in mainstem sites. Continuous measurements of in situ pCO2 were also made along with cross-channel profiles of river velocity. A positive correlation between river velocity and pCO2 was observed along the lower river (r2=0.67-0.96) and throughout a tidal cycle.« less

  5. Modern geomorphology in a post-glacial landscape and implications for river restoration, eastern Yosemite Valley, Yosemite National Park, USA

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Wright, S. A.; Roche, J. W.

    2011-12-01

    Yosemite National Park, USA, is one of the most popular national parks in the country with over 3.9 million visitors annually. The majority of tourists visit a relatively small area around the Merced River in scenic eastern Yosemite Valley, which has resulted in degradation to the river and streambanks. The National Park Service is updating the long-term management plan for the Merced River which includes river restoration. A key component determining the success of future river restoration efforts is the transport and supply of sediment. For this study, we investigate the modern geomorphology of the eastern Yosemite Valley region. For the watershed and reach analyses, we draw from a variety of topographic and hydrologic records, including 20-years of data from permanent cross sections, aerial and ground-based LiDAR surveys, and a nearly 100-year hydrologic record. In addition, we utilize hydraulic and sediment transport models to investigate channel velocities, bed shear stress and sediment transport at the reach scale. From the watershed-scale analysis, it is likely that large-scale remnant glacial features exert a primary control on the sediment supply to the study area with relatively small volumes of both suspended and bedload sediment being contributed to the study site. Two of the three major watersheds, Tenaya Creek and the upper Merced River, likely contribute only small amounts of bedload downstream due to low-gradient depositional reaches. Though little-known, the third major watershed, Illilouette Creek, is the only watershed capable of contributing larger amounts of bedload material, though the bedload material is likely contributed only during high flow events. High flows in the Yosemite Valley region have two different distributions: large early winter storm events above the 20-year return interval, and moderate snowmelt flows at and below the 20-year return interval. Sediment transport analyses indicate that bedload transport is dominated by relatively frequent (<2 year) snowmelt flow events and that the coarsest material in the reach (>110 mm) is mobile during these flows. The permanent cross sections record large topographic changes, including infilling at key bars, associated with the 1997 flood, the largest recorded early winter event (100-year return interval). Following snowmelt events post-1997, cross sections are returning to near pre-1997 levels. The cross section data suggest there is likely a disconnect between sediment supplied to the reach and sediment transport, with the majority of sediment supply occurring during large early winter events while the majority of sediment transport occurs during snowmelt events. An implication of our findings for river restoration in this area of the Merced River is that the ability of the channel to rebuild streambanks is relatively low, given the low suspended sediment supply. In contrast, bedload transport is relatively frequent and occurs in significant quantities, suggesting that river restoration involving bed recovery (e.g. recovery of pools formed by riprap or bridges) should be relatively rapid if obstructions are removed.

  6. An Old-Growth Definition for Red River Bottom Forests in the Eastern United States

    Treesearch

    Ted Shear; Mike Young; Robert Kellison

    1997-01-01

    Our goal was to develop a description of old-growth red river bottom forests of the Southeastern United States. We compared the characteristics of forests described in the scientific literature and forests we examined to various published criteria for old-growth condition. Because red rivers are a relatively new landscape feature (most 250 years old, resulting from...

  7. Large rivers of the United States

    USGS Publications Warehouse

    Iseri, Kathleen T.; Langbein, Walter Basil

    1974-01-01

    Information on the flow of the 28 largest rivers in the United States is presented for the base periods 1931-60 and 1941-70. Drainage area, stream length, source, and mouth are included. Table 1 shows the average discharge at downstream gaging stations. Table 2 lists large rivers in order of average discharge at the mouth, based on the period 1941-70.

  8. The Past, Present, and Future of Cross-Cultural Psychology.

    ERIC Educational Resources Information Center

    Lonner, Walter J.

