Sample records for cross section images

  1. Extracting Cross-Sectional Clinical Images Based on Their Principal Axes of Inertia

    PubMed Central

    Fan, Yuzhou; Djuric, Marija; Li, Zhiyu; Antonijevic, Djordje; Milenkovic, Petar; Sun, Yueyang; Li, Ruining

    2017-01-01

    Cross-sectional imaging is considered the gold standard in diagnosing a range of diseases. However, despite its widespread use in clinical practice and research, no widely accepted method is available to reliably match cross-sectional planes in several consecutive scans. This deficiency can impede comparison between cross-sectional images and ultimately lead to misdiagnosis. Here, we propose and demonstrate a method for finding the same imaging plane in images obtained during separate scanning sessions. Our method is based on the reconstruction of a “virtual organ” from which arbitrary cross-sectional images can be extracted, independent of the axis orientation in the original scan or cut; the key is to establish unique body coordinates of the organ from its principal axes of inertia. To verify our method a series of tests were performed, and the same cross-sectional plane was successfully extracted. This new approach offers clinicians access, after just a single scanning session, to the morphology and structure of a lesion through cross-sectional images reconstructed along arbitrary axes. It also aids comparable detection of morphological and structural changes in the same imaging plane from scans of the same patient taken at different times—thus potentially reducing the misdiagnosis rate when cross-sectional images are interpreted. PMID:29410714

  2. Extracting Cross-Sectional Clinical Images Based on Their Principal Axes of Inertia.

    PubMed

    Fan, Yuzhou; Luo, Liangping; Djuric, Marija; Li, Zhiyu; Antonijevic, Djordje; Milenkovic, Petar; Sun, Yueyang; Li, Ruining; Fan, Yifang

    2017-01-01

    Cross-sectional imaging is considered the gold standard in diagnosing a range of diseases. However, despite its widespread use in clinical practice and research, no widely accepted method is available to reliably match cross-sectional planes in several consecutive scans. This deficiency can impede comparison between cross-sectional images and ultimately lead to misdiagnosis. Here, we propose and demonstrate a method for finding the same imaging plane in images obtained during separate scanning sessions. Our method is based on the reconstruction of a "virtual organ" from which arbitrary cross-sectional images can be extracted, independent of the axis orientation in the original scan or cut; the key is to establish unique body coordinates of the organ from its principal axes of inertia. To verify our method a series of tests were performed, and the same cross-sectional plane was successfully extracted. This new approach offers clinicians access, after just a single scanning session, to the morphology and structure of a lesion through cross-sectional images reconstructed along arbitrary axes. It also aids comparable detection of morphological and structural changes in the same imaging plane from scans of the same patient taken at different times-thus potentially reducing the misdiagnosis rate when cross-sectional images are interpreted.

  3. Automatic arteriovenous crossing phenomenon detection on retinal fundus images

    NASA Astrophysics Data System (ADS)

    Hatanaka, Yuji; Muramatsu, Chisako; Hara, Takeshi; Fujita, Hiroshi

    2011-03-01

    Arteriolosclerosis is one cause of acquired blindness. Retinal fundus image examination is useful for early detection of arteriolosclerosis. In order to diagnose the presence of arteriolosclerosis, the physicians find the silver-wire arteries, the copper-wire arteries and arteriovenous crossing phenomenon on retinal fundus images. The focus of this study was to develop the automated detection method of the arteriovenous crossing phenomenon on the retinal images. The blood vessel regions were detected by using a double ring filter, and the crossing sections of artery and vein were detected by using a ring filter. The center of that ring was an interest point, and that point was determined as a crossing section when there were over four blood vessel segments on that ring. And two blood vessels gone through on the ring were classified into artery and vein by using the pixel values on red and blue component image. Finally, V2-to-V1 ratio was measured for recognition of abnormalities. V1 was the venous diameter far from the blood vessel crossing section, and V2 was the venous diameter near from the blood vessel crossing section. The crossing section with V2-to-V1 ratio over 0.8 was experimentally determined as abnormality. Twenty four images, including 27 abnormalities and 54 normal crossing sections, were used for preliminary evaluation of the proposed method. The proposed method was detected 73% of crossing sections when the 2.8 sections per image were mis-detected. And, 59% of abnormalities were detected by measurement of V1-to-V2 ratio when the 1.7 sections per image were mis-detected.

  4. Visualizing 3D Objects from 2D Cross Sectional Images Displayed "In-Situ" versus "Ex-Situ"

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George

    2010-01-01

    The present research investigates how mental visualization of a 3D object from 2D cross sectional images is influenced by displacing the images from the source object, as is customary in medical imaging. Three experiments were conducted to assess people's ability to integrate spatial information over a series of cross sectional images in order to…

  5. Effects of instructional strategies using cross sections on the recognition of anatomical structures in correlated CT and MR images.

    PubMed

    Khalil, Mohammed K; Paas, Fred; Johnson, Tristan E; Su, Yung K; Payer, Andrew F

    2008-01-01

    This research is an effort to best utilize the interactive anatomical images for instructional purposes based on cognitive load theory. Three studies explored the differential effects of three computer-based instructional strategies that use anatomical cross-sections to enhance the interpretation of radiological images. These strategies include: (1) cross-sectional images of the head that can be superimposed on radiological images, (2) transparent highlighting of anatomical structures in radiological images, and (3) cross-sectional images of the head with radiological images presented side-by-side. Data collected included: (1) time spent on instruction and on solving test questions, (2) mental effort during instruction and test, and (3) students' performance to identify anatomical structures in radiological images. Participants were 28 freshmen medical students (15 males and 13 females) and 208 biology students (190 females and 18 males). All studies used posttest-only control group design, and the collected data were analyzed by either t test or ANOVA. In self-directed computer-based environments, the strategies that used cross sections to improve students' ability to recognize anatomic structures in radiological images showed no significant positive effects. However, when increasing the complexity of the instructional materials, cross-sectional images imposed a higher cognitive load, as indicated by higher investment of mental effort. There is not enough evidence to claim that the simultaneous combination of cross sections and radiological images has no effect on the identification of anatomical structures in radiological images for novices. Further research that control for students' learning and cognitive style is needed to reach an informative conclusion.

  6. [Relationship between image quality and cross-sectional area of phantom in three-dimensional positron emission tomography scan].

    PubMed

    Osawa, Atsushi; Miwa, Kenta; Wagatsuma, Kei; Takiguchi, Tomohiro; Tamura, Shintaro; Akimoto, Kenta

    2012-01-01

    The image quality in (18)FDG PET/CT often degrades as the body size increases. The purpose of this study was to evaluate the relationship between image quality and the body size using original phantoms of variable cross-sectional areas in PET/CT. We produced five water phantoms with different cross-sectional areas. The long axis of phantom was 925 mm, and the cross-sectional area was from 324 to 1189 cm(2). These phantoms with the sphere (diameter 10 mm) were filled with (18)F-FDG solution. The radioactivity concentration of background in the phantom was 1.37, 2.73, 4.09 and 5.46 kBq/mL. The scanning duration was 30 min in list mode acquisition for each measurement. Background variability (N(10 mm)), noise equivalent count rates (NECR(phantom)), hot sphere contrast (Q(H,10 mm)) as physical evaluation and visual score of sphere detection were measured, respectively. The relationship between image quality and the various cross-sectional areas was also analyzed under the above-mentioned conditions. As cross-sectional area increased, NECR(phantom) progressively decreased. Furthermore, as cross-sectional area increased, N(10 mm) increased and Q(H,10 mm) decreased. Image quality became degraded as body weight increased because noise and contrast contributed to image quality. The visual score of sphere detection deteriorated in high background radioactivity concentration because a false positive detection in cross-sectional area of the phantom increased. However, additional increases in scanning periods could improve the visual score. We assessed tendencies in the relationship between image quality and body size in PET/CT. Our results showed that time adjustment was more effective than dose adjustment for stable image quality of heavier patients in terms of the large cross-sectional area.

  7. Cross-Sectional Transport Imaging in a Multijunction Solar Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haegel, Nancy M.; Ke, Chi-Wen; Taha, Hesham

    2015-06-14

    Combining highly localized electron-beam excitation at a point with the spatial resolution capability of optical near-field imaging, we have imaged carrier transport in a cross-sectioned multijunction (GaInP/GaInAs/Ge) solar cell. We image energy transport associated with carrier diffusion throughout the full width of the middle (GaInAs) cell and luminescent coupling from point excitation in the top cell GaInP to the middle cell. Supporting cathodoluminescence and near-field photoluminescence measurements demonstrate excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results as well as transport limitations on the spatial resolution of cross-sectional measurements.

  8. Determination of differential cross sections and kinetic energy release of co-products from central sliced images in photo-initiated dynamic processes.

    PubMed

    Chen, Kuo-mei; Chen, Yu-wei

    2011-04-07

    For photo-initiated inelastic and reactive collisions, dynamic information can be extracted from central sliced images of state-selected Newton spheres of product species. An analysis framework has been established to determine differential cross sections and the kinetic energy release of co-products from experimental images. When one of the reactants exhibits a high recoil speed in a photo-initiated dynamic process, the present theory can be employed to analyze central sliced images from ion imaging or three-dimensional sliced fluorescence imaging experiments. It is demonstrated that the differential cross section of a scattering process can be determined from the central sliced image by a double Legendre moment analysis, for either a fixed or continuously distributed recoil speeds in the center-of-mass reference frame. Simultaneous equations which lead to the determination of the kinetic energy release of co-products can be established from the second-order Legendre moment of the experimental image, as soon as the differential cross section is extracted. The intensity distribution of the central sliced image, along with its outer and inner ring sizes, provide all the clues to decipher the differential cross section and the kinetic energy release of co-products.

  9. Learning of Cross-Sectional Anatomy Using Clay Models

    ERIC Educational Resources Information Center

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  10. Automated recognition of cell phenotypes in histology images based on membrane- and nuclei-targeting biomarkers

    PubMed Central

    Karaçalı, Bilge; Vamvakidou, Alexandra P; Tözeren, Aydın

    2007-01-01

    Background Three-dimensional in vitro culture of cancer cells are used to predict the effects of prospective anti-cancer drugs in vivo. In this study, we present an automated image analysis protocol for detailed morphological protein marker profiling of tumoroid cross section images. Methods Histologic cross sections of breast tumoroids developed in co-culture suspensions of breast cancer cell lines, stained for E-cadherin and progesterone receptor, were digitized and pixels in these images were classified into five categories using k-means clustering. Automated segmentation was used to identify image regions composed of cells expressing a given biomarker. Synthesized images were created to check the accuracy of the image processing system. Results Accuracy of automated segmentation was over 95% in identifying regions of interest in synthesized images. Image analysis of adjacent histology slides stained, respectively, for Ecad and PR, accurately predicted regions of different cell phenotypes. Image analysis of tumoroid cross sections from different tumoroids obtained under the same co-culture conditions indicated the variation of cellular composition from one tumoroid to another. Variations in the compositions of cross sections obtained from the same tumoroid were established by parallel analysis of Ecad and PR-stained cross section images. Conclusion Proposed image analysis methods offer standardized high throughput profiling of molecular anatomy of tumoroids based on both membrane and nuclei markers that is suitable to rapid large scale investigations of anti-cancer compounds for drug development. PMID:17822559

  11. Staging studies for cutaneous melanoma in the United States: a population-based analysis.

    PubMed

    Wasif, Nabil; Etzioni, David; Haddad, Dana; Gray, Richard J; Bagaria, Sanjay P; Pockaj, Barbara A

    2015-04-01

    Routine cross-sectional imaging for staging of early-stage cutaneous melanoma is not recommended. This study sought to investigate the use of imaging for staging of cutaneous melanoma in the United States. Patients with nonmetastatic cutaneous melanoma newly diagnosed between 2000 and 2007 were identified from the Surveillance Epidemiology End Results-Medicare registry. Any imaging study performed within 90 days after diagnosis was considered a staging study. The study identified 25,643 patients, 3,116 (12.2 %) of whom underwent cross-sectional imaging: positron emission tomography (PET) (7.2 %), computed tomography (CT) (5.9 %), and magnetic resonance imaging (MRI) (0.6 %). From 2000 to 2007, the use of cross-sectional imaging increased from 8.7 to 16.1 % (p < 0.001), driven predominantly by increased usage of PET (4.2-12.1 %). Stratification by T and N classification showed that cross-sectional imaging was used for 8.6 % of T1, 14.3 % of T2, 18.6 % of T3, and 26.7 % of T4 tumors (p < 0.001) and for 33.3 % of node-positive patients versus 11.1 % of node-negative patients (p < 0.001). Factors predictive of cross-sectional imaging included T classification [odds ratio (OR) for T4 vs T1, 2.66; 95 % confidence interval (CI) 2.33-3.03], node positivity (OR 2.70; 95 % CI 2.36-3.10), more recent year of diagnosis (OR 2.05 for 2007 vs 2000; 95 % CI 1.74-2.42), atypical histology, and non-Caucasian race (OR 1.32; 95 % CI 1.02-1.73). The use of cross-sectional imaging for staging of early-stage cutaneous melanoma is increasing in the Medicare population. Better dissemination of guidelines and judicious use of imaging should be encouraged.

