Method for fabricating thin californium-containing radioactive source wires
Gross, Ian G; Pierce, Larry A
2006-08-22
A method for reducing the cross-sectional diameter of a radioactive californium-containing cermet wire while simultaneously improving the wire diameter to a more nearly circular cross section. A collet fixture is used to reduce the wire diameter by controlled pressurization pulses while simultaneously improving the wire cross-sectional diameter. The method is especially suitable for use in hot cells for the production of optimized cermet brachytherapy sources that contain large amounts of radioactive californium-252.
KaDonna Randolph
2010-01-01
The use of the geometric and arithmetic means for estimating tree crown diameter and crown cross-sectional area were examined for trees with crown width measurements taken at the widest point of the crown and perpendicular to the widest point of the crown. The average difference between the geometric and arithmetic mean crown diameters was less than 0.2 ft in absolute...
NASA Astrophysics Data System (ADS)
Ghods, Masoud
This dissertation explores the role of different types of convection on macrosegregation and on dendritic array morphology of two aluminum alloys directionally solidified through cylindrical graphite molds having both cross-section decrease and increase. Al- 19 wt. % Cu and Al-7 wt. % Si alloys were directionally solidified at two growth speed of 10 and 29.1 mum s-1 and examined for longitudinal and radial macrosegregation, and for primary dendrite spacing and dendrite trunk diameter. Directional solidification of these alloys through constant cross-section showed clustering of primary dendrites and parabolic-shaped radial macrosegregation profile, indicative of "steepling convection" in the mushy-zone. The degree of radial macrosegregation increased with decreased growth speed. The Al- 19 wt. % Cu samples, grown under similar conditions as Al-7 wt. % Si, showed more radial macrosegregation because of more intense "stepling convection" caused by their one order of magnitude larger coefficient of solutal expansion. Positive macrosegregation right before, followed by negative macrosegregation right after an abrupt cross-section decrease (from 9.5 mm diameter to 3.2 mm diameter), were observed in both alloys; this is because of the combined effect of thermosolutal convection and area-change-driven shrinkage flow in the contraction region. The degree of macrosegregation was found to be higher in the Al- 19 wt. % Cu samples. Strong area-change-driven shrinkage flow changes the parabolic-shape radial macrosegregation in the larger diameter section before contraction to "S-shaped" profile. But in the smaller diameter section after the contraction very low degree of radial macrosegregation was found. The samples solidified through an abrupt cross-section increase (from 3.2 mm diameter to 9.5 mm diameter) showed negative macrosegregation right after the cross-section increase on the expansion platform. During the transition to steady-state after the expansion, radial macrosegregation profile in locations close to the expansion was found to be "S-shaped". This is attributed to the redistribution of solute-rich liquid ahead of the mushy-zone as it transitions from the narrow portion below into the large diameter portion above. Solutal remelting and fragmentation of dendrite branches, and floating of these fragmented pieces appear to be responsible for spurious grains formation in Al- 19 wt. % Cu samples after the cross-section expansion. New grain formation was not observed in Al-7 wt. % Si in similar locations; it is believed that this is due to the sinking of the fragmented dendrite branches in this alloy. Experimentally observed radial and axial macrosegregations agree well with the results obtained from the numerical simulations carried out by Dr. Mark Lauer and Prof. David R. Poirier at the University of Arizona. Trunk Diameter (TD) of dendritic array appears to respond more readily to the changing growth conditions as compared to the Nearest Neighbor Spacing (NNS) of primary dendrites.
Wikramanayake, Tongyu Cao; Mauro, Lucia M; Tabas, Irene A; Chen, Anne L; Llanes, Isabel C; Jimenez, Joaquin J
2012-01-01
Background: To properly assess the progression and treatment response of alopecia, one must measure the changes in hair mass, which is influenced by both the density and diameter of hair. Unfortunately, a convenient device for hair mass evaluation had not been available to dermatologists until the recent introduction of the cross-section trichometer, which directly measures the cross-sectional area of an isolated bundle of hair. Objective: We sought to evaluate the accuracy and sensitivity of the HairCheck® device, a commercial product derived from the original cross-section trichometer. Materials and Methods: Bundles of surgical silk and human hair were used to evaluate the ability of the HairCheck® device to detect and measure small changes in the number and diameter of strands, and bundle weight. Results: Strong correlations were observed between the bundle's cross-sectional area, displayed as the numeric Hair Mass Index (HMI), the number of strands, the silk/hair diameter, and the bundle dry weight. Conclusion: HMI strongly correlated with the number and diameter of silk/hair, and the weight of the bundle, suggesting that it can serve as a valid indicator of hair mass. We have given the name cross-section trichometry (CST) to the methodology of obtaining the HMI using the HairCheck® system. CST is a simple modality for the quantification of hair mass, and may be used as a convenient and useful tool to clinically assess changes in hair mass caused by thinning, shedding, breakage, or growth in males and females with progressive alopecia or those receiving alopecia treatment. PMID:23766610
Determination of vessel cross-sectional area by thresholding in Radon space
Gao, Yu-Rong; Drew, Patrick J
2014-01-01
The cross-sectional area of a blood vessel determines its resistance, and thus is a regulator of local blood flow. However, the cross-sections of penetrating vessels in the cortex can be non-circular, and dilation and constriction can change the shape of the vessels. We show that observed vessel shape changes can introduce large errors in flux calculations when using a single diameter measurement. Because of these shape changes, typical diameter measurement approaches, such as the full-width at half-maximum (FWHM) that depend on a single diameter axis will generate erroneous results, especially when calculating flux. Here, we present an automated method—thresholding in Radon space (TiRS)—for determining the cross-sectional area of a convex object, such as a penetrating vessel observed with two-photon laser scanning microscopy (2PLSM). The thresholded image is transformed back to image space and contiguous pixels are segmented. The TiRS method is analogous to taking the FWHM across multiple axes and is more robust to noise and shape changes than FWHM and thresholding methods. We demonstrate the superior precision of the TiRS method with in vivo 2PLSM measurements of vessel diameter. PMID:24736890
NASA Astrophysics Data System (ADS)
Pirozzoli, Sergio
2018-07-01
We develop predictive formulas for friction resistance in ducts with complex cross-sectional shape based on the use of the log law and neglect of wall shear stress nonuniformities. The traditional hydraulic diameter naturally emerges from the analysis as the controlling length scale for common duct shapes as triangles and regular polygons. The analysis also suggests that a new effective diameter should be used in more general cases, yielding corrections of a few percent to friction estimates based on the traditional hydraulic diameter. Fair but consistent predictive improvement is shown for duct geometries of practical relevance, including rectangular and annular ducts, and circular rod bundles.
Calibration Tunnel for High Speed
NASA Technical Reports Server (NTRS)
Pretsch, J.
1946-01-01
For the nvestigation of measuring instruments at higher speeds up to a Mach number 0.7 a tunnel with closed test section was built in 1942 which was as simple and cheap as possble. The blower was a radial blower with straight sheet vanes of 800-millimeter diameter the tips of which were bent backward a little. The blower sucks the air through a honeycomb of diameter 1.2 neter with wide meshes. The air is then accelerated in a short cone with smooth transition to the test section. The cylindrical test section of 200-milimeter diameter has two windows (which are displaced 180 deg from each other. The instruments may be introduced and observed through and observed through these windows. . The cross section is then enlarged by a straight diffuser 3.5 meters long and reaches the ninefold cross section. The air flows back into the room through a disk diffuser of 2-meter diameter. The maximum speed in the jet is 250 m/s for a drive power of 35 kT., if there are no installations in the jet. The velocity is determined by pressure holed along the test section.
NASA Astrophysics Data System (ADS)
Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2016-09-01
Hypoeutectic Al-7 wt .% Si alloys were directionally solidified vertically downward in cylindrical molds that incorporated an abrupt cross-section decrease (9.5 mm to 3.2 mm diameter) which, after 5 cm, reverted back to 9.5 mm diameter in a Bridgman furnace; two constant growth speeds and thermal gradients were investigated. Thermosolutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-sections, before contraction and after expansion, this more evident at the lower growth speed. This alloy shows positive longitudinal macrosegregation near cross-section decrease followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. Primary dendrite steepling intensified as solidification proceeded into the narrower section and negative longitudinal macrosegregation was seen on the re-entrant shelves at expansion. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification and the resulting mushy-zone steepling and macrosegregation. The experimentally observed longitudinal and radial macrosegregation associated with the cross-section changes during directional solidification of an Al-7Si alloy is well captured by the numerical simulations.
Gignac, Lynne M; Mittal, Surbhi; Bangsaruntip, Sarunya; Cohen, Guy M; Sleight, Jeffrey W
2011-12-01
The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.
NASA Astrophysics Data System (ADS)
Lejoly, Cassandra; Howell, Ellen S.; Taylor, Patrick A.; Springmann, Alessondra; Virkki, Anne; Nolan, Michael C.; Rivera-Valentin, Edgard G.; Benner, Lance A. M.; Brozovic, Marina; Giorgini, Jon D.
2017-10-01
The Near-Earth Asteroid (NEA) population ranges in size from a few meters to more than 10 kilometers. NEAs have a wide variety of taxonomic classes, surface features, and shapes, including spheroids, binary objects, contact binaries, elongated, as well as irregular bodies. Using the Arecibo Observatory planetary radar system, we have measured apparent rotation rate, radar reflectivity, apparent diameter, and radar albedos for over 350 NEAs. The radar albedo is defined as the radar cross-section divided by the geometric cross-section. If a shape model is available, the actual cross-section is known at the time of the observation. Otherwise we derive a geometric cross-section from a measured diameter. When radar imaging is available, the diameter was measured from the apparent range depth. However, when radar imaging was not available, we used the continuous wave (CW) bandwidth radar measurements in conjunction with the period of the object. The CW bandwidth provides apparent rotation rate, which, given an independent rotation measurement, such as from lightcurves, constrains the size of the object. We assumed an equatorial view unless we knew the pole orientation, which gives a lower limit on the diameter. The CW also provides the polarization ratio, which is the ratio of the SC and OC cross-sections.We confirm the trend found by Benner et al. (2008) that taxonomic types E and V have very high polarization ratios. We have obtained a larger sample and can analyze additional trends with spin, size, rotation rate, taxonomic class, polarization ratio, and radar albedo to interpret the origin of the NEAs and their dynamical processes. The distribution of radar albedo and polarization ratio at the smallest diameters (≤50 m) differs from the distribution of larger objects (>50 m), although the sample size is limited. Additionally, we find more moderate radar albedos for the smallest NEAs when compared to those with diameters 50-150 m. We will present additional trends we find in this data set.
Automatic arteriovenous crossing phenomenon detection on retinal fundus images
NASA Astrophysics Data System (ADS)
Hatanaka, Yuji; Muramatsu, Chisako; Hara, Takeshi; Fujita, Hiroshi
2011-03-01
Arteriolosclerosis is one cause of acquired blindness. Retinal fundus image examination is useful for early detection of arteriolosclerosis. In order to diagnose the presence of arteriolosclerosis, the physicians find the silver-wire arteries, the copper-wire arteries and arteriovenous crossing phenomenon on retinal fundus images. The focus of this study was to develop the automated detection method of the arteriovenous crossing phenomenon on the retinal images. The blood vessel regions were detected by using a double ring filter, and the crossing sections of artery and vein were detected by using a ring filter. The center of that ring was an interest point, and that point was determined as a crossing section when there were over four blood vessel segments on that ring. And two blood vessels gone through on the ring were classified into artery and vein by using the pixel values on red and blue component image. Finally, V2-to-V1 ratio was measured for recognition of abnormalities. V1 was the venous diameter far from the blood vessel crossing section, and V2 was the venous diameter near from the blood vessel crossing section. The crossing section with V2-to-V1 ratio over 0.8 was experimentally determined as abnormality. Twenty four images, including 27 abnormalities and 54 normal crossing sections, were used for preliminary evaluation of the proposed method. The proposed method was detected 73% of crossing sections when the 2.8 sections per image were mis-detected. And, 59% of abnormalities were detected by measurement of V1-to-V2 ratio when the 1.7 sections per image were mis-detected.
The effect of nozzle-exit-channel shape on resultant fiber diameter in melt-electrospinning
NASA Astrophysics Data System (ADS)
Esmaeilirad, Ahmad; Ko, Junghyuk; Rukosuyev, Maxym V.; Lee, Jason K.; Lee, Patrick C.; Jun, Martin B. G.
2017-01-01
In recent decades, electrospinning using a molten poly (ε-caprolactone) resin has gained attention for creating fibrous tissue scaffolds. The topography and diameter control of such electrospun microfibers is an important issue for their different applications in tissue engineering. Charge density, initial nozzle-exit-channel cross-sectional area, nozzle to collector distance, viscosity, and processing temperature are the most important input parameters that affect the final electrospun fiber diameters. In this paper we will show that the effect of nozzle-exit-channel shape is as important as the other effective parameters in a resultant fiber diameter. However, to the best of our knowledge, the effect of nozzle-exit-channel shapes on a resultant fiber diameter have not been studied before. Comparing rectangular and circular nozzles with almost the same exit-channel cross-sectional areas in a similar processing condition showed that using a rectangular nozzle resulted in decreasing final fiber diameter up to 50%. Furthermore, the effect of processing temperature on the final fiber topography was investigated.
Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans.
Verbree, J; Bronzwaer, Agt; van Buchem, M A; Daemen, Mjap; van Lieshout, J J; van Osch, Mjp
2017-08-01
Transcranial Doppler (TCD) sonography is a frequently employed technique for quantifying cerebral blood flow by assuming a constant arterial diameter. Given that exercise increases arterial pressure by sympathetic activation, we hypothesized that exercise might induce a change in the diameter of large cerebral arteries. Middle cerebral artery (MCA) cross-sectional area was assessed in response to handgrip exercise by direct magnetic resonance imaging (MRI) observations. Twenty healthy subjects (11 female) performed three 5 min bouts of rhythmic handgrip exercise at 60% maximum voluntary contraction, alternated with 5 min of rest. High-resolution 7 T MRI scans were acquired perpendicular to the MCA. Two blinded observers manually determined the MCA cross-sectional area. Sufficient image quality was obtained in 101 MCA-scans of 19 subjects (age-range 20-59 years). Mixed effects modelling showed that the MCA cross-sectional area decreased by 2.1 ± 0.8% (p = 0.01) during handgrip, while the heart rate increased by 11 ± 2% (p < 0.001) at constant end-tidal CO 2 (p = 0.10). In conclusion, the present study showed a 2% decrease in MCA cross-sectional area during rhythmic handgrip exercise. This further strengthens the current concept of sympathetic control of large cerebral arteries, showing in vivo vasoconstriction during exercise-induced sympathetic activation. Moreover, care must be taken when interpreting TCD exercise studies as diameter constancy cannot be assumed.
Focused ion beam source method and apparatus
Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.
2000-01-01
A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.
Vince, D J; Culham, J A
1989-03-01
A prosthesis constructed with a fatigued steel helix encased in a silicone rubber shield was used to band the main pulmonary artery in 10 dogs. After a mean duration of 138 days the banded site was dilated with a 20 mm diameter angioplasty catheter. This dilatation produced a mean increase of 44.3% in the cross-sectional area. A further mean increase of 2.2% in the cross-sectional area was measured 137 days after the dilatation. In five uncomplicated experiments a second dilatation was performed with a 23 mm diameter angioplasty catheter after a mean interval of 140 days. The second dilatation produced a further 21% increase in the cross-sectional area. In the five experiments in which two dilatations were performed, there was a total increase in the mean cross-sectional area of 94% produced 273 days after banding. This prosthesis maintains banding of the main pulmonary artery and can be serially dilated by balloon angioplasty.
NASA Technical Reports Server (NTRS)
Ghods, M.; Lauer, M.; Tewari, S. N.; Poirier, D. R..; Grugel, R. N.
2015-01-01
Al-7 wt% Si and Pb-6 wt% Sb alloy samples were directionally solidified (DS), with liquid above and solid below and gravity pointing down, in cylindrical graphite crucibles through an abrupt cross-section change. Fraction eutectic distribution in the microstructure, primary dendrite spacing and primary dendrite trunk diameters have been measured in the DS samples in the vicinity of section change in order to examine the effect of convection associated with the combined influence of thermosolutal factors and solidification shrinkage. It is observed that convection not only produces extensive radial and axial macrosegregation near cross-section change, it also affects the dendritic array morphology. Primary dendrite spacing and primary dendrite trunk diameter, both, are influenced by this convection. In addition to the experimental results, preliminary results from a numerical model which includes solidification shrinkage and thermosolutal convection in the mushy zone in its analysis will also be presented
Aortic Dissection in Patients With Bicuspid Aortic Valve–Associated Aneurysms
Wojnarski, Charles M.; Svensson, Lars G.; Roselli, Eric E.; Idrees, Jay J.; Lowry, Ashley M.; Ehrlinger, John; Pettersson, Gösta B.; Gillinov, A. Marc; Johnston, Douglas R.; Soltesz, Edward G.; Navia, Jose L.; Hammer, Donald F.; Griffin, Brian; Thamilarasan, Maran; Kalahasti, Vidyasagar; Sabik, Joseph F.; Blackstone, Eugene H.; Lytle, Bruce W.
2016-01-01
Background Data regarding the risk of aortic dissection in patients with bicuspid aortic valve and large ascending aortic diameter are limited, and appropriate timing of prophylactic ascending aortic replacement lacks consensus. Thus our objectives were to determine the risk of aortic dissection based on initial cross-sectional imaging data and clinical variables and to isolate predictors of aortic intervention in those initially prescribed serial surveillance imaging. Methods From January 1995 to January 2014, 1,181 patients with bicuspid aortic valve underwent cross-sectional computed tomography (CT) or magnetic resonance imaging (MRI) to ascertain sinus or tubular ascending aortic diameter greater than or equal to 4.7 cm. Random Forest classification was used to identify risk factors for aortic dissection, and among patients undergoing surveillance, time-related analysis was used to identify risk factors for aortic intervention. Results Prevalence of type A dissection that was detected by imaging or was found at operation or on follow-up was 5.3% (n = 63). Probability of type A dissection increased gradually at a sinus diameter of 5.0 cm—from 4.1% to 13% at 7.2 cm—and then increased steeply at an ascending aortic diameter of 5.3 cm—from 3.8% to 35% at 8.4 cm—corresponding to a cross-sectional area to height ratio of 10 cm2/m for sinuses of Valsalva and 13 cm2/m for the tubular ascending aorta. Cross-sectional area to height ratio was the best predictor of type A dissection (area under the curve [AUC] = 0.73). Conclusions Early prophylactic ascending aortic replacement in patients with bicuspid aortic valve should be considered at high-volume aortic centers to reduce the high risk of preventable type A dissection in those with aortas larger than approximately 5.0 cm or with a cross-sectional area to height ratio greater than approximately 10 cm2/m. PMID:26209494
Measurement of Scattering Cross Section with a Spectrophotometer with an Integrating Sphere Detector
Gaigalas, A. K.; Wang, Lili; Karpiak, V.; Zhang, Yu-Zhong; Choquette, Steven
2012-01-01
A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm. PMID:26900524
Gaigalas, A K; Wang, Lili; Karpiak, V; Zhang, Yu-Zhong; Choquette, Steven
2012-01-01
A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm.
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-11-01
By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-11-19
By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.
Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru
2017-01-01
Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.
Crushing characteristics of composite tubes with 'near-elliptical' cross sections
NASA Astrophysics Data System (ADS)
Farley, Gary L.; Jones, Robert M.
1992-01-01
An experimental investigation was conducted to determine whether the energy-absorption capability of near-elliptical cross-section composite tubular specimens is a function of included angle. Each half of the near-elliptical cross-section tube is a segment of a circle. The included angle is the angle created by radial lines extending from the center of the circular segment to the ends of the circular segment. Graphite- and Kevlar-reinforced epoxy material was used to fabricate specimens. Tube internal diameters were 2.54, 3.81, and 7.62 cm, and included angles were 180, 160, 135, and 90 degrees. Based upon the test results from these tubes, energy-absorption capability increased between 10 and 30 percent as included angle decreased between 180 and 90 degrees for the materials evaluated. Energy-absorption capability was a decreasing nonlinear function of the ratio of tube internal diameter to wall thickness.
NASA Astrophysics Data System (ADS)
Najafi Khaboshan, Hasan; Nazif, Hamid Reza
2018-04-01
Heat transfer and turbulent flow of Al2O3-water nanofluid within alternating oval cross-section tube are numerically simulated using Eulerian-Eulerian two-phase mixture model. The primary goal of the present study is to investigate the effects of nanoparticles volume fraction, nanoparticles diameter and different inlet velocities on heat transfer, pressure drop and entropy generation characteristics of the alternating oval cross-section tube. For numerical simulation validation, the numerical results were compared with experimental data. Also, constant wall temperature boundary condition was considered on the tube wall. In addition, the comparison of thermal-hydraulic performance and the entropy generation characteristics between alternating oval cross-section tube and circular tube under same fluids were done. The results show that the heat transfer coefficient and pressure drop of alternating oval cross-section tube is more than base tube under same fluids. Also, these two parameters are increased when adding Al2O3 nanoparticle into water fluid, at any inlet velocity for both tubes. Furthermore, compared to the base fluid, the value of the heat transfer enhancement of nanofluid is higher than the increase of friction factor of nanofluid at the same given inlet boundary conditions. The results of entropy generation analysis illustrate that the total entropy generation increase with increasing the nanoparticles volume fraction and decreasing the nanoparticles diameter of nanofluid. The generation of thermal entropy is the main part of irreversibility, and Bejan number with an increase of the nanoparticles diameter slightly increases. Finally, at any given inlet velocity the frictional irreversibility is grown with an increase the nanoparticles volume fraction.
Protasenko, Vladimir; Bacinello, Daniel; Kuno, Masaru
2006-12-21
Absorption cross-sections and corresponding molar extinction coefficients of solution-based CdSe and CdTe nanowires (NWs) are determined. Chemically grown semiconductor NWs are made via a recently developed solution-liquid-solid (SLS) synthesis, employing low melting Au/Bi bimetallic nanoparticle "catalysts" to induce one-dimensional (1D) growth. Resulting wires are highly crystalline and have diameters between 5 and 12 nm as well as lengths exceeding 10 microm. Narrow diameters, below twice the corresponding bulk exciton Bohr radius of each material, place CdSe and CdTe NWs within their respective intermediate to weak confinement regimes. Supporting this are solution linear absorption spectra of NW ensembles showing blue shifts relative to the bulk band gap as well as structure at higher energies. In the case of CdSe, the wires exhibit band edge emission as well as strong absorption/emission polarization anisotropies at the ensemble and single-wire levels. Analogous photocurrent polarization anisotropies have been measured in recently developed CdSe NW photodetectors. To further support fundamental NW optical/electrical studies as well as to promote their use in device applications, experimental absorption cross-sections are determined using correlated transmission electron microscopy, UV/visible extinction spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Measured CdSe NW cross-sections for 1 microm long wires (diameters, 6-42 nm) range from 6.93 x 10(-13) to 3.91 x 10(-11) cm2 at the band edge (692-715 nm, 1.73-1.79 eV) and between 3.38 x 10(-12) and 5.50 x 10(-11) cm2 at 488 nm (2.54 eV). Similar values are obtained for 1 microm long CdTe NWs (diameters, 7.5-11.5 nm) ranging from 4.32 x 10(-13) to 5.10 x 10(-12) cm2 at the band edge (689-752 nm, 1.65-1.80 eV) and between 1.80 x 10(-12) and 1.99 x 10(-11) cm2 at 2.54 eV. These numbers compare well with previous theoretical estimates of CdSe/CdTe NW cross-sections far to the blue of the band edge, having order of magnitude values of 1.0 x 10(-11) cm2 at 488 nm. In all cases, experimental NW absorption cross-sections are 4-5 orders of magnitude larger than those for corresponding colloidal CdSe and CdTe quantum dots. Even when volume differences are accounted for, band edge NW cross-sections are larger by up to a factor of 8. When considered along with their intrinsic polarization sensitivity, obtained NW cross-sections illustrate fundamental and potentially exploitable differences between 0D and 1D materials.
William T. Simpson
2005-01-01
To use small-diameter trees effectively as square timbers, we need to be able to estimate the amount of time it takes for these timbers to air-dry. Since experimental data on estimating air-drying time for small-diameter logs have been developed, this study looked at a way to relate that method to square timbers. Drying times were determined for a group of round cross-...
Whispering Gallery Optical Resonator Spectroscopic Probe and Method
NASA Technical Reports Server (NTRS)
Anderson, Mark S. (Inventor)
2014-01-01
Disclosed herein is a spectroscopic probe comprising at least one whispering gallery mode optical resonator disposed on a support, the whispering gallery mode optical resonator comprising a continuous outer surface having a cross section comprising a first diameter and a second diameter, wherein the first diameter is greater than the second diameter. A method of measuring a Raman spectrum and an Infra-red spectrum of an analyte using the spectroscopic probe is also disclosed.
Quantitative hard x-ray phase contrast imaging of micropipes in SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohn, V. G.; Argunova, T. S.; Je, J. H., E-mail: jhje@postech.ac.kr
2013-12-15
Peculiarities of quantitative hard x-ray phase contrast imaging of micropipes in SiC are discussed. The micropipe is assumed as a hollow cylinder with an elliptical cross section. The major and minor diameters can be restored using the least square fitting procedure by comparing the experimental data, i.e. the profile across the micropipe axis, with those calculated based on phase contrast theory. It is shown that one projection image gives an information which does not allow a complete determination of the elliptical cross section, if an orientation of micropipe is not known. Another problem is a weak accuracy in estimating themore » diameters, partly because of using pink synchrotron radiation, which is necessary because a monochromatic beam intensity is not sufficient to reveal the weak contrast from a very small object. The general problems of accuracy in estimating the two diameters using the least square procedure are discussed. Two experimental examples are considered to demonstrate small as well as modest accuracies in estimating the diameters.« less
Pipe support for use in a nuclear system
Pollono, Louis P.; Mello, Raymond M.
1977-01-01
A pipe support for high temperature, thin-walled vertical piping runs used in a nuclear system. A cylindrical pipe transition member, having the same inside diameter as the thin-walled piping, replaces a portion of the piping where support is desired. The outside diameter of the pipe transition member varies axially along its vertical dimension. For a section of the axial length adjacent the upper and lower terminations of the pipe transition member, the outside diameter is the same as the outside diameter of the thin-walled piping to which it is affixed. Intermediate of the termination sections, the outside diameter increases from the top of the member to the bottom. Adjacent the lower termination section, the diameter abruptly becomes the same as the piping. Thus, the cylindrical transition member is formed to have a generally triangular shaped cross-section along the axial dimension. Load-bearing insulation is installed next to the periphery of the member and is kept in place by an outer ring clamp. The outer ring clamp is connected to pipe hangers, which provide the desired support for the vertical thin-walled piping runs.
Nanogrid rolling circle DNA sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Church, George M.; Porreca, Gregory J.; Shendure, Jay
The present invention relates to methods for sequencing a polynucleotide immobilized on an array having a plurality of specific regions each having a defined diameter size, including synthesizing a concatemer of a polynucleotide by rolling circle amplification, wherein the concatemer has a cross-sectional diameter greater than the diameter of a specific region, immobilizing the concatemer to the specific region to make an immobilized concatemer, and sequencing the immobilized concatemer.
DeHaan, Reece K; Frelich, Matthew J; Gould, Jon C
2016-04-01
We sought to characterize the changes in esophagogastric junction (EGJ) distensibility during Heller Myotomy with Dor fundoplication using the EndoFLIP device. Intraoperative distensibility measurements on 14 patients undergoing Heller myotomy with Dor fundoplication were conducted over an 18-month period. Minimum esophageal diameter, cross-sectional areas, and distensibility index were measured at 30 and 40 mL catheter volumes before myotomy, postmyotomy, and following Dor fundoplication. Distensibility index is defined as the narrowest cross-sectional area divided by the corresponding pressure expressed in mm/mm Hg. Heller myotomy was found to lead to significant changes in the distensibility characteristics of the EGJ. Minimum esophageal diameter and EGJ distensibility increased significantly with Heller myotomy.
NASA Astrophysics Data System (ADS)
Inasawa, Susumu
2015-02-01
We conducted in-situ monitoring of the formation of silicon wires in the zinc reduction reaction of SiCl4 at 950 °C. Tip growth with a constant growth rate was observed. Some wires showed a sudden change in the growth direction during their growth. We also observed both the lateral faces and cross sections of formed wires using a scanning electron microscope. Although wires with smooth lateral faces had a smooth hexagonal cross section, those with rough lateral faces had a polygonal cross section with a radial pattern. The transition of lateral faces from smooth to rough was found even in a single wire. Because the diameter of the rough part became larger than that of the smooth part, we consider that the wire diameter is a key factor for the lateral faces. Our study revealed that both dynamic and static observations are still necessary to further understand the VLS growth of wires and nanowires.
Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan
2013-01-01
The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.
Liu, Jiaping; Wang, Hai; Liu, Qiuhan
2013-01-01
The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa. PMID:24000278
Quantification of human upper extremity nerves and fascicular anatomy.
Brill, Natalie A; Tyler, Dustin J
2017-09-01
In this study we provide detailed quantification of upper extremity nerve and fascicular anatomy. The purpose is to provide values and trends in neural features useful for clinical applications and neural interface device design. Nerve cross-sections were taken from 4 ulnar, 4 median, and 3 radial nerves from 5 arms of 3 human cadavers. Quantified nerve features included cross-sectional area, minor diameter, and major diameter. Fascicular features analyzed included count, perimeter, area, and position. Mean fascicular diameters were 0.57 ± 0.39, 0.6 ± 0.3, 0.5 ± 0.26 mm in the upper arm and 0.38 ± 0.18, 0.47 ± 0.18, 0.4 ± 0.27 mm in the forearm of ulnar, median, and radial nerves, respectively. Mean fascicular diameters were inversely proportional to fascicle count. Detailed quantitative anatomy of upper extremity nerves is a resource for design of neural electrodes, guidance in extraneural procedures, and improved neurosurgical planning. Muscle Nerve 56: 463-471, 2017. © 2016 Wiley Periodicals, Inc.
Occult spinal canal stenosis due to C-1 hypoplasia in children with Down syndrome.
Matsunaga, Shunji; Imakiire, Takanori; Koga, Hiroaki; Ishidou, Yasuhiro; Sasaki, Hiromi; Taketomi, Eiji; Higo, Masaru; Tanaka, Hiroshi; Komiya, Setsuro
2007-12-01
Little has been published about subclinical spinal canal stenosis due to C-1 hypoplasia in patients with Down syndrome. In this paper the authors performed a matched comparison study with cross-sectional survey to investigate occult spinal canal stenosis due to C-1 hypoplasia in children with Down syndrome. A total of 102 children with Down syndrome ranging in age from 10 to 15 years were matched according to age and physique with 176 normal children. In all participants, the anteroposterior (AP) diameter of C-1 and the atlas-dens interval (ADI) were measured on plain lateral x-ray images of the cervical spine. The cross-sectional area of the atlas was also measured from a cross-sectional computed tomography image of C-1. Eight children (6.7%) with Down syndrome developed atlantoaxial subluxation associated with myelopathy. The difference in the ADI between the patients and controls was not statistically significant. The average AP diameter of the atlas and the spinal canal area along the cross-section of the atlas were significantly smaller in children with Down syndrome than those in the control group. Atlantoaxial instability and occult spinal canal stenosis due to C-1 hypoplasia in patients with Down syndrome may significantly increase the risk of myelopathy.
2016-09-28
pin diameters, lunette diameter, clevis end details, cross section, and overall tube length and straightness. b. Weld failures, voids, cracks...etc., should be considered failures if they are identified visually or using a nondestructive weld inspection test method, per the applicable American... Welding Society standard for the specific material being inspected. c. Broken or cracked components, or catastrophic damage should be considered
Determination of Cross-Sectional Area of Focused Picosecond Gaussian Laser Beam
NASA Technical Reports Server (NTRS)
Ledesma, Rodolfo; Fitz-Gerald, James; Palmieri, Frank; Connell, John
2018-01-01
Measurement of the waist diameter of a focused Gaussian-beam at the 1/e(sup 2) intensity, also referred to as spot size, is key to determining the fluence in laser processing experiments. Spot size measurements are also helpful to calculate the threshold energy and threshold fluence of a given material. This work reports an application of a conventional method, by analyzing single laser ablated spots for different laser pulse energies, to determine the cross-sectional area of a focused Gaussian-beam, which has a nominal pulse width of approx. 10 ps. Polished tungsten was used as the target material, due to its low surface roughness and low ablation threshold, to measure the beam waist diameter. From the ablative spot measurements, the ablation threshold fluence of the tungsten substrate was also calculated.
Design of Tools for Press-countersinking or Dimpling 0.040-inch-thick-24S-T Sheet
NASA Technical Reports Server (NTRS)
Templin, R L; Fogwell, J W
1942-01-01
A set of dimpling tools was designed for 0.040-inch 24S-T sheet and flush-type rivets 1/8 inch in diameter with 100 degree countersunk heads. The dimples produced under different conditions of pressure, sheet thickness, and drill diameter are presented as cross-sectional photographs magnified 20 times. The most satisfactory values for the dimpling tools were found to be: maximum punch diameter, 0.231 inch; maximum die diameter, 0.223 inch; maximum mandrel diameter, 0.128 inch; dimple angle, 100 degree; punch springback angle, 1 1/2 degree; and die springback angle, 2 degree.
NASA Astrophysics Data System (ADS)
Rosenberg, Phil; Dean, Angela; Williams, Paul; Dorsey, James; Minikin, Andreas; Pickering, Martyn; Petzold, Andreas
2013-04-01
Optical Particle Counters (OPCs) are the de-facto standard for in-situ measurements of airborne aerosol size distributions and small cloud particles over a wide size range. This is particularly the case on airborne platforms where fast response is important. OPCs measure scattered light from individual particles and generally bin particles according to the measured peak amount of light scattered (the OPC's response). Most manufacturers provide a table along with their instrument which indicates the particle diameters which represent the edges of each bin. It is important to correct the particle size reported by OPCs for the refractive index of the particles being measured, which is often not the same as for those used during calibration. However, the OPC's response is not a monotonic function of particle diameter and obvious problems occur when refractive index corrections are attempted, but multiple diameters correspond to the same OPC response. Here we recommend that OPCs are calibrated in terms of particle scattering cross section as this is a monotonic (usually linear) function of an OPC's response. We present a method for converting a bin's boundaries in terms of scattering cross section into a bin centre and bin width in terms of diameter for any aerosol species for which the scattering properties are known. The relationship between diameter and scattering cross section can be arbitrarily complex and does not need to be monotonic; it can be based on Mie-Lorenz theory or any other scattering theory. Software has been provided on the Sourceforge open source repository for scientific users to implement such methods in their own measurement and calibration routines. As a case study data is presented showing data from Passive Cavity Aerosol Spectrometer Probe (PCASP) and a Cloud Droplet Probe (CDP) calibrated using polystyrene latex spheres and glass beads before being deployed as part of the Fennec project to measure airborne dust in the inaccessible regions of the Sahara.
Flexible metamaterial absorbers for stealth applications at terahertz frequencies.
Iwaszczuk, Krzysztof; Strikwerda, Andrew C; Fan, Kebin; Zhang, Xin; Averitt, Richard D; Jepsen, Peter Uhd
2012-01-02
We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small-beam reflection coefficient with the measurement of the far-field bistatic radar cross section of the sample, using a quasi-planar THz wave with a beam diameter significantly larger than the sample dimensions. In this geometry we demonstrate a near-400-fold reduction of the radar cross section at the design frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial.
NASA Technical Reports Server (NTRS)
Livingood, John N. B.; Sams, Eldon W.
1947-01-01
A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.
Growth of nanostructures with controlled diameter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfefferle, Lisa; Haller, Gary; Ciuparu, Dragos
2009-02-03
Transition metal-substituted MCM-41 framework structures with a high degree of structural order and a narrow pore diameter distribution were reproducibly synthesized by a hydrothermal method using a surfactant and an anti-foaming agent. The pore size and the mesoporous volume depend linearly on the surfactant chain length. The transition metals, such as cobalt, are incorporated substitutionally and highly dispersed in the silica framework. Single wall carbon nanotubes with a narrow diameter distribution that correlates with the pore diameter of the catalytic framework structure were prepared by a Boudouard reaction. Nanostructures with a specified diameter or cross-sectional area can therefore be predictablymore » prepared by selecting a suitable pore size of the framework structure.« less
NASA Astrophysics Data System (ADS)
Yoon, Jun-Sik; Rim, Taiuk; Kim, Jungsik; Kim, Kihyun; Baek, Chang-Ki; Jeong, Yoon-Ha
2015-03-01
Random dopant fluctuation effects of gate-all-around inversion-mode silicon nanowire field-effect transistors (FETs) with different diameters and extension lengths are investigated. The nanowire FETs with smaller diameter and longer extension length reduce average values and variations of subthreshold swing and drain-induced barrier lowering, thus improving short channel immunity. Relative variations of the drain currents increase as the diameter decreases because of decreased current drivability from narrower channel cross-sections. Absolute variations of the drain currents decrease critically as the extension length increases due to decreasing the number of arsenic dopants penetrating into the channel region. To understand variability origins of the drain currents, variations of source/drain series resistance and low-field mobility are investigated. All these two parameters affect the variations of the drain currents concurrently. The nanowire FETs having extension lengths sufficient to prevent dopant penetration into the channel regions and maintaining relatively large cross-sections are suggested to achieve suitable short channel immunity and small variations of the drain currents.
NASA Astrophysics Data System (ADS)
Hamidnia, Mohammad; Luo, Yi; Wang, Xiaodong; Li, Congming
2017-10-01
Increasing component densities of the integrated circuit (IC) and packaging levels has led to thermal management problems. Si substrates with embedded micro-heat pipes (MHPs) couple good thermal characteristics and cost savings associated with IC batch processing. The thermal performance of MHP is intimately related to the cross-sectional geometry. Different cross-sections are designed in order to enhance the backflow of working fluid. In this experimental study, three different Si MHPs with same hydraulic diameter and various cross-sections are fabricated by micro-fabrication methods and tested under different conditions of fluid charge ratios. The results show that the trapezoidal MHP associated with rectangular artery which is charged with 40% of vapor chamber’s volume has the best thermal performance. This silicon-based MHP is a passive approach for thermal management, which could widen applications in the commercial electronics industry and LED lightings.
An atmosphere on Ganymede from its occultation of SAO 186800 on 7 June 1972.
NASA Technical Reports Server (NTRS)
Carlson, R. W.; Bhattacharyya, J. C.; Smith, B. A.; Johnson, T. V.; Hidayat, B.; Smith, S. A.; Taylor, G. E.; O'Leary, B.; Brinkmann, R. T.
1973-01-01
The observational data obtained during the occultation are of sufficient quality to determine the occultation radius and to support the inference that Ganymede does possess at least a modest atmosphere. Assuming a circular cross section, the diameter of Ganymede was found to be 5271 km. Effects of the atmosphere on the accuracy of the value obtained for the Ganymede diameter are discussed.
NASA Astrophysics Data System (ADS)
Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2017-10-01
Hypoeutectic Al-19 wt.% Cu alloys were directionally solidified at two different growth speeds in cylindrical molds that featured an abrupt increase in cross-section, from 3.2 to 9.5 mm in diameter. The effects of thermosolutal convection and shrinkage flow induced by the cross-section change on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation were seen, particularly in the larger cross-section after expansion. Negative longitudinal macrosegregation right after the cross-section increase was observed; the extent of macrosegregation, however, decreases with increasing growth speed. Both thermal and flow effects due to cross-section change were seen to influence the radial macrosegregation immediately before, and after the expansion. Radial macrosegregation pattern was found to be changing as the mushy zone enters the larger cross-section region above the cross-section change where the solidification is in its unsteady state. The effect of the solutal expansion coefficient on macrosegregation was studied by comparing the degree of thermosolutal convection in Al-19 wt.% Cu with a previous study in which we investigated Al-7 wt.% Si. A two-dimensional model accounting for both shrinkage and thermosolutal convection was used to simulate the resulting steepling, as well as the axial and radial macrosegregation. The experimentally observed macrosegregation associated with the expansion during directional solidification is well predicted by the numerical simulations.
The Influence of Corrosion and Cross-Section Diameter on the Mechanical Properties of B500c Steel
NASA Astrophysics Data System (ADS)
Apostolopoulos, Ch. Alk.
2009-03-01
Corrosion is a negative contributor on the structural integrity of concrete structures and leads to degradation of the mechanical properties of steel rebar. Exposure to chloride, seawater, salt and saltwater and deicing chemical environments influences the concrete-steel bond and weakens it. A considerable strength factor of the two-phase steel B500c (martensitic, ferritic-perlitic) is considered to be the outer martensitic cortex thickness, which varies according to the area of the rebar cross section. In order to evaluate the influence of corrosion and the size of the area on the mechanical properties of B500c steel, an experimental investigation was conducted on B500c ribbed steel rebar of 8, 12, 16, and 18 mm diameter, and which were artificially corroded for 10, 20, 30, 45, 60, 90, and 120 days. The laboratory tests suggest that corrosion duration and rebar cross-sectional area size had a significant impact on the strength and ductility degradation of the specimens. The tensile mechanical properties before and after corrosion indicated progressive variation and drastic drop in their values. The extended salt spray exposure enhanced the damage and created pits and notches, resulting in stress concentration points and progressive reduction of ductility and available energy. Anti-seismic design and codes that ignore the influence of the size of the cross-section area and the level of corrosion and mechanical behavior of reinforcing steel could lead to unpredictable performance during severe ground motion.
A time projection chamber for high accuracy and precision fission cross-section measurements
Heffner, M.; Asner, D. M.; Baker, R. G.; ...
2014-05-22
The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance ofmore » the fissionTPC.« less
Mechanical behavior enhancement of ZnO nanowire by embedding different nanowires
NASA Astrophysics Data System (ADS)
Vazinishayan, Ali; Yang, Shuming; Lambada, Dasaradha Rao; Wang, Yiming
2018-06-01
In this work, we employed commercial finite element modeling (FEM) software package ABAQUS to analyze mechanical properties of ZnO nanowire before and after embedding with different kinds of nanowires, having different materials and cross-section models such as Au (circular), Ag (pentagonal) and Si (rectangular) using three point bending technique. The length and diameter of the ZnO nanowire were measured to be 12,280 nm and 103.2 nm, respectively. In addition, Au, Ag and Si nanowires were considered to have the length of 12,280 nm and the diameter of 27 nm. It was found that after embedding Si nanowire with rectangular cross-section into the ZnO nanowire, the distribution of Von Misses stresses criterion, displacement and strain were decreased than the other nanowires embedded. The highest stiffness, the elastic deformation and the high strength against brittle failure have been made by Si nanowire comparison to the Au and Ag nanowires, respectively.
Xing, H J; Wang, Z Y; Zhong, B S; Ying, S J; Nie, H T; Zhou, Z R; Fan, Y X; Wang, F
2014-07-24
MSTN, IGF-І(insulin-like growth factor-І) and IGF-II (insulin-like growth factor-II) regulate skeletal muscle growth. This study investigated the effects of different dietary intake levels on skeletal muscles. Sheep was randomly assigned to 3 feeding groups: 1) the maintenance diet (M), 2) 1.4 x the maintenance diet (1.4M), and 3) 2.15 x the maintenance diet (2.15M). Before slaughtering the animals, blood samples were collected to measure plasma urea, growth hormone, and insulin concentrations. After slaughtering, the longissimus dorsi, semitendinosus, semimembranosus, gastrocnemius, soleus, and chest muscle were removed to record various parameters, including the mRNA expression levels of MSTN and IGFs, in addition to skeletal muscle fiber diameter and cross-sectional area. The result showed that as dietary intake improved, the mRNA expression levels of MSTN and IGF-II decreased, whereas IGF-Іexpression increased. The mRNA expression levels of MSTN and IGFs were significantly different in the same skeletal muscle under different dietary intake. The skeletal muscle fiber diameter and cross-sectional area increased with greater dietary intake, as observed for the mRNA expression of IGF-І; however, it contrasted to that observed for the mRNA expression of MSTN and IGF-II. In conclusion, dietary intake levels have a certain influence on MSTN and IGFs mRNA expression levels, in addition to skeletal muscle fiber diameter and cross-sectional area. This study contributes valuable information for enhancing the molecular-based breeding of sheep.
NASA Astrophysics Data System (ADS)
Fomin, V. M.; Gladilin, V. N.; Devreese, J. T.; Offermans, P.; Koenraad, P. M.; Wolter, J. H.; García, J. M.; Granados, D.
2005-06-01
Recently, using cross-sectional scanning-tunneling microscopy (X-STM), it was shown that self-organized ring-like InAs quantum dots are much smaller in diameter than it is expected from atomic force microscopy measurements and, moreover, that they possess a depression rather than an opening in the central region. For those quantum craters, we analyze the possibility to reveal the electronic properties (like the Aharonov-Bohm oscillations) peculiar to doubly connected geometry of quantum rings.
Advanced Antennas Enabled by Electromagnetic Metamaterials
2014-12-01
radiation patterns of a conical horn antenna and three soft horns with various homogeneous metasurface liners. The maximum cross-polarization level was...inhomogencous metasurface liners covering both the flared horn section and the straight waveguide section. The mctahorn is fed by a circular waveguide...with a diameter of 20 mm. (b) The sizes of the metallic patches at each row of the metasurface in the flared horn section. Both the length and width
NASA Astrophysics Data System (ADS)
Kuo, Ching Yi; Pan, Chin
2010-09-01
This study experimentally investigates steam condensation in rectangular microchannels with uniform and converging cross-sections and a mean hydraulic diameter of 135 µm. The steam flow in the microchannels was cooled by water cross-flowing along its bottom surface, which is different from other methods reported in the literature. The flow patterns, two-phase flow pressure drop and condensation heat transfer coefficient are determined. The microchannels with the uniform cross-section design have a higher heat transfer coefficient than those with the converging cross-section under condensation in the mist/annular flow regimes, although the latter work best for draining two-phase fluids composed of uncondensed steam and liquid water, which is consistent with the result of our previous study. From the experimental results, dimensionless correlations of condensation heat transfer for the mist and annular flow regions and a two-phase frictional multiplier are developed for the microchannels with both types of cross-section designs. The experimental data agree well with the obtained correlations, with the maximum mean absolute errors of 6.4% for the two-phase frictional multiplier and 6.0% for the condensation heat transfer.
Yamagami, Yuki; Tomita, Kohei; Tsujimoto, Tomomi; Inoue, Tomoko
2017-07-01
Local forearm warming before tourniquet application is often used to promote venodilation for peripheral intravenous cannulation; however, few studies have compared the effect of tourniquet application with and without local warming on vein size. To evaluate the effectiveness of tourniquet application after local forearm warming with that of tourniquet application alone in young and middle-aged adults. A single-blind, prospective, parallel group, randomized controlled trial. A national university in Japan. Seventy-two volunteers aged 20-64 years. Participants were randomly allocated to one of two groups: tourniquet application for 30s after forearm application of a heat pack warmed to 40°C±2°C for 15min (active warming group; n=36) or tourniquet application for 30s after applying a non-warmed heat pack for 15min (passive warming group; n=36). The primary outcomes were vein cross-sectional area on the forearm, measured after the intervention by blinded research assistants using ultrasound. Secondary outcomes were shortest diameter, and longest diameter of vein on the forearm, forearm skin temperature, body temperature, pulse, systolic blood pressure, and diastolic blood pressure. All outcomes were assessed at the same site before and immediately after the intervention, once per participant. Vein cross-sectional area, shortest vein diameter, and longest vein diameter were significantly increased in the active warming group compared with the passive warming group (p <0.01). Tourniquet application after local warming was superior to tourniquet application alone in increasing vein cross-sectional, shortest diameter, and longest diameter (between-group differences of 2.2mm 2 , 0.5mm, and 0.5mm, respectively), and in raising skin temperature (between-group difference: 5.2°C). However, there were no significant differences in body temperature, pulse, or systolic or diastolic blood pressure between the groups. There were no adverse events associated with either intervention. Tourniquet application after local warming was associated with increased forearm vein size when compared with tourniquet application alone, and was demonstrated as being safe. Thus, with demonstrable effects on vein size, we recommend local warming before tourniquet application as a safe and effective technique for improving venodilation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cosmogenic rare gases and 10-Be in a cross section of Knyahinya
NASA Technical Reports Server (NTRS)
Wieler, R.; Signer, P.; Herpers, U.; Sarafin, R.; Bonani, G.; Hofmann, H. J.; Morenzoni, E.; Nessi, M.; Suter, M.; Woelfli, W.
1986-01-01
The concentrations of cosmogenic nuclides were studied as a function of shielding on samples from a cross section of the 293 kg main fragment of the L5 chondrite Knyahinya. The stone broke into two nearly symmetrical parts upon its fall in 1866. The planar cross section has diameters between 40 and 55 cm. He, Ne, and Ar were measured on about 20 samples by mass spectrometry and the 10-Be activities on aliquots of 10 selected samples were determined by AMS. The 10-Be data are presented and the abundances of spallogenic nuclides are compared with the model calculations reported by Reedy for spherical L chondrites. The 10-Be production rates in Knyahinya are shown versus the shielding parameter 22-Ne/21-Ne.
Stefenelli, Mario; Todt, Juraj; Riedl, Angelika; Ecker, Werner; Müller, Thomas; Daniel, Rostislav; Burghammer, Manfred; Keckes, Jozef
2013-10-01
Novel scanning synchrotron cross-sectional nanobeam and conventional laboratory as well as synchrotron Laplace X-ray diffraction methods are used to characterize residual stresses in exemplary 11.5 µm-thick TiN coatings. Both real and Laplace space approaches reveal a homogeneous tensile stress state and a very pronounced compressive stress gradient in as-deposited and blasted coatings, respectively. The unique capabilities of the cross-sectional approach operating with a beam size of 100 nm in diameter allow the analysis of stress variation with sub-micrometre resolution at arbitrary depths and the correlation of the stress evolution with the local coating microstructure. Finally, advantages and disadvantages of both approaches are extensively discussed.
Elastica solution for a nanotube formed by self-adhesion of a folded thin film
NASA Astrophysics Data System (ADS)
Glassmaker, N. J.; Hui, C. Y.
2004-09-01
Schmidt and Eberl demonstrated the construction of tubes with submicron diameters by the method of folding thin solid films [Nature (London) 410, 168 (2001)]. In their method, a thin film is folded 180° and brought into adhesive contact with itself. The resulting sealed loop forms a nanotube with the thickness of the tube walls equal to the thickness of the thin film. The calculation of the diameter of the tube and the shape of its cross section in equilibrium are the subjects of this study. The tube is modeled as a two-dimensional elastica when viewed in cross section, and adhesive behavior is governed by an energy release rate criterion. A numerical technique is used to find elastic equilibria for a large range of material parameters. With these solutions in hand, the problem of designing a nanotube becomes transparent. It is shown that one dimensionless parameter determines the diameter of the nanotube, while another fixes its shape. Each of these parameters is a ratio involving the material's mechanical properties and the film thickness. Before concluding, we verify our model by comparing its results with the experimental observations of Schmidt and Eberl, for their materials.
NASA Technical Reports Server (NTRS)
Hippensteele, S. A.; Cochran, R. P.
1980-01-01
The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.
Precise 238U(n,2n)237U reaction cross-section measurements using the activation facility at TUNL
NASA Astrophysics Data System (ADS)
Krishichayan, Fnu; Bhike, M.; Tornow, W.
2014-09-01
Accurate neutron-induced 238U(n,2n)237U reaction data are required for many practical applications, especially in the field of nuclear energy, including advanced heavy water reactors, where 238U is used as the breeding material to regenerate the fissile material 239Pu. Precise (n,2n) cross-section measurements of 238U are underway at TUNL with mono-energetic neutrons in the 8.0 to 14.0 MeV energy range in steps of 0.25 MeV using the activation technique. After activation of the 0.5 inch diameter and 442 mg 238U foil, the activity of the 208 keV characteristic γ-line is tracked for 6 weeks with a high efficient HPGe clover detector to determine the initial activity needed for the cross-section determination. Results of the cross-section measurements, determined relative to 27Al and 197Au neutron activation monitor foils, and the comparison with theoretical models will be presented during the meeting.
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R., III; Gunawan, M. S.; Ge, X.; Karwoski, R. A.; Breen, J. F.; Packer, D. L.; Robb, R. A.
2012-03-01
Geometric analysis of the left atrium and pulmonary veins is important for studying reverse structural remodeling following cardiac ablation therapy. It has been shown that the left atrium decreases in volume and the pulmonary vein ostia decrease in diameter following ablation therapy. Most analysis techniques, however, require laborious manual tracing of image cross-sections. Pulmonary vein diameters are typically measured at the junction between the left atrium and pulmonary veins, called the pulmonary vein ostia, with manually drawn lines on volume renderings or on image cross-sections. In this work, we describe a technique for making semi-automatic measurements of the left atrium and pulmonary vein ostial diameters from high resolution CT scans and multi-phase datasets. The left atrium and pulmonary veins are segmented from a CT volume using a 3D volume approach and cut planes are interactively positioned to separate the pulmonary veins from the body of the left atrium. The cut plane is also used to compute the pulmonary vein ostial diameter. Validation experiments are presented which demonstrate the ability to repeatedly measure left atrial volume and pulmonary vein diameters from high resolution CT scans, as well as the feasibility of this approach for analyzing dynamic, multi-phase datasets. In the high resolution CT scans the left atrial volume measurements show high repeatability with approximately 4% intra-rater repeatability and 8% inter-rater repeatability. Intra- and inter-rater repeatability for pulmonary vein diameter measurements range from approximately 2 to 4 mm. For the multi-phase CT datasets, differences in left atrial volumes between a standard slice-by-slice approach and the proposed 3D volume approach are small, with percent differences on the order of 3% to 6%.
Volløyhaug, I; Mørkved, S; Salvesen, Ø; Salvesen, K Å
2016-06-01
To study the correlation between palpation, perineometry and transperineal ultrasound for assessment of pelvic floor muscle contraction and to define a contraction scale for ultrasound measurements. This was a cross-sectional study of 608 women examined with palpation of pelvic floor muscle contraction, using the Modified Oxford Scale, and measurement of the vaginal squeeze pressure with a vaginal balloon connected to a fiber-optic microtip transducer (perineometry). Transperineal ultrasound was used for measurements of levator hiatal area and anteroposterior (AP) diameter in the plane of minimal hiatal dimensions, at rest and on contraction. The pelvic floor muscle contraction was expressed as the percentage difference between values at rest and on contraction. Spearman's rank was used to test for correlation between the different methods of assessment. Significant correlations were found between all assessment methods (P < 0.001). Palpation correlated with perineometry (rs = 0.74) and with proportional change in hiatal area (rs = 0.67) and AP diameter (rs = 0.69) on ultrasound. Perineometry correlated with proportional change in hiatal area (rs = 0.60) and AP diameter (rs = 0.66) on ultrasound. We defined a contraction scale based on the proportional change in AP diameter. In this population, a change in AP diameter of < 7% corresponded to absence of contractions, 7-18% corresponded to weak contractions, 18-35% corresponded to normal contractions and > 35% corresponded to strong contractions. We found moderate to strong correlation between ultrasound measurements, palpation and perineometry for assessing pelvic floor muscle contraction. The proportional change in levator hiatal AP diameter was the ultrasound measurement with strongest correlation to palpation and perineometry and formed the basis for the contraction scale for ultrasound measurements. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Accounting For Compressibility In Viscous Flow In Pipes
NASA Technical Reports Server (NTRS)
Steinle, Frank W.; Gee, Ken; Murthy, Sreedhara V.
1991-01-01
Method developed to account for effects of compressibility in viscous flows through long, circular pipes of uniform diameter. Based on approximation of variations in density and velocity across pipe cross section by profile equations developed for boundary-layer flow between flat plates.
NASA Astrophysics Data System (ADS)
Xu, Li; Huang, Chang-Xu; Huang, Zhen-Fei; Sun, Qiang; Li, Jie
2018-05-01
The ice crystal particles are easy to enter into the seawater cooling system of polar ship together with seawater when it sails in the Arctic. They are easy to accumulate in the pipeline, causing serious blockage of the cooling pipe. In this study, the flow and melting characteristics of ice particles-seawater two-phase flow in inlet straight pipe of shell-and-tube heat exchanger were numerically simulated by using Eulerian-Eulerian two-fluid model coupled with the interphase heat and mass transfer model. The influences of inlet ice packing factor, ice crystal particle diameter, and inlet velocity on the distribution and melting characteristics of ice crystals were investigated. The degree of asymmetry of the distribution of ice crystals in the cross section decreases gradually when the IPF changes from 5 to 15%. The volume fractions of ice crystals near the top of the outlet cross section are 19.59, 19.51, and 22.24% respectively for ice packing factor of 5, 10 and 15%. When the particle diameter is 0.5 mm, the ice crystals are gradually stratified during the flow process. With particle diameters of 1.0 and 2.0 mm, the region with the highest volume fraction of ice crystals is a small circle and the contours in the cloud map are compact. The greater the inlet flow velocity, the less stratified the ice crystals and the more obvious the turbulence on the outlet cross section. The average volume fraction of ice crystals along the flow direction is firstly rapidly reduced and then stabilized after 300 mm.
Schröder, J H; Geßlein, M; Schütz, M; Perka, C; Krüger, D
2018-03-01
Operative refixation is a new therapeutic option in cases of failed conservative treatment for trochanteric pain syndrome (TPS) and lesions of the hip abductors in magnetic resonance imaging (MRI). Evaluation of the clinical and radiological results after open gluteus medius and minimus tendon reconstruction with a double-row technique was carried out. Patients with failed conservative treatment for TPS and confirmed lesions of the hip abductors in MRI were treated by open hip abductor tendon reconstruction with a double-row technique. The patients were evaluated preoperatively and postoperatively (minimum follow-up 12 months) using the modified Harris hip score (mHHS) and a subjective score (subjective hip value, SHV). Preoperative and postoperative MRI evaluation included measurement of hip abductor muscle diameter and cross-sectional area as well as fatty degeneration. In this study 12 consecutive cases of open reconstruction of the hip abductor tendons were included. There was a significant improvement in the mHHS. In one case the patient showed an atraumatic rupture in the proximal anchor row. The MRI showed a significant improvement in muscle diameter and cross-sectional area for the gluteus medius muscle of the affected and the contralateral side, while the degree of fatty degeneration did not improve. The fatty degeneration showed a significant correlation with the postoperative results in the mHHS and the SHV. Operative reconstruction of lesions in the hip abductor tendons is a therapy option with significant improvement of patient satisfaction and functional scores as well as muscle diameter and cross-sectional area for the gluteus medius. The degree of fatty degeneration and possible differential diagnoses need to be taken into consideration.
Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell
1995-01-01
A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.
Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.
1995-07-18
A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.
Comparative range of orthodontic wires.
Ingram, S B; Gipe, D P; Smith, R J
1986-10-01
ADA specification No. 32 for determining the range (elastic limit) of orthodontic wires uses the bending of a wire section treated as a cantilever beam. An alternative method for defining the range of orthodontic wires proposed by Waters (1981) is to wrap wire sections around mandrels of varying diameters and measure the deformation imparted after unwrapping. Four brass mandrels with a total of 46 test diameters ranging from 3.5 to 60.0 mm were used in this study. Wire sections 9 cm in length were rolled on the mandrel with a hand lathe. The mandrel cross section required to produce a predetermined amount of deformation (2 mm arc height for a 5 cm chord) was defined as the yield diameter for that particular wire. No individual wire was tested twice so as to avoid introduction of strain history. Test samples of 488 different orthodontic wires supplied by nine commercial distributors were evaluated (a total of 4,747 samples). Stainless steel wires of identical dimensions had a large variation in range, depending on the state of strain hardening and heat treatment. For example, 0.020 inch round wire had yield diameters ranging from 22.8 mm for Australian special plus orange (TP Laboratories) to 42.9 mm for Nubryte gold (G.A.C. International). Chromium cobalt wires had less range than stainless steel before heat treatment, but increased greatly in range after heat treatment. Nitinol (Unitek) had the greatest range of all wires tested (yield diameter of 8.7 mm for 0.016 inch Nitinol). Multistranded stainless steel wires had yield diameters between 9.0 and 14.0 mm.
NASA Astrophysics Data System (ADS)
Sakarya, Doǧan Uǧur
2017-05-01
Drag force effect is an important aspect of range performance in missile applications especially for long flight time. However, old fashioned gimbal approaches force to increase missile diameter. This increase has negative aspect of rising in both drag force and radar cross sectional area. A new gimbal approach was proposed recently. It uses a beam steering optical arrangement. Therefore, it needs less volume envelope for same field of regard and same optomechanical assembly than the old fashioned gimbal approaches. In addition to longer range performance achieved with same fuel in the new gimbal approach, this method provides smaller cross sectional area which can be more invisible in enemies' radar. In this paper, the two gimbal approaches - the old fashioned one and the new one- are compared in order to decrease drag force and radar cross sectional area in missile application. In this study; missile parameters are assumed to generate gimbal and optical design parameters. Optical design is performed according to these missile criteria. Two gimbal configurations are designed with respect to modeled missile parameters. Also analyzes are performed to show decreased drag force and radar cross sectional area in the new approach for comparison.
Morphing hull implementation for unmanned underwater vehicles
NASA Astrophysics Data System (ADS)
Miller, Timothy F.; Gandhi, Farhan; Rufino, Russell J.
2013-11-01
There has been much interest and work in the area of morphing aircraft since the 1980s. Morphing could also potentially benefit unmanned underwater vehicles (UUVs). The current paper envisions a UUV with an interior pressure hull and a variable diameter outer flexible hull with fuel stored in the annulus between, and presents a mechanism to realize diameter change of the outer hull. The outer hull diameter of UUVs designed for very long endurance/range could be progressively reduced as fuel was consumed, thereby reducing drag and further increasing endurance and range capability. Diameter morphing could also be advantageous for compact storage of UUVs. A prototype is fabricated to represent an axial section of such a morphing diameter UUV. Diameter change is achieved using eight morphing trusses arranged equidistant around the circumference of the representative interior rigid hull. Each morphing truss has a lower rail (attached to the rigid hull) and an upper rail with V-linkages between, at either ends of the rail. Horizontal motion of the feet of the V-linkages (sliding in the lower rail) results in vertical motion of the upper rail which in turn produces diameter change of the outer hull. For the prototype built and tested, a 63% increase in outer diameter from 12.75″ to 20.75″ was achieved. The introduction of a stretched latex representative flexible skin around the outer rails increased actuation force requirement and led to a propensity for the wheel-in-track sliders in the morphing truss to bind. It is anticipated that this could be overcome with higher precision manufacturing. In addition to symmetric actuation of the morphing trusses resulting in diameter change, the paper also shows that with asymmetric actuation the hull cross-section shape can be changed (for example, from a circular section for underwater operation to a V-section for surface operations).