    Cross-cultural psychology had its beginnings at the turn of the century when W. H. R. Rivers made his famous investigations on perception and other processes. In the mid 1960's and early 1970's cross-cultural research as a method in psychology gained a momentum that led to an almost unchecked acceleration. The author details the recent growth in…

  9. Science implementation of Forecast Mekong for food and environmental security

    USGS Publications Warehouse

    Turnipseed, D. Phil

    2012-01-01

    Forecast Mekong is a significant international thrust under the Delta Research and Global Observation Network (DRAGON) of the U.S. Geological Survey (USGS) and was launched in 2009 by the U.S. Department of State and the Foreign Ministers of Cambodia, Laos, Thailand, and Vietnam under U.S. Department of State Secretary Hillary R. Clinton's Lower Mekong Initiative to enhance U.S. engagement with countries of the Lower Mekong River Basin in the areas of environment, health, education, and infrastructure. Since 2009, the USGS has worked closely with the U.S. Department of State; personnel from Cambodia, Laos, Thailand, and Vietnam; nongovernmental organizations; and academia to collect and use research and data from the Lower Mekong River Basin to provide hands-on results that will help decisionmakers in future planning and design for restoration, conservation, and management efforts in the Lower Mekong River Basin. In 2012 Forecast Mekong is highlighting the increasing cooperation between the United States and Lower Mekong River Basin countries in the areas of food and environmental security. Under the DRAGON, Forecast Mekong continues work in interactive data integration, modeling, and visualization system by initiating three-dimensional bathymetry and river flow data along with a pilot study of fish distribution, population, and migratory patterns in the Lower Mekong River Basin. When fully developed by the USGS, in partnership with local governments and universities throughout the Mekong River region, Forecast Mekong will provide valuable planning tools to visualize the consequences of climate change and river management.

  10. Neurellipes rhoko sp. n. from the Cross River Loop, Eastern Nigeria (Lepidoptera: Lycaenidae: Polyommatinae).

    PubMed

    Sáfián, Szabolcs

    2014-09-04

    A new species belonging to the recently revised Neurellipes mahota-group has been found in the Cross River Loop, Eastern Nigeria. It resembles the recently described Liberian N. georgiadisi Larsen, 2009, but differs from it by the wing shape and the extent and shape of orange patches on the hindwing, also on the forewing, especially in the discoidal cell. The species is described as N. rhoko sp. n.; a detailed comparison with the other species in the N. mahota-group is given, as well as notes on the biogeography of N. rhoko and its Liberian sub-region vicariant N. georgiadisi. 

  11. Performance characterization of a cross-flow hydrokinetic turbine in sheared inflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbush, Dominic; Polagye, Brian; Thomson, Jim

    2016-12-01

    A method for constructing a non-dimensional performance curve for a cross-flow hydrokinetic turbine in sheared flow is developed for a natural river site. The river flow characteristics are quasi-steady, with negligible vertical shear, persistent lateral shear, and synoptic changes dominated by long time scales (days to weeks). Performance curves developed from inflow velocities measured at individual points (randomly sampled) yield inconclusive turbine performance characteristics because of the spatial variation in mean flow. Performance curves using temporally- and spatially-averaged inflow velocities are more conclusive. The implications of sheared inflow are considered in terms of resource assessment and turbine control.

  12. Measured Copper Toxicity to Cnesterodon decemmaculatus (Pisces: Poeciliidae) and Predicted by Biotic Ligand Model in Pilcomayo River Water: A Step for a Cross-Fish-Species Extrapolation

    PubMed Central

    Casares, María Victoria; de Cabo, Laura I.; Seoane, Rafael S.; Natale, Oscar E.; Castro Ríos, Milagros; Weigandt, Cristian; de Iorio, Alicia F.