  12. Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses.

    PubMed

    Lublinsky, S; Friedman, A; Kesler, A; Zur, D; Anconina, R; Shelef, I

    2016-03-01

    MRV is an important blood vessel imaging and diagnostic tool for the evaluation of stenosis, occlusions, or aneurysms. However, an accurate image-processing tool for vessel comparison is unavailable. The purpose of this study was to develop and test an automated technique for vessel cross-sectional analysis. An algorithm for vessel cross-sectional analysis was developed that included 7 main steps: 1) image registration, 2) masking, 3) segmentation, 4) skeletonization, 5) cross-sectional planes, 6) clustering, and 7) cross-sectional analysis. Phantom models were used to validate the technique. The method was also tested on a control subject and a patient with idiopathic intracranial hypertension (4 large sinuses tested: right and left transverse sinuses, superior sagittal sinus, and straight sinus). The cross-sectional area and shape measurements were evaluated before and after lumbar puncture in patients with idiopathic intracranial hypertension. The vessel-analysis algorithm had a high degree of stability with <3% of cross-sections manually corrected. All investigated principal cranial blood sinuses had a significant cross-sectional area increase after lumbar puncture (P ≤ .05). The average triangularity of the transverse sinuses was increased, and the mean circularity of the sinuses was decreased by 6% ± 12% after lumbar puncture. Comparison of phantom and real data showed that all computed errors were <1 voxel unit, which confirmed that the method provided a very accurate solution. In this article, we present a novel automated imaging method for cross-sectional vessels analysis. The method can provide an efficient quantitative detection of abnormalities in the dural sinuses. © 2016 by American Journal of Neuroradiology.

  13. Feasibility of in Vivo SAXS Imaging for Detection of Alzheiemer's Disease

    NASA Astrophysics Data System (ADS)

    Choi, Mina

    Small-angle x-ray scattering (SAXS) imaging has been proposed as a technique to characterize and selectively image structures based on electron density structure which allows for discriminating materials based on their scatter cross sections. This dissertation explores the feasibility of SAXS imaging for the detection of Alzheimer's disease (AD) amyloid plaques. The inherent scatter cross sections of amyloid plaque serve as biomarkers in vivo without the need of injected molecular tags. SAXS imaging can also assist in a better understanding of how these biomarkers play a role in Alzheimer's disease which in turn can lead to the development of more effective disease-modifying therapies. I implement simulations of x-ray transport using Monte Carlo methods for SAXS imaging enabling accurate calculation of radiation dose and image quality in SAXS-computed tomography (CT). I describe SAXS imaging phantoms with tissue-mimicking material and embedded scatter targets as a way of demonstrating the characteristics of SAXS imaging. I also performed a comprehensive study of scattering cross sections of brain tissue from measurements of ex-vivo sections of a wild-type mouse brain and reported generalized cross sections of gray matter, white matter, and corpus callosum obtained and registered by planar SAXS imaging. Finally, I demonstrate the ability of SAXS imaging to locate an amyloid fibril pellet within a brain section. This work contributes to novel application of SAXS imaging for Alzheimer's disease detection and studies its feasibility as an imaging tool for AD biomarkers.

  14. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging.

    PubMed

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio; Ntziachristos, Vasilis; Rosenthal, Amir

    2015-09-01

    With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. The optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV-L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. In all cases, model-based TV-L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV-L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV-L1 inversion yielded sharper images and weaker streak artifact. The results herein show that TV-L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV-L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.

  15. Visible/Infrared Optical Depths of Cirrus as Seen by Satellite and Scanning Lidar

    NASA Technical Reports Server (NTRS)

    Wylie, Donald; Wolf, Walt; Piironen, Paivi; Eloranta, Edwin

    1996-01-01

    The High Spectral Resolution Lidar (HSRL) and the Volume Imaging Lidar (VIL) were combined to produce a quantitative image of the visible optical depth of cirrus clouds. The HSRL was used to calibrate the VIL signal into backscatter cross sections of particulates. The backscatter cross sections were related to extinction by a constant backscatter phase function determined from the HSRL data. This produced a three dimensional image of visual extinction in the cirrus clouds over a one hour period. Two lidar images were constructed from one hour VIL cross section records.

  16. Three-dimensional object surface identification

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet

    1995-03-01

    This paper describes a computationally efficient matching method for inspecting 3D objects using their serial cross sections. Object regions of interest in cross-sectional binary images of successive slices are aligned with those of the models. Cross-sectional differences between the object and the models are measured in the direction of the gradient of the cross section boundary. This is repeated in all the cross-sectional images. The model with minimum average cross-sectional difference is selected as the best match to the given object (i.e., no defect). The method is tested using various computer generated surfaces and matching results are presented. It is also demonstrated using Symult S-2010 16-node system that the method is suitable for parallel implementation in massage passing processors with the maximum attainable speedup (close to 16 for S-2010).

  17. Average Cross-Sectional Area of DebriSat Fragments Using Volumetrically Constructed 3D Representations

    NASA Technical Reports Server (NTRS)

    Scruggs, T.; Moraguez, M.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.

    2016-01-01

    Debris fragments from the hypervelocity impact testing of DebriSat are being collected and characterized for use in updating existing satellite breakup models. One of the key parameters utilized in these models is the ballistic coefficient of the fragment which is directly related to its area-to-mass ratio. However, since the attitude of fragments varies during their orbital lifetime, it is customary to use the average cross-sectional area in the calculation of the area-to-mass ratio. The average cross-sectional area is defined as the average of the projected surface areas perpendicular to the direction of motion and has been shown to be equal to one-fourth of the total surface area of a convex object. Unfortunately, numerous fragments obtained from the DebriSat experiment show significant concavity (i.e., shadowing) and thus we have explored alternate methods for computing the average cross-sectional area of the fragments. An imaging system based on the volumetric reconstruction of a 3D object from multiple 2D photographs of the object was developed for use in determining the size characteristic (i.e., characteristics length) of the DebriSat fragments. For each fragment, the imaging system generates N number of images from varied azimuth and elevation angles and processes them using a space-carving algorithm to construct a 3D point cloud of the fragment. This paper describes two approaches for calculating the average cross-sectional area of debris fragments based on the 3D imager. Approach A utilizes the constructed 3D object to generate equally distributed cross-sectional area projections and then averages them to determine the average cross-sectional area. Approach B utilizes a weighted average of the area of the 2D photographs to directly compute the average cross-sectional area. A comparison of the accuracy and computational needs of each approach is described as well as preliminary results of an analysis to determine the "optimal" number of images needed for the 3D imager to accurately measure the average cross sectional area of objects with known dimensions.

  18. Mental visualization of objects from cross-sectional images

    PubMed Central

    Wu, Bing; Klatzky, Roberta L.; Stetten, George D.

    2011-01-01

    We extended the classic anorthoscopic viewing procedure to test a model of visualization of 3D structures from 2D cross-sections. Four experiments were conducted to examine key processes described in the model, localizing cross-sections within a common frame of reference and spatiotemporal integration of cross sections into a hierarchical object representation. Participants used a hand-held device to reveal a hidden object as a sequence of cross-sectional images. The process of localization was manipulated by contrasting two displays, in-situ vs. ex-situ, which differed in whether cross sections were presented at their source locations or displaced to a remote screen. The process of integration was manipulated by varying the structural complexity of target objects and their components. Experiments 1 and 2 demonstrated visualization of 2D and 3D line-segment objects and verified predictions about display and complexity effects. In Experiments 3 and 4, the visualized forms were familiar letters and numbers. Errors and orientation effects showed that displacing cross-sectional images to a remote display (ex-situ viewing) impeded the ability to determine spatial relationships among pattern components, a failure of integration at the object level. PMID:22217386

  19. Determination of tire cross-sectional geometric characteristics from a digitally scanned image

    NASA Astrophysics Data System (ADS)

    Danielson, Kent T.

    1995-08-01

    A semi-automated procedure is described for the accurate determination of geometrical characteristics using a scanned image of the tire cross-section. The procedure can be useful for cases when CAD drawings are not available or when a description of the actual cured tire is desired. Curves representing the perimeter of the tire cross-section are determined by an edge tracing scheme, and the plyline and cord-end positions are determined by locations of color intensities. The procedure provides an accurate description of the perimeter of the tire cross-section and the locations of plylines and cord-ends. The position, normals, and curvatures of the cross-sectional surface are included in this description. The locations of the plylines provide the necessary information for determining the ply thicknesses and relative position to a reference surface. Finally, the locations of the cord-ends provide a means to calculate the cord-ends per inch (epi). Menu driven software has been developed to facilitate the procedure using the commercial code, PV-Wave by Visual Numerics, Inc., to display the images. From a single user interface, separate modules are executed for image enhancement, curve fitting the edge trace of the cross-sectional perimeter, and determining the plyline and cord-end locations. The code can run on SUN or SGI workstations and requires the use of a mouse to specify options or identify items on the scanned image.

  20. Determination of tire cross-sectional geometric characteristics from a digitally scanned image

    NASA Technical Reports Server (NTRS)

    Danielson, Kent T.

    1995-01-01

    A semi-automated procedure is described for the accurate determination of geometrical characteristics using a scanned image of the tire cross-section. The procedure can be useful for cases when CAD drawings are not available or when a description of the actual cured tire is desired. Curves representing the perimeter of the tire cross-section are determined by an edge tracing scheme, and the plyline and cord-end positions are determined by locations of color intensities. The procedure provides an accurate description of the perimeter of the tire cross-section and the locations of plylines and cord-ends. The position, normals, and curvatures of the cross-sectional surface are included in this description. The locations of the plylines provide the necessary information for determining the ply thicknesses and relative position to a reference surface. Finally, the locations of the cord-ends provide a means to calculate the cord-ends per inch (epi). Menu driven software has been developed to facilitate the procedure using the commercial code, PV-Wave by Visual Numerics, Inc., to display the images. From a single user interface, separate modules are executed for image enhancement, curve fitting the edge trace of the cross-sectional perimeter, and determining the plyline and cord-end locations. The code can run on SUN or SGI workstations and requires the use of a mouse to specify options or identify items on the scanned image.

  1. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio

    2015-09-15

    Purpose: With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. Methods: In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. Themore » optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV–L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. Results: In all cases, model-based TV–L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV–L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV–L1 inversion yielded sharper images and weaker streak artifact. Conclusions: The results herein show that TV–L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV–L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.« less

  2. Terahertz wide aperture reflection tomography.

    PubMed

    Pearce, Jeremy; Choi, Hyeokho; Mittleman, Daniel M; White, Jeff; Zimdars, David

    2005-07-01

    We describe a powerful imaging modality for terahertz (THz) radiation, THz wide aperture reflection tomography (WART). Edge maps of an object's cross section are reconstructed from a series of time-domain reflection measurements at different viewing angles. Each measurement corresponds to a parallel line projection of the object's cross section. The filtered backprojection algorithm is applied to recover the image from the projection data. To our knowledge, this is the first demonstration of a reflection computed tomography technique using electromagnetic waves. We demonstrate the capabilities of THz WART by imaging the cross sections of two test objects.