Osawa, Atsushi; Miwa, Kenta; Wagatsuma, Kei; Takiguchi, Tomohiro; Tamura, Shintaro; Akimoto, Kenta
2012-01-01
The image quality in (18)FDG PET/CT often degrades as the body size increases. The purpose of this study was to evaluate the relationship between image quality and the body size using original phantoms of variable cross-sectional areas in PET/CT. We produced five water phantoms with different cross-sectional areas. The long axis of phantom was 925 mm, and the cross-sectional area was from 324 to 1189 cm(2). These phantoms with the sphere (diameter 10 mm) were filled with (18)F-FDG solution. The radioactivity concentration of background in the phantom was 1.37, 2.73, 4.09 and 5.46 kBq/mL. The scanning duration was 30 min in list mode acquisition for each measurement. Background variability (N(10 mm)), noise equivalent count rates (NECR(phantom)), hot sphere contrast (Q(H,10 mm)) as physical evaluation and visual score of sphere detection were measured, respectively. The relationship between image quality and the various cross-sectional areas was also analyzed under the above-mentioned conditions. As cross-sectional area increased, NECR(phantom) progressively decreased. Furthermore, as cross-sectional area increased, N(10 mm) increased and Q(H,10 mm) decreased. Image quality became degraded as body weight increased because noise and contrast contributed to image quality. The visual score of sphere detection deteriorated in high background radioactivity concentration because a false positive detection in cross-sectional area of the phantom increased. However, additional increases in scanning periods could improve the visual score. We assessed tendencies in the relationship between image quality and body size in PET/CT. Our results showed that time adjustment was more effective than dose adjustment for stable image quality of heavier patients in terms of the large cross-sectional area.
NASA Astrophysics Data System (ADS)
Peng, Yong; Li, Hongqiang; Shen, Chunlong; Guo, Shun; Zhou, Qi; Wang, Kehong
2017-06-01
The power density distribution of electron beam welding (EBW) is a key factor to reflect the beam quality. The beam quality test system was designed for the actual beam power density distribution of high-voltage EBW. After the analysis of characteristics and phase relationship between the deflection control signal and the acquisition signal, the Post-Trigger mode was proposed for the signal acquisition meanwhile the same external clock source was shared by the control signal and the sampling clock. The power density distribution of beam cross-section was reconstructed using one-dimensional signal that was processed by median filtering, twice signal segmentation and spatial scale calibration. The diameter of beam cross-section was defined by amplitude method and integral method respectively. The measured diameter of integral definition is bigger than that of amplitude definition, but for the ideal distribution the former is smaller than the latter. The measured distribution without symmetrical shape is not concentrated compared to Gaussian distribution.
First results from the NEWS-G direct dark matter search experiment at the LSM
NASA Astrophysics Data System (ADS)
Arnaud, Q.; Asner, D.; Bard, J.-P.; Brossard, A.; Cai, B.; Chapellier, M.; Clark, M.; Corcoran, E. C.; Dandl, T.; Dastgheibi-Fard, A.; Dering, K.; Di Stefano, P.; Durnford, D.; Gerbier, G.; Giomataris, I.; Gorel, P.; Gros, M.; Guillaudin, O.; Hoppe, E. W.; Kamaha, A.; Katsioulas, I.; Kelly, D. G.; Martin, R. D.; McDonald, J.; Muraz, J.-F.; Mols, J.-P.; Navick, X.-F.; Papaevangelou, T.; Piquemal, F.; Roth, S.; Santos, D.; Savvidis, I.; Ulrich, A.; Vazquez de Sola Fernandez, F.; Zampaolo, M.
2018-01-01
New Experiments With Spheres-Gas (NEWS-G) is a direct dark matter detection experiment using Spherical Proportional Counters (SPCs) with light noble gases to search for low-mass Weakly Interacting Massive Particles (WIMPs). We report the results from the first physics run taken at the Laboratoire Souterrain de Modane (LSM) with SEDINE, a 60 cm diameter prototype SPC operated with a mixture of Ne + CH4 (0.7%) at 3.1 bars for a total exposure of 9.6 kg · days. New constraints are set on the spin-independent WIMP-nucleon scattering cross-section in the sub-GeV/c2 mass region. We exclude cross-sections above 4.4 ×10-37cm2 at 90% confidence level (C.L.) for a 0.5 GeV/c2 WIMP. The competitive results obtained with SEDINE are promising for the next phase of the NEWS-G experiment: a 140 cm diameter SPC to be installed at SNOLAB by summer 2018.
Wavelength dependence of the apparent diameter of retinal blood vessels
NASA Astrophysics Data System (ADS)
Park, Robert; Twietmeyer, Karen; Chipman, Russell; Beaudry, Neil; Salyer, David
2005-04-01
Imaging of retinal blood vessels may assist in the diagnosis and monitoring of diseases such as glaucoma, diabetic retinopathy, and hypertension. However, close examination reveals that the contrast and apparent diameter of vessels are dependent on the wavelength of the illuminating light. In this study multispectral images of large arteries and veins within enucleated swine eyes are obtained with a modified fundus camera by use of intravitreal illumination. The diameters of selected vessels are measured as a function of wavelength by cross-sectional analysis. A fixed scale with spectrally independent dimension is placed above the retina to isolate the chromatic effects of the imaging system and eye. Significant apparent differences between arterial and venous diameters are found, with larger diameters observed at shorter wavelengths. These differences are due primarily to spectral absorption in the cylindrical blood column.
Kumar, Y Kiran; Mehta, Shashi Bhushan; Ramachandra, Manjunath
2017-01-01
The purpose of this work is to provide some validation methods for evaluating the hemodynamic assessment of Cerebral Arteriovenous Malformation (CAVM). This article emphasizes the importance of validating noninvasive measurements for CAVM patients, which are designed using lumped models for complex vessel structure. The validation of the hemodynamics assessment is based on invasive clinical measurements and cross-validation techniques with the Philips proprietary validated software's Qflow and 2D Perfursion. The modeling results are validated for 30 CAVM patients for 150 vessel locations. Mean flow, diameter, and pressure were compared between modeling results and with clinical/cross validation measurements, using an independent two-tailed Student t test. Exponential regression analysis was used to assess the relationship between blood flow, vessel diameter, and pressure between them. Univariate analysis is used to assess the relationship between vessel diameter, vessel cross-sectional area, AVM volume, AVM pressure, and AVM flow results were performed with linear or exponential regression. Modeling results were compared with clinical measurements from vessel locations of cerebral regions. Also, the model is cross validated with Philips proprietary validated software's Qflow and 2D Perfursion. Our results shows that modeling results and clinical results are nearly matching with a small deviation. In this article, we have validated our modeling results with clinical measurements. The new approach for cross-validation is proposed by demonstrating the accuracy of our results with a validated product in a clinical environment.
Influence of fibre design and curvature on crosstalk in multi-core fibre
NASA Astrophysics Data System (ADS)
Egorova, O. N.; Astapovich, M. S.; Melnikov, L. A.; Salganskii, M. Yu; Mishkin, V. P.; Nishchev, K. N.; Semjonov, S. L.; Dianov, E. M.
2016-03-01
We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores.
NASA Astrophysics Data System (ADS)
Pavlenko, A. N.; Zhukov, V. E.; Pecherkin, N. I.; Nazarov, A. D.; Li, X.; Li, H.; Gao, X.; Sui, H.
2017-09-01
The use of modern structured packing in the distillation columns allows much more even distribution of the liquid film over the packing surface, but it does not completely solve the problem of uniform distribution of flow parameters over the entire height of the packing. Negative stratification of vapor along the packing height caused by different densities of vapor mixture components and higher temperature in the lower part of the column leads to formation of large-scale maldistributions of temperature and mixture composition over the column cross-section even under the conditions of uniform irrigation of packing with liquid. In these experiments, the idea of compensatory action of liquid distributor on the large-scale maldistribution of mixture composition over the column cross-section was implemented. The experiments were carried out in the distillation column with the diameter of 0.9 m on 10 layers of the Mellapak 350Y packing with the total height of 2.1 m. The mixture of R-21 and R-114 was used as the working mixture. To irrigate the packing, the liquid distributorr with 126 independently controlled solenoid valves overlapping the holes with the diameter of 5 mm, specially designed by the authors, was used. Response of the column to the action of liquid distributor was observed in real time according to the indications of 3 groups of thermometers mounted in 3 different cross-sections of the column. The experiments showed that the minimal correction of the drip point pattern in the controlled liquid distributor can significantly affect the pattern of flow parameter distribution over the cross-section and height of the mass transfer surface and increase separation efficiency of the column within 20%.
Quaranta, Alessandro; DʼIsidoro, Orlando; Bambini, Fabrizio; Putignano, Angelo
2016-02-01
To compare the available potential bone-implant contact (PBIC) area of standard and short dental implants by micro-computed tomography (μCT) assessment. Three short implants with different diameters (4.5 × 6 mm, 4.1 × 7 mm, and 4.1 × 6 mm) and 2 standard implants (3.5 × 10 mm and 3.3 × 9 mm) with diverse design and surface features were scanned with μCT. Cross-sectional images were obtained. Image data were manually processed to find the plane that corresponds to the most coronal contact point between the crestal bone and implant. The available PBIC was calculated for each sample. Later on, the cross-sectional slices were processed by a 3-dimensional (3D) software, and 3D images of each sample were used for descriptive analysis and display the microtopography and macrotopography. The wide-diameter short implant (4.5 × 6 mm) showed the higher PBIC (210.89 mm) value followed by the standard (178.07 mm and 185.37 mm) and short implants (130.70 mm and 110.70 mm). Wide-diameter short implants show a surface area comparable with standard implants. Micro-CT analysis is a promising technique to evaluate surface area in dental implants with different macrodesign, microdesign, and surface features.
Sharma, Giriraj K.; Loy, Anthony Chin; Su, Erica; Jing, Joe; Chen, Zhongping; Wong, Brian J-F.; Verma, Sunil
2016-01-01
Objectives To determine the feasibility of long-range optical coherence tomography (LR-OCT) as a tool to intraoperatively image and measure the subglottis and trachea during suspension microlaryngoscopy before and after endoscopic treatment of subglottic stenosis (SGS). Methods Long-range optical coherence tomography of the adult subglottis and trachea was performed during suspension microlaryngoscopy before and after endoscopic treatment for SGS. The anteroposterior and transverse diameters, cross-sectional area (CSA), distance from the vocal cords, and length of the SGS were measured using a MATLAB software. Pre-intervention and postintervention airway dimensions were compared. Three-dimensional volumetric airway reconstructions were generated using medical image processing software (MIMICS). Results Intraoperative LR-OCT imaging was performed in 3 patients undergoing endoscopic management of SGS. Statistically significant differences in mean anteroposterior diameter (P < .01), transverse diameter (P < .001), and CSA (P < .001) were noted between pre-intervention and postintervention data. Three-dimensional airway models were viewed in cross-sectional format and via virtual “fly through” bronchoscopy. Conclusions This is the first report of intraoperative LR-OCT of the subglottic and tracheal airway before and after surgical management of SGS in humans. Long-range optical coherence tomography offers a practical means to measure the dimensions of SGS and acquire objective data on the response to endoscopic treatment of SGS. PMID:27354215
Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D
2013-02-01
We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0-400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument.
Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J.; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D.
2013-01-01
We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0–400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument. PMID:23412564
Craters formed in mineral dust by hypervelocity microparticles.
NASA Technical Reports Server (NTRS)
Vedder, J. F.
1972-01-01
As a simulation of erosion processes on the lunar surface, impact craters were formed in dust targets by 2- to 5-micron-diameter polystyrene spheres with velocities between 2.5 and 12 km/sec. For weakly cohesive, thick targets of basalt dust with a maximum grain size comparable to the projectile diameter, the craters had an average projectile-to-diameter diameter ratio of 25, and the displaced mass was 3 orders of magnitude greater than the projectile mass. In a simulation of the effect of a dust covering on lunar rocks, a layer of cohesive, fine-grained basalt dust with a thickness nearly twice the projectile diameter protected a glass substrate from damage, but an area about 50 times the cross-sectional area of the projectile was cleared of all but a few grains. Impact damage was produced in glass under a thinner dust layer.
Tyrk, Mateusz A; Zolotovskaya, Svetlana A; Gillespie, W Allan; Abdolvand, Amin
2015-09-07
Radially and azimuthally polarized picosecond (~10 ps) pulsed laser irradiation at 532 nm wavelength led to the permanent reshaping of spherical silver nanoparticles (~30 - 40 nm in diameter) embedded in a thin layer of soda-lime glass. The observed peculiar shape modifications consist of a number of different orientations of nano-ellipsoids in the cross-section of each written line by laser. A Second Harmonic Generation cross-sectional scan method from silver nanoparticles in transmission geometry was adopted for characterization of the samples after laser modification. The presented approach may lead to sophisticated marking of information in metal-glass nanocomposites.
Lateral jet injection into typical combustor flowfields
NASA Technical Reports Server (NTRS)
Lilley, D. G.
1986-01-01
The experimental problem of lateral jet injection into typical flow fields in the absence of combustion was studied. All flow fields being investigated have no expansion of the crossflow (the test section to swirler diameter ratio D/d = 1), after its passage through an optional swirler (with swirl vane angle phi = 0 (swirler removed), 45, and 70 degree). The lateral jet(s) is(are) located one test-section diameter downstream of the test-section inlet (x/D = 1). The lateral jets have round-sectioned nozzles, each of which has an area of 1/100th of the cross sectional area of the crossflow (A sub j/A sub c = 1/100). Jet-to-crossflow velocity ratios of R = v sub j/u sub o = 2, 4, and 6 were investigated. Helium-bubble low visualization, five-hole pitot probe time-mean velocity measurements, and single-wire time-mean velocity and normal and shear stress turbulence data were obtained in the research program.
Morphometric study of the two fused primary ossification centers of the clavicle in the human fetus.
Baumgart, Mariusz; Wiśniewski, Marcin; Grzonkowska, Magdalena; Badura, Mateusz; Dombek, Małgorzata; Małkowski, Bogdan; Szpinda, Michał
2016-10-01
A satisfactory understanding of the clavicle development may be contributing to both the diagnosis of its congenital defects and prevention of perinatal damage to the shoulder girdle. This study was carried out to examine the transverse and sagittal diameters, cross-sectional area and volume of the two fused primary ossification centers of the clavicle. Using the methods of CT, digital-image analysis and statistics, the size for two fused primary ossification centers of the clavicle in 42 spontaneously aborted human fetuses at ages of 18-30 weeks was studied. Without any male-female and right-left significant differences, the best fit growth models for two fused primary ossification centers of the clavicle were as follows: y = -31.373 + 15.243 × ln(age) ± 1.424 (R (2) = 0.74) for transverse diameter, y = -7.945 + 3.225 × ln(age) ± 0.262 (R (2) = 0.78), y = -4.503 + 2.007 × ln(age) ± 0.218 (R (2) = 0.68), and y = -4.860 + 2.117 × ln(age) ± 0.200 (R (2) = 0.73) for sagittal diameters of the lateral, middle and medial ends respectively, y = -31.390 + 2.432 × age ± 4.599 (R (2) = 0.78) for cross-sectional area, and y = 28.161 + 0.00017 × (age)(4) ± 15.357 (R (2) = 0.83) for volume. With no sex and laterality differences, the fused primary ossification centers of the clavicle grow logarithmically in both transverse and sagittal diameters, linearly in cross-sectional area, and fourth-degree polynomially in volume. Our normative quantitative findings may be conducive in monitoring normal fetal growth and screening for inherited faults and anomalies of the clavicle in European human fetuses.
Buckling analysis of the quadripod structure for the NASA 70-meter antenna
NASA Technical Reports Server (NTRS)
Chian, Chian T.
1987-01-01
As part of the effort to extend the diameter of three Deep Space Network large earth antennas from 64 meters to 70 meters, a slim profiled quadripod structure was designed to support a 7.7 meter diameter subreflector for the 70 meter antenna. The new quadripod design, which particularly emphasizes reduced radio frequency blockage, is achieved by means of a narrow cross sectional profile of the legs. Buckling analysis, using NASTRAN, was conducted in this study to verify the safety margin for the quadripod structural stability.
Araujo Júnior, Edward; Martins, Wellington P; Nardozza, Luciano Marcondes Machado; Pires, Claudio Rodrigues; Filho, Sebastião Marques Zanforlin
2015-02-01
To determine a reference range of fetal transverse cerebellar diameter in Brazilian population. This was a retrospective cross-sectional study with 3772 normal singleton pregnancies between 18 and 24 weeks of pregnancy. The transverse cerebellar diameter was measured on the axial plane of the fetal head at the level of the lateral ventricles, including the thalamus, cavum septum pellucidum, and third ventricle. To assess the correlation between transverse cerebellar diameter and gestational age, polynomial equations were calculated, with adjustments by the determination coefficient (R2). The mean of fetal transverse cerebellar diameter ranged from 18.49 ± 1.24 mm at 18 weeks to 25.86 ± 1.66 mm at 24 weeks of pregnancy. We observed a good correlation between transverse cerebellar diameter and gestational age, which was best represented by a linear equation: transverse cerebellar diameter: -6.21 + 1.307*gestational age (R2 = 0.707). We determined a reference range of fetal transverse cerebellar diameter for the second trimester of pregnancy in Brazilian population. © The Author(s) 2014.
Influence of fibre design and curvature on crosstalk in multi-core fibre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorova, O N; Astapovich, M S; Semjonov, S L
2016-03-31
We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores. (fiber optics)
Van Meerbeek, B; Conn, L J; Duke, E S; Schraub, D; Ghafghaichi, F
1995-03-01
focused ion-beam (FIB) etching, commonly used as a cross-sectioning technique for failure analysis of semiconductor devices, has recently been applied to biological tissues to expose their ultrastructure for examination. It was the aim of this investigation to determine the practical utility of FIB to cross-section resin-dentin interfaces in order to morphologically evaluate the completeness of resin penetration into the exposed collagen scaffold at the resin-dentin bond interface. Two representative commercially available dentin adhesive systems were bonded to mid-coronal dentin. After appropriate fixation and dehydration of the resin-bonded dentin samples, a scanned focused ion-beam of a few tens of nano-meters in diameter was used to cross=section the resin-dentin interface. Examination of the interfacial ultrastructure was accomplished using a field-emission SEM. Results indicate possible artifact production at the cross-sectioned interface, hiding its actual ultrastructure, probably due to a heat-effect with possible recrystallization. Further studies of FIB are needed to optimize its usefulness for resin-dentin interface examinations and other biological tissue applications. Complete resin saturation of the demineralized dentin surface-layer has been claimed to be the key factor for a long-lasting resin-dentin bond. A "clean" artifact-free micro-cross-sectioning technique may provide indisputable ultra-structural information about the depth of resin penetration into the demineralized zone. Such a test would be useful in the development of dentin adhesive systems.
Method of synthesizing silica nanofibers using sound waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Jaswinder K.; Datskos, Panos G.
A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up tomore » an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.« less
Method of synthesizing silica nanofibers using sound waves
Sharma, Jaswinder K.; Datskos, Panos G.
2015-09-15
A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.
30 CFR 75.1322 - Stemming boreholes
Code of Federal Regulations, 2010 CFR
2010-07-01
... water stemming bags shall be tamped to fill the entire cross sectional area of the borehole. (c... water stemming bag shall be within 1/4 of an inch of the diameter of the drill bit used to drill the borehole. (h) Water stemming bags shall be constructed of tear-resistant and flame-resistant material and...
(abstract) Radiophysical Properties of Venusian Impact Craters
NASA Technical Reports Server (NTRS)
Weitz, C. M.; Saunders, R. S.; Plaut, J. J.; Elachi, C.; Moore, H. J.
1993-01-01
An analysis of 222 large (greater than 20-km-diameter) impact craters on Venus using both cycle 1 and cycle 2 Magellan data is being conducted to determine the radiophysical properties (i.e., backscatter cross section, emissivity, reflectivity, rms slope) of the craters and to search for correlations with target region properties and subsequent geological history.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
... and its individual members, Allied Tube & Conduit, IPSCO Tubulars, Inc., Sharon Tube Company, Western Tube & Conduit Corporation, and Wheatland Tube Company (collectively, ``Petitioner''), that the... pipes and tubes, of circular cross-section, and with an outside diameter of 0.372 inches (9.45 mm) or...
Leonardo's Rule, Self-Similarity, and Wind-Induced Stresses in Trees
NASA Astrophysics Data System (ADS)
Eloy, Christophe
2011-12-01
Examining botanical trees, Leonardo da Vinci noted that the total cross section of branches is conserved across branching nodes. In this Letter, it is proposed that this rule is a consequence of the tree skeleton having a self-similar structure and the branch diameters being adjusted to resist wind-induced loads.
Whitebark pine diameter growth response to removal of competition
Robert E. Keane; Kathy L. Gray; Laura J. Dickinson
2007-01-01
Silvicultural cutting treatments may be needed to restore whitebark pine (Pinus albicaulis) forests, but little is known of the response of this species to removal of competition through prescribed burning or silvicultural cuttings. We analyzed stem cross-sections from 48 whitebark pine trees in Montana around which most of the competing vegetation...
A PILOT STUDY OF DIAGNOSTIC NEUROMUSCULAR ULTRASOUND IN BELL'S PALSY
TAWFIK, EMAN A.; WALKER, FRANCIS O.; CARTWRIGHT, MICHAEL S.
2015-01-01
Background and purpose Neuromuscular ultrasound of the cranial nerves is an emerging field which may help in the assessment of cranial neuropathies. The aim of this study was to evaluate the role of neuromuscular ultrasound in Bell's palsy. A second objective was to assess the possibility of any associated vagus nerve abnormality. Methods Twenty healthy controls and 12 Bell's palsy patients were recruited. The bilateral facial nerves, vagus nerves, and frontalis muscles were scanned using an 18 MHz linear array transducer. Facial nerve diameter, vagus nerve cross-sectional area, and frontalis thickness were measured. Results Mean facial nerve diameter was 0.8 ± 0.2 mm in controls and 1.1 ± 0.3 mm in patients group. The facial nerve diameter was significantly larger in patients than controls (p = 0.006, 95% CI for the difference between groups of 0.12-0.48), with a significant side-to-side difference in patients as well (p = 0.004, 95% CI for side-to-side difference of 0.08-0.52). ROC curve analysis of the absolute facial nerve diameter revealed a sensitivity of 75 % and a specificity of 70 %. No significant differences in vagus nerve cross-sectional area or frontalis thickness were detected between patients and controls. Conclusions Ultrasound can detect facial nerve enlargement in Bell's palsy and may have a role in assessment, or follow-up, of Bell's palsy and other facial nerve disorders. The low sensitivity of the current technique precludes its routine use for diagnosis, however, this study demonstrates its validity and potential for future research. PMID:26076910
Superconductor-insulator transition in quasi-one-dimensional single-crystal Nb₂PdS₅ nanowires.
Ning, Wei; Yu, Hongyan; Liu, Yequn; Han, Yuyan; Wang, Ning; Yang, Jiyong; Du, Haifeng; Zhang, Changjin; Mao, Zhiqiang; Liu, Ying; Tian, Mingliang; Zhang, Yuheng
2015-02-11
Superconductor-insulator transition (SIT) in one-dimensional (1D) nanowires attracts great attention in the past decade and remains an open question since contrasting results were reported in nanowires with different morphologies (i.e., granular, polycrystalline, or amorphous) or environments. Nb2PdS5 is a recently discovered low-dimensional superconductor with typical quasi-1D chain structure. By decreasing the wire diameter in the range of 100-300 nm, we observed a clear SIT with a 1D transport character driven by both the cross-sectional area and external magnetic field. We also found that the upper critical magnetic field (Hc2) decreases with the reduction of nanowire cross-sectional area. The temperature dependence of the resistance below Tc can be described by the thermally activated phase slip (TAPS) theory without any signature of quantum phase slips (QPS). These findings demonstrated that the enhanced Coulomb interactions with the shrinkage of the wire diameter competes with the interchain Josephson-like coupling may play a crucial role on the SIT in quasi-1D system.
NASA Astrophysics Data System (ADS)
Krämer, Florian; Gratz, Micha; Tschöpe, Andreas
2016-07-01
The magnetic field-dependent optical transmission of dilute Ni nanorod aqueous suspensions was investigated. A series of four samples of nanorods were synthesized using the AAO template method and processed to stable colloids. The distributions of their length and diameter were characterized by analysis of TEM images and revealed average diameters of ˜25 nm and different lengths in the range of 60 nm-1100 nm. The collinear magnetic and optical anisotropy was studied by static field-dependent transmission measurements of linearly polarized light parallel and perpendicular to the magnetic field direction. The experimental results were modelled assuming the field-dependent orientation distribution function of a superparamagnetic ensemble for the uniaxial ferromagnetic nanorods in liquid dispersion and extinction cross sections for longitudinal and transversal optical polarization derived from different approaches, including the electrostatic approximation and the separation of variables method, both applied to spheroidal particles, as well as finite element method simulations of spheroids and capped cylindrical particles. The extinction cross sections were compared to reveal the differences associated with the approximations of homogeneous polarization and/or particle shape. The consequences of these approximations for the quantitative analysis of magnetic field-dependent optical transmission measurements were investigated and a reliable protocol derived. Furthermore, the changes in optical cross sections induced by electromagnetic interaction between two nanorods in parallel end-to-end and side-by-side configuration as a function of their separation were studied.
NASA Astrophysics Data System (ADS)
Kowalik, Marek; Trzepiecinski, Tomasz
2018-05-01
This paper presents the characteristics of the process of longitudinal rolling of shafts and the geometry of the working section of forming rollers with a secant profile. In addition, the analytical formulae defining the geometry of a roller profile were determined. The experiments were carried out on shafts made of S235JR and C45 structural steels and the MSC.Marc + Mentat program was used for the numerical analysis of the rolling process based on the finite element method. The paper analyses the effect of roller geometry on the changes in value of the widening coefficient and the diameter reduction coefficient for the first forming passage. It was found that the mechanical properties of the shaft material have a slight influence on the widening coefficient. The value of the widening coefficient of the shaft increases with increase in the initial diameter of the shaft. Increasing shaft diameter causes an increase of strain gradient on the cross-section of the shaft.
Fillinger, Mark F; Racusin, Jessica; Baker, Robert K; Cronenwett, Jack L; Teutelink, Arno; Schermerhorn, Marc L; Zwolak, Robert M; Powell, Richard J; Walsh, Daniel B; Rzucidlo, Eva M
2004-06-01
The purpose of this study was to analyze anatomic characteristics of patients with ruptured abdominal aortic aneurysms (AAAs), with conventional two-dimensional computed tomography (CT), including comparison with control subjects matched for age, gender, and size. Records were reviewed to identify all CT scans obtained at Dartmouth-Hitchcock Medical Center or referring hospitals before emergency AAA repair performed because of rupture or acute severe pain (RUP group). CT scans obtained before elective AAA repair (ELEC group) were reviewed for age and gender match with patients in the RUP group. More than 40 variables were measured on each CT scan. Aneurysm diameter matching was achieved by consecutively deleting the largest RUP scan and the smallest ELEC scan to prevent bias. CT scans were analyzed for 259 patients with AAAs: 122 RUP and 137 ELEC. Patients were well matched for age, gender, and other demographic variables or risk factors. Maximum AAA diameter was significantly different in comparisons of all patients (RUP, 6.5 +/- 2 cm vs ELEC, 5.6 +/- 1 cm; P <.0001), and mean diameter of ruptured AAAs was 5 mm smaller in female patients (6.1 +/- 2 cm vs 6.6 +/- 2 cm; P =.007). Two hundred patients were matched for diameter, gender, and age (100 from each group; maximum AAA diameter, 6.0 +/- 1 cm vs 6.0 +/- 1 cm). Analysis of diameter-matched AAAs indicated that most variables were statistically similar in the two groups, including infrarenal neck length (17 +/- 1 mm vs 19 +/- 1 mm; P =.3), maximum thrombus thickness (25 +/- 1 mm vs 23 +/- 1 mm, P =.4), and indices of body habitus, such as [(maximum AAA diameter)/(normal suprarenal aorta diameter)] or [(maximum AAA diameter)/(L3 transverse diameter)]. Multivariate analysis controlling for gender indicated that the most significant variables for rupture were aortic tortuosity (odds ratio [OR] 3.3, indicating greater risk with no or mild tortuosity), diameter asymmetry (OR, 3.2 for a 1-cm difference in major-minor axis), and current smoking (OR, 2.7, with the greater risk in current smokers). When matched for age, gender, and diameter, ruptured AAAs tend to be less tortuous, yet have greater cross-sectional diameter asymmetry. On conventional two-dimensional CT axial sections, it appears that when diameter asymmetry is associated with low aortic tortuosity, the larger diameter on axial sections more accurately reflects rupture risk, and when diameter asymmetry is associated with moderate or severe aortic tortuosity, the smaller diameter on axial sections more accurately reflects rupture risk. Current smoking is significantly associated with rupture, even when controlling for gender and AAA anatomy.
NASA Astrophysics Data System (ADS)
Su, Jinghong; Chen, Xiaodong; Hu, Guoqing
2018-03-01
Inertial migration has emerged as an efficient tool for manipulating both biological and engineered particles that commonly exist with non-spherical shapes in microfluidic devices. There have been numerous studies on the inertial migration of spherical particles, whereas the non-spherical particles are still largely unexplored. Here, we conduct three-dimensional direct numerical simulations to study the inertial migration of rigid cylindrical particles in rectangular microchannels with different width/height ratios under the channel Reynolds numbers (Re) varying from 50 to 400. Cylindrical particles with different length/diameter ratios and blockage ratios are also concerned. Distributions of surface force with the change of rotation angle show that surface stresses acting on the particle end near the wall are the major contributors to the particle rotation. We obtain lift forces experienced by cylindrical particles at different lateral positions on cross sections of two types of microchannels at various Re. It is found that there are always four stable equilibrium positions on the cross section of a square channel, while the stable positions are two or four in a rectangular channel, depending on Re. By comparing the equilibrium positions of cylindrical particles and spherical particles, we demonstrate that the equivalent diameter of cylindrical particles monotonously increases with Re. Our work indicates the influence of a non-spherical shape on the inertial migration and can be useful for the precise manipulation of non-spherical particles.
Effects of shoot inversion on stem structure in Pharbitis nil
NASA Technical Reports Server (NTRS)
Prasad, T. K.; Sack, F. D.; Cline, M. G.
1988-01-01
The effects of shoot inversion on stem structure over 72 hr were investigated in Pharbitis nil by analyzing cell number, cell length, and the cross sectional areas of cells, tissues, and regions. An increase in stem diameter can be attributed to an increase in both cell number and cross sectional area of pith (primarily) and vascular tissue (secondarily). Qualitative observations of cell wall thickness in the light microscope did not reveal any significant effects of shoot inversion on this parameter. The inhibition of shoot elongation was accompanied by a significant decrease in cell length in the pith. The results are generally consistent with an ethylene effect on cell dimensions, especially in the pith.
NASA Astrophysics Data System (ADS)
Kohn, V. G.; Argunova, T. S.; Je, J. H.
2010-11-01
We show that x-ray phase contrast images of some objects with a small cross-section diameter d satisfy a condition for a far-field approximation d Lt r1 where r1 = (λz)1/2, λ is the x-ray wavelength, z is the distance from the object to the detector. In this case the size of the image does not match the size of the object contrary to the edge detection technique. Moreover, the structure of the central fringes of the image is universal, i.e. it is independent of the object cross-section structure. Therefore, these images have no detailed information on the object.
Best estimate of luminal cross-sectional area of coronary arteries from angiograms
NASA Technical Reports Server (NTRS)
Lee, P. L.; Selzer, R. H.
1988-01-01
We have reexamined the problem of estimating the luminal area of an elliptically-shaped coronary artery cross section from two or more radiographic diameter measurements. The expected error is found to be much smaller than the maximum potential error. In the cae of two orthogonal views, closed form expressions have been derived for calculating the area and the uncertainty. Assuming that the underlying ellipse has limited ellipticity (major/minor axis ratio less than five), it is shown that the average uncertainty in the area is less than 14 percent. When more than two views are available, we suggest using a least-squares fit method to extract all available information from the data.
NASA Astrophysics Data System (ADS)
Bhike, Megha; Tornow, Werner
2014-09-01
The CUORE detector at Gran Sasso, aimed at searching for neutrinoless double-beta decay of 130Te, employs an array of TeO2 bolometer modules. To understand and identify the contribution of muon and (α,n) induced neutrons to the CUORE background, fast neutron cature cross-section data of the tellurium isotopes 126Te, 128Te and 130Te have been measured with the activation method at eight different energies in the neutron energy range 0.5-7.5 MeV. Plastic pill boxes of diameter 1.6 cm and width 1 cm containing Te were irradiated with mono-energetic neutrons produced via the 3H(p,n)3He and 2H(d,n)3He reactions. The cross-sections were determined relative to the 197Au(n, γ)198Au and 115In(n,n')115m In standard cross sections. The activities of the products were measured using 60% lead-shielded HPGe detectors at TUNL's low background counting facility. The present results are compared with the evaluated data from TENDL-2012, ENDF/B-VII.1, JEFF-3.2 and JENDL-4.0, as well as with literature data.
NASA Astrophysics Data System (ADS)
Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2017-02-01
Hypoeutectic Al-19 wt. % Cu alloys were directionally solidified in cylindrical molds that featured an abrupt cross-section decrease 9.5 to 3.2 mm in diameter). Thermo-solutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-section before contraction. This alloy shows positive longitudinal macrosegregation near the contraction followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. The degree of thermo-solutal convection was compared to another study investigating directional solidification of Al-7 wt. % Si [1] in order to study the effect of solutal expansion coefficient on macrosegregation. An interesting change of the radial macrosegregation profile, attributable to the area-change-induced-shrinkage flow, was observed very close to the contraction. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification, the resulting steepling as well as axial and radial macrosegregation. The experimentally observed macrosegregation associated with the contraction during directional solidification was well predicted by the numerical simulations.
Solmaz, Ilker; Onal, Mehmet Bulent; Civelek, Erdinc; Kircelli, Atilla; Ongoru, Onder; Ugurel, Sahin; Erdogan, Ersin; Gonul, Engin
2011-01-01
the aim of this study was to assess and to compare the ability of intrathecal nicergoline and nimodipine in prevention of cerebral vasospasm in a rabbit model of subarachnoid hemorrhage (SAH). twenty male New Zealand white rabbits were allocated into four groups randomly. Subarachnoid hemorrhage was induced by injecting autologous blood into the cisterna magna. The treatment groups were as follows: (1) control [no SAH (n = 5)], (2) SAH only (n = 5), (3) SAH plus nimodipine (n = 5), and (4) SAH plus nicergoline (n = 5). there was a statistically significant difference between the mean basilar artery cross-sectional areas and the mean arterial wall thickness measurements of the control and SAH-only groups (p < 0.05). Basilar artery vessel diameter and luminal section areas in group 3 were significantly higher than in group 2 (p < 0.05). Basilar artery vessel diameter and basilar artery luminal section areas in group 4 were significantly higher than in group 2 (p < 0.05). There was no significant difference between basilar artery vessel diameter and basilar artery luminal section areas in group 3 and group 4. these findings demonstrate that intrathecal nicergoline has a vasodilatatory effect in an experimental model of SAH in rabbits but not more than that of nimodipine.
Sensitivity Study of Ice Crystal Optical Properties in the 874 GHz Submillimeter Band
NASA Technical Reports Server (NTRS)
Tang, Guanglin; Yang, Ping; Wu, Dong L.
2015-01-01
Testing of an 874 GHz submillimeter radiometer on meteorological satellites is being planned to improve ice water content retrievals. In this paper we study the optical properties of ice cloud particles in the 874 GHz band. The results show that the bulk scattering and absorption coefficients of an ensemble of ice cloud particles are sensitive to the particle shape and effective diameter, whereas the latter is also sensitive to temperature. The co-polar back scattering cross-section is not sensitive to particle shape, temperature, and the effective diameter in the range of 50200 m.
NASA Astrophysics Data System (ADS)
Constantinescu, E.; Oanta, E.; Panait, C.
2017-08-01
The paper presents an initial study concerning the form factors for shear, for a rectangular and for a circular cross section, being used an analytical method and a numerical study. The numerical study considers a division of the cross section in small areas and uses the power of the definitions in order to compute the according integrals. The accurate values of the form factors are increasing the accuracy of the displacements computed by the use of the strain energy methods. The knowledge resulted from this study will be used for several directions of development: calculus of the form factors for a ring-type cross section of variable ratio of the inner and outer diameters, calculus of the geometrical characteristics of an inclined circular segment and, using a Bool algebra that operates with geometrical shapes, for an inclined circular ring segment. These shapes may be used to analytically define the geometrical model of a complex composite section, i.e. a ship hull cross section. The according calculus relations are also useful for the development of customized design commands in CAD commercial applications. The paper is a result of the long run development of original computer based instruments in engineering of the authors.
Undercuts by Laser Shock Forming
NASA Astrophysics Data System (ADS)
Wielage, Hanna; Vollertsen, Frank
2011-05-01
In laser shock forming TEA-CO2-laser induced shock waves are used to form metal foils, such as aluminum or copper. The process utilizes an initiated plasma shock wave on the target surface, which leads to a forming of the foil. A challenge in forming technologies is the manufacturing of undercuts. By conventional forming methods these special forms are not feasible. In this article, it is presented that undercuts in the micro range can be produced by laser shock deep drawing. Different drawing die diameters, drawing die depths and the material aluminum in the thicknesses 20 and 50 μm were investigated. It will be presented that smaller die diameters facilitate undercuts compared to bigger die diameters. The phenomena can be explained by Barlow's formula. Furthermore, it is shown which maximum undercut depth at different die diameters can be reached. To this end, cross-sections of the different parameter combinations are displayed.
J.B. St. Clair
1993-01-01
Logarithmic regression equations were developed to predict component biomass and leaf area for an 18-yr-old genetic test of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) based on stem diameter or cross-sectional sapwood area. Equations did not differ among open-pollinated families in slope, but intercepts...
NASA Astrophysics Data System (ADS)
Roth, Steven; Oakes, Jessica; Shadden, Shawn
2015-11-01
Particle deposition in the human lungs can occur with every breathe. Airbourne particles can range from toxic constituents (e.g. tobacco smoke and air pollution) to aerosolized particles designed for drug treatment (e.g. insulin to treat diabetes). The effect of various realistic airway geometries on complex flow structures, and thus particle deposition sites, has yet to be extensively investigated using computational fluid dynamics (CFD). In this work, we created an image-based geometric airway model of the human lung and performed CFD simulations by employing multi-domain methods. Following the flow simulations, Lagrangian particle tracking was used to study the effect of cross-sectional shape on deposition sites in the conducting airways. From a single human lung model, the cross-sectional ellipticity (the ratio of major and minor diameters) of the left and right main bronchi was varied systematically from 2:1 to 1:1. The influence of the airway ellipticity on the surrounding flow field and particle deposition was determined.
Cylindrical acoustic levitator/concentrator having non-circular cross-section
Kaduchak, Gregory; Sinha, Dipen N.
2003-11-11
A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow piezoelectric crystal which has been formed with a cylindrical cross-section to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. By deforming the circular cross-section of the transducer, the acoustic force is concentrated along axial regions parallel to the axis of the transducer. The cylinder does not require accurate alignment of a resonant cavity. The concentrated regions of acoustic force cause particles in the fluid to concentrate within the regions of acoustic force for separation from the fluid.
Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method
NASA Astrophysics Data System (ADS)
Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi
2012-03-01
Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teichmann, Katharina; Marioara, Calin D.; Andersen, Sigmund J.
The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this wasmore » further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.« less
Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R
2017-10-01
Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.
Investigation of Sub-Sized Charpy Specimens
1945-08-06
requested the Physical Metallurgy Section to perform a few experiments with sub-sized Charpy spec- imens, so as to indicate whether they could be used to...SAZ 3130 No. 1033 Since the 1020 bpr stock was 2 inches in diameter, four longitu- dinal Charpy speciniens were machined from the cross section as...ihown in Pig- ure 1. In all cases, regardless of the size of the specimen, the center of the height of the Charpy specimen was 5/8 of an inch
Sonographic aorta/IVC cross-sectional area index for evaluation of dehydration in children.
Kwon, Hyuksool; Jung, Jae Yun; Lee, Jin Hee; Kwak, Young Ho; Kim, Do Kyun; Jung, Jin Hee; Chang, Ik Wan; Kim, Kyuseok
2016-09-01
Current studies have not found sufficient evidence to encourage the use of ultrasound for assessing dehydration in children. We introduce a new sonographic parameter, the "aorta/inferior vena cava (IVC) cross-sectional area index" (Ao/IVCA) measured just inferior to the xiphoid process, for the effective evaluation of dehydration in children. This is a prospective, observational study. We enrolled children who presented to the pediatric emergency department (PED) between May 2014 and January 2015. We measured the maximum diameter of the aorta from inner wall to inner wall, and the long and short axis diameters of IVC using a convex array transducer. Ao/IVCA was calculated and compared with aorta/IVC maximal diameter index (Ao/IVCD) and the clinical dehydration scale (CDS). A total of 34 children were enrolled. We found a statistically significant correlation between Ao/IVCA and CDS (R(2) = 0.30; P <.001). Ao/IVCD did not correlate significantly with CDS (R(2) = 0.08; P =.11). The ability of Ao/IVCA and Ao/IVCD to predict CDS ≥1 was assessed using the receiver operating characteristic analysis. The area under the receiver operating characteristic curve for Ao/IVCA was larger than that for Ao/IVCD (0.87 vs 0.75, P= .04). The cut-off value of Ao/IVCA that yielded the maximum value of Youden index was 1.81 (sensitivity: 72%, specificity: 89%). Ao/IVCA might be a promising index for the assessment of dehydration. The diagnostic performance of Ao/IVCA for dehydration might be higher than that of the method that uses the maximum diameter of IVC and the aorta. Copyright © 2016 Elsevier Inc. All rights reserved.
Bos, Michaël J; van Loon, Rick F H J; Heywood, Luke; Morse, Mitchell P; van Zundert, André A J
2016-08-01
Central venous access is indicated for transduction of central venous pressure and the administration of inotropes in the perioperative period. The right internal jugular vein (RIJV) is cannulated preferentially over the left internal jugular vein (LIJV). Cannulation of the LIJV is associated with a higher complication rate and a perceived increased level of difficulty when compared with cannulation of the RIJV. Possible explanations for the higher complication rate include a smaller diameter and more anterior position relative to the corresponding carotid artery (CA) of the LIJV compared with the RIJV. In this study, the RIJV and LIJV were examined in mechanically ventilated patients to determine the validity of these possible explanations. A prospective, nonrandomized cohort study. The operating room of a major teaching hospital. One hundred fifty-one patients scheduled for elective heart surgery. Ultrasound examination of the RIJV and LIJV at the level of the cricoid cartilage with a 12-MHz linear transducer in 151 anesthetized, mechanically ventilated patients in the Trendelenburg position. In 72% of patients, the RIJV was dominant over the LIJV. The diameter and cross-sectional area of the RIJV was larger than the LIJV (P < .001). An anterior position of the LIJV in relation to the left CA was detected more often when compared with the RIJV and right CA (15.1% vs 5.4%, P = .01). This study confirms the smaller diameter and increased frequency of anterior positioning relative to the corresponding CA of the LIJV when compared with the RIJV. This validates them as possible explanations for the higher complication rate of LIJV cannulation compared with RIJV cannulation. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Sakimoto, S. E. H.; Schnetzler, C.; Frawley, J. J.
1999-01-01
Impact craters on Mars have been used to provide fundamental insights into the properties of the martian crust, the role of volatiles, the relative age of the surface, and on the physics of impact cratering in the Solar System. Before the three-dimensional information provided by the Mars Orbiter Laser Altimeter (MOLA) instrument which is currently operating in Mars orbit aboard the Mars Global Surveyor (MGS), impact features were characterized morphologically using orbital images from Mariner 9 and Viking. Fresh-appearing craters were identified and measurements of their geometric properties were derived from various image-based methods. MOLA measurements can now provide a global sample of topographic cross-sections of martian impact features as small as approx. 2 km in diameter, to basin-scale features. We have previously examined MOLA cross-sections of Northern Hemisphere and North Polar Region impact features, but were unable to consider the global characteristics of these ubiquitous landforms. Here we present our preliminary assessment of the geometric properties of a globally-distributed sample of martian impact craters, most of which were sampled during the initial stages of the MGS mapping mission (i.e., the first 600 orbits). Our aim is to develop a framework for reconsidering theories concerning impact cratering in the martian environment. This first global analysis is focused upon topographically-fresh impact craters, defined here on the basis of MOLA topographic profiles that cross the central cavities of craters that can be observed in Viking-based MDIM global image mosaics. We have considered crater depths, rim heights, ejecta topologies, cross-sectional "shapes", and simple physical models for ejecta emplacement. To date (May, 1999), we have measured the geometric properties of over 1300 impact craters in the 2 to 350 km diameter size interval. A large fraction of these measured craters were sampled with cavity-center cross-sections during the first two months of MGS mapping. Many of these craters are included in Nadine Barlow's Catalogue of Martian Impact Craters, although we have treated simple craters smaller than about 7 km in greater detail than all previous investigations. Additional information is contained in the original extended abstract.
Benavente-Fernández, Isabel; Rodríguez-Zafra, Enrique; León-Martínez, Jesús; Jiménez-Gómez, Gema; Ruiz-González, Estefanía; Fernández-Colina, Rosalía Campuzano; Lechuga-Sancho, Alfonso M; Lubián-López, Simón P
2018-04-03
Purpose To establish cross-sectional and longitudinal reference values for cerebellar size in preterm infants with normal neuroimaging findings and normal 2-year neurodevelopmental outcome by using cranial ultrasonography (US). Materials and Methods This prospective study consecutively enrolled preterm infants admitted to a neonatal intensive care unit from June 2011 to June 2014 with a birth weight of less than or equal to 1500 g and/or gestational age (GA) of less than or equal to 32 weeks. They underwent weekly cranial US from birth to term-equivalent age and magnetic resonance (MR) imaging at term-equivalent age. The infants underwent neurodevelopmental assessments at age 2 years with Bayley Scales of Infant and Toddler Development, 3rd edition (BSID-III). Patients with adverse outcomes (death or abnormal neuroimaging findings and/or BSID-III score of <85) were excluded. The following measurements were performed: vermis height, craniocaudal diameter, superior width, inferior width, vermis area, and transcerebellar diameter. Statistical analyses were conducted by using multilevel analyses. Results A total of 137 infants with a mean GA at birth of 29.4 weeks (range, 25-32 weeks) were included. Transcerebellar diameter increased by 1.04 mm per week on average; vermis height and craniocaudal diameter increased by 0.55 mm and 0.59 mm, respectively. Superior vermian width increased by an average of 0.45 mm, whereas inferior vermian width increased by an average of 0.51 mm per week. Vermis area was found to increase by 0.22 cm 2 per week on average. The sex effect was significant (female lower than male) for vermis height (P < .05), craniocaudal diameter (P < .05), inferior vermian width (P <. 05), and vermis area (P <. 05). Conclusion Cross-sectional and longitudinal reference values were established for cerebellar growth in preterm infants, which may be included in routine cranial US. © RSNA, 2018 Online supplemental material is available for this article.
Weaver, Anne M; Wellenius, Gregory A; Wu, Wen-Chih; Hickson, DeMarc A; Kamalesh, Masoor; Wang, Yi
2017-03-08
Heart failure (HF) is a significant source of morbidity and mortality among African Americans. Ambient air pollution, including from traffic, is associated with HF, but the mechanisms remain unknown. The objectives of this study were to estimate the cross-sectional associations between residential distance to major roadways with markers of cardiac structure: left ventricular (LV) mass index, LV end-diastolic diameter, LV end-systolic diameter, and LV hypertrophy among African Americans. We studied baseline participants of the Jackson Heart Study (recruited 2000-2004), a prospective cohort of cardiovascular disease (CVD) among African Americans living in Jackson, Mississippi, USA. All cardiac measures were assessed from echocardiograms. We assessed the associations between residential distance to roads and cardiac structure indicators using multivariable linear regression or multivariable logistic regression, adjusting for potential confounders. Among 4826 participants, residential distance to road was <150 m for 103 participants, 150-299 m for 158, 300-999 for 1156, and ≥1000 m for 3409. Those who lived <150 m from a major road had mean 1.2 mm (95% CI 0.2, 2.1) greater LV diameter at end-systole compared to those who lived ≥1000 m. We did not observe statistically significant associations between distance to roads and LV mass index, LV end-diastolic diameter, or LV hypertrophy. Results did not materially change after additional adjustment for hypertension and diabetes or exclusion of those with CVD at baseline; results strengthened when modeling distance to A1 roads (such as interstate highways) as the exposure of interest. We found that residential distance to roads may be associated with LV end-systolic diameter, a marker of systolic dysfunction, in this cohort of African Americans, suggesting a potential mechanism by which exposure to traffic pollution increases the risk of HF.
Cross-sectional aspect ratio modulated electronic properties in Si/Ge core/shell nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Nuo; Lu, Ning; Yao, Yong-Xin
2013-02-28
Electronic structures of (4, n) and (m, 4) (the NW has m layers parallel to the {1 1 1} facet and n layers parallel to {1 1 0}) Si/Ge core/shell nanowires (NWs) along the [1 1 2] direction with cross-sectional aspect ratio (m/n) from 0.36 to 2.25 are studied by first-principles calculations. An indirect to direct band gap transition is observed as m/n decreases, and the critical values of m/n and diameter for the transition are also estimated. The size of the band gap also depends on the aspect ratio. These results suggest that m/n plays an important role inmore » modulating the electronic properties of the NWs.« less
Modified floating-zone growth of organic single crystals
NASA Astrophysics Data System (ADS)
Kou, S.; Chen, C. P.
1994-04-01
For organic materials floating-zone crystal growth is superior to other melt growth processes in two significant respects: (1) the absence of crucible-induced mechanical damage and (2) minimum heating-induced chemical degradation. Due to the rather low surface tension of organic melts, however, floating-zone crystal growth under normal gravity has not been possible so far but microgravity is ideal for such a purpose. With the help of a modified floating-zone technique, organic single crystals of small cross-sections were test grown first under normal gravity. These small crystals were round and rectangular single crystals of benzil and salol, up to about 7 cm long and 6 mm in diameter or 9 mm × 3 mm in cross-section.
Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata
Han, C. J.
2015-01-01
This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines. PMID:26103460
Montalescot, G; Thomas, D; Drobinski, G; Evans, J I; Vicaut, E; Chatellier, G; Whyte, R I; Busquet, P; Bejean-Lebuisson, A; Grosgogeat, Y
1989-07-01
Mortality, morbidity, quality of life, and left ventricular (LV) function were evaluated in 49 patients after aortic valve replacement with the St. Jude prosthesis. Total follow-up was 2577 patient-months; survivors were followed-up for 4 to 7 years by clinical examination and echocardiography. The actuarial survival rate at 6 years was 79.6%, and there were no valve-related deaths. The linearized rates for thromboembolism and hemorrhage were 0.93% and 3.26% per patient-year, respectively. In 34% of the survivors the quality of life was poor. In the first three postoperative months, patients with aortic stenosis (n = 12) had a significant decrease in the muscle cross-sectional area (p less than 0.01) and patients with aortic regurgitation (n = 11) had decreases in both LV end-diastolic diameter (p less than 0.05) and cross-sectional area (p less than 0.001). All of these results were maintained at 5 years without modification of LV systolic function. Despite the good overall results, six patients deteriorated and had major LV dilatation. Multivariate logistic regression analysis identified two independent preoperative variables associated with a poor outcome defined as death of LV dysfunction (p less than 0.05): age and end-diastolic diameter. Thus meticulous follow-up showed a high incidence of hemorrhage and a poor quality of life in many of the survivors. It was concluded that in high-risk patients (age and end-diastolic diameter) surgery should probably be considered earlier.
Seifi, Safora; Feizi, Farideh; Khafri, Thoraya; Aram, Mehrdad
2013-03-01
The present study aimed at assessment and histomorphometric analysis of intratumoral and peritumoral (cystic) blood vessels in odontogenic lesions and their pattern on their clinical behavior by immunohistochemistry and morphometry. In a descriptive and analytical cross-sectional study, 45 paraffin blocks of ameloblastoma, odontogenic keratocyst, and follicular cyst were selected and stained immunohistochemically for CD34. In each slide, images of 3 microscopic fields with the highest microvessel density in intratumoral and peritumoral (cystic) areas were captured at 40× magnification with attached camera system. Inner vascular diameter (IVD) and outer vascular diameter (OVD), cross-sectional area (CSA), and the wall thickness (WT) of the vessels were measured with Motic Plus 2 software. The vascular pattern in odontogenic lesions was analyzed. Outer vascular diameter, IVD, and CSA of the vessels in peritumoral (cystic) areas were greater in ameloblastoma than keratocyst (P = 0.001) and follicular cyst (P < 0.001). However, WT of the blood vessels did not show any significant statistical difference among the 3 odontogenic lesions (P = 0.05). The differences in OVD, IVD (P = 0.8), CSA (P = 0.6), and WT (P = 0.4) of the blood vessels in intratumoral (cystic) areas were not statistically significant. The blood vessel pattern was circumferential in ameloblastoma, and it was directional in keratocyst and follicular cyst. Morphometric specifications of blood vessels (IVD, OVD, CSA) and their pattern in peritumoral (cystic) areas may influence the aggressive clinical behavior of ameloblastoma in comparison with keratocyst and follicular cyst.
Summary Technical Report of Division 6, NDRC. Volume 20. Fluid Dynamics
1946-01-01
nest of axial channels 10H in. long and of triangular cross section, 1 in. on a side. This design is very easy to build out of light galvanised iron...transmission. To assist in this matter, two corrugated galvanised steel storage tanks were provided for the dean water. Each is 14 ft in diameter by 19 ft
24 CFR 3280.611 - Vents and venting.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Size of vent piping—(1) Main vent. The drain piping for each toilet shall be vented by a 11/2 inch... venting cross section of a 11/2 inch diameter vent, connected to the toilet drain by one of the following... toilet drain within the distance allowed in § 3280.611(c)(5), for 3-inch trap arms undiminished in size...
24 CFR 3280.611 - Vents and venting.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Size of vent piping—(1) Main vent. The drain piping for each toilet shall be vented by a 11/2 inch... venting cross section of a 11/2 inch diameter vent, connected to the toilet drain by one of the following... toilet drain within the distance allowed in § 3280.611(c)(5), for 3-inch trap arms undiminished in size...
ERIC Educational Resources Information Center
Jerrard, Richard P.; Wetzel, John E.
2008-01-01
A stopper is called "universal" if it can be used to plug pipes whose cross-sections are a circle, a square, and an isosceles triangle, with the diameter of the circle, the side of the square, and the base and altitude of the triangle all equal. Echoing the well-known result for equal cubes that is attributed to Prince Rupert, we show that it is…
NASA Astrophysics Data System (ADS)
Leconte, Pierre; Bernard, David
2017-09-01
EXCALIBUR is an integral transmission experiment based on the fast neutron source produced by the bare highly enriched fast burst reactor CALIBAN, located in CEA/DAM Valduc (France). Two experimental campaigns have been performed, one using a sphere of diameter 17 cm and one using two cylinders of 17 cm diameter 9 cm height, both made of metallic Uranium 238. A set of 15 different dosimeters with specific threshold energies have been employed to provide information on the neutron flux attenuation as a function of incident energy. Measurements uncertainties are typically in the range of 0.5-3% (1σ). The analysis of these experiments is performed with the TRIPOLI4 continuous energy Monte Carlo code. A calculation benchmark with validated simplifications is defined in order to improve the statistical convergence under 2%. Various 238U evaluations have been tested: JEFF-3.1.1, ENDF/B-VII.1 and the IB36 evaluation from IAEA. A sensitivity analysis is presented to identify the contribution of each reaction cross section to the integral transmission rate. This feedback may be of interest for the international effort on 238U, through the CIELO project.
New protocol for synthesis of new nanomaterials with continuous 3D networks
NASA Astrophysics Data System (ADS)
Wang, Haiwang; Zhu, Ying; Wei, Xinfang; Chen, Huanhuan; Wang, Ruijie; Zhang, Dong; Song, Huaihe; Song, Shengju
2014-05-01
Nanostructured materials are attractive to researchers because of their unique optical, magnetic, thermodynamic, electrical, mechanical, and chemical properties. Controlling the morphology of nanomaterials could provide structural systems for a wide range of technologies. As a result, the development of nanofabrication techniques that are convenient and offer design flexibility is the subject of many studies. In order to progress beyond the conventional morphologies, we have turned to hydrogels, which can serve as organic templates for nanoscale objects with continuous microstructures. Transmission electron microscopy showed that the obtained nanonetwork had a continuous microstructure, which was several microns in length and width, with a cross-sectional diameter of 5-10 nm synthesized from a 35-g hexamethylenetetramine solution and a 1.5 g Zn(NO3)2 solution, and the cross-sectional diameter can be adjusted from 5 to 200 nm by controlling the concentration of the Zn(NO3)2 solution. Our results also showed that the nanostructures based on a superabsorbent polymer template could be controlled easily in terms of size and morphology by changing the concentration of the reaction solution. This protocol could be easily extended to synthesize a variety of nanostructured materials with novel morphologies.
NASA Astrophysics Data System (ADS)
Susanto, Sandi; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi
2018-02-01
Cross-flow wind turbine is one of the alternative energy harvester for low wind speeds area. Several factors that influence the power coefficient of cross-flow wind turbine are the diameter ratio of blades and the number of blades. The aim of this study is to find out the influence of the number of blades and the diameter ratio on the performance of cross-flow wind turbine and to find out the best configuration between number of blades and diameter ratio of the turbine. The experimental test were conducted under several variation including diameter ratio between outer and inner diameter of the turbine and number of blades. The variation of turbine diameter ratio between inner and outer diameter consisted of 0.58, 0.63, 0.68 and 0.73 while the variations of the number of blades used was 16, 20 and 24. The experimental test were conducted under certain wind speed which are 3m/s until 4 m/s. The result showed that the configurations between 0.68 diameter ratio and 20 blade numbers is the best configurations that has power coefficient of 0.049 and moment coefficient of 0.185.
Analysis of Femoral Components of Cemented Total Hip Arthroplasty
NASA Astrophysics Data System (ADS)
Singh, Shantanu; Harsha, A. P.
2016-10-01
There have been continuous on-going revisions in design of prosthesis in Total Hip Arthroplasty (THA) to improve the endurance of hip replacement. In the present work, Finite Element Analysis was performed on cemented THA with CoCrMo trapezoidal, CoCrMo circular, Ti6Al4V trapezoidal and Ti6Al4V circular stem. It was observed that cross section and material of femoral stem proved to be critical parameters for stress distribution in femoral components, distribution of interfacial stress and micro movements. In the first part of analysis, designs were investigated for micro movements and stress developed, for different stem materials. Later part of the analysis focused on investigations with respect to different stem cross sections. Femoral stem made of Titanium alloy (Ti6Al4V) resulted in larger debonding of stem at cement-stem interface and increased stress within the cement mantle in contrast to chromium alloy (CoCrMo) stem. Thus, CoCrMo proved to be a better choice for cemented THA. Comparison between CoCrMo femoral stem of trapezium and circular cross section showed that trapezoidal stem experiences lesser sliding and debonding at interfaces than circular cross section stem. Also, trapezium cross section generated lower peak stress in femoral stem and cortical femur. In present study, femur head with diameter of 36 mm was considered for the analysis in order to avoid dislocation of the stem. Also, metallic femur head was coupled with cross linked polyethylene liner as it experiences negligible wear compared to conventional polyethylene liner and unlike metallic liner it is non carcinogenic.
Effect of Hindlimb Unloading on Rat Soleus Fiber Force, Stiffness, and Calcium Sensitivity
NASA Technical Reports Server (NTRS)
McDonald Kerry S.; Fitts, Robert H.
1995-01-01
The purpose of this study was to examine the time course of change in soleus muscle fiber peak force (N), tension (P(sub 0), kN/sq m), elastic modulus (E(sub 0)), and force-pCa and stiffness - pCa relationships. After 1, 2, or 3 wk of Hindlimb Unloading (HU), single fibers were isolated and placed between a motor arm and a transducer, and fiber diameter, peak absolute force, P(sub 0), E(sub 0), and force-pCa and stiffness-pca relationships were characterized. One week of HU resulted in a significant reduction in fiber diameter (68 +/- 2 vs. 57 +/- 1 micrometer), force (3.59 +/- 0.15 vs. 2.19 +/- 0.12 x 10(exp -4) N), P(sub 0) (102 +/- 4 vs. 85 +/- 2 kN/sq m), and E(sub 0) (1.96 +/- 0.12 vs. 1.37 +/- 0.13 X 10(exp 7) N/sq m) and 2 wk of HU caused a further decline in fiber diameter (45 +/- 1 micrometer), force (1.31 +/- 0.06 x 10(exp -4) N), and E(sub 0)(0.96 +/- 0.09 x 10(exp 7) N/sq m). Although the mean fiber diameter and absolute force continued to decline through 3 wk of HU, P(sub 0) recovered to values not significantly different from control. The P(sub 0)/E(sub 0) ratio was significantly increased after 1 (5.5 +/- 0.3 to 7.1 +/- 0.6), 2, and 3 wk of HU, and the 2-wk (9.5 +/- 0.4) and 3-wk (9.4 +/- 0.8) values were significantly greater than the 1-wk values. The force-pCa and stiffness-pCa curves were shifted right- ward after 1, 2, and 3 wk of HU. At 1 wk of HU, the Ca(2+) sensitivity of isometric force, assessed by Ca(2+) concentration required for half-maximal force, was increased from the control value of 1.83 +/- 0.12 to 2.30 +/- 0.10 micrometers. In conclusion, after HU, the decrease in soleus fiber P(sub 0) can be explained by a reduction in the number of myofibrillar cross bridges per cross-sectional area. Our working hypothesis is that the loss of contractile protein reduces the number of cross bridges per cross-sectional area and increases the filament lattice spacing. The increased spacing reduces cross-bridge force and stiffness, but P(sub 0)/E(sub 0) increases because of a quantitatively greater effect on stiffness.
Aspect-ratio dependence of magnetization reversal in cylindrical ferromagnetic nanowires
NASA Astrophysics Data System (ADS)
Sultan, Musaab S.; Atkinson, Del
2016-05-01
The magnetization reversal behavior in isolated cylindrical and square cross-section Ni81Fe19 nanowires was systematically studied as a function of nanowire cross-section dimensions from 10 up to 200 nm using micromagnetic simulations. This approach provides access to the switching field, remanence ratio and most significantly the magnetization structures during reversal, which allows the evolution of magnetization processes to be studied with scaling of the cross-sectional dimensions. The dimensional trends in reversal behavior for both square and circular cross-section were comparable throughout the range of dimensions studied. The thinnest nanowires showed simple square switching and 100% remanence. With increasing diameter the switching field reduces and above 40 nm the reversal behavior shows an increasing rotational component prior to sharp switching of the magnetization. The magnitude of the reversible component increases with increasing dimensions up to 150 nm, above which the magnetization reversal process is more complicated and the hysteresis loops are no longer bistable. The micromagnetic structures evolve from simple uniform parallel single domain states in the thinnest wires through the formation of vortex-like end states in thicker wires to complex multidomain structures during the reversal of the thickest wires. In the later cases the reversal is not simple curling-like behavior, although the angular switching field dependence was comparable with curling.
Inflatable Tubular Structures Rigidized with Foams
NASA Technical Reports Server (NTRS)
Tinker, Michael L.; Schnell, Andrew R.
2010-01-01
Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment.