    2012-01-01

    In order to determine copper toxicity (LC50) to a local species (Cnesterodon decemmaculatus) in the South American Pilcomayo River water and evaluate a cross-fish-species extrapolation of Biotic Ligand Model, a 96 h acute copper toxicity test was performed. The dissolved copper concentrations tested were 0.05, 0.19, 0.39, 0.61, 0.73, 1.01, and 1.42 mg Cu L−1. The 96 h Cu LC50 calculated was 0.655 mg L−1 (0.823 − 0.488). 96-h Cu LC50 predicted by BLM for Pimephales promelas was 0.722 mg L−1. Analysis of the inter-seasonal variation of the main water quality parameters indicates that a higher protective effect of calcium, magnesium, sodium, sulphate, and chloride is expected during the dry season. The very high load of total suspended solids in this river might be a key factor in determining copper distribution between solid and solution phases. A cross-fish-species extrapolation of copper BLM is valid within the water quality parameters and experimental conditions of this toxicity test. PMID:22523491

  13. Statistical analysis and mathematical modeling of a tracer test on the Santa Clara River, Ventura County, California

    USGS Publications Warehouse

    Paybins, Katherine S.; Nishikawa, Tracy; Izbicki, John A.; Reichard, Eric G.

    1998-01-01

    To better understand flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 28-mile reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. Dye was injected at a site on Piru Creek, and fluorescence of river water was measured continuously at four sites and intermittently at two sites. Discharge measurements were also made at the six sites. The time of travel of the dye, peak dye concentration, and time-variance of time-concentration curves were obtained at each site. The long tails of the time-concentration curves are indicative of sources/sinks within the river, such as riffles and pools, or transient bank storage. A statistical analysis of the data indicates that, in general, the transport characteristics follow Fickian theory. These data and previously collected discharge data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). DAFLOW solves a simplified form of the diffusion-wave equation and uses empirical relations between flow rate and cross-sectional area, and flow rate and channel width. BLTM uses the velocity data from DAFLOW and solves the advection-dispersion transport equation, including first-order decay. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of dye mass in the middle, ephemeral, subreaches, and (2) ground-water recharge does not explain the loss of dye mass in the uppermost and lowermost, perennial, subreaches. This loss of mass was simulated using a linear decay term. The loss of mass in the perennial subreaches may be caused by a combination of photodecay or adsorption/desorption.

  14. 27 CFR 9.178 - Columbia Gorge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Columbia River. From this point, the boundary line— (1) Goes 1.5 miles straight north along the R9E-R10E line to the northwest corner of section 19, T3N, R10E (Hood River Quadrangle); (2) Continues 2 miles... Quadrangle); (3) Goes 4.1 miles straight north along the section line, crossing onto the Northwestern Lake...

  15. 27 CFR 9.178 - Columbia Gorge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Columbia River. From this point, the boundary line— (1) Goes 1.5 miles straight north along the R9E-R10E line to the northwest corner of section 19, T3N, R10E (Hood River Quadrangle); (2) Continues 2 miles... Quadrangle); (3) Goes 4.1 miles straight north along the section line, crossing onto the Northwestern Lake...

  16. 27 CFR 9.178 - Columbia Gorge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Columbia River. From this point, the boundary line— (1) Goes 1.5 miles straight north along the R9E-R10E line to the northwest corner of section 19, T3N, R10E (Hood River Quadrangle); (2) Continues 2 miles... Quadrangle); (3) Goes 4.1 miles straight north along the section line, crossing onto the Northwestern Lake...

  17. 27 CFR 9.178 - Columbia Gorge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Columbia River. From this point, the boundary line— (1) Goes 1.5 miles straight north along the R9E-R10E line to the northwest corner of section 19, T3N, R10E (Hood River Quadrangle); (2) Continues 2 miles... Quadrangle); (3) Goes 4.1 miles straight north along the section line, crossing onto the Northwestern Lake...