  3. Application of continuous-wave terahertz computed tomography for the analysis of chicken bone structure

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dayong; Rong, Lu; Zhai, Changchao; Wang, Yunxin; Zhao, Jie

    2018-02-01

    Terahertz (THz) radiation is able to penetrate many different types of nonpolar and nonmetallic materials without the damaging effects of x-rays. THz technology can be combined with computed tomography (CT) to form THz CT, which is an effective imaging method that is used to visualize the internal structure of a three-dimensional sample as cross-sectional images. Here, we reported an application of THz as the radiation source in CT imaging by replacing the x-rays. In this method, the sample cross section is scanned in all translation and rotation directions. Then, the projection data are reconstructed using a tomographic reconstruction algorithm. Two-dimensional (2-D) cross-sectional images of the chicken ulna were obtained through the continuous-wave (CW) THz CT system. Given by the difference of the THz absorption of different substances, the compact bone and spongy bone inside the chicken ulna are structurally distinguishable in the 2-D cross-sectional images. Using the filtered back projection algorithm, we reconstructed the projection data of the chicken ulna at different projection angle intervals and found that the artifacts and noise in the images are strikingly increased when the projection angle intervals become larger, reflected by the blurred boundary of the compact bone. The quality and fidelity of the 2-D cross-sectional images could be substantially improved by reducing the projection angle intervals. Our experimental data demonstrated a feasible application of the CW THz CT system in biological imaging.

  4. Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope.

    PubMed

    Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D

    2013-02-01

    We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0-400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument.

  5. Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope

    PubMed Central

    Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J.; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D.

    2013-01-01

    We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0–400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument. PMID:23412564

  6. Trunk Muscle Size and Composition Assessment in Older Adults with Chronic Low Back Pain: An Intra-Examiner and Inter-Examiner Reliability Study.

    PubMed

    Sions, Jaclyn Megan; Smith, Andrew Craig; Hicks, Gregory Evan; Elliott, James Matthew

    2016-08-01

    To evaluate intra- and inter-examiner reliability for the assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area, i.e., total cross-sectional area minus intramuscular fat, from T1-weighted magnetic resonance images obtained in older adults with chronic low back pain. Reliability study. n = 13 (69.3 ± 8.2 years old) After lumbar magnetic resonance imaging, two examiners produced relative cross-sectional area measurements of multifidi, erector spinae, psoas, and quadratus lumborum by tracing regions of interest just inside fascial borders. Pixel-intensity summaries were used to determine muscle-to-fat infiltration indices; relative muscle cross-sectional area was calculated. Intraclass correlation coefficients were used to estimate intra- and inter-examiner reliability; standard error of measurement was calculated. Intra-examiner intraclass correlation coefficient point estimates for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area were excellent for multifidi and erector spinae across levels L2-L5 (ICC = 0.77-0.99). At L3, intra-examiner reliability was excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area for both psoas and quadratus lumborum (ICC = 0.81-0.99). Inter-examiner intraclass correlation coefficients ranged from poor to excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area. Assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area in older adults with chronic low back pain can be reliably determined by one examiner from T1-weighted images. Such assessments provide valuable information, as muscle-to-fat infiltration indices and relative muscle cross-sectional area indicate that a substantial amount of relative cross-sectional area may be magnetic resonance-visible intramuscular fat in older adults with chronic low back pain. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Mental Visualization of Objects from Cross-Sectional Images

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George D.

    2012-01-01

    We extended the classic anorthoscopic viewing procedure to test a model of visualization of 3D structures from 2D cross-sections. Four experiments were conducted to examine key processes described in the model, localizing cross-sections within a common frame of reference and spatiotemporal integration of cross sections into a hierarchical object…

  8. Effects of Instructional Strategies Using Cross Sections on the Recognition of Anatomical Structures in Correlated CT and MR Images

    ERIC Educational Resources Information Center

    Khalil, Mohammed K.; Paas, Fred; Johnson, Tristan E.; Su, Yung K.; Payer, Andrew F.

    2008-01-01

    This research is an effort to best utilize the interactive anatomical images for instructional purposes based on cognitive load theory. Three studies explored the differential effects of three computer-based instructional strategies that use anatomical cross-sections to enhance the interpretation of radiological images. These strategies include:…

  9. Normal cross-sectional anatomy of the bovine digit: comparison of computed tomography and limb anatomy.

    PubMed

    Raji, A R; Sardari, K; Mohammadi, H R

    2008-06-01

    The purpose of this study was to define the structures of the digits and hoof in Holstein dairy cattle by using computed tomography scan (CT scan). Transverse, sagittal and dorsoplantar CT images of two isolated cattle cadaver digits were obtained using a Siemens ARTX2 Somatom. The CT images were compared to corresponding frozen cross-sections. Relevant anatomical structures were identified and labelled at each level. The CT images provided anatomical detail of the digits and hoof in Holstein dairy cattle. Transversal images provided excellent depiction of anatomical structures when compared to corresponding frozen cross-sections. The information presented in this paper would serve as an initial reference to the evaluation of CT images of the digits and hoof in Holstein dairy cattle.

  10. Cross-sectional imaging in cancers of the head and neck: how we review and report.

    PubMed

    Tshering Vogel, Dechen Wangmo; Thoeny, Harriet C

    2016-08-03

    Cancer of the head and neck is the sixth most frequent cancer worldwide and associated with significant morbidity. The head and neck area is complex and divided into various anatomical and functional subunits. Imaging is performed by cross-sectional modalities like computed tomography, magnetic resonance imaging, ultrasound and positron emission tomography-computed tomography, usually with fluorine-18-deoxy-D-glucose. Therefore, knowledge of the cross-sectional anatomy is very important. This article seeks to give an overview of the various cross-sectional imaging modalities used in the evaluation of head and neck cancers. It briefly describes the anatomy of the extracranial head and neck and the role of imaging as well as the imaging appearance of tumours and their extension to lymph nodes, bone and surrounding tissue. The advantages and disadvantages as well as basic requirements of the various modalities are described along with ways of optimizing imaging quality. A general guideline for prescription of the various modalities is given. Pitfalls are many and varied and can be due to anatomical variation, due to pathology which can be misinterpreted and technical due to peculiarities of the various imaging modalities. Knowledge of these pitfalls can help to avoid misinterpretation. The important points to be mentioned while reporting are also enumerated.

  11. Novel Method for Vessel Cross-Sectional Shear Wave Imaging.

    PubMed

    He, Qiong; Li, Guo-Yang; Lee, Fu-Feng; Zhang, Qihao; Cao, Yanping; Luo, Jianwen

    2017-07-01

    Many studies have investigated the applications of shear wave imaging (SWI) to vascular elastography, mainly on the longitudinal section of vessels. It is important to investigate SWI in the arterial cross section when evaluating anisotropy of the vessel wall or complete plaque composition. Here, we proposed a novel method based on the coordinate transformation and directional filter in the polar coordinate system to achieve vessel cross-sectional shear wave imaging. In particular, ultrasound radiofrequency data were transformed from the Cartesian to the polar coordinate system; the radial displacements were then estimated directly. Directional filtering was performed along the circumferential direction to filter out the reflected waves. The feasibility of the proposed vessel cross-sectional shear wave imaging method was investigated through phantom experiments and ex vivo and in vivo studies. Our results indicated that the dispersion relation of the shear wave (i.e., the guided circumferential wave) within the vessel can be measured via the present method, and the elastic modulus of the vessel can be determined. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Evaluation of age-related changes with cross-sectional CT imaging of teeth

    NASA Astrophysics Data System (ADS)

    Fukui, Tatsumasa; Kita, Kanade; Kamemoto, Hiromasa; Nishiyama, Wataru; Yoshida, Hiroyasu; Iida, Yukihiro; Katsumata, Akitoshi; Muramatsu, Chisako; Fujita, Hiroshi

    2017-03-01

    Tooth pulp atrophy occurs with increasing age. An age estimation procedure using dental cone beam computed tomography (CBCT) imaging was developed. Clinical dental CBCT images of 60 patients (aged from 20 to 80 years) were evaluated. The ratio of the cross-sectional area of the pulp cavity to the cross-sectional area of the tooth (pulp cavity ratio) was calculated. The pulp cavity ratio in the labio-lingual plane of the mandibular anterior teeth and the mesio-distal plane of the maxillary anterior teeth was strongly correlated with the patients' age. The pulp cavity ratio of anterior teeth may be a useful parameter for estimating age.

  13. Cross-sectional anatomy, computed tomography and magnetic resonance imaging of the head of common dolphin (Delphinus delphis) and striped dolphin (Stenella coeruleoalba).

    PubMed

    Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E

    2015-02-01

    Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies. © 2014 Blackwell Verlag GmbH.

  14. Microwave and video sensor fusion for the shape extraction of 3D space objects

    NASA Technical Reports Server (NTRS)

    Shaw, Scott W.; Defigueiredo, Rui J. P.; Krishen, Kumar

    1987-01-01

    A new system for the fusion of optical image data and polarized radar scattering cross-sections is presented. By considering the scattering data in conjunction with image data, the problem of ambiguity can be reduced. Only a small part of the surface needs to be reconstructed from the radar cross-sections; the remaining portion is constrained by the optical image.

  15. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part II. Implementation on abdomen and thorax phantoms using cross sectional CT images and scanned projection radiograph images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jia; Christner, Jodie A.; Duan Xinhui

    2012-11-15

    Purpose: To estimate attenuation using cross sectional CT images and scanned projection radiograph (SPR) images in a series of thorax and abdomen phantoms. Methods: Attenuation was quantified in terms of a water cylinder with cross sectional area of A{sub w} from both the CT and SPR images of abdomen and thorax phantoms, where A{sub w} is the area of a water cylinder that would absorb the same dose as the specified phantom. SPR and axial CT images were acquired using a dual-source CT scanner operated at 120 kV in single-source mode. To use the SPR image for estimating A{sub w},more » the pixel values of a SPR image were calibrated to physical water attenuation using a series of water phantoms. A{sub w} and the corresponding diameter D{sub w} were calculated using the derived attenuation-based methods (from either CT or SPR image). A{sub w} was also calculated using only geometrical dimensions of the phantoms (anterior-posterior and lateral dimensions or cross sectional area). Results: For abdomen phantoms, the geometry-based and attenuation-based methods gave similar results for D{sub w}. Using only geometric parameters, an overestimation of D{sub w} ranging from 4.3% to 21.5% was found for thorax phantoms. Results for D{sub w} using the CT image and SPR based methods agreed with each other within 4% on average in both thorax and abdomen phantoms. Conclusions: Either the cross sectional CT or SPR images can be used to estimate patient attenuation in CT. Both are more accurate than use of only geometrical information for the task of quantifying patient attenuation. The SPR based method requires calibration of SPR pixel values to physical water attenuation and this calibration would be best performed by the scanner manufacturer.« less

  16. A double fluorescence staining protocol to determine the cross-sectional area of myofibers using image analysis

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Fassel, T. A.; Schultz, E.; Greaser, M. L.; Cassens, R. G.

    1996-01-01

    A double fluorescence staining protocol was developed to facilitate computer based image analysis. Myofibers from experimentally treated (irradiated) and control growing turkey skeletal muscle were labeled with the anti-myosin antibody MF-20 and detected using fluorescein-5-isothiocyanate (FITC). Extracellular material was stained with concanavalin A (ConA)-Texas red. The cross-sectional area of the myofibers was determined by calculating the number of pixels (0.83 mu m(2)) overlying each myofiber after subtracting the ConA-Texas red image from the MF-20-FITC image for each region of interest. As expected, myofibers in the irradiated muscle were smaller (P < 0.05) than those in the non-irradiated muscle. This double fluorescence staining protocol combined with image analysis is accurate and less labor-intensive than classical procedures for determining the cross-sectional area of myofibers.

  17. Laser radar cross-section estimation from high-resolution image data.

    PubMed

    Osche, G R; Seeber, K N; Lok, Y F; Young, D S

    1992-05-10

    A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.

  18. Planar small-angle x-ray scattering imaging of phantoms and biological samples

    NASA Astrophysics Data System (ADS)

    Choi, M.; Badano, A.