NASA Astrophysics Data System (ADS)
Ozen, Murat; Guler, Murat
2014-02-01
Aggregate gradation is one of the key design parameters affecting the workability and strength properties of concrete mixtures. Estimating aggregate gradation from hardened concrete samples can offer valuable insights into the quality of mixtures in terms of the degree of segregation and the amount of deviation from the specified gradation limits. In this study, a methodology is introduced to determine the particle size distribution of aggregates from 2D cross sectional images of concrete samples. The samples used in the study were fabricated from six mix designs by varying the aggregate gradation, aggregate source and maximum aggregate size with five replicates of each design combination. Each sample was cut into three pieces using a diamond saw and then scanned to obtain the cross sectional images using a desktop flatbed scanner. An algorithm is proposed to determine the optimum threshold for the image analysis of the cross sections. A procedure was also suggested to determine a suitable particle shape parameter to be used in the analysis of aggregate size distribution within each cross section. Results of analyses indicated that the optimum threshold hence the pixel distribution functions may be different even for the cross sections of an identical concrete sample. Besides, the maximum ferret diameter is the most suitable shape parameter to estimate the size distribution of aggregates when computed based on the diagonal sieve opening. The outcome of this study can be of practical value for the practitioners to evaluate concrete in terms of the degree of segregation and the bounds of mixture's gradation achieved during manufacturing.
Vijarnsorn, Chodchanok; Rutledge, Jennifer M; Tham, Edythe B; Coe, James Y; Quinonez, Luis; Patton, David J; Noga, Michelle
2014-02-01
Children with right ventricular outflow tract obstructive (RVOTO) lesions require precise quantification of pulmonary artery (PA) size for proper management of branch PA stenosis. We aimed to determine which cardiovascular magnetic resonance (CMR) sequences and planes correlated best with cardiac catheterization and surgical measurements of branch PA size. Fifty-five children with RVOTO lesions and biventricular circulation underwent CMR prior to; either cardiac catheterization (n = 30) or surgery (n = 25) within a 6 month time frame. CMR sequences included axial black blood, axial, coronal oblique and sagittal oblique cine balanced steady-state free precession (bSSFP), and contrast-enhanced magnetic resonance angiography (MRA) with multiplanar reformatting in axial, coronal oblique, sagittal oblique, and cross-sectional planes. Maximal branch PA and stenosis (if present) diameter were measured. Comparisons of PA size on CMR were made to reference methods: (1) catheterization measurements performed in the anteroposterior plane at maximal expansion, and (2) surgical measurement obtained from a maximal diameter sound which could pass through the lumen. The mean differences (Δ) and intra class correlation (ICC) were used to determine agreement between different modalities. CMR branch PA measurements were compared to the corresponding cardiac catheterization measurements in 30 children (7.6 ± 5.6 years). Reformatted MRA showed better agreement for branch PA measurement (ICC > 0.8) than black blood (ICC 0.4-0.6) and cine sequences (ICC 0.6-0.8). Coronal oblique MRA and maximal cross sectional MRA provided the best correlation of right PA (RPA) size with ICC of 0.9 (Δ -0.1 ± 2.1 mm and Δ 0.5 ± 2.1 mm). Maximal cross sectional MRA and sagittal oblique MRA provided the best correlate of left PA (LPA) size (Δ 0.1 ± 2.4 and Δ -0.7 ± 2.4 mm). For stenoses, the best correlations were from coronal oblique MRA of right pulmonary artery (RPA) (Δ -0.2 ± 0.8 mm, ICC 0.9) and sagittal oblique MRA of left pulmonary artery (LPA) (Δ 0.2 ± 1.1 mm, ICC 0.9). CMR PA measurements were compared to surgical measurements in 25 children (5.4 ± 4.8 years). All MRI sequences demonstrated good agreement (ICC > 0.8) with the best (ICC 0.9) from axial cine bSSFP for both RPA and LPA. Maximal cross sectional and angulated oblique reformatted MRA provide the best correlation to catheterization for measurement of branch PA's and stenosis diameter. This is likely due to similar angiographic methods based on reformatting techniques that transect the central axis of the arteries. Axial cine bSSFP CMR was the best surgically measured correlate of PA branch size due to this being a measure of stretched diameter. Knowledge of these differences provides more precise PA measurements and may aid catheter or surgical interventions for RVOTO lesions.
NASA Astrophysics Data System (ADS)
Lothet, Emilie H.; Shaw, Kendrick M.; Horn, Charles C.; Lu, Hui; Wang, Yves T.; Jansen, E. Duco; Chiel, Hillel J.; Jenkins, Michael W.
2016-03-01
Sensory information is conveyed to the central nervous system via small diameter unmyelinated fibers. In general, smaller diameter axons have slower conduction velocities. Selective control of such fibers could create new clinical treatments for chronic pain, nausea in response to chemo-therapeutic agents, or hypertension. Electrical stimulation can control axonal activity, but induced axonal current is proportional to cross-sectional area, so that large diameter fibers are affected first. Physiologically, however, synaptic inputs generally affect small diameter fibers before large diameter fibers (the size principle). A more physiological modality that first affected small diameter fibers could have fewer side effects (e.g., not recruiting motor axons). A novel mathematical analysis of the cable equation demonstrates that the minimum length along the axon for inducing block scales with the square root of axon diameter. This implies that the minimum length along an axon for inhibition will scale as the square root of axon diameter, so that lower radiant exposures of infrared light will selectively affect small diameter, slower conducting fibers before those of large diameter. This prediction was tested in identified neurons from the marine mollusk Aplysia californica. Radiant exposure to block a neuron with a slower conduction velocity (B43) was consistently lower than that needed to block a faster conduction velocity neuron (B3). Furthermore, in the vagus nerve of the musk shrew, lower radiant exposure blocked slow conducting fibers before blocking faster conducting fibers. Infrared light can selectively control smaller diameter fibers, suggesting many novel clinical treatments.
NASA Astrophysics Data System (ADS)
Wosnik, Martin; Dufresne, Nathaniel
2013-11-01
An analytical and experimental investigation of the turbulent axisymmetric swirling wake was carried out. An equilibrium similarity theory was derived that obtained scaling functions from conditions for similarity from the equations of motion, leading to a new scaling function for the decay of the swirling velocity component. Axial and azimuthal (swirl) velocity fields were measured in the wake of a single 3-bladed model wind turbine with rotor diameter of 0.91 m, up to 20 diameters downstream, using X-wire constant temperature hot-wire anemometry. The turbine was positioned in the free stream, near the entrance of the UNH Flow Physics Facility, which has a test section of 6m × 2.7m cross section and 72m length. Measurements were conducted at different rotor loading conditions with blade tip-speed ratios up to 2.8. At U∞ = 7 m/s, the Reynolds number based on turbine diameter was approximately 5 ×105 . Both mean velocity deficit and mean swirl were found to persist beyond 20 diameters downstream. First evidence for a new scaling function for the mean swirl, Wmax ~Uo3 / 2 ~x-1 was found. The similarity solution thus predicts that in the axisymmetric swirling wake mean swirl decays faster with x-1 than mean velocity deficit with x - 2 / 3.
Heat Transfer in Conical Corner and Short Superelliptical Transition Ducts
NASA Technical Reports Server (NTRS)
Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven
2008-01-01
Local surface heat transfer measurements were experimentally mapped using a transient liquid-crystal heat-transfer technique on the surface of two circular-to-rectangular transition ducts. One has a transition cross section defined by conical corners (Duct 1) and the other by an elliptical equation with changing coefficients (Duct 2). Duct 1 has a length-to-diameter ratio of 0.75 and an exit plane aspect ratio of 1.5. Duct 2 has a length-to-diameter ratio of 1.0 and an exit plane aspect ratio of 2.9. Test results are reported for various inlet-diameter-based Reynolds numbers ranging from 0.45 106 to 2.39 106 and two freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.
O-Ring Installation for Underwater Components and Applications
1982-04-15
cure is effected and the heat source removed. AGING -- To undergo changes in physical properties with age or lapse of time. AIR CHECKS -- Surface...the use of heat and pressure, resulting in greatly increased strength and elasticity of rubber -like materials. VULCANIZING AGENT -- A material that...Cross Section Dia -- Diameter EP, EPM, EPDM -- Ethylene-Propylene Rubber F or ’F -- Degrees Fahrenheit FED -- Federal Specification FPM -- Fluorocarbon
Removing the tree-ring width biological trend using expected basal area increment
Franco Biondi; Fares Qeadan
2008-01-01
One of the main elements of dendrochronological standardization is the removal of the biological trend, i.e., the progressive decline of ring width along a cross-sectional radius that is mostly caused by the corresponding increase in stem diameter over time. A very common option for removing this biological trend is to fit a modified negative exponential curve to the...
Fortune, Brad; Reynaud, Juan; Cull, Grant; Burgoyne, Claude F.; Wang, Lin
2014-01-01
Purpose To evaluate the effect of age on optic nerve axon counts, spectral-domain optical coherence tomography (SDOCT) scan quality, and peripapillary retinal nerve fiber layer thickness (RNFLT) measurements in healthy monkey eyes. Methods In total, 83 healthy rhesus monkeys were included in this study (age range: 1.2–26.7 years). Peripapillary RNFLT was measured by SDOCT. An automated algorithm was used to count 100% of the axons and measure their cross-sectional area in postmortem optic nerve tissue samples (N = 46). Simulation experiments were done to determine the effects of optical changes on measurements of RNFLT. An objective, fully-automated method was used to measure the diameter of the major blood vessel profiles within each SDOCT B-scan. Results Peripapillary RNFLT was negatively correlated with age in cross-sectional analysis (P < 0.01). The best-fitting linear model was RNFLT(μm) = −0.40 × age(years) + 104.5 μm (R2 = 0.1, P < 0.01). Age had very little influence on optic nerve axon count; the result of the best-fit linear model was axon count = −1364 × Age(years) + 1,210,284 (R2 < 0.01, P = 0.74). Older eyes lost the smallest diameter axons and/or axons had an increased diameter in the optic nerve of older animals. There was an inverse correlation between age and SDOCT scan quality (R = −0.65, P < 0.0001). Simulation experiments revealed that approximately 17% of the apparent cross-sectional rate of RNFLT loss is due to reduced scan quality associated with optical changes of the aging eye. Another 12% was due to thinning of the major blood vessels. Conclusions RNFLT declines by 4 μm per decade in healthy rhesus monkey eyes. This rate is approximately three times faster than loss of optic nerve axons. Approximately one-half of this difference is explained by optical degradation of the aging eye reducing SDOCT scan quality and thinning of the major blood vessels. Translational Relevance Current models used to predict retinal ganglion cell losses should be reconsidered. PMID:24932430
Noponen, Eero; Tamminen, Aleksi; Vaaja, Matti
2007-07-10
A design formalism is presented for transmission-type phase holograms for use in a submillimeter-wave compact radar-cross-section (RCS) measurement range. The design method is based on rigorous electromagnetic grating theory combined with conventional hologram synthesis. Hologram structures consisting of a curved groove pattern on a 320 mmx280 mm Teflon plate are designed to transform an incoming spherical wave at 650 GHz into an output wave generating a 100 mm diameter planar field region (quiet zone) at a distance of 1 m. The reconstructed quiet-zone field is evaluated by a numerical simulation method. The uniformity of the quiet-zone field is further improved by reoptimizing the goal field. Measurement results are given for a test hologram fabricated on Teflon.
NASA Astrophysics Data System (ADS)
Praena, J.; Ferrer, F. J.; Vollenberg, W.; Sabaté-Gilarte, M.; Fernández, B.; García-López, J.; Porras, I.; Quesada, J. M.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Barbagallo, M.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Dietz, M.; Domingo-Pardo, C.; Dressler, R.; Durán, I.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Furman, V.; Göbel, K.; Gómez-Hornillos, M. B.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Heftrich, T.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Katabuchi, T.; Ketlerov, V.; Khryachkov, V.; Kivel, N.; Koehler, P.; Kokkoris, M.; Kroll, J.; Krtička, M.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Lerendegui-Marco, J.; Losito, R.; Mallick, A.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A. J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rubbia, C.; Ryan, J. A.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiss, C.; Wright, T.; Žugec, P.; n TOF Collaboration
2018-05-01
Thin 33S samples for the study of the 33S(n, α)30Si cross-section at the n_TOF facility at CERN were made by thermal evaporation of 33S powder onto a dedicated substrate made of kapton covered with thin layers of copper, chromium and titanium. This method has provided for the first time bare sulfur samples a few centimeters in diameter. The samples have shown an excellent adherence with no mass loss after few years and no sublimation in vacuum at room temperature. The determination of the mass thickness of 33S has been performed by means of Rutherford backscattering spectrometry. The samples have been successfully tested under neutron irradiation.
Moving Bed Granular Bed Filter Development Program. Topical report, September 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, J.C.; Prudhomme, J.W.; Wilson, K.W.
1994-09-01
Five test arrangements have been designed to support the Granular Bed Filter Development Program as defined in the Test Plan. The first arrangement is a 3.6 ft. diameter half filter, with a glass covering along the cross section to allow visual examination of the granular alumina material passing through the filter. The second test arrangement is a 3.6 ft diameter full size filter having refractory lining to simulate actual surface roughness conditions. The third test arrangement will examine filter geometry scale up by testing a 6.0 ft. diameter full size filter. The fourth Test Arrangement consists of a small 12more » inch diameter fluidizer to measure the minimum fluidization velocity of the 7 m (approx. size) alumina material to be used in the filter assemblies. The last Test Unit is used to evaluation relative abrasion characteristics of potential refractory and ceramic materials to be installed in high abrasion areas in the pneumatic transport piping.« less
Influence of SMAT Parameters on Microstructural and Mechanical Properties of Al-Mg-Si Alloy AA 6061
NASA Astrophysics Data System (ADS)
Anand Kumar, S.; Satish Kumar, P.; Ganesh Sundara Raman, S.; Sankara Narayanan, T. S. N.
2017-04-01
In the present work, the influence of surface mechanical attrition treatment (SMAT) parameters on the microstructural and mechanical properties of an aluminum-magnesium-silicon alloy AA 6061 was studied using design of experiment technique. Balls of three different diameters were used, and SMAT was done for three different durations. The microstructural features of the surface layer fabricated by SMAT were characterized by cross-sectional scanning electron microscopic observations, x-ray diffraction technique and transmission electron microscopy. The microindentation hardness, nanoindentation hardness and surface roughness were determined. Due to SMAT, nanocrystallites formed on the surface and near-surface regions, and hardness and surface roughness increased. The ball diameter was the most influencing SMAT parameter compared to the treatment duration. However, interaction between ball diameter and treatment duration could not be ignored. Regression equations were developed relating the process parameters to the surface properties. The ball diameter and treatment duration could thus be properly selected as per the required values of roughness and/or the hardness.
NASA Astrophysics Data System (ADS)
Lim, Sangyeob; Shin, Chansun; Heo, Jungwoo; Kim, Sangeun; Jin, Hyung-Ha; Kwon, Junhyun; Guim, Hwanuk; Jang, Dongchan
2018-05-01
HT9, a ferritic/martensitic steel, is a candidate structural material for next-generation advanced reactors. Its microstructure is a typical tempered martensite showing a hierarchical lath-block-and-packet structure. We investigate the specimen size effect and strengthening contribution of various microstructural boundaries manifested in the compression tests of micropillars with diameters ranging from 0.5 to 17 μm. It is observed that micropillars with diameters larger than 3 μm show uniform deformation and plastic flow curves comparable to the bulk flow curve. Localized deformation by a few pronounced slip bands occurs in micropillars with diameters smaller than 1 μm, and the yield strength is reduced. Careful examination of the sizes of the microstructural features and cross-sections of the micropillars shows that the block boundaries are the most effective strengthening boundaries in tempered martensitic microstructure. The bulk mechanical properties of HT9 can be evaluated from a micropillar with diameter as low as 3 μm.
C$sup 12$(n,p) B$sup 12$ CROSS SECTION FOR 14.9- TO 17.5-MEV NEUTRONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreger, W.E.; Kern, B.D.
1958-09-23
The cross section for the C/sup 12/(n,p)B/sup 12/ reaction has been measured for 14.9- to 17.5-Mev nuetrons. The neutrons were obtained from the T(d,n)He/sup 4/ reaction and their flux density was determined by counting the recoil alpha particles or by counting the neutrons directly with a Li/sup 6/I(Eu) scintillation counter. A cylindrical plastic scintillator 5 inches in diameter and 3 inches in length served as the carbon-containing target and permitted the counting of the B/sup 12/ decay beta rays in nine consecutive 7-msec intervals during the beam-off period or a pulsed neutron beam cycle. The cross section rises from slightlymore » above the reaction threshold of 13.6-Mev to a value of 29.09 plus or minus 4.36 millibarns at 17.5 Mev. The B/sup 12/ beta decay half life has been redetermined as 18.87 plus or minus 0.50 milliseconds. (auth)« less
Magnetic nanorings and manipulation of nanowires
NASA Astrophysics Data System (ADS)
Chien, C. L.
2006-03-01
The properties of nanoscale entities, such as nanorings and nanowires, and the response of such entities to external fields are dictated by their geometrical shapes and sizes, which can be manipulated by fabrication. We have developed a method for fabricating a large number of nanorings (10^10) of different sizes in the range of 100 nm and ring cross sections. During magnetic reversal, both the vortex state and the rotating onion state appear with different proportions, which depend on the ring diameter, ring cross section, and the profile of the ring cross section. In the case of nanowires in suspension, the large aspect ratio of the nanowires can be exploited for manipulation despite extremely small Reynolds numbers of 10-5. Using AC electric field applied to microelectrodes, both magnetic and non-magnetic nanowires can be efficiently assembled into desired patterns. We also demonstrate rotation of nanowires with precisely controlled rotation speed and chirality, as well as an electrically driven nanowire micromotor a few in size. In collaboration with F. Q. Zhu, D. L. Fan, O. Tchernyshyov, R. C. Cammarata (Johns Hopkins University) and X. C. Zhu and J. G. Zhu (Carnegie-Mellon University).
NASA Technical Reports Server (NTRS)
Beck, S. M.
1975-01-01
A two-parameter scintillation spectrometer system developed and used to obtain proton, deuteron, and triton double differential cross sections from materials under 558-MeV-proton irradiation is described. The system measures both the time of flight of secondary particles over a 488-cm flight path and the energy deposited in a scintillator, 12.7 cm in diameter and 30.48 cm long. The time resolution of the system is 0.39 nsec. The calculated energy resolution based on this time resolution varies with energy from 1.6 precent to 7.75 percent for 50- and 558-MeV protons. Various systematic and statistical errors are evaluated, and the double differential cross sections for secondary proton and deutron production at 20 deg from a 2.35 g/sq cm thick beryllium target are shown as an example of the results obtainable with this system. The uncertainly in the cross sections for secondary protons varies with particle energy from approximately + or - 9 percent at 50 MeV to approximately + or - 11 percent at 558 MeV.
Duadi, Hamootal; Fixler, Dror; Popovtzer, Rachela
2013-11-01
Most methods for measuring light-tissue interactions focus on the volume reflectance while very few measure the transmission. We investigate both diffusion reflection and diffuse transmission at all exit angles to receive the full scattering profile. We also investigate the influence of blood vessel diameter on the scattering profile of a circular tissue. The photon propagation path at a wavelength of 850 nm is calculated from the absorption and scattering constants via Monte Carlo simulation. Several simulations are performed where a different vessel diameter and location were chosen but the blood volume was kept constant. The fraction of photons exiting the tissue at several central angles is presented for each vessel diameter. The main result is that there is a central angle that below which the photon transmission decreased for lower vessel diameters while above this angle the opposite occurred. We find this central angle to be 135 deg for a two-dimensional 10-mm diameter circular tissue cross-section containing blood vessels. These findings can be useful for monitoring blood perfusion and oxygen delivery in the ear lobe and pinched tissues. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Williams, Jackie M.; Krebs, Ingar A.; Riedesel, Elizabeth A.; Zhao, Qianqian
2015-01-01
Tracheal collapse is a progressive airway disease that can ultimately result in complete airway obstruction. Intraluminal tracheal stents are a minimally invasive and viable treatment for tracheal collapse once the disease becomes refractory to medical management. Intraluminal stent size is chosen based on the maximum measured tracheal diameter during maximum inflation. The purpose of this prospective, cross-sectional study was to compare tracheal lumen diameter measurements and subsequent selected stent size using both fluoroscopy and CT and to evaluate inter- and intraobserver variability of the measurements. Seventeen healthy Beagles were anesthetized and imaged with fluoroscopy and CT with positive pressure ventilation to 20 cm H2O. Fluoroscopic and CT maximum tracheal diameters were measured by 3 readers. Three individual measurements were made at 8 pre-determined tracheal sites for dorsoventral (height) and laterolateral (width) dimensions. Tracheal diameters and stent sizes (based on the maximum tracheal diameter + 10%) were analyzed using a linear mixed model. CT tracheal lumen diameters were larger compared to fluoroscopy at all locations. When comparing modalities, fluoroscopic and CT stent sizes were statistically different. Greater overall variation in tracheal diameter measurement (height or width) existed for fluoroscopy compared to CT, both within and among observers. The greater tracheal diameter and lower measurement variability supported the use of CT for appropriate stent selection to minimize complications in veterinary patients. PMID:26784924
Dependency of branch diameter growth in young Acer trees on light availability and shoot elongation.
Sone, Kosei; Noguchi, Ko; Terashima, Ichiro
2005-01-01
Many biomechanical and theoretical studies have been based on the pipe-model theory, according to which a tree is regarded as an assemblage of pipes, each having the same amount of leaf area or leaf mass. However, the physiological mechanisms underlying the theory have not been extensively examined, particularly at the branch level. We analyzed how branches and trunks thickened in nine young Acer mono Maxim. var. marmoratum (Nichols) Hara f. dissectum (Wesmael) Rehder. and A. rufinerve (Siebold & Zucc.) trees. In particular, we examined the roles of light, allocation of photosynthates and shoot heterogeneity. The cross-sectional area (A) of a branch was proportional to cumulative leaf mass or leaf area of the branch, and cumulative cross-sectional area of the daughter branches (SigmaA) above a branching point was equal to the A of the mother branch. These results indicate the validity of the pipe-model theory. However, the theory was invalid for current-year growth of branch cross-sectional area (DeltaA). The DeltaA/SigmaDeltaA for a branching point was greatest (nearly equal to 1) at the crown surface, decreased with crown depth, and tended to increase again at the trunk base, and DeltaA strongly depended on light interception and the yearly increment of leaves on the branch. We examined factors that influenced DeltaA with multiple regression analysis. The ratio of DeltaA of a branch to branch leaf area depended on both relative irradiance and mean current-year shoot length of the branch, suggesting that diameter growth of a branch is determined by the balance between supply of photosynthates, which depends on light interception by the branch, and demand for photosynthates, which is created by the high cambial activity associated with vigorous shoot elongation.
NASA Astrophysics Data System (ADS)
Yang, Peng; Chen, Hui; Liu, Yingwen
2017-06-01
In this paper, a two-dimensional axisymmetric model of a thermoacoustic Stirling engine with a short tube where the cross section narrows has been developed. The transient streamlines and vortex formation through short tubes with different diameters in oscillatory flow have been investigated visually by computational fluid dynamics. Three dimensionless parameters, Reynolds number (Re), Keulegan-Carpenter number (KC), and Womersley number (Wo), are used to describe the flow regime and vortex characteristic throughout the short tube. High Re and Wo numbers indicate that the oscillatory flow develops into the turbulent flow through the short tube. The KC number has a direct effect on the transition of streamlines and the development of the vortex. For a small cross section where KC ≈ 1, streamlines rotate and the vortex forms at both sides of the short tube. The vortex stays in the main flow region, and intensity varies as streamlines are convected downstream. The velocity along the radius presents a Poiseuille profile within the influence of the vortex. For a large cross section where KC < 1, streamlines pass the short tube with little rotation and the vortex disappears in the main flow region and confines near the short tube. The velocity profile tends to be flat. The nonlinear effects including instantaneous pressure drop and power dissipation throughout the short tube are also discussed. It shows that the time averaged pressure drop is generated at the cost of power dissipation. Finally, the "effectiveness" is applied to evaluate the performance of the short tube. The results suggest that increasing the diameter of the short tube is in favor of reducing power dissipation, which is beneficial to improve "effectiveness."
NASA Astrophysics Data System (ADS)
Al-Ameri, Talib; Georgiev, Vihar P.; Sadi, Toufik; Wang, Yijiao; Adamu-Lema, Fikru; Wang, Xingsheng; Amoroso, Salvatore M.; Towie, Ewan; Brown, Andrew; Asenov, Asen
2017-03-01
In this work we investigate the impact of quantum mechanical effects on the device performance of n-type silicon nanowire transistors (NWT) for possible future CMOS applications at the scaling limit. For the purpose of this paper, we created Si NWTs with two channel crystallographic orientations <1 1 0> and <1 0 0> and six different cross-section profiles. In the first part, we study the impact of quantum corrections on the gate capacitance and mobile charge in the channel. The mobile charge to gate capacitance ratio, which is an indicator of the intrinsic performance of the NWTs, is also investigated. The influence of the rotating of the NWTs cross-sectional geometry by 90° on charge distribution in the channel is also studied. We compare the correlation between the charge profile in the channel and cross-sectional dimension for circular transistor with four different cross-sections diameters: 5 nm, 6 nm, 7 nm and 8 nm. In the second part of this paper, we expand the computational study by including different gate lengths for some of the Si NWTs. As a result, we establish a correlation between the mobile charge distribution in the channel and the gate capacitance, drain-induced barrier lowering (DIBL) and the subthreshold slope (SS). All calculations are based on a quantum mechanical description of the mobile charge distribution in the channel. This description is based on the solution of the Schrödinger equation in NWT cross sections along the current path, which is mandatory for nanowires with such ultra-scale dimensions.
Rainwater content estimated using polarimetric radar parameters in the Heihe River Basin
NASA Astrophysics Data System (ADS)
Zhao, Guo; Chu, Rongzhong; Zhang, Tong; Jia, Wei
2013-02-01
The rainwater content of cold and arid regions has strong spatial and temporal heterogeneity. Representing rainwater content at high resolution can help us understand the characteristics of inland river basin water cycles and improve the prediction accuracy of hydrological models. Data were used from the Watershed Allied Telemetry Experimental Research (WATER) project of the Heihe River Basin, which is the second largest inland river basin in the arid regions of northwest China. We used raindrop size distributions to improve the rain water content estimation of meteorological radar and to obtain accurate rain water content data in this area. Subsequently, four estimation methods applied in the polarimetric radar were tested. The results of a non-linear regression method show that M(KDP, ZH, ZDR) has the highest accuracy for measuring rain water content. Finally, the formula for measuring the spatial rain water content was applied to a polarimetric radar with an X-band (714XDP). The influence of raindrop size distribution (DSD) on the formula M(KDP, ZH, ZDR) is lowest sensitivity, and it can be explained as follows. On the one hand, the horizontal and vertical front reflection cross sections of the radar are different, so KDP is proportional to the 3rd power of the raindrop diameter. On the other hand, the rear cross section of the radar is proportional to the sixth power of the raindrop diameter. The rainfall's spatial water content M is proportional to the 3rd power of the raindrop diameter, so the influence of the drop size distribution (DSD) on KDP is much smaller than that of ZH.
Khier, S E; Brantley, W A; Fournelle, R A
1988-03-01
A combination of x-ray diffraction analysis with mechanical testing in tension and bending has been used to investigate the metallurgical structures and mechanical properties for as-received and heat-treated stainless steel orthodontic wires. Two different proprietary wire types were selected, having a wide range in cross-sectional dimensions: 0.016-, 0.030-, and 0.050- or 0.051-inch diameters, and 0.017 X 0.025-inch rectangular specimens. Heat treatments were performed for 10 minutes in air at temperatures of 700 degrees, 900 degrees, and 1100 degrees F. The x-ray diffraction patterns showed that the as-received 0.016-inch diameter and 0.017 X 0.025-inch wires of both proprietary types consisted of a two-phase structure containing a martensitic phase along with the austenitic phase. This duplex structure was converted entirely to austenite with heat treatment for one wire type, but persisted after heat treatment for the other wire type. The largest diameter, 0.050- or 0.051-inch, wires of both types were single-phase austenitic structure for both the as-received and heat-treated conditions. Evidence of substantial preferred crystallographic orientation or texturing in these orthodontic wires was also found by x-ray diffraction. As in our previous studies, the modulus of elasticity in bending was significantly less than the value obtained in tension for only the smaller cross-sectional wires. The 0.05 radian flexural yield strength correlated more closely with the 0.2% offset yield strength in tension than with the yield strength for 0.05% and 0.1% permanent offsets.
Computer-Aided Evaluation of Blood Vessel Geometry From Acoustic Images.
Lindström, Stefan B; Uhlin, Fredrik; Bjarnegård, Niclas; Gylling, Micael; Nilsson, Kamilla; Svensson, Christina; Yngman-Uhlin, Pia; Länne, Toste
2018-04-01
A method for computer-aided assessment of blood vessel geometries based on shape-fitting algorithms from metric vision was evaluated. Acoustic images of cross sections of the radial artery and cephalic vein were acquired, and medical practitioners used a computer application to measure the wall thickness and nominal diameter of these blood vessels with a caliper method and the shape-fitting method. The methods performed equally well for wall thickness measurements. The shape-fitting method was preferable for measuring the diameter, since it reduced systematic errors by up to 63% in the case of the cephalic vein because of its eccentricity. © 2017 by the American Institute of Ultrasound in Medicine.
2013-09-13
Germany/Buena Park, California). The HWP is Edmund Optics part number 46-561 (Edmund Optics, Barrington, New Jersey). The BS is Semrock part number...LPD01-785RS-25×36×1.1 with 803– 1214 nm passband ( Semrock , Rochester, New York). The lens L1 is a 12-mm-diameter, 20-mm-effective- focal-length (EFL...near-infrared (NIR) achromat Edmund Optics part number 45-792. The long-wave- pass filters are 25-mm-diameter Semrock part number LP02-785RE-25 with
Ihara, Tsutomu; Komori, Kimihiro; Yamamoto, Kiyohito; Kobayashi, Masayoshi; Banno, Hiroshi; Kodama, Akio
2013-02-01
Abdominal aortic aneurysm diameter is usually measured by the maximum minor-axis diameter on axial computed tomography (CT). However, this "traditional" diameter may underestimate the real size, as the aorta is not always straight and the aneurysm shape is sometimes in the form of an ellipse along the cross section. Therefore, we measured maximum major-axis diameters using a three-dimensional (3D) workstation and compared them with the traditional maximum minor-axis diameters measured using thin-slice axial CT. CT data of 141 AAA patients (with fusiform aneurysms) were stored in a 3D workstation. These thin-slice CT images were reviewed on the 3D workstation to obtain curved multiplanar reconstruction images (CPR images). Using the CPR images, we measured the maximum major-axis and minor-axis diameters on CPR and the angle of the aneurysms to the body axis. The mean traditional maximum minor-axis diameter was 51.2 ± 8.2 mm, whereas the mean maximum major-axis diameter on CPR was 54.7 ± 10.1 mm. Sixty eight patients had a mean aneurysm size of <50 mm when measured by the traditional minor-axis diameter. Among these patients, five (7.4%) had a major-axis diameter >55 mm on CPR. The measurement of the traditional maximum minor-axis diameter of aneurysms is useful in the case of most patients. However, the traditional maximum minor-axis diameter may underestimate the real aneurysmal diameter, particularly in patients with an ellipse-shaped aneurysm. The maximum major-axis diameter as measured using CPR images is effective for representing the real aneurysmal size. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Uwaba, Tomoyuki; Ito, Masahiro; Nemoto, Junichi; Ichikawa, Shoichi; Katsuyama, Kozo
2014-09-01
The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle-duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.
NASA Astrophysics Data System (ADS)
Zakaria, M. S.; Zairi, S.; Misbah, M. N.; Saifizi, M.; Rakawi, Izzudin
2018-03-01
This paper presents performance evaluation of nozzle shapes on microscale channel by employing different types of NACA airfoils profile and conventional profile. The deploying nozzle used are NACA 0012, NACA 0021 and NACA 0024 airfoils while for conventional convergence-divergence nozzle diameter ratio (d2 / d1) in the range from 1/4 to 3/4 are applied. These nozzles are assembled on rectangular cross sectional microscale channel which has designated constant fluid flow velocity at the channel inlet. This study revealed reduction on diameter ratio increased dramatically fluid velocity but further reduction on diameter ratio exposed fluid flow to fluctuate which slightly slowing down the fluid velocity. Nevertheless, curved NACA profiles are favourable for convergence – divergence nozzle in microscale channel as it significantly improved flow characteristics by enhancing fluid velocity and resultant kinetic energy as compared to conventional profile.
Beam self-trapping in a BCT crystal
NASA Astrophysics Data System (ADS)
Matusevich, V.; Kiessling, A.; Kowarschik, R.; Zagorskiy, A. E.; Shepelevich, V. V.
2006-01-01
We present some aspects of wave self-focusing and self-defocusing in a photorefractive Ba 0.77Ca 0.23TiO 3 (BCT) crystal without external electric field and without background illumination. The effects depend on the cross-section of the input beam. We show that by decreasing of the diameter of the input beam from 730 μm the fanning effect disappears at 150 μm. A symmetrical self-focusing is observed for input diameters from 150 um down to 40 μm and a symmetrical self-defocusing for input diameters from 40 μm down to 20 μm. The 1D self-trapping is detected at 65 μm in BCT. Light power and wavelength are correspondingly 3 mW and 633 nm. The experimental results are supplemented with numerical calculations based on both photovoltaic model and model of screening soliton.
Thomas L. Eberhardt; Philip M. Sheridan; Arvind A.R. Bhuta
2011-01-01
Abstract: Longleaf pine (Pinus palustris Mill.) cannot be distinguished from the other southern pines based on wood anatomy alone. A method that involves measuring pith and second annual ring diameters, reported by Arthur Koehler in 1932 (The Southern Lumberman, 145: 36â37), was revisited as an option for identifying longleaf pine timbers and stumps. Cross-section...
Growth and wood/bark properties of Abies faxoniana seedlings as affected by elevated CO2.
Qiao, Yun-Zhou; Zhang, Yuan-Bin; Wang, Kai-Yun; Wang, Qian; Tian, Qi-Zhuo
2008-03-01
Growth and wood and bark properties of Abies faxoniana seedlings after one year's exposure to elevated CO2 concentration (ambient + 350 (+/- 25) micromol/mol) under two planting densities (28 or 84 plants/m(2)) were investigated in closed-top chambers. Tree height, stem diameter and cross-sectional area, and total biomass were enhanced under elevated CO2 concentration, and reduced under high planting density. Most traits of stem bark were improved under elevated CO2 concentration and reduced under high planting density. Stem wood production was significantly increased in volume under elevated CO2 concentration under both densities, and the stem wood density decreased under elevated CO2 concentration and increased under high planting density. These results suggest that the response of stem wood and bark to elevated CO2 concentration is density dependent. This may be of great importance in a future CO2 enriched world in natural forests where plant density varies considerably. The results also show that the bark/wood ratio in diameter, stem cross-sectional area and dry weight are not proportionally affected by elevated CO2 concentration under the two contrasting planting densities. This indicates that the response magnitude of stem bark and stem wood to elevated CO2 concentration are different but their response directions are the same.
NASA Technical Reports Server (NTRS)
Delp, M. D.; Colleran, P. N.; Wilkerson, M. K.; McCurdy, M. R.; Muller-Delp, J.
2000-01-01
Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).
NASA Astrophysics Data System (ADS)
Katsuyama, Kozo; Nagamine, Tsuyoshi; Matsumoto, Shin-ichiro; Sato, Seichi
2007-02-01
The central void formations and deformations of fuel pins were investigated in fuel assemblies irradiated to high burn-up, using a non-destructive X-ray CT (computer tomography) technique. In this X-ray CT, the effect of strong gamma ray activity could be reduced to a negligible degree by using the pulse of a high energy X-ray source and detecting the intensity of the transmitted X-rays in synchronization with the generated X-rays. Clear cross-sectional images of fuel assemblies irradiated to high burn-up in a fast breeder reactor were successively obtained, in which the wrapping wires, cladding, pellets and central voids could be distinctly seen. The diameter of a typical central void measured by X-ray CT agreed with the one obtained by ceramography within an error of 0.1 mm. Based on this result, the dependence of the central void diameter on the linear heating rate was analyzed. In addition, the deformation behavior of a fuel pin along its axial direction could be analyzed from 20 stepwise X-ray cross-sectional images obtained in a small interval, and the results obtained showed a good agreement with the predictions calculated by two computer codes.
Reito, Aleksi; Lainiala, Olli; Elo, Petra; Eskelinen, Antti
2016-01-01
Metal-on-metal (MoM) hip replacements were used for almost a decade before adverse reactions to metal debris (ARMD) were found to be a true clinical problem. Currently, there is a paucity of evidence regarding the usefulness of systematic screening for ARMD. We implemented a systematic review and meta-analysis to establish the prevalence of revision confirmed ARMD stratified by the use of different screening protocols in patients with MoM hip replacements. Five levels of screening were identified: no screening (level 0), targeted blood metal ion measurement and/or cross-sectional imaging (level 1), metal ion measurement without imaging (level 2), metal ion measurement with targeted imaging (level 3) and comprehensive screening (both metal ions and imaging for all; level 4). 122 studies meeting our eligibility criteria were included in analysis. These studies included 144 study arms: 100 study arms with hip resurfacings, 33 study arms with large-diameter MoM total hip replacements (THR), and 11 study arms with medium-diameter MoM THRs. For hip resurfacing, the lowest prevalence of ARMD was seen with level 0 screening (pooled prevalence 0.13%) and the highest with level 4 screening (pooled prevalace 9.49%). Pooled prevalence of ARMD with level 0 screening was 0.29% and with level 4 screening 21.3% in the large-diameter MoM THR group. In metaregression analysis of hip resurfacings, level 4 screening was superior with regard to prevalence of ARMD when compared with other levels. In the large diameter THR group level 4 screening was superior to screening 0,2 and 3. These outcomes were irrespective of follow-up time or study publication year. With hip resurfacings, routine cross-sectional imaging regardless of clinical findings is advisable. It is clear, however, that targeted metal ion measurement and/or imaging is not sufficient in the screening for ARMD in any implant concepts. However, economic aspects should be weighed when choosing the preferred screening level. PMID:26930057
Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan
2013-06-01
Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the changes of tissue N concentration and anatomical structure along root branch orders in both tree species, which provide deeper understanding in the mechanism of how root traits affect root respiration in woody plants.
Methods for obtaining true particle size distributions from cross section measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lord, Kristina Alyse
2013-01-01
Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a planemore » section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.« less
Endes, Katharina; Herrmann, Christian; Colledge, Flora; Brand, Serge; Donath, Lars; Faude, Oliver; Pühse, Uwe; Hanssen, Henner; Zahner, Lukas
2016-01-01
Background. Strong evidence exists showing that psychosocial stress plays an important part in the development of cardiovascular diseases. Because physical inactivity is associated with less favourable retinal vessel diameter and blood pressure profiles, this study explores whether physical fitness is able to buffer the negative effects of psychosocial stress on retinal vessel diameters and blood pressure in young children. Methods. 325 primary schoolchildren (51% girls, Mage = 7.28 years) took part in this cross-sectional research project. Retinal arteriolar diameters, retinal venular diameters, arteriolar to venular ratio, and systolic and diastolic blood pressure were assessed in all children. Interactions terms between physical fitness (performance in the 20 m shuttle run test) and four indicators of psychosocial stress (parental reports of critical life events, family, peer and school stress) were tested in a series of hierarchical regression analyses. Results. Critical life events and family, peer, and school-related stress were only weakly associated with retinal vessel diameters and blood pressure. No support was found for a stress-buffering effect of physical fitness. Conclusion. More research is needed with different age groups to find out if and from what age physical fitness can protect against arteriolar vessel narrowing and the occurrence of other cardiovascular disease risk factors. PMID:27795958
Apparatus for measuring surface particulate contamination
Woodmansee, Donald E.
2002-01-01
An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.
Martian cratering. II - Asteroid impact history.
NASA Technical Reports Server (NTRS)
Hartmann, W. K.
1971-01-01
This paper considers the extent to which Martian craters can be explained by considering asteroidal impact. Sections I, II, and III of this paper derive the diameter distribution of hypothetical asteroidal craters on Mars from recent Palomar-Leiden asteroid statistics and show that the observed Martian craters correspond to a bombardment by roughly 100 times the present number of Mars-crossing asteroids. Section IV discusses the early bombardment history of Mars, based on the capture theory of Opik and probable orbital parameters of early planetesimals. These results show that the visible craters and surface of Mars should not be identified with the initial, accreted surface. A backward extrapolation of the impact rates based on surviving Mars-crossing asteroids can account for the majority of Mars craters over an interval of several aeons, indicating that we see back in time no further than part-way into a period of intense bombardment. An early period of erosion and deposition is thus suggested. Section V presents a comparison with results and terminology of other authors.
Mechanics and Morphology of Silk Drawn from Anesthetized Spiders
NASA Astrophysics Data System (ADS)
Madsen, B.; Vollrath, F.
CO2 and N2 anesthetized Nephila spiders produced dragline silk with mechanical properties that differed from control silk as a function of time under anesthesia. Silk from CO2 spiders had a significantly lower breaking strain and breaking energy, significantly higher initial modulus, and marginally lower breaking stress. At the onset of anesthesia the silk diameter became highly variable. During deep anesthesia silk either became thinner or retained cross-section but fibrillated.
Heat Treatment Investigation of 4330 Vanadium-Modified Steel
1989-08-01
the desired properties, using the results from the tensile and subsized Charpy impact tests on the 1 2-inch-diameter stock our further investigations...for the subsized Charpy specimens is shown graphically in Appendix C as a function of tempering temperature. This data gave a good indication that the... Charpy energy for full-sized specimens (0.394-inch-square cross section) would be near our expected values. Due to the dimensions of the subsized
Cladding for transverse-pumped solid-state laser
NASA Technical Reports Server (NTRS)
Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)
1989-01-01
In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.
Systematic determination of absolute absorption cross-section of individual carbon nanotubes
Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B.; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G.; Wang, Enge; Wang, Feng
2014-01-01
Optical absorption is the most fundamental optical property characterizing light–matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important photoluminescence and photovoltaic processes. PMID:24821815
Systematic determination of absolute absorption cross-section of individual carbon nanotubes.
Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G; Wang, Enge; Wang, Feng
2014-05-27
Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important photoluminescence and photovoltaic processes.
Graf, Neil J; Bowser, Michael T
2013-10-07
Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries.
Mason, Bernard J; Walker, Jim S; Reid, Jonathan P; Orr-Ewing, Andrew J
2014-03-20
The extinction cross-sections of individual, optically confined aerosol particles with radii of a micrometer or less can, in principle, be measured using cavity ring-down spectroscopy (CRDS). However, when the particle radius is comparable in magnitude to the wavelength of light stored in a high-finesse cavity, the phenomenological cross-section retrieved from a CRDS experiment depends on the location of the particle in the intracavity standing wave and differs from the Mie scattering cross-section for plane-wave irradiation. Using an evaporating 1,2,6-hexanetriol particle of initial radius ∼1.75 μm confined within the 4.5 μm diameter core of a Bessel beam, we demonstrate that the scatter in the retrieved extinction efficiency of a single particle is determined by its lateral motion, which spans a few wavelengths of the intracavity standing wave used for CRDS measurements. Fits of experimental measurements to Mie calculations, modified to account for the intracavity standing wave, allow precise retrieval of the refractive index of 1,2,6-hexanetriol particles (with relative humidity, RH < 10%) of 1.47824 ± 0.00072.
Dynamics of the evaporative dewetting of a volatile liquid film confined within a circular ring.
Sun, Wei; Yang, Fuqian
2015-04-07
The dewetting dynamics of a toluene film confined within a copper ring on a deformable PMMA film is studied. The toluene film experiences evaporation and dewetting, which leads to the formation of a circular contact line around the center of the copper ring. The contact line recedes smoothly toward the copper ring at a constant velocity until reaching a dynamic "stick" state to form the first circular polymer ridge. The average receding velocity is found to be dependent on the dimensions of the copper ring (the copper ring diameter and the cross-sectional diameter of the copper wire) and the thickness of the PMMA films. A model is presented to qualitatively explain the evaporative dewetting phenomenon.
Low-emissivity impact craters on Venus
NASA Technical Reports Server (NTRS)
Weitz, C. M.; Elachi, C.; Moore, H. J.; Basilevsky, A. T.; Ivanov, B. A.; Schaber, G. G.
1992-01-01
An analysis of 144 impact craters on Venus has shown that 11 of these have floors with average emissivities lower than 0.8. The remaining craters have emissivities between 0.8 and 0.9, independent of the specific backscatter cross section of the crater floors. These 144 impact craters were chosen from a possible 164 craters with diameters greater than 30 km as identified by researchers for 89 percent of the surface of Venus. We have only looked at craters below 6053.5 km altitude because a mineralogical change causes high reflectivity/low emissivity above the altitude. We have also excluded all craters with diameters smaller than 30 km because the emissivity footprint at periapsis is 16 x 24 km and becomes larger at the poles.
Geleto, Gemechu; Getnet, Wondim; Tewelde, Tsegaye
2016-05-01
Mean portal vein diameter is considered as the best indicator for portal hypertension. However, the cutoff point differs from study to study (above 10-15 mm) despite the existence of normal mean portal vein diameter between 10-15 mm in different settings.This implies the existence of limited evidence on normal portal vein diameter for all populations in all countries prior to setting the cutoff points. Therefore, the aim of this study was sonographic assessment of normal mean portal vein diameter among patients referred to The Department of Radiology in Jimma University Hospital. A facility based cross-sectional study was conducted from November to December 2014 at Jimma University Hospital on a total of 195 clients. Data about portal vein diameter for eligible clients were collected by radiologists using Sonography. Data were edited manually, entered and analyzed using SPSS version 16. Data were collected from a total of 195 participants. Among these, 121(62.1%) were males and the median age of the participants was 35 years. The study revealed a normal mean portal vein diameter of 10.6 mm ±1.8 SD with a respirophasic variation of 25.6%. Likewise, the normal mean portal vein diameter seemed to have varied significantly by age and sex. The study revealed a normal mean portal vein diameter ranging below 13 mm. Hence, decisions made in clinical settings should base on these findings. Besides, there is a need for large scale study to determine portal vein diameter variation by age and sex, controlling other confounders.
Transbulbar B-Mode Sonography in Multiple Sclerosis: Clinical and Biological Relevance.
De Masi, Roberto; Orlando, Stefania; Conte, Aldo; Pasca, Sergio; Scarpello, Rocco; Spagnolo, Pantaleo; Muscella, Antonella; De Donno, Antonella
2016-12-01
Optic nerve sheath diameter quantification by transbulbar B-mode sonography is a recently validated technique, but its clinical relevance in relapse-free multiple sclerosis patients remains unexplored. In an open-label, comparative, cross-sectional study, we aimed to assess possible differences between patients and healthy controls in terms of optic nerve sheath diameter and its correlation with clinical/paraclinical parameters in this disease. Sixty unselected relapse-free patients and 35 matched healthy controls underwent transbulbar B-mode sonography. Patients underwent routine neurologic examination, brain magnetic resonance imaging and visual evoked potential tests. The mean optic nerve sheath diameter 3 and 5 mm from the eyeball was 22-25% lower in patients than controls and correlated with the Expanded Disability Status Scale (r = -0.34, p = 0.048, and r = -0.32, p = 0.042, respectively). We suggest that optic nerve sheath diameter quantified by transbulbar B-mode sonography should be included in routine assessment of the disease as an extension of the neurologic examination. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Adeyekun, A A; Orji, M O
2014-04-01
To compare the predictive accuracy of foetal trans-cerebellar diameter (TCD) with those of other biometric parameters in the estimation of gestational age (GA). A cross-sectional study. The University of Benin Teaching Hospital, Nigeria. Four hundred and fifty healthy singleton pregnant women, between 14-42 weeks gestation. Trans-cerebellar diameter (TCD), biparietal diameter (BPD), femur length (FL), abdominal circumference (AC) values across the gestational age range studied. Correlation and predictive values of TCD compared to those of other biometric parameters. The range of values for TCD was 11.9 - 59.7mm (mean = 34.2 ± 14.1mm). TCD correlated more significantly with menstrual age compared with other biometric parameters (r = 0.984, p = 0.000). TCD had a higher predictive accuracy of 96.9% ± 12 days), BPD (93.8% ± 14.1 days). AC (92.7% ± 15.3 days). TCD has a stronger predictive accuracy for gestational age compared to other routinely used foetal biometric parameters among Nigerian Africans.
Nakagawa, R K L; Alves, J L; Buono, V T L; Bahia, M G A
2014-03-01
To assess and compare the flexibility and torsional resistance of PathFile, RaCe ISO 10 and Scout RaCe instruments in relation to stainless steel K-File hand instruments. Rotary PathFile (sizes 13, 16 and 19; .02 taper), Race ISO 10 (size 10; 0.02, 0.04 and 0.06 tapers), Scout RaCe (sizes 10, 15 and 20; 0.02 taper) and hand K-File (sizes 10, 15 and 20; 0.02 taper) instruments were evaluated. Alloy chemical composition, phases present and transformation temperatures were determined for the NiTi instruments. For all instruments, diameters at each millimetre from the tip as well as cross-sectional areas at 3 mm from the tip were measured based on ANSI/ADA Specification No. 101 using image analysis software. Resistance to bending and torsional resistance were determined according to specification ISO 3630-1. Vickers microhardness measurements were also taken in all instruments to assess their strength. Data were analysed using analysis of variance (α = 0.05). The alloys used in the manufacture of the three types of NiTi instruments had approximately the same chemical composition, but the PathFile instruments had a higher Af transformation temperature and contained a small amount of B19' martensite. All instruments had diameter values within the standard tolerance. The bending and torsional resistance values were significantly increased relative to the instrument diameter and cross-sectional area. PathFile instruments were the most flexible and the least torque resistant, whilst the stainless steel instruments were the least flexible although they were more torque resistant than the NiTi instruments. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Micro-computed Tomographic Analysis of Mandibular Second Molars with C-shaped Root Canals.
Amoroso-Silva, Pablo Andrés; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; Gutmann, James L; del Carpio-Perochena, Aldo; Bramante, Clovis Monteiro; de Moraes, Ivaldo Gomes
2015-06-01
The goal of the present study was to evaluate the morphometric aspects of the internal anatomy of the root canal system of mandibular second molars with C-shaped canals. Fifty-two extracted second mandibular molars with C-shaped canals, fused roots, and radicular grooves were selected from a Brazilian population. The samples were scanned with a micro-computed tomographic scanner at a voxel size of 19.6 μm. The root canal cross sections were recorded as C1, C2, C3, and C4 root canal configurations according to the modified Melton classification. Morphometric parameters, including the major and minor diameters of the root canals, the aspect ratio, the roundness, and the tridimensional configuration (merging, symmetric, and asymmetric), were evaluated. The 3-dimensional reconstruction images of the teeth indicated an even distribution within the sample. The analysis of the prevalence of the different cross-sectional configurations of the C-shaped molars revealed that these were predominantly of the C4 and C3 configurations (1 mm from the apex) and the C1 and C2 configurations in the cervical third. According to the morphometric parameters, the C1 and the distal aspect of the C2 configurations exhibited the lowest roundness values and higher values for the area, major diameter, and aspect ratio in the apical third. Mandibular molars with C-shaped root canals exhibited similar distributions of symmetric, asymmetric, and merging type canals. The C1 configuration and the distal aspect of the C2 configuration exhibited the highest area values, low roundness values, and large apical diameters. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Travnik, L; Pernus, F; Erzen, I
1995-01-01
The histochemical and morphometric characteristics of the vastus medialis longus and vastus medialis obliquus muscles were studied and compared with data on vastus lateralis. Cross-sections of autopsied muscles from 9 healthy men, aged 18-44 y, who had died suddenly were analysed. Data were obtained on proportions, cross-sectional diameter, and on atrophy and hypertrophy factors, of type 1, 2a, 2b, and 2c fibres. The analysis showed that the anatomical differences and the different functional demands placed on vastus medialis longus and vastus medialis obliquus are also expressed in different proportions and sizes of fibre types in the two muscles. The proportion of type 1 fibres was significantly higher (P < 0.01), and the proportion of 2b fibres was significantly lower (P < 0.01) in vastus medialis longus than in vastus medialis obliquus. The diameters of type 1 and type 2a fibres were significantly smaller (P < 0.01) in vastus medialis longus than in vastus medialis obliquus, although the differences were small. Within muscles a nonrandom arrangement of fibre types existed with the deeper portions of the muscles having more type 1 fibres than the more superficial portions. The histochemical and morphometric characteristics of vastus lateralis and vastus medialis obliquus show great similarity, reflecting the common function of both muscles which is taking part in transverse knee stability. Estimates of the limits of normality of the proportion, diameter, atrophy and hypertrophy factors of type 1, 2a, 2b, and 2c fibres might be useful in obtaining information on how different physiological and pathological conditions influence the proportion and size of different fibre types.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7592003
Buyukturan, B; Guclu-Gunduz, A; Buyukturan, O; Dadali, Y; Bilgin, S; Kurt, E E
2017-11-01
This study aims at evaluating and comparing the effects of cervical stability training to combined cervical and core stability training in patients with neck pain and cervical disc herniation. Fifty patients with neck pain and cervical disc herniation were included in the study, randomly divided into two groups as cervical stability and cervical-core stability. Training was applied three times a week in three phases, and lasted for a total duration of 8 weeks. Pain, activation and static endurance of deep cervical flexor muscles, static endurance of neck muscles, cross-sectional diameter of M. Longus Colli, static endurance of trunk muscles, disability and kinesiophobia were assessed. Pain, activation and static endurance of deep cervical flexors, static endurance of neck muscles, cross-sectional diameter of M. Longus Colli, static endurance of trunk muscles, disability and kinesiophobia improved in both groups following the training sessions (p < 0.05). Comparison of the effectiveness of these two training methods revealed that the cervical stability group produced a greater increase in the right transverse diameter of M. Longus Colli (p < 0.05). However, static endurance of trunk muscles and kinesiophobia displayed better improvement in the cervical-core stability group (p < 0.05). Cervical stability training provided benefit to patients with cervical disc herniation. The addition of core stability training did not provide any additional significant benefit. Further research is required to investigate the efficacy of combining other techniques with cervical stability training in patients with cervical disc herniation. Both cervical stability training and its combination with core stability training were significantly and similarly effective on neck pain and neck muscle endurance in patients with cervical disc herniation. © 2017 European Pain Federation - EFIC®.
Jin, S B; Zhang, X F; Lu, J G; Fu, H T; Jia, Z Y; Sun, X W
2015-04-17
A group of 107 F1 hybrid common carp was used to construct a linkage map using JoinMap 4.0. A total of 4877 microsatellite and single nucleotide polymorphism (SNP) markers isolated from a genomic library (978 microsatellite and 3899 SNP markers) were assigned to construct the genetic map, which comprised 50 linkage groups. The total length of the linkage map for the common carp was 4775.90 cM with an average distance between markers of 0.98 cM. Ten quantitative trait loci (QTL) were associated with eye diameter, corresponding to 10.5-57.2% of the total phenotypic variation. Twenty QTL were related to eye cross, contributing to 10.8-36.9% of the total phenotypic variation. Two QTL for eye diameter and four QTL for eye cross each accounted for more than 20% of the total phenotypic variation and were considered to be major QTL. One growth factor related to eye diameter was observed on LG10 of the common carp genome, and three growth factors related to eye cross were observed on LG10, LG35, and LG44 of the common carp genome. The significant positive relationship of eye cross and eye diameter with other commercial traits suggests that eye diameter and eye cross can be used to assist in indirect selection for many commercial traits, particularly body weight. Thus, the growth factor for eye cross may also contribute to the growth of body weight, implying that aggregate breeding could have multiple effects. These findings provide information for future genetic studies and breeding of common carp.
Preparation of the apical part of the root canal by the Lightspeed and step-back techniques.
Portenier, I; Lutz, F; Barbakow, F
1998-03-01
This study measured in vitro the displacement of natural canal centres in 18 human teeth before and after shaping by the step-back or Lightspeed techniques. Experimental roots (n = 9 per group), embedded in clear plastic, were cross-sectioned using a 0.1-mm-thick band saw at distances 1.25 mm, 3.25 mm and 5.25 mm from the apices. A stereo microscope was used to take 35 mm slides of the cut surfaces of the sectioned roots and canals. The slides of the uninstrumented canals were scanned into a computer and saved. Each sectioned root was then reassembled and the canals shaped by the step-back or Lightspeed technique. File size 40 and instrument size 50 were selected as the master apical file and master apical rotary for the step-back and Lightspeed groups, respectively. The 18 prepared canals were photographed, and the 35 mm slides scanned and computer stored as previously. This allowed the positions of the pre- and postinstrumented roots to be electronically superimposed for subsequent analyses. Displacements of the root canal centres before and after preparation were assessed in relation to the cross-sectional diameter of the files or instruments used. In addition, increases in cross-sectional area of the root canals after preparation were evaluated in relation to the cross-sectional area of the files or instruments used. Engine-driven nickel-titanium Lightspeed instruments caused significantly less (P < 0.001) displacement of the canal centres, so roots in the Lightspeed group remained better centred than those in the step-back group. The mean cross-sectional area after preparation in the Lightspeed group was significantly less (P < 0.001) than that recorded in the step-back group. Clinically, this implies less apical transportation and less dentine destruction with the Lightspeed technique than with the step-back technique.
Sonoda, Shozo; Sakamoto, Taiji; Kakiuchi, Naoko; Shiihara, Hideki; Sakoguchi, Tomonori; Tomita, Masatoshi; Yamashita, Takehiro; Uchino, Eisuke
2018-03-01
To determine the capabilities of "EyeGround" software in measuring the choroidal cross sectional areas in optical coherence tomographic (OCT) images. Cross sectional, prospective study. The cross-sectional area of the subfoveal choroid within a 1500 µm diameter circle centered on the fovea was measured both with and without using the EyeGround software in the OCT images. The differences between the evaluation times and the results of the measurements were compared. The inter-rater, intra-rater, inter-method agreements were determined. Fifty-one eyes of 51 healthy subjects were studied: 24 men and 27 women with an average age of 35.0 ± 8.8 years. The time for analyzing a single image was significantly shorter with the software at 3.2±1.1 min than without the software at 12.1±5.1 min (P <0.001). The inter-method correlation efficient for the measurements of the whole choroid was high [0.989, 95% CI (0.981-0.994)]. With the software, the inter-rater correlation efficient was significantly high [0.997, 95% CI (0.995-0.999)], and the intra-rater correlation efficient was also significantly high [0.999, 95% CI (0.999-1.0)]. The EyeGround software can measure the choroidal area in the OCT cross sectional images with good reproducibility and in a significantly shorter times. It can be a valuable tool for analyzing the choroid.
Mariella, Jr., Raymond P.
2018-03-06
An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.
Modeling the field of a passive scalar in a nonisothermal turbulent plane gas jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrashin, V.N.; Barykin, V.N.; Martynenko, O.G.
The problem of the distribution of thermal characteristics in a plane nonisothermal turbulent gas jet in the case of large Reynolds numbers and a small temperature difference, allowing heat to be regarded as a passive impurity, is solved in the range of jet cross sections 20-100 caliber by a second-order correlational model of turbulence and an effective numerical algorithm. Analysis of the results show that the model allows computational data in good agreement with experiment to be obtained in the range of jet cross section 20-100 diameters. The relative error in determining the maximum values of the functions is 3-10%more » for the dynamic characteristics while the mean temperature and its mean square pulsations are determined with an accuracy of 5-10%; the corresponding figures for the thermal characteristics are 5-15% and 5-10%.« less
The X-beam as a deployable boom for the space station
NASA Technical Reports Server (NTRS)
Adams, Louis R.
1988-01-01
Extension of antennas and thrust modules from the primary structure of the space station will require deployable beams of high stiffness and strength, as well as low mass and package volume. A square boom cross section is desirable for interface reasons. These requirements and others are satisfied by the X-beam. The X-beam folds by simple geometry, using single-degree-of-freedom hinges at simple angles, with no strain during deployment. Strut members are of large diameter with unidirectional graphite fibers for maximum beam performance. Fittings are aluminum with phosphor bronze bushings so that compliance is low and joint lifetime is high. The several beam types required for different applications on the space station will use the same basic design, with changes in strut cross section where necessary. Deployment is by a BI-STEM which pushes the beam out; retraction is by cables which cause initial folding and pull the beam in.
Splash control of drop impacts with geometric targets.
Juarez, Gabriel; Gastopoulos, Thomai; Zhang, Yibin; Siegel, Michael L; Arratia, Paulo E
2012-02-01
Drop impacts on solid and liquid surfaces exhibit complex dynamics due to the competition of inertial, viscous, and capillary forces. After impact, a liquid lamella develops and expands radially, and under certain conditions, the outer rim breaks up into an irregular arrangement of filaments and secondary droplets. We show experimentally that the lamella expansion and subsequent breakup of the outer rim can be controlled by length scales that are of comparable dimension to the impacting drop diameter. Under identical impact parameters (i.e., fluid properties and impact velocity) we observe unique splashing dynamics by varying the target cross-sectional geometry. These behaviors include (i) geometrically shaped lamellae and (ii) a transition in splashing stability, from regular to irregular splashing. We propose that regular splashes are controlled by the azimuthal perturbations imposed by the target cross-sectional geometry and that irregular splashes are governed by the fastest-growing unstable Plateau-Rayleigh mode.
Magnaudeix, Amandine; Usseglio, Julie; Lasgorceix, Marie; Lalloue, Fabrice; Damia, Chantal; Brie, Joël; Pascaud-Mathieu, Patricia; Champion, Eric
2016-07-01
The development of scaffolds for bone filling of large defects requires an understanding of angiogenesis and vascular guidance, which are crucial processes for bone formation and healing. There are few investigations on the ability of a scaffold to support blood vessel guidance and it this is of great importance because it relates to the quality and dispersion of the blood vessel network. This work reports an analysis of vascularisation of porous silicon-substituted hydroxyapatite (SiHA) bioceramics and the effects of pore shape on vascular guidance using an expedient ex ovo model, the chick embryo chorioallantoic membrane (CAM) assay. Image analysis of vascularised implants assessed the vascular density, fractal dimension and diameter of blood vessels at two different scales (the whole ceramic and pores alone) and was performed on model SiHA ceramics harbouring pores of various cross-sectional geometries (circles, square, rhombus, triangles and stars). SiHA is a biocompatible material which allows the conduction of blood vessels on its surface. The presence of pores did not influence angiogenesis related-parameters (arborisation, fractal dimension) but pore geometry affected the blood vessel guidance and angio-conductive potential (diameter and number of the blood vessels converging toward the pores). The measured angles of pore cross-section modulated the number and diameter of blood vessels converging to pores, with triangular pores appearing of particular interest. This result will be used for shaping ceramic scaffolds with specific porous architecture to promote vascular colonisation and osteointegration. An expedient and efficient method, using chick embryo chorioallantoic membrane (CAM) assays, has been set up to characterise quantitatively the angiogenesis and the vascular conduction in scaffolds. This approach complements the usual cell culture assays and could replace to a certain extent in vivo experiments. It was applied to silicon-substituted hydroxyapatite porous bioceramics with various pore shapes. The material was found to be biocompatible, allowing the conduction of blood vessels on its surface. The presence of pores does not influence the angiogenesis but the pore shape affects the blood vessel guidance and angio-conductive potential. Pores with triangular cross-section appear particularly attractive for the further design of scaffolds in order to promote their vascular colonisation and osteointegration and improve their performances. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Anatomical Consideration and Potential Complications of Coronary Sinus Catheterisation.