  18. 19. BLUEPRINT, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. BLUEPRINT, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. S of Ms. 50 Map of Tombigbee River at Waverly, 'Proposed Crossing.' 12 May 1888. Credt: Columbus & Greenville, RR, Columbus, Ms. DWG S-3-343. Sarcone Photography, ColumbuS, Ms. Sept 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  19. 76 FR 76153 - Notice of Effectiveness of Exempt Wholesale Generator Status; Caney River Wind Project, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ...] Notice of Effectiveness of Exempt Wholesale Generator Status; Caney River Wind Project, LLC, Mesquite Solar 1, LLC, Copper Crossing Solar LLC, Copper Mountain Solar 1, LLC, Pinnacle Wind, LLC, Bellevue Solar, LLC, Yamhill Solar, LLC, Osage Wind, LLC, Minco Wind II, LLC Take notice that during the month of...

  20. Geologic evolution of the lower Connecticut River valley: Influence of bedrock geology, glacial deposits, and sea level

    USGS Publications Warehouse

    Stone, Janet R.; Lewis, Ralph S.

    2016-01-01

    This fieldtrip illustrates the character of the lower Connecticut River bedrock valley, in particular its depth, and the lithology and structure of bedrock units it crosses. It examines the character and distribution of the glaciodeltaic terraces that partially fill the valley and discusses the depth of postglacial incision into them.

  1. Bayous and Jungle Rivers: Cross-Cultural Perspectives on Children's Environmental Moral Reasoning.

    ERIC Educational Resources Information Center

    Kahn, Peter H., Jr.

    1997-01-01

    Examines environmental moral reasoning and values in African American children and their parents in Houston and Brazilian children in a large city and in a river village along the Amazon. Finds similarities of moral concerns and obligations to the environment in all three communities, structured by concerns for human welfare, fairness, and rights.…

  2. A web-based Tamsui River flood early-warning system with correction of real-time water stage using monitoring data

    NASA Astrophysics Data System (ADS)

    Liao, H. Y.; Lin, Y. J.; Chang, H. K.; Shang, R. K.; Kuo, H. C.; Lai, J. S.; Tan, Y. C.

    2017-12-01

    Taiwan encounters heavy rainfalls frequently. There are three to four typhoons striking Taiwan every year. To provide lead time for reducing flood damage, this study attempt to build a flood early-warning system (FEWS) in Tanshui River using time series correction techniques. The predicted rainfall is used as the input for the rainfall-runoff model. Then, the discharges calculated by the rainfall-runoff model is converted to the 1-D river routing model. The 1-D river routing model will output the simulating water stages in 487 cross sections for the future 48-hr. The downstream water stage at the estuary in 1-D river routing model is provided by storm surge simulation. Next, the water stages of 487 cross sections are corrected by time series model such as autoregressive (AR) model using real-time water stage measurements to improve the predicted accuracy. The results of simulated water stages are displayed on a web-based platform. In addition, the models can be performed remotely by any users with web browsers through a user interface. The on-line video surveillance images, real-time monitoring water stages, and rainfalls can also be shown on this platform. If the simulated water stage exceeds the embankments of Tanshui River, the alerting lights of FEWS will be flashing on the screen. This platform runs periodically and automatically to generate the simulation graphic data of flood water stages for flood disaster prevention and decision making.

  3. 15. View of Tombigbee River Bridge facing same direction as ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. View of Tombigbee River Bridge facing same direction as in photograph no. MS-13-14 except this view is the underside of the bridge. - Tombigbee River Bridge, Spanning Tombigbee River at State Highway 182, Columbus, Lowndes County, MS