    2017-04-01

    Coherent small-angle x-ray scattering (SAXS) provides molecular and nanometer-scale structural information. By capturing SAXS data at multiple locations across a sample, we obtained planar images and observed improved contrast given by the difference in the material scattering cross sections. We use phantoms made with 3D printing techniques, with tissue-mimicking plastic (PMMA), and with a highly scattering reference material (AgBe), which were chosen because of their well characterized scattering cross section to demonstrate and characterize the planar imaging of a laboratory SAXS system. We measure 1.07 and 2.14 nm-1 angular intensity maps for AgBe, 9.5 nm-1 for PMMA, and 12.3 nm-1 for Veroclear. The planar SAXS images show material discrimination based on their cross sectional features. The image signal-to-noise ratio (SNR) of each q image was dependent on exposure time and x-ray flux. We observed a lower SNR (91 ± 48) at q angles where no characteristic peaks for either material exist. To improve the visualization of the acquired data by utilizing all q-binned data, we describe a weighted-sum presentation method with a priori knowledge of relevant cross sections to improve the SNR (10 000 ± 6400) over the SNR from a single q-image at 1.07 nm-1 (1100 ± 620). In addition, we describe planar SAXS imaging of a mouse brain slice showing differentiation of tissue types as compared to a conventional absorption-based x-ray imaging technique.

  19. Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm.

    PubMed

    Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun

    2002-02-01

    We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.

  20. Reversing the established order: Should adrenal venous sampling precede cross-sectional imaging in the evaluation of primary aldosteronism?

    PubMed

    Asmar, Melissa; Wachtel, Heather; Yan, Yan; Fraker, Douglas L; Cohen, Debbie; Trerotola, Scott O

    2015-08-01

    Adrenal venous sampling (AVS) is the definitive evaluation for primary aldosteronism (PA). Pre-AVS cross-sectional imaging does not reduce the need for AVS. The goal of this study was to examine whether performing AVS prior to imaging could decrease the use of imaging in the evaluation of PA at a high volume, experienced center. We performed a retrospective analysis of all AVS procedures (n = 337) done for PA from 2001-2013. Patients whose cross-sectional imaging reports were unavailable (n = 90) or AVS was non-diagnostic (n = 12) were excluded. AVS was performed using modified Mayo technique. Univariate analysis utilized the χ² test and fisher's exact test. Of the 235 patients analyzed, 63% (n = 148) were male. The mean age was 55 ± 11 years. AVS was non-lateralizing in 43% (n = 101); these patients might have avoided imaging with an AVS-first approach. Imaging and AVS were concordant in 52% (n = 123). In patients ≤40yo (n = 23), 35% (n = 8) had no lateralization on AVS, and might have avoided imaging in an AVS-first approach. Imaging and AVS were concordant in 52% (n = 12) of patients ≤ 40yo, versus 52% (n = 111) of patients > 40 yo (P = 0.987). An AVS-first, imaging-second approach could have avoided CT/MRI in 43% of patients. At a high volume, experienced center, performing AVS first on patients with PA may reduce unnecessary cross-sectional imaging studies. © 2015 Wiley Periodicals, Inc.

  1. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2011-01-01

    Detailed two-dimensional finite element analyses of the cross-sections of a model CVI (chemical vapor infiltrated) SiC/SiC (silicon carbide fiber in a silicon carbide matrix) ceramic matrix composites are performed. High resolution images of the cross-section of this composite material are generated using serial sectioning of the test specimens. These images are then used to develop very detailed finite element models of the cross-sections using the public domain software OOF2 (Object Oriented Analysis of Material Microstructures). Examination of these images shows that these microstructures have significant variability and irregularity. How these variabilities manifest themselves in the variability in effective properties as well as the stress distribution, damage initiation and damage progression is the overall objective of this work. Results indicate that even though the macroscopic stress-strain behavior of various sections analyzed is very similar, each section has a very distinct damage pattern when subjected to in-plane tensile loads and this damage pattern seems to follow the unique architectural and microstructural details of the analyzed sections.

  2. Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2014-06-01

    We propose acceleration of color computer-generated holograms (CGHs) from three-dimensional (3D) scenes that are expressed as texture (RGB) and depth (D) images. These images are obtained by 3D graphics libraries and RGB-D cameras: for example, OpenGL and Kinect, respectively. We can regard them as two-dimensional (2D) cross-sectional images along the depth direction. The generation of CGHs from the 2D cross-sectional images requires multiple diffraction calculations. If we use convolution-based diffraction such as the angular spectrum method, the diffraction calculation takes a long time and requires large memory usage because the convolution diffraction calculation requires the expansion of the 2D cross-sectional images to avoid the wraparound noise. In this paper, we first describe the acceleration of the diffraction calculation using "Band-limited double-step Fresnel diffraction," which does not require the expansion. Next, we describe color CGH acceleration using color space conversion. In general, color CGHs are generated on RGB color space; however, we need to repeat the same calculation for each color component, so that the computational burden of the color CGH generation increases three-fold, compared with monochrome CGH generation. We can reduce the computational burden by using YCbCr color space because the 2D cross-sectional images on YCbCr color space can be down-sampled without the impairing of the image quality.

  3. Comparison of Image Processing Techniques using Random Noise Radar

    DTIC Science & Technology

    2014-03-27

    detection UWB ultra-wideband EM electromagnetic CW continuous wave RCS radar cross section RFI radio frequency interference FFT fast Fourier transform...several factors including radar cross section (RCS), orientation, and material makeup. A single monostatic radar at some position collects only range and...Chapter 2 is to provide the theory behind noise radar and SAR imaging. Section 2.1 presents the basic concepts in transmitting and receiving random

  4. Morphology of Mesiobuccal Root Canals of Maxillary First Molars: a comparison of CBCT scanning and Cross-sectioning.

    PubMed

    Lyra, Carina Maria; Delai, Débora; Pereira, Keila Cristina Rausch; Pereira, Guy Martins; Pasternak Júnior, Bráulio; Oliveira, César Augusto Pereira

    2015-10-01

    The aim of this study was to evaluate the mesiobuccal root of maxillary first molars, according to the root canal configuration, prevalence and location of isthmuses at 3 and 6 mm from the apex, comparing cone-beam computed tomography (CBCT) analysis and cross sectioning of roots by thirds. Images of the mesiobuccal root of 100 maxillary first molars were acquired by CBCT and then roots were cross-sectioned into two parts, starting at 3 mm from the apex. Data were recorded and analyzed according to Weine's classification for root canal configuration, and Hsu and Kim's classification for isthmuses. In the analysis of CBCT images, 8 root canals were classified as type I, 57 as type II, 35 as type III. In the cross-sectioning technique, 19 root canals were classified as type I, 60 as type II, 20 as type III and 1 as type IV. The classification of isthmuses was predominantly type I in both CBCT and cross-sectioning evaluations for sections at 3 mm from the apex, while for sections at 6 mm from the apex, the classification of isthmuses was predominantly types V and II in CBCT and cross-sectioning evaluations, respectively. The cross-sectioning technique showed better results in detection of the internal morphology of root canals than CBCT scanning.

  5. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system.

    PubMed

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2015-07-01

    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.

  6. In-vivo, real-time cross-sectional images of retina using a GPU enhanced master slave optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2016-03-01

    In our previous reports we demonstrated a novel Fourier domain optical coherence tomography method, Master Slave optical coherence tomography (MS-OCT), that does not require resampling of data and can deliver en-face images from several depths simultaneously. While ideally suited for delivering information from a selected depth, the MS-OCT has been so far inferior to the conventional FFT based OCT in terms of time of producing cross section images. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real-time by assembling several T-scans from different depths. We analyze the conditions that ensure a real-time B-scan imaging operation, and demonstrate in-vivo real-time images from human fovea and the optic nerve, of comparable resolution and sensitivity to those produced using the traditional Fourier domain based method.

  7. Tendon retraction with rotator cuff tear causes a decrease in cross-sectional area of the supraspinatus muscle on magnetic resonance imaging.

    PubMed

    Fukuta, Shoji; Tsutsui, Takahiko; Amari, Rui; Wada, Keizo; Sairyo, Koichi

    2016-07-01

    Muscle atrophy and fatty degeneration of the rotator cuff muscles have been reported as negative prognostic indicators after rotator cuff repair. Although the Y-shaped view is widely used for measuring the cross-sectional area of the supraspinatus muscle, the contribution of retraction of the torn tendon as well as muscle atrophy must be considered. The purpose of this study was to clarify the relationship between cross-sectional area and tendon retraction or size of the tear. This study included 76 shoulders that were evaluated arthroscopically for the presence and size of tears. Cross-sectional areas of rotator cuff muscles were measured from the Y-shaped view to 3 more medial slices. The occupation ratio and tangent sign were evaluated on the Y-shaped view. The retraction of torn tendon was also measured on the oblique coronal images. On the Y-shaped view, the cross-sectional area of the supraspinatus and the occupation ratio decreased in conjunction with the increase in tear size. A significant decrease in cross-sectional area was noted only in large and massive tears on more medial slices from the Y-shaped view. Significant decreases in the cross-sectional area of the infraspinatus were observed in large and massive tears on all images. A negative correlation was found between tendon retraction and cross-sectional area, which was strongest on the Y-shaped view. To avoid the influence of retraction of the supraspinatus tendon, sufficient medial slices from the musculotendinous junction should be used for evaluation of muscle atrophy. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  8. Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis.

    PubMed

    Paquin, M-Ê; El Mendili, M M; Gros, C; Dupont, S M; Cohen-Adad, J; Pradat, P-F

    2018-01-01

    There is an emerging need for biomarkers to better categorize clinical phenotypes and predict progression in amyotrophic lateral sclerosis. This study aimed to quantify cervical spinal gray matter atrophy in amyotrophic lateral sclerosis and investigate its association with clinical disability at baseline and after 1 year. Twenty-nine patients with amyotrophic lateral sclerosis and 22 healthy controls were scanned with 3T MR imaging. Standard functional scale was recorded at the time of MR imaging and after 1 year. MR imaging data were processed automatically to measure the spinal cord, gray matter, and white matter cross-sectional areas. A statistical analysis assessed the difference in cross-sectional areas between patients with amyotrophic lateral sclerosis and controls, correlations between spinal cord and gray matter atrophy to clinical disability at baseline and at 1 year, and prediction of clinical disability at 1 year. Gray matter atrophy was more sensitive to discriminate patients with amyotrophic lateral sclerosis from controls ( P = .004) compared with spinal cord atrophy ( P = .02). Gray matter and spinal cord cross-sectional areas showed good correlations with clinical scores at baseline ( R = 0.56 for gray matter and R = 0.55 for spinal cord; P < .01). Prediction at 1 year with clinical scores ( R 2 = 0.54) was improved when including a combination of gray matter and white matter cross-sectional areas ( R 2 = 0.74). Although improvements over spinal cord cross-sectional areas were modest, this study suggests the potential use of gray matter cross-sectional areas as an MR imaging structural biomarker to monitor the evolution of amyotrophic lateral sclerosis. © 2018 by American Journal of Neuroradiology.

  9. Endoanal MRI of the anal sphincter complex: correlation with cross-sectional anatomy and histology.

    PubMed Central

    Hussain, S M; Stoker, J; Zwamborn, A W; Den Hollander, J C; Kuiper, J W; Entius, C A; Laméris, J S

    1996-01-01

    The purpose of this study was to correlate the in vivo endoanal MRI findings of the anal sphincter with the cross-sectional anatomy and histology. Fourteen patients with rectal tumours were examined with a rigid endoanal MR coil before undergoing abdominoperineal resection. In addition, 12 cadavers were used to obtain cross-sectional anatomical sections. The images were correlated with the histology and anatomy of the resected rectal specimens as well as with the cross-sectional anatomical sections of the 12 cadavers. The findings in 8 patients, 11 rectal preparations, and 10 cadavers, could be compared. In these cases, there was an excellent correlation between endoanal MRI and the cross-sectional cadaver anatomy and histology. With endoanal MRI, all muscle layers of the anal canal wall, comprising the internal anal sphincter, longitudinal muscle, the external anal sphincter and the puborectalis muscle were clearly visible. The levator ani muscle and ligamentous attachments were also well demonstrated. The perianal anatomical spaces, containing multiple septae, were clearly visible. In conclusion, endoanal MRI is excellent for visualising the anal sphincter complex and the findings show a good correlation with the cross-sectional anatomy and histology. Images Fig. 1 Fig. 2 PMID:8982844

  10. Multi-photon vertical cross-sectional imaging with a dynamically-balanced thin-film PZT z-axis microactuator.

    PubMed

    Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R

    2017-10-01

    Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.