Mehra, Lalit; Raheja, Shashi; Agarwal, Sneh; Rani, Yashoda; Kaur, Kulwinder; Tuli, Anita
2016-02-01
Coronary venous catheterisation has been used for performing various cardiologic interventions. The procedure might become complicated due to obstruction offered by the valve of coronary sinus (Thebesian valve) the acute bend of the Great Cardiac Vein (GCV). The present study sought to expound the anatomical considerations of coronary venous catheterization and to elucidate the potential causes of obstruction and the complications of this procedure. In this cross-sectional observational study, coronary sinus and GCV were dissected in 40, formalin fixed, adult cadaveric human hearts. Course, length, diameter and angle of bend of GCV, length of coronary sinus and its diameter at its ostium in right atrium were recorded. Thebesian valve morphology and percentage coverage of coronary sinus ostium was recorded. Relation of the coronary sinus and GCV with their neighbouring arteries was described. Coronary sinus: near its termination was directly related to the left atrium. Length: 35.35±4.43 mm (1 SD). Diameter: 11.75 ± 2.66mm. Diameter of CS ostium was more in hearts where Thebesian valve was absent. GCV travelled superficial or deep to the left diagonal artery and crossed circumflex artery superficially. Length: 96.23 ±22.52mm. Diameter: 5.99 ±1.02mm. Angle of bend: 107 ±6.74 degrees. Thebesian valve: Absent in 3 hearts. Various morphologies were observed: thin band, thin band with fenestrations, broad band with fenestrations, well developed semilunar valve (Thin/thick). In five hearts, valve covered more than 50% of coronary sinus ostium. Coronary sinus and GCV diameter will help cardiologists and cardiothoracic surgeons to choose an appropriate sized catheter and their length will decide the length of catheter advancement. Thebesian valve may cause obstruction to the catheter due to an extensive coverage of coronary sinus ostium, which is seen in 12.5% cases. The obtuse angle of GCV has to be negotiated in order to enter this vessel. Arteries lying deep to coronary sinus and GCV might be compressed leading to myocardial ischemia.
Valvar stenosis in truncus arteriosus.
Gerlis, L M; Wilson, N; Dickinson, D F; Scott, O
1984-01-01
Twenty three morphological specimens of truncus arteriosus were examined for evidence of stenosis of the semilunar valve. One third showed good evidence of stenosis as judged by careful measurement of the valve orifice, the valve ring, and the maximum diameter of the truncus. Correlation with measured pressure gradients was poor, but angiography and cross sectional echocardiography were better predictors of stenosis. Stenosis was invariably associated with cusp dysplasia and was more common in valves with two or four cusps. Images PMID:6477783
NASA Astrophysics Data System (ADS)
Mousavi, Hamze; Jalilvand, Samira; Kurdestany, Jamshid Moradi; Grabowski, Marek
2017-10-01
The Kubo formula is used to extract the electrical conductivity (EC) of different diameters of doped zigzag carbon nanotubes and their corresponding unzipped armchair graphene nanoribbons, as a function of temperature and chemical potential, within the tight-binding Hamiltonian model and Green's functions approach. The results reveal more sensitivity to temperature for semiconducting systems in addition to a decrease in EC of all systems with increasing cross-sections.
Steinborn, Marc; Friedmann, Melanie; Makowski, Christine; Hahn, Helmut; Hapfelmeier, Alexander; Juenger, Hendrik
2016-04-01
To evaluate the accuracy of high resolution transbulbar sonography for the estimation of intracranial pressure (ICP) in children. In children and adolescents with acute neurologic symptoms of various origin, transbulbar sonography was performed. Besides measurement of the optic nerve sheath diameter (ONSD), the ultrastructure of the subarachnoid space of the optic nerve sheath was evaluated. The results of transbulbar sonography were correlated with clinical data based on cross-sectional imaging, ICP measurement, and ophthalmologic examination. Eighty-one patients (age 3-17.8 years, mean 11.7 years) were included. In 25 children, cross-sectional imaging and ICP measurement revealed increased intracranial pressure. The mean ONSD was 6.85 ± 0.81 mm. Twenty patients (20/25, 80 %) had a microcystic appearance of the subarachnoid space of the optic nerve. In 56 children without evidence of increased intracranial pressure, the mean ONSD was 5.77 ± 0.48 mm. Forty-nine patients (49/56, 87.5 %) had a normal homogenous appearance of the subarachnoid space. The ONSD in children with increased intracranial pressure was significantly higher than in patients without (p < 0.001). High resolution transbulbar sonography of the optic nerve is a useful technique for the rapid and non-invasive estimation of intracranial pressure in children. Besides measurement of the optic nerve sheath diameter, evaluation of the ultrastructure of the subarachnoid space of the optic nerve is a helpful parameter.
Gatto, Nicole M.; Hodis, Howard N.; Liu, Chao-Ran; Liu, Chi-Hua; Mack, Wendy J.
2009-01-01
Background The diagnostic and prognostic importance of brachial artery flow-mediated dilation (BFMD) for cardiovascular disease (CVD) is not certain and associations between BFMD and recognized measures of atherosclerosis have not been well established. Methods We investigated cross-sectional and longitudinal correlations between repeated measures of BFMD and quantitative coronary artery angiographic (QCA) measurements of average percent diameter stenosis, number of lesions and minimum luminal diameter (MLD), and ultrasonographic measurement of carotid artery intima-media thickness (CIMT) in an ethnically diverse cohort of postmenopausal women (n = 132) with coronary artery disease (CAD). Subjects were participants in a 3-year randomized, placebo-controlled clinical trial, testing the efficacy of hormone therapy on atherosclerosis progression. Associations between BFMD and QCA measures, and between BFMD and CIMT were examined using measurements from the same study visit. Results BFMD was significantly inversely correlated with coronary artery stenosis at baseline (β = −1.21% [S.E.(β) = 0.38], p = 0.002). BFMD levels significantly predicted rate of change in CIMT over the trial period (β = −0.76 μm/year [S.E.(β) = 0.29], p = 0.008). Conclusions Physiological and anatomical measures of atherosclerosis are correlated among postmenopausal women with CAD, which provides some validation of BFMD as a measure of atherosclerosis in high-risk populations. PMID:17803999
Ghi, Tullio; Cariello, Luisa; Rizzo, Ludovica; Ferrazzi, Enrico; Periti, Enrico; Prefumo, Federico; Stampalija, Tamara; Viora, Elsa; Verrotti, Carla; Rizzo, Giuseppe
2016-01-01
The purpose of this study was to construct fetal biometric charts between 16 and 40 weeks' gestation that were customized for parental characteristics, race, and parity, using quantile regression analysis. In a multicenter cross-sectional study, 8070 sonographic examinations from low-risk pregnancies between 16 and 40 weeks' gestation were analyzed. The fetal measurements obtained were biparietal diameter, head circumference, abdominal circumference, and femur diaphysis length. Quantile regression was used to examine the impact of parental height and weight, parity, and race across biometric percentiles for the fetal measurements considered. Paternal and maternal height were significant covariates for all of the measurements considered (P < .05). Maternal weight significantly influenced head circumference, abdominal circumference, and femur diaphysis length. Parity was significantly associated with biparietal diameter and head circumference. Central African race was associated with head circumference and femur diaphysis length, whereas North African race was only associated with femur diaphysis length. In this study we constructed customized biometric growth charts using quantile regression in a large cohort of low-risk pregnancies. These charts offer the advantage of defining individualized normal ranges of fetal biometric parameters at each specific percentile corrected for parental height and weight, parity, and race. This study supports the importance of including these variables in routine sonographic screening for fetal growth abnormalities.
do Amaral, Ricardo Holderbaum; Nin, Carlos S; de Souza, Vinicius V S; Alves, Giordano R T; Marchiori, Edson; Irion, Klaus; Meirelles, Gustavo S P; Hochhegger, Bruno
2017-06-01
To investigate bronchiectasis variations in different computed tomography (CT) respiratory phases, and their correlation with pulmonary function test (PFT) data, in adults. Retrospective data analysis from 63 patients with bronchiectasis according to CT criteria selected from the institution database and for whom PFT data were also available. Bronchiectasis diameter was measured on inspiratory and expiratory phases. Its area and matched airway-vessel ratios in both phases were also calculated. Finally, PFT results were compared with radiological measurements. Bronchiectatic airways were larger on inspiration than on expiration (mean cross-sectional area, 69.44 vs. 40.84 mm 2 ; p < 0.05) as were airway-vessel ratios (2.1 vs. 1.4; p < 0.05). Cystic bronchiectasis cases showed the least variation in cross-sectional area (48%). Mean predicted values of forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were 81.5 and 77.2%, respectively, in the group in which bronchiectasis could not be identified on expiratory images, and 58.3 and 56.0%, respectively, in the other group (p < 0.05). Variation in bronchiectasis area was associated with poorer lung function (r = 0.32). Bronchiectasis detection, diameter, and area varied significantly according to CT respiratory phase, with non-reducible bronchiectasis showing greater lung function impairment.
NASA Astrophysics Data System (ADS)
Tjahjana, Dominicus Danardono Dwi Prija; Purbaningrum, Pradityasari; Hadi, Syamsul; Wicaksono, Yoga Arob; Adiputra, Dimas
2018-02-01
Cross flow turbine can be one of the alternative energies for regions with low wind speed. Collision between wind and the blades which happened two times caused the cross flow turbine to have high power coefficient. Some factors that influence the turbine power coefficient are diameter ratio and blade number. The objective of the research was to study the effect of the diameter ratio and the blade number to the cross flow wind turbine performance. The study was done in two dimensional (2D) computational fluid dynamics (CFD) simulation method using the ANSYS-Fluent software. The turbine diameter ratio were 0.58, 0.63, 0.68 and 0.73. The diameter ratio resulting in the highest power coefficient value was then simulated by varying the number of blades, namely 16, 20 and 24. Each variation was tested on the wind speed of 2 m/s and at the tip speed ratio (TSR) of 0.1 to 0.4 with the interval of 0.1. The wind turbine with the ratio diameter of 0.68 and the number of blades of 20 generated the highest power coefficient of 0.5 at the TSR of 0.3.
NASA Technical Reports Server (NTRS)
Sapp, Clyde A.; See, Thomas H.; Zolensky, Michael E.
1992-01-01
During the 3 month deintegration of the LDEF, the M&D SIG generated approximately 5000 digital color stereo image pairs of impact related features from all space exposed surfaces. Currently, these images are being processed at JSC to yield more accurate feature information. Work is currently underway to determine the minimum number of data points necessary to parametrically define impact crater morphologies in order to minimize the man-hour intensive task of tie point selection. Initial attempts at deriving accurate crater depth and diameter measurements from binocular imagery were based on the assumption that the crater geometries were best defined by paraboloid. We made no assumptions regarding the crater depth/diameter ratios but instead allowed each crater to define its own coefficients by performing a least-squares fit based on user-selected tiepoints. Initial test cases resulted in larger errors than desired, so it was decided to test our basic assumptions that the crater geometries could be parametrically defined as paraboloids. The method for testing this assumption was to carefully slice test craters (experimentally produced in an appropriate aluminum alloy) vertically through the center resulting in a readily visible cross-section of the crater geometry. Initially, five separate craters were cross-sectioned in this fashion. A digital image of each cross-section was then created, and the 2-D crater geometry was then hand-digitized to create a table of XY position for each crater. A 2nd order polynomial (parabolic) was fitted to the data using a least-squares approach. The differences between the fit equation and the actual data were fairly significant, and easily large enough to account for the errors found in the 3-D fits. The differences between the curve fit and the actual data were consistent between the caters. This consistency suggested that the differences were due to the fact that a parabola did not sufficiently define the generic crater geometry. Fourth and 6th order equations were then fitted to each crater cross-section, and significantly better estimates of the crater geometry were obtained with each fit. Work is presently underway to determine the best way to make use of this new parametric crater definition.
Comparison of results obtained with various sensors used to measure fluctuating quantities in jets.
NASA Technical Reports Server (NTRS)
Parthasarathy, S. P.; Massier, P. F.; Cuffel, R. F.
1973-01-01
An experimental investigation has been conducted to compare the results obtained with six different instruments that sense fluctuating quantities in free jets. These sensors are typical of those that have recently been used by various investigators who are engaged in experimental studies of jet noise. Intensity distributions and two-point correlations with space separation and time delay were obtained. The static pressure, density, and velocity fluctuations are well correlated over the entire cross section of the jet and the cross-correlations persist for several jet diameters along the flow direction. The eddies appear to be flattened in the flow direction by a ratio of 0.4.
Flexure-Ring for Centering a Concave Lens in a Bore of a Housing for an Optical System
NASA Technical Reports Server (NTRS)
Ford, Virginia G. (Inventor)
2002-01-01
A flexure-ring is provided for centering a lens in a bore of a housing with 3N lens contacting stubs, where N is an integer equal to or greater than one. The stubs are formed by increasing the inside diameter of the ring made to fit tightly around a lens except at 3N locations for the aforesaid stubs, and said ring having an outside diameter made to fit tightly inside the housing bore locations. Behind each stub, a segment of the ring is removed down to a chord perpendicular to a ring diameter passing through the center of each stub. That chord is selected to have a length greater than the lens contacting surface of the stub, thereby to produce a reduced cross section of the ring on both sides of the stub to serve as flexures in relieving stresses due to different coefficients of thermal expansion of the three parts involved due to changes in temperature while in use.
NASA Astrophysics Data System (ADS)
Tan, C. J.; Aslian, A.; Honarvar, B.; Puborlaksono, J.; Yau, Y. H.; Chong, W. T.
2015-12-01
We constructed an FE axisymmetric model to simulate the effect of partially hardened blanks on increasing the limiting drawing ratio (LDR) of cylindrical cups. We partitioned an arc-shaped hard layer into the cross section of a DP590 blank. We assumed the mechanical property of the layer is equivalent to either DP980 or DP780. We verified the accuracy of the model by comparing the calculated LDR for DP590 with the one reported in the literature. The LDR for the partially hardened blank increased from 2.11 to 2.50 with a 1 mm depth of DP980 ring-shaped hard layer on the top surface of the blank. The position of the layer changed with drawing ratios. We proposed equations for estimating the inner and outer diameters of the layer, and tested its accuracy in the simulation. Although the outer diameters fitted in well with the estimated line, the inner diameters are slightly less than the estimated ones.
Leiter, Jeff; Elkurbo, Mohamed; McRae, Sheila; Chiu, James; Froese, Warren; MacDonald, Peter
2017-01-01
Large variation in tendon size between individuals makes hamstring graft diameter for anterior cruciate ligament (ACL) reconstruction unpredictable. Inadequate graft diameter may necessitate an alternative source of tissue requiring pre-operative planning. The purpose of this study was to determine whether magnetic resonance image (MRI) measurements and clinical anthropometric data are predictive of hamstring tendon graft diameter. Data from 109 patients having ACL reconstruction with semitendinosus-gracilis (STGT) autograft were retrospectively evaluated. Cross-sectional area (CSA) of the gracilis tendon (GT) and semitendinosus tendon (ST) were determined from pre-operative MRI scans. Variables included pre-operative height, weight, body mass index (BMI), age and gender; and intra-operative graft diameter. Correlations between anthropometric variables, hamstring tendons CSA and intra-operative graft diameter were calculated. Multiple stepwise regression was performed to assess the predictive value of these variables to graft diameter. Sensitivity and specificity were calculated to evaluate the utility of MRI CSA measurements in accurately identifying inadequate graft diameter (<8 mm). All anthropometric variables were positively correlated with intraoperative graft diameter (p < 0.01). Semitendinosus-gracilis tendon CSA (p < 0.001) and STGT CSA and weight (p < 0.001) were significantly predictive models of graft diameter. Sensitivity and specificity were 79 and 74 %, respectively. The strongest indicators of a four-stranded STGT graft for primary ACL reconstruction were STGT CSA on MRI plus weight. Measurement of graft diameter can be performed pre-operatively via MRI to identify tendons that may be of inadequate size for ACL reconstruction. This can assist with surgical planning to determine the most appropriate graft choice. III.
Variations in the sonographic measurement techniques of BI-RADS 3 breast masses.
Francisco, Juliana; Jales, Rodrigo Menezes; de Oliveira, André Desuó Bueno; Arguello, Carlos Henrique Francisco; Derchain, Sophie
2017-06-01
To evaluate the differences in sonographic (US) distance and volume measurements from different sonologists and identify the optimal parameters to avoid clinically relevant variations in the measurement of BI-RADS 3 breast masses. For this cross-sectional study with prospectively collected data, four physicians with various levels of experience in US, herein called sonologists, performed distance and volume US measurements of 80 masses classified as BI-RADS 3. The Cochran Q test was used to compare the matched sets of rates of clinically relevant variability between all pairs of sonologists' measurements. There were clinically relevant differences between sonologists in the measurements of the longest diameter (range, 17.5-43.7%, p = 0.003), the longest diameter perpendicular to the previous one (anteroposterior diameter) (17.5-33.7%, p = 0.06), the third diameter orthogonal to the plane defined by the previous two (transverse diameter) (28.7-55%, p = 0.001), and at least two of those three diameters (18.7-38.7%, p = 0.015). The smallest clinically relevant differences were observed with volume measurements (range of differences, 6.2-13.7%, p = 0.51). Volume measurement technique was associated with the least variations, whereas distance measurements, which are used routinely, were associated with unacceptable rates of clinically relevant variations. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:252-260, 2017. © 2017 Wiley Periodicals, Inc.
Gadolinia nanofibers as a multimodal bioimaging and potential radiation therapy agent
NASA Astrophysics Data System (ADS)
Grishin, A. M.; Jalalian, A.; Tsindlekht, M. I.
2015-05-01
Continuous bead-free C-type cubic gadolinium oxide (Gd2O3) nanofibers 20-30 μm long and 40-100 nm in diameter were sintered by sol-gel calcination assisted electrospinning technique. Dipole-dipole interaction of neighboring Gd3+ ions in nanofibers with large length-to-diameter aspect ratio results in some kind of superparamagnetic behavior: fibers are magnetized twice stronger than Gd2O3 powder. Being compared with commercial Gd-DTPA/Magnevist®, Gd2O3 diethyleneglycol-coated (Gd2O3-DEG) fibers show high 1/T1 and 1/T2 proton relaxivities. Intense room temperature photoluminescence, high NMR relaxivity and high neutron scattering cross-section of 157Gd nucleus promise to integrate Gd2O3 fibers for multimodal bioimaging and neutron capture therapy.
Experimental and numerical modeling of heat transfer in directed thermoplates
Khalil, Imane; Hayes, Ryan; Pratt, Quinn; ...
2018-03-20
We present three-dimensional numerical simulations to quantify the design specifications of a directional thermoplate expanded channel heat exchanger, also called dimpleplate. Parametric thermofluidic simulations were performed independently varying the number of spot welds, the diameter of the spot welds, and the thickness of the fluid channel within the laminar flow regime. Results from computational fluid dynamics simulations show an improvement in heat transfer is achieved under a variety of conditions: when the thermoplate has a relatively large cross-sectional area normal to the flow, a ratio of spot weld spacing to channel length of 0.2, and a ratio of the spotmore » weld diameter with respect to channel width of 0.3. Lastly, experimental results performed to validate the model are also presented.« less
Experimental and numerical modeling of heat transfer in directed thermoplates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, Imane; Hayes, Ryan; Pratt, Quinn
We present three-dimensional numerical simulations to quantify the design specifications of a directional thermoplate expanded channel heat exchanger, also called dimpleplate. Parametric thermofluidic simulations were performed independently varying the number of spot welds, the diameter of the spot welds, and the thickness of the fluid channel within the laminar flow regime. Results from computational fluid dynamics simulations show an improvement in heat transfer is achieved under a variety of conditions: when the thermoplate has a relatively large cross-sectional area normal to the flow, a ratio of spot weld spacing to channel length of 0.2, and a ratio of the spotmore » weld diameter with respect to channel width of 0.3. Lastly, experimental results performed to validate the model are also presented.« less
NASA Technical Reports Server (NTRS)
Ochoa, O.; Jiang, J.; Putnam, D.; Lo, Z.; Ellis, A.; Effinger, Michael
2003-01-01
The transverse coefficient of thermal expansion (CTE) of single IM7, T1000, and P55 carbon fibers are measured at elevated temperatures. The specimens are prepared by press-fitting fiber tows into 0.7mm-diameter cavity in a graphite disk of 5mm in diameter and 3mm high. The specimens are placed on a crucible in an ESEM, and images of the fiber cross section are taken as the fibers are heated up to 800 C. Holding time, heating and cool down cycles are also introduced. The geometrical changes are measured using a graphics tablet. The change in area/perimeter is calculated to determine the strain and transverse CTE for each fiber. In a complimentary computational effort, displacements and stresses are calculated with finite element models.
Metallic positive expulsion diaphragms
NASA Technical Reports Server (NTRS)
Gleich, D.
1972-01-01
High-cycle life ring-reinforced hemispherical type positive expulsion diaphragm performance was demonstrated by room temperature fluid expulsion tests of 13" diameter, 8 mil thick stainless steel configurations. A maximum of eleven (11) leak-free, fluid expulsions were achieved by a 25 deg cone angle diaphragm hoop-reinforced with .110-inch cross-sectional diameter wires. This represents a 70% improvement in diaphragm reversal cycle life compared to results previously obtained. The reversal tests confirmed analytic predictions for diaphragm cycle life increases due to increasing values of diaphragm cone angle, radius to thickness ratio and material strain to necking capacity. Practical fabrication techniques were demonstrated for forming close-tolerance, thin corrugated shells and for obtaining closely controlled reinforcing ring stiffness required to maximize diaphragm cycle life. A non-destructive inspection technique for monitoring large local shell bending strains was developed.
Fast Neutron Spectrum Potassium Worth for Space Power Reactor Design Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Marshall, Margaret A.; Briggs, J. Blair
2015-03-01
A variety of critical experiments were constructed of enriched uranium metal (oralloy ) during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Ofmore » the hundreds of delayed critical experiments, one was performed that consisted of uranium metal annuli surrounding a potassium-filled, stainless steel can. The outer diameter of the annuli was approximately 13 inches (33.02 cm) with an inner diameter of 7 inches (17.78 cm). The diameter of the stainless steel can was 7 inches (17.78 cm). The critical height of the configurations was approximately 5.6 inches (14.224 cm). The uranium annulus consisted of multiple stacked rings, each with radial thicknesses of 1 inch (2.54 cm) and varying heights. A companion measurement was performed using empty stainless steel cans; the primary purpose of these experiments was to test the fast neutron cross sections of potassium as it was a candidate for coolant in some early space power reactor designs.The experimental measurements were performed on July 11, 1963, by J. T. Mihalczo and M. S. Wyatt (Ref. 1) with additional information in its corresponding logbook. Unreflected and unmoderated experiments with the same set of highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in the International Handbook for Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook) with the identifier HEU MET FAST 051. Thin graphite reflected (2 inches or less) experiments also using the same set of highly enriched uranium metal parts are evaluated in HEU MET FAST 071. Polyethylene-reflected configurations are evaluated in HEU-MET-FAST-076. A stack of highly enriched metal discs with a thick beryllium top reflector is evaluated in HEU-MET-FAST-069, and two additional highly enriched uranium annuli with beryllium cores are evaluated in HEU-MET-FAST-059. Both detailed and simplified model specifications are provided in this evaluation. Both of these fast neutron spectra assemblies were determined to be acceptable benchmark experiments. The calculated eigenvalues for both the detailed and the simple benchmark models are within ~0.26 % of the benchmark values for Configuration 1 (calculations performed using MCNP6 with ENDF/B-VII.1 neutron cross section data), but under-calculate the benchmark values by ~7s because the uncertainty in the benchmark is very small: ~0.0004 (1s); for Configuration 2, the under-calculation is ~0.31 % and ~8s. Comparison of detailed and simple model calculations for the potassium worth measurement and potassium mass coefficient yield results approximately 70 – 80 % lower (~6s to 10s) than the benchmark values for the various nuclear data libraries utilized. Both the potassium worth and mass coefficient are also deemed to be acceptable benchmark experiment measurements.« less
Kang, Huili; Chen, Yu-Ming; Han, Guiyuan; Huang, Hua; Chen, Wei-Qing; Wang, Xidan; Zhu, Ying-Ying; Xiao, Su-Mei
2016-01-23
This study aimed to elucidate the associations of age, BMI, and years of menstruation with proximal femur strength in Chinese postmenopausal women, which may improve the prediction of hip fracture risk. A cross-sectional study was conducted in 1322 Chinese postmenopausal women recruited from communities. DXA images were used to generate bone mineral density (BMD) and geometric parameters, including cross-sectional area (CSA), outer diameter (OD), cortical thickness (CT), section modulus (SM), buckling ratio (BR) at the narrow neck (NN), intertrochanter (IT), and femoral shaft (FS). Relationships of age, BMI, and years of menstruation with bone phenotypes were analyzed with the adjustment of height, age at menarche, total daily physical activity, education, smoking status, calcium tablet intake, etc. Age was associated with lower BMD, CSA, CT, SM, and higher BR (p < 0.05), which indicated a weaker bone strength at the proximal femur. BMI and years of menstruation had the positive relationships with proximal femur strength (p < 0.05). Further analyses showed that the ranges of absolute value of change slope per year, per BMI or per year of menstruation were 0.14%-1.34%, 0.20%-2.70%, and 0.16%-0.98%, respectively. These results supported that bone strength deteriorated with aging and enhanced with higher BMI and longer time of years of menstruation in Chinese postmenopausal women.
Kang, Huili; Chen, Yu-Ming; Han, Guiyuan; Huang, Hua; Chen, Wei-Qing; Wang, Xidan; Zhu, Ying-Ying; Xiao, Su-Mei
2016-01-01
This study aimed to elucidate the associations of age, BMI, and years of menstruation with proximal femur strength in Chinese postmenopausal women, which may improve the prediction of hip fracture risk. A cross-sectional study was conducted in 1322 Chinese postmenopausal women recruited from communities. DXA images were used to generate bone mineral density (BMD) and geometric parameters, including cross-sectional area (CSA), outer diameter (OD), cortical thickness (CT), section modulus (SM), buckling ratio (BR) at the narrow neck (NN), intertrochanter (IT), and femoral shaft (FS). Relationships of age, BMI, and years of menstruation with bone phenotypes were analyzed with the adjustment of height, age at menarche, total daily physical activity, education, smoking status, calcium tablet intake, etc. Age was associated with lower BMD, CSA, CT, SM, and higher BR (p < 0.05), which indicated a weaker bone strength at the proximal femur. BMI and years of menstruation had the positive relationships with proximal femur strength (p < 0.05). Further analyses showed that the ranges of absolute value of change slope per year, per BMI or per year of menstruation were 0.14%–1.34%, 0.20%–2.70%, and 0.16%–0.98%, respectively. These results supported that bone strength deteriorated with aging and enhanced with higher BMI and longer time of years of menstruation in Chinese postmenopausal women. PMID:26805871
NASA Technical Reports Server (NTRS)
Goldfinger, A.
1981-01-01
A full scale model was produced to verify suggested design changes. Through beam analyzer study, the correct electron beam diameter and cross sectional profile were established in conjunction with the desired confining magnetic field. Comparative data on the performance of the X-3060 klystron, design predictions for the improved klystron, and performance data taken during acceptance testing of the prototype VKS-8274 JPL are presented.
Laser Doppler measurements of laminar and turbulent flow in a pipe bend
NASA Technical Reports Server (NTRS)
Enayet, M. M.; Gibson, M. M.; Taylor, A. M. K. P.; Yianneskis, M.
1982-01-01
The streamwise components of velocity in the flow through a ninety degree bend of circular cross section for which the ratio of radius of curvature to diameter is 2.8 were measured. The development of strong pressure driven secondary flow in the form of a pair of counter rotating vortices in the steamwise direction is shown. Refractive index matching at the fluid wall interface was not employed; the displacement of the measurement volume due to refraction is allowed for in simple geometrical calculations.
Graf, Neil J.
2013-01-01
Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM).1 The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold’s bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold’s bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries. PMID:23917263
A High-Resolution Endoscope of Small Diameter Using Electromagnetically Vibration of Single Fiber
NASA Astrophysics Data System (ADS)
Matsunaga, Tadao; Hino, Ryunosuke; Makishi, Wataru; Esashi, Masayoshi; Haga, Yoichi
For high resolution visual inspection in the narrow space of the human body, small diameter endoscope has been developed which utilize electromagnetically vibration of single fiber. Thin endoscopes are effective for inspection in the narrow space of the human body, for example, in the blood vessel, lactiferous duct for detection infiltration of breast cancer, and periodontal gap between gingiva and tooth. This endoscope consists of single optical fiber and photofabricated driving coils. A collimator lens and a cylindrical permanent magnet are fixed on the optical fiber, and the tilted driving coils have been patterned on a 1.08 mm outer diameter thin tube. The fiber is positioned at the center of the tube which is patterned the coils. When an electrical alternating current at the resonance frequency is supplied to the coils, the permanent magnet which is fixed to the fiber is vibrated electromagnetically and scanned one or two dimensionally. This paper reports small diameter endoscope by using electromagnetically vibration of single fiber. Optical coherence tomography imaging has also been carried out with the fabricated endoscope and cross-section image of sub-surface skin of thumb was observed.
Low-cycle fatigue of NiTi rotary instruments of various cross-sectional shapes.
Cheung, G S P; Darvell, B W
2007-08-01
To compare the low-cycle fatigue (LCF) behaviour of some commercial NiTi instruments subjected to rotational bending, a deformation mode similar to an engine-file rotating in a curved root canal, using a strain-life analysis, in water. A total of 286 NiTi rotary instruments from four manufacturers were constrained into a curvature by three rigid, stainless steel pins whilst rotating at a rate of 250 rpm in deionized water until broken. The number of revolutions was recorded using an optical counter and an electronic break-detection circuit. The surface strain amplitude, calculated from the curvature (from a photograph) and diameter of the fracture cross-section (from a scanning electron micrograph), was plotted against the number of cycles to fracture for each instrument. A regression line was fitted to the LCF lives for each brand; the value was compared with that of others using one-way analysis of variance (ANOVA). The number of crack origins observed on the fractographic view was examined with chi-square for differences amongst various groups. A linear strain-life relationship, on logarithmic scales, was obtained for the LCF region with an apparent fatigue-ductility exponent ranging from -0.40 to -0.56. The number of crack-initiation sites, as observed on the fracture cross-section, differed between brands (chi(2), P < 0.05), but not LCF life (one-way ANOVA, P > 0.05). The LCF life of NiTi instruments declines with an inverse power function dependence on surface strain amplitude, but is not affected by the cross-sectional shape of the instrument.
Elevated temperature and CO(2) concentration effects on xylem anatomy of Scots pine.
Kilpeläinen, Antti; Gerendiain, Ane Zubizarreta; Luostarinen, Katri; Peltola, Heli; Kellomäki, Seppo
2007-09-01
We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross-sectional area, the greatest decrease occurring in the elevated [CO(2)] treatment. It seemed that xylem anatomy was affected more by elevated temperature than by elevated [CO(2)] and that the effects of temperature were confined to the earlywood.
Functional anatomy and ultrasound examination of the canine penis.
Goericke-Pesch, Sandra; Hölscher, Catharina; Failing, Klaus; Wehrend, Axel
2013-07-01
The aim of this study was to identify the functional-anatomical structures of the canine penis during and after erection to demonstrate the respective changes to provide a basis for further examinations of pathological conditions like priapism. Additionally, a gray-scale analysis was performed to quantify results from the ultrasound examination. In total, 80 dogs were examined. In group (Gr.) A, 44 intact or castrated dogs were examined, and in Gr. B, 36 dogs were examined during erection and after complete detumescence of the penis. The following parameters were assessed: (1) using physical measurements: length of the Pars longa glandis [Plg] and length of the Bulbus glandis [Bg]; and (2) using ultrasound: total penile diameter, width of the erectile tissue of the Plg, diameter of the Corpus spongiosum [Cs] including the penile bone and urethra, vertical diameter, circumference of the penis, cross-sectional area, and area of the Cs including the urethra. The mentioned parameters could be assessed in all dogs of Gr. A and Gr. B with the only exception being the urethra that could be visualized using ultrasound in some dogs only and predominantly in the erected penis (Gr. B). Concomitantly, the erectile tissue of the Plg and the Cs was more heterogenous and hypo- to anechoic during erection compared with dogs in Gr. A and Gr. B after detumescence. Comparing the results in Gr. B, the length of the Plg and the Bg were decreased approximately 40.6% and 38.0%, the total width of the penis 40.5%, the total width of the erectile tissue of the Plg 48.0%, and the width of the Cs 15.6% during detumescence compared with erection. Comparing the decrease in size at the different locations (apex penis, middle of Plg, middle of Bg) for vertical diameter, total circumference, and cross-section area, it was largest at the Bg. B-mode ultrasound is a suitable tool to investigate not only the morpho-functional structures of the resting canine penis, but also of the erected and detumescent penis, and to investigate the underlying changes during erection and detumenscence. Copyright © 2013 Elsevier Inc. All rights reserved.
Volcano morphometry and volume scaling on Venus
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Williams, R. S., Jr.
1994-01-01
A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the differences between large venusian edifices and volcanoes on the Earth and Mars, we developed a volume scaling algorithm which relies on conservation of volcano morphometry as basal diameter is varied.
Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.
Williams, S P; Langmore, J P
1991-01-01
Analyses of low angle x-ray scattering from chromatin, isolated by identical procedures but from different species, indicate that fiber diameter and number of nucleosomes per unit length increase with the amount of nucleosome linker DNA. Experiments were conducted at physiological ionic strength to obtain parameters reflecting the structure most likely present in living cells. Guinier analyses were performed on scattering from solutions of soluble chromatin from Necturus maculosus erythrocytes (linker length 48 bp), chicken erythrocytes (linker length 64 bp), and Thyone briareus sperm (linker length 87 bp). The results were extrapolated to infinite dilution to eliminate interparticle contributions to the scattering. Cross-sectional radii of gyration were found to be 10.9 +/- 0.5, 12.1 +/- 0.4, and 15.9 +/- 0.5 nm for Necturus, chicken, and Thyone chromatin, respectively, which are consistent with fiber diameters of 30.8, 34.2, and 45.0 nm. Mass per unit lengths were found to be 6.9 +/- 0.5, 8.3 +/- 0.6, and 11.8 +/- 1.4 nucleosomes per 10 nm for Necturus, chicken, and Thyone chromatin, respectively. The geometrical consequences of the experimental mass per unit lengths and radii of gyration are consistent with a conserved interaction among nucleosomes. Cross-linking agents were found to have little effect on fiber external geometry, but significant effect on internal structure. The absolute values of fiber diameter and mass per unit length, and their dependencies upon linker length agree with the predictions of the double-helical crossed-linker model. A compilation of all published x-ray scattering data from the last decade indicates that the relationship between chromatin structure and linker length is consistent with data obtained by other investigators. Images FIGURE 1 PMID:2049522
Schwarzwald, Colin C; Jenni, Rolf
2009-01-01
Background Natural heterologous valved conduits with a diameter greater than 22 mm that can be used for right ventricular outflow tract reconstruction in adults are not commercially available. The purpose of this study was to measure by ultrasonography the maximum diameter of the distended jugular veins of horses and cattle, respectively, to identify a population of animals that would be suitable for post-mortem collection of jugular veins at sizes greater than 22 mm. Methods The study population included 60 Warmblood horses, 25 Freiberger horses, 20 Brown Swiss cows, and 20 Holstein cows (including 10 Holstein and 10 Red Holstein). The maximum cross-sectional diameter of the distended jugular veins was measured at a location half-way between the mandibular angle and the thoracic inlet. The thoracic circumference (heart girth length) was used as a surrogate of body size. The jugular vein diameters of the different populations were compared by analysis of variance and the association between heart girth length and jugular vein diameter was determined in each of the four study populations by linear regression analysis. Results There was considerable individual variation of jugular vein diameters within each of the four study populations. There was no statistically significant relationship between thoracic circumference and jugular vein diameter in any of the populations. The jugular vein diameters of Brown Swiss cows were significantly larger than those of any of the other populations. Warmblood horses had significantly larger jugular vein diameters compared to Freiberger horses. Conclusion The results of this study suggest that the production of bovine or equine xenografts with diameters of greater than 22 mm would be feasible. Differences between species and breeds need to be considered. However, prediction of the jugular vein diameter based on breed and heart girth length in an individual animal is inaccurate. PMID:19678940
A High-Performance Portable Transient Electro-Magnetic Sensor for Unexploded Ordnance Detection.
Wang, Haofeng; Chen, Shudong; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun
2017-11-17
Portable transient electromagnetic (TEM) systems can be well adapted to various terrains, including mountainous, woodland, and other complex terrains. They are widely used for the detection of unexploded ordnance (UXO). As the core component of the portable TEM system, the sensor is constructed with a transmitting coil and a receiving coil. Based on the primary field of the transmitting coil and internal noise of the receiving coil, the design and testing of such a sensor is described in detail. Results indicate that the primary field of the transmitting coil depends on the diameter, mass, and power of the coil. A higher mass-power product and a larger diameter causes a stronger primary field. Reducing the number of turns and increasing the clamp voltage reduces the switch-off time of the transmitting current effectively. Increasing the cross-section of the wire reduces the power consumption, but greatly increases the coil's weight. The study of the receiving coil shows that the internal noise of the sensor is dominated by the thermal noise of the damping resistor. Reducing the bandwidth of the system and increasing the size of the coil reduces the internal noise effectively. The cross-sectional area and the distance between the sections of the coil have little effect on the internal noise. A less damped state can effectively reduce signal distortion. Finally, a portable TEM sensor with both a transmitting coil (constructed with a diameter, number of turns, and transmitting current of 0.5 m, 30, and 5 A, respectively) and a receiving coil (constructed with a length and resonant frequency of 5.6 cm and 50 kHz, respectively) was built. The agreement between experimental and calculated results confirms the theory used in the sensor design. The responses of an 82 mm mortar shell at different distances were measured and inverted by the differential evolution (DE) algorithm to verify system performance. Results show that the sensor designed in this study can not only detect the 82 mm mortar shell within 1.2 m effectively but also locate the target precisely.
Reddi, A S; Nimmagadda, V R; Arora, R
2001-05-01
We have previously demonstrated that antihypertensive treatment with doxazosin (DZN), an alpha-adrenergic blocker, and lisinopril (LIS), an ACE inhibitor, reverse glomerular sclerosis in corpulent spontaneously hypertensive rats with type 2 diabetes. In this study, we examined the effects of the above-mentioned antihypertensive drugs alone and in combination on the structure of interlobular and arcuate arteries in these rats. Both male and female rats aged 6 months were treated with antihypertensive drugs for 16 weeks. Various structural parameters were evaluated by light microscopy, with the use of digital image analysis, in kidney sections stained with periodic acid-SCHIFF: Systolic blood pressure was significantly lower in treated than in untreated rats. Untreated diabetic rats had a significantly higher media/lumen ratio (smaller luminal diameter) of both arteries compared with the ratio in treated rats (for interlobular artery, 0.72+/-0.06 [no treatment], 0.49+/-0.03 [DZN treatment], 0.54+/-0.06 [LIS treatment], and 0.52+/-0.04 [combination therapy], P<0.05 to <0.001 for no treatment versus treatment; for arcuate artery, 0.66+/-0.11 [no treatment], 0.40+/-0.02 [DZN treatment], 0.39+/-0.04 [LIS treatment], and 0.40+/-0.03 [combination therapy], P<0.05 for no treatment versus treatment). Antihypertensive treatment caused significant increases in total arterial cross-sectional area, internal and external diameters, luminal and medial cross-sectional area, and medial thickness in both interlobular and arcuate arteries. The improvement in arterial structure after antihypertensive treatment was due to remodeling and growth of the vessels. Both DZN and LIS were equally efficacious, and combination therapy had no additive or synergistic effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jia; Christner, Jodie A.; Duan Xinhui
2012-11-15
Purpose: To estimate attenuation using cross sectional CT images and scanned projection radiograph (SPR) images in a series of thorax and abdomen phantoms. Methods: Attenuation was quantified in terms of a water cylinder with cross sectional area of A{sub w} from both the CT and SPR images of abdomen and thorax phantoms, where A{sub w} is the area of a water cylinder that would absorb the same dose as the specified phantom. SPR and axial CT images were acquired using a dual-source CT scanner operated at 120 kV in single-source mode. To use the SPR image for estimating A{sub w},more » the pixel values of a SPR image were calibrated to physical water attenuation using a series of water phantoms. A{sub w} and the corresponding diameter D{sub w} were calculated using the derived attenuation-based methods (from either CT or SPR image). A{sub w} was also calculated using only geometrical dimensions of the phantoms (anterior-posterior and lateral dimensions or cross sectional area). Results: For abdomen phantoms, the geometry-based and attenuation-based methods gave similar results for D{sub w}. Using only geometric parameters, an overestimation of D{sub w} ranging from 4.3% to 21.5% was found for thorax phantoms. Results for D{sub w} using the CT image and SPR based methods agreed with each other within 4% on average in both thorax and abdomen phantoms. Conclusions: Either the cross sectional CT or SPR images can be used to estimate patient attenuation in CT. Both are more accurate than use of only geometrical information for the task of quantifying patient attenuation. The SPR based method requires calibration of SPR pixel values to physical water attenuation and this calibration would be best performed by the scanner manufacturer.« less
Hasler, David; Obrist, Dominik
2018-01-01
The flow field past a prosthetic aortic valve comprises many details that indicate whether the prosthesis is functioning well or not. It is, however, not yet fully understood how an optimal flow scenario would look, i.e. which subtleties of the fluid dynamics in place are essential regarding the durability and compatibility of a prosthetic valve. In this study, we measured and analyzed the 3D flow field in the vicinity of a bio-prosthetic heart valve in function of the aortic root size. The measurements were conducted within aortic root phantoms of different size, mounted in a custom-built hydraulic setup, which mimicked physiological flow conditions in the aorta. Tomographic particle image velocimetry was used to measure the 3D instantaneous velocity field at various instances. Several 3D fields (e.g. instantaneous and mean velocity, 3D shear rate) were analyzed and compared focusing on the impact of the aortic root size, but also in order to gain general insight in the 3D flow structure past the bio-prosthetic valve. We found that the diameter of the aortic jet relative to the diameter of the ascending aorta is the most important parameter in determining the characteristics of the flow. A large aortic cross-section, relative to the cross-section of the aortic jet, was associated with higher levels of turbulence intensity and higher retrograde flow in the ascending aorta.
Damage creation in porous silicon irradiated by swift heavy ions
NASA Astrophysics Data System (ADS)
Canut, B.; Massoud, M.; Newby, P.; Lysenko, V.; Frechette, L.; Bluet, J. M.; Monnet, I.
2014-05-01
Mesoporous silicon (PS) samples were processed by anodising p+ Si wafers in (1:1) HF-ethanol solution. Different current densities were used to obtain three different porosities (41%, 56% and 75%). In all cases the morphology of the PS layer is columnar with a mean crystallite size between 12 nm (75% porosity) and 19 nm (41% porosity). These targets were irradiated at the GANIL accelerator, using different projectiles (130Xe ions of 91 MeV and 29 MeV, 238U ions of 110 MeV and 850 MeV) in order to vary the incident electronic stopping power Se. The fluences ranged between 1011 and 7 × 1013 cm-2. Raman spectroscopy and cross sectional SEM observations evidenced damage creation in the irradiated nanocrystallites, without any degradation of the PS layer morphology at fluences below 3 × 1012 cm-2. For higher doses, the columnar morphology transforms into a spongy-like structure. The damage cross sections, extracted from Raman results, increase with the electronic stopping power and with the sample porosity. At the highest Se (>10 keV nm-1) and the highest porosity (75%), the track diameter coincides with the crystallite diameter, indicating that a single projectile impact induces the crystallite amorphization along the major part of the ion path. These results were interpreted in the framework of the thermal spike model, taking into account the low thermal conductivity of the PS samples in comparison with that of bulk silicon.
Walker, Ray A.; Reich, Fred R.; Russell, James T.
1978-01-01
An optical extensometer is described using sequentially pulsed light beams for measuring the dimensions of objects by detecting two opposite edges of the object without contacting the object. The light beams may be of different distinguishable light characteristics, such as polarization or wave length, and are time modulated in an alternating manner at a reference frequency. The light characteristics are of substantially the same total light energy and are distributed symmetrically. In the preferred embodiment two light beam segments of one characteristic are on opposite sides of a middle segment of another characteristic. As a result, when the beam segments are scanned sequentially across two opposite edges of the object, they produce a readout signal at the output of a photoelectric detector that is compared with the reference signal by a phase comparator to produce a measurement signal with a binary level transition when the light beams cross an edge. The light beams may be of different cross sectional geometries, including two superimposed and concentric circular beam cross sections of different diameter, or two rectangular cross sections which intersect with each other substantially perpendicular so only their central portions are superimposed. Alternately, a row of three light beams can be used including two outer beams on opposite sides and separate from a middle beam. The three beams may all be of the same light characteristic. However it is preferable that the middle beam be of a different characteristic but of the same total energy as the two outer beams.
A novel cosmetic approach to treat thinning hair.
Davis, M G; Thomas, J H; van de Velde, S; Boissy, Y; Dawson, T L; Iveson, R; Sutton, K
2011-12-01
Many of today's treatments associated with 'thinning hair', such as female pattern hair loss and telogen effluvium, are focused on two of the key aspects of the condition. Over-the-counter or prescription medications are often focused on improving scalp hair density while high-quality cosmetic products work to prevent further hair damage and minimize mid-fibre breakage. Fibre diameter is another key contributor to thinning hair, but it is less often the focus of medical or cosmetic treatments. To examine the ability of a novel leave-on technology combination [caffeine, niacinamide, panthenol, dimethicone and an acrylate polymer (CNPDA)] to affect the diameter and behaviour of individual terminal scalp hair fibres as a new approach to counteract decreasing fibre diameters. Testing methodology included fibre diameter measures via laser scan micrometer, assessment of fibre mechanical and behavioural properties via tensile break stress and torsion pendulum testing, and mechanistic studies including cryoscanning electron microscopy and autoradiographic analysis. CNPDA significantly increased the diameter of individual, existing terminal scalp hair fibres by 2-5 μm, which yields an increase in the cross-sectional area of approximately 10%. Beyond the diameter increase, the CNPDA-thickened fibres demonstrated the altered mechanical properties characteristic of thicker fibres: increased suppleness/pliability (decreased shear modulus) and better ability to withstand force without breaking (increased break stress). Although cosmetic treatments will not reverse the condition, this new approach may help to mitigate the effects of thinning hair. © 2011 Procter & Gamble. BJD © 2011 British Association of Dermatologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummel, Andrew John
A multitude of critical experiments with highly enriched uranium metal were conducted in the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. These experiments served to evaluate the storage, casting, and handling limits for the Y-12 Plant while also providing data for verification of different calculation methods and associated cross-sections for nuclear criticality safety applications. These included both solid cylinders and annuli of various diameters, interacting cylinders of various diameters, parallelepipeds, and reflected cylinders and annuli. The experiments described here involve a series of delayed critical stacksmore » of bare oralloy HEU annuli and disks. Three of these experiments consist of stacking bare HEU annuli of varying diameters to obtain critical configurations. These annuli have nominal inner and outer diameters (ID/OD) including: 7 inches (") ID – 9" OD, 9" ID – 11" OD, 11" ID – 13" OD, and 13? ID – 15" OD. The nominal heights range from 0.125" to 1.5". The three experiments themselves range from 7" – 13", 7" – 15", and 9" – 15" in diameter, respectively. The fourth experiment ranges from 7" – 11", and along with different annuli, it also includes an 11" disk and several 7" diameter disks. All four delayed critical experiments were configured and evaluated by J. T. Mihalczo, J. J. Lynn, and D. E. McCarty from December of 1962 to February 1963 with additional information in their corresponding logbook.« less
Coronal Axis Measurement of the Optic Nerve Sheath Diameter Using a Linear Transducer.
Amini, Richard; Stolz, Lori A; Patanwala, Asad E; Adhikari, Srikar
2015-09-01
The true optic nerve sheath diameter cutoff value for detecting elevated intracranial pressure is variable. The variability may stem from the technique used to acquire sonographic measurements of the optic nerve sheath diameter as well as sonographic artifacts inherent to the technique. The purpose of this study was to compare the traditional visual axis technique to an infraorbital coronal axis technique for assessing the optic nerve sheath diameter using a high-frequency linear array transducer. We conducted a cross-sectional study at an academic medical center. Timed optic nerve sheath diameter measurements were obtained on both eyes of healthy adult volunteers with a 10-5-MHz broadband linear array transducer using both traditional visual axis and coronal axis techniques. Optic nerve sheath diameter measurements were obtained by 2 sonologists who graded the difficulty of each technique and were blinded to each other's measurements for each participant. A total of 42 volunteers were enrolled, yielding 84 optic nerve sheath diameter measurements. There were no significant differences in the measurements between the techniques on either eye (P = .23 [right]; P = .99 [left]). Additionally, there was no difference in the degree of difficulty obtaining the measurements between the techniques (P = .16). There was a statistically significant difference in the time required to obtain the measurements between the traditional and coronal techniques (P < .05). Infraorbital coronal axis measurements are similar to measurements obtained in the traditional visual axis. The infraorbital coronal axis technique is slightly faster to perform and is not technically challenging. © 2015 by the American Institute of Ultrasound in Medicine.
2017-01-01
Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications. PMID:28966933
Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope
NASA Astrophysics Data System (ADS)
Wall, R. Andrew; Barton, Jennifer K.
2012-02-01
A side-viewing, 2 mm diameter, surface magnifying chromoendoscopy (SMC)-optical coherence tomography (OCT) endoscope has been designed for simultaneous, non-destructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of mouse colon. A 30,000 element fiber bundle is combined with single mode fibers. The distal optics consist of a gradient-index lens and spacer to provide a magnification of 1 at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23 mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the GRIN lens assembly. The resulting 1:1 imaging system is capable of 3.9 μm lateral and 2.3 μm axial resolution in the OCT channel, and 125 lp/mm resolution across a 0.70 mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure.
Frederiksen, Rune; Tutuncuoglu, Gozde; Matteini, Federico; Martinez, Karen L; Fontcuberta I Morral, Anna; Alarcon-Llado, Esther
2017-09-20
Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications.
Bates, A.L.; Hatcher, P.G.
1989-01-01
A series of samples taken from the cross section of a 3-m-diameter fossilized gymnospermous log (Araucariaceae) in the Yallourn Seam of the Australian brown coals was examined by solid state 13C nuclear magnetic resonance to delineate chemical changes related to the combined processes of peatification and coalification. The results show that cellulosic materials were degraded and lost on the periphery of the log, however, the degree of such degradation in the central core is substantially less. The lignin is uniformly altered by coalification reactions to a macromolecular substance displaying decreased aryl ether linkages but significantly greater amounts of carbon linkages compared to modern lignin. Changes in the methoxyl carbon contents of lignin in cross section reveal demethylation reactions, but these do not appear to be related to degree of carbon linking. Both the degredation of cellulosic materials and demethylation of lignin appear to be early diagenetic processes occurring during peatification independently of the coalification reactions. ?? 1989.
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Magold, N. J.
1990-01-01
Drop weight impact testing was utilized to inflict damage on eight-ply bidirectional and unidirectional samples of carbon/epoxy and carbon/PEEK (polyetheretherketone) test specimens with impact energies ranging from 0.80 J to 1.76 J. The impacting tip was of a smaller diameter (4.2-mm) than those used in most previous studies, and the specimens were placed with a diamond wheel wafering saw through the impacted area perpendicular to the outer fibers. Photographs at 12 x magnification were taken of these cross-sections and examined. The results on the bidirectional samples show little damage until 1.13 J, at which point delaminations were seen in the epoxy specimens. The PEEK specimens showed less delamination than the epoxy specimens for a given impact energy level. The unidirectional specimens displayed more damage than the bidirectional samples for a given impact energy, with the PEEK specimens showing much less damage than the epoxy material.
NASA Astrophysics Data System (ADS)
Iwamoto, Y.; Shigyo, N.; Satoh, D.; Kunieda, S.; Watanabe, T.; Ishimoto, S.; Tenzou, H.; Maehata, K.; Ishibashi, K.; Nakamoto, T.; Numajiri, M.; Meigo, S.; Takada, H.
2004-08-01
Neutron-production double-differential cross sections for 870 MeV π+ and π- and 2.1 GeV π+ mesons incident on iron and lead targets were measured with NE213 liquid scintillators by time-of-flight technique. NE213 liquid scintillators 12.7 cm in diameter and 12.7 cm thick were placed in directions of 15, 30, 60, 90, 120, and 150° . The typical flight path length was 1.5 m . Neutron detection efficiencies were evaluated by calculation results of SCINFUL and CECIL codes. The experimental results were compared with JAERI quantum molecular dynamics code. For the meson incident reactions, adoption of NN in-medium effects was slightly useful for reproducing 870 MeV π+ -incident neutron yields at neutron energies of 10 30 MeV , as was the case for proton incident reactions. The π- incident reaction generates more neutrons than π+ incidence as the number of nucleons in targets decrease.
Fast neutron measurements using Cs2LiYCl6:Ce (CLYC) scintillator
NASA Astrophysics Data System (ADS)
Smith, M. B.; Achtzehn, T.; Andrews, H. R.; Clifford, E. T. H.; Forget, P.; Glodo, J.; Hawrami, R.; Ing, H.; O'Dougherty, P.; Shah, K. S.; Shirwadkar, U.; Soundara-Pandian, L.; Tower, J.
2015-06-01
Samples of Cs2LiYCl6:Ce (CLYC) scintillator have been characterized using monoenergetic neutron beams in the energy range 4.1-5.5 MeV. Four crystals with dimensions (thickness×diameter) of 1″×1″, 1″×2″, and 2″×2″ were evaluated, including one crystal with natural concentrations of Li isotopes and three that were enriched in 6Li. The intrinsic efficiency of CLYC for fast-neutron detection has been determined for the natural-Li crystal. These measurements were translated into reaction cross-sections, and show good agreement with available cross-section data for neutron interactions with the 35Cl component of CLYC. Furthermore, it is shown that the charged-particle energy released in the fast-neutron reactions on 35Cl varies linearly with the energy of the incoming neutron. These results verify the efficacy of CLYC for fast-neutron spectroscopy in a range of applications.
Component-based model to predict aerodynamic noise from high-speed train pantographs
NASA Astrophysics Data System (ADS)
Latorre Iglesias, E.; Thompson, D. J.; Smith, M. G.
2017-04-01
At typical speeds of modern high-speed trains the aerodynamic noise produced by the airflow over the pantograph is a significant source of noise. Although numerical models can be used to predict this they are still very computationally intensive. A semi-empirical component-based prediction model is proposed to predict the aerodynamic noise from train pantographs. The pantograph is approximated as an assembly of cylinders and bars with particular cross-sections. An empirical database is used to obtain the coefficients of the model to account for various factors: incident flow speed, diameter, cross-sectional shape, yaw angle, rounded edges, length-to-width ratio, incoming turbulence and directivity. The overall noise from the pantograph is obtained as the incoherent sum of the predicted noise from the different pantograph struts. The model is validated using available wind tunnel noise measurements of two full-size pantographs. The results show the potential of the semi-empirical model to be used as a rapid tool to predict aerodynamic noise from train pantographs.
Hu, Ji-bo; Hu, Hong-jie; Hou, Tie-ning; Gao, Hang-xiang; He, Jian
2010-03-01
To evaluate the feasibility of multi-slice spiral CT scan to localize upper airway stricture in patients with obstructive sleep apnea syndrome (OSAS) during drug-induced sleeping. One hundred and fourteen patients diagnosed as OSAS by polysomnography were included in the study. Multi-slice spiral CT scan covering upper airway was performed at the end of inspiration and clear upper airway images were obtained in waking. After injecting 5 mg of midazolam intravenously slowly in 109 patients, CT scan was performed at apnea and clear upper airway images were obtained in sleeping. Cross-section area and minimal diameter of airway were measured and the parameters were compared under those two states. Upper airway was displayed intuitionisticly by using post-processing techniques. One hundred and nine patients with OSAS finished the examination with a success rate of 100 %. Airway obstruction at retropalatal level was observed in 62 patients, among whom 26 were associated with airway obstruction at retroglossal level, 27 with narrower airway at retroglossal level in sleeping compared with that in waking, and 9 with no significant change of the airway at retroglossal level after sleeping. Narrower airway at retropalatal level in sleeping compared with that in waking was observed in 40 patients, among whom 20 were associated with narrower airway at retroglossal level in sleeping compared with that in waking, 10 with complete airway obstruction at retroglossal level in sleeping, and 7 with no significant change of the airway at both retropalatal and retroglossal levels before and after sleeping. Minimal mean cross-section area of airway at retropalatal level was (72.60 +/-45.15)mm(2) in waking and (8.26 +/-18.16)mm(2) in sleeping; and minimal mean cross-section area of airway at retroglossal level was (133.21 +/-120.36)mm(2)in waking and (16.73 +/-30.21)mm(2) in sleeping (P <0.01). Minimal mean diameter of airway at retropalatal level was (6.91 +/-2.23) mm in waking and (1.18 +/-2.14) mm in sleeping; and minimal mean diameter of airway at retroglossal level was (8.68 +/-4.32) mm in waking and (1.68 +/-2.22) mm in sleeping (P <0.01). Multi-slice spiral CT with post-processing techniques can display the shape of the upper airway in patients with OSAS in sleeping, and can localize the upper airway stricture and assess its range accurately.
Geometric Limitations Of Ultrasonic Measurements
NASA Astrophysics Data System (ADS)
von Nicolai, C.; Schilling, F.
2006-12-01
Laboratory experiments are a key for interpreting seismic field observations. Due to their potential in many experimental set-ups, the determination of elastic properties of minerals and rocks by ultrasonic measurements is common in Geosciences. The quality and thus use of ultrasonic data, however, strongly depends on the sample geometry and wavelength of the sound wave. Two factors, the diameter-to-wavelength- ratio and the diameter-to-length-ratio, are believed to be the essential parameters to affect ultrasonic signal quality. In this study, we determined under well defined conditions the restricting dimensional parameters to test the validity of published assumptions. By the use of commercial ultrasonic transducers a number of experiments were conducted on aluminium, alumina, and acrylic glass rods of varying diameter (30-10 mm) and constant length. At each diameter compressional wave travel times were measured by pulse- transmission method. From the observed travel times ultrasonic wave velocities were calculated. One additional experiment was performed with a series of square-shaped aluminium blocks in order to investigate the effect of the geometry of the samples cross-sectional area. The experimental results show that the simple diameter-to-wavelength ratios are not valid even under idealized experimental conditions and more complex relation has to be talen into account. As diameter decreases the P-waves direct phase is increasingly interfered and weakened by sidewall reflections. At very small diameters compressional waves are replaced by bar waves and P-wave signals become non resolvable. Considering the suppression of both effects, a critical D/ë-ratio was determined and compared to experimental set-ups from various publications. These tests indicate that some published and cited data derived from small diameter set-ups are out off the range of physical possibility.
Gender Linked Metric Analysis of Portal Vein: A Sonographic Appraisal.
Singh, Shikha; Pankaj, Arvind Kumar; Rani, Anita; Sharma, Pradeep Kumar; Chauhan, Puja
2017-03-01
Portal hypertension is one of the most mystifying and disconcerting abdominal ailment. Ultrasonography (USG) is an effective diagnostic tool for its prompt management. Knowledge of normal calibre of portal vein in a local setting is essential as literature reports contrasting values in different regions. It helps in early diagnosis of portal hypertension even before it is clinically manifested thereby assisting clinicians and interventional radiologists in pertinent management. Study was aimed to evaluate the Portal Vein Diameter (PVD) and find its correlation with gender by using USG in North Indian population. A total of 300 healthy adults were included in the study. Portal vein diameter was measured in supine position and normal respiration by grey scale USG. The portal vein diameter was correlated with age and gender statistically using independent Student's t-test and ANOVA. Mean PVD of (9.49±1.03 mm) was observed in the present cross-sectional study. Male showed a significantly higher mean PVD (9.70±1.02 mm) as compared to females (9.10±0.94 mm). Scarcity of information concerning ultrasonographically measured standard portal vein diameter and inconstant values reported in literature necessitates the need for establishing local standard value. In the given subset of population the portal vein diameter was influenced by the gender. The information will be helpful in prompt diagnosis and management of portal hypertension.
NASA Technical Reports Server (NTRS)
Foughner, J. T., Jr.; Alexander, W. C.
1974-01-01
Transonic wind-tunnel studies were conducted with modified cross, hemisflo, and disk-gap-band parachute models in the wake of a cone-cylinder shape forebody. The basic cross design was modified with the addition of a circumferential constraining band at the lower edge of the canopy panels. The tests covered a Mach number range of 0.3 to 1.2 and a dynamic pressure range from 479 Newtons per square meter to 5746 Newtons per square meter. The parachute models were flexible textile-type structures and were tethered to a rigid forebody with a single flexible riser. Different size models of the modified cross and disk-gap-band canopies were tested to evaluate scale effects. Model reference diameters were 0.30, 0.61, and 1.07 meters (1.0, 2.0, and 3.5 ft) for the modified cross; and nominal diameters of 0.25 and 0.52 meter (0.83 and 1.7 ft) for the disk-gap-band; and 0.55 meter (1.8 ft) for the hemisflo. Reefing information is presented for the 0.61-meter-diameter cross and the 0.52-meter-diameter disk-gap-band. Results are presented in the form of the variation of steady-state average drag coefficient with Mach number. General stability characteristics of each parachute are discussed. Included are comments on canopy coning, spinning, and fluttering motions.
Small-airway obstruction and emphysema in chronic obstructive pulmonary disease.
McDonough, John E; Yuan, Ren; Suzuki, Masaru; Seyednejad, Nazgol; Elliott, W Mark; Sanchez, Pablo G; Wright, Alexander C; Gefter, Warren B; Litzky, Leslie; Coxson, Harvey O; Paré, Peter D; Sin, Don D; Pierce, Richard A; Woods, Jason C; McWilliams, Annette M; Mayo, John R; Lam, Stephen C; Cooper, Joel D; Hogg, James C
2011-10-27
The major sites of obstruction in chronic obstructive pulmonary disease (COPD) are small airways (<2 mm in diameter). We wanted to determine whether there was a relationship between small-airway obstruction and emphysematous destruction in COPD. We used multidetector computed tomography (CT) to compare the number of airways measuring 2.0 to 2.5 mm in 78 patients who had various stages of COPD, as judged by scoring on the Global Initiative for Chronic Obstructive Lung Disease (GOLD) scale, in isolated lungs removed from patients with COPD who underwent lung transplantation, and in donor (control) lungs. MicroCT was used to measure the extent of emphysema (mean linear intercept), the number of terminal bronchioles per milliliter of lung volume, and the minimum diameters and cross-sectional areas of terminal bronchioles. On multidetector CT, in samples from patients with COPD, as compared with control samples, the number of airways measuring 2.0 to 2.5 mm in diameter was reduced in patients with GOLD stage 1 disease (P=0.001), GOLD stage 2 disease (P=0.02), and GOLD stage 3 or 4 disease (P<0.001). MicroCT of isolated samples of lungs removed from patients with GOLD stage 4 disease showed a reduction of 81 to 99.7% in the total cross-sectional area of terminal bronchioles and a reduction of 72 to 89% in the number of terminal bronchioles (P<0.001). A comparison of the number of terminal bronchioles and dimensions at different levels of emphysematous destruction (i.e., an increasing value for the mean linear intercept) showed that the narrowing and loss of terminal bronchioles preceded emphysematous destruction in COPD (P<0.001). These results show that narrowing and disappearance of small conducting airways before the onset of emphysematous destruction can explain the increased peripheral airway resistance reported in COPD. (Funded by the National Heart, Lung, and Blood Institute and others.).