  4. Level II scour analysis for Bridge 38 (ANDOVT00110038) on State Route 11, crossing the Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOVT00110038 on State Route 11 crossing the Middle Branch Williams River, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south central Vermont. The 5.65-mi2 drainage area is in a predominantly rural and forested basin. Upstream and downstream of the study site banks and overbanks are forested. In the study area, the Middle Branch Williams River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 44 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 54.0 mm (0.177 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 5, 1996, indicated that the reach was stable. The State Route 11 crossing of the Middle Branch Williams River is a 33-ft-long, two-lane bridge consisting of one 31-foot concrete T-beam span (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 55 degrees to the opening while the measured opening-skew-to-roadway is 45 degrees. There were no scour problems observed during the Level I assessment. Type-4 stone fill (less than 60 inches diameter) and type-3 stone fill (less than 48 inches diameter) was present on the left bank upstream and right bank upstream respectively. Type-2 stone fill (less than 36 inches diameter) was present in the upstream left wing wall area. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 1.8 to 3.4 ft. The worst-case contraction scour occurred at the 500-year flow. Abutment scour ranged from 12.0 to 14.0 ft. The worst-case abutment scour occurred at the 500-year flow at the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 39 (ANDOVT00110039) on State Route 11, crossing the Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOVT00110039 on State Route 11 crossing the Middle Branch Williams River, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southern Vermont. The 5.75-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest on the upstream left bank and downstream right bank. The surface cover on the upstream right and downstream left banks is brush. In the study area, the Middle Branch Williams River has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 58 ft and an average bank height of 8 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 96.8 mm (0.317 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 9, 1996, indicated that the reach was laterally unstable. The State Route 11 crossing of the Middle Branch Williams River is a 43-ft-long, two-lane bridge consisting of one 41-foot concrete-beam span and two additional steel beams on the upstream face (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 45 degrees to the opening while the opening-skew-to-roadway is 45 degrees. The only scour protection measures at the site was type-2 stone fill (less than 36 inches diameter) at the upstream end of the upstream right wingwall and type-3 stone fill (less than 48 inches diameter) along the entire base length of the upstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.9 to 11.2 ft. The worst-case abutment scour occurred at the incipient-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Hydraulic visibility and effective cross sections based on hydrodynamical modeling of flow lines gained by satellite altimetry

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Garambois, P. A.; Calmant, S.; Roux, H.; Paris, A.; Monnier, J.; Santos da Silva, J.

    2015-12-01

    Hydrodynamic laws predict that irregularities in a river bed geometry produce spatial and temporal variations in the water level, hence in its slope. Conversely, observation of these changes is a goal of the SWOT mission with the determination of the discharge as a final objective. In this study, we analyse the relationship between river bed undulations and water surface for an ungauged reach of the Xingu river, a first order tributary of the Amazon river. It is crosscut more than 10 times by a single ENVISAT track over a hundred of km. We have determined time series of water levelsat each of these crossings, called virtual stations (VS), hence slopes of the flow line. Using the discharge series computed by Paiva et al. (2013) between 1998 and 2009, Paris et al. (submitted) determined at each VS a rating curve relating these simulated discharge with the ENVISAT height series. One parameter of these rating curves is the zero-flow depth Z 0 . We show that it is possible to explain the spatial and temporal variations of the water surface slope in terms of hydrodynamical response of the longitudinal changes of the river bed geometry given by the successive values of Z 0 . Our experiment is based on an effective, single thread representation of a braided river, realistic values for the Manning coefficient and river widths picked up on JERS images. This study confirms that simulated flow lines are consistent with water surface elevations (WSE) and slopes gained by satellite altimetry. Hydrodynamical signatures are more visible where the river bed geometry varies significantly, and for reaches with a strong downstream control. Therefore, this study suggests that the longitudinal variations of the slope might be an interesting criteria for the question of river segmentation into elementary reaches for the SWOT mission which will provide continuous measurements of the water surface elevation, the slope and the reach width.

  7. The effect of mining on the sediment - trace element geochemistry of cores from the Cheyenne River arm of Lake Oahe, South Dakota, U.S.A.

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Callender, E.