  11. Imaging of non-neoplastic duodenal diseases. A pictorial review with emphasis on MDCT.

    PubMed

    Juanpere, Sergi; Valls, Laia; Serra, Isabel; Osorio, Margarita; Gelabert, Arantxa; Maroto, Albert; Pedraza, Salvador

    2018-04-01

    A wide spectrum of abnormalities can affect the duodenum, ranging from congenital anomalies to traumatic and inflammatory entities. The location of the duodenum and its close relationship with other organs make it easy to miss or misinterpret duodenal abnormalities on cross-sectional imaging. Endoscopy has largely supplanted fluoroscopy for the assessment of the duodenal lumen. Cross-sectional imaging modalities, especially multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI), enable comprehensive assessment of the duodenum and surrounding viscera. Although overlapping imaging findings can make it difficult to differentiate between some lesions, characteristic features may suggest a specific diagnosis in some cases. Familiarity with pathologic conditions that can affect the duodenum and with the optimal MDCT and MRI techniques for studying them can help ensure diagnostic accuracy in duodenal diseases. The goal of this pictorial review is to illustrate the most common non-malignant duodenal processes. Special emphasis is placed on MDCT features and their endoscopic correlation as well as on avoiding the most common pitfalls in the evaluation of the duodenum. • Cross-sectional imaging modalities enable comprehensive assessment of duodenum diseases. • Causes of duodenal obstruction include intraluminal masses, inflammation and hematomas. • Distinguishing between tumour and groove pancreatitis can be challenging by cross-sectional imaging. • Infectious diseases of the duodenum are difficult to diagnose, as the findings are not specific. • The most common cause of nonvariceal upper gastrointestinal bleeding is peptic ulcer disease.

  12. Differential collision cross-sections for atomic oxygen

    NASA Technical Reports Server (NTRS)

    Torr, Douglas G.

    1991-01-01

    Differential collision cross-sections of O on N2 and other gases were measured to understand vehicle-environmental contamination effects in orbit. The following subject areas are also covered: groundbased scientific observations of rocket releases during NICARE-1; data compression study for the UVI; science priorities for UV imaging in the mid-1990's; and assessment of optimizations possible in UV imaging systems.

  13. Spectral optical coherence tomography: a novel technique for cornea imaging.

    PubMed

    Kaluzny, Bartłomiej J; Kaluzy, Bartłomiej J; Kałuzny, Jakub J; Szkulmowska, Anna; Gorczyńska, Iwona; Szkulmowski, Maciej; Bajraszewski, Tomasz; Wojtkowski, Maciej; Targowski, Piotr

    2006-09-01

    Spectral optical coherence tomography (SOCT) is a new, noninvasive, noncontact, high-resolution technique that provides cross-sectional images of the objects that weakly absorb and scatter light. SOCT, because of very short acquisition time and high sensitivity, is capable of providing tomograms of substantially better quality than the conventional OCT. The aim of this paper is to show the application of the SOCT to cross-sectional imaging of the cornea and its pathologies. Eleven eyes with different corneal pathologies were examined with a slit lamp and the use of a prototype SOCT instrument constructed in the Institute of Physics, Nicolaus Copernicus University, Toruń, Poland. Our SOCT system provides high-resolution (4 microm axial, 10 microm transversal) tomograms composed of 3000-5000 A-scans with an acquisition time of 120-200 ms. The quality of the images is adequate for detailed cross-sectional evaluation of various corneal pathologies. Objective assessment of the localization, size, shape, and light-scattering properties of the changed tissue is possible. Corneal and epithelial thickness and the depth and width of lesions can be estimated. SOCT technique allows acquiring clinically valuable cross-sectional optical biopsy of the cornea and its pathologies.

  14. Advanced imaging as a novel approach to the characterization of membranes for microfiltration applications

    NASA Astrophysics Data System (ADS)

    Marroquin, Milagro

    The primary objectives of my dissertation were to design, develop and implement novel confocal microscopy imaging protocols for the characterization of membranes and highlight opportunities to obtain reliable and cutting-edge information of microfiltration membrane morphology and fouling processes. After a comprehensive introduction and review of confocal microscopy in membrane applications (Chapter 1), the first part of this dissertation (Chapter 2) details my work on membrane morphology characterization by confocal laser scanning microscopy (CLSM) and the implementation of my newly developed CLSM cross-sectional imaging protocol. Depth-of-penetration limits were identified to be approximately 24 microns and 7-8 microns for mixed cellulose ester and polyethersulfone membranes, respectively, making it impossible to image about 70% of the membrane bulk. The development and implementation of my cross-sectional CLSM method enabled the imaging of the entire membrane cross-section. Porosities of symmetric and asymmetric membranes with nominal pore sizes in the range 0.65-8.0 microns were quantified at different depths and yielded porosity values in the 50-60% range. It is my hope and expectation that the characterization strategy developed in this part of the work will enable future studies of different membrane materials and applications by confocal microscopy. After demonstrating how cross-sectional CLSM could be used to fully characterize membrane morphologies and porosities, I applied it to the characterization of fouling occurring in polyethersulfone microfiltration membranes during the processing of solutions containing proteins and polysaccharides (Chapter 3). Through CLSM imaging, it was determined where proteins and polysaccharides deposit throughout polymeric microfiltration membranes when a fluid containing these materials is filtered. CLSM enabled evaluation of the location and extent of fouling by individual components (protein: casein and polysaccharide: dextran) within wet, asymmetric polyethersulfone microfiltration membranes. Information from filtration flux profiles and cross-sectional CLSM images of the membranes that processed single-component solutions and mixtures agreed with each other. Concentration profiles versus depth for each individual component present in the feed solution were developed from the analysis of the CLSM images at different levels of fouling for single-component solutions and mixtures. CLSM provided visual information that helped elucidate the role of each component on membrane fouling and provided a better understanding of how component interactions impact the fouling profiles. Finally, Chapter 4 extends the application of my cross-sectional CLSM imaging protocol to study the fouling of asymmetric polyethersulfone membranes during the microfiltration of protein, polyphenol, and polysaccharide mixtures to better understand the solute-solute and solute-membrane interactions leading to fouling in beverage clarification processes. Again, cross-sectional CLSM imaging provided information on the location and extent of fouling throughout the entire thickness of the PES membrane. Quantitative analysis of the cross-sectional CLSM images provided a measurement of the masses of foulants deposited throughout the membrane. Moreover, flux decline data collected for different mixtures of casein, tannic acid and beta-cyclodextrin were analyzed with standard fouling models to determine the fouling mechanisms at play when processing different combinations of foulants. Results from model analysis of flux data were compared with the quantitative visual analysis of the correspondent CLSM images. This approach, which couples visual and performance measurements, is expected to provide a better understanding of the causes of fouling that, in turn, is expected to aid in the design of new membranes with tailored structure or surface chemistry that prevents the deposition of the foulants in "prone to foul" regions. (Abstract shortened by UMI.)

  15. Cross-sectional imaging of extracted jawbone of a pig by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tachikawa, Noriko; Yoshimura, Reiko; Ohbayashi, Kohji

    2011-03-01

    Dental implantation has become popular in dental treatments. Although careful planning is made to identify vital structures such as the inferior alveolar nerve or the sinus, as well as dimensions of the bone, prior to commencement of surgery, dental implantation is not fully free from risks. If a diagnostic tool is available to objectively measure bone feature before surgery and dimensions during surgery, considerable fraction of the risks may be avoided. Optical coherence tomography (OCT) is a candidate for the purpose, which enables cross-sectional imaging of bone. In this work, we performed in vitro cross-sectional imaging of extracted pig's jawbone with swept source OCT using superstructure-grating distributed Bragg reflector (SSG-DBR) laser as the source. The relatively long wavelength range of 1600nm of the laser is suitable for deeper bone imaging. We confirmed an image penetration depth of about 3 mm in physical length, which satisfies one of the criterions to apply OCT for in vivo diagnosis of bone during surgery.

  16. Computed tomographic and cross-sectional anatomy of the normal pacu (Colossoma macroponum).

    PubMed

    Carr, Alaina; Weber, E P Scott; Murphy, Chris J; Zwingenberger, Alison

    2014-03-01

    The purpose of this study was to compare and define the normal cross-sectional gross and computed tomographic (CT) anatomy for a species of boney fish to better gain insight into the use of advanced diagnostic imaging for future clinical cases. The pacu (Colossoma macropomum) was used because of its widespread presence in the aquarium trade, its relatively large body size, and its importance in the research and aquaculture settings. Transverse 0.6-mm CT images of three cadaver fish were obtained and compared to corresponding frozen cross sections of the fish. Relevant anatomic structures were identified and labeled at each level; the Hounsfield unit density of major organs was established. The images presented good anatomic detail and provide a reference for future research and clinical investigation.

  17. User-guided automated segmentation of time-series ultrasound images for measuring vasoreactivity of the brachial artery induced by flow mediation

    NASA Astrophysics Data System (ADS)

    Sehgal, Chandra M.; Kao, Yen H.; Cary, Ted W.; Arger, Peter H.; Mohler, Emile R.

    2005-04-01

    Endothelial dysfunction in response to vasoactive stimuli is closely associated with diseases such as atherosclerosis, hypertension and congestive heart failure. The current method of using ultrasound to image the brachial artery along the longitudinal axis is insensitive for measuring the small vasodilatation that occurs in response to flow mediation. The goal of this study is to overcome this limitation by using cross-sectional imaging of the brachial artery in conjunction with the User-Guided Automated Boundary Detection (UGABD) algorithm for extracting arterial boundaries. High-resolution ultrasound imaging was performed on rigid plastic tubing, on elastic rubber tubing phantoms with steady and pulsatile flow, and on the brachial artery of a healthy volunteer undergoing reactive hyperemia. The area of cross section of time-series images was analyzed by UGABD by propagating the boundary from one frame to the next. The UGABD results were compared by linear correlation with those obtained by manual tracing. UGABD measured the cross-sectional area of the phantom tubing to within 5% of the true area. The algorithm correctly detected pulsatile vasomotion in phantoms and in the brachial artery. A comparison of area measurements made using UGABD with those made by manual tracings yielded a correlation of 0.9 and 0.8 for phantoms and arteries, respectively. The peak vasodilatation due to reactive hyperemia was two orders of magnitude greater in pixel count than that measured by longitudinal imaging. Cross-sectional imaging is more sensitive than longitudinal imaging for measuring flow-mediated dilatation of brachial artery, and thus may be more suitable for evaluating endothelial dysfunction.

  18. The application of laser scanning confocal microscopy to the examination of hairs and textile fibers: an initial investigation.

    PubMed

    Kirkbride, K Paul; Tridico, Silvana R

    2010-02-25

    An initial investigation of the application of laser scanning confocal microscopy to the examination of hairs and fibers has been conducted. This technique allows the production of virtual transverse and longitudinal cross-sectional images of a wide range of hairs and fibers. Special mounting techniques are not required; specimens that have been mounted for conventional microscopy require no further treatment. Unlike physical cross-sectioning, in which it is difficult to produce multiple cross-sections from a single hair or fiber and the process is destructive, confocal microscopy allows the examiner to image the cross-section at any point in the field of view along the hair or fiber and it is non-destructive. Confocal microscopy is a fluorescence-based technique. The images described in this article were collected using only the autofluorescence exhibited by the specimen (i.e. fluorescence staining was not necessary). Colorless fibers generally and hairs required excitation at 405 nm in order to stimulate useful autofluorescence; longer wavelength excitation was suitable for dyed fibers. Although confocal microscopy was found to be generally applicable to the generation virtual transverse cross-sections from a wide range of hairs and fibers, on some occasions the autofluorescence signal was attenuated by heavy pigmentation or the presence of an opaque medulla in hairs, and by heavy delustering or the presence of air-filled voids in the case of fibers. In these situations only partial cross-sections were obtained. 2009 Elsevier Ireland Ltd. All rights reserved.