Khettab, H; Lorthior, A; Niarra, R; Chambon, Y; Jeunemaitre, X; Plouin, P F; Laurent, S; Boutouyrie, P; Azizi, M
2015-06-01
Fibromuscular dysplasia (FD) is a rare idiopathic, segmental, non-atherosclerotic non-inflammatory vascular disease. We previously showed that FD is a general arterial disease with focal exacerbation of the trait. However, whether endothelial dysfunction may be involved in the pathophysiology of FD is unclear. In a cross sectional study, we compared the endothelial function between 50 patients with multifocal FD of renal/carotid arteries confirmed by CT-angiography, 50 essential hypertensive (EH) patients matched for age, sex, ethnicity and BP and 50 healthy subjects (HS) matched for age, sex and ethnicity. Exclusion criteria were: tobacco consumption, hypercholesterolemia, diabetes, aspirin or statin treatment. Brachial artery (BA) FMD after release of hand ischemia and glyceryl trinitrate (GTN)-induced EID was measured using a high-resolution radiofrequency-based echotracking system blind to the diagnosis. FD, EH and HS were well matched (52yrs, 85% women, 80% caucasian). SBP was higher in FD (125 ± 15mmHg) and EH (121 ± 12mmHg) than EH (113 ± 10mmHg) despite antihypertensive treatments. BA external diameter was significantly lower in FD than in both HS and EH before, during and after hand ischemia and after GTN. BA intima media thickness (IMT), internal diameter did not differ between the 3 groups. FMD (%) or EID (%) did not significantly differ between the 3 groups. BA flow velocity did not significantly differ in any experimental condition.(Figure is included in full-text article.) : In conclusion, despite showing similar acute vasodilatory responses to flow and GTN, FD patients differed from EH and HS in terms of arterial morphology with smaller BA diameter associated with similar IMT. This paradoxical remodeling may suggest a chronic defect in the endothelium-dependent pathways involved in arterial remodeling in FD patients.
Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha; ...
2017-09-27
Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha
Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less
Simon, Magda; Porter, Rebecca; Brown, Robert; Coulton, Gary R; Terenghi, Giorgio
2003-11-01
We investigated whether neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) affected the reinnervation of slow and fast motor units. Neurotrophin-impregnated or plain fibronectin (FN) conduits were inserted into a sciatic nerve gap. Fast extensor digitorum longus (EDL) and slow soleus muscles were collected 4 months postsurgery. Muscles were weighed and fibre type proportion and mean fibre diameters were derived from muscle cross-sections. All fibre types in muscles from FN animals were severely atrophied and this correlated well with type 1 fibre loss and atrophy in soleus and type 2b loss and atrophy in EDL. Treatment with NT-4 reversed soleus but not EDL mass loss above the FN group by significantly restoring type 1 muscle fibre proportion and diameters towards those of normal unoperated animals. BDNF did not increase muscle mass but did have minor effects on fibre type and diameter. Thus, NT-4 significantly improved slow motor unit recovery, and provides a basis for therapies intended to aid the functional recovery of muscles after denervating injury.
The New Dual-beam Spectropluviometer Concept
NASA Astrophysics Data System (ADS)
Delahaye, J. Y.; Barthes, L.; Golé, P.; Lavergnat, J.; Vinson, J. P.
A Dual Beam Spectropluviometer (DBS) measuring the equivalent diameter D, the vertical velocity V and the time T of arrival of particles is presented. Its main advan- tage over previous optical disdrometers is the extensive measurement range of atmo- spheric precipitations near ground. In particular, 0.15 mm diameter particles can be observed in quiet laboratory conditions and 0.2 mm is the smallest diameter observed in the outdoor turbulent air velocity field. The means for obtaining such results are (i) two uniform beams of rectangular cross-section 2 mm in height, 40 mm in width and 250 mm in length, with a 2 mm vertical gap, (ii) a dual 16-bit analog to digital converter, (iii) a dedicated program for extracting the 3 parameters in real time by computing the signal slopes and determining the correlation between both channels, (iii) various means for reducing splashing and vibration. Laboratory tests and typical rain measurements are shown. The DBS is particularly suited for extensive atmospheric and radio propagation research applications where the smallest drops were not correctly estimated in the distributions because of the lack of appropriate measurement devices.
Lower airway dimensions in pediatric patients-A computed tomography study.
Szelloe, Patricia; Weiss, Markus; Schraner, Thomas; Dave, Mital H
2017-10-01
The aim of this study was to obtain lower airway dimensions in children by means of computed tomography (CT). Chest CT scans from 195 pediatric patients (118 boys/77 girls) aged 0.04-15.99 years were analyzed. Tracheal and bronchial lengths, anterior-posterior and lateral diameters, as well as cross-sectional area were assessed at the following levels: mid trachea, right proximal and distal bronchus, proximal bronchus intermedius, and left proximal and distal bronchus. Mediastinal angles of tracheal bifurcation were measured. Data were analyzed by means of linear and polynomial regression plots. The strongest correlations were found between tracheal and bronchial diameters and age as well as between tracheal and bronchial lengths and body length. All measured airway parameters correlated poorly to body weight. Bronchial angles revealed no association with patient's age, body length, or weight. This comprehensive anatomical database of lower airway dimensions demonstrates that tracheal and bronchial diameters correlate better to age, and that tracheal and bronchial length correlate better to body length. All measured airway parameters correlated poorly to body weight. © 2017 John Wiley & Sons Ltd.
Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence
Gunawan, Budi
2014-06-11
The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.
Formation of nanometer-size wires using infiltration into latent nuclear tracks
Musket, Ronald G.; Felter, Thomas E.
2002-01-01
Nanometer-size wires having a cross-sectional dimension of less than 8 nm with controllable lengths and diameters are produced by infiltrating latent nuclear or ion tracks formed in trackable materials with atomic species. The trackable materials and atomic species are essentially insoluble in each other, thus the wires are formed by thermally driven, self-assembly of the atomic species during annealing, or re-crystallization, of the damage in the latent tracks. Unlike conventional ion track lithography, the inventive method does not require etching of the latent tracks.
The universal applications of microtubes and microtube composites
NASA Technical Reports Server (NTRS)
Hoffman, Wesley P.; Upadhya, Kamleshwar
1994-01-01
Microtubes are a basic component for a myriad of potential products. They are very small tubes (hundreds can fit in a human hair) that can be made from practically any material. Tubes larger than 1 micron diameter can be made with any cross-sectional shape desired. The significance of microtubes and microtube composites is that they provide the opportunity to miniaturize (even to the nanoscale) numerous products and devices that are currently in existence as well as allowing the fabrication of products that have to date been impossible to produce.
1985-12-01
resonator optics consist of two porro prisms which are oriented 900 from one another about the cavity’s optical axis. In other words, the roof edges of each... prism are perpendicular to one another. The Nd:YAG laser rod measures 5 mm in diameter by 75 mm long and is optically pumped by a Xenon flashlamp. Q...Switching of the laser is performed by a Pockels Cell. A dielectric polarizer is sealed between two right angle prisms which are joined symetrically
Moses, Edward I.
1992-01-01
A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.
Moses, E.I.
1992-12-01
A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.
2010-09-15
migration and yarn stretching. These mechanisms relate to the force required to pull a yarn out from the fabric. If the fabric is made of low...the following assumptions were made : The fabric architecture is plain-woven. The yarns have a circular cross section with diameter D equal to 1.0... Bulletproof Aramid Fabric," Journal of Materials Science, vol. 32, pp. 4167-4173, 1997. 16. D. A. Shockey, D. C. Erlich, and J. W. Simons, "Improved
Full scattering profile of tissues with elliptical cross sections
NASA Astrophysics Data System (ADS)
Duadi, H.; Feder, I.; Fixler, D.
2018-02-01
Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. However, since PPG and pulse oximetry are usually measured on tissue such as earlobe, fingertip, lip and pinched tissue, we propose examining the full scattering profile (FSP), which is the angular distribution of exiting photons. The FSP provides more comprehensive information when measuring from a cylindrical tissue. In our work we discovered a unique point, that we named the iso-pathlength (IPL) point, which is not dependent on changes in the reduced scattering coefficient (µs'). This IPL point was observed both in Monte Carlo (MC) simulation and in experimental tissue mimicking phantoms. The angle corresponding to this IPL point depends only on the tissue geometry. In the case of cylindrical tissues this point linearly depends on the tissue diameter. Since the target tissues for clinically physiological measuring are not a perfect cylinder, in this work we will examine how the change in the tissue cross section geometry influences the FSP and the IPL point. We used a MC simulation to compare a circular to an elliptic tissue cross section. The IPL point can serve as a self-calibration point for optical tissue measurements such as NIR spectroscopy, PPG and pulse oximetery.
Fu, Xin; Yuan, Jun
2017-07-24
Coherent x-ray diffraction investigations on Ag five-fold twinned nanowires (FTNWs) have drawn controversial conclusions concerning whether the intrinsic 7.35° angular gap could be compensated homogeneously through phase transformation or inhomogeneously by forming disclination strain field. In those studies, the x-ray techniques only provided an ensemble average of the structural information from all the Ag nanowires. Here, using three-dimensional (3D) electron diffraction mapping approach, we non-destructively explore the cross-sectional strain and the related strain-relief defect structures of an individual Ag FTNW with diameter about 30 nm. The quantitative analysis of the fine structure of intensity distribution combining with kinematic electron diffraction simulation confirms that for such a Ag FTNW, the intrinsic 7.35° angular deficiency results in an inhomogeneous strain field within each single crystalline segment consistent with the disclination model of stress-relief. Moreover, the five crystalline segments are found to be strained differently. Modeling analysis in combination with system energy calculation further indicates that the elastic strain energy within some crystalline segments, could be partially relieved by the creation of stacking fault layers near the twin boundaries. Our study demonstrates that 3D electron diffraction mapping is a powerful tool for the cross-sectional strain analysis of complex 1D nanostructures.
Macroscopic strain controlled ion current in an elastomeric microchannel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Chin-Chang; Nguyen, Du; Buchsbaum, Steven
We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hystereticmore » (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.« less
Walby, A P
1985-01-01
The length and cross-sectional height of the scala tympani are relevant to the design of cochlear implants. The lengths and heights of the scalae tympani in ten pairs of serially sectioned temporal bones were measured by an adaptation of the serial section method of cochlear reconstruction. The study found the middle segments of individual pairs of scalae tympani to be very similar in height, but each pair varied slightly from other pairs. The height decreased overall from the base to the apex, but there was a small expansion at the junction of the basal and middle turns where the interscalar septum originated. The theoretical relationships of different diameter electrodes to the organ of Corti were plotted for one cochlea. The size of the electrode and the path it followed were shown in theory to alter considerably its position in relation to the organ of Corti.
NASA Technical Reports Server (NTRS)
Abdelnour, Z.; Mildrun, H.; Strant, K.
1981-01-01
The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. Tests determined magnetic design data and mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 to 150 C. Hysteresis loops were also measured for three orthogonal directions (the one easy and two hard axes of magnetization). Extruded rods of three different diameters were tested. The nonuniformity of properties over the cross section of the 31 mm diameter rod was studied. Mechanical compressive and bending strength at room temperature was determined on individual samples from the 31 mm rod.
Gadolinia nanofibers as a multimodal bioimaging and potential radiation therapy agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishin, A. M., E-mail: grishin@kth.se, E-mail: grishin@inmatech.com; INMATECH Intelligent Materials Technology, SE-127 45 Skärholmen; Petrozavodsk State University, 185910 Petrozavodsk, Karelian Republic
2015-05-15
Continuous bead-free C-type cubic gadolinium oxide (Gd{sub 2}O{sub 3}) nanofibers 20-30 μm long and 40-100 nm in diameter were sintered by sol-gel calcination assisted electrospinning technique. Dipole-dipole interaction of neighboring Gd{sup 3+} ions in nanofibers with large length-to-diameter aspect ratio results in some kind of superparamagnetic behavior: fibers are magnetized twice stronger than Gd{sub 2}O{sub 3} powder. Being compared with commercial Gd-DTPA/Magnevist{sup ®}, Gd{sub 2}O{sub 3} diethyleneglycol-coated (Gd{sub 2}O{sub 3}-DEG) fibers show high 1/T{sub 1} and 1/T{sub 2} proton relaxivities. Intense room temperature photoluminescence, high NMR relaxivity and high neutron scattering cross-section of {sup 157}Gd nucleus promise to integrate Gd{submore » 2}O{sub 3} fibers for multimodal bioimaging and neutron capture therapy.« less
Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air
NASA Technical Reports Server (NTRS)
Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.
2009-01-01
We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.
[Rotational stability of angiography catheters].
Schröder, J; Weber, M
1992-10-01
Rotatory stability is a parameter that reflects the ability of a catheter to transmit a rotation applied at the outer end to the catheter tip for the purpose of selective probing. A method for measuring the rotatory stability is described, and the results of rotatory stability measurements of 70 different commercially available catheters are reported. There is an almost linear correlation between the rotatory stability and the difference between the respective fourth power of the external and internal diameter or, approximately, to the fourth power of the external diameter for catheters without wire reinforcement. With the same cross-sectional dimensions, the rotatory stability of teflon, polyethylene, and nylon catheters has an approximate ratio of 1:2:4. Wire reinforcement increases rotatory stability by an average factor of about 3. For catheters of calibers 5 F and 6 F, a correlation between the rotatory stability and the weight of the reinforcing wire mesh is apparent.
A new approach to the CZ crystal growth weighing control
NASA Astrophysics Data System (ADS)
Kasimkin, P. V.; Moskovskih, V. A.; Vasiliev, Y. V.; Shlegel, V. N.; Yuferev, V. S.; Vasiliev, M. G.; Zhdankov, V. N.
2014-03-01
The aim of a new approach was to improve the robustness of the weighing control of CZ growth especially for semiconductors, for which the “anomalous“ behavior of the apparent weight provokes instability of the servo-loop. In the described method, the periodic reciprocating measuring motion of small amplitude is superposed on the uniform pull-rod movement. The cross-sectional area is determined from the weight sensor responses that are modulated mainly by the forces of hydrostatic pressure. By the example of germanium crystal growth, it is shown that in the control system, based on such a way of the diameter measuring, a simple PI control law provides a good close loop system's stability and dynamics for the materials with the “anomalous” behavior of a weighing signal. The effect of a meniscus on the modulation measuring of a crystal diameter is also discussed.
Magnetic properties of permalloy wires in vycor capillaries
NASA Astrophysics Data System (ADS)
Lubitz, P.; Ayers, J. D.; Davis, A.
1991-11-01
Thin wires of NiFe alloys with compositions near 80% Ni were prepared by melting the alloy in vycor tubes and drawing fibers from the softened glass. The resulting fibers consist of relatively thick-walled vycor capillaries containing permalloy wires filling a few percent of the volume. The wires are continuous over considerable lengths, uniform in circular cross section, nearly free of contact with the walls and can be drawn to have diameters less than 1 μm. Their magnetic properties are generally similar to bulk permalloy, but show a variety of magnetic switching behaviors for fields along the wire axis, depending on composition, wire diameter, and thermal history. As pulled, the wires can show sharp switching, reversible rotation or mixed behavior. This method can produce NiFe alloy wires suitable for use in applications as sensor, memory or inductive elements; other alloys, such as supermalloy and sendust, also can be fabricated as fine wires by this method.
The Microstructure of Lunar Micrometeorite Impact Craters
NASA Technical Reports Server (NTRS)
Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.
2016-01-01
The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.
Alagöz, Cengiz; Pekel, Gökhan; Alagöz, Neşe; Sayın, Nihat; Yüksel, Kemal; Yıldırım, Yusuf; Yazıcı, Ahmet Taylan
2016-12-01
Our aim was to evaluate the alterations of subfoveal choroidal thickness (SFCT), photoreceptor layer thickness (PRT), and retinal vessel diameter in the dark and light adaptation. Twenty-four eyes of 24 healthy volunteers (12 males, 12 females) were included in this cross-sectional and observational study. The SFCT, PRT, retinal arteriole, and venule caliber measurements were performed with spectral domain optical coherence tomography in the dark (0.0 cd/m 2 ) and under light (80 cd/m 2 ) adapted conditions. The mean age of the participants was 30.4 ± 4.4 years (range: 22-42). The SFCT increased statistically significantly in dark adaptation (p < 0.001), then returned to baseline values following light adaptation. The PRT, retinal arteriole, and venule caliber measurements were similar in the dark and light (p > 0.05). While SFCT increased, PRT, and retinal vessel diameter did not change following transition from light to dark.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, T; Ding, H; Torabzadeh, M
2015-06-15
Purpose: To investigate the feasibility of quantifying the cross-sectional area (CSA) of coronary arteries using integrated density in a physics-based model with a phantom study. Methods: In this technique the total integrated density of the object as compared with its local background is measured so it is possible to account for the partial volume effect. The proposed method was compared to manual segmentation using CT scans of a 10 cm diameter Lucite cylinder placed inside a chest phantom. Holes with cross-sectional areas from 1.4 to 12.3 mm{sup 2} were drilled into the Lucite and filled with iodine solution, producing amore » contrast-to-noise ratio of approximately 26. Lucite rods 1.6 mm in diameter were used to simulate plaques. The phantom was imaged with and without the Lucite rods placed in the holes to simulate diseased and normal arteries, respectively. Linear regression analysis was used, and the root-mean-square deviations (RMSD) and errors (RMSE) were computed to assess the precision and accuracy of the measurements. In the case of manual segmentation, two readers independently delineated the lumen in order to quantify the inter-reader variability. Results: The precision and accuracy for the normal vessels using the integrated density technique were 0.32 mm{sup 2} and 0.32 mm{sup 2}, respectively. The corresponding results for the manual segmentation were 0.51 mm{sup 2} and 0.56 mm{sup 2}. In the case of diseased vessels, the precision and accuracy of the integrated density technique were 0.46 mm{sup 2} and 0.55 mm{sup 2}, respectively. The corresponding results for the manual segmentation were 0.75 mm{sup 2} and 0.98 mm{sup 2}. The mean percent difference for the two readers was found to be 8.4%. Conclusion: The CSA based on integrated density had improved precision and accuracy as compared with manual segmentation in a Lucite phantom. The results indicate the potential for using integrated density to improve CSA measurements in CT angiography.« less
Load deflection characteristics and force level of nickel titanium initial archwires.
Lombardo, Luca; Marafioti, Matteo; Stefanoni, Filippo; Mollica, Francesco; Siciliani, Giuseppe
2012-05-01
To investigate and compare the characteristics of commonly used types of traditional and heat-activated initial archwire by plotting their load/deflection graphs and quantifying three suitable parameters describing the discharge plateau phase. Forty-eight archwires (22 nickel titanium [NiTi] and 26 heat-activated) of cross-sectional diameter ranging from 0.010 to 0.016 inch were obtained from seven different manufacturers. A modified three-point wire-bending test was performed on three analogous samples of each type of archwire at a constant temperature (37.0°C). For each resulting load/deflection curve, the plateau section was isolated, along with the mean value of the average plateau force, the plateau length, and the plateau slope for each type of wire obtained. Statistically significant differences were found between almost all wires for the three parameters considered. Statistically significant differences were also found between traditional and heat-activated archwires, the latter of which generated longer plateaus and lighter average forces. The increase in average force seen with increasing diameter tended to be rather stable, although some differences were noted between traditional and heat-activated wires. Although great variation was seen in the plateau behavior, heat-activated versions appear to generate lighter forces over greater deflection plateaus. On average, the increase in plateau force was roughly 50% when the diameter was increased by 0.002 inch (from 0.012 to 0.014 and from 0.014 to 0.016 inch) and about 150% when the diameter was increased by 0.004 inch (from 0.012 to 0.016), with differences between traditional and heat-activated wires noted in this case.
Method for hot press forming articles
Baker, Robert R.; Hartsock, Dale L.
1982-01-01
This disclosure relates to an improved method for achieving the best bond strength and for minimizing distortion and cracking of hot pressed articles. In particular, in a method for hot press forming both an outer facing circumferential surface of and an inner portion of a hub, and of bonding that so-formed outer facing circumferential surface to an inner facing circumferential surface of a pre-formed ring thereby to form an article, the following improvement is made. Normally, in this method, the outside ring is restrained by a restraining sleeve of ring-shaped cross-section having an inside diameter. A die member, used to hot press form the hub, is so-formed as to have an outside diameter sized to engage the inside diameter of the restraining sleeve in a manner permitting relative movement therebetween. The improved method is one in which several pairs of matched restraining sleeve and die member are formed with each matched pair having a predetermined diameter. The predetermined diameter of each matched pair is different from another matched pair by stepped increments. The largest inside diameter of a restraining sleeve is equal to the diameter of the outer facing circumferential surface of the hub. Each pair of the matched restraining sleeve and die member is used to form an article in which an inside hub is bonded to an outside ring. The several samples so-formed are evaluated to determine which sample has the best bond formed between the hub and the ring with the least or no cracking or distortion in the ring portion of the article. Thereafter, the matched restraining sleeve and die member which form the article having the best bonding characteristics and least distortion cracking is then used for repeated formations of articles.
Diode laser prostatectomy (VLAP): initial canine evaluation
NASA Astrophysics Data System (ADS)
Kopchok, George E.; Verbin, Chris; Ayres, Bruce; Peng, Shi-Kaung; White, Rodney A.
1995-05-01
This study evaluated the acute and chronic effects of diode laser (960 nm) prostatectomy using a Prolase II fiber in a canine model (n equals 5). The laser fiber consists of a 1000 um quartz fiber which reflects a cone of laser energy, at 45 degree(s) to the axis of the fiber, into the prostatic urethra (Visual Laser Ablation of Prostate). Perineal access was used to guide a 15.5 Fr cystoscope to the level of the prostate. Under visual guidance and continual saline irrigation, 60 watts of laser power was delivered for 60 seconds at 3, 9, and 12 o'clock and 30 seconds at the 6 o'clock (posterior) positions for a total energy fluence of 12,600 J. One prostate received an additional 60 second exposure at 3 and 9 o'clock for a total fluence of 19,800 J. The prostates were evaluated at one day (n equals 1) and 8 weeks (n equals 4). The histopathology of laser effects at one day show areas of necrosis with loss of glandular structures and stromal edema. Surrounding this area was a zone of degenerative glandular structures extending up to 17.5 mm (cross sectional diameter). The histopathology of the 8 week laser treated animals demonstrated dilated prostatic urethras with maximum cross- sectional diameter of 23.4 mm (mean equals 18.5 +/- 3.9 mm). This study demonstrates the effectiveness of diode laser energy for prostatic tissue coagulation and eventual sloughing. The results also demonstrate the safety of diode laser energy, with similar tissue response as seen with Nd:YAG laser, for laser prostatectomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu
Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced eachmore » phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.« less
Cary, Theodore W; Reamer, Courtney B; Sultan, Laith R; Mohler, Emile R; Sehgal, Chandra M
2014-02-01
To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.
Cary, Theodore W.; Reamer, Courtney B.; Sultan, Laith R.; Mohler, Emile R.; Sehgal, Chandra M.
2014-01-01
Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging. PMID:24506648
Central obesity is an independent predictor of erectile dysfunction in older men.
Riedner, Charles Edison; Rhoden, Ernani Luis; Ribeiro, Eduardo Porto; Fuchs, Sandra Costa
2006-10-01
There is a growing body of evidence in the literature correlating erectile dysfunction to obesity. We investigated the correlation of different anthropometric indexes of central obesity to erectile dysfunction. A cross-sectional study was performed including 256 consecutive men 40 years old or older. All men completed the International Index of Erectile Function, and were evaluated routinely with a clinical history, physical examination and blood analysis for fasting serum glucose, lipid profile and serum testosterone. Anthropometric measures included body mass index, waist circumference, sagittal abdominal diameter, maximal abdominal circumference, and waist-hip, waist-thigh, waist-height, sagittal abdominal diameter-thigh and sagittal abdominal diameter-height indexes. In men 40 to 60 years old the different anthropometric indexes of central obesity were not correlated with the presence of erectile dysfunction (p > 0.05). Men older than 60 years (41%, range 61 to 81) demonstrated an association among erectile dysfunction and waist-hip index (p = 0.04), waist-thigh index (p = 0.02), sagittal abdominal diameter (p = 0.03), sagittal abdominal diameter-height index (p = 0.02) and maximal abdominal circumference (p = 0.04). After logistic regression analysis an independent effect on the presence of erectile dysfunction was observed for waist-hip index (OR 8.56, 95% CI 1.44-50.73), sagittal abdominal diameter (OR 7.87, 95% CI 1.24-49.75), sagittal abdominal diameter-height index (OR 14.21, 95% CI 1.11-182.32), maximum abdominal circumference (OR 11.72, 95% CI 1.73-79.18) and waist circumference (OR 19.37, 95% CI 1.15-326.55). This study suggests that central obesity, assessed by several anthropometric indicators, is associated to the presence of erectile dysfunction in men older than 60 years. Sagittal abdominal diameter, sagittal abdominal diameter-height index, maximum abdominal circumference, waist circumference and waist-hip index were useful indicators to predict the presence of erectile dysfunction.
Rapid Confined Mixing with Transverse Jets Part 1: Single Jet
NASA Astrophysics Data System (ADS)
Salazar, David; Forliti, David
2012-11-01
Transverse jets have been studied extensively due to their relevance and efficiency in fluid mixing applications. Gas turbine burners, film cooling, and chemical reactors are some examples of rapid transverse jet mixing. Motivated by a lack of universal scaling laws for confined and unconfined transverse jets, a newly developed momentum transfer parameter was found to improve correlation of literature data. Jet column drag and entrainment arguments for momentum transfer are made to derive the parameter. A liquid-phase mixing study was conducted to investigate confined mixing for a low number of jets. Planar laser induced fluorescence was implemented to measure mixture fraction for a single confined transverse jet. Time-averaged cross-sectional images were taken with a light sheet located three diameters downstream of transverse injection. A mixture of water and sodium fluorescein was used to distinguish jet fluid from main flow fluid for the test section images. Image data suggest regimes for under- and overpenetration of jet fluid into the main flow. The scaling parameter is found to correlate optimum unmixedness for multiple diameter ratios at a parameter value of 0.75. Distribution A: Public Release, Public Affairs Clearance Number: 12655.
Mironov, Aleksandr; Cootes, Timothy F.; Holmes, David F.; Kadler, Karl E.
2017-01-01
Collagen fibrils are the major tensile element in vertebrate tissues where they occur as ordered bundles in the extracellular matrix. Abnormal fibril assembly and organization results in scarring, fibrosis, poor wound healing and connective tissue diseases. Transmission electron microscopy (TEM) is used to assess formation of the fibrils, predominantly by measuring fibril diameter. Here we describe an enhanced protocol for measuring fibril diameter as well as fibril-volume-fraction, mean fibril length, fibril cross-sectional shape, and fibril 3D organization that are also major determinants of tissue function. Serial section TEM (ssTEM) has been used to visualize fibril 3D-organization in vivo. However, serial block face-scanning electron microscopy (SBF-SEM) has emerged as a time-efficient alternative to ssTEM. The protocol described below is suitable for preparing tissues for TEM and SBF-SEM (by 3View®). We demonstrate the power of 3View® for studying collagen fibril organization in vivo and show how to find and track individual fibrils. Time scale: ~8 days from isolating the tissue to having a 3D image stack. PMID:23807286
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, L; Duke University Medical Center, Durham, NC; Fudan University Shanghai Cancer Center, Shanghai
Purpose: To investigate prostate imaging onboard radiation therapy machines using a novel robotic, 49-pinhole Single Photon Emission Computed Tomography (SPECT) system. Methods: Computer-simulation studies were performed for region-of-interest (ROI) imaging using a 49-pinhole SPECT collimator and for broad cross-section imaging using a parallel-hole SPECT collimator. A male XCAT phantom was computersimulated in supine position with one 12mm-diameter tumor added in the prostate. A treatment couch was added to the phantom. Four-minute detector trajectories for imaging a 7cm-diameter-sphere ROI encompassing the tumor were investigated with different parameters, including pinhole focal length, pinhole diameter and trajectory starting angle. Pseudo-random Poisson noise wasmore » included in the simulated projection data, and SPECT images were reconstructed by OSEM with 4 subsets and up to 10 iterations. Images were evaluated by visual inspection, profiles, and Root-Mean- Square-Error (RMSE). Results: The tumor was well visualized above background by the 49-pinhole SPECT system with different pinhole parameters while it was not visible with parallel-hole SPECT imaging. Minimum RMSEs were 0.30 for 49-pinhole imaging and 0.41 for parallelhole imaging. For parallel-hole imaging, the detector trajectory from rightto- left yielded slightly lower RMSEs than that from posterior to anterior. For 49-pinhole imaging, near-minimum RMSEs were maintained over a broader range of OSEM iterations with a 5mm pinhole diameter and 21cm focal length versus a 2mm diameter pinhole and 18cm focal length. The detector with 21cm pinhole focal length had the shortest rotation radius averaged over the trajectory. Conclusion: On-board functional and molecular prostate imaging may be feasible in 4-minute scan times by robotic SPECT. A 49-pinhole SPECT system could improve such imaging as compared to broadcross-section parallel-hole collimated SPECT imaging. Multi-pinhole imaging can be improved by considering pinhole focal length, pinhole diameter, and trajectory starting angle. The project is supported by the NIH grant 5R21-CA156390.« less
Montaudon, M; Desbarats, P; Berger, P; de Dietrich, G; Marthan, R; Laurent, F
2007-01-01
A thickened bronchial wall is the morphological substratum of most diseases of the airway. Theoretical and clinical models of bronchial morphometry have so far focused on bronchial lumen diameter, and bronchial length and angles, mainly assessed from bronchial casts. However, these models do not provide information on bronchial wall thickness. This paper reports in vivo values of cross-sectional wall area, lumen area, wall thickness and lumen diameter in ten healthy subjects as assessed by multi-detector computed tomography. A validated dedicated software package was used to measure these morphometric parameters up to the 14th bronchial generation, with respect to Weibel's model of bronchial morphometry, and up to the 12th according to Boyden's classification. Measured lumen diameters and homothety ratios were compared with theoretical values obtained from previously published studies, and no difference was found when considering dichotomic division of the bronchial tree. Mean wall area, lumen area, wall thickness and lumen diameter were then provided according to bronchial generation order, and mean homothety ratios were computed for wall area, lumen area and wall thickness as well as equations giving the mean value of each parameter for a given bronchial generation with respect to its value in generation 0 (trachea). Multi-detector computed tomography measurements of bronchial morphometric parameters may help to improve our knowledge of bronchial anatomy in vivo, our understanding of the pathophysiology of bronchial diseases and the evaluation of pharmacological effects on the bronchial wall. PMID:17919291
Retinal Arterioles in Hypo-, Normo-, and Hypertensive Subjects Measured Using Adaptive Optics.
Hillard, Jacob G; Gast, Thomas J; Chui, Toco Y P; Sapir, Dan; Burns, Stephen A
2016-08-01
Small artery and arteriolar walls thicken due to elevated blood pressure. Vascular wall thickness show a correlation with hypertensive subject history and risk for stroke and cardiovascular events. The inner and outer diameter of retinal arterioles from less than 10 to over 150 μm were measured using a multiply scattered light adaptive optics scanning laser ophthalmoscope (AOSLO). These measurements were made on three populations, one with habitual blood pressures less than 100/70 mm Hg, one with normal blood pressures without medication, and one with managed essential hypertension. The wall to lumen ratio was largest for the smallest arterioles for all three populations. Data from the hypotensive group had a linear relationship between outer and inner diameters ( r 2 = 0.99) suggesting a similar wall structure in individuals prior to elevated blood pressures. Hypertensive subjects fell below the 95% confidence limits for the hypotensive relationship and had larger wall to lumen ratios and the normotensive group results fell between the other two groups. High-resolution retinal imaging of subjects with essential hypertension showed a significant decrease in vessel inner diameter for a given outer diameter, and increases in wall to lumen ratio and wall cross-sectional areas over the entire range of vessel diameters and suggests that correcting for vessel size may improve the ability to identify significant vascular changes. High-resolution imaging allows precise measurement of vasculature and by comparing results across risk populations may allow improved identification of individuals undergoing hypertensive arterial wall remodeling.
Boring apparatus capable of boring straight holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, C.R.
The invention relates to a rock boring assembly for producing a straight hole for use in a drill string above a pilot boring bit of predetermined diameter smaller than the desired final hole size. The boring assembly comprises a small conical boring bit and a larger conical boring, the conical boring bits mounted on lower and upper ends of an enlongated spacer, respectively, and the major effective cutting diameters of each of the conical boring bits being at least 10% greater than the minor effective cutting diameter of the respective bit. The spacer has a cross-section resistant bending and spacesmore » the conical boring bits apart a distance at least 5 times the major cutting diameter of the small conical boring bit, thereby spacing the pivot points provided by the two conical boring bits to limit bodily angular deflection of the assembly and providing a substantial moment arm to resist lateral forces applied to the assembly by the pilot bit and drill string. The spacing between the conical bits is less than about 20 times the major cutting diameter of the lower conical boring bit to enable the spacer to act as a bend-resistant beam to resist angular deflection of the axis of either of the conical boring bits relative to the other when it receives uneven lateral force due to non-uniformity of cutting conditions about the circumference of the bit. Advantageously the boring bits also are self-advancing and feature skewed rollers. 7 claims.« less
Classification of Kiwifruit Grades Based on Fruit Shape Using a Single Camera
Fu, Longsheng; Sun, Shipeng; Li, Rui; Wang, Shaojin
2016-01-01
This study aims to demonstrate the feasibility for classifying kiwifruit into shape grades by adding a single camera to current Chinese sorting lines equipped with weight sensors. Image processing methods are employed to calculate fruit length, maximum diameter of the equatorial section, and projected area. A stepwise multiple linear regression method is applied to select significant variables for predicting minimum diameter of the equatorial section and volume and to establish corresponding estimation models. Results show that length, maximum diameter of the equatorial section and weight are selected to predict the minimum diameter of the equatorial section, with the coefficient of determination of only 0.82 when compared to manual measurements. Weight and length are then selected to estimate the volume, which is in good agreement with the measured one with the coefficient of determination of 0.98. Fruit classification based on the estimated minimum diameter of the equatorial section achieves a low success rate of 84.6%, which is significantly improved using a linear combination of the length/maximum diameter of the equatorial section and projected area/length ratios, reaching 98.3%. Thus, it is possible for Chinese kiwifruit sorting lines to reach international standards of grading kiwifruit on fruit shape classification by adding a single camera. PMID:27376292
Yap, Felix Y; Bui, James T; Knuttinen, M Grace; Walzer, Natasha M; Cotler, Scott J; Owens, Charles A; Berkes, Jamie L; Gaba, Ron C
2013-01-01
The quantitative relationship between tumor morphology and malignant potential has not been explored in liver tumors. We designed a computer algorithm to analyze shape features of hepatocellular carcinoma (HCC) and tested feasibility of morphologic analysis. Cross-sectional images from 118 patients diagnosed with HCC between 2007 and 2010 were extracted at the widest index tumor diameter. The tumor margins were outlined, and point coordinates were input into a MATLAB (MathWorks Inc., Natick, Massachusetts, USA) algorithm. Twelve shape descriptors were calculated per tumor: the compactness, the mean radial distance (MRD), the RD standard deviation (RDSD), the RD area ratio (RDAR), the zero crossings, entropy, the mean Feret diameter (MFD), the Feret ratio, the convex hull area (CHA) and perimeter (CHP) ratios, the elliptic compactness (EC), and the elliptic irregularity (EI). The parameters were correlated with the levels of alpha-fetoprotein (AFP) as an indicator of tumor aggressiveness. The quantitative morphometric analysis was technically successful in all cases. The mean parameters were as follows: compactness 0.88±0.086, MRD 0.83±0.056, RDSD 0.087±0.037, RDAR 0.045±0.023, zero crossings 6±2.2, entropy 1.43±0.16, MFD 4.40±3.14 cm, Feret ratio 0.78±0.089, CHA 0.98±0.027, CHP 0.98±0.030, EC 0.95±0.043, and EI 0.95±0.023. MFD and RDAR provided the widest value range for the best shape discrimination. The larger tumors were less compact, more concave, and less ellipsoid than the smaller tumors (P < 0.0001). AFP-producing tumors displayed greater morphologic irregularity based on several parameters, including compactness, MRD, RDSD, RDAR, entropy, and EI (P < 0.05 for all). Computerized HCC image analysis using shape descriptors is technically feasible. Aggressively growing tumors have wider diameters and more irregular margins. Future studies will determine further clinical applications for this morphologic analysis.
Nonlinear cross-field coupling on the route to broadband turbulence
NASA Astrophysics Data System (ADS)
Brandt, Christian; Thakur, Saikat C.; Cui, Lang; Gosselin, Jordan J.; Negrete, Jose, Jr.; Holland, Chris; Tynan, George R.
2013-10-01
In the linear magnetized plasma device CSDX (Controlled Shear De-correlation eXperiment) drift interchange modes are studied coexisting on top of a weak turbulence driven azimuthally symmetric, radially sheared plasma flow. In helicon discharges (helicon antenna diameter 15 cm) with increasing magnetic field (B <= 0 . 24 T) the system can be driven to fully developed broadband turbulence. Fast imaging using a refractive telescope setup is applied to study the dynamics in the azimuthal-radial cross-section. The image data is supported by Langmuir probe measurements. In the present study we examine the development of nonlinear transfer as the fully developed turbulence emerges. Nonlinear cross-field coupling between eigenmodes at different radial positions is investigated using Fourier decomposition of azimuthal eigenmodes. The coupling strength between waves at different radial positions is inferred to radial profiles and cross-field transport between adjacent magnetic flux surfaces. Nonlinear effects like synchronization, phase slippages, phase pulling and periodic pulling are observed. The effects of mode coupling and the stability of modes is compared to the dynamics of a coupled chain of Kuramoto oscillators.
Kakoma, Jean-Baptiste
2016-01-01
Maternal anthropometric parameters as risk factors for cesarean section have always been a matter of interest and concern for obstetricians. Some of these parameters have been shown to be predictors of dystocia. This study aims at showing the relationship between cesarean section indications and anthropometric parameters sizes in Rwandan nulliparae for the purpose of comparison and appropriate recommendations. A cross-sectional and analytical study was made on data collected from 32 operated patients among 152 nulliparae with singleton pregnancy at term and vertex presentation. Concerned anthropometric parameters were height, weight and six pelvic distances. Fisher exact and Student's tests were used to compare observed proportions and mean values, respectively. Findings were as follows: 1) the overall cesarean section rate was 21.05%; 2) acute fetal distress (31.3 %), generally contracted pelvis (28.1 %), and engagement failure (25%) were the most frequent indications of cesarean section; 3) all patients ≤ 145 cm tall were operated on for general pelvis contraction whose proportion was significantly higher in them than in the others (p < 0.01); 4) more than half of pelvis contraction cases were observed in patients weighing ≤ 50 kg, but the difference with other weight categories was not significant; 5) considered external pelvic diameters but the Biiliac Diameter displayed average measurements smaller in clinically contracted pelvis than in other CS indications. External pelvimetry associated with specific other anthropometric parameters could be helpful in the screening of generally contracted pelves, and consequently pregnancies at high risk of cephalopelvic disproportion in nulliparous women, particularly in developing countries with limited resources. Further investigations are requested to deal with this topic in depth.
NASA Astrophysics Data System (ADS)
Gaikwad, Dhammajyot Kundlik; Pawar, Pravina P.; Selvam, T. Palani
2017-09-01
The mass attenuation coefficients (μ/ρ) for some enzymes, proteins, amino acids and fatty acids were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies, by performing transmission experiments using 57Co, 133Ba, 137Cs, 60Co and 22Na sources collimated to produce 0.52 cm diameter beams. A NaI (Tl) scintillation detector with energy resolution 8.2% at 663 keV was used for detection. The experimental values of (μ/ρ) were then used to determine the atomic cross section (σa), electronic cross section (σe), effective atomic number (Zeff) and electron density (Neff). It was observed that (μ/ρ), σa and σe decrease initially and then tends to be almost constant at higher energies. Values of Zeff and Neff were observed roughly constant with energy. The deviations in experimental results of radiological parameters were believed to be affected by physical and chemical environments. Experimental results of radiological parameters were observed in good agreement with WinXCom values.
Ray, C Keith; Armbruster, Jonathan W
2016-02-04
We review the complex history of those species included in the Hypostomus emarginatus species complex and recognize them in Isorineloricaria and Aphanotorulus. Isorineloricaria consists of four valid species: I. acuarius n. sp., I. spinosissima, I. tenuicauda, and I. villarsi. Aphanotorulus consists of six valid species: A. ammophilus, A, emarginatus, A. gomesi, A. horridus, A. phrixosoma, and A. unicolor. Plecostomus annae and Hypostoma squalinum are placed in the synonymy of A. emarginatus; Plecostomus biseriatus, P. scopularius, and P. virescens are placed in the synonymy of A. horridus; Plecostomus winzi is placed in the synonymy of I. tenuicauda, and one new species, I. acuarius is described from the Apure River basin of Venezuela. Aphanotoroulus can be distinguished from Isorineloricaria by having caudal peduncles that do not become greatly lengthed with size and that are oval in cross section (vs. caudal peduncle proportions that get proportionately longer with size and that become round in cross-section), and by having small dark spots (less than half plate diameter) on a light tan background (vs. spots almost as large as lateral plates on a nearly white background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou Chau, Yuan-Fong, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming; Kumara, N. T. R. N.
Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviorsmore » are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.« less
Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan
2012-01-01
Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements.
Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope
NASA Astrophysics Data System (ADS)
Wall, R. Andrew; Barton, Jennifer K.
2012-08-01
A side-viewing, 2.3-mm diameter, surface magnifying chromoendoscopy-optical coherence tomography (SMC-OCT) endoscope has been designed for simultaneous, nondestructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of the mouse colon. A 30,000 element fiber bundle is combined with single mode fibers, for SMC and OCT imaging, respectively. The distal optics consist of a gradient-index lens and spacer to provide a 1× magnification at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23-mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the gradient-index lens assembly. The resulting 1∶1 imaging system is capable of 3.9-μm lateral and 2.3-μm axial resolution in the OCT channel, and 125-lp/mm resolution across a 0.70-mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure.
Tunable acoustic absorbers with periodical micro-perforations having varying pore shapes
NASA Astrophysics Data System (ADS)
Ren, Shuwei; Liu, Xuewei; Gong, Junqing; Tang, Yufan; Xin, Fengxian; Huang, Lixi; Lu, Tian Jian
2017-11-01
Circular pores with sub-millimeter diameters have been widely used to construct micro-perforated panels (MPPs), the acoustical performance of which can be predicted well using the Maa theory (MAA D.-Y., J. Acoust. Soc. Am., 104 (1998) 2861). We present a tunable MPP absorber with periodically arranged cylindrical pores, with their cross-sectional shapes systematically altered around the circle while maintaining their cross-sectional areas unchanged. Numerical analyses based on the viscous-thermal coupled acoustical equations are utilized to investigate the tunable acoustic performance of the proposed absorbers and to reveal the underlying physical mechanisms. We demonstrate that pore morphology significantly affects the sound absorbption of MPPs by modifying the velocity field (and hence viscous dissipation) in the pores. Pore shapes featured as meso-scale circular pores accompanied with micro-scale bulges along the boundaries can lead to perfect sound absorption at relatively low frequencies. This work not only enriches the classical Maa theory on MPPs having circular perforations, but it also opens a new avenue for designing subwavelength acoustic metamaterials of superior sound absorption in target frequency ranges.
NASA Astrophysics Data System (ADS)
Donovan, David; Buchenauer, Dean; Whaley, Josh; Friddle, Raymond; Wright, Graham
2014-10-01
Exposure of tungsten to low energy (<100 eV) helium plasmas at temperatures between 900-1900 K in both laboratory experiments and tokamaks has been shown to cause severe nanoscale modification of the near surface resulting the growth of tungsten tendrils. We are exploring the potential for using a compact ECR plasma in situ with scanning tunneling microscopy (STM) to investigate the early stages of helium induced tungsten migration. Here we report on characterization of the plasma source for helium plasmas with a desired ion flux of ~1 × 1019 ions m-2 s-1 and the surface morphology changes seen on the exposed tungsten surfaces. Exposures of polished tungsten discs have been performed and characterized using SEM, AFM, and FIB cross section imaging. Bubbles have been seen on the exposed tungsten surface and in sub-surface cross sections growing to up to 150 nm in diameter. Comparisons are made between exposures of warm rolled Plansee tungsten discs and ALMT ITER grade tungsten samples. Work supported by US DOE Contract DE-AC04-94AL85000 and the PSI Science Center.
Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope
Wall, R. Andrew
2012-01-01
Abstract. A side-viewing, 2.3-mm diameter, surface magnifying chromoendoscopy-optical coherence tomography (SMC-OCT) endoscope has been designed for simultaneous, nondestructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of the mouse colon. A 30,000 element fiber bundle is combined with single mode fibers, for SMC and OCT imaging, respectively. The distal optics consist of a gradient-index lens and spacer to provide a 1× magnification at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23-mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the gradient-index lens assembly. The resulting 1∶1 imaging system is capable of 3.9-µm lateral and 2.3-µm axial resolution in the OCT channel, and 125-lp/mm resolution across a 0.70-mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure. PMID:23224190
Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan
2012-01-01
Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements. PMID:22619599
Mishra, Monalisa; Meyer-Rochow, Victor Benno
2006-12-01
The pollen-consuming beetle Xanthochroa luteipennis, which belongs to the family Oedemeridae, possesses a nearly spherical eye of approximately 400 microm in diameter. The eye contains 750-800, mostly hexagonal ommatidia, which are of the acone apposition type and have an open rhabdom. A well-developed pupil mechanism controls the light flux to the rhabdom. The pupil is formed with the help of screening pigment translocations, involving primary and secondary (accessory) pigment cells. Cross-sections of rhabdoms reveal that they are developed as ring-like structures, made up of the rhabdomeres of six retinula cells, surrounding a rod-like inner column of two fused rhabdomeres. Rhabdoms of ommatidia in the middle of the eye differ somewhat from those in more peripheral areas. In the former the central rhabdom is circular in cross-section, while in the latter it is spindle-shaped. The rhabdom organization in combination with the distal pupil mechanism is seen as an adaptation to maximize photon capture under a variety of ambient light intensities, for Oedemerid beetles are commonly active during the day as well as the night.
NASA Astrophysics Data System (ADS)
Chou Chau, Yuan-Fong; Lim, Chee Ming; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Chiang, Hai-Pang
2016-09-01
Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.
Large space deployable antenna systems
NASA Technical Reports Server (NTRS)
1978-01-01
The design technology is described for manufacturing a 20 m or larger space erectable antenna with high thermal stability, high dynamic stiffness, and minimum stowed size. The selected approach includes a wrap rib design with a cantilever beam basic element and graphite-epoxy composite lenticular cross section ribs. The rib configuration and powered type operated deploying mechanism are described and illustrated. Other features of the parabolic reflector discussed include weight and stowed diameter characteristics, structural dynamics characteristics, orbit thermal aperture limitations, and equivalent element and secondary (on axis) patterns. A block diagram of the multiple beam pattern is also presented.
A new technique for Auger analysis of surface species subject to electron-induced desorption
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1973-01-01
A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the surface velocity, incident electron current, beam diameter, and desorption cross section are analyzed. The method is illustrated by the Auger analysis of PTFE, in which the fluorine is removed by electron induced desorption.
A laser system to remotely sense bird movements
NASA Technical Reports Server (NTRS)
Korschgen, C. E.; Green, W. L.; Seasholtz, R. G.
1983-01-01
The design and operation of a laser detection system for migrating birds are presented. A battery-powered class-III laser (operating at 904 nm, pulse-repetition rate 5 kHz, pulse duration 100 nsec, and peak power 25 W) and a photodiode receiver are mounted on poles at height 10 m and distance 850 m and equipped with 135-mm f/2.8 collimating lenses; beam diameter at the receiver is 1.7 m. The microprocessor-controlled system is found to detect the passing of an object as small as 30 sq cm in cross section at a distance of 425 m.
Sapwood area ofPinus contorta stands as a function of mean size and density.
Long, James N; Dean, Thomas J
1986-09-01
An indirect test of the relationship between leaf area and the combination of mean size and density is made in stands of lodgepole pine (Pinus contorta Dougl.). Total sapwood cross-sectional area of these stands is a function of the product of density and mean diameter raised to an exponent of about 1.6. Results from other studies, representing four species, suggest that this relationship between sapwood area and the combination of mean size and density may be general. The implications of the relationship are discussed in the context of evapotranspiration, competition and self-thinning.
Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays
Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; ...
2015-01-15
Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, themore » Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.« less
Proton acceleration by irradiation of isolated spheres with an intense laser pulse
Ostermayr, Tobias M.; Haffa, D.; Hilz, P.; ...
2016-09-26
We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2–3 × 10 20 W cm –2. With a laser focal spot size of 10 μm full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 μm. Maximum proton energies of ~ 25 MeV are achieved for targets matching the focal spot size of 10 μm in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused bymore » Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. In conclusion, they make use of well-defined targets and point out pathways for future applications and experiments.« less
Proton acceleration by irradiation of isolated spheres with an intense laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostermayr, Tobias M.; Haffa, D.; Hilz, P.
We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2–3 × 10 20 W cm –2. With a laser focal spot size of 10 μm full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 μm. Maximum proton energies of ~ 25 MeV are achieved for targets matching the focal spot size of 10 μm in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused bymore » Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. In conclusion, they make use of well-defined targets and point out pathways for future applications and experiments.« less
Farajollahi, Farid; Seidenstücker, Axel; Altintoprak, Klara; Walther, Paul; Ziemann, Paul; Plettl, Alfred; Marti, Othmar; Wege, Christina; Gliemann, Hartmut
2018-04-13
Nanoporous membranes are of increasing interest for many applications, such as molecular filters, biosensors, nanofluidic logic and energy conversion devices. To meet high-quality standards, e.g., in molecular separation processes, membranes with well-defined pores in terms of pore diameter and chemical properties are required. However, the preparation of membranes with narrow pore diameter distributions is still challenging. In the work presented here, we demonstrate a strategy, a "pore-in-pore" approach, where the conical pores of a solid state membrane produced by a multi-step top-down lithography procedure are used as a template to insert precisely-formed biomolecular nanodiscs with exactly defined inner and outer diameters. These nanodiscs, which are the building blocks of tobacco mosaic virus-deduced particles, consist of coat proteins, which self-assemble under defined experimental conditions with a stabilizing short RNA. We demonstrate that the insertion of the nanodiscs can be driven either by diffusion due to a concentration gradient or by applying an electric field along the cross-section of the solid state membrane. It is found that the electrophoresis-driven insertion is significantly more effective than the insertion via the concentration gradient.
Farajollahi, Farid; Seidenstücker, Axel; Altintoprak, Klara; Walther, Paul; Ziemann, Paul; Plettl, Alfred; Wege, Christina; Gliemann, Hartmut
2018-01-01
Nanoporous membranes are of increasing interest for many applications, such as molecular filters, biosensors, nanofluidic logic and energy conversion devices. To meet high-quality standards, e.g., in molecular separation processes, membranes with well-defined pores in terms of pore diameter and chemical properties are required. However, the preparation of membranes with narrow pore diameter distributions is still challenging. In the work presented here, we demonstrate a strategy, a “pore-in-pore” approach, where the conical pores of a solid state membrane produced by a multi-step top-down lithography procedure are used as a template to insert precisely-formed biomolecular nanodiscs with exactly defined inner and outer diameters. These nanodiscs, which are the building blocks of tobacco mosaic virus-deduced particles, consist of coat proteins, which self-assemble under defined experimental conditions with a stabilizing short RNA. We demonstrate that the insertion of the nanodiscs can be driven either by diffusion due to a concentration gradient or by applying an electric field along the cross-section of the solid state membrane. It is found that the electrophoresis-driven insertion is significantly more effective than the insertion via the concentration gradient. PMID:29652841
NASA Astrophysics Data System (ADS)
Unt, Anna; Poutiainen, Ilkka; Salminen, Antti
In this paper, a study of laser-arc hybrid welding featuring three different process fibres was conducted to build knowledge about process behaviour and discuss potential benefits for improving the weld properties. The welding parameters affect the weld geometry considerably, as an example the increase in welding speed usually decreases the penetration and a larger beam diameter usually widens the weld. The laser hybrid welding system equipped with process fibres with 200, 300 and 600 μm core diameter were used to produce fillet welds. Shipbuilding steel AH36 plates with 8 mm thickness were welded with Hybrid-Laser-Arc-Welding (HLAW) in inversed T configuration, the effects of the filler wire feed rate and the beam positioning distance from the joint plane were investigated. Based on the metallographic cross-sections, the effect of process parameters on the joint geometry was studied. Joints with optimized properties (full penetration, soundness, smooth transition from bead to base material) were produced with 200 μm and 600 μm process fibres, while fiber with 300 μm core diameter produced welds with unacceptable levels of porosity.
Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays
Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.
2015-01-01
Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, the Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process. PMID:25589290
Dumée, Ludovic F.; She, Fenghua; Duke, Mikel; Gray, Stephen; Hodgson, Peter; Kong, Lingxue
2014-01-01
Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm) as well as the sintering pressure (5–20 ton·m−2) and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested. PMID:28344241
Manassakorn, Anita; Ishikawa, Hiroshi; Kim, Jong S.; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Gabriele, Michelle L.; Sung, Kyung Rim; Mumcuoglu, Tarkan; Duker, Jay S.; Fujimoto, James G.; Schuman, Joel S.
2009-01-01
Objective To determine the correspondence between optic disc margins evaluated using disc photography (DP) and optical coherence tomography (OCT). Methods From May 1, 2005, through November 10, 2005, 17 healthy volunteers (17 eyes) had raster scans (180 frames, 501 samplings per frame) centered on the optic disc taken with stereo-optic DP and high-speed ultrahigh-resolution OCT (hsUHR-OCT). Two image outputs were derived from the hsUHR-OCT data set: an en face hsUHR-OCT fundus image and a set of 180 frames of cross-sectional images. Three ophthalmologists independently and in a masked, randomized fashion marked the disc margin on the DP, hsUHR-OCT fundus, and cross-sectional images using custom software. Disc size (area and horizontal and vertical diameters) and location of the geometric disc center were compared among the 3 types of images. Results The hsUHR-OCT fundus image definition showed a significantly smaller disc size than the DP definition (P<.001, mixed-effects analysis). The hsUHR-OCT cross-sectional image definition showed a significantly larger disc size than the DP definition (P<.001). The geometric disc center location was similar among the 3 types of images except for the y-coordinate, which was significantly smaller in the hsUHR-OCT fundus images than in the DP images. Conclusion The optic disc margin as defined by hsUHR-OCT was significantly different than the margin defined by DP. PMID:18195219
Clinical acceptability of an ethylene-vinyl-acetate nonmedicated vaginal ring.
Roumen, F J; Dieben, T O
1999-01-01
In an open study the acceptability of a newly designed vaginal ring was evaluated. The ring being developed for contraceptive purposes was made of ethylene-vinyl-acetate copolymer (EVA). In this study the ring did not contain active medication. Three groups of 20 healthy female volunteers were asked to use rings--with a diameter of 54 mm--for 21 consecutive days; each group was assigned rings with a different cross-sectional thickness of 3, 3.5, or 4 mm. Subjects were given diary cards to report on insertion and removal of the ring and on complaints. Of the 65 women who participated, 59 completed the study and used the ring for at least 21 days, giving an acceptability of 91% (59/65). No major differences were found between the three types of rings except for a sensation of expulsion, which was reported more often in the group assigned the smallest cross-sectional-thickness ring. Expulsion was reported once during intercourse in the 3.5-mm group. Insertion and removal of the rings were judged to be easy by the overall majority of the women. The ring was felt by the partner during intercourse in 35%-50% of couples. Further development of an active combined contraceptive EVA ring with a cross-sectional thickness of 4 mm seems a reasonable option. In future studies with the active ring, allowance for temporary removal of the ring during intercourse, if preferred, may be suggested.
Distance within colloidal dimers probed by rotation-induced oscillations of scattered light.
van Vliembergen, Roland W L; van IJzendoorn, Leo J; Prins, Menno W J
2016-01-25
Aggregation processes of colloidal particles are of broad scientific and technological relevance. The earliest stage of aggregation, when dimers appear in an ensemble of single particles, is very important to characterize because it opens routes for further aggregation processes. Furthermore, it represents the most sensitive phase of diagnostic aggregation assays. Here, we characterize dimers by rotating them in a magnetic field and by recording the angle dependence of light scattering. At small scattering angles, the scattering cross section can be approximated by the total cross-sectional area of the dimer. In contrast, at scattering angles around 90 degrees, we reveal that the dependence of the scattering cross section on the dimer angle shows a series of peaks per single 2π rotation of the dimers. These characteristics originate from optical interactions between the two particles, as we have verified with two-particle Mie scattering simulations. We have studied in detail the angular positions of the peaks. It appears from simulations that the influence of particle size polydispersity, Brownian rotation and refractive index on the angular positions of the peaks is relatively small. However, the angular positions of the peaks strongly depend on the distance between the particles. We find a good correspondence between measured data and calculations for a gap of 180 nm between particles having a diameter of 1 micrometer. The experiment and simulations pave the way for extracting distance-specific data from ensembles of dimerizing colloidal particles, with application for sensitive diagnostic aggregation assays.
Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan
NASA Astrophysics Data System (ADS)
Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz
2017-03-01
Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.
Congenital lumbar spinal stenosis: a prospective, control-matched, cohort radiographic analysis.
Singh, Kern; Samartzis, Dino; Vaccaro, Alexander R; Nassr, Ahmad; Andersson, Gunnar B; Yoon, S Tim; Phillips, Frank M; Goldberg, Edward J; An, Howard S
2005-01-01
Degenerative lumbar spinal stenosis manifests primarily after the sixth decade of life as a result of facet hypertrophy and degenerative disc disease. Congenital stenosis, on the other hand, presents earlier in age with similar clinical findings but with multilevel involvement and fewer degenerative changes. These patients may have subtle anatomic variations of the lumbar spine that may increase the likelihood of thecal sac compression. However, to the authors' knowledge, no quantitative studies have addressed various radiographic parameters of symptomatic, congenitally stenotic individuals to normal subjects. To radiographically quantify and compare the anatomy of the lumbar spine in symptomatic, congenitally stenotic individuals to age- and sex-matched, asymptomatic, nonstenotic controlled individuals. A prospective, control-matched, cohort radiographic analysis. Axial and sagittal magnetic resonance imaging (MRI) and lateral, lumbar, plain radiographs of 20 surgically treated patients who were given a clinical diagnosis of congenital lumbar stenosis by the senior author were randomized with images of 20, asymptomatic age- and sex-matched subjects. MRIs and lateral, lumbar, plain radiographs were independently quantitatively assessed by two individuals. Measurements obtained from the axial MRIs included: midline anterior-posterior (AP) vertebral body diameter, vertebral body width, midline AP canal diameter, canal width, spinal canal cross-sectional area, pedicle length, and pedicle width. From the sagittal MRIs, the following measurements were calculated: AP vertebral body diameter, vertebral body height, and AP canal diameter at the mid-vertebral level. On the lateral, lumbar, plain radiograph (L3 level), the AP diameters of the vertebral body spinal canal were measured. The images of these 40 individuals were then randomized and distributed in a blinded fashion to five separate spine surgeons who graded the presence and severity of congenital stenosis utilizing a five-tier scale. Images consisting of 15 symptomatic individuals, graded definitely congenitally stenotic (mean age, 51.7 years; range, 43-65 years), and 15 asymptomatic individuals, graded definitely not stenotic (mean age, 50.7 years; range, 41-55 years), were age- and sex-matched and included for further review. From these 30 patients, a lateral, lumbar, plain radiograph and axial and sagittal MRIs (T1/T2 weighted) from L2-L5 were quantitatively analyzed. Rater reliability was assessed by Kappa coefficient testing. The cross-sectional area of the canal was significantly smaller in the congenitally stenotic patients at all lumbar levels measured (L2: 176 mm(2) vs. 259 mm(2), L3: 177 mm(2) vs. 275 mm(2), L4: 183 mm(2) vs. 283 mm(2), L5: 213 mm(2) vs. 323 mm(2), p<.05). Pedicle length was markedly shorter in the stenosis group at each lumbar level (L2: 5.9 mm vs. 8.9 mm, L3: 6.0 mm vs. 8.8 mm, L4: 6.5 mm vs. 9.2 mm, L5: 5.8 mm vs. 9.1 mm, p<.05). Furthermore, midline, axial AP canal diameter, vertebral body width, and sagittal AP canal diameter were all significantly smaller than the control patients (p<.05). A ratio of the AP diameter of the pedicle length to the vertebral body was also noted to be statistically significant on both the lateral plain radiographs (L3: 0.426 vs. 0.704) and sagittal MRI (L2: 0.343 vs. 0.461, L3: 0.361 vs. 0.461, L4: 0.362 vs. 0.481, L5: 0.354 vs. 0.452, p<.05). No difference was noted comparing the AP diameter of the vertebral body (axial and sagittal images), vertebral body height, canal width, and pedicle width. Kappa testing coefficient indicated a strong rater reliability (k=0.81, 95% confidence interval: 0.62-0.94). Congenital lumbar stenosis has not been clearly defined radiographically. Clinically, congenitally stenotic patients present at a younger age with fewer degenerative changes and multiple levels of involvement. Radiographically, these patients have a shorter pedicular length and as a result a smaller cross-sectional spinal canal area (mean critical values of 6.5 mm and 213 mm(2) were observed, respectively). The mean critical ratios were 0.43 (2:1 AP vertebral body: pedicle length) on the lateral lumbar radiograph and 0.36 on the sagittal MRI. The altered canal anatomy resulting from a decreased pedicle length may anatomically predispose these patients to earlier complaints of symptomatic neurogenic claudication. Identification of the presence of congenital stenosis should increase the treating surgeon's awareness of the potential need for multilevel treatment.
Rissech, Carme; López-Costas, Olalla; Turbón, Daniel
2013-01-01
The goal of the present study is to examine cross-sectional information on the growth of the humerus based on the analysis of four measurements, namely, diaphyseal length, transversal diameter of the proximal (metaphyseal) end of the shaft, epicondylar breadth and vertical diameter of the head. This analysis was performed in 181 individuals (90 ♂ and 91 ♀) ranging from birth to 25 years of age and belonging to three documented Western European skeletal collections (Coimbra, Lisbon and St. Bride). After testing the homogeneity of the sample, the existence of sexual differences (Student's t- and Mann-Whitney U-test) and the growth of the variables (polynomial regression) were evaluated. The results showed the presence of sexual differences in epicondylar breadth above 20 years of age and vertical diameter of the head from 15 years of age, thus indicating that these two variables may be of use in determining sex from that age onward. The growth pattern of the variables showed a continuous increase and followed first- and second-degree polynomials. However, growth of the transversal diameter of the proximal end of the shaft followed a fourth-degree polynomial. Strong correlation coefficients were identified between humeral size and age for each of the four metric variables. These results indicate that any of the humeral measurements studied herein is likely to serve as a useful means of estimating sub-adult age in forensic samples.