    1988-01-01

    Six cores, ranging in length from 1 to 2 m, were collected in the Cheyenne River arm of Lake Oahe, South Dakota, to investigate potential impacts from gold-mining operations around Lead, South Dakota. Sedimentation rates in the river arm appear to be event-dominated and rapid, on the order of 6-7 cm yr.-1. All the chemical concentrations in the core samples fall within the wide ranges previously reported for the Pierre Shale of Cretaceous age and with the exception of As, generally are similar to bed sediment levels in the Cheyenne River, Lake Oahe and Foster Bay. Based on the downcore distribution of Mn, it appears that reducing conditions exist in the sediment column of the river arm below 2-3 cm. The reducing conditions do not appear to be severe enough to produce differentiation of Fe and Mn throughout the sediment column in the river arm. Cross-correlations for high-level metal-bearing strata within the sediment column can be made for several strata and for several cores; however, cross-correlations for all the high-level metal-bearing strata are not feasible. As is the only element which appears enriched in the core samples compared to surface sediment levels. Well-crystallized arsenopyrite was found in high-As bearing strata from two cores and probably was transported in that form from reducing sediment-storage sites in the banks or floodplains of Whitewood Creek and the Belle Fourche River. It has not oxidized due to the reducing conditions in the sediment column of the Cheyenne River arm. Some As may also be transported in association with Fe- and Mn-oxides and -hydroxides, remobilized under the reducing conditions in the river arm, and then reprecipitated in authigenic sulfide phases. In either case, the As appears to be relatively immobile in the sediment column. ?? 1988.

  8. Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States

    USGS Publications Warehouse

    Lundquist, J.D.; Cayan, D.R.

    2002-01-01

    The diurnal cycle in streamflow constitutes a significant part of the variability in many rivers in the western United States and can be used to understand some of the dominant processes affecting the water balance of a given river basin. Rivers in which water is added diurnally, as in snowmelt, and rivers in which water is removed diurnally, as in evapotranspiration and infiltration, exhibit substantial differences in the timing, relative magnitude, and shape of their diurnal flow variations. Snowmelt-dominated rivers achieve their highest sustained flow and largest diurnal fluctuations during the spring melt season. These fluctuations are characterized by sharp rises and gradual declines in discharge each day. In large snowmelt-dominated basins, at the end of the melt season, the hour of maximum discharge shifts to later in the day as the snow line retreats to higher elevations. Many evapotranspiration/infiltration-dominated rivers in the western states achieve their highest sustained flows during the winter rainy season but exhibit their strongest diurnal cycles during summer months, when discharge is low, and the diurnal fluctuations compose a large percentage of the total flow. In contrast to snowmelt-dominated rivers, the maximum discharge in evapotranspiration/infiltration-dominated rivers occurs consistently in the morning throughout the summer. In these rivers, diurnal changes are characterized by a gradual rise and sharp decline each day.

  9. Floods of 1950 in the upper Mississippi River and Lake Superior basins in Minnesota

    USGS Publications Warehouse

    Paulsen, C.G.

    1953-01-01

    In areal coverage and magnitude of peak discharge the floods of April-May 1950 in the Missouri River Basin in North and South Dakota were unprecedented in the area. These floods were characterized by an extremely late spring breakup of ice, by great flood peaks resulting from snow melt, and by two separate floods in the James River Valley in less than a month. The primary cause of the floods was the rapid melting of the season's great accumulation of snow, one of the deepest on record. In the period between the normal spring breakup time and the actual breakup of river ice, considerably more snow accumulated. Some of this was melted by a few .warm days and the melt was stored as water behind snow barriers in upland watercourses. A sudden increase in temperature beginning April 13 and lasting until most of the snow had been converted into runoff resulted in rapid rise of flood waters. Tributary flood waters made the Missouri River from Mobridge to Yankton, S. Oak., rise to near the maximum recorded discharge. At Sioux City, Iowa, the 1950 flood peak-discharge exceeded any previously recorded by the Geological Survey. The center of the flooded area west of the Missouri River lay m the Cannonball River Basin which had the greatest water content of snow on the ground just before the ice broke up Floods north and south of this area were relatively less intense. Scattered records of the Cannonball River and a study of newspaper accounts and other information show that the flood of 1950 was greatest since the area was settled. Flooding of the James River at Jamestown was the greatest since 1897, and the floods of April and May 1950 were of nearly the same stage. Itemized flood damages were made by Federal and State agencies, and relief was sent to the area by the Department of the Army and the American National Red Cross. Data include records of stage and discharge at 54 gaging stations for the period of flood, a summary of peak discharges and comparative data for past and present maxima, a table of crest stages, and weather associated with the 1950 flood.