  19. Assessment of optimum threshold and particle shape parameter for the image analysis of aggregate size distribution of concrete sections

    NASA Astrophysics Data System (ADS)

    Ozen, Murat; Guler, Murat

    2014-02-01

    Aggregate gradation is one of the key design parameters affecting the workability and strength properties of concrete mixtures. Estimating aggregate gradation from hardened concrete samples can offer valuable insights into the quality of mixtures in terms of the degree of segregation and the amount of deviation from the specified gradation limits. In this study, a methodology is introduced to determine the particle size distribution of aggregates from 2D cross sectional images of concrete samples. The samples used in the study were fabricated from six mix designs by varying the aggregate gradation, aggregate source and maximum aggregate size with five replicates of each design combination. Each sample was cut into three pieces using a diamond saw and then scanned to obtain the cross sectional images using a desktop flatbed scanner. An algorithm is proposed to determine the optimum threshold for the image analysis of the cross sections. A procedure was also suggested to determine a suitable particle shape parameter to be used in the analysis of aggregate size distribution within each cross section. Results of analyses indicated that the optimum threshold hence the pixel distribution functions may be different even for the cross sections of an identical concrete sample. Besides, the maximum ferret diameter is the most suitable shape parameter to estimate the size distribution of aggregates when computed based on the diagonal sieve opening. The outcome of this study can be of practical value for the practitioners to evaluate concrete in terms of the degree of segregation and the bounds of mixture's gradation achieved during manufacturing.

  20. TYPE 3 NEOVASCULARIZATION IMAGED WITH CROSS-SECTIONAL AND EN FACE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    PubMed

    Tan, Anna C S; Dansingani, Kunal K; Yannuzzi, Lawrence A; Sarraf, David; Freund, K Bailey

    2017-02-01

    To study the cross-sectional and en face optical coherence tomography angiography (OCTA) findings in Type 3 neovascularization (NV). Optical coherence tomography angiography imaging of 27 eyes of 23 patients with Type 3 NV was analyzed with 9 eyes having consecutive follow-up OCTA studies. Type 3 NV appeared as a linear high-flow structure on cross-sectional OCTA corresponding to a high-flow tuft of vessels seen on en face OCTA. Cross-sectional OCTA seemed to enable the distinction between vascular and nonvascular intraretinal hyperreflective foci. Two patterns of flow were observed; Pattern 1 (11%): a flow signal confined to the neurosensory retina and Pattern 2 (74%): a flow signal extending through the retinal pigment epithelium. No definitive retinal-choroidal anastomosis was observed; however, projection artifacts confounded the interpretation of deeper structures. An increase in the intensity of the high-flow tuft was seen during the progression or recurrence of Type 3 NV. Intravitreal anti-vascular endothelial growth factor therapy caused a reduction in the intensity of the high-flow tuft which was not sustained. Compared with conventional imaging, OCTA may improve detection and delineation of vascular changes occurring in Type 3 NV. Cross-sectional and en face OCTA may prove useful in studying the pathogenesis and guiding the management of these lesions.

  1. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Sakai, C.; Ishida, N.; Masuda, H.; Nagano, S.; Kitahara, M.; Ogata, Y.; Fujita, D.

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO3 dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from the grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.

  2. Tomographic Image Reconstruction Using an Interpolation Method for Tree Decay Detection

    Treesearch

    Hailin Feng; Guanghui Li; Sheng Fu; Xiping Wang

    2014-01-01

    Stress wave velocity has been traditionally regarded as an indicator of the extent of damage inside wood. This paper aimed to detect internal decay of urban trees through reconstructing tomographic image of the cross section of a tree trunk. A grid model covering the cross section area of a tree trunk was defined with some assumptions. Stress wave data were processed...

  3. Optical coherence tomography in the diagnosis of actinic keratosis-A systematic review.

    PubMed

    Friis, K B E; Themstrup, L; Jemec, G B E

    2017-06-01

    Optical coherence tomography (OCT) is a real-time non-invasive imaging tool, introduced in dermatology in the late 1990s. OCT uses near-infrared light impulses to produce images which can be displayed in cross-sectional and en-face mode. The technique has been used to image skin diseases especially non-melanoma skin cancer including actinic keratosis (AK). Morphological characteristics of AK can be visualized in OCT images and can be used for diagnosis as well as disease monitoring. A systematic review of original papers on AK and OCT was performed on 31.03.16 and 24.10.16 in the major databases Pubmed, MEDLINE, EMBASE, Cochrane and Svemed. Through database search and other sources, we identified 1366 titles of which 21 studies met the inclusion criteria and were used for further investigation. 16/16 Conventional OCT (cross-sectional images) studies described disruption of layers consistent with absence of normal layered architecture in the skin. Thickened epidermis was found in 14/16 studies and white (hyperreflective) streaks and dots were described in 11/16 studies. In High-definition optical coherence tomography (HD-OCT) images disarranged epidermis (cross-sectional images) along with an atypical honeycomb pattern (en-face images) was found in 5/5 studies and well-demarcated dermo-epithelial junction (DEJ) (cross-sectional images) was described in 3/5 studies. Several morphological characteristics of AKs were identified using Conventional OCT and HD-OCT. It is suggested that these may be used in the diagnosis of AK. Additional validation is however required to establish consensus on the optimal diagnostic criteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A radiologic correlation with the basic functional neuroanatomy of the brain.

    PubMed

    Bilicka, Z; Liska, M; Bluska, P; Bilicky, J

    2014-01-01

    Primary cortical areas for motor, sensory and sensitive functions are localized in certain areas of the brain cortex. In clinical practice, cross sectional imaging (computer tomography and magnetic resonance) is wildy used for diagnostics purpose, treatment planning and follow up of the patients. Accurate orientation in brain structures is necessary for the evaluation of radiological images. There are numerable landmark signs, which can be used for precise identification of important brain structures. In this review article, the mostly used anatomical landmarks are described and shown on the cross sectional images (magnetic resonance imaging) (Fig. 14, Ref. 25).

  5. Three-dimensional cardiac architecture determined by two-photon microtomy

    NASA Astrophysics Data System (ADS)

    Huang, Hayden; MacGillivray, Catherine; Kwon, Hyuk-Sang; Lammerding, Jan; Robbins, Jeffrey; Lee, Richard T.; So, Peter

    2009-07-01

    Cardiac architecture is inherently three-dimensional, yet most characterizations rely on two-dimensional histological slices or dissociated cells, which remove the native geometry of the heart. We previously developed a method for labeling intact heart sections without dissociation and imaging large volumes while preserving their three-dimensional structure. We further refine this method to permit quantitative analysis of imaged sections. After data acquisition, these sections are assembled using image-processing tools, and qualitative and quantitative information is extracted. By examining the reconstructed cardiac blocks, one can observe end-to-end adjacent cardiac myocytes (cardiac strands) changing cross-sectional geometries, merging and separating from other strands. Quantitatively, representative cross-sectional areas typically used for determining hypertrophy omit the three-dimensional component; we show that taking orientation into account can significantly alter the analysis. Using fast-Fourier transform analysis, we analyze the gross organization of cardiac strands in three dimensions. By characterizing cardiac structure in three dimensions, we are able to determine that the α crystallin mutation leads to hypertrophy with cross-sectional area increases, but not necessarily via changes in fiber orientation distribution.

  6. FAST TRACK COMMUNICATION Far-field x-ray phase contrast imaging has no detailed information on the object

    NASA Astrophysics Data System (ADS)

    Kohn, V. G.; Argunova, T. S.; Je, J. H.

    2010-11-01

    We show that x-ray phase contrast images of some objects with a small cross-section diameter d satisfy a condition for a far-field approximation d Lt r1 where r1 = (λz)1/2, λ is the x-ray wavelength, z is the distance from the object to the detector. In this case the size of the image does not match the size of the object contrary to the edge detection technique. Moreover, the structure of the central fringes of the image is universal, i.e. it is independent of the object cross-section structure. Therefore, these images have no detailed information on the object.

  7. Skin Diseases: Cross-section of human skin

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  8. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, C., E-mail: SAKAI.Chikako@nims.go.jp; Ishida, N.; Masuda, H.

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO{sub 3} dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from themore » grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.« less

  9. Experimental determination of single CdSe nanowire absorption cross sections through photothermal imaging.

    PubMed

    Giblin, Jay; Syed, Muhammad; Banning, Michael T; Kuno, Masaru; Hartland, Greg

    2010-01-26

    Absorption cross sections ((sigma)abs) of single branched CdSe nanowires (NWs) have been measured by photothermal heterodyne imaging (PHI). Specifically, PHI signals from isolated gold nanoparticles (NPs) with known cross sections were compared to those of individual CdSe NWs excited at 532 nm. This allowed us to determine average NW absorption cross sections at 532 nm of (sigma)abs = (3.17 +/- 0.44) x 10(-11) cm2/microm (standard error reported). This agrees well with a theoretical value obtained using a classical electromagnetic analysis ((sigma)abs = 5.00 x 10(-11) cm2/microm) and also with prior ensemble estimates. Furthermore, NWs exhibit significant absorption polarization sensitivities consistent with prior NW excitation polarization anisotropy measurements. This has enabled additional estimates of the absorption cross section parallel ((sigma)abs) and perpendicular ((sigma)abs(perpendicular) to the NW growth axis, as well as the corresponding NW absorption anisotropy ((rho)abs). Resulting values of (sigma)abs = (5.6 +/- 1.1) x 10(-11) cm2/microm, (sigma)abs(perpendicular) = (1.26 +/- 0.21) x 10(-11) cm2/microm, and (rho)abs = 0.63+/- 0.04 (standard errors reported) are again in good agreement with theoretical predictions. These measurements all indicate sizable NW absorption cross sections and ultimately suggest the possibility of future direct single NW absorption studies.

  10. Multiple double cross-section transmission electron microscope sample preparation of specific sub-10 nm diameter Si nanowire devices.

    PubMed

    Gignac, Lynne M; Mittal, Surbhi; Bangsaruntip, Sarunya; Cohen, Guy M; Sleight, Jeffrey W

    2011-12-01

    The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.

  11. Shrink-wrapped isosurface from cross sectional images

    PubMed Central

    Choi, Y. K.; Hahn, J. K.

    2010-01-01

    Summary This paper addresses a new surface reconstruction scheme for approximating the isosurface from a set of tomographic cross sectional images. Differently from the novel Marching Cubes (MC) algorithm, our method does not extract the iso-density surface (isosurface) directly from the voxel data but calculates the iso-density point (isopoint) first. After building a coarse initial mesh approximating the ideal isosurface by the cell-boundary representation, it metamorphoses the mesh into the final isosurface by a relaxation scheme, called shrink-wrapping process. Compared with the MC algorithm, our method is robust and does not make any cracks on surface. Furthermore, since it is possible to utilize lots of additional isopoints during the surface reconstruction process by extending the adjacency definition, theoretically the resulting surface can be better in quality than the MC algorithm. According to experiments, it is proved to be very robust and efficient for isosurface reconstruction from cross sectional images. PMID:20703361

  12. Traumatic and non-traumatic adrenal emergencies.

    PubMed

    Chernyak, Victoria; Patlas, Michael N; Menias, Christine O; Soto, Jorge A; Kielar, Ania Z; Rozenblit, Alla M; Romano, Luigia; Katz, Douglas S

    2015-12-01

    Multiple traumatic and non-traumatic adrenal emergencies are occasionally encountered during the cross-sectional imaging of emergency department patients. Traumatic adrenal hematomas are markers of severe polytrauma, and can be easily overlooked due to multiple concomitant injuries. Patients with non-traumatic adrenal emergencies usually present to an emergency department with a non-specific clinical picture. The detection and management of adrenal emergencies is based on cross-sectional imaging. Adrenal hemorrhage, adrenal infection, or rupture of adrenal neoplasm require immediate detection to avoid dire consequences. More often however, adrenal emergencies are detected incidentally in patients being investigated for non-specific acute abdominal pain. A high index of suspicion is required for the establishment of timely diagnosis and to avert potentially life-threatening complications. We describe cross-sectional imaging findings in patients with traumatic and non-traumatic adrenal hemorrhage, adrenal infarctions, adrenal infections, and complications of adrenal masses.