Allam, Riham S. H. M.; Ahmed, Rania A.
2015-01-01
Purpose. To study features of the lower punctum in normal subjects using spectral domain anterior segment optical coherence tomography (SD AS-OCT). Methods. Observational cross-sectional study that included 147 punctae (76 subjects). Punctae were evaluated clinically for appearance, position, and size. AS-OCT was used to evaluate the punctal shape, contents, and junction with the vertical canaliculus. Inner and outer diameters as well as depth were measured. Results. 24 males and 52 females (mean age 44 ± 14.35 y) were included. Lower punctum was perceived by OCT to be an area with an outer diameter (mean 412.16 ± 163 μm), inner diameter (mean 233.67 ± 138.73 μm), and depth (mean 251.7 ± 126.58 μm). The OCT measured outer punctum diameter was significantly less than that measured clinically (P: 0.000). Seven major shapes were identified. The junction with the vertical canaliculus was detectable in 44%. Fluid was detected in 34%, one of which had an air bubble; however, 63% of punctae showed no contents and 4% had debris. Conclusions. AS-OCT can be a useful tool in understanding the anatomy of the punctum and distal lacrimal system as well as tear drainage physiology. Measuring the punctum size may play a role in plugs fitting. PMID:26090219
Gravitropism in Higher Plant Shoots 1
Sliwinski, Julianne E.; Salisbury, Frank B.
1984-01-01
Cross and longitudinal sections were prepared for light microscopy from vertical control plants (Xanthium strumarium L. Chicago strain), free-bending horizontal stems, plants restrained 48 hours in a horizontal position, and plants restrained 48 hours and then released, bending immediately about 130°. Top cells of free-bending stems shrink or elongate little; bottom cells continue to elongate. In restrained stems, bottom cells elongate some and increase in diameter; top cells elongate about as much but decrease in diameter. Upon release, bottom cells elongate more and decrease in diameter, while top cells shorten and increase in diameter, accounting for the bend. During restraint, bottom cells take up water while tissue pressures increase; top cells fail to take up water although tissue pressures are decreasing. Settling of amyloplasts was observed in cells of the starch sheath. Removal of different amounts of stem (Xanthium; Lycopersicon esculentum Miller, cv Bonny Best; Ricinus communis L. cv Yolo Wonder) showed that perception of gravity occurs in the bending (elongation) zone, although bending of fourth and fifth internodes from the top was less than in uncut controls. Uniform application of 1% indoleacetic acid in lanolin to cut stem surfaces partially restored bending. Reversing the gradient in tension/compression in horizontal stems (top under compression, bottom under tension) did not affect gravitropic bending. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:16663939
The Valsalva manoeuvre versus tourniquet for venipuncture.
Villa, Gianluca; Chelazzi, Cosimo; Giua, Rosa; Lavacchini, Laura; Tofani, Lorenzo; Zagli, Giovanni; Barbani, Francesco; De Gaudio, A Raffaele; Romagnoli, Stefano; Pinelli, Fulvio
2018-03-01
During ultrasound-guided cannulation, venous filling is required for venipuncture. Tourniquet with an elastic tube at the axilla is the most common method to induce venous stasis for cannulation of the deep veins of the arm. Although effective, this method might be associated with short- and long-term complications. Valsalva manoeuvre has been used to produce venous filling in other extrathoracic veins. The aim of this observational study is to demonstrate the effect of Valsalva manoeuvre in respect of the elastic tourniquet on venous distention during echography-guided cannulation of the deep veins of the arm. Sixty-nine patients scheduled for cannulation of basilic or brachial vein were prospectively observed. Vein diameters were recorded at rest and after 10 s of Valsalva or tourniquet placement. The mean difference between basilic vein diameters during tourniquet and Valsalva manoeuvre was 0.006 mm (95% confidence interval = -inf, 0.09) with a standard deviation of 0.5 mm (95% confidence interval = 0.5, 0.7; p > 0.01). The mean difference between brachial vein diameters during tourniquet and Valsalva manoeuvre was 0.04 mm (95% confidence interval = -0.23, 0.15) with a standard deviation of 0.8 mm (95% confidence interval = 0.7, 0.9; p > 0.01). This increase in cross-sectional basilic and brachial vein diameters was not different to that obtained with the elastic tube tourniquet.
NASA Astrophysics Data System (ADS)
Tripathi, S. N.; Thamban, N.
2017-12-01
Indo-Gangetic Plain (IGP) is one of the most populated and polluted regions in northern India. Even though IGP is a well-known "absorbing aerosol hotspot", information of BC mixing state in IGP is mostly unknown. Our calculation on size resolved mixing state in IGP shown that the mixing state of BC changes with the core diameter of BC. The majority of BC particle were thickly coated ( 80%) at lower diameter (75-125 nm) and the externally mixed BC fraction was gradually increased at higher core diameter of BC (125-250 nm). The mean fraction of "thickly coated BC" particles (fTCBC) was found to be 61.6% for a BC core diameter of 70 to 450 nm, indicating that a large fraction of BC particles was internally mixed in IGP. The fTCBC increased after sunrise with a peak at about noontime, indicating that the formation of secondary organic aerosol under active photochemistry can enhance organic coating on a core of black carbon. A positive correlation between the fTCBC and the mass absorption cross-section at 781nm (MAC781) was also observed (r=0.58). Our results identify that the observed fTCBC in IGP could amplify the MAC781 approximately by a factor of 1.8, which may catalyze the positive radiative forcing.
Dai, Zhendong; Gorb, Stanislav N; Schwarz, Uli
2002-08-01
This paper studies slide-resisting forces generated by claws in the free-walking beetle Pachnoda marginata (Coleoptera, Scarabaeoidea) with emphasis on the relationship between the dimension of the claw tip and the substrate texture. To evaluate the force range by which the claw can interact with a substrate, forces generated by the freely moving legs were measured using a load cell force transducer. To obtain information about material properties of the claw, its mechanical strength was tested in a fracture experiment, and the internal structure of the fractured claw material was studied by scanning electron microscopy. The bending stress of the claw was evaluated as 143.4-684.2 MPa, depending on the cross-section model selected. Data from these different approaches led us to propose a model explaining the saturation of friction force with increased texture roughness. The forces are determined by the relative size of the surface roughness R(a) (or an average particle diameter) and the diameter of the claw tip. When surface roughness is much bigger than the claw tip diameter, the beetle can grasp surface irregularities and generate a high degree of attachment due to mechanical interlocking with substrate texture. When R(a) is lower than or comparable to the claw tip diameter, the frictional properties of the contact between claw and substrate particles play a key role in the generation of the friction force.
Dianat, Iman; Rahimi, Soleyman; Nedaei, Moein; Asghari Jafarabadi, Mohammad; Oskouei, Ali E
2017-03-01
The effects of tool handle dimension (three modified designs of wrenches with 30-50 mm diameter cylindrical handles and traditional design with rectangular cross-sectional (5 mm × 25 mm) handle), workpiece orientation (vertical/horizontal) and workpiece size (small/large) as well as user's hand size on wrist ulnar/radial (U/R) torque strength, usability and discomfort, and also the relationship between these variables were evaluated in a maximum torque task using wrenches. The highest and lowest levels of maximal wrist U/R torque strength were recorded for the 30 mm diameter handle and traditional wrench design, respectively. The prototype handle with 30 mm diameter, together with 40 mm diameter handle, was also better than other designs as they received higher usability ratings and caused less discomfort. The mean wrist torque strength exerted on a vertically oriented workpiece (in the sagittal plane) was 23.8% higher than that exerted on a horizontally oriented one (in the transverse plane). The user's hand size had no effect on torque exertions. The wrist torque strength and usability were negatively correlated with hand and finger discomfort ratings. The results are also discussed in terms of their implications for hand tool and workstation configuration in torque tasks involving wrenches. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wosnik, M.; Bachant, P.; Nedyalkov, I.; Rowell, M.; Dufresne, N.; Lyon, V.
2013-12-01
We report on research related to MHK turbines at the Center for Ocean Renewable Energy (CORE) at the University of New Hampshire (UNH). The research projects span varies scales, levels of complexity and environments - from fundamental studies of hydrofoil sections in a high speed water tunnel, to moderate Reynolds number turbine tests with inflow and wake studies in a large cross-section tow tank, to deployments of highly instrumented process models at tidal energy test sites in New England. A concerted effort over the past few years has brought significant new research infrastructure for marine hydrokinetic energy conversion online at UNH-CORE. It includes: a high-speed cavitation tunnel with independent control of velocity and pressure; a highly accurate tow mechanism, turbine test bed and wake traversing system for the 3.7m x 2.4m cross-section UNH tow tank; a 10.7m x 3.0m tidal energy test platform which can accommodate turbines up to 1.5m in diameter, for deployments at the UNH-CORE Tidal Energy Test Site in Great Bay Estuary, NH, a sheltered 'nursery site' suitable for intermediate scale tidal energy conversion device testing with peak currents typically above 2 m/s during each tidal cycle. Further, a large boundary layer wind tunnel, the new UNH Flow Physics Facility (W6.0m x H2.7m xL72m) is being used for detailed turbine wake studies, producing data and insight also applicable to MHK turbines in low Froude number deployments. Bi-directional hydrofoils, which perform equally well in either flow direction and could avoid the use of complex and maintenance-intensive yaw or blade pitch mechanisms, are being investigated theoretically, numerically and experimentally. For selected candidate shapes lift, drag, wake, and cavitation inception/desinence are measured. When combined with a cavitation inception model for MHK turbines, this information can be used to prescribe turbine design/operational parameters. Experiments were performed with a 1m diameter and 1m tall three-bladed cross-flow axis turbine (UNH RVAT) in a tow tank. For cross-flow axis turbines hydrofoil performance remains Reynolds number dependent at intermediate scales due to the large range of angles of attack encountered during turbine rotation. The experiments, with turbine diameter Reynolds numbers ReD = 0.5 x105 to 2.0 x106, were aimed at providing detailed data for model comparison at significantly higher Reynolds numbers than previously available. Measurements include rotor power, thrust, tip speed ratio, and detailed maps of mean flow and turbulence components in the near-wake. Mechanical exergy efficiency was calculated from power and drag measurements using an actuator disk approach. The spatial and temporal resolutions of different flow measurement techniques (ADCP, ADV, PIV) were systematically characterized. Finally, Reynolds-averaged Navier-Stokes (RANS) simulations were performed to assess their ability to predict the experimental results. A scaled version of a mixer-ejector hydrokinetic turbine, with a specially designed shroud to promotes wake mixing to enable increased mass flow through the turbine rotor, was evaluated experimentally at the UNH Tidal Energy Test Site in Great Bay Estuary, NH and in Muskeget Channel, MA. State-of-the-art instrumentation was used to measure the tidal energy resource and turbine wake flow velocities, turbine power extraction, test platform loadings and platform motion induced by sea state.
A NEW PRINCIPLE FOR ELECTROMAGNETIC CATHETER FLOW METERS*
Kolin, Alexander
1969-01-01
An electromagnetic catheter flow meter is described in which the magnetic field is generated by two parallel bundles of wire carrying equal currents in opposite directions. The electrodes are fixed centrally to the insulated wire bundles that generate the magnetic field. The flow sensor is flexible, resembling a split catheter. The flow transducer is designed to constrict as it is introduced through a branch artery and to expand in the main artery over the span of its diameter. The principle is suitable for branch flow measurement as well as for measurement of flow in a major artery or vein by the same transducer. A special method of guiding the electrode wires results in a zero base line at zero flow for the entire range of diameters accommodating the field generating coil. The electrodes could be used in this configuration with a magnetic field generated by coils external to the patient for blood flow measurements with a catheter of reduced gauge. The transducer can be made smaller in circumference than those employed in other electromagnetic flow measuring catheter devices. This feature is of special value for envisaged clinical uses (percutaneous introduction) to minimize surgical intervention. The velocity sensitivity of the flow transducer is a logarithmic function of the tube diameter. The flow throughout the entire tube cross section contributes to the flow signal. It is sufficient to calibrate the transducer by one measurement in a dielectric conduit of less than maximum diameter. The sensitivity at other diameters follows from a logarithmic plot. The diameter of the blood vessel is outlined by the transducer in radiograms, thus obviating the need for radiopaque materials. The principle was demonstrated by measurements in vitro. Experiments in vivo, derivation of equations, and construction details will be published elsewhere. Images PMID:5257127
Stability evaluation of modernized bank protections in a culvert construction
NASA Astrophysics Data System (ADS)
Cholewa, Mariusz; Plesiński, Karol; Kamińska, Katarzyna; Wójcik, Izabela
2018-02-01
The paper presents stability evaluation of the banks of the Wilga River on a chosen stretch in Koźmice Wielkie, Małopolska Province. The examined stretch included the river bed upstream from the culvert on a district road. The culvert construction, built over four decades ago, was disassembled in 2014. The former construction, two pipes that were 1.4 m in diameter, was entirely removed. The investor decided to build a new construction in the form of insitu poured reinforced concrete with a 4 x 2 m cross section. Change of geometry and different location in relation to the river current caused increase in the flow velocity and, as a consequence, erosion of both protected and natural banks. Groundwater conditions were determined based on the geotechnical tests that were carried out on soil samples taken from the banks and the river bed. Stability calculations of natural slopes of the Wilga River and the ones protected with riprap indicate mistakes in the design project concerning construction of the river banks. The purpose of the study was to determine the stability of the Wilga River banks on a selected section adjacent to the rebuilt culvert. Stability of a chosen cross section was analysed in the paper. Presented conclusions are based on the results of geotechnical tests and numerical calculations.
Digital image analysis of ossification centers in the axial dens and body in the human fetus.
Baumgart, Mariusz; Wiśniewski, Marcin; Grzonkowska, Magdalena; Małkowski, Bogdan; Badura, Mateusz; Dąbrowska, Maria; Szpinda, Michał
2016-12-01
The detailed understanding of the anatomy and timing of ossification centers is indispensable in both determining the fetal stage and maturity and for detecting congenital disorders. This study was performed to quantitatively examine the odontoid and body ossification centers in the axis with respect to their linear, planar and volumetric parameters. Using the methods of CT, digital image analysis and statistics, the size of the odontoid and body ossification centers in the axis in 55 spontaneously aborted human fetuses aged 17-30 weeks was studied. With no sex difference, the best fit growth dynamics for odontoid and body ossification centers of the axis were, respectively, as follows: for transverse diameter y = -10.752 + 4.276 × ln(age) ± 0.335 and y = -10.578 + 4.265 × ln(age) ± 0.338, for sagittal diameter y = -4.329 + 2.010 × ln(age) ± 0.182 and y = -3.934 + 1.930 × ln(age) ± 0.182, for cross-sectional area y = -7.102 + 0.520 × age ± 0.724 and y = -7.002 + 0.521 × age ± 0.726, and for volume y = -37.021 + 14.014 × ln(age) ± 1.091 and y = -37.425 + 14.197 × ln(age) ± 1.109. With no sex differences, the odontoid and body ossification centers of the axis grow logarithmically in transverse and sagittal diameters, and in volume, while proportionately in cross-sectional area. Our specific-age reference data for the odontoid and body ossification centers of the axis may be relevant for determining the fetal stage and maturity and for in utero three-dimensional sonographic detecting segmentation anomalies of the axis.
Suwannasom, Pannipa; Sotomi, Yohei; Asano, Taku; Koon, Jaryl Ng Chen; Tateishi, Hiroki; Zeng, Yaping; Tenekecioglu, Erhan; Wykrzykowska, Joanna J; Foin, Nicolas; de Winter, Robbert J; Ormiston, John A; Serruys, Patrick W; Onuma, Yoshinobu
2017-04-07
The aim of the study was to investigate long-term changes in lumen eccentricity and asymmetry at five years after implantation of the Absorb bioresorbable vascular scaffold (BVS). Out of 101 patients from the ABSORB cohort B trial, 28 patients (29 lesions) with serial optical coherence tomography (OCT) examination at four different time points (cohort B1: post-procedure, six months, two, and five years [n=13]; cohort B2: post-procedure, one, three, and five years [n=16]) were evaluated. The longitudinal variance in lumen diameter was assessed by asymmetry index (AI). An asymmetric lesion was defined as AI >0.3. The circularity of the lumen or scaffold was evaluated by the eccentricity index calculated as minimal divided by maximal luminal or scaffold diameter per cross-section. The lowest lumen eccentricity index within a scaffold segment (EIL) <0.7 was defined as an eccentric lesion. Post procedure, an eccentric lesion was observed in 72.4% and became concentric in 93.1% at five years (post EIL 0.67±0.05 vs. five-year EIL 0.80±0.10, p=0.03) with a modest reduction of the lumen area from baseline to five years by 0.75±0.32 mm2. Asymmetric lumen morphology was observed in 93.1% (n=27) post implantation and persisted until five-year follow-up. On serial OCT analyses, there was a substantial increase in the scaffold EI during the first two years (post 0.70±0.06, six months 0.76±0.08, two years 0.85±0.07); then, it remained stable whereas the lumen circularity improved further. There were no significant differences in major adverse cardiac events regarding the lumen morphology over the five-year follow-up. In patients treated with the Absorb BVS, the cross-sectional circularity improved over five years while the variance in longitudinal diameters remained. Regaining of lumen circularity is mainly caused by reshaping of the scaffold during the first two years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, T; Ding, H; Lipinski, J
2015-06-15
Purpose: To develop a physics-based model for accurate quantification of the cross-sectional area (CSA) of coronary arteries in CT angiography by measuring the integrated density to account for the partial volume effect. Methods: In this technique the integrated density of the object as compared with its local background is measured to account for the partial volume effect. Normal vessels were simulated as circles with diameters in the range of 0.1–3mm. Diseased vessels were simulated as 2, 3, and 4mm diameter vessels with 10–90% area stenosis, created by inserting circular plaques. A simplified two material model was used with the lumenmore » as 8mg/ml Iodine and background as lipid. The contrast-to-noise ratio between lumen and background was approximately 26. Linear fits to the known CSA were calculated. The precision and accuracy of the measurement were quantified using the root-mean-square fit deviations (RMSD) and errors to the known CSA (RMSE). Results compared to manual segmentation of the vessel lumen. To assess the impact of random variations, coefficients of variation (CV) from 10 simulations for each vessel were computed to determine reliability. Measurements with CVs less than 10% were considered reliable. Results: For normal vessels, the precision and accuracy of the integrated density technique were 0.12mm{sup 2} and 0.28mm{sup 2}, respectively. The corresponding results for manual segmentation were 0.27mm{sup 2} and 0.43mm{sup 2}. For diseased vessels, the precision and accuracy of the integrated density technique were 0.14mm{sup 2} and 0.19mm{sup 2}. Corresponding results for manual segmentation were 0.42mm{sup 2} and 0.71mm{sup 2}. Reliable CSAs were obtained for normal vessels with diameters larger than 1 mm and for diseased vessels with area as low as 1.26mm2. Conclusion: The CSA based on integrated density showed improved precision and accuracy as compared with manual segmentation in simulation. These results indicate the potential of using integrated density to quantify CSA of coronary arteries in CT angiography.« less
Inertial particle focusing in serpentine channels on a centrifugal platform
NASA Astrophysics Data System (ADS)
Shamloo, Amir; Mashhadian, Ali
2018-01-01
Inertial particle focusing as a powerful passive method is widely used in diagnostic test devices. It is common to use a curved channel in this approach to achieve particle focusing through balancing of the secondary flow drag force and the inertial lift force. Here, we present a focusing device on a disk based on the interaction of secondary flow drag force, inertial lift force, and centrifugal forces to focus particles. By choosing a channel whose cross section has a low aspect ratio, the mixing effect of the secondary flow becomes negligible. To calculate inertial lift force, which is exerted on the particle from the fluid, the interaction between the fluid and particle is investigated accurately through implementation of 3D Direct Numerical Solution (DNS) method. The particle focusing in three serpentine channels with different corner angles of 75°, 85°, and 90° is investigated for three polystyrene particles with diameters of 8 μm, 9.9 μm, and 13 μm. To show the simulation reliability, the results obtained from the simulations of two examples, namely, particle focusing and centrifugal platform, are verified against experimental counterparts. The effects of angular velocity of disk on the fluid velocity and on the focusing parameters are studied. Fluid velocity in a channel with corner angle of 75° is greater than two other channels. Furthermore, the particle equilibrium positions at the cross section of channel are obtained at the outlet. There are two equilibrium positions located at the centers of the long walls. Finally, the effect of particle density on the focusing length is investigated. A particle with a higher density and larger diameter is focused in a shorter length of the channel compared to its counterpart with a lower density and shorter diameter. The channel with a corner angle of 90° has better focusing efficiency compared to other channels. This design focuses particles without using any pump or sheath flow. Inertial particle focusing on centrifugal platform, which rarely has been studied, can be used for a wide range of diagnostic lab-on-a-disk device.
Penna, Frank J; Bowlin, Paul; Alyami, Fahad; Bägli, Darius J; Koyle, Martin A; Lorenzo, Armando J
2015-10-01
In children with congenital obstructive uropathy, including posterior urethral valves, lower urinary tract decompression is recommended pending definitive surgical intervention. Current options, which are limited to a feeding tube or Foley catheter, pose unappreciated constraints in luminal diameter and are associated with potential problems. We assess the impact of luminal diameter on the current draining options and present a novel alternative method, repurposing a widely available stent that optimizes drainage. We retrospectively reviewed patients diagnosed with posterior urethral valves between January 2013 and December 2014. In all patients a 6Fr 12 cm Double-J ureteral stent was advanced over a guidewire in a retrograde fashion into the bladder. Luminal flow and cross-sectional areas were also assessed for each of 3 tubes for urinary drainage, ie 6Fr Double-J stent, 5Fr feeding tube and 6Fr Foley catheter. A total of 30 patients underwent uneventful bedside Double-J stent placement. Mean ± SD age at valve ablation was 28.5 ± 16.6 days. Mean ± SD peak serum creatinine was 2.23 ± 0.97 mg/dl after birth and 0.56 ± 0.22 mg/dl at the procedure. Urine output after stent placement was excellent in all patients. The Foley catheter and feeding tube drained approximately 18 and 6 times more slowly, respectively, and exhibited half the calculated cross-sectional luminal area compared to the Double-J stent. Use of Double-J stents in neonates with posterior urethral valves is a safe and effective alternative method for lower urinary tract decompression that optimizes the flow/lumen relationship compared to conventional drainage options. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Doutel, E; Pinto, S I S; Campos, J B L M; Miranda, J M
2016-08-07
Murray developed two laws for the geometry of bifurcations in the circulatory system. Based on the principle of energy minimization, Murray found restrictions for the relation between the diameters and also between the angles of the branches. It is known that bifurcations are prone to the development of atherosclerosis, in regions associated to low wall shear stresses (WSS) and high oscillatory shear index (OSI). These indicators (size of low WSS regions, size of high OSI regions and size of high helicity regions) were evaluated in this work. All of them were normalized by the size of the outflow branches. The relation between Murray's laws and the size of low WSS regions was analysed in detail. It was found that the main factor leading to large regions of low WSS is the so called expansion ratio, a relation between the cross section areas of the outflow branches and the cross section area of the main branch. Large regions of low WSS appear for high expansion ratios. Furthermore, the size of low WSS regions is independent of the ratio between the diameters of the outflow branches. Since the expansion ratio in bifurcations following Murray's law is kept in a small range (1 and 1.25), all of them have regions of low WSS with similar size. However, the expansion ratio is not small enough to completely prevent regions with low WSS values and, therefore, Murray's law does not lead to atherosclerosis minimization. A study on the effect of the angulation of the bifurcation suggests that the Murray's law for the angles does not minimize the size of low WSS regions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Physics of a rapid CD4 lymphocyte count with colloidal gold.
Hansen, P; Barry, D; Restell, A; Sylvia, D; Magnin, O; Dombkowski, D; Preffer, F
2012-03-01
The inherent surface charges and small diameters that confer colloidal stability to gold particle conjugates (immunogold) are detrimental to rapid cell surface labeling and distinct cluster definition in flow cytometric light scatter assays. Although the inherent immunogold surface charge prevents self aggregation when stored in liquid suspension, it also slows binding to cells to timeframes of hours and inhibits cell surface coverage. Although the small diameter of immunogold particles prevents settling when in liquid suspension, small particles have small light scattering cross sections and weak light scatter signals. We report a new, small particle lyophilized immunogold reagent that maintains activity after 42°C storage for a year and can be rapidly dissolved into stable liquid suspension for use in labelling cells with larger particle aggregates that have enhanced scattering cross section. Labeling requires less than 1 min at 20°C, which is ∼30 times faster than customary fluorescent antibody labeling. The labeling step involves neutralizing the surface charge of immunogold and creating specifically bound aggregates of gold on the cell surface. This process provides distinct side-scatter cluster separation with blue laser light at 488 nm, which is further improved by using red laser light at 640 nm. Similar comparisons using LED light sources showed less improvement with red light, thereby indicating that coherent light scatter is of significance in enhancing side-scatter cluster separation. The physical principles elucidated here for this technique are compatible with most flow cytometers; however, future studies of its clinical efficacy should be of primary interest in point-of-care applications where robust reagents and rapid results are important. Copyright © 2011 International Society for Advancement of Cytometry.
Weide, Guido; Huijing, Peter A; Maas, Josina C; Becher, Jules G; Harlaar, Jaap; Jaspers, Richard T
2015-01-01
Using a cross-sectional design, the purpose of this study was to determine how pennate gastrocnemius medialis (GM) muscle geometry changes as a function of adolescent age. Sixteen healthy adolescent males (aged 10–19 years) participated in this study. GM muscle geometry was measured within the mid-longitudinal plane obtained from a 3D voxel-array composed of transverse ultrasound images. Images were taken at footplate angles corresponding to standardised externally applied footplate moments (between 4 Nm plantar flexion and 6 Nm dorsal flexion). Muscle activity was recorded using surface electromyography (EMG), expressed as a percentage of maximal voluntary contraction (%MVC). To minimise the effects of muscle excitation, EMG inclusion criteria were set at < 10% of MVC. In practice, however, normalised EMG levels were much lower. For adolescent subjects with increasing ages, GM muscle (belly) length increased due to an increase in the length component of the physiological cross-sectional area measured within the mid-longitudinal plane. No difference was found between fascicles at different ages, but the aponeurosis length and pennation angle increased by 0.5 cm year−1 and 0.5 ° per year, respectively. Footplate angles corresponding to externally applied 0 and 4 Nm plantarflexion moments were not associated with different adolescent ages. In contrast, footplate angles corresponding to externally applied 4 and 6 Nm dorsal flexion moments decreased by 10 ° between 10 and 19 years. In conclusion, we found that in adolescents' pennate GM muscles, longitudinal muscle growth is mediated predominantly by increased muscle fascicle diameter. PMID:25879671
Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures.
Kandemir, Ali; Ozden, Ayberk; Cagin, Tahir; Sevik, Cem
2017-01-01
Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, [Formula: see text]100[Formula: see text], is better than the [Formula: see text]111[Formula: see text] crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials.
Shirai, Atsushi; Masuda, Sunao
2013-01-01
The authors have previously presented a mathematical model to predict transit time of a neutrophil through an alveolar capillary segment which was modeled as an axisymmetric arc-shaped constriction settled in a cylindrical straight pipe to investigate the influence of entrance curvature of a capillary on passage of the cell. The axially asymmetric cross section of a capillary also influences the transit time because it requires three-dimensional deformation of a cell when it passes through the capillary and could lead to plasma leakage between the cell surface and the capillary wall. In this study, a rectangular channel was introduced, the side walls of which were moderately constricted, as a representative of axially asymmetric capillaries. Dependence of transit time of a neutrophil passing through the constriction on the constriction geometry, i.e., channel height, throat width and curvature radius of the constriction, was numerically investigated, the transit time being compared with that through the axisymmetric model. It was found that the transit time is dominated by the throat hydraulic diameter and curvature radius of the constriction and that the throat aspect ratio little affects the transit time with a certain limitation, indicating that if an appropriate curvature radius is chosen, such a rectangular channel model can be substituted for an axisymmetric capillary model having the same throat hydraulic diameter in terms of the transit time by choosing an appropriate curvature radius. Thus, microchannels fabricated by the photolithography technique, whose cross section is generally rectangular, are expected to be applicable to in vitro model experiments of neutrophil retention and passage in the alveolar capillaries. PMID:23527190
SIGNATURES OF RECENT ASTEROID DISRUPTIONS IN THE FORMATION AND EVOLUTION OF SOLAR SYSTEM DUST BANDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kehoe, A. J. Espy; Colwell, J. E.; Kehoe, T. J. J.
We have performed detailed dynamical modeling of the structure of a faint dust band observed in coadded InfraRed Astronomical Satellite data at an ecliptic latitude of 17° that convincingly demonstrates that it is the result of a relatively recent (significantly less than 1 Ma) disruption of an asteroid and is still in the process of forming. We show here that young dust bands retain information on the size distribution and cross-sectional area of dust released in the original asteroid disruption, before it is lost to orbital and collisional decay. We find that the Emilkowalski cluster is the source of thismore » partial band and that the dust released in the disruption would correspond to a regolith layer ∼3 m deep on the ∼10 km diameter source body's surface. The dust in this band is described by a cumulative size-distribution inverse power-law index with a lower bound of 2.1 (implying domination of cross-sectional area by small particles) for dust particles with diameters ranging from a few μm up to a few cm. The coadded observations show that the thermal emission of the dust band structure is dominated by large (mm–cm size) particles. We find that dust particle ejection velocities need to be a few times the escape velocity of the Emilkowalski cluster source body to provide a good fit to the inclination dispersion of the observations. We discuss the implications that such a significant release of material during a disruption has for the temporal evolution of the structure, composition, and magnitude of the zodiacal cloud.« less
Marceliano-Alves, Marília; Alves, Flávio Rodrigues Ferreira; Mendes, Daniel de Melo; Provenzano, José Claudio
2016-02-01
A thorough knowledge of root canal anatomy is critical for successful root canal treatments. This study evaluated the internal anatomy of the palatal roots of maxillary first molars with micro-computed tomography (microCT). The palatal roots of extracted maxillary first molars (n = 169) were scanned with microCT to determine several anatomic parameters, including main canal classification, lateral canal occurrence and location, degree of curvature, main foramen position, apical constriction presence, diameters 1 and 2 mm from the apex and 1 mm from the foramen, minor dentin thickness in those regions, canal volume, surface area, and convexity. All canals were classified as Vertucci type I. The cross sections were oval in 61% of the canals. Lateral canals were found in 25% of the samples. The main foramen did not coincide with the root apex in 95% of the cases. Only 8% of the canals were classified as straight. Apical constriction was identified in 38% of the roots. The minor and major canal diameters and minor dentin thickness were decreased near the apex. The minor dentin thickness 1 mm from the foramen was 0.82 mm. The palatal canals exhibited a volume of 6.91 mm(3) and surface area of 55.31 mm(2) and were rod-shaped. The root canals of the palatal roots were classified as type I. However, some factors need to be considered during the treatment of these roots, including the frequent ocurrence of moderate/severe curvatures, oval-shaped cross-sections, and lateral canals, noncoincidence of the apical foramen with the root apex, and absence of apical constriction in most cases. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
[Selective breeding research on new cultivar "ChuanPeng 1" of Curcuma phaeocaulis].
Xia, Qin; Yang, Zhao-wu; Li, Min; Xia, Dong-mei
2014-11-01
To breed a new good cultivar of Curcuma phaeocaulis. Three rounds of selection were systematically made for screening the new cultivar using biological technology. Firstly, individual plant selection. Promising individual plant selection was made based on the thousands of Curcuma phaeocaulis resources collected from all over the country. Secondly, strain selection. The promising strain was selected continually from the superior individuals on basis of specificities such as biological characteristics, yield, content of volatile oil and resistance. Thirdly, strain comparison test. The superior strain was selected through strain trial and regional trial. For the new cultivar "ChuanPeng 1" , its main rhizome was in ovoid or spindle shape, and it was fleshy and corpulent. Average amount of rhizome was 4, with 6. 27 cm in length and 3. 37 cm in diameter, while the secondary roots were cylindrical-like, with a yellow green cross section as the main rhizome. Slender root ends were inflated into the fleshy spindle shape, average amount of whose was 25, 3. 20 cm in length and 1. 33 cm in diameter with a yellow green or near white cross section. Average yield of rhizome is 5 314. 5 kg/hm2, while the root is 1 942. 5 kg/hm2, which was 32. 9% and 22. 7% higher than the local main cultivar respectively. The average extract content of rhizome was 15. 41% and content of volatile oil was 2. 82%, which was 15. 60% and 9. 30% higher than the local cultivar respectively. " ChuanPeng 1" has good stability and strong adaptability with high yield and superior internal quality. It can be cultivated and promoted in Jinma River Valley,Sichuan.
Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures
Kandemir, Ali; Ozden, Ayberk; Cagin, Tahir; Sevik, Cem
2017-01-01
Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, <100>, is better than the <111> crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials. PMID:28469733
Meisner, Eric M; Hager, Gregory D; Ishman, Stacey L; Brown, David; Tunkel, David E; Ishii, Masaru
2013-11-01
To evaluate the accuracy of three-dimensional (3D) airway reconstructions obtained using quantitative endoscopy (QE). We developed this novel technique to reconstruct precise 3D representations of airway geometries from endoscopic video streams. This method, based on machine vision methodologies, uses a post-processing step of the standard videos obtained during routine laryngoscopy and bronchoscopy. We hypothesize that this method is precise and will generate assessment of airway size and shape similar to those obtained using computed tomography (CT). This study was approved by the institutional review board (IRB). We analyzed video sequences from pediatric patients receiving rigid bronchoscopy. We generated 3D scaled airway models of the subglottis, trachea, and carina using QE. These models were compared to 3D airway models generated from CT. We used the CT data as the gold standard measure of airway size, and used a mixed linear model to estimate the average error in cross-sectional area and effective diameter for QE. The average error in cross sectional area (area sliced perpendicular to the long axis of the airway) was 7.7 mm(2) (variance 33.447 mm(4)). The average error in effective diameter was 0.38775 mm (variance 2.45 mm(2)), approximately 9% error. Our pilot study suggests that QE can be used to generate precise 3D reconstructions of airways. This technique is atraumatic, does not require ionizing radiation, and integrates easily into standard airway assessment protocols. We conjecture that this technology will be useful for staging airway disease and assessing surgical outcomes. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Obesity, Blood Pressure, and Retinal Vessels: A Meta-analysis.
Köchli, Sabrina; Endes, Katharina; Infanger, Denis; Zahner, Lukas; Hanssen, Henner
2018-06-01
Retinal vessel imaging is a noninvasive diagnostic tool used to evaluate cardiovascular risk. Childhood obesity and elevated blood pressure (BP) are associated with retinal microvascular alterations. To systematically review and meta-analyze associations between obesity, BP, and physical activity with retinal vessel diameters in children. We conducted a literature search through the databases of PubMed, Embase, Ovid, Web of Science, and the Cochrane Register of Controlled Trials. School- and population-based cross-sectional data. General information, study design, participants, exposure, and outcomes. A total of 1751 studies were found, and 30 full-text articles were analyzed for eligibility. Twenty-two articles (18 865 children and adolescents) were used for further assessment and reflection. Eleven articles were finally included in the meta-analysis. We found that a higher BMI is associated with narrower retinal arteriolar (pooled estimate effect size -0.37 [95% confidence interval (CI): -0.50 to -0.24]) and wider venular diameters (0.35 [95% CI: 0.07 to 0.63]). Systolic and diastolic BP are associated with retinal arteriolar narrowing (systolic BP: -0.63 [95% CI: -0.92 to -0.34]; diastolic BP: -0.60 [95% CI -0.95 to -0.25]). Increased physical activity and fitness are associated with favorable retinal vessel diameters. Long-term studies are needed to substantiate the prognostic relevance of retinal vessel diameters for cardiovascular risk in children. Our results indicate that childhood obesity, BP, and physical inactivity are associated with retinal microvascular abnormalities. Retinal vessel diameters seem to be sensitive microvascular biomarkers for cardiovascular risk stratification in children. Copyright © 2018 by the American Academy of Pediatrics.
Intravenous volume tomographic pulmonary angiography imaging
NASA Astrophysics Data System (ADS)
Ning, Ruola; Strang, John G.; Chen, Biao; Conover, David L.; Yu, Rongfeng
1999-05-01
This study presents a new intravenous (IV) tomographic angiography imaging technique, called intravenous volume tomographic digital angiography (VTDA) for cross sectional pulmonary angiography. While the advantages of IV-VTDA over spiral CT in terms of volume scanning time and resolution have been validated and reported in our previous papers for head and neck vascular imaging, the superiority of IV-VTDA over spiral CT for cross sectional pulmonary angiography has not been explored yet. The purpose of this study is to demonstrate the advantage of isotropic resolution of IV-VTDA in the x, y and z directions through phantom and animal studies, and to explore its clinical application for detecting clots in pulmonary angiography. A prototype image intensifier-based VTDA imaging system has been designed and constructed by modifying a GE 8800 CT scanner. This system was used for a series of phantom and dog studies. A pulmonary vascular phantom was designed and constructed. The phantom was scanned using the prototype VTDA system for direct 3D reconstruction. Then the same phantom was scanned using a GE CT/i spiral CT scanner using the routine pulmonary CT angiography protocols. IV contrast injection and volume scanning protocols were developed during the dog studies. Both VTDA reconstructed images and spiral CT images of the specially designed phantom were analyzed and compared. The detectability of simulated vessels and clots was assessed as the function of iodine concentration levels, oriented angles, and diameters of the vessels and clots. A set of 3D VTDA reconstruction images of dog pulmonary arteries was obtained with different IV injection rates and isotropic resolution in the x, y and z directions. The results of clot detection studies in dog pulmonary arteries have also been shown. This study presents a new tomographic IV angiography imaging technique for cross sectional pulmonary angiography. The results of phantom and animal studies indicate that IV-VTDA is superior to spiral CT for cross sectional pulmonary angiography.
He, C.; Liou, K.-N.; Takano, Y.; ...
2015-10-28
A theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, BC coated by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Theoretical calculations are consistent with measurements in extinction and absorption cross sections for fresh BC aggregates with different BC sizes (i.e., mobility diameters of 155, 245, and 320 nm), with differences of ≤ 25 %. The measured optical cross sections for BC coated bymore » sulfuric acid and for that undergoing further hygroscopic growth are generally captured (differences < 30 %) by theoretical calculations using a concentric core-shell structure, with an overestimate in extinction and absorption of the smallest BC size and an underestimate in scattering of the largest BC size. We find that the absorption and scattering cross sections of fresh BC aggregates vary by 20–40 and 50–65 %, respectively, due to the use of upper (1.95–0.79 i) and lower (1.75–0.63 i) bounds of BC refractive index, while the variations are < 20 % in absorption and < 50 % in scattering in the case of coated BC particles. Sensitivity analyses of the BC morphology show that the optical properties of fresh BC aggregates are more sensitive to fractal dimension than primary spherule size. The absorption and scattering cross sections of coated BC particles vary by more than a factor of 2 due to different coating structures. We find an increase of 20–250 % in absorption and a factor of 3–15 in scattering during aging, significantly depending on coating morphology and aging stages. This study suggests that an accurate estimate of BC radiative effects requires the incorporation of a dynamic BC aging process that accounts for realistic coating structures in climate models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, C.; Liou, K.-N.; Takano, Y.
A theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, BC coated by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Theoretical calculations are consistent with measurements in extinction and absorption cross sections for fresh BC aggregates with different BC sizes (i.e., mobility diameters of 155, 245, and 320 nm), with differences of ≤ 25 %. The measured optical cross sections for BC coated bymore » sulfuric acid and for that undergoing further hygroscopic growth are generally captured (differences < 30 %) by theoretical calculations using a concentric core-shell structure, with an overestimate in extinction and absorption of the smallest BC size and an underestimate in scattering of the largest BC size. We find that the absorption and scattering cross sections of fresh BC aggregates vary by 20–40 and 50–65 %, respectively, due to the use of upper (1.95–0.79 i) and lower (1.75–0.63 i) bounds of BC refractive index, while the variations are < 20 % in absorption and < 50 % in scattering in the case of coated BC particles. Sensitivity analyses of the BC morphology show that the optical properties of fresh BC aggregates are more sensitive to fractal dimension than primary spherule size. The absorption and scattering cross sections of coated BC particles vary by more than a factor of 2 due to different coating structures. We find an increase of 20–250 % in absorption and a factor of 3–15 in scattering during aging, significantly depending on coating morphology and aging stages. This study suggests that an accurate estimate of BC radiative effects requires the incorporation of a dynamic BC aging process that accounts for realistic coating structures in climate models.« less
Light absorption by coated nano-sized carbonaceous particles
NASA Astrophysics Data System (ADS)
Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth
The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.
The effect of melt refining upon inclusions in aluminum
NASA Astrophysics Data System (ADS)
Simensen, C. J.
1982-03-01
A series of aluminum melts has been refined with respect to inclusions by use of ALCOA 469, FILD, or SNIF. The content and size distribution of inclusions in the original-and the refined melts-have been measured by use of neutron activation (oxygen content), gas chromatography (carbide content), sedimentation analysis, and dissolution of metal in hydrochloric acid and subsequent analysis of oxides by means of a Coulter Counter. All the units tested have a beneficial effect and decrease the inclusion content, but the number of analyses are too few to make general conclusions. However, for melts cleaned by use of SNIF, it was found that oxides larger than 50 μm in cross section and borides larger than 20 μm in diameter were removed, while the smaller borides were agglomerated only. The effect of FILD and ALCOA 469 upon the melt tested was removal of borides larger than 5-10 μ m and oxides larger than 15μm in diameter, respectively.
Factors in the Design of Centrifugal Type Injection Valves for Oil Engines
NASA Technical Reports Server (NTRS)
Joachim, W F; Beardsley, E G
1928-01-01
This research was undertaken in connection with a general study of the application of the fuel injection engine to aircraft. The purpose of the investigation was to determine the effect of four important factors in the design of a centrifugal type automatic injection valve on the penetration, general shape, and distribution of oil sprays. The general method employed was to record the development of single sprays by means of special high-speed photographic apparatus capable of taking 25 consecutive pictures of the moving spray at a rate of 4,000 per second. Investigations were made concerning the effects on spray characteristics, of the helix angle of helical grooves, the ratio of the cross-sectional area of the orifice to that of the grooves, the ratio of orifice length to diameter, and the position of the seat. Maximum spray penetration was obtained with a ratio of orifice length to diameter of about 1.5. Slightly greater penetration was obtained with the seat directly before the orifice.
NASA Astrophysics Data System (ADS)
Dufresne, Nathaniel P.
An experimental investigation of the axial and azimuthal (swirl) velocity field in the wake of a single 3-bladed wind turbine with rotor diameter of 0.91m was conducted, up to 20 diameters downstream. The turbine was positioned in the free stream, near the entrance of the 6m x 2.7m cross section of the University of New Hampshire (UNH) Flow Physics Facility. Velocity measurements were conducted at different rotor loading conditions with blade tip-speed ratios from 2.0 to 2.8. A Pitot-static tube and constant temperature hot-wire anemometer with a multi-wire sensor were used to measure velocity fields. An equilibrium similarity theory for the turbulent axisymmetric wake with rotation was outlined, and first evidence for a new scaling function for the mean swirling velocity component, Wmax ∝ x-1 ∝ U3/2o a was found; where W represents swirl, x represents downstream distance, and Uo, represents the centerline velocity deficit in the wake.
Visible and infrared emission from Si/Ge nanowires synthesized by metal-assisted wet etching.
Irrera, Alessia; Artoni, Pietro; Fioravanti, Valeria; Franzò, Giorgia; Fazio, Barbara; Musumeci, Paolo; Boninelli, Simona; Impellizzeri, Giuliana; Terrasi, Antonio; Priolo, Francesco; Iacona, Fabio
2014-02-12
Multi-quantum well Si/Ge nanowires (NWs) were realized by combining molecular beam epitaxy deposition and metal-assisted wet etching, which is a low-cost technique for the synthesis of extremely dense (about 1011 cm-2) arrays of NWs with a high and controllable aspect ratio. In particular, we prepared ultrathin Si/Ge NWs having a mean diameter of about 8 nm and lengths spanning from 1.0 to 2.7 μm. NW diameter is compatible with the occurrence of quantum confinement effects and, accordingly, we observed light emission assignable to the presence of Si and Ge nanostructures. We performed a detailed study of the photoluminescence properties of the NWs, with particular attention to the excitation and de-excitation properties as a function of the temperature and of the excitation photon flux, evaluating the excitation cross section and investigating the presence of non-radiative phenomena. PACS: 61.46.Km; 78.55.-m; 78.67.Lt.
Visible and infrared emission from Si/Ge nanowires synthesized by metal-assisted wet etching
2014-01-01
Abstract Multi-quantum well Si/Ge nanowires (NWs) were realized by combining molecular beam epitaxy deposition and metal-assisted wet etching, which is a low-cost technique for the synthesis of extremely dense (about 1011 cm−2) arrays of NWs with a high and controllable aspect ratio. In particular, we prepared ultrathin Si/Ge NWs having a mean diameter of about 8 nm and lengths spanning from 1.0 to 2.7 μm. NW diameter is compatible with the occurrence of quantum confinement effects and, accordingly, we observed light emission assignable to the presence of Si and Ge nanostructures. We performed a detailed study of the photoluminescence properties of the NWs, with particular attention to the excitation and de-excitation properties as a function of the temperature and of the excitation photon flux, evaluating the excitation cross section and investigating the presence of non-radiative phenomena. PACS 61.46.Km; 78.55.-m; 78.67.Lt PMID:24521284
NASA Astrophysics Data System (ADS)
Ocylok, Sörn; Alexeev, Eugen; Mann, Stefan; Weisheit, Andreas; Wissenbach, Konrad; Kelbassa, Ingomar
One major demand of today's laser metal deposition (LMD) processes is to achieve a fail-save build-up regarding changing conditions like heat accumulations. Especially for the repair of thin parts like turbine blades is the knowledge about the correlations between melt pool behavior and process parameters like laser power, feed rate and powder mass stream indispensable. The paper will show the process layout with the camera based coaxial monitoring system and the quantitative influence of the process parameters on the melt pool geometry. Therefore the diameter, length and area of the melt pool are measured by a video analytic system at various parameters and compared with the track wide in cross-sections and the laser spot diameter. The influence of changing process conditions on the melt pool is also investigated. On the base of these results an enhanced process of the build-up of a multilayer one track fillet geometry will be presented.
NASA Astrophysics Data System (ADS)
Zhang, Hong-yan
2016-03-01
CdS nanocrystals have been successfully grown on porous silicon (PS) by sol-gel method. The plan-view field emission scanning electron microscopy (FESEM) shows that the pore size of PS is smaller than 5 μm in diameter and the agglomerates of CdS are broadly distributed on the surface of PS substrate. With the increase of annealing time, the CdS nanoparticles grow in both length and diameter along the preferred orientation. The cross-sectional FESEM images of ZnO/PS show that CdS nanocrystals are uniformly penetrated into all PS layers and adhere to them very well. photoluminescence (PL) spectra demonstrate that the intensity of PL peak located at about 425 nm has almost no change after the annealing time increases. The range of emission wavelength of CdS/PS is from 425 nm to 455 nm and the PL intensity is decreasing with the annealing temperature increasing from 100 °C to 200 °C.
Jamming of Cylindrical Grains in Featureless Vertical Channels
NASA Astrophysics Data System (ADS)
Baxter, G. William; Barr, Nicholas; Weible, Seth; Friedl, Nicholas
2013-03-01
We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel. With a grain height less than the grain diameter, these grains resemble aspirin tablets, poker chips, or coins. Unidisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. Channel widths are chosen so that no combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College
Optical properties of soot particles: measurement - model comparison
NASA Astrophysics Data System (ADS)
Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.
2013-12-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) < ~160 nm, but systematically predicts lower absorption cross-sections relative to observations for larger particles with VED > ~160 nm. The discrepancy is most pronounced for measurements made at shorter wavelengths. In contrast, Rayleigh-Debye-Gans theory, which does not assume spherical particle morphology, exhibited good agreement with the observations for all particle diameters and wavelengths. These results indicate that the use of Mie theory to describe the absorption behavior of particles >160 nm VED will underestimate the absorption by these particles. Concurrent measurements of the absorption Angstrom exponent and the single scattering albedo, and their dependence on particle size, will also be discussed.
A dynamic bead-based microarray for parallel DNA detection
NASA Astrophysics Data System (ADS)
Sochol, R. D.; Casavant, B. P.; Dueck, M. E.; Lee, L. P.; Lin, L.
2011-05-01
A microfluidic system has been designed and constructed by means of micromachining processes to integrate both microfluidic mixing of mobile microbeads and hydrodynamic microbead arraying capabilities on a single chip to simultaneously detect multiple bio-molecules. The prototype system has four parallel reaction chambers, which include microchannels of 18 × 50 µm2 cross-sectional area and a microfluidic mixing section of 22 cm length. Parallel detection of multiple DNA oligonucleotide sequences was achieved via molecular beacon probes immobilized on polystyrene microbeads of 16 µm diameter. Experimental results show quantitative detection of three distinct DNA oligonucleotide sequences from the Hepatitis C viral (HCV) genome with single base-pair mismatch specificity. Our dynamic bead-based microarray offers an effective microfluidic platform to increase parallelization of reactions and improve microbead handling for various biological applications, including bio-molecule detection, medical diagnostics and drug screening.
Orbital debris and meteoroid population as estimated from LDEF impact data
NASA Technical Reports Server (NTRS)
Zhang, Jingchang; Kessler, Donald J.
1995-01-01
Examination of LDEF's various surfaces shows numerous craters and holes due to hypervelocity impacts of meteoroids and man-made orbital debris. In this paper, the crater numbers as reported by Humes have been analyzed in an effort to understand the orbital debris and natural meteoroid environment in LEO. To determine the fraction of man-made to natural impacts, the side to top ratio of impacts and results of the Chemistry of Micrometeoroids Experiment are used. For craters in the 100 micron to 500 micron size range, about 25 percent to 30 percent of the impacts on the forward-facing surfaces and about 10 percent of the impacts on the trailing surfaces were estimated due to man-made orbital debris. A technique has been developed to convert crater numbers to particle fluxes, taking the fact into account that the distributions of impact velocity and incidence angle vary over the different surfaces of LDEF, as well as the ratio of the surface area flux to the cross-sectional area flux. Applying this technique, Humes' data concerning craters with limiting lip diameters of 100 micron, 200 micron and 500 micron have been converted into orbital debris and meteoroid fluxes ranging from about 20 micron to 200 micron particle diameter. The results exhibit good agreement with orbital debris model and meteoroid model. The converted meteoroid flux is slightly larger than Grun's model (by 40 to 70 percent). The converted orbital debris flux is slightly lower than Kessler's model for particle diameter smaller than about 30 micron and slightly larger than the model for particle diameter larger than about 40 micron. Taking also into account the IDE data point at about 0.8 micron particle diameter, it suggests to change the slope log (flux) versus log (diameter) of orbital debris flux in the 1 micron to 100 micron particle diameter range from 2.5 to 1.9.
NASA Astrophysics Data System (ADS)
Grzybowski, H.; Mosdorf, R.
2016-09-01
The temperature fluctuations occurring in flow boiling in parallel minichannels with diameter of 1 mm have been experimentally investigated and analysed. The wall temperature was recorded at each minichannel outlet by thermocouple with 0.08 mm diameter probe. The time series where recorded during dynamic two-phase flow instabilities which are accompanied by chaotic temperature fluctuations. Time series were denoised using wavelet decomposition and were analysed using cross recurrence plots (CRP) which enables the study of two time series synchronization.
Collimated electron beam accelerated at 12 kV from a Penning discharge.
Toader, D; Oane, M; Ticoş, C M
2015-01-01
A pulsed electron beam accelerated at 12 kV with a duration of 40 μs per pulse is obtained from a Penning discharge with a hollow anode and two cathodes. The electrons are extracted through a hole in one of the cathodes and focused by a pair of coils. The electron beam has a diameter of a few mm in the cross section, while the beam current reaches peak values of 400 mA, depending on the magnetic field inside the focussing coils. This relatively inexpensive and compact device is suitable for the irradiation of small material samples placed in high vacuum.
High strength, low carbon, dual phase steel rods and wires and process for making same
Thomas, Gareth; Nakagawa, Alvin H.
1986-01-01
A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.
Fracture Mechanics Evaluation of B-1 Materials. Volume I. Text
1976-10-01
4V Microstructures 2-37 P.4-1 TIG Welding Setup 2-60 2.4-2 Macrographs Showing Transverse Cross- 2-61 Sections of Typical Weld Joints 2.4-3 Diffusion...concavity. k. PAW welding parameters were: Keyhole Mode (First Pass) 1fWelding-Amperage - 185 Pilot Arc Amperage - P5 1/5" Diameter Tungsten -P% Thoria...of tooling employed. 2. • r a • 4 .fA A A ~ . - 4N. I 141Eb,~..0 1171 :41ýI t4, 1. r "I j, O~ vN;I ___4 A Ad2 Figuire 2.4-1i TIG Welding , Setup
Fluid mechanics of eating, swallowing and digestion - overview and perspectives.
Engmann, Jan; Burbidge, Adam S
2013-02-26
From a very simplistic viewpoint, the human digestive system can be regarded as a long tube (with dramatic variations in diameter, cross-section, wall properties, pumping mechanisms, regulating valves and in-line sensors). We single out a few fluid mechanical phenomena along the trajectory of a food bolus from the mouth to the small intestine and discuss how they influence sensorial perception, safe transport, and nutrient absorption from a bolus. The focus is on lubrication flows between the tongue and palate, the oropharyngeal stage of swallowing and effects of flow on absorption in the small intestine. Specific challenges and opportunities in this research area are highlighted.
Negative Magnetoresistance in Amorphous Indium Oxide Wires
Mitra, Sreemanta; Tewari, Girish C; Mahalu, Diana; Shahar, Dan
2016-01-01
We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions. PMID:27876859
Nuclear nanoprobe development for visualization of three-dimensional nanostructures
NASA Astrophysics Data System (ADS)
Takai, M.; Abo, S.; Wakaya, F.; Kikuchi, T.; Sawaragi, H.
2007-08-01
A nanoprobe system, having a liquid metal ion source with a compact electrostatic accelerating column with a maximum accelerating voltage of 200 kV and an ultra high vacuum chamber, giving rise to the enhanced sensitivity because of the large scattering cross-section, has been designed for analysis of nanostructures. The focusing performance of the probes down to 10 nm was measured and compared with the simulation. Time-of-flight (TOF) RBS using a micro channel plate (MCP) further increases the sensitivity because of the increase in acceptance angle, which realizes the visualization of nanostructures with a beam spot diameter less than 10 nm with less probe damage.
Velocity field near the jet orifice of a round jet in a crossflow
NASA Technical Reports Server (NTRS)
Fearn, R. L.; Benson, J. P.
1979-01-01
Experimentally determined velocities at selected locations near the jet orifice are presented and analyzed for a round jet in crossflow. Jet-to-crossflow velocity ratios of four and eight were studied experimentally for a round subsonic jet of air exhausting perpendicularly through a flat plate into a subsonic crosswind of the same temperature. Velocity measurements were made in cross sections to the jet plume located from one to four jet diameters from the orifice. Jet centerline and vortex properties are presented and utilized to extend the results of a previous study into the region close to the jet orifice.
Stationary Temperature Distribution in a Rotating Ring-Shaped Target
NASA Astrophysics Data System (ADS)
Kazarinov, N. Yu.; Gulbekyan, G. G.; Kazacha, V. I.
2018-05-01
For a rotating ring-shaped target irradiated by a heavy-ion beam, a differential equation for computing the stationary distribution of the temperature averaged over the cross section is derived. The ion-beam diameter is assumed to be equal to the ring width. Solving this equation allows one to obtain the stationary temperature distribution along the ring-shaped target depending on the ion-beam, target, and cooling-gas parameters. Predictions are obtained for the rotating target to be installed at the DC-280 cyclotron. For an existing rotating target irradiated by an ion beam, our predictions are compared with the measured temperature distribution.
Explosion of comet Shoemaker-Levy 9 on entry into the Jovian atmosphere
NASA Technical Reports Server (NTRS)
Mac Low, Mordecai-Mark; Zahnle, Kevin
1994-01-01
We use the astrophysical hydrocode ZEUS to compute high-resolution models of the disruption and deceleration of cometary fragments striking Jupiter. We find that simple analytic and semianalytic models work well for kilometer-size impactors. We show that previous numerical models that placed the explosion much deeper in the atmosphere failed to fully resolve important gasdynamical instabilities. These instabilities tear the comet apart, greatly increase its effective cross section, and bring it to an abrupt halt. A 1 km diameter fragment loses over 90% of its kinetic energy within a single scale height at an atmospheric pressure of order 10 bars. For all practical purposes, it explodes.
Plasma sprayed Fe(76)Nd(16)B(8) permanent magnets
NASA Technical Reports Server (NTRS)
Overfelt, R. A.; Anderson, C. D.; Flanagan, W. F.
1986-01-01
Thin coatings (0.16 mm) and thick coatings (0.50 mm) of Fe(76)Nd(16)B(8) were deposited on stainless-steel substrates by low pressure plasma spraying. Microscopic examination of the coatings in a light microscope revealed excessive porosity, but good bonding to the substrate. Fracture cross sections examined in a scanning electron microscope showed the grains to be equiaxed and approximately 1 micron or less in diameter in the as-sprayed condition. The intrinsic coercivities of the as-sprayed coatings varied from 5.8 to 10.9 kOe. The effects of postspray heat treatments on the intrinsic coercivity are also given.
Development of a miniaturized hour-glass shaped fatigue specimen
NASA Astrophysics Data System (ADS)
Miwa, Y.; Jitsukawa, S.; Hishinuma, A.
1998-10-01
Diametral strain-controlled push-pull fatigue tests with zero mean strain were carried out with miniaturized hour-glass shaped specimens of an austenitic stainless steel in solution annealed condition at room temperature. The specimens had a diameter of 1.25 mm at the minimum cross section and a total length of 25.4 mm. The number of cycles to failure ( Nf) was equal to or slightly greater than that obtained with standard size specimens. Nf was also revealed to be rather insensitive to the specimen load axis offset, indicating that the requirement of the specimen alignment to the load axis was not very severe for the miniaturized specimen.
Energy conversion device with support member having pore channels
Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO
2014-01-07
Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.
Mallinson, Rebecca J; Williams, Nancy I; Gibbs, Jenna C; Koehler, Karsten; Allaway, Heather C M; Southmayd, Emily; De Souza, Mary Jane
2016-07-01
Menstrual status, both past and current, has been established as an important determinant of bone mineral density (BMD) in young exercising women. However, little is known regarding the association between the cumulative effect of menstrual status and indices of bone health beyond BMD, such as bone geometry and estimated bone strength. This study explores the association between cumulative menstrual status and indices of bone health assessed using dual-energy x-ray absorptiometry (DXA), including femoral neck geometry and strength and areal BMD (aBMD), in exercising women. 101 exercising women (22.0±0.4years, BMI 21.0±0.2kg/m(2), 520±40min/week of self-reported exercise) participated in this cross-sectional study. Women were divided into three groups as follows based on their self-reported current and past menstrual status: 1) current and past regular menstrual cycles (C+P-R) (n=23), 2) current and past irregular menstrual cycles (C+P-IR) (n=56), 3) and current or past irregular cycles (C/P-RIR) (n=22). Current menstrual status was confirmed using daily urinary metabolites of reproductive hormones. DXA was used to assess estimates of femoral neck geometry and strength from hip strength analysis (HSA), aBMD, and body composition. Cross-sectional moment of inertia (CSMI), cross-sectional area (CSA), strength index (SI), diameter, and section modulus (Z) were calculated at the femoral neck. Low CSMI, CSA, SI, diameter, and Z were operationally defined as values below the median. Areal BMD (g/cm(2)) and Z-scores were determined at the lumbar spine, femoral neck, and total hip. Low BMD was defined as a Z-score<-1.0. Chi-square tests and multivariable logistic regression were performed to compare the prevalence and determine the odds, respectively, of low bone geometry, strength, and aBMD among groups. Cumulative menstrual status was identified as a significant predictor of low femoral neck CSMI (p=0.005), CSA (p≤0.024), and diameter (p=0.042) after controlling for confounding variables. C+P-IR or C/P-RIR were four to eight times more likely to exhibit low femoral neck CSMI or CSA when compared with C+P-R. Lumbar spine aBMD and Z-score were lower in C+P-IR when compared with C+P-R (p≤0.003). A significant association between menstrual group and low aBMD was observed at the lumbar spine (p=0.006) but not at the femoral neck or total hip (p>0.05). However, after controlling for confounding variables, cumulative menstrual status was not a significant predictor of low aBMD. In exercising women, the cumulative effect of current and past menstrual irregularity appears to be an important predictor of lower estimates of femoral neck geometry, as observed by smaller CSMI and CSA, which may serve as an another means, beyond BMD, by which menstrual irregularity compromises bone strength. As such, evaluation of both current and past menstrual status is recommended to determine potential risk for relatively small bone geometry at the femoral neck. Copyright © 2016 Elsevier Inc. All rights reserved.
Karbasi, Salman; Frazier, Ryan J; Mirr, Craig R; Koch, Karl W; Mafi, Arash
2013-07-29
We develop and characterize a disordered polymer optical fiber that uses transverse Anderson localization as a novel waveguiding mechanism. The developed polymer optical fiber is composed of 80,000 strands of poly (methyl methacrylate) (PMMA) and polystyrene (PS) that are randomly mixed and drawn into a square cross section optical fiber with a side width of 250 μm. Initially, each strand is 200 μm in diameter and 8-inches long. During the mixing process of the original fiber strands, the fibers cross over each other; however, a large draw ratio guarantees that the refractive index profile is invariant along the length of the fiber for several tens of centimeters. The large refractive index difference of 0.1 between the disordered sites results in a small localized beam radius that is comparable to the beam radius of conventional optical fibers. The input light is launched from a standard single mode optical fiber using the butt-coupling method and the near-field output beam from the disordered fiber is imaged using a 40X objective and a CCD camera. The output beam diameter agrees well with the expected results from the numerical simulations. The disordered optical fiber presented in this work is the first device-level implementation of 2D Anderson localization, and can potentially be used for image transport and short-haul optical communication systems.