  10. Hydrology and environmental aspects of Erie Canal (1817-99)

    USGS Publications Warehouse

    Langbein, Walter Basil

    1976-01-01

    As the first major water project in the United States, the old Erie Canal provides an example of the hydrological and environmental consequences of water development. The available record shows that the project aroused environmental fears that the canal might be impaired by the adverse hydrologic effects of land development induced by the canal. Water requirements proved greater than anticipated, and problems of floods and hydraulic inefficiencies beset navigation throughout its history. The Erie Canal proved the practicality of major hydraulic works to the extent that operations and maintenance could cope with the burdens of deficiencies in design. The weight of prior experience that upland streams, such as the Potomac and Mohawk Rivers, had proved unsatisfactory for dependable navigation, led to a decision to build an independent canal which freed the location from the constraints of river channels and made possible a cross-country water route directly to Lake Erie. The decision on dimensioning the canal prism--chiefly width and depth-involved balance between a fear of building too small and thus not achieving the economic potentials, and a fear of building too expensively. The constraints proved effective, and for the first part of its history the revenues collected were sufficient to repay all costs. So great was the economic advantage of the canal that the rising trend in traffic soon induced an enlargement of the canal cross section, based upon a new but riskier objective-build as large as the projected trend in toll revenues would finance. The increased revenues did not materialize. Water supplies were a primary concern for both the planners and the operators of the canal. Water required for lockage, although the most obvious to the planners, proved to be a relatively minor item compared with the amounts of water that were required to compensate for leakage through the bed and banks of the canal. Leakage amounted to about 8 inches of depth per day. The total quantities of water taken into the canal made it the largest hydraulic undertaking of the 19th century in the United States. The diversion of water to factories that were attracted to the canal as a source of hydraulic power added to the water requirements. Although new feeders and reservoirs to extend the supply were built throughout the canal's history, these efforts to cope with water shortages were never fully successful. The primary cause of the persistent deficiencies in supply was the method used to estimate the available flow of the. streams during extended dry spells. Ad hoc, spot measurements of streamflow consistently led to overestimation of the dependable supply. There was a persistent hydraulic problem as well. The cross section of the canal, especially when obstructed by many barges, was inadequate to convey the large volumes of water needed to maintain navigable depths over the long distances between feeders. The major flood problem was caused by cross-drainage--the small creeks that crossed under the canal in culverts. Washout of culverts was a never-ending source of sporadic disruption of traffic of 1 or 2 weeks duration. Repairs and replacements could not cope with the problem created by deficiency in information ,about the flood potentials of 'the small streams. A fortunate occurrence of severe floods in 1817 at the start of canal construction provided such clear and persuasive evidence of the flood potentials of the, Mohawk River, which the canal followed for about 110 miles, so as to compel putting the canal at a high level in difficult terrain. Environmental anxieties, broached early in the planning of the canal, centered on the potentially adverse effects of land development and deforestation on floods, water supply, and erosion. The flow of rivers did not decrease as originally feared. Land use did not increase the intensity of flooding and so endanger the canal. Viewed first as a conveyor of pure water from Lake

  11. 7 CFR 927.11 - District.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... District shall include all the counties in the State of Oregon except for Hood River and Wasco counties. (2) Mid-Columbia District shall include Hood River and Wasco counties in the State of Oregon, and the counties of Skamania and Klickitat in the State of Washington. (3) Wenatchee District shall include the...

  12. 7 CFR 927.11 - District.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... District shall include all the counties in the State of Oregon except for Hood River and Wasco counties. (2) Mid-Columbia District shall include Hood River and Wasco counties in the State of Oregon, and the counties of Skamania and Klickitat in the State of Washington. (3) Wenatchee District shall include the...