  13. Semi-automated software to measure luminal and stromal areas of choroid in optical coherence tomographic images.

    PubMed

    Sonoda, Shozo; Sakamoto, Taiji; Kakiuchi, Naoko; Shiihara, Hideki; Sakoguchi, Tomonori; Tomita, Masatoshi; Yamashita, Takehiro; Uchino, Eisuke

    2018-03-01

    To determine the capabilities of "EyeGround" software in measuring the choroidal cross sectional areas in optical coherence tomographic (OCT) images. Cross sectional, prospective study. The cross-sectional area of the subfoveal choroid within a 1500 µm diameter circle centered on the fovea was measured both with and without using the EyeGround software in the OCT images. The differences between the evaluation times and the results of the measurements were compared. The inter-rater, intra-rater, inter-method agreements were determined. Fifty-one eyes of 51 healthy subjects were studied: 24 men and 27 women with an average age of 35.0 ± 8.8 years. The time for analyzing a single image was significantly shorter with the software at 3.2±1.1 min than without the software at 12.1±5.1 min (P <0.001). The inter-method correlation efficient for the measurements of the whole choroid was high [0.989, 95% CI (0.981-0.994)]. With the software, the inter-rater correlation efficient was significantly high [0.997, 95% CI (0.995-0.999)], and the intra-rater correlation efficient was also significantly high [0.999, 95% CI (0.999-1.0)]. The EyeGround software can measure the choroidal area in the OCT cross sectional images with good reproducibility and in a significantly shorter times. It can be a valuable tool for analyzing the choroid.

  14. Correlation among ultrasound, cross-sectional anatomy, and histology of the sciatic nerve: a review.

    PubMed

    Moayeri, Nizar; van Geffen, Geert J; Bruhn, Jörgen; Chan, Vincent W; Groen, Gerbrand J

    2010-01-01

    Efficient identification of the sciatic nerve (SN) requires a thorough knowledge of its topography in relation to the surrounding structures. Anatomic cross sections in similar oblique planes as observed during SN ultrasonography are lacking. A survey of sonoanatomy matched with ultrasound views of the major SN block sites will be helpful in pattern recognition, especially when combined with images that show the internal architecture of the nerve. From 1 cadaver, consecutive parts of the upper leg corresponding to the 4 major blocks sites were sectioned and deeply frozen. Using cryomicrotomy, consecutive transverse sections were acquired and photographed at 78-microm intervals, along with histologic sections at 5-mm intervals. Multiplanar reformatting was done to reconstruct the optimal planes for an accurate comparison of ultrasonography and gross anatomy. The anatomic and histologic images were matched with ultrasound images that were obtained from 2 healthy volunteers. By simulating the exact position and angulation as in the ultrasonographic images, detailed anatomic overviews of SN and adjacent structures were reconstructed in the gluteal, subgluteal, midfemoral, and popliteal regions. Throughout its trajectory, SN contains numerous fascicles with connective and adipose tissues. In this study, we provide an optimal matching between histology, anatomic cross sections, and short-axis ultrasound images of SN. Reconstructing ultrasonographic planes with this high-resolution digitized anatomy not only enables an overview but also shows detailed views of the architecture of internal SN. The undulating course of the nerve fascicles within SN may explain its varying echogenic appearance during probe manipulation.

  15. Micro-tomography based Geometry Modeling of Three-Dimensional Braided Composites

    NASA Astrophysics Data System (ADS)

    Fang, Guodong; Chen, Chenghua; Yuan, Shenggang; Meng, Songhe; Liang, Jun

    2018-06-01

    A tracking and recognizing algorithm is proposed to automatically generate irregular cross-sections and central path of braid yarn within the 3D braided composites by using sets of high resolution tomography images. Only the initial cross-sections of braid yarns in a tomography image after treatment are required to be calibrated manually as searching cross-section template. The virtual geometry of 3D braided composites including some detailed geometry information, such as the braid yarn squeezing deformation, braid yarn distortion and braid yarn path deviation etc., can be reconstructed. The reconstructed geometry model can reflect the change of braid configurations during solidification process. The geometry configurations and mechanical properties of the braided composites are analyzed by using the reconstructed geometry model.

  16. MRI Atlas-Based Measurement of Spinal Cord Injury Predicts Outcome in Acute Flaccid Myelitis.

    PubMed

    McCoy, D B; Talbott, J F; Wilson, Michael; Mamlouk, M D; Cohen-Adad, J; Wilson, Mark; Narvid, J

    2017-02-01

    Recent advances in spinal cord imaging analysis have led to the development of a robust anatomic template and atlas incorporated into an open-source platform referred to as the Spinal Cord Toolbox. Using the Spinal Cord Toolbox, we sought to correlate measures of GM, WM, and cross-sectional area pathology on T2 MR imaging with motor disability in patients with acute flaccid myelitis. Spinal cord imaging for 9 patients with acute flaccid myelitis was analyzed by using the Spinal Cord Toolbox. A semiautomated pipeline using the Spinal Cord Toolbox measured lesion involvement in GM, WM, and total spinal cord cross-sectional area. Proportions of GM, WM, and cross-sectional area affected by T2 hyperintensity were calculated across 3 ROIs: 1) center axial section of lesion; 2) full lesion segment; and 3) full cord atlas volume. Spearman rank order correlation was calculated to compare MR metrics with clinical measures of disability. Proportion of GM metrics at the center axial section significantly correlated with measures of motor impairment upon admission ( r [9] = -0.78; P = .014) and at 3-month follow-up ( r [9] = -0.66; P = .05). Further, proportion of GM extracted across the full lesion segment significantly correlated with initial motor impairment ( r [9] = -0.74, P = .024). No significant correlation was found for proportion of WM or proportion of cross-sectional area with clinical disability. Atlas-based measures of proportion of GM T2 signal abnormality measured on a single axial MR imaging section and across the full lesion segment correlate with motor impairment and outcome in patients with acute flaccid myelitis. This is the first atlas-based study to correlate clinical outcomes with segmented measures of T2 signal abnormality in the spinal cord. © 2017 by American Journal of Neuroradiology.

  17. Repeated Diagnostic Imaging Studies in Ontario and the Impact of Health Information Exchange Systems.

    PubMed

    Welk, Blayne; Liu, Kuan; Al-Jaishi, Ahmed; McArthur, Eric; Jain, Arsh K; Ordon, Michael

    2016-01-01

    Health information exchange systems can link the results of diagnostic imaging tests across hospitals and geographic areas. One of the potential benefits of these systems is a reduction in imaging studies ordered by physicians who do not know about or have access to the previous imaging results. We used administrative data from Ontario, Canada (from the year 2013), to measure how frequently the same cross-sectional imaging study is repeated in a patient. Overall, 12.8% of the specified imaging tests were repeated within 90 days. An area of Southwestern Ontario with a health information exchange system for diagnostic imaging tests had a 13% lower rate of repeat cross-sectional imaging compared with the rest of the province (11.2 vs 12.8%, p < 0.01). The use of linked radiology systems may be able to reduce the number of repeated imaging tests and improve patient safety and hospital efficiency.

  18. Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography.

    PubMed

    Hielscher, Andreas H; Bartel, Sebastian

    2004-02-01

    Optical tomography (OT) is a fast developing novel imaging modality that uses near-infrared (NIR) light to obtain cross-sectional views of optical properties inside the human body. A major challenge remains the time-consuming, computational-intensive image reconstruction problem that converts NIR transmission measurements into cross-sectional images. To increase the speed of iterative image reconstruction schemes that are commonly applied for OT, we have developed and implemented several parallel algorithms on a cluster of workstations. Static process distribution as well as dynamic load balancing schemes suitable for heterogeneous clusters and varying machine performances are introduced and tested. The resulting algorithms are shown to accelerate the reconstruction process to various degrees, substantially reducing the computation times for clinically relevant problems.

  19. Analysis of tracheid development in suppressed-growth Ponderosa Pine using the FPL ring profiler

    Treesearch

    C. Tim Scott; David W. Vahey

    2012-01-01

    The Ring Profiler was developed to examine the cross-sectional morphology of wood tracheids in a 12.5-mm core sample. The instrument integrates a specially designed staging apparatus with an optical imaging system to obtain high-contrast, high-resolution images containing about 200-500 tracheids. These images are further enhanced and analyzed to extract tracheid cross-...

  20. Intravenous volume tomographic pulmonary angiography imaging

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Strang, John G.; Chen, Biao; Conover, David L.; Yu, Rongfeng

    1999-05-01

    This study presents a new intravenous (IV) tomographic angiography imaging technique, called intravenous volume tomographic digital angiography (VTDA) for cross sectional pulmonary angiography. While the advantages of IV-VTDA over spiral CT in terms of volume scanning time and resolution have been validated and reported in our previous papers for head and neck vascular imaging, the superiority of IV-VTDA over spiral CT for cross sectional pulmonary angiography has not been explored yet. The purpose of this study is to demonstrate the advantage of isotropic resolution of IV-VTDA in the x, y and z directions through phantom and animal studies, and to explore its clinical application for detecting clots in pulmonary angiography. A prototype image intensifier-based VTDA imaging system has been designed and constructed by modifying a GE 8800 CT scanner. This system was used for a series of phantom and dog studies. A pulmonary vascular phantom was designed and constructed. The phantom was scanned using the prototype VTDA system for direct 3D reconstruction. Then the same phantom was scanned using a GE CT/i spiral CT scanner using the routine pulmonary CT angiography protocols. IV contrast injection and volume scanning protocols were developed during the dog studies. Both VTDA reconstructed images and spiral CT images of the specially designed phantom were analyzed and compared. The detectability of simulated vessels and clots was assessed as the function of iodine concentration levels, oriented angles, and diameters of the vessels and clots. A set of 3D VTDA reconstruction images of dog pulmonary arteries was obtained with different IV injection rates and isotropic resolution in the x, y and z directions. The results of clot detection studies in dog pulmonary arteries have also been shown. This study presents a new tomographic IV angiography imaging technique for cross sectional pulmonary angiography. The results of phantom and animal studies indicate that IV-VTDA is superior to spiral CT for cross sectional pulmonary angiography.

  1. Image editing with Adobe Photoshop 6.0.

    PubMed

    Caruso, Ronald D; Postel, Gregory C

    2002-01-01

    The authors introduce Photoshop 6.0 for radiologists and demonstrate basic techniques of editing gray-scale cross-sectional images intended for publication and for incorporation into computerized presentations. For basic editing of gray-scale cross-sectional images, the Tools palette and the History/Actions palette pair should be displayed. The History palette may be used to undo a step or series of steps. The Actions palette is a menu of user-defined macros that save time by automating an action or series of actions. Converting an image to 8-bit gray scale is the first editing function. Cropping is the next action. Both decrease file size. Use of the smallest file size necessary for the purpose at hand is recommended. Final file size for gray-scale cross-sectional neuroradiologic images (8-bit, single-layer TIFF [tagged image file format] at 300 pixels per inch) intended for publication varies from about 700 Kbytes to 3 Mbytes. Final file size for incorporation into computerized presentations is about 10-100 Kbytes (8-bit, single-layer, gray-scale, high-quality JPEG [Joint Photographic Experts Group]), depending on source and intended use. Editing and annotating images before they are inserted into presentation software is highly recommended, both for convenience and flexibility. Radiologists should find that image editing can be carried out very rapidly once the basic steps are learned and automated. Copyright RSNA, 2002

  2. Cross-sectional transport imaging in a multijunction solar cell

    DOE PAGES

    Haegel, Nancy M.; Ke, Chi -Wen; Taha, Hesham; ...