Karbasi, Salman; Frazier, Ryan J.; Mirr, Craig R.; Koch, Karl W.; Mafi, Arash
2013-01-01
We develop and characterize a disordered polymer optical fiber that uses transverse Anderson localization as a novel waveguiding mechanism. The developed polymer optical fiber is composed of 80,000 strands of poly (methyl methacrylate) (PMMA) and polystyrene (PS) that are randomly mixed and drawn into a square cross section optical fiber with a side width of 250 μm. Initially, each strand is 200 μm in diameter and 8-inches long. During the mixing process of the original fiber strands, the fibers cross over each other; however, a large draw ratio guarantees that the refractive index profile is invariant along the length of the fiber for several tens of centimeters. The large refractive index difference of 0.1 between the disordered sites results in a small localized beam radius that is comparable to the beam radius of conventional optical fibers. The input light is launched from a standard single mode optical fiber using the butt-coupling method and the near-field output beam from the disordered fiber is imaged using a 40X objective and a CCD camera. The output beam diameter agrees well with the expected results from the numerical simulations. The disordered optical fiber presented in this work is the first device-level implementation of 2D Anderson localization, and can potentially be used for image transport and short-haul optical communication systems. PMID:23929276
NASA Astrophysics Data System (ADS)
Jansky, Bohumil; Rejchrt, Jiri; Novak, Evzen; Losa, Evzen; Blokhin, Anatoly I.; Mitenkova, Elena
2017-09-01
The leakage neutron spectra measurements have been done on benchmark spherical assemblies - iron spheres with diameter of 20, 30, 50 and 100 cm. The Cf-252 neutron source was placed into the centre of iron sphere. The proton recoil method was used for neutron spectra measurement using spherical hydrogen proportional counters with diameter of 4 cm and with pressure of 400 and 1000 kPa. The neutron energy range of spectrometer is from 0.1 to 1.3 MeV. This energy interval represents about 85 % of all leakage neutrons from Fe sphere of diameter 50 cm and about of 74% for Fe sphere of diameter 100 cm. The adequate MCNP neutron spectra calculations based on data libraries CIELO, JEFF-3.2 and ENDF/B-VII.1 were done. Two calculations were done with CIELO library. The first one used data for all Fe-isotopes from CIELO and the second one (CIELO-56) used only Fe-56 data from CIELO and data for other Fe isotopes were from ENDF/B-VII.1. The energy structure used for calculations and measurements was 40 gpd (groups per decade) and 200 gpd. Structure 200 gpd represents lethargy step about of 1%. This relatively fine energy structure enables to analyze the Fe resonance neutron energy structure. The evaluated cross section data of Fe were validated on comparisons between the calculated and experimental spectra.
Dy, Alexander Edward S; Lapeña, José Florencio F
2018-04-01
To investigate associations between age, external auditory canal (EAC) dimensions, and cerumen retention/impaction among persons with Down syndrome (DS). This cross-sectional study evaluated EAC dimensions, cerumen retention/impaction, and middle ear status with pneumatoscopy after extraction in 130 persons with DS. Descriptive and inferential statistics correlated age, presence of impacted/retained cerumen, and EAC diameter. Of 260 ears in 67 males and 63 females with average age of 9.48 years, 72.3% (188) had EAC of ≤4 mm. Those ≤1 year were 4.97 times more likely to have cerumen problems than those >1 year (95% CI, 1.45-17.02, P = .011). The odds of having cerumen problems with an EAC diameter of ≤4 mm were 3.31 times higher than with a diameter of 5 mm (95% CI, 1.46-7.50, P = .004), and odds of having cerumen impaction were as much as 6.19 times higher (95% CI, 2.38-16.08, P < .001). Male gender and low-lying external ear were also associated with increased odds of cerumen problems. There is a high prevalence of cerumen retention/impaction in persons with DS compared to the general Philippine population and a higher prevalence rate for EAC stenosis than elsewhere. A canal diameter of 4 mm and below and age 1 year or less are associated with a significantly higher likelihood of cerumen retention/impaction.
Effect of bending on the performance of spool-packaged shape memory alloy actuators
NASA Astrophysics Data System (ADS)
Redmond, John A.; Brei, Diann; Luntz, Jonathan; Browne, Alan L.; Johnson, Nancy L.
2009-03-01
Shape memory alloy (SMA) actuation is becoming an increasingly viable technology for industrial applications as many of the technical issues that have limited its use are being addressed (speed of actuation, mechanical connections, performance degradation, quality control, etc.) while increasing production capacities drive costs to practical levels. Shape memory alloys are often selected because of their high energy density which can lead to compact actuators; however, wire forms with small cross-sectional diameters tend to be long (10 to 50 times the length of required stroke). Spooling the wire can be used for compact packaging, but as the spool diameter decreases performance losses and fatigue increase due to bending strains and stresses. This paper presents a simple, design-level model for spooled SMA wire actuators with linear motion outputs that includes the effects of friction and wire bending and accounts for the actuator geometry, applied load, and material friction and constitutive properties. The model was validated experimentally with respect to the ratio of mandrel to SMA wire diameter and agrees well in both form and magnitude with experiments. The resulting model provides the framework for the analysis and synthesis of spooled SMA wire actuators to guide the selection of design parameters with respect to the tradeoffs between performance and packaging.
A new thermal shape memory Ti-Ni alloy stent covered with silicone.
Nakamura, T; Shimizu, Y; Ito, Y; Matsui, T; Okumura, N; Takimoto, Y; Ariyasu, T; Kiyotani, T
1992-01-01
An attempt was made to develop an airway stent for nonsurgical transluminal implantation using a bronchofiberscope. The stent is composed of a single wire with a diameter of 0.5 mm. The wire is made of thermal shape memory titanium nickel alloy, with a transition temperature of 25-30 degrees C. To avoid direct contact between the metal and the tissue, the wire is covered with a 300 microns thick coating of silicone. The stent is horseshoe shaped in cross-section. It is 15 mm in outer transverse diameter and 40 mm long. Ten stents were implanted in 10 dogs whose tracheal cartilages had been previously broken. The stents were first cooled in ice water to reduce their diameter and then inserted into the target site. The wire was warmed to body temperature and recovered its initial shape within 10 sec. The dogs were killed for examination between 1 week and 6 months after implantation. All the stents were located at the implantation sites and were patent. Tissue reactions, such as ulceration and granulation formation, were less severe than in those with previously implanted non-silicone covered stents. Microscopic observation showed that the wires became gradually covered with epithelium within 2 months. This transluminal technique for preserving airway patency shows promise for clinical application.
NASA Astrophysics Data System (ADS)
Pryds, N.; Toftmann, B.; Bilde-Sørensen, J. B.; Schou, J.; Linderoth, S.
2006-04-01
Films of yttria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive X-ray spectrometry in a scanning electron microscope (SEM) with use of a method similar to one described by Bishop and Poole. The attenuation of the electron-induced X-rays from the Si wafer by the film was monitored at a number of points along a diameter and the thickness was determined by Monte Carlo simulations of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine the thickness of a large film, i.e. up to diameters of 125 mm, in a relatively short time, without destroying the substrate, without the need of a standard sample and without the need of a flat substrate. We have also demonstrated that by controlling the deposition parameters large-area YSZ films with uniform thickness can be produced.
Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping
2015-12-15
Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.
Anatomical study of the facial nerve canal in comparison to the site of the lesion in Bell's palsy.
Dawidowsky, Krsto; Branica, Srećko; Batelja, Lovorka; Dawidowsky, Barbara; Kovać-Bilić, Lana; Simunić-Veselić, Anamarija
2011-03-01
The term Bell's palsy is used for the peripheral paresis of the facial nerve and is of unknown origin. Many studies have been performed to find the cause of the disease, but none has given certain evidence of the etiology. However, the majority of investigators agree that the pathophysiology of the palsy starts with the edema of the facial nerve and consequent entrapment of the nerve in the narrow facial canal in the temporal bone. In this study the authors wanted to find why the majority of the paresis are suprastapedial, i.e. why the entrapment of the nerve mainly occurs in the proximal part of the canal. For this reason they carried out anatomical measurements of the facial canal diameter in 12 temporal bones. By use of a computer program which measures the cross-sectional area from the diameter, they proved that the width of the canal is smaller at its proximal part. Since the nerve is thicker at that point because it contains more nerve fibers, the authors conclude that the discrepancy between the nerve diameter and the surrounding bony walls in the suprastapedial part of the of the canal would, in cases of a swollen nerve after inflammation, cause the facial palsy.
Mackenzie, C J; Haggett, E F; Pinchbeck, G L; Marr, C M
2017-05-01
Ultrasonography of the atlanto-occipital (AO) space may be useful as a non-invasive diagnostic tool in neonatal foals. The aims of the study were establish a range of values for ultrasonographic measurements of the AO space in healthy Thoroughbred foals and to compare these variables in healthy foals with foals diagnosed with neonatal maladjustment syndrome (NMS). Ultrasonography of the AO space was performed on 38 healthy Thoroughbred foals and 28 Thoroughbred foals with NMS≤4days of age. Transverse image spinal cord height (P=0.001), width (P<0.001) and spinal cord cross sectional area (P<0.001), and longitudinal image dorsoventral diameter of the ventral spinal artery, were significantly smaller in foals with NMS than in healthy foals. Ratios of spinal canal to cord width and cross sectional area were significantly smaller in healthy foals than in foals with NMS (P<0.001). Spinal canal variables were not significantly different between groups. Several ultrasonographic measurements of the AO space were significantly different between healthy foals and foals with NMS. Further investigation is warranted to investigate the clinical application of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
Millimeter accuracy satellites for two color ranging
NASA Technical Reports Server (NTRS)
Degnan, John J.
1993-01-01
The principal technical challenge in designing a millimeter accuracy satellite to support two color observations at high altitudes is to provide high optical cross-section simultaneously with minimal pulse spreading. In order to address this issue, we provide, a brief review of some fundamental properties of optical retroreflectors when used in spacecraft target arrays, develop a simple model for a spherical geodetic satellite, and use the model to determine some basic design criteria for a new generation of geodetic satellites capable of supporting millimeter accuracy two color laser ranging. We find that increasing the satellite diameter provides: a larger surface area for additional cube mounting thereby leading to higher cross-sections; and makes the satellite surface a better match for the incoming planar phasefront of the laser beam. Restricting the retroreflector field of view (e.g. by recessing it in its holder) limits the target response to the fraction of the satellite surface which best matches the optical phasefront thereby controlling the amount of pulse spreading. In surveying the arrays carried by existing satellites, we find that European STARLETTE and ERS-1 satellites appear to be the best candidates for supporting near term two color experiments in space.
Effects of spaceflight on rat humerus geometry, biomechanics, and biochemistry.
Vailas, A C; Zernicke, R F; Grindeland, R E; Kaplansky, A; Durnova, G N; Li, K C; Martinez, D A
1990-01-01
The effects of a 12.5-day spaceflight (Cosmos 1887 biosatellite) on the geometric, biomechanical, and biochemical characteristics of humeri of male specific pathogen-free rats were examined. Humeri of age-matched basal control, synchronous control, and vivarium control rats were contrasted with the flight bones to examine the influence of growth and space environment on bone development. Lack of humerus longitudinal growth occurred during the 12.5 days in spaceflight. In addition, the normal mid-diaphysial periosteal appositional growth was affected; compared with their controls, the spaceflight humeri had less cortical cross-sectional area, smaller periosteal circumferences, smaller anterior-posterior periosteal diameters, and smaller second moments of area with respect to the bending and nonbending axes. The flexural rigidity of the flight humeri was comparable to that of the younger basal control rats and significantly less than that of the synchronous and vivarium controls; the elastic moduli of all four groups, nonetheless, were not significantly different. Generally, the matrix biochemistry of the mid-diaphysial cross sections showed no differences among groups. Thus, the spaceflight differences in humeral mechanical strength and flexural rigidity were probably a result of the differences in humeral geometry rather than material properties.
Effects of spaceflight on rat humerus geometry, biomechanics, and biochemistry
NASA Technical Reports Server (NTRS)
Vailas, A. C.; Zernicke, R. F.; Grindeland, R. E.; Kaplansky, A.; Durnova, G. N.; Li, K. C.; Martinez, D. A.
1990-01-01
The effects of a 12.5-day spaceflight (Cosmos 1887 biosatellite) on the geometric, biomechanical, and biochemical characteristics of humeri of male specific pathogen-free rats were examined. Humeri of age-matched basal control, synchronous control, and vivarium control rats were contrasted with the flight bones to examine the influence of growth and space environment on bone development. Lack of humerus longitudinal growth occurred during the 12.5 days in spaceflight. In addition, the normal mid-diaphysial periosteal appositional growth was affected; compared with their controls, the spaceflight humeri had less cortical cross-sectional area, smaller periosteal circumferences, smaller anterior-posterior periosteal diameters, and smaller second moments of area with respect to the bending and nonbending axes. The flexural rigidity of the flight humeri was comparable to that of the younger basal control rats and significantly less than that of the synchronous and vivarium controls; the elastic moduli of all four groups, nonetheless, were not significantly different. Generally, the matrix biochemistry of the mid-diaphysial cross sections showed no differences among groups. Thus, the spaceflight differences in humeral mechanical strength and flexural rigidity were probably a result of the differences in humeral geometry rather than material properties.
NASA Astrophysics Data System (ADS)
Donovan, David; Maan, Anurag; Duran, Jonah; Buchenauer, Dean; Whaley, Josh
2015-11-01
Exposure of tungsten to low energy (<100 eV) helium plasmas at temperatures between 900-1900 K in both laboratory experiments and tokamaks has been shown to cause severe nanoscale modification of the near surface resulting the growth of tungsten tendrils. We used a relatively low flux (2.5x1019 ions m-2 s-1) compact ECR plasma source at Sandia-California to investigate the early stages of helium induced tungsten damage. Exposures of polished tungsten discs were performed and characterized using SEM, AFM, and FIB cross section imaging. Bubbles have been seen on the exposed tungsten surface and in sub-surface cross sections growing to up to 150 nm in diameter. Comparisons were made between exposures of warm rolled Plansee tungsten discs and ALMT ITER grade tungsten samples. A similar He plasma exposure stage has now been developed at the University of Tennessee-Knoxville with an improved compact ECR plasma source. Status of the new UTK exposure stage will be discussed as well as planned experiments and new material characterization techniques (EBSD, GIXRD). Work supported by US DOE Contract DE-AC04-94AL85000 and the PSI Science Center.
Tomiyama, A Janet; Dallman, Mary F; Epel, Elissa S
2011-11-01
Chronically stressed rodents who are allowed to eat calorie-dense "comfort" food develop greater mesenteric fat, which in turn dampens hypothalamic-pituitary-adrenocortical (HPA) axis activity. We tested whether similar relations exist in humans, at least cross-sectionally. Fifty-nine healthy premenopausal women were exposed to a standard laboratory stressor to examine HPA response to acute stress and underwent diurnal saliva sampling for basal cortisol and response to dexamethasone administration. Based on perceived stress scores, women were divided into extreme quartiles of low versus high stress categories. We found as hypothesized that the high stress group had significantly greater BMI and sagittal diameter, and reported greater emotional eating. In response to acute lab stressor, the high stress group showed a blunted cortisol response, lower diurnal cortisol levels, and greater suppression in response to dexamethasone. These cross-sectional findings support the animal model, which suggests that long-term adaptation to chronic stress in the face of dense calories result in greater visceral fat accumulation (via ingestion of calorie-dense food), which in turn modulates HPA axis response, resulting in lower cortisol levels. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Simunovic, Srdjan; Maleki, Hosein
The response of Li-ion cells to mechanically induced internal electrical shorts is an important safety performance metric design. We assume that the battery internal configuration at the onset of electrical short influences the subsequent response and can be used to gauge the safety risk. We subjected a series of prismatic Li-ion cells to lateral pinching using 0.25", 0.5", 1", 2" and 3" diameter steel balls until the onset of internal short. The external aluminum enclosure froze the internal cell configuration at the onset of short and enabled us to cross-section the cells, and take the cross-section images. The images indicatemore » that an internal electric short is preceded by extensive strain partitioning in the cells, fracturing and tearing of the current collectors, and cracking and slipping of the electrode layers with multiple fault lines across multiple layers. These observations are at odds with a common notion of homogeneous deformation across the layers and strain hardening of electrodes that eventually punch through the separator and short the cell. The faults are akin to tectonic movements of multiple layers that are characteristic of granular materials and bonded aggregates. As a result, the short circuits occur after extensive internal faulting, which implies significant stretching and tearing of separators.« less
Ultrahigh speed endoscopic optical coherence tomography for gastroenterology.
Tsai, Tsung-Han; Lee, Hsiang-Chieh; Ahsen, Osman O; Liang, Kaicheng; Giacomelli, Michael G; Potsaid, Benjamin M; Tao, Yuankai K; Jayaraman, Vijaysekhar; Figueiredo, Marisa; Huang, Qin; Cable, Alex E; Fujimoto, James; Mashimo, Hiroshi
2014-12-01
We describe an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor imaging catheter. The system had a 600 kHz axial scan rate and 8 µm axial resolution in tissue. Imaging was performed with a 3.2 mm diameter imaging catheter at 400 frames per second with a 12 µm spot size. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing upper and lower endoscopy. The use of distally actuated imaging catheters enabled OCT imaging with more flexibility, such as volumetric imaging in the small intestine and the assessment of hiatal hernia using retroflex imaging. The high rotational scanning stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face OCT and cross-sectional imaging, as well as OCT angiography (OCTA) for 3D visualization of subsurface microvasculature. The ability to perform both structural and functional 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies and enhance the sensitivity and specificity of OCT for detecting pathology.
Ultrahigh speed endoscopic optical coherence tomography for gastroenterology
Tsai, Tsung-Han; Lee, Hsiang-Chieh; Ahsen, Osman O.; Liang, Kaicheng; Giacomelli, Michael G.; Potsaid, Benjamin M.; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Figueiredo, Marisa; Huang, Qin; Cable, Alex E.; Fujimoto, James; Mashimo, Hiroshi
2014-01-01
We describe an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor imaging catheter. The system had a 600 kHz axial scan rate and 8 µm axial resolution in tissue. Imaging was performed with a 3.2 mm diameter imaging catheter at 400 frames per second with a 12 µm spot size. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing upper and lower endoscopy. The use of distally actuated imaging catheters enabled OCT imaging with more flexibility, such as volumetric imaging in the small intestine and the assessment of hiatal hernia using retroflex imaging. The high rotational scanning stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face OCT and cross-sectional imaging, as well as OCT angiography (OCTA) for 3D visualization of subsurface microvasculature. The ability to perform both structural and functional 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies and enhance the sensitivity and specificity of OCT for detecting pathology. PMID:25574446
NASA Astrophysics Data System (ADS)
Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele
2016-02-01
An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.
Aerodynamic design of gas and aerosol samplers for aircraft
NASA Technical Reports Server (NTRS)
Soderman, Paul T.; Hazen, Nathan L.; Brune, William H.
1991-01-01
The aerodynamic design of airborne probes for the capture of air and aerosols is discussed. Emphasis is placed on the key parameters that affect proper sampling, such as inlet-lip design, internal duct components for low pressure drop, and exhaust geometry. Inlet designs that avoid sonic flow conditions on the lip and flow separation in the duct are shown. Cross-stream velocities of aerosols are expressed in terms of droplet density and diameter. Flow curvature, which can cause aerosols to cross streamlines and impact on probe walls, can be minimized by means of a proper inlet shape and proper probe orientation, and by avoiding bends upstream of the test section. A NASA panel code called PMARC was used successfully to compute streamlines around aircraft and probes, as well as to compute to local velocity and pressure distributions in inlets. A NACA 1-series inlet with modified lip radius was used for the airborne capture of stratospheric chlorine monoxide at high altitude and high flight speed. The device has a two-stage inlet that decelerates the inflow with little disturbance to the flow through the test section. Diffuser design, exhaust hood design, valve loss, and corner vane geometry are discussed.
Shock wave absorber having a deformable liner
Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.
1983-08-26
This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.
Characterization of ecofriendly polyethylene fiber from plastic bag waste
NASA Astrophysics Data System (ADS)
Soekoco, Asril S.; Noerati, Komalasari, Maya; Kurniawan, Hananto, Agus
2017-08-01
This paper presents the characterization of fiber morphology, fiber count and tenacity of polyethylene fiber which is made from plastic bag waste. Recycling plastic bag waste into textile fiber has not developed yet. Plastic bag waste was recycled into fiber by melt spinning using laboratory scale melt spinning equipment with single orifice nozzle and plunger system. The basic principle of melt spinning is by melting materials and then extruding it through small orifice of a spinning nozzle to form fibers. Diameter and cross section shape of Recycled polyethylene fiber were obtained by using scanning electron microscope (SEM) instrumentation. Linear density of the recycled fiber were analyzed by calculation using denier and dTex formulation and The mechanical strength of the fibers was measured in accordance with the ASTM D 3379-75 standard. The cross section of recycled fiber is circular taking the shape of orifice. Fiber count of 303.75 denier has 1.84 g/denier tenacity and fiber count of 32.52 has 3.44 g/denier tenacity. This conditions is affected by the growth of polymer chain alignment when take-up axial velocity become faster. Recycled polyethylene fiber has a great potential application in non-apparel textile.
Zhao, Lei; Lv, Guangming; Jiang, Shengyang; Yan, Zhiqiang; Sun, Junming; Wang, Ling; Jiang, Donglin
2012-01-01
Skeletal muscle atrophy occurs after denervation. The present study dissected the rat left ventral root and dorsal root at L4-6 or the sciatic nerve to establish a model of simple motor nerve injury, sensory nerve injury or mixed nerve injury. Results showed that with prolonged denervation time, rats with simple motor nerve injury, sensory nerve injury or mixed nerve injury exhibited abnormal behavior, reduced wet weight of the left gastrocnemius muscle, decreased diameter and cross-sectional area and altered ultrastructure of muscle cells, as well as decreased cross-sectional area and increased gray scale of the gastrocnemius muscle motor end plate. Moreover, at the same time point, the pathological changes were most severe in mixed nerve injury, followed by simple motor nerve injury, and the changes in simple sensory nerve injury were the mildest. These findings indicate that normal skeletal muscle morphology is maintained by intact innervation. Motor nerve injury resulted in larger damage to skeletal muscle and more severe atrophy than sensory nerve injury. Thus, reconstruction of motor nerves should be considered first in the clinical treatment of skeletal muscle atrophy caused by denervation. PMID:25337102
Design study of an entry probe spectro-reflectometer
NASA Technical Reports Server (NTRS)
Sill, G. T.; Fink, U.
1986-01-01
A wind tunnel was built to simulate the rapid movement of an entry probe through the Jupiter atmosphere. Wind speeds range from 1 to 50 meters per second in a closed system. Wind velocity and temperature probes as well as a cryogenically cooled cold finger can be placed in the 6 inch diameter viewing section. The initial testing of the wind tunnel involved running sectional profiles through the observation port of air currents of 0.1 to 3.0 atmosphere. The velocity profile was very uniform throughout the cross section of the experimental port, with the exception of the wall effects. The deposition of cooled volatiles using the wind tunnel was not performed. However, measurements of the deposition of H2O ice on a cryogenically cooled thickness modulator were made under ambient conditions, namely room temperature and pressure. In the Frost Depositon Test Facility, ice deposition was measured at thicknesses of about a half millimeter and frost was produced whose thickness reflectivity could easily be measured by reflectance spectroscopy.
Jonas, Jost B; Wang, Ningli; Wang, Shuang; Wang, Ya Xing; You, Qi Sheng; Yang, Diya; Wei, Wen Bin; Xu, Liang
2014-09-01
Hypertensive retinal microvascular abnormalities include an increased retinal vein-to-artery diameter ratio. Because central retinal vein pressure depends on cerebrospinal fluid pressure (CSFP), we examined whether the retinal vein-to-artery diameter ratio and other retinal hypertensive signs are associated with CSFP. Participants of the population-based Beijing Eye Study (n = 1,574 subjects) underwent measurement of the temporal inferior and superior retinal artery and vein diameter. CSFP was calculated as 0.44 × body mass index (kg/m(2)) + 0.16 × diastolic blood pressure (mm Hg) - 0.18 × age (years) - 1.91. Larger retinal vein diameters and higher vein-to-artery diameter ratios were significantly associated with higher estimated CSFP (P = 0.001) in multivariable analysis. In contrast, temporal inferior retinal arterial diameter was marginally associated (P = 0.03) with estimated CSFP, and temporal superior artery diameter was not significantly associated (P = 0.10) with estimated CSFP; other microvascular abnormalities, such as arteriovenous crossing signs, were also not significantly associated with estimated CSFP. In a reverse manner, higher estimated CSFP as a dependent variable in the multivariable analysis was associated with wider retinal veins and higher vein-to-artery diameter ratio. In the same model, estimated CSFP was not significantly correlated with retinal artery diameters or other retinal microvascular abnormalities. Correspondingly, arterial hypertension was associated with retinal microvascular abnormalities such as arteriovenous crossing signs (P = 0.003), thinner temporal retinal arteries (P < 0.001), higher CSFP (P < 0.001), and wider retinal veins (P = 0.001) or, as a corollary, with a higher vein-to-artery diameter ratio in multivariable analysis. Wider retinal vein diameters are associated with higher estimated CSFP and vice versa. In arterial hypertension, an increased retinal vein-to-artery diameter ratio depends on elevated CSFP, which is correlated with blood pressure. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rigid and Flexible Pavement Aircraft Tie-Downs
2010-05-01
Concrete Pier, Prior to PCC Placement Neenah anchors are equipped with two ½-in-diameter cored holes to allow insertion of a section of rebar through...facilitate this process, a Hilti drill was utilized to perform the concrete drilling process. The drill bit diameter exceeded the rebar diameter by...aggregate particles not become lodged against the rebar sections inside the dowel sleeves, impeding the flow of concrete and possibly creating air voids
Flow in out-of-plane double S-bonds
NASA Technical Reports Server (NTRS)
Schmidt, M. C.; Whitelaw, J. H.; Yianneskis, M.
1986-01-01
Developing flows in two out-of-plane double S-bend configurations have been measured by laser-Doppler anemometry. The first duct had a rectangular cross-section 40mmx40mm at the inlet and consisted of a uniform area 22.5 deg. - 22.5 deg. S-duct upstream with a 22.5 deg.- 22.5 deg. S- diffuser downstream. The second duct had a circular cross-section and consisted of a 45 deg. - 45 deg. uniform area S-duct upstream with a 22.5 deg. -22.5 deg. S-diffuser downstream. In both configurations the ratio of the mean radius of curvature to the inlet hydraulic diameter was 7.0, the exit-to-inlet area ratio of the diffusers was 1.5 and the ducts were connected so that the centerline of the S-duct lay in a plane normal to that of the S-diffuser. Streamwise and cross-stream velocity components were measured in laminar flow for the rectangular duct and in turbulent flow for both configurations; measurements of the turbulence levels, cross-correlations and wall static pressures were also made in the turbulent flow cases. Secondary flows of the first kind are present in the first S-duct and they are complemented or counteracted by the secondary flows generated by the area expansion and by the curvature of the S-diffusers downstream. Cross-stream velocities with magnitudes up to 0.19 and 0.11 of the bulk velocity were measured in the laminar and turbulent flows respectively in the rectangular duct and six cross-flow vortices were evident at the exit of the duct in both flow cases. The turbulent flow in the circular duct was qualitatively similar to that in the rectangular configuration, but the cross-stream velocities measured at the exit plane were smaller in the circular geometry. The results are presented in sufficient detail and accuracy for the assessment of numerical calculation methods and are listed in tabular form for this purpose.
Fiber diameter distributions in the chinchilla's ampullary nerves
NASA Technical Reports Server (NTRS)
Hoffman, Larry F.; Honrubia, Vicente
2002-01-01
A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from 1 microm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094+/-573 fibers, having diameters that ranged from 0.5 to 8 microm. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 microm. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics.
NASA Technical Reports Server (NTRS)
Widrick, Jeffrey J.; Bangart, Jill J.; Karhanek, Miloslav; Fitts, Robert H.
1996-01-01
This study examined the effectiveness of intermittent weight bearing (IWB) as a countermeasure to non-weight-bearing (NWB)-induced alterations in soleus type 1 fiber force (in mN), tension (P(sub o); force per fiber cross-sectional area in kN/sq m), and maximal unloaded shortening velocity (V(sub o), in fiber lengths/s). Adult rats were assigned to one of the following groups: normal weight bearing (WB), 14 days of hindlimb NWB (NWB group), and 14 days of hindlimb NWB with IWB treatments (IWB group). The IWB treatment consisted of four 10-min periods of standing WB each day. Single, chemically permeabilized soleus fiber segments were mounted between a force transducer and position motor and were studied at maximal Ca(2+) activation, after which type 1 fiber myosin heavy-chain composition was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. NWB resulted in a loss in relative soleus mass (-45%), with type 1 fibers displaying reductions in diameter (-28%) and peak isometric force (-55%) and an increase in V(sub o) (+33%). In addition, NWB induced a 16% reduction in type 1 fiber P., a 41% reduction in type 1 fiber peak elastic modulus [E(sub o), defined as ((delta)force/(delta)length x (fiber length/fiber cross-sectional area] and a significant increase in the P(sub o)/E(sub o) ratio. In contrast to NWB, IWB reduced the loss of relative soleus mass (by 22%) and attenuated alterations in type 1 fiber diameter (by 36%), peak force (by 29%), and V(sub o)(by 48%) but had no significant effect on P(sub o), E(sub o) or P(sub o)/E(sub o). These results indicate that a modest restoration of WB activity during 14 days of NWB is sufficient to attenuate type 1 fiber atrophy and to partially restore type 1 peak isometric force and V(sub o) to WB levels. However, the NWB-induced reductions in P(sub o) and E(sub o) which we hypothesize to be due to a decline in the number and stiffness of cross bridges, respectively, are considerably less responsive to this countermeasure treatment.
NASA Astrophysics Data System (ADS)
Yang, Che-Wei; Chen, Wei-Chieh; Chou, Chieh; Lin, Hao-Hsiung
2018-02-01
We report on the selective area growth of InAs nanowires on patterned SiO2/Si (1 1 1) nano-holes, prepared by focused helium ion beam technology. We used a single spot mode, in which the focused helium ion beam was fixed on a single point with a He+-ion dosage, ranging from 1.5 pC to 8 pC, to drill the nano-holes. The smallest hole diameter achieved is ∼8 nm. We found that low He+-ion dosage is able to facilitate the nucleation of (1 1 1)B InAs on the highly mismatched Si, leading to the vertical growth of InAs nanowires (NWs). High He-ion dosage, on the contrary, severely damaged Si surface, resulting in tilted and stripe-like NWs. In addition to titled NW grown from (1 1 1)A InAs domain, a new titled growth direction due to defect induced twinning was observed. Cross-sectional TEM images of vertical NWs show mixed wurtizite (WZ) and zincblende (ZB) phases, while WZ phase dominants. The stacking faults resulting from the phase change is proportional to NW diameter, suggesting that the critical diameter of phase turning is larger than 110 nm, the maximum diameter of our NWs. Period of misfit dislocation at the InAs/Si interface of vertical NW is also found larger than the theoretical value when the diameter of heterointerface is smaller than 50 nm, indicating that the small contact area is able to accommodate the large lattice and thermal mismatch between InAs and Si.
Nagata, Keiji; Yoshimura, Noriko; Hashizume, Hiroshi; Muraki, Shigeyuki; Ishimoto, Yuyu; Yamada, Hiroshi; Takiguchi, Noboru; Nakagawa, Yukihiro; Minamide, Akihito; Oka, Hiroyuki; Kawaguchi, Hiroshi; Nakamura, Kozo; Akune, Toru; Yoshida, Munehito
2014-12-01
A narrow cervical spinal canal (CSC) is a well-known risk factor for cervical myelopathy (CM). However, no epidemiologic data of the CSC based on a population-based cohort are available. The purpose of the study was to investigate the age-related differences in CSC diameters on plain radiographs and to examine the associated magnetic resonance imaging (MRI) abnormalities including cervical cord compression and increased signal intensity (ISI) as well as the clinical CM with the narrow CSC. This was a cross-sectional study. Data were obtained from the baseline survey of the Wakayama Spine Study that was performed from 2008 to 2010 in a western part of Japan. Finally, a total of 959 subjects (319 men and 640 women; mean age, 66.4 years) were included. The outcome measures included in the study were the CSC diameter at C5 level on plain radiographs, cervical cord compression and ISI on sagittal T2-weighted MRI, and physical signs related to CM (eg, the Hoffmann reflex, hyperreflexia of the patellar tendon, the Babinski reflex, sensory and motor function, and bowel/bladder symptoms). The age-related differences of CSC diameters in men and women were investigated by descriptive statistics. The prevalence of MRI abnormalities and clinical CM was compared among the groups divided by the CSC diameter (less than 13, 13-15, and 15 mm or more). In addition, a logistic regression analysis was performed to determine the association of the CSC diameter with cervical cord compression/clinical CM after overall adjustment for age, sex, and body mass index. The CSC diameter was narrower with increasing age in both men and women. The prevalence of cervical cord compression, ISI, and the clinical CM was significantly higher in the narrower CSC group. The prevalence of cervical cord compression, ISI, and CM among subjects with CSC diameter less than 13 mm was 38.0%, 5.4%, and 10.1%, respectively. In the logistic model, the CSC diameter was a significant predictive factor for the clinical CM (p<.0001). This study firstly confirmed the age-related differences in CSC diameters and the significant association of the narrow CSC diameter with CM in a population-based cohort. Copyright © 2014 Elsevier Inc. All rights reserved.
Application of small-diameter FBG sensors for detection of damages in composites
NASA Astrophysics Data System (ADS)
Okabe, Yoji; Mizutani, Tadahito; Yashiro, Shigeki; Takeda, Nobuo
2001-08-01
Small-diameter fiber Bragg grating (FBG) sensors have been developed by Hitachi Cable Ltd. and the authors. Since the outside diameter of polyimide coating is 52 micrometers , embedding of the sensors into carbon fiber reinforced plastic (CFRP) composites prepregs of 125 micrometers in thickness does not deteriorate the mechanical properties of the composite laminates. In this research, the small-diameter FBG sensor was applied for the detection of transverse cracks in CFRP composites. The FBG sensor was embedded in 0 degree(s) ply of a CFRP cross-ply laminate.
Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers
NASA Astrophysics Data System (ADS)
Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik
2011-12-01
Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.
A FODO racetrack ring for nuSTORM: design and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, A.; Bross, A.; Neuffer, D.
2017-07-01
The goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ~ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize the arcmore » length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.« less
Mid-second trimester measurement of fetal nasal bone length in the Japanese population.
Kanagawa, Takeshi; Fukuda, Hirotsugu; Kinugasa, Yukiko; Son, Mihyon; Shimoya, Koichiro; Murata, Yuji; Yokoyama, Takuhei; Hashimoto, Hiroyuki; Isaka, Shigeyuki; Nagamatsu, Masaaki
2006-08-01
We carried out a preliminary study to compare the nasal bone length (NBL) and biparietal diameter/NBL (BPD/NBL) ratio between the Japanese and white populations. Three hundred and fifty nine (359) singleton fetuses of healthy Japanese couples were examined from June 2004 to October 2005. NBL was measured by the strict midsagittal section. The reference range of NBL was established from cross-sectional data between 15 and 25 weeks' gestation. The success rate of obtaining reliable NBL was 93% (333/356). There were 330 fetuses (93%) available for constructing a reference range from the population. The median NBL increased from 3.2 mm at 15 weeks' to 7.6 mm at 25 weeks' gestation. The median of BPD/NBL ratio was 9.01. We demonstrated that NBL was significantly shorter and BPD/NBL was significantly greater in the Japanese population than those in the white and black populations.
Retransformation bias in a stem profile model
Raymond L. Czaplewski; David Bruce
1990-01-01
An unbiased profile model, fit to diameter divided by diameter at breast height, overestimated volume of 5.3-m log sections by 0.5 to 3.5%. Another unbiased profile model, fit to squared diameter divided by squared diameter at breast height, underestimated bole diameters by 0.2 to 2.1%. These biases are caused by retransformation of the predicted dependent variable;...
Dowthwaite, Jodi N.; Rosenbaum, Paula F.; Scerpella, Tamara A.
2012-01-01
Purpose We evaluated site-specific skeletal adaptation to loading during growth,comparing radius (RAD) and femoral neck (FN) DXA scans in young female gymnasts (GYM) and non-gymnasts (NON). Methods Subjects from an ongoing longitudinal study (8-26 yrs old) underwent annual DXA scans (proximal femur, forearm, total body) and anthropometry, completing maturity and physical activity questionnaires. This cross-sectional analysis used the most recent data meeting the following criteria: gynecological age ≤2.5 yrs post-menarche; GYM annual mean gymnastic exposure ≥5.0 h/wk in the prior year. Bone geometric and strength indices were derived from scans for 173 subjects (8-17 yrs old) via hip structural analysis (femoral narrow neck, NN) and similar radius formulae (1/3 and Ultradistal (UD)). Maturity was coded as M1 (Tanner I breast), M2 (pre-menarche, ≥Tanner II breast) or M3 (post-menarche). ANOVA and chi square compared descriptive data. Two factor ANCOVA adjusted for age, height, total body non-bone lean mass and percent body fat; significance was tested for main effects and interactions between gymnastic exposure and maturity. Results At the distal radius, GYM means were significantly greater than NON means for all variables (p<0.05). At the proximal femur, GYM exhibited narrower periosteal and endosteal dimensions, but greater indices of cortical thickness, BMC, aBMD and section modulus, with lower buckling ratio (p <0.05). However, significant interactions between maturity and loading were detected for the following: 1) FN bone mineral content (BMC), NN buckling ratio (GYM BMC advantages only in M1 and M3; for BMC and buckling ratio, M1 advantages were greatest; 2) 1/3 radius BMC, width, endosteal diameter, cortical cross-sectional area, section modulus (GYM advantages primarily post-menarche); 3) UD radius BMC and axial compressive strength (GYM advantages were larger with greater maturity, greatest post-menarche). Conclusions Maturity-specific comparisons suggested site-specific skeletal adaptation to loading during growth, with greater advantages at the radius versus the proximal femur. At the radius, GYM advantages included greater bone width, cortical cross-sectional area and cortical thickness; in contrast, at the femoral neck, GYM bone tissue cross-sectional area and cortical thickness were greater, but bone width was narrower than in NON. Future longitudinal analyses will evaluate putative maturity-specific differences. PMID:22342799
Rapid-quench axially staged combustor
Feitelberg, Alan S.; Schmidt, Mark Christopher; Goebel, Steven George
1999-01-01
A combustor cooperating with a compressor in driving a gas turbine includes a cylindrical outer combustor casing. A combustion liner, having an upstream rich section, a quench section and a downstream lean section, is disposed within the outer combustor casing defining a combustion chamber having at least a core quench region and an outer quench region. A first plurality of quench holes are disposed within the liner at the quench section having a first diameter to provide cooling jet penetration to the core region of the quench section of the combustion chamber. A second plurality of quench holes are disposed within the liner at the quench section having a second diameter to provide cooling jet penetration to the outer region of the quench section of the combustion chamber. In an alternative embodiment, the combustion chamber quench section further includes at least one middle region and at least a third plurality of quench holes disposed within the liner at the quench section having a third diameter to provide cooling jet penetration to at least one middle region of the quench section of the combustion chamber.
Wagner, Robert; Benz, Stefan; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Leisner, Thomas
2007-12-20
We have used the T-matrix method and the discrete dipole approximation to compute the midinfrared extinction cross-sections (4500-800 cm(-1)) of randomly oriented circular ice cylinders for aspect ratios extending up to 10 for oblate and down to 1/6 for prolate particle shapes. Equal-volume sphere diameters ranged from 0.1 to 10 microm for both particle classes. A high degree of particle asphericity provokes a strong distortion of the spectral habitus compared to the extinction spectrum of compactly shaped ice crystals with an aspect ratio around 1. The magnitude and the sign (increase or diminution) of the shape-related changes in both the absorption and the scattering cross-sections crucially depend on the particle size and the values for the real and imaginary part of the complex refractive index. When increasing the particle asphericity for a given equal-volume sphere diameter, the values for the overall extinction cross-sections may change in opposite directions for different parts of the spectrum. We have applied our calculations to the analysis of recent expansion cooling experiments on the formation of cirrus clouds, performed in the large coolable aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe at a temperature of 210 K. Depending on the nature of the seed particles and the temperature and relative humidity characteristics during the expansion, ice crystals of various shapes and aspect ratios could be produced. For a particular expansion experiment, using Illite mineral dust particles coated with a layer of secondary organic matter as seed aerosol, we have clearly detected the spectral signatures characteristic of strongly aspherical ice crystal habits in the recorded infrared extinction spectra. We demonstrate that the number size distributions and total number concentrations of the ice particles that were generated in this expansion run can only be accurately derived from the recorded infrared spectra when employing aspect ratios as high as 10 in the retrieval approach. Remarkably, the measured spectra could also be accurately fitted when employing an aspect ratio of 1 in the retrieval. The so-deduced ice particle number concentrations, however, exceeded the true values, determined with an optical particle counter, by more than 1 order of magnitude. Thus, the shape-induced spectral changes between the extinction spectra of platelike ice crystals of aspect ratio 10 and compactly shaped particles of aspect ratio 1 can be efficiently balanced by deforming the true number size distribution of the ice cloud. As a result of this severe size/shape ambiguity in the spectral analysis, we consider it indispensable to cross-check the infrared retrieval results of wavelength-sized ice particles with independent reference measurements of either the number size distribution or the particle morphology.
Gallo, A; Mattina, A; Rosenbaum, D; Koch, E; Paques, M; Girerd, X
2016-06-01
To research a retinal arterioles wall-to-lumen ratio or lumen diameter cut-off that would discriminate hypertensive from normal subjects using adaptive optics camera. One thousand and five hundred subjects were consecutively recruited and Adaptive Optics Camera rtx1™ (Imagine-Eyes, Orsay, France) was used to measure wall thickness, internal diameter, to calculate wall-to-lumen ratio (WLR) and wall cross-sectional area of retinal arterioles. Sitting office blood pressure was measured once, just before retinal measurements and office blood pressure was defined as systolic blood pressure>=140mmHg and diastolic blood pressure>=90mmHg. ROC curves were constructed to determine cut-off values for retinal parameters to diagnose office hypertension. In another population of 276 subjects office BP, retinal arterioles evaluation and home blood pressure monitoring were obtained. The applicability of retinal WLR or diameter cut-off values were compared in patients with controlled, masked, white-coat and sustained hypertension. In 1500 patients, a WLR>0.31 discriminated office hypertensive subjects with a 0.57 sensitivity and 0.71 specificity. Lumen diameter<78.2μm discriminated office hypertension with a 0.73 sensitivity and a 0.52 specificity. In the other 276 patients, WLR was higher in sustained hypertension vs normotensive patients (0.330±0.06 vs 0.292±0.05; P<0.001) and diameter was narrower in masked hypertensive vs normotensive subjects (73.0±11.2 vs 78.5±11.6μm; P<0.005). A WLR higher than 0.31 is in favour of office arterial hypertension; a diameter under<78μm may indicate a masked hypertension. Retinal arterioles analysis through adaptive optics camera may help the diagnosis of arterial hypertension, in particular in case of masked hypertension. Copyright © 2016. Published by Elsevier SAS.
The Feasibility of Two Screws Anterior Fixation for Type II Odontoid Fracture Among Arabs.
Marwan, Yousef; Kombar, Osama Rabie; Al-Saeed, Osama; Aleidan, Aljarrah; Samir, Ahmed; Esmaeel, Ali
2016-06-01
Retrospective, cross-sectional study. To evaluate the feasibility of two screws anterior fixation of the odontoid process among Arab adults. Anterior screw fixation is the treatment of choice for type II odontoid fractures. In order to perform the procedure safely, the diameter of the odontoid process should be wide enough to allow for the placement of one or two screws. A retrospective review of 156 computed tomography scans of the cervical spine was done. The included patients were Arabs, adults (at least 18 years old), and had no evidence of upper cervical spine trauma, deformity, infection, tumor, or surgery. The minimum external transverse diameter (METD), minimum internal transverse diameter (MITD), minimum external anteroposterior diameter (MEAD), and minimum internal anteroposterior diameter (MIAD) of the odontoid process were measured. A P value of ≤0.05 was considered as the cutoff level of statistical significance. Our study included 94 (60.3%) males and 62 (39.7%) females. The mean age of the subjects was 37.8 ± 16.9 years (range 18-85). The mean values of the METD, MITD, MEAD, and MIAD were 8.7 ± 1.0 mm, 6.0 ± 1.1 mm, 10.3 ± 1.0 mm, and 7.4 ± 1.1 mm, respectively. Men had larger diameters compared to women. This was statistically significant for METD (P = 0.035) and MEAD (P < 0.001). The METD was <9.0 mm in 95 (60.9%) subjects, while the MITD was <8.0 mm in 153 (98.1%) subjects. These findings were not significantly different between males and females. Two screws anterior fixation of type II odontoid fracture is not feasible among the majority of Arabs. 3.
Tree-stem diameter fluctuates with the lunar tides and perhaps with geomagnetic activity.
Barlow, Peter W; Mikulecký, Miroslav; Střeštík, Jaroslav
2010-11-01
Our initial objective has been to examine the suggestion of Zürcher et al. (Nature 392:665–666, 1998) that the naturally occurring variations in stem diameter of two experimental trees of Picea alba were related to near simultaneous variations in the lunisolar tidal acceleration. The relationship was positive: Lunar peaks were roughly synchronous with stem diameter peaks. To extend the investigation of this putative relationship, additional data on stem diameter variations from six other tree species were gathered from published literature. Sixteen sets of data were analysed retrospectively using graphical representations as well as cosinor analysis, statistical cross-correlation and cross-spectral analysis, together with estimated values of the lunisolar tidal acceleration corresponding to the sites, dates and times of collection of the biological data. Positive relationships were revealed between the daily variations of stem diameter and the variations of the lunisolar tidal acceleration. Although this relationship could be mediated by a 24.8-h lunar rhythm, the presence of a solar rhythm of 24.0 h could not be ruled out. Studies of transpiration in two of the observed trees indicated that although this variable was not linked to stem diameter variation, it might also be subject to lunisolar gravitational regulation. In three cases, the geomagnetic Thule index showed a weak but reciprocal relationship with stem diameter variation, as well as a positive relationship with the lunisolar tidal force. In conclusion, it seems that lunar gravity alone could influence stem diameter variation and that, under certain circumstances, additional regulation may come from the geomagnetic flux.
Sakai, Akinori
2011-04-01
We developed a voluntarily climbing animal model to investigate the effect of skeletal loading on bone tissue. At the cross section of the mid-femur, climbing exercise increases outer diameter and area of cortical bone. The mechanical strength of the femur is increased. This change of cortical volume and structure is more marked in anti-gravity exercise, such as climbing and jumping, than aerobic exercise. At the bone marrow area, climbing exercise increases trabecular bone volume and osteoblast number, while it decreases fat volume and adipocyte number. Skeletal loading promotes differentiation from mesenchymal stem cells to osteoblasts and suppresses that to adipocytes by facilitating the signal through PTH÷PTHrP receptor.
NASA Technical Reports Server (NTRS)
Divecha, A. P.; Karmarkar, S. D.; Pawar, P. G.
1973-01-01
The continuing efforts in upscaling to produce larger diameter Al/B tubes are described. While the basic methodology remains unchanged, the larger volume of acrylic binder material and its removal by dissolution in toluene had to be performed by dynamic scrubbing. Similarly, the boron and MCF continuous length requirements increased when a 6 foot long by 7 inches wide mat was needed. These modifications and associated problems are described fully with schematics. Also included are seven experiments conducted to prepare larger tubes. The thermal profile, drawing speeds, and furnace positions in the draw bench bay are presented along with metallographic evidence of composite cross sections.
A case of hemangiopericytoma of the soft palate with articulate disorder and dysphagia
Michi, Yasuyuki; Suzuki, Miho; Kurohara, Kazuto; Harada, Kiyoshi
2013-01-01
We report a case of hemangiopericytoma of the soft palate of 60-year-old patient, who noticed a mass of the soft palate and experienced difficulty in speaking. We found a pediculate, hard, elastic mass measuring 38 mm (cross-sectional diameter). Computed tomography (CT) scans and dynamic magnetic resonance imaging (MRI) confirmed irregularly shaped mass and revealed a heterogeneous internal composition, consistent with vascular tumors. We excised the tumor under general anesthesia. Histopathological diagnosis was based on positive immunoreactivity of CD99 and vimentin and weak, positive staining of CD34. Three and half years following tumor excision, there is no recurrence or metastasis. PMID:23703709
Landing Gear Components Noise Study - PIV and Hot-Wire Measurements
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Burley, Casey L.; Stead, Daniel J.; Becker, Lawrence E.; Price, Jennifer L.
2010-01-01
PIV and hot-wire measurements of the wake flow from rods and bars are presented. The test models include rods of different diameters and cross sections and a rod juxtaposed to a plate. The latter is representative of the latch door that is attached to an aircraft landing gear when the gear is deployed, while the single and multiple rod configurations tested are representative of some of the various struts and cables configuration present on an aircraft landing gear. The test set up is described and the flow measurements are presented. The effect of model surface treatment and freestream turbulence on the spanwise coherence of the vortex shedding is studied for several rod and bar configurations.
NASA Technical Reports Server (NTRS)
Schmid, F.; Khattak, C. P.
1979-01-01
Ingot casting was scaled up to 16 cm by 16 cm square cross section size and ingots weighing up to 8.1 kg were cast. The high degree of crystallinity was maintained in the large ingot. For large sizes, the nonuniformity of heat treatment causes chipping of the surface of the ingot. Progress was made in the development of a uniform graded structure in the silica crucibles. The high speed slicer blade-head weight was reduced to 37 pounds, allowing surface speeds of up to 500 feet per minute. Slicing of 10 cm diameter workpieces at these speeds increased the through-put of the machine to 0.145 mm/min.
Scalable pumping approach for extracting the maximum TEM(00) solar laser power.
Liang, Dawei; Almeida, Joana; Vistas, Cláudia R
2014-10-20
A scalable TEM(00) solar laser pumping approach is composed of four pairs of first-stage Fresnel lens-folding mirror collectors, four fused-silica secondary concentrators with light guides of rectangular cross-section for radiation homogenization, four hollow two-dimensional compound parabolic concentrators for further concentration of uniform radiations from the light guides to a 3 mm diameter, 76 mm length Nd:YAG rod within four V-shaped pumping cavities. An asymmetric resonator ensures an efficient large-mode matching between pump light and oscillating laser light. Laser power of 59.1 W TEM(00) is calculated by ZEMAX and LASCAD numerical analysis, revealing 20 times improvement in brightness figure of merit.
Wide-Field Imaging of Single-Nanoparticle Extinction with Sub-nm2 Sensitivity
NASA Astrophysics Data System (ADS)
Payne, Lukas M.; Langbein, Wolfgang; Borri, Paola
2018-03-01
We report on a highly sensitive wide-field imaging technique for quantitative measurement of the optical extinction cross section σext of single nanoparticles. The technique is simple and high speed, and it enables the simultaneous acquisition of hundreds of nanoparticles for statistical analysis. Using rapid referencing, fast acquisition, and a deconvolution analysis, a shot-noise-limited sensitivity down to 0.4 nm2 is achieved. Measurements on a set of individual gold nanoparticles of 5 nm diameter using this method yield σext=(10.0 ±3.1 ) nm2, which is consistent with theoretical expectations and well above the background fluctuations of 0.9 nm2 .
Pearson, Christopher; Bowen, Leon; Lee, Myung Won; Fisher, Alison L.; Linton, Katherine E.; Bryce, Martin R.; Petty, Michael C.
2013-01-01
We report on the mechanism of operation of organic thin film resistive memory architectures based on an ambipolar compound consisting of oxadiazole, carbazole, and fluorene units. Cross-sections of the devices have been imaged by electron microscopy both before and after applying a voltage. The micrographs reveal the growth of filaments, with diameters of 50 nm–100 nm, on the metal cathode. We suggest that these are formed by the drift of aluminium ions from the anode and are responsible for the observed switching and negative differential resistance phenomena in the memory devices.
MCNP5 CALCULATIONS REPLICATING ARH-600 NITRATE DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
FINFROCK SH
This report serves to extend the previous document: 'MCNP Calculations Replicating ARH-600 Data' by replicating the nitrate curves found in ARH-600. This report includes the MCNP models used, the calculated critical dimension for each analyzed parameter set, and the resulting data libraries for use with the CritView code. As with the ARH-600 data, this report is not meant to replace the analysis of the fissile systems by qualified criticality personnel. The M CNP data is presented without accounting for the statistical uncertainty (although this is typically less than 0.001) or bias and, as such, the application of a reasonable safetymore » margin is required. The data that follows pertains to the uranyl nitrate and plutonium nitrate spheres, infinite cylinders, and infinite slabs of varying isotopic composition, reflector thickness, and molarity. Each of the cases was modeled in MCNP (version 5.1.40), using the ENDF/B-VI cross section set. Given a molarity, isotopic composition, and reflector thickness, the fissile concentration and diameter (or thicknesses in the case of the slab geometries) were varied. The diameter for which k-effective equals 1.00 for a given concentration could then be calculated and graphed. These graphs are included in this report. The pages that follow describe the regions modeled, formulas for calculating the various parameters, a list of cross-sections used in the calculations, a description of the automation routine and data, and finally the data output. The data of most interest are the critical dimensions of the various systems analyzed. This is presented graphically, and in table format, in Appendix B. Appendix C provides a text listing of the same data in a format that is compatible with the CritView code. Appendices D and E provide listing of example Template files and MCNP input files (these are discussed further in Section 4). Appendix F is a complete listing of all of the output data (i.e., all of the analyzed dimensions and the resulting k{sub eff} values).« less
The Segmental Morphometric Properties of the Horse Cervical Spinal Cord: A Study of Cadaver
Bahar, Sadullah; Bolat, Durmus; Selcuk, Muhammet Lutfi
2013-01-01
Although the cervical spinal cord (CSC) of the horse has particular importance in diseases of CNS, there is very little information about its segmental morphometry. The objective of the present study was to determine the morphometric features of the CSC segments in the horse and possible relationships among the morphometric features. The segmented CSC from five mature animals was used. Length, weight, diameter, and volume measurements of the segments were performed macroscopically. Lengths and diameters of segments were measured histologically, and area and volume measurements were performed using stereological methods. The length, weight, and volume of the CSC were 61.6 ± 3.2 cm, 107.2 ± 10.4 g, and 95.5 ± 8.3 cm3, respectively. The length of the segments was increased from C 1 to C 3, while it decreased from C 3 to C 8. The gross section (GS), white matter (WM), grey matter (GM), dorsal horn (DH), and ventral horn (VH) had the largest cross-section areas at C 8. The highest volume was found for the total segment and WM at C 4, GM, DH, and VH at C 7, and the central canal (CC) at C 3. The data obtained not only contribute to the knowledge of the normal anatomy of the CSC but may also provide reference data for veterinary pathologists and clinicians. PMID:23476145
Elastomeric member and method of manufacture therefor
Hoppie, L.O.
1985-12-10
An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.
Hoppie, L.O.
1985-07-30
An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond there between. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.
Sonographic evaluation of sciatic nerves in patients with unilateral sciatica.
Kara, Murat; Özçakar, Levent; Tiftik, Tülay; Kaymak, Bayram; Özel, Sumru; Akkuş, Selami; Akinci, Ayşen
2012-09-01
To evaluate the sciatic nerves of patients with unilateral sciatica by using an ultrasound, and to determine whether ultrasonographic findings were related to clinical and electrophysiologic parameters. Cross-sectional study. Physical medicine and rehabilitation departments of a university hospital and a rehabilitation hospital. Consecutive patients (N=30; 10 men, 20 women) with complaints of low back pain and unilateral sciatica of more than 1 month of duration were enrolled. Not applicable. All patients underwent a substantial clinical assessment, and they were also evaluated by electromyogram and magnetic resonance imaging. Pain was evaluated by a visual analog scale and the Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) Scale. A linear array probe (7.5-12MHz) was used to scan sciatic nerves bilaterally in the prone position. Sciatic nerve diameters-thickness (short axis) and width (long axis)-and cross-sectional areas were measured bilaterally at the same levels, proximal to the bifurcation and midthigh. The values pertaining to the unaffected limbs were taken as controls. When compared with the unaffected sides, mean values for sciatic nerve measurements-long axis at bifurcation level (P=.017) and cross-sectional area at midthigh level (P=.005)-were significantly larger on the affected sides. Swelling ratios negatively correlated with symptom duration (r=-.394, P=.038) and LANSS scores (r=-.451, P=.016) at only midthigh level. Sciatic nerves seem to be enlarged on the side of sciatica in patients with low back pain. Our preliminary results may provide insight into better understanding the lower limb radiating pain in this group of patients. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.
Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A
2004-02-07
The expanding clinical use of low-energy photon emitting 125I and 103Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst +/- 5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately +/- 2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV.
Kaval, Mehmet Emin; Capar, Ismail Davut; Ertas, Hüseyin; Sen, Bilge Hakan
2017-06-01
The purpose of the present study was to evaluate the cyclic fatigue resistance of F6 SkyTaper (Komet Brasseler, Lemgo, Germany), K3XF (SybronEndo, Orange, CA, USA), new generation OneShape (Micro Mega, Besancon, France) and TRUShape 3D conforming files (Dentsply Tulsa Dental Specialties, Tulsa, OK, USA). Ten instruments from each group were selected and allowed to rotate using a low-torque motor in a stainless steel block with 1.5 mm diameter, 3 mm radius of 60° angle of curvature at the manufacturer's recommended speed, and the number of cycles (NCF) from the beginning to the fracture was recorded. The data were analyzed using one-way ANOVA followed by post-hoc Tukey's test (P = 0.05). The ranking of the groups from the highest to the lowest NCF was as follows: F6 SkyTaper (959 ± 92), K3XF (725 ± 71), TRUShape (575 ± 84) and OneShape (289 ± 58). Statistically significant differences were detected between all groups (P < 0.05). Within the limitations of this study, F6 SkyTaper instruments presented the highest cyclic fatigue resistance among the tested instruments. The S-shaped cross-sectional design of F6 SkyTaper instruments could be the most important factor on the superior cyclic life span of these instruments. In endodontic practice, preferring the instruments with higher cyclic fatigue resistance would help to minimize the risk of instrument fractures; therefore especially during the preparation of curved canals, instruments with smaller core area and less cross-sectional metal mass, which could lead higher flexibility, can be proposed.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1976-01-01
An experimental investigation was conducted by wind tunnel to measure the static aerodynamic characteristics for bodies of circular and elliptic cross section with various thin flat plate wings and a thin tail consisting of horizontal and vertical parts. The wings had aspect ratios of 4 and taper ratios of about 0, 0.25, and 0.5. Two additional wings, which had taper ratios near 0.25 and aspect ratios of about 3 and 5, were also tested in combination with the bodies and tail. All wings had about the same planform area. The exposed area of the horizontal portion of the tail was about 33 to 36 percent of the exposed area of the wings. The exposed area of the vertical tail fin was about 22 to 24 percent of the exposed area of the wings. The elliptic body, with an a/b = 2 cross section, had the same length and axial distribution of cross sectional area as the circular body. The circular body had a cylindrical aftersection of fineness ratio 7, and it was tested with the wings and tail in combination with tangent ogive noses that had fineness ratios of 2.5, 3.0, 3.5, and 5.0. In addition, an ogive nose with a rounded tip and an ogive nose with two different nose strake arrangements were used. Nineteen configuration combinations were tested at Mach numbers of 0.6, 0.9, 1.5, and 2.0 at angles of attack from 0 to 58 deg. The Reynolds numbers, based on body base diameter, were about 4.3 X 100,000.
Propagation and deposition of non-circular finite release particle-laden currents
NASA Astrophysics Data System (ADS)
Zgheib, Nadim; Bonometti, Thomas; Balachandar, S.
2015-08-01
The dynamics of non-axisymmetric turbidity currents is considered here for a range of Reynolds numbers of O (104) when based on the initial height of the release. The study comprises a series of experiments and highly resolved simulations for which a finite volume of particle-laden solution is released into fresh water. A mixture of water and polystyrene particles of mean diameter d ˜ p = 300 μ m and mixture density ρ ˜ c = 1012 kg / m 3 is initially confined in a hollow cylinder at the centre of a large tank filled with fresh water. Cylinders with two different cross-sectional shapes, but equal cross-sectional areas, are examined: a circle and a rounded rectangle in which the sharp corners are smoothened. The time evolution of the front is recorded as well as the spatial distribution of the thickness of the final deposit via the use of a laser triangulation technique. The dynamics of the front and final deposits are significantly influenced by the initial geometry, displaying substantial azimuthal variation especially for the rectangular case where the current extends farther and deposits more particles along the initial minor axis of the rectangular cross section. Several parameters are varied to assess the dependence on the settling velocity, initial height aspect ratio, and volume fraction. Even though resuspension is not taken into account in our simulations, good agreement with experiments indicates that it does not play an important role in the front dynamics, in terms of velocity and extent of the current. However, wall shear stress measurements show that incipient motion of particles and particle transport along the bed are likely to occur in the body of the current and should be accounted to properly capture the final deposition profile of particles.
Cycling on rollers: influence of tyre pressure and cross section on power requirements.
Reiser, Raoul; Watt, Jon; Peterson, Michael
2003-07-01
The resistance against a cyclist while riding on rollers is due mainly to rolling resistance produced by the deformation of the tyre as it rolls against small diameter drums. Resistance is then combined with wheel speed to set power output. The effect of tyre pressure and cross-section on power was investigated by systematically altering the pressure (552 kPa, 690 kPa, and 827 KPa) in a 20c, 23c, 25c, and 28c tyre of the same design while riding at a wheel speed of 45 kph. Average power over 1 minute was measured with a Power Tap Hub (Tune Corporation, Cambridge, Massachusetts, USA) on five occasions. Statistical significance was evaluated at p < 0.05. Power requirements increased significantly with each reduction in tyre pressure for all tyres and pressures except the 25c between 690 and 827 kPa. The 20c tyre required significantly more power from the cyclist at each tested tyre pressure when compared to the other tyres (which were not different from each other). The differences in resistance from tyre size were not observed when ridden on the road. Additionally, a slightly different tyre design from the same manufacturer responded similarly in the 20c, but was significantly different in the 23c size. It was also observed that power requirements increased significantly when both the wheels were ridden on the rollers as compared to just the rear wheel. These results indicate that the power requirements may be significantly altered by the cyclist by adjusting tyre pressure, tyre cross-section size, tyre type, and with the number of wheels contacting the rollers. However, the magnitude of these power requirements may not be suitable for intense workouts of trained cyclists.
Production of silk sericin/silk fibroin blend nanofibers
NASA Astrophysics Data System (ADS)
Zhang, Xianhua; Tsukada, Masuhiro; Morikawa, Hideaki; Aojima, Kazuki; Zhang, Guangyu; Miura, Mikihiko
2011-08-01
Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75) blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50) blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100) blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.
A dual-beam spectropluviometer concept
NASA Astrophysics Data System (ADS)
Delahaye, J.-Y.; Barthès, L.; Golé, P.; Lavergnat, J.; Vinson, J. P.
2006-08-01
SummaryA dual beam spectropluviometer (DBS) measuring the equivalent diameter D, the fall velocity V and the time T of arrival of particles is presented. Its main advantage over previous optical disdrometers is the whole measurement range of atmospheric precipitating particles near the ground. In the bottom part of the size range, 0.1 mm has been the smallest observable diameter. The means for obtaining such results are (i) two uniform infrared beams of rectangular cross-section 2 mm in height, 40 mm in width and 250 mm in length, with a 2 mm vertical gap in-between, (ii) a dual 16-bit analog to digital converter, (iii) a dedicated program for extracting the three parameters in real time by computing the signal slopes and determining the correlation between both channels used in this first version of the instrument, (iv) various means for reducing spurious detections caused by splashing, vibration and sunlight. Laboratory tests and typical rain measurements are shown. The DBS is particularly suited for extensive atmospheric and radio propagation research applications where the smallest drops were not correctly estimated in the distributions because of the lack of appropriate measurement devices.