  13. 7 CFR 927.11 - District.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... District shall include all the counties in the State of Oregon except for Hood River and Wasco counties. (2) Mid-Columbia District shall include Hood River and Wasco counties in the State of Oregon, and the counties of Skamania and Klickitat in the State of Washington. (3) Wenatchee District shall include the...

  14. 7 CFR 927.11 - District.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... District shall include all the counties in the State of Oregon except for Hood River and Wasco counties. (2) Mid-Columbia District shall include Hood River and Wasco counties in the State of Oregon, and the counties of Skamania and Klickitat in the State of Washington. (3) Wenatchee District shall include the...

  15. 7 CFR 927.11 - District.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... District shall include all the counties in the State of Oregon except for Hood River and Wasco counties. (2) Mid-Columbia District shall include Hood River and Wasco counties in the State of Oregon, and the counties of Skamania and Klickitat in the State of Washington. (3) Wenatchee District shall include the...

  16. 17. View of Tombigbee River Bridge showing same broken railing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. View of Tombigbee River Bridge showing same broken railing as was shown in photograph no. MS-13-16. View is from the ground looking northwest. - Tombigbee River Bridge, Spanning Tombigbee River at State Highway 182, Columbus, Lowndes County, MS

  17. Agroforestry systems in the Sonora River Watershed, Mexico: An example of effective land stewardship

    Treesearch

    Diego Valdez-Zamudio; Peter F. Ffolliot

    2000-01-01

    The Sonora River watershed is located in the central part of the state of Sonora,Mexico, and is one of the most important watersheds in the region. Much of the state's economy depends on the natural resources, products, and productive activities developed in this watershed. Many natural areas along the river and its tributaries have been converted to a large...

  18. Wanted dead or alive: A state-space mark-recapture-recovery model incorporating multiple recovery types and state uncertainty

    USGS Publications Warehouse

    Hostetter, Nathan; Gardner, Beth; Evans, Allen F.; Cramer, Bradley M.; Payton, Quinn; Collis, Ken; Roby, Daniel D.

    2017-01-01

    We developed a state-space mark-recapture-recovery model that incorporates multiple recovery types and state uncertainty to estimate survival of an anadromous fish species. We apply the model to a dataset of out-migrating juvenile steelhead trout (Oncorhynchus mykiss) tagged with passive integrated transponders, recaptured during outmigration, and recovered on bird colonies in the Columbia River basin (2008-2014). Recoveries on bird colonies are often ignored in survival studies because the river reach of mortality is often unknown, which we model as a form of state uncertainty. Median outmigration survival from release to the lower river (river kilometer 729 to 75) ranged from 0.27 to 0.35, depending on year. Recovery probabilities were frequently >0.20 in the first river reach following tagging, indicating that one out of five fish that died in that reach was recovered on a bird colony. Integrating dead recovery data provided increased parameter precision, estimation of where birds consumed fish, and survival estimates across larger spatial scales. More generally, these modeling approaches provide a flexible framework to integrate multiple sources of tag recovery data into mark-recapture studies.

  19. 76 FR 70384 - Drawbridge Operation Regulation; Black River, La Crosse, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Crosse, Wisconsin. Drawspan is currently operated by an onsite bridge tender, opening on signal following two-hour notification. The proposed change is for drawspan operation by remote operator, opening... wait time for requested drawbridge openings while also reducing operating costs, Canadian Pacific has...

  20. The use of cone penetration testing to investigate sand fill subsidence at cross-drain locations: final report : Volume I.

    DOT National Transportation Integrated Search

    1984-03-01

    During construction of Interstate I-10 between Baton Rouge and LaPlace, Louisiana, highly organic swamp deposits were excavated and replaced with hydraulically pumped river sand. Recently, excessive settlement was encountered at numerous cross-drain ...

Top