Efficient Carrier Multiplication in Colloidal Silicon Nanorods
Stolle, Carl Jackson; Lu, Xiaotang; Yu, Yixuan; ...
2017-08-01
In this study, auger recombination lifetimes, absorption cross sections, and the quantum yields of carrier multiplication (CM), or multiexciton generation (MEG), were determined for solvent-dispersed silicon (Si) nanorods using transient absorption spectroscopy (TAS). Nanorods with an average diameter of 7.5 nm and aspect ratios of 6.1, 19.3, and 33.2 were examined. Colloidal Si nanocrystals of similar diameters were also studied for comparison. The nanocrystals and nanorods were passivated with organic ligands by hydrosilylation to prevent surface oxidation and limit the effects of surface trapping of photoexcited carriers. All samples used in the study exhibited relatively efficient photoluminescence. The Auger lifetimesmore » increased with nanorod length, and the nanorods exhibited higher CM quantum yield and efficiency than the nanocrystals with a similar band gap energy E g. Beyond a critical length, the CM quantum yield decreases. Finally, nanorods with the aspect ratio of 19.3 had the highest CM quantum yield of 1.6 ± 0.2 at 2.9E g, which corresponded to a multiexciton yield that was twice as high as observed for the spherical nanocrystals.« less
Pressure dependence of the radial mode frequency in carbon nanotubes
NASA Astrophysics Data System (ADS)
Venkateswaran, Uma; Masica, D.; Sumanasekara, G.; Eklund, P.
2003-03-01
Recently, an analytical expression for the radial breathing mode frequency, ω_R, was derived by considering the oscillations of a thin hollow cylinder.[1] Using this result and the experimental pressure-dependence of the elastic and lattice constants of graphite, we show that the pressure derivative of ωR depends inversely on the nanotube diameter, D. Since ωR also depends inversely on D, the above result implies that the logarithmic pressure derivative of ω_R, i.e., dlnω_R/dP should be independent of D. We have performed high-pressure Raman scattering experiments on HiPCO-SWNT bundles using different laser excitations, thereby probing the radial modes from different diameter tubes. These measurements show an increase in dlnω_R/dP with increasing D. This difference between the predictions and experiments suggests that the main contribution to ω_R's pressure dependence in SWNT bundles stems from the tube-tube interactions within the bundle and from pressure-induced distortions to the tube cross-section. [1] G.D. Mahan, Phys. Rev. B 65, 235402 (2002).
Aerodynamic effect of a honeycomb rotor tip shroud on a 50.8-centimeter-tip-diameter core turbine
NASA Technical Reports Server (NTRS)
Moffitt, T. P.; Whitney, W. J.
1983-01-01
A 50.8-cm-tip-diameter turbine equipped with a rotor tip shroud of hexagonal cell (or honeycomb) cross section has been tested in warm air (416 K) for a range of shroud coolant to primary flow rates. Test results were also obtained for the same turbine operated with a solid shroud for comparison. The results showed that the combined effect of the honeycomb shroud and the coolant flow was to cause a reduction of 2.8 points in efficiency at design speed, pressure ratio, and coolant flow rate. With the coolant system inactivated, the honeycomb shroud caused a decrease in efficiency of 2.3 points. These results and those obtained from a small reference turbine indicate that the dominant factor governing honeycomb tip shroud loss is the ratio of honeycomb depth to blade span. The loss results of the two shrouds could be correlated on this basis. The same honeycomb and coolant effects are expected to occur for the hot (2200 K) version of this turbine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolle, Carl Jackson; Lu, Xiaotang; Yu, Yixuan
In this study, auger recombination lifetimes, absorption cross sections, and the quantum yields of carrier multiplication (CM), or multiexciton generation (MEG), were determined for solvent-dispersed silicon (Si) nanorods using transient absorption spectroscopy (TAS). Nanorods with an average diameter of 7.5 nm and aspect ratios of 6.1, 19.3, and 33.2 were examined. Colloidal Si nanocrystals of similar diameters were also studied for comparison. The nanocrystals and nanorods were passivated with organic ligands by hydrosilylation to prevent surface oxidation and limit the effects of surface trapping of photoexcited carriers. All samples used in the study exhibited relatively efficient photoluminescence. The Auger lifetimesmore » increased with nanorod length, and the nanorods exhibited higher CM quantum yield and efficiency than the nanocrystals with a similar band gap energy E g. Beyond a critical length, the CM quantum yield decreases. Finally, nanorods with the aspect ratio of 19.3 had the highest CM quantum yield of 1.6 ± 0.2 at 2.9E g, which corresponded to a multiexciton yield that was twice as high as observed for the spherical nanocrystals.« less
Recent Work on Flow Boiling and Condensation in a Single Microchannel
NASA Astrophysics Data System (ADS)
Quan, Xiaojun; Wang, Guodong; Cheng, Ping; Wu, Huiying
2007-06-01
Recent visualization and measurements results on flow boiling of water and condensation of steam in a single microchannel, carried out at Shanghai Jiaotong University, is summarized in this paper. For flow boiling of water, experiments were conducted in a single microchannel with a trapezoidal cross-section having a hydraulic diameter of 186 μm and a length of 30 mm. A boiling flow pattern map in terms of heat flux versus mass flux, showing the unstable and stable boiling flow regimes in the microchannel, is obtained. For the investigation of condensation, experiments were carried out for steam condensing inside a single microchannel with a length of 60mm having a hydraulic diameter of 87 μm and 120μm respectively. The location of transition from annular flow to plug/slug flow in a microchannel is found to be dependent on both the dimensionless condensation heat transfer rate as well as the Reynolds number of the steam. The frequency for the occurrence of the injection flow is found to increase with the increasing mass flux.
FFR analysis of blood flow through a stenosed Left Anterior Descending Artery
NASA Astrophysics Data System (ADS)
Pasupathi, Jawahar; Arul Prakash, K.
2017-11-01
The numerical analyisis of blood flow through a stenosed tapering Left Anterior Descending (LAD) artery was done using Streamwise Upwind Petrov Galerkin (SUPG) method to obtain the clinical parameters such as Fractional Flow reserve (FFR) and Wall Shear Stress (WSS). The geometry was considered to be a straight tapering cylindrical duct with the severity of stenosis modeled using a curve equation based on the reduction in diameter at the stenosed region. Poiseuille velocity profile was given at the inlet such that at each time step the product of mean velocity and the inlet area gives the realistic flow rate through the LAD. The simulation was done for 30,50 and 70 percent reduction in cross-section of LAD. The average pressure values across the stenosis was used to quantify FFR. The FFR increased with higher pressure ratio across the stenosis, which is a result of increased severity of stenosis. The velocity gradients that are responsible for the shear stress at the walls were found to be dependent on the shape of the stenosis, i.e., the diameter and its length.
Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D
2013-09-01
We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.
Lai, Weng-Hang; Shih, Yi-Fen; Lin, Pei-Ling; Chen, Wen-Yin; Ma, Hsiao-Li
2012-12-01
To assess the specificity of the femoral slump test (FST) when assessing experimentally induced anterior knee pain. Cross-sectional, exploratory study. Research laboratory. Asymptomatic subjects (N=12; 6 men; 6 women) for the study. An experimental pain model was used to simulate anterior knee pain by injecting .25 mL of hypertonic saline solution (5% NaCl) into the medial infrapatellar fat pad. Not applicable. The changes in pain intensity and diameter after applying the structure differential maneuver (neck flexion/extension) during the FST were recorded and analyzed. Results revealed that the structure differential maneuver of the FST did not alter the pain intensity or diameter in 9 (neck extension) and 10 (neck flexion) out of 12 subjects, which meant that the FST provided appropriate testing responses in 75% to 83% cases when the anterior knee pain did not originate in neural tissues. The FST had a specificity of more than .75 when detecting nerve mechanosensitivity problems of anterior knee pain. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Harris, C; Alcock, A; Trefan, L; Nuttall, D; Evans, S T; Maguire, S; Kemp, A M
2018-02-01
Bruising is a common abusive injury in children, and it is standard practice to image and measure them, yet there is no current standard for measuring bruise size consistently. We aim to identify the optimal method of measuring photographic images of bruises, including computerised measurement techniques. 24 children aged <11 years (mean age of 6.9, range 2.5-10 years) with a bruise were recruited from the community. Demographics and bruise details were recorded. Each bruise was measured in vivo using a paper measuring tape. Standardised conventional and cross polarized digital images were obtained. The diameter of bruise images were measured by three computer aided measurement techniques: Image J (segmentation with Simple Interactive Object Extraction (maximum Feret diameter), 'Circular Selection Tool' (Circle diameter), & the Photoshop 'ruler' software (Photoshop diameter)). Inter and intra-observer effects were determined by two individuals repeating 11 electronic measurements, and relevant Intraclass Correlation Coefficient's (ICC's) were used to establish reliability. Spearman's rank correlation was used to compare in vivo with computerised measurements; a comparison of measurement techniques across imaging modalities was conducted using Kolmogorov-Smirnov tests. Significance was set at p < 0.05 for all tests. Images were available for 38 bruises in vivo, with 48 bruises visible on cross polarized imaging and 46 on conventional imaging (some bruises interpreted as being single in vivo appeared to be multiple in digital images). Correlation coefficients were >0.5 for all techniques, with maximum Feret diameter and maximum Photoshop diameter on conventional images having the strongest correlation with in vivo measurements. There were significant differences between in vivo and computer-aided measurements, but none between different computer-aided measurement techniques. Overall, computer aided measurements appeared larger than in vivo. Inter- and intra-observer agreement was high for all maximum diameter measurements (ICC's > 0.7). Whilst there are minimal differences between measurements of images obtained, the most consistent results were obtained when conventional images, segmented by Image J Software, were measured with a Feret diameter. This is therefore proposed as a standard for future research, and forensic practice, with the proviso that all computer aided measurements appear larger than in vivo. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Essa, Essa; Makki, Nader; Bittenbender, Peter; Capers, Quinn; George, Barry; Rushing, Gregory; Crestanello, Juan; Boudoulas, Konstantinos Dean; Lilly, Scott M
2016-12-01
Assessment of the femoral and iliac arteries is essential prior to transcatheter aortic valve replacement (TAVR). It is critical for establishing candidacy for a femoral approach, and can help predict vascular complications. Although computed tomography angiography (CTA) is the standard imaging modality, it has limitations. This study compared CTA with intravascular ultrasound (IVUS) in patients undergoing TAVR evaluation. Fifteen patients undergoing pre-TAVR coronary angiography and hemodynamic assessment were recruited. Following coronary angiography, patients underwent distal aortography, bilateral iliac and femoral arteriography, and IVUS assessment. Vascular tortuosity, minimum lumen diameter, and cross-sectional area were obtained and the findings were compared with those obtained from CTA. Correlation between IVUS and CTA was strong for minimum luminal diameter (r=0.62). Concordance was also strong between CTA and invasive iliofemoral angiography for assessment of tortuosity (r=0.75). Utilizing Bland-Altman analysis, vessel diameters obtained by IVUS were consistently greater than those obtained by CTA. The angiography and IVUS strategy was associated with a lower overall mean contrast utilization (29 cc vs 100 cc; P<.001), reduced mean radiation exposure (527 mGy vs 998 mGy; P=.045), and no significant difference in mean test duration (13.3 minutes vs 10 minutes; P=.12). For femoral and iliac arterial assessment prior to TAVR, IVUS is a viable alternative to CTA with comparable accuracy, and the potential for less contrast use and less radiation exposure. IVUS is also a valuable adjunct to CTA in patients with borderline femoral access diameters or considerable CTA artifacts.
NASA Astrophysics Data System (ADS)
Zhao, G.; Chu, R.; Li, X.; Zhang, T.; Shen, J.; Wu, Z.
2009-09-01
During the intensive observation period of the Watershed Allied Telemetry Experimental Research (WATER), a total of 1074 raindrop size distribution were measured by the Parsivel disdrometer, a latest state of the art optical laser instrument. Because of the limited observation data in Qinghai-Tibet Plateau, the modeling behavior was not well-done. We used raindrop size distributions to improve the rain rate estimator of meteorological radar, in order to obtain many accurate rain rate data in this area. We got the relationship between the terminal velocity of the rain drop and the diameter (mm) of a rain drop: v(D)=4.67 D0.53. Then four types of estimators for X-band polarimetric radar are examined. The simulation results show that the classical estimator R(Z) is most sensitive to variations in DSD and the estimator R (KDP, Z, ZDR) is the best estimator for estimating the rain rate. The lowest sensitivity of the rain rate estimator R (KDP, Z, ZDP) to variations in DSD can be explained by the following facts. The difference in the forward-scattering amplitudes at horizontal and vertical polarizations, which contributes KDP, is proportional to the 3rd power of the drop diameter. On the other hand, the exponent of the backscatter cross section, which contributes to Z, is proportional to the 6th power of the drop diameter. Because the rain rate R is proportional to the 3.57th power of the drop diameter, KDP is less sensitive to DSD variations than Z.
NASA Astrophysics Data System (ADS)
Zhao, G.; Chu, R.; Zhang, T.; Li, J.; Shen, J.; Wu, Z.
2011-03-01
During the intensive observation period of the Watershed Allied Telemetry Experimental Research (WATER), a total of 1074 raindrop size distribution were measured by the Parsivel disdrometer, the latest state-of-the-art optical laser instrument. Because of the limited observation data in Qinghai-Tibet Plateau, the modelling behaviour was not well done. We used raindrop size distributions to improve the rain rate estimator of meteorological radar in order to obtain many accurate rain rate data in this area. We got the relationship between the terminal velocity of the raindrop and the diameter (mm) of a raindrop: v(D) = 4.67D0.53. Then four types of estimators for X-band polarimetric radar are examined. The simulation results show that the classical estimator R (ZH) is most sensitive to variations in DSD and the estimator R (KDP, ZH, ZDR) is the best estimator for estimating the rain rate. An X-band polarimetric radar (714XDP) is used for verifying these estimators. The lowest sensitivity of the rain rate estimator R (KDP, ZH, ZDR) to variations in DSD can be explained by the following facts. The difference in the forward-scattering amplitudes at horizontal and vertical polarizations, which contributes KDP, is proportional to the 3rd power of the drop diameter. On the other hand, the exponent of the backscatter cross-section, which contributes to ZH, is proportional to the 6th power of the drop diameter. Because the rain rate R is proportional to the 3.57th power of the drop diameter, KDP is less sensitive to DSD variations than ZH.
Elgafy, Hossein; Miller, Jacob D; Benedict, Gregory M; Seal, Ryan J; Liu, Jiayong
2013-07-01
There have been many reports outlining differing methods for managing a broken S1 screw. To the authors' best knowledge, the technique used in the present study has not been described previously. It involves insertion of a second pedicle screw without removing the broken screw shaft. Radiological study, literature review, and two case reports of the surgical technique. To report a proposed new surgical technique for management of broken S1 pedicle screws. Computed tomography (CT) scans of 50 patients with a total of 100 S1 pedicles were analyzed. There were 25 male and 25 female patients with an average age of 51 years ranging from 36 to 68 years. The cephalad-caudal length, medial-lateral width, and cross-sectional area of the S1 pedicle were measured and compared with the diameter of a pedicle screw to illustrate the possibility of inserting a second screw in S1 pedicle without removal of the broken screw shaft. Two case reports of the proposed technique are presented. The left and right S1 pedicle cross-sectional area in female measured 456.00 ± 4.00 and 457.00 ± 3.00 mm(2), respectively. The left and right S1 pedicle cross-section area in male measured 638.00 ± 2.00 and 639.00 ± 1.00 mm(2), respectively. There were statistically significant differences when comparing male and female S1 pedicle length, width, and cross-sectional area (p<.05). At 2-year follow-up, the two case reports of the proposed technique showed resolution of low back pain and radicular pain. Plain radiograph and CT scan showed posterolateral fusion mass and hardware in good position with no evidence of screw loosening. The S1 pedicle dimensions measured on CT scan reviewed in the present study showed that it may be anatomically feasible to place a second screw through the S1 pedicle without the removal of the broken screw shaft. This treatment method will reduce the complications associated with other described revision strategies for broken S1 screws. Published by Elsevier Inc.
Hypersonic Wind-Tunnel Measurements of Boundary-Layer Pressure Fluctuations
2009-08-01
experiments. The third and fourth sections of the cone are designed to hold the instrumentation. The model can be run as a 0.102-m base-diameter cone...using the third section only, or 28 Figure 3.10. Glow-perturber section the fourth section can be added to increase the cone base diameter to 0.127 m...the second sensor. The third sensor shows an increase in frequency components above 15 kHz as well as a rise in lower frequencies. As transition
Elastomeric member for energy storage device
Hoppie, Lyle O.; Chute, Richard
1985-01-01
An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16), disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section, transition end sections, and is attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the member, a substantially uniform diameter assembly results to minimize the required volume of the surrounding housing (14). During manufacture, woven wire mesh sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle. Each sleeve (26, 28) contracts with the contraction of the associated transition section to maintain the bond therebetween.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaacs, H.S.; Lamaka, S.V.; Taryba, M.
2011-01-01
This work reports a new methodology to measure quasi-simultaneously the local electric fields and the distribution of specific ions in a solution via selective microelectrodes. The field produced by the net electric current was detected using the scanning vibrating electrode technique (SVET) with quasi-simultaneous measurements of pH with an ion-selective microelectrode (pH-SME). The measurements were performed in a validation cell providing a 48 ?m diameter Pt wire cross section as a source of electric current. A time lag between acquiring each current density and pH data-point was 1.5 s due to the response time of pH-SME. The quasi-simultaneous SVET-pH measurementsmore » that correlate electrochemical oxidation-reduction processes with acid-base chemical equilibria are reported for the first time. No cross-talk between the vibrating microelectrode and the ion-selective microelectrode could be detected under given experimental conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez Giraldo, J; Mileto, A.; Hurwitz, L.
2014-06-15
Purpose: To evaluate the impact of body size and tube power limits in the optimization of fast scanning with high-pitch dual source CT (DSCT). Methods: A previously validated MERCURY phantom, made of polyethylene, with circular cross-section of diameters 16, 23, 30 and 37cm, and connected through tapered sections, was scanned using a second generation DSCT system. The DSCT operates with two independently controlled x-ray tube generators offering up to 200 kW power reserve (100 kW per tube). The entire length of the phantom (42cm) was scanned with two protocols using: A)Standard single-source CT (SSCT) protocol with pitch of 0.8, andmore » B) DSCT protocol with high-pitch values ranging from 1.6 to 3.2 (0.2 steps). All scans used 120 kVp with 150 quality reference mAs using automatic exposure control. Scanner radiation output (CTDIvol) and effective mAs values were extracted retrospectively from DICOM files for each slice. Image noise was recorded. All variables were assessed relative to phantom diameter. Results: With standard-pitch SSCT, the scanner radiation output (and tube-current) were progressively adapted with increasing size, from 6 mGy (120 mAs) up to 15 mGy (270 mAs) from the thinnest (16cm) to the thickest diameter (37 cm), respectively. By comparison, using high-pitch (3.2), the scanner output was bounded at about 8 mGy (140 mAs), independent of phantom diameter. Although relative to standard-pitch, the high-pitch led to lower radiation output for the same scan, the image noise was higher, particularly for larger diameters. To match the radiation output adaptation of standard-pitch, a high-pitch mode of 1.6 was needed, with the advantage of scanning twice as fast. Conclusion: To maximize the benefits of fast scanning with high-pitch DSCT, the body size and tube power limits of the system need to be considered such that a good balance between speed of acquisition and image quality are warranted. JCRG is an employee of Siemens Medical Solutions USA Inc.« less
NASA Astrophysics Data System (ADS)
Fix, Brandon R.; Popma, Christopher J.; Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
Each year, hundreds of thousands of aortic and mitral heart valves are replaced with prosthetic valves. In efforts to develop a valve that does not require lifelong anticoagulation therapy, previous experimental research has been devoted to analyzing the hemodynamics of various heart valve designs, limited to the flow up to only 2 diameters downstream of the valve. Two-component, two-dimensional (2C-2D) particle image velocimetry (PIV) was used in this study to examine secondary flow velocity fields in a curved tube modeling an aorta at five locations (0-, 45-, 90-, 135-, 180-degrees). A bileaflet valve, opened to 30-, 45-, and 59-degrees, and one (no-valve) baseline condition were examined under three steady flow inflows (Re = 218, 429, 634). In particular, variations in the two-dimensional turbulent shear stresses at each cross sectional plane were analyzed. The results suggest that bileaflet valves in the aortic model produce significant turbulence and vorticity up to 5.5 downstream diameters, i.e. up to the 90-degrees location. Expanding this research towards aortic heart valve hemodynamics highlights a need for additional studies extending beyond the typical few diameters downstream to fully characterize valvular function. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys
Hong, Jianping; Ma, Dexin; Wang, Jun; Wang, Fu; Sun, Baode; Dong, Anping; Li, Fei; Bührig-Polaczek, Andreas
2016-01-01
Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS) and single crystal (SX) hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades. PMID:28774050
Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys.
Hong, Jianping; Ma, Dexin; Wang, Jun; Wang, Fu; Sun, Baode; Dong, Anping; Li, Fei; Bührig-Polaczek, Andreas
2016-11-16
Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS) and single crystal (SX) hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades.
Theoretical and experimental investigation on magneto-hydrodynamics of plasma window
Wang, S. Z.; Zhu, K.; Huang, S.; ...
2016-01-05
As a new device, we designed plasma window to use plasma discharge to separate atmosphere from vacuum with high difference of pressure. It has many excellent properties, being able to be used as available passage for ion beam with negligible energy loss, also impervious to radiation damage and thermal damage. Normally beam focusing by accelerators is not that easy to achieve within channel of small cross section. 10 mm diameter plasma window's experimental realization could contribute to its further application in accelerator system. In this paper, 10 mm diameter 60 mm long plasma window has first been designed and managedmore » to generate arc discharge with argon gas experimentally. Our result proves that it has the ability to separate at least 28.8 kPa (not the upper limit) from 360 Pa with 50 A direct current and 2.5 kW power supplied. Current increase leads to linear inlet pressure increase obviously, while it has less impact on outlet pressure and voltage, coming to the conclusion that the higher current of plasma discharge, the larger pressure difference it creates. Furthermore, theoretical analysis of 10 mm diameter plasma window in axis symmetrical configuration using argon also has been provided, in which a numerical 2D FLUENT-based magneto-hydrodynamic simulation model is settled. It has a good agreement with experimental result on voltage and mass flow rate when inlet pressure is increased.« less
Pre-Restoration Geomorphic Characteristics of Minebank Run, Baltimore County, Maryland, 2002-04
Doheny, Edward J.; Starsoneck, Roger J.; Mayer, Paul M.; Striz, Elise A.
2007-01-01
Data collected from 2002 through 2004 were used to assess geomorphic characteristics and geomorphic changes over time in a selected reach of Minebank Run, a small urban watershed near Towson, Maryland, prior to its physical restoration in 2004 and 2005. Longitudinal profiles of the channel bed, water surface, and bank features were developed from field surveys. Changes in cross-section geometry between field surveys were documented. Grain-size distributions for the channel bed and banks were developed from pebble counts and laboratory analyses. Net changes in the elevation of the channel bed over time were documented at selected locations. Rosgen Stream Classification was used to classify the stream channel according to morphological measurements of slope, entrenchment ratio, width-to-depth ratio, sinuosity, and median-particle diameter of the channel materials. An analysis of boundary shear stress in the vicinity of the streamflow-gaging station was conducted by use of hydraulic variables computed from cross-section surveys and slope measurements derived from crest-stage gages in the study reach. Analysis of the longitudinal profiles indicated noticeable changes in the percentage and distribution of riffles, pools, and runs through the study reach between 2002 and 2004. Despite major changes to the channel profile as a result of storm runoff events, the overall slope of the channel bed, water surface, and bank features remained constant at about 1 percent. The cross-sectional surveys showed net increases in cross-sectional area, mean depth, and channel width at several locations between 2002 and 2004, which indicate channel degradation and widening. Two locations were identified where significant amounts of sediment were being stored in the study reach. Data from scour chains identified several locations where maximum scour ranged from 1.0-1.4 feet during storm events. Bank retreat varied widely throughout the study reach and ranged from 0.2 feet to as much as 7.9 feet. Sequential measurements of bed elevation in selected locations indicated as much as 2 feet of channel degradation in one location during a storm event in May 2004 and identified pulses of sediment that were gradually transported through the study reach during the monitoring period. Particle-size analyses of channel bed materials indicated a median particle diameter of 20.5 millimeters (coarse gravel) for the study reach, with more than 24 percent being sand particles (greater than 0.062 millimeters). Analyses of bank samples showed finer-grained material composing the channel banks, predominantly silt/clay or a mixture of silt/clay (less than 0.062 millimeters) and very fine to coarse sand. The Minebank Run stream channel was classified as a B4c channel, based on morphological descriptions from the Rosgen Stream Classification System. The B4c classification describes a single-thread stream channel with a moderate entrenchment ratio of 1.4 to 2.2; a width-to-depth ratio greater than 12; moderate sinuosity of 1.2 or greater; a water-surface slope of less than 2 percent; and a median-particle diameter in the gravel range of 2 to 64 millimeters. Analysis of boundary shear stress indicated larger mean velocities and boundary shear stress values for Minebank Run when compared to relations for non-urban B channel types developed by Rosgen. The slope of the regression line for mean velocity versus boundary shear stress at Minebank Run was considerably less than slopes developed by Rosgen for non-urban channel types. This indicates that relatively small increases in mean velocity can result in large increases in boundary shear stress in stream channels with highly developed watersheds, such as Minebank Run.
Torsional texturing of superconducting oxide composite articles
Christopherson, Craig John; Riley, Jr., Gilbert N.; Scudiere, John
2002-01-01
A method of texturing a multifilamentary article having filaments comprising a desired oxide superconductor or its precursors by torsionally deforming the article is provided. The texturing is induced by applying a torsional strain which is at least about 0.3 and preferably at least about 0.6 at the surface of the article, but less than the strain which would cause failure of the composite. High performance multifilamentary superconducting composite articles having a plurality of low aspect ratio, twisted filaments with substantially uniform twist pitches in the range of about 1.00 inch to 0.01 inch (25 to 0.25 mm), each comprising a textured desired superconducting oxide material, may be obtained using this texturing method. If tighter twist pitches are desired, the article may be heat treated or annealed and the strain repeated as many times as necessary to obtain the desired twist pitch. It is preferred that the total strain applied per step should be sufficient to provide a twist pitch tighter than 5 times the diameter of the article, and twist pitches in the range of 1 to 5 times the diameter of the article are most preferred. The process may be used to make a high performance multifilamentary superconducting article, having a plurality of twisted filaments, wherein the degree of texturing varies substantially in proportion to the radial distance from the center of the article cross-section, and is substantially radially homogeneous at any given cross-section of the article. Round wires and other low aspect ratio multifilamentary articles are preferred forms. The invention is not dependent on the melting characteristics of the desired superconducting oxide. Desired oxide superconductors or precursors with micaceous or semi-micaceous structures are preferred. When used in connection with desired superconducting oxides which melt irreversibly, it provides multifilamentary articles that exhibit high DC performance characteristics and AC performance markedly superior to any currently available for these materials. In a preferred embodiment, the desired superconducting oxide material is BSCCO 2223.
Alovisi, M; Cemenasco, A; Mancini, L; Paolino, D; Scotti, N; Bianchi, C C; Pasqualini, D
2017-04-01
To evaluate the ability of ProGlider instruments, PathFiles and K-files to maintain canal anatomy during glide path preparation using X-ray computed micro-tomography (micro-CT). Forty-five extracted maxillary first permanent molars were selected. Mesio-buccal canals were randomly assigned (n = 15) to manual K-file, PathFile or ProGlider groups for glide path preparation. Irrigation was achieved with 5% NaOCl and 10% EDTA. After glide path preparation, each canal was shaped with ProTaper Next X1 and X2 to working length. Specimens were scanned (isotropic voxel size 9.1 μm) for matching volumes and surface areas and post-treatment analyses. Canal volume, surface area, centroid shift, canal geometry variation through ratio of diameter ratios and ratio of cross-sectional areas were assessed in the apical and coronal levels and at the point of maximum canal curvature. One-way factorial anovas were used to evaluate the significance of instrument in the various canal regions. Post-glide path analysis revealed that instrument factor was significant at the apical level for both the ratio of diameter ratios and the ratio of cross-sectional areas (P < 0.001), with an improved maintenance of root canal geometry by ProGlider and PathFile. At the coronal level and point of maximum canal curvature, ProGlider demonstrated a tendency to pre-flare the root canal compared with K-file and PathFile. PathFile and ProGlider demonstrated a significantly lower centroid shift compared with K-file at the apical level (P = 0.023). Post-shaping analysis demonstrated a more centred preparation of ProGlider, compared with PathFile and K-files, with no significant differences for other parameters. Use of ProGlider instruments led to less canal transportation than PathFiles and K-files. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Pfaller, Kristian; Wagner, Johanna
2016-01-01
Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary to prevent the entry of ice from already frozen tissues. The reproductive shoot of Calluna vulgaris is able to supercool down to below -22°C throughout all developmental stages (shoot elongation, flowering, fruiting) despite an established xylem conductivity. After localization of the persistent ice barrier between the reproductive and vegetative shoot at the base of the pedicel by infrared differential thermal analysis, the currently unknown structural features of the ice barrier tissue were anatomically analyzed on cross and longitudinal sections. The ice barrier tissue was recognized as a 250 μm long constriction zone at the base of the pedicel that lacked pith tissue and intercellular spaces. Most cell walls in this region were thickened and contained hydrophobic substances (lignin, suberin, and cutin). A few cell walls had what appeared to be thicker cellulose inclusions. In the ice barrier tissue, the area of the xylem was as much as 5.7 times smaller than in vegetative shoots and consisted of tracheids only. The mean number of conducting units in the xylem per cross section was reduced to 3.5% of that in vegetative shoots. Diameter of conducting units and tracheid length were 70% and 60% (respectively) of that in vegetative shoots. From vegetative shoots water transport into the ice barrier must pass pit membranes that are likely impermeable to ice. Pit apertures were about 1.9 μm x 0.7 μm, which was significantly smaller than in the vegetative shoot. The peculiar anatomical features of the xylem at the base of the pedicel suggest that the diameter of pores in pit membranes could be the critical constriction for ice propagation into the persistently supercooled reproductive shoots of C. vulgaris. PMID:27632365
Kuprian, Edith; Tuong, Tan D; Pfaller, Kristian; Wagner, Johanna; Livingston, David P; Neuner, Gilbert
2016-01-01
Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary to prevent the entry of ice from already frozen tissues. The reproductive shoot of Calluna vulgaris is able to supercool down to below -22°C throughout all developmental stages (shoot elongation, flowering, fruiting) despite an established xylem conductivity. After localization of the persistent ice barrier between the reproductive and vegetative shoot at the base of the pedicel by infrared differential thermal analysis, the currently unknown structural features of the ice barrier tissue were anatomically analyzed on cross and longitudinal sections. The ice barrier tissue was recognized as a 250 μm long constriction zone at the base of the pedicel that lacked pith tissue and intercellular spaces. Most cell walls in this region were thickened and contained hydrophobic substances (lignin, suberin, and cutin). A few cell walls had what appeared to be thicker cellulose inclusions. In the ice barrier tissue, the area of the xylem was as much as 5.7 times smaller than in vegetative shoots and consisted of tracheids only. The mean number of conducting units in the xylem per cross section was reduced to 3.5% of that in vegetative shoots. Diameter of conducting units and tracheid length were 70% and 60% (respectively) of that in vegetative shoots. From vegetative shoots water transport into the ice barrier must pass pit membranes that are likely impermeable to ice. Pit apertures were about 1.9 μm x 0.7 μm, which was significantly smaller than in the vegetative shoot. The peculiar anatomical features of the xylem at the base of the pedicel suggest that the diameter of pores in pit membranes could be the critical constriction for ice propagation into the persistently supercooled reproductive shoots of C. vulgaris.
Longitudinal in vivo muscle function analysis of the DMSXL mouse model of myotonic dystrophy type 1.
Decostre, Valérie; Vignaud, Alban; Matot, Béatrice; Huguet, Aline; Ledoux, Isabelle; Bertil, Emilie; Gjata, Bernard; Carlier, Pierre G; Gourdon, Geneviève; Hogrel, Jean-Yves
2013-12-01
Myotonic dystrophy is the most common adult muscle dystrophy. In view of emerging therapies, which use animal models as a proof of principle, the development of reliable outcome measures for in vivo longitudinal study of mouse skeletal muscle function is becoming crucial. To satisfy this need, we have developed a device to measure ankle dorsi- and plantarflexion torque in rodents. We present an in vivo 8-month longitudinal study of the contractile properties of the skeletal muscles of the DMSXL mouse model of myotonic dystrophy type 1. Between 4 and 12 months of age, we observed a reduction in muscle strength in the ankle dorsi- and plantarflexors of DMSXL compared to control mice although the strength per muscle cross-section was normal. Mild steady myotonia but no abnormal muscle fatigue was also observed in the DMSXL mice. Magnetic resonance imaging and histological analysis performed at the end of the study showed respectively reduced muscle cross-section area and smaller muscle fibre diameter in DMSXL mice. In conclusion, our study demonstrates the feasibility of carrying out longitudinal in vivo studies of muscle function over several months in a mouse model of myotonic dystrophy confirming the feasibility of this method to test preclinical therapeutics. Copyright © 2013 Elsevier B.V. All rights reserved.
Clinical implementation of stereotaxic brain implant optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenow, U.F.; Wojcicka, J.B.
1991-03-01
This optimization method for stereotaxic brain implants is based on seed/strand configurations of the basic type developed for the National Cancer Institute (NCI) atlas of regular brain implants. Irregular target volume shapes are determined from delineation in a stack of contrast enhanced computed tomography scans. The neurosurgeon may then select up to ten directions, or entry points, of surgical approach of which the program finds the optimal one under the criterion of smallest target volume diameter. Target volume cross sections are then reconstructed in 5-mm-spaced planes perpendicular to the implantation direction defined by the entry point and the target volumemore » center. This information is used to define a closed line in an implant cross section along which peripheral seed strands are positioned and which has now an irregular shape. Optimization points are defined opposite peripheral seeds on the target volume surface to which the treatment dose rate is prescribed. Three different optimization algorithms are available: linear least-squares programming, quadratic programming with constraints, and a simplex method. The optimization routine is implemented into a commercial treatment planning system. It generates coordinate and source strength information of the optimized seed configurations for further dose rate distribution calculation with the treatment planning system, and also the coordinate settings for the stereotaxic Brown-Roberts-Wells (BRW) implantation device.« less
Wang, Hsin; Simunovic, Srdjan; Maleki, Hosein; ...
2016-01-01
The response of Li-ion cells to mechanically induced internal electrical shorts is an important safety performance metric design. We assume that the battery internal configuration at the onset of electrical short influences the subsequent response and can be used to gauge the safety risk. We subjected a series of prismatic Li-ion cells to lateral pinching using 0.25", 0.5", 1", 2" and 3" diameter steel balls until the onset of internal short. The external aluminum enclosure froze the internal cell configuration at the onset of short and enabled us to cross-section the cells, and take the cross-section images. The images indicatemore » that an internal electric short is preceded by extensive strain partitioning in the cells, fracturing and tearing of the current collectors, and cracking and slipping of the electrode layers with multiple fault lines across multiple layers. These observations are at odds with a common notion of homogeneous deformation across the layers and strain hardening of electrodes that eventually punch through the separator and short the cell. The faults are akin to tectonic movements of multiple layers that are characteristic of granular materials and bonded aggregates. As a result, the short circuits occur after extensive internal faulting, which implies significant stretching and tearing of separators.« less
Engineering Photon-Photon Interactions within Rubidium-Filled Waveguides
NASA Astrophysics Data System (ADS)
Perrella, C.; Light, P. S.; Vahid, S. Afshar; Benabid, F.; Luiten, A. N.
2018-04-01
Strong photon-photon interactions are a required ingredient for deterministic two-photon optical quantum logic gates. Multiphoton transitions in dense atomic vapors have been shown to be a promising avenue for producing such interactions. The strength of a multiphoton interaction can be enhanced by conducting the interaction in highly confined geometries such as small-cross-section optical waveguides. We demonstrate, both experimentally and theoretically, that the strength of such interactions scale only with the optical mode diameter, d , not d2 as might be initially expected. This weakening of the interaction arises from atomic motion inside the waveguides. We create an interaction between two optical signals, at 780 and 776 nm, using the 5 S1 /2→5 D5 /2 two-photon transition in rubidium vapor within a range of hollow-core fibers with different core sizes. The interaction strength is characterized by observing the absorption and phase shift induced on the 780-nm beam, which is in close agreement with theoretical modeling that accounts for the atomic motion inside the fibers. These observations demonstrate that transit-time effects upon multiphoton transitions are of key importance when engineering photon-photon interactions within small-cross-section waveguides that might otherwise be thought to lead to enhanced optical nonlinearity through increased intensities.
NASA Astrophysics Data System (ADS)
Titarenko, Yu. E.; Batyaev, V. F.; Chauzova, M. V.; Chauzova, M. V.; Kashirin, I. A.; Malinovskiy, S. V.; Pavlov, K. V.; Rogov, V. I.; Titarenko, A. Yu.; Zhivun, V. M.; Mashnik, S. G.; Stankovskiy, A. Yu.
2016-05-01
The results of 3H production in Al foil monitors (˜ 59 mg/cm2 thickness) are presented. These foils have been irradiated in 15×15 mm polyethylene bags of ˜ 14 mg/cm2 thickness together with foils of Cr (˜ 395 mg/cm2 thickness) and 56Fe (˜ 332 mg/cm2 thickness) by protons of different energies in a range of 0.04 - 2.6 GeV. The diameters of all the foils were 10.5 mm. The irradiations were carried out at the ITEP accelerator U-10 under the ISTC Project # 3266 in 2006-2009. 3H has been extracted from Al foils using an A307 Sample Oxidizer. An ultra low level liquid scintillation spectrometer Quantulus1220 was used to measure the 3H β-spectra and the SpectraDec software package was applied for spectra processing, deconvolution and 3H activity determination. The values of the Al (p, x)3H reaction cross sections obtained in these experiments are compared with data measured at other labs and with results of simulations by the MCNP6 radiation transport code using the CEM03.03 event generator.
Titarenko, Yu. E.; Batyaev, V. F.; Chauzova, M. V.; ...
2016-01-01
Our results of 3H production in Al foil monitors (~ 59 mg/cm 2 thickness) are presented. We irradiated these foils in 15×15 mm polyethylene bags of ~ 14 mg/cm 2 thickness together with foils of Cr (~ 395 mg/cm 2 thickness) and 56Fe (~ 332 mg/cm 2 thickness) by protons of different energies in a range of 0.04 – 2.6 GeV. The diameters of all the foils were 10.5 mm. The irradiations were carried out at the ITEP accelerator U–10 under the ISTC Project # 3266 in 2006–2009. 3H has been extracted from Al foils using an A307 Sample Oxidizer.more » We then used an ultra low level liquid scintillation spectrometer Quantulus1220 to measure the 3H β–spectra and the SpectraDec software package was applied for spectra processing, deconvolution and 3H activity determination. The values of the Al (p, x) 3H reaction cross sections obtained in these experiments are compared with data measured at other labs and with results of simulations by the MCNP6 radiation transport code using the CEM03.03 event generator.« less
NASA Technical Reports Server (NTRS)
Ashby, G. C., Jr.
1974-01-01
Experimental data have been obtained for two series of bodies at Mach 6 and Reynolds numbers, based on model length, from 1.4 million to 9.5 million. One series consisted of axisymmetric power-law bodies geometrically constrained for constant length and base diameter with values of the exponent n of 0.25, 0.5, 0.6, 0.667, 0.75, and 1.0. The other series consisted of positively and negatively cambered bodies of polygonal cross section, each having a constant longitudinal area distribution conforming to that required for minimizing zero-lift wave drag at hypersonic speeds under the geometric constraints of given length and volume. At the highest Reynolds number, the power-law body for minimum drag is blunter (exponent n lower) than predicted by inviscid theory (n approximately 0.6 instead of n = 0.667); however, the peak value of lift-drag ratio occurs at n = 0.667. Viscous effects were present on the bodies of polygonal cross section but were less pronounced than those on the power-law bodies. The trapezoidal bodies with maximum width at the bottom were found to have the highest maximum lift-drag ratio and the lowest mimimum drag.
Rapid Confined Mixing Using Transverse Jets Part 2: Multiple Jets
NASA Astrophysics Data System (ADS)
Forliti, David; Salazar, David
2012-11-01
An experimental study has been conducted at the Air Force Research Laboratory at Edwards Air Force Base to investigate the properties of confined mixing devices that employ transverse jets. The experiment considers the mixing of water with a mixture of water and fluorescein, and planar laser induced fluorescence was used to measure instantaneous mixture fraction distributions in the cross section view. Part one of this study presents the scaling law development and results for a single confined transverse jet. Part two will describe the results of configurations including multiple transverse jets. The different regimes of mixing behavior, ranging from under to overpenetration of the transverse jets, are characterized in terms of a new scaling law parameter presented in part one. The level of unmixedness, a primary metric for mixing device performance, is quantified for different jet diameters, number of jets, and relative flow rates. It is apparent that the addition of a second transverse jet provides enhanced scalar uniformity in the main pipe flow cross section compared to a single jet. Three and six jet configurations also provide highly uniform scalar distributions. Turbulent scalar fluctuation intensities, spectral features, and spatial eigenfunctions using the proper orthogonal decomposition will be presented. Distribution A: Public Release, Public Affairs Clearance Number: 12656.
Spreading of non-planar non-axisymmetric gravity and turbidity currents
NASA Astrophysics Data System (ADS)
Zgheib, Nadim; Bonometti, Thomas; Balachandar, S.
2014-11-01
The dynamics of non-axisymmetric turbidity currents is considered here. The study comprises a series of experiments for which a finite volume of particle-laden solution is released into fresh water. A mixture of water and polystyrene particles of diameter 280
Shrinking plastic tubing and nonstandard diameters
NASA Technical Reports Server (NTRS)
Ruiz, W. V.; Thatcher, C. S.
1980-01-01
Process allows larger-than-normal postshrink diameters without splitting. Tetrafluoroethylene tubing on mandrel is supported within hot steel pipe by several small diameter coil sections. Rising temperature of mandrel is measured via thermocouple so assembly can be removed without overshrinking (and splitting) of tubing.
Effects of Pin Detached Space on Heat Transfer in a Rib Roughened Channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siw, Sin Chien; Chyu, Minking K.; Alvin, Mary Anne
2012-11-08
An experimental study is performed to investigate the heat transfer characteristics and frictional losses in a rib roughened channel combined with detached pin-fins. The overall channel geometry (W=76.2 mm, E=25.4 mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. With a given pin diameter, D=6.35 mm=[1/4]E, three different pin-fin height-to-diameter ratios, H/D=4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin-tip and one of the endwalls, i.e., C/O=0, 1, 2, respectively. The rib height-to-channel height ratio is 0.0625.more » Two newly proposed cross ribs, namely the broken rib and full rib are evaluated in this effort. The broken ribs are positioned in between two consecutive rows of pin-fins, while the full ribs are fully extended adjacent to the pin-fins. The Reynolds number, based on the hydraulic diameter of the unobstructed cross section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all pin elements. The presence of ribs enhances local heat transfer coefficient on the endwall substantially by approximately 20% to 50% as compared to the neighboring endwall. In addition, affected by the rib geometry, which is a relatively low profile as compared to the overall height of the channel, the pressure loss seems to be insensitive to the presence of the ribs. However, from the overall heat transfer enhancement standpoint, the baseline cases (without ribs) outperform cases with broken ribs or full ribs.« less
NASA Astrophysics Data System (ADS)
Núñez-Santiago, María C.; Maristany-Cáceres, Amira J.; Suárez, Francisco J. García; Bello-Pérez, Arturo
2008-07-01
Rheological behavior at 60 °C, granule size distribution and Differential Scanning Calorimetry (DSC) tests were employed to study the effect of diverse reaction conditions: adipic acid concentration, pH and temperature during cross-linking of banana (Musa paradisiaca) starch. These properties were determined in native banana starch pastes for the purpose of comparison. Rheological behavior from pastes of cross-linked starch at 60 °C did not show hysteresis, probably due the cross-linkage of starch that avoided disruption of granules, elsewhere, native starch showed hysteresis in a thixotropic loop. All pastes exhibited non-Newtonian shear thinning behavior. In all cases, size distribution showed a decrease in the median diameter in cross-linked starches. This condition produces a decrease in swelling capacity of cross-linked starch. The median diameter decreased with an increase of acid adipic concentration; however, an increase of pH and Temperature produced an increase in this variable. Finally, an increase in gelatinization temperature and entalphy (ΔH) were observed as an effect of cross-linkage. An increase in acid adipic concentration produced an increase in Tonset and a decrease in ΔH. pH and temperature. The cross-linked of banana starch produced granules more resistant during the pasting procedure.
NASA Astrophysics Data System (ADS)
Belian, Anthony Paul
The Rotating Target Neutron Source (RTNS) was used in experiments to measure neutron induced cross sections at 14 MeV, and the activation properties of a specific mix of concrete. The RTNS is an accelerator based DT fusion neutron source located at the University of California, Berkeley. Two of the experiments performed for this thesis were specifically of interest for the construction and operation of the National Ignition Facility (NIF), they were the 38Ar(n,2n)37Ar cross section measurement, and the concrete activation measurement. The NIF is a large multi-beam laser facility that will study the effects of age on the nation's stockpile of nuclear weapons. The NIF, when fully operational, will focus the energy of 192 Neodymium glass lasers onto a 1 mm diameter pellet filled with deuterium and tritium fuel. This pellet is compressed by the laser energy giving some of the individual atoms of deuterium and tritium enough kinetic energy to overcome the coulomb barrier and fuse. The energy output from these pellet implosions will be in the range of tens of mega-joules (MJ). The 38Ar(n,2n)37Ar reaction will be useful to NIF scientists to measure important parameters such as target energy yield and areal density. In order to make these measurements precise, an accurate 38Ar(n,2n)37Ar cross section was necessary. The cross sections measured were: 74.9 +/- 3.8 millibarns (mb) at 13.3 +/- 0.01 MeV, 89.2 +/- 4.0 mb at 14.0 +/- 0.03 MeV, and 123.57 +/- 6.4 mb at 15.0 +/- 0.06 MeV. With anticipated energy yields in the tens of mega-joules per pellet implosion, the number of neutrons released is in the range of 1019 to 1020 neutrons per implosion. With such a large number of neutrons, minimizing the activation of the surrounding structure is very much of interest for the sake of personnel radiation safety. To benchmark the computer codes used to calculate the anticipated neutron activation of target bay concrete, samples were irradiated at the RTNS. Dose rates from each sample were recorded as a function of time after irradiation. These dose rates were compared to those calculated using the Monte Carlo code TART and the activation code ACAB. It was found that 95.8% of the comparisons agreed within the experimental uncertainty. The 40Ca(n,α)37Ar reaction was of interest for the detection of clandestine underground nuclear detonations. Since calcium is naturally abundant in the earth's crust, and since 37Ar is an inert gas and is not found naturally, the 40Ca(n, α) 37Ar reaction is a good candidate for detecting a nuclear detonation. An accurate cross section is needed to estimate the yield of the nuclear device. The average cross sections measured were: 175.6 +/- 9.2 millibarns (mb) at 13.2 +/- 0.6 MeV and 122.1 +/- 4.6 mb at 15.2 +/- 0.12 MeV. One of the current NIF pellet designs uses beryllium as the ablation layer, and the target positioner will be made of a beryllium/copper alloy. The reaction product, 10Be, from the 9Be(n,γ) 10Be reaction will be generated, although probably in very small quantities, during the lifetime of the NIF. This cross section has not been measured at 14 MeV, but should be measured to estimate the amount of 10Be produced at the NIF.
Sone, Teruki; Ito, Masako; Fukunaga, Masao; Tomomitsu, Tatsushi; Sugimoto, Toshitsugu; Shiraki, Masataka; Yoshimura, Takeshi; Nakamura, Toshitaka
2014-07-01
Weekly administration of teriparatide has been shown to reduce the risk of vertebral and non-vertebral fractures in patients with osteoporosis at higher fracture risk in Japan. However, its efficacy for hip fracture has not been established. To gain insight into the effect of weekly teriparatide on the hip, hip structural analysis (HSA) based on dual-energy X-ray absorptiometry (DXA) was performed using the data of 209 postmenopausal osteoporotic women who had participated in the original randomized, multicenter, double-blind, placebo-controlled trial assessing the effects of once-weekly 56.5 μg teriparatide for 72 weeks. The DXA scans, obtained at baseline, 48 weeks and 72 weeks, were analyzed to extract bone mineral density (BMD) and cross-sectional geometrical indices at the narrowest point on the neck (NN), the intertrochanteric region (IT), and the proximal shaft. Compared with placebo after 72 weeks, the teriparatide group showed significantly higher BMD, average cortical thickness, bone cross-sectional area, and section modulus, and lower buckling ratio at both the NN and IT regions. No significant expansion of periosteal diameter was observed at these regions. There were no significant differences in BMD and HSA indices at the shaft region. The results indicate that overall structural strength in the proximal femur increased compared to placebo, suggesting that once-weekly teriparatide effectively reverses changes in hip geometry and strength with aging. Copyright © 2014. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R.; Wang, Thomas D.
2017-02-01
We demonstrate a dual axes confocal architecture, which can be used to collect horizontal(XY-plane) or vertical cross-sectional(XZ-plane) images for tissue. This scanner head is 5.5mm in outer diameter(OD), and integrates a 3D MEMS scanner with a compact chip size of 3.2×2.9mm2. To realize the miniaturization, there are some obstacles of the small size of 3D MEMS scanner, MEMS wire bundle, the air pressure effect for MEMS motion, the processing of parabolic mirror, and optical alignment to come over. In our probe, separation mechanical structure for optical alignment was adopted and a step shape MEMS holder was designed to deal with the difficult of MEMS wire bundle. Peptides have been demonstrated tremendous potential for in vivo use to detect colonic dysplasia. This class of in vivo molecular probe can be labeled with near-infrared (NIR) dyes for visualizing the full depth of the epithelium in small animals. To confirm our probe performance, we take use of USAF 1951 resolution target to test its lateral and axial resolution. It has lateral and axial resolution of 2.49um and 4.98um, respectively. When we collect the fluorescence imaging of colon, it shows that the field of view are 1000um×1000um (horizontal) and 1000um×430um (vertical). The horizontal and vertical cross-sectional images of fresh mouse colonic mucosa demonstrate imaging performance with this miniature instrument.
Elastomeric member and method of manufacture therefor
Hoppie, Lyle O.
1985-01-01
An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.
Hoppie, Lyle O.
1985-01-01
An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.
Technical note: estimating absorbed doses to the thyroid in CT.
Huda, Walter; Magill, Dennise; Spampinato, Maria V
2011-06-01
To describe a method for estimating absorbed doses to the thyroid in patients undergoing neck CT examinations. Thyroid doses in anthropomorphic phantoms were obtained for all 23 scanner dosimetry data sets in the ImPACT CT patient dosimetry calculator. Values of relative thyroid dose [R(thy)(L)], defined as the thyroid dose for a given scan length (L) divided by the corresponding thyroid dose for a whole body scan, were determined for neck CT scans. Ratios of the maximum thyroid dose to the corresponding CTDI(vol) and [D'(thy)], were obtained for two phantom diameters. The mass-equivalent water cylinder of any patient can be derived from the neck cross-sectional area and the corresponding average Hounsfield Unit, and compared to the 16.5-cm diameter water cylinder that models the ImPACT anthropomorphic phantom neck. Published values of relative doses in water cylinders of varying diameter were used to adjust thyroid doses in the anthropomorphic phantom to those of any sized patient. Relative thyroid doses R(thy)(L) increase to unity with increasing scan length and with very small difference between scanners. A 10-cm scan centered on the thyroid would result in a dose that is, nearly 90% of the thyroid dose from a whole body scan when performed using the constant radiographic techniques. At 120 kV, the average value of D'(thy) for the 16-cm diameter was 1.17 +/- 0.05 and was independent of CT vendor and year of CT scanner, and choice of x-ray tube voltage. The corresponding average value of D'(thy) in the 32-cm diameter phantom was 2.28 +/- 0.22 and showed marked variations depending on vendor, year of introduction into clinical practice as well as x-ray tube voltage. At 120 kV, a neck equivalent to a 10-cm diameter cylinder of water would have thyroid doses 36% higher than those in the ImPACT phantom, whereas a neck equivalent to a 25-cm cylinder diameter would have thyroid doses 35% lower. Patient thyroid doses can be estimated by taking into account the amount of radiation used to perform the CT examination (CTDI(vol)) and accounting for scan length and patient anatomy (i.e., neck diameter) at the thyroid location.
Gas-solid fluidized bed reactors: Scale-up, flow regimes identification and hydrodynamics
NASA Astrophysics Data System (ADS)
Zaid, Faraj Muftah
This research studied the scale-up, flow regimes identification and hydrodynamics of fluidized beds using 6-inch and 18- inch diameter columns and different particles. One of the objectives was to advance the scale-up of gas-solid fluidized bed reactors by developing a new mechanistic methodology for hydrodynamic similarity based on matching the radial or diameter profile of gas phase holdup, since gas dynamics dictate the hydrodynamics of these reactors. This has been successfully achieved. However, the literature reported scale-up methodology based on matching selected dimensionless groups was examined and it was found that it was not easy to match the dimensionless groups and hence, there was some deviation in the hydrodynamics of the studied two different fluidized beds. A new technique based on gamma ray densitometry (GRD) was successfully developed and utilized to on-line monitor the implementation of scale-up, to identify the flow regime, and to measure the radial or diameter profiles of gas and solids holdups. CFD has been demonstrated as a valuable tool to enable the implementation of the newly developed scale-up methodology based on finding the conditions that provide similar or closer radial profile or cross sectional distribution of the gas holdup. As gas velocity increases, solids holdup in the center region of the column decreases in the fully developed region of both 6 inch and 18 inch diameter columns. Solids holdup increased with the increase in the particles size and density. Upflowing particles velocity increased with the gas velocity and became steeper at high superficial gas velocity at all axial heights where the center line velocity became higher than that in the wall region. Smaller particles size and lower density gave larger upflowing particles velocity. Minimum fluidization velocity and transition velocity from bubbly to churn turbulent flow regimes were found to be lower in 18 inch diameter column compared to those obtained in 6 inch diameter column. Also the absolute fluctuation of upflowing particles velocity multiplied by solids holdups vś 3ś as one of the terms for solids mass flux estimation was found to be larger in 18-inch diameter column than that in 6-inch diameter column using same particles size and density.
NASA Astrophysics Data System (ADS)
Futko, S. I.; Bondarenko, V. P.; Dolgii, L. N.
2012-05-01
We propose a method for characterizing and choosing solid mixed fuels for use as the solid-fuel charge of microthrusters of microelectromechanical systems. The method is based on the solution of the problem on the dependence of impulse responses of such a microthruster on the diameter of the outlet cross-section of its combustion chamber and the microkinetic parameters of the fuel. The variants of choosing the above fuels have been illustrated using glycidyl azide polymer/RDX as the example of a solid fuel mixture. The paper presents the characteristic criteria determining the composition of mixed fuels for the microthruster of a microelectromechanical system and considers the main types of "direct" and "inverse" problems arising in characterizing and choosing such fuels.
NASA Technical Reports Server (NTRS)
Sturm, R. E.; Ritman, E. L.; Wood, E. H.
1975-01-01
The background for, and design of a third generation, general purpose, all electronic spatial scanning system, the DSR is described. Its specified performance capabilities provide dynamic and stop action three dimensional spatial reconstructions of any portion of the body based on a minimum exposure time of 0.01 second for each 28 multiplanar 180 deg scanning set, a maximum scan repetition rate of sixty 28 multiplane scan sets per second, each scan set consisting of a maximum of 240 parallel cross sections of a minimum thickness of 0.9 mm, and encompassing a maximum cylindrical volume about 23 cm in length and up to 38 cm in diameter.
Compensation for 6.5 K cryogenic distortion of a fused quartz mirror by refiguring
NASA Technical Reports Server (NTRS)
Augason, Gordon C.; Young, Jeffrey A.; Melugin, Ramsey K.; Clarke, Dana S.; Howard, Steven D.; Scanlan, Michael; Wong, Steven; Lawton, Kenneth C.
1993-01-01
A 46 cm diameter, lightweight, Amersil TO8E, fused-natural-quartz mirror with a single-arch cross section was tested at the NASA-Ames Research Center Cryogenic Optical Test Facility to measure its cryogenic distortion at 6.5 K. Then the mirror was refigured with the inverse of the measured cryogenic distortion to compensate for this figure defect. The mirror was retested at 6.5 K and found to have a significantly improved figure. The compensation for cryogenic distortion was not complete, but preliminary analysis indicates that the compensation was better than 0.25 waves P-V if edge effects are ignored. The feasibility of compensating for cryogenic distortion by refiguring has thus been verified.
Laser-hole boring into overdense plasmas measured with soft X-Ray laser probing
Takahashi; Kodama; Tanaka; Hashimoto; Kato; Mima; Weber; Barbee; Da Silva LB
2000-03-13
A laser self-focused channel formation into overdense plasmas was observed using a soft x-ray laser probe system with a grid image refractometry (GIR) technique. 1.053 &mgr;m laser light with a 100 ps pulse duration was focused onto a preformed plasma at an intensity of 2x10(17) W/cm (2). Cross sections of the channel were obtained which show a 30 &mgr;m diameter in overdense plasmas. The channel width in the overdense region was kept narrow as a result of self-focusing. Conically diverging density ridges were also observed along the channel, indicating a Mach cone created by a shock wave due to the supersonic propagation of the channel front.
NASA Astrophysics Data System (ADS)
Miyasaka, Chiaki; Kasano, Hideaki; Shull, Peter J.
2004-07-01
The article presents an experimental study that has been conducted to evaluate the impact loading damage within hybrid fabric laminates-carbon and Aramid fibers. The experiments have been undertaken on a series of interply hybrid specimens with different preprags stacking sequences. Impact damage was created using an air-gun like impact device propelling spherical steel balls with diameters of 5.0mm and 10.0mm and having velocities of 113m/s and 40m/s respectively. The resulting specimen surface and internal damage (e.g., micro-cracking and debonding) was visualized nondestructively by a scanning acoustic microscope (SAM) while further interrogation of specific internal damage was visualized using a scanning electron microscope (SEM) on cross-sectioned panels.
Metal/dielectric/metal sandwich film for broadband reflection reduction
Jen, Yi-Jun; Lakhtakia, Akhlesh; Lin, Meng-Jie; Wang, Wei-Hao; Wu, Huang-Ming; Liao, Hung-Sheng
2013-01-01
A film comprising randomly distributed metal/dielectric/metal sandwich nanopillars with a distribution of cross-sectional diameters, displayed extremely low reflectance over the blue-to-red regime, when coated on glass and illuminated normally. When it is illuminated by normally incident light, this sandwich film (SWF) has a low extinction coefficient, its phase thickness is close to a negative wavelength in the blue-to-red spectral regime, and it provides weakly dispersive forward and backward impedances, so that reflected waves from the two faces of the SWF interfere destructively. Broadband reflection-reduction, over a wide range of incidence angles and regardless of the polarization state of the incident light, was observed when the SWF was deposited on polished silicon. PMID:23591704
NASA Technical Reports Server (NTRS)
Oleary, B.; Marsden, B. G.; Dragon, R.; Hauser, E.; Mcgrath, M.; Backus, P.; Robkoff, H.
1976-01-01
The paper discusses predictions and observations of the occultation of Kappa Gem by (433) Eros on January 24, 1975. Several positive and negative observations made in western New England are described. Local circumstances for the occultation are reconstructed, and the size and shape of Eros are determined analytically as well as graphically. The calculations yield two extremes for the cross section: a circle 23 km in diameter or a somewhat irregular figure 20 km by 6 or 7 km. Arguments based on the expected albedo of the asteroid suggest that the circle should be warped into an ellipse 21 by 13 km or that the irregular figure might be one component of a dumbbell-like profile.
Permanent magnet properties of Mn-Al-C between -50 C and +150 C
NASA Technical Reports Server (NTRS)
Abdelnour, Z. A.; Mildrum, H. F.; Strnat, K. J.
1981-01-01
Anisotropic Mn-Al-C (Ni) magnets are potential substitutes for Alnico 5 and 8. The limited machinability of the alloy and the fact that it is cobalt-free made it particularly interesting. The low Curie point and the costly warm extrusion process needed for grain orientation are drawbacks. The objective of this study was a detailed magnetic characterization of the material for possible use in electric machinery. The principal subjects of the study were the largest extruded bars presently available, of 31 mm diameter. Easy and hard axis magnetization curves and second-quadrant recoil loop fields were measured at various temperatures ranging from -50 C to +150 C. Property variations over the cross section of a bar were also studied.
Physical and chemical characteristics of cenospheres from the combustion of heavy fuel oil
NASA Technical Reports Server (NTRS)
Clayton, R. M.; Back, L. H.
1989-01-01
Photomicrography of particle cross sections, measurements of density, porosity, and surface area, and determinations of chemical compositions, have been used in conjunction with SEM of surface structure to characterize cenospheres generated by combustion of residual oil in a steam power plant. Large and small cenospheres, which respectively fall into the 100-200 and small 20-40 micron range, are spheroidal and hollow, with at least one blowhole; outer/inner diameter ratios for the shells are of the order of 1.3-1.4. Typically, a cenosphere contains only about 18 vol pct solid material. The presence of S, Fe, Na, and V in substantial concentrations presage high temperature heat exchanger surface corrosion problems due to cenosphere deposition.
NASA Astrophysics Data System (ADS)
Scharschmidt, D.; Algermissen, Bernd; Willms-Jones, J.-C.; Philipp, Carsten M.; Berlien, Hans-Peter
1997-12-01
Different laser systems and techniques are used for the treatment of hypertrophic scars, keloids and acne scars. Significant criteria in selecting a suitable laser system are the scar's vascularization, age and diameter. Flashlamp- pumped dye-lasers, CO2-lasers with scanner, Argon and Nd:YAG-lasers are used. Telangiectatic scars respond well to argon lasers, erythematous scars and keloids to dye-laser treatment. Using interstitial Nd:YAG-laser vaporization, scars with a cross-section over 1 cm can generally be reduced. For the treatment of atrophic and acne scars good cosmetic results are achieved with a CO2-laser/scanner system, which allows a precise ablation of the upper dermis with low risk of side-effects.
Cosmic string wakes and large-scale structure
NASA Technical Reports Server (NTRS)
Charlton, Jane C.
1988-01-01
The formation of structure from infinite cosmic string wakes is modeled for a universe dominated by cold dark matter (CDM). Cross-sectional slices through the wake distribution tend to outline empty regions with diameters which are not inconsistent with the range of sizes of the voids in the CfA slice of the universe. The topology of the wake distribution is found to be spongy rather than cell-like. Correlations between CDM wakes do not extend much beyond a horizon length, so it is unlikely that CDM wakes are responsible for the correlations between clusters of galaxies. An estimate of the fraction of matter to accrete onto CDM wakes indicates that wakes could be more important in galaxy formation than previously anticipated.