    2016-12-01

    Here, we combine a highly localized electron-beam point source excitation to generate excess free carriers with the spatial resolution of optical near-field imaging to map recombination in a cross-sectioned multijunction (Ga 0.5In 0.5P/GaIn 0.01As/Ge) solar cell. By mapping the spatial variations in emission of light for fixed generation (as opposed to traditional cathodoluminescence (CL), which maps integrated emission as a function of position of generation), it is possible to directly monitor the motion of carriers and photons. We observe carrier diffusion throughout the full width of the middle (GaInAs) cell, as well as luminescent coupling from point source excitation inmore » the top cell GaInP to the middle cell. Supporting CL and near-field photoluminescence (PL) measurements demonstrate the excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results, as well as transport limitations on the spatial resolution of conventional cross-sectional far-field measurements.« less

  3. Pattern of asymmetry of paraspinal muscle size in adolescent idiopathic scoliosis examined by real-time ultrasound imaging. A preliminary study.

    PubMed

    Kennelly, K P; Stokes, M J

    1993-06-01

    The symmetry of lumbar multifidus size was examined in 20 patients with adolescent idiopathic scoliosis, aged 12-19 years. With the subject prone, bilateral real-time ultrasound images were obtained at the level of the 4th lumbar vertebra. Cross-sectional area and linear (horizontal and vertical) measurements were made using on-screen calipers. A pattern of asymmetry of lumbar multifidus cross-sectional area was shown to exist for the different curve types. The cross-sectional area was smaller (P < 0.0001) on the opposite side to the convexity of a primary thoracic curve, and on the convex side of a lumbar or thoracolumbar curve. The combined linear measurements (multiplied) correlated with cross-sectional area (r = 0.95) and could therefore be used for rapid clinical assessment of multifidus size. These preliminary findings provide a basis for further investigation of the role of the musculature in the pathogenesis of adolescent idiopathic scoliosis.

  4. 3D Printing of Preoperative Simulation Models of a Splenic Artery Aneurysm: Precision and Accuracy.

    PubMed

    Takao, Hidemasa; Amemiya, Shiori; Shibata, Eisuke; Ohtomo, Kuni

    2017-05-01

    Three-dimensional (3D) printing is attracting increasing attention in the medical field. This study aimed to apply 3D printing to the production of hollow splenic artery aneurysm models for use in the simulation of endovascular treatment, and to evaluate the precision and accuracy of the simulation model. From 3D computed tomography (CT) angiography data of a splenic artery aneurysm, 10 hollow models reproducing the vascular lumen were created using a fused deposition modeling-type desktop 3D printer. After filling with water, each model was scanned using T2-weighted magnetic resonance imaging for the evaluation of the lumen. All images were coregistered, binarized, and then combined to create an overlap map. The cross-sectional area of the splenic artery aneurysm and its standard deviation (SD) were calculated perpendicular to the x- and y-axes. Most voxels overlapped among the models. The cross-sectional areas were similar among the models, with SDs <0.05 cm 2 . The mean cross-sectional areas of the splenic artery aneurysm were slightly smaller than those calculated from the original mask images. The maximum mean cross-sectional areas calculated perpendicular to the x- and y-axes were 3.90 cm 2 (SD, 0.02) and 4.33 cm 2 (SD, 0.02), whereas those calculated from the original mask images were 4.14 cm 2 and 4.66 cm 2 , respectively. The mean cross-sectional areas of the afferent artery were, however, almost the same as those calculated from the original mask images. The results suggest that 3D simulation modeling of a visceral artery aneurysm using a fused deposition modeling-type desktop 3D printer and computed tomography angiography data is highly precise and accurate. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  5. Comparison of Optic Disc Margin Identified by Color Disc Photography and High-Speed Ultrahigh-Resolution Optical Coherence Tomography

    PubMed Central

    Manassakorn, Anita; Ishikawa, Hiroshi; Kim, Jong S.; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Gabriele, Michelle L.; Sung, Kyung Rim; Mumcuoglu, Tarkan; Duker, Jay S.; Fujimoto, James G.; Schuman, Joel S.

    2009-01-01

    Objective To determine the correspondence between optic disc margins evaluated using disc photography (DP) and optical coherence tomography (OCT). Methods From May 1, 2005, through November 10, 2005, 17 healthy volunteers (17 eyes) had raster scans (180 frames, 501 samplings per frame) centered on the optic disc taken with stereo-optic DP and high-speed ultrahigh-resolution OCT (hsUHR-OCT). Two image outputs were derived from the hsUHR-OCT data set: an en face hsUHR-OCT fundus image and a set of 180 frames of cross-sectional images. Three ophthalmologists independently and in a masked, randomized fashion marked the disc margin on the DP, hsUHR-OCT fundus, and cross-sectional images using custom software. Disc size (area and horizontal and vertical diameters) and location of the geometric disc center were compared among the 3 types of images. Results The hsUHR-OCT fundus image definition showed a significantly smaller disc size than the DP definition (P<.001, mixed-effects analysis). The hsUHR-OCT cross-sectional image definition showed a significantly larger disc size than the DP definition (P<.001). The geometric disc center location was similar among the 3 types of images except for the y-coordinate, which was significantly smaller in the hsUHR-OCT fundus images than in the DP images. Conclusion The optic disc margin as defined by hsUHR-OCT was significantly different than the margin defined by DP. PMID:18195219

  6. Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices.

    PubMed

    Reznicek, Lukas; Klein, Thomas; Wieser, Wolfgang; Kernt, Marcus; Wolf, Armin; Haritoglou, Christos; Kampik, Anselm; Huber, Robert; Neubauer, Aljoscha S

    2014-06-01

    To investigate the image quality of wide-angle cross-sectional and reconstructed fundus images based on ultra-megahertz swept-source Fourier domain mode locking (FDML) OCT compared to current generation diagnostic devices. A 1,050 nm swept-source FDML OCT system was constructed running at 1.68 MHz A-scan rate covering approximately 70° field of view. Twelve normal eyes were imaged with the device applying an isotropically dense sampling protocol (1,900 × 1,900 A-scans) with a fill factor of 100 %. Obtained OCT scan image quality was compared with two commercial OCT systems (Heidelberg Spectralis and Stratus OCT) of the same 12 eyes. Reconstructed en-face fundus images from the same FDML-OCT data set were compared to color fundus, infrared and ultra-wide-field scanning laser images (SLO). Comparison of cross-sectional scans showed a high overall image quality of the 15× averaged FDML images at 1.68 MHz [overall quality grading score: 8.42 ± 0.52, range 0 (bad)-10 (excellent)] comparable to current spectral-domain OCTs (overall quality grading score: 8.83 ± 0.39, p = 0.731). On FDML OCT, a dense 3D data set was obtained covering also the central and mid-peripheral retina. The reconstructed FDML OCT en-face fundus images had high image quality comparable to scanning laser ophthalmoscope (SLO) as judged from retinal structures such as vessels and optic disc. Overall grading score was 8.36 ± 0.51 for FDML OCT vs 8.27 ± 0.65 for SLO (p = 0.717). Ultra-wide-field megahertz 3D FDML OCT at 1.68 MHz is feasible, and provides cross-sectional image quality comparable to current spectral-domain OCT devices. In addition, reconstructed en-face visualization of fundus images result in a wide-field view with high image quality as compared to currently available fundus imaging devices. The improvement of >30× in imaging speed over commercial spectral-domain OCT technology enables high-density scan protocols leading to a data set for high quality cross-sectional and en-face images of the posterior segment.

  7. Establishment of a database of fetal congenital heart malformations and preliminary investigation of its clinical application.

    PubMed

    Gao, Jun-Xue; Pei, Qiu-Yan; Li, Yun-Tao; Yang, Zhen-Juan

    2015-06-01

    The aim of this study was to create a database of anatomical ultrathin cross-sectional images of fetal hearts with different congenital heart diseases (CHDs) and preliminarily to investigate its clinical application. Forty Chinese fetal heart samples from induced labor due to different CHDs were cut transversely at 60-μm thickness. All thoracic organs were removed from the thoracic cavity after formalin fixation, embedded in optimum cutting temperature compound, and then frozen at -25°C for 2 hours. Subsequently, macro shots of the frozen serial sections were obtained using a digital camera in order to build a database of anatomical ultrathin cross-sectional images. Images in the database clearly displayed the fetal heart structures. After importing the images into three-dimensional software, the following functions could be realized: (1) based on the original database of transverse sections, databases of sagittal and coronal sections could be constructed; and (2) the original and constructed databases could be displayed continuously and dynamically, and rotated in arbitrary angles. They could also be displayed synchronically. The aforementioned functions of the database allowed for the retrieval of images and three-dimensional anatomy characteristics of the different fetal CHDs, and virtualization of fetal echocardiography findings. A database of 40 different cross-sectional fetal CHDs was established. An extensive database library of fetal CHDs, from which sonographers and students can study the anatomical features of fetal CHDs and virtualize fetal echocardiography findings via either centralized training or distance education, can be established in the future by accumulating further cases. Copyright © 2015. Published by Elsevier B.V.

  8. Correlative Magnetic Imaging of Heat-Assisted Magnetic Recording Media in Cross Section Using Lorentz TEM and MFM

    DOE PAGES

    Kim, Taeho Roy; Phatak, Charudatta; Petford-Long, Amanda K.; ...

    2017-10-23

    In order to increase the storage density of hard disk drives, a detailed understanding of the magnetic structure of the granular magnetic layer is essential. Here, we demonstrate an experimental procedure of imaging recorded bits on heat-assisted magnetic recording (HAMR) media in cross section using Lorentz transmission electron microscopy (TEM). With magnetic force microscopy and focused ion beam (FIB), we successfully targeted a single track to prepare cross-sectional TEM specimens. Then, we characterized the magnetic structure of bits with their precise location and orientation using Fresnel mode of Lorentz TEM. Here, this method can promote understanding of the correlation betweenmore » bits and their material structure in HAMR media to design better the magnetic layer.« less

  9. Correlative Magnetic Imaging of Heat-Assisted Magnetic Recording Media in Cross Section Using Lorentz TEM and MFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taeho Roy; Phatak, Charudatta; Petford-Long, Amanda K.

    In order to increase the storage density of hard disk drives, a detailed understanding of the magnetic structure of the granular magnetic layer is essential. Here, we demonstrate an experimental procedure of imaging recorded bits on heat-assisted magnetic recording (HAMR) media in cross section using Lorentz transmission electron microscopy (TEM). With magnetic force microscopy and focused ion beam (FIB), we successfully targeted a single track to prepare cross-sectional TEM specimens. Then, we characterized the magnetic structure of bits with their precise location and orientation using Fresnel mode of Lorentz TEM. Here, this method can promote understanding of the correlation betweenmore » bits and their material structure in HAMR media to design better the magnetic layer.« less

  10. Vastus medialis cross-sectional area is positively associated with patella cartilage and bone volumes in a pain-free community-based population

    PubMed Central

    Berry, Patricia A; Teichtahl, Andrew J; Galevska-Dimitrovska, Ana; Hanna, Fahad S; Wluka, Anita E; Wang, Yuanyuan; Urquhart, Donna M; English, Dallas R; Giles, Graham G; Cicuttini, Flavia M

    2008-01-01

    Introduction Although vastus medialis and lateralis are important determinants of patellofemoral joint function, their relationship with patellofemoral joint structure is unknown. The aim of this study was to examine potential determinants of vastus medialis and lateralis cross-sectional areas and the relationship between the cross-sectional area and patella cartilage and bone volumes. Methods Two hundred ninety-seven healthy adult subjects had magnetic resonance imaging of their dominant knee. Vastus medialis and lateralis cross-sectional areas were measured 37.5 mm superior to the quadriceps tendon insertion at the proximal pole of the patella. Patella cartilage and bone volumes were measured from these images. Demographic data and participation in vigorous physical activity were assessed by questionnaire. Results The determinants of increased vastus medialis and lateralis cross-sectional areas were older age (P ≤ 0.002), male gender (P < 0.001), and greater body mass index (P ≤ 0.07). Participation in vigorous physical activity was positively associated with vastus medialis cross-sectional area (regression coefficient [beta] 90.0; 95% confidence interval [CI] 38.2, 141.7) (P < 0.001) but not with vastus lateralis cross-sectional area (beta 10.1; 95% CI -18.1, 38.3) (P = 0.48). The cross-sectional area of vastus medialis only was positively associated with patella cartilage volume (beta 0.6; 95% CI 0.23, 0.94) (P = 0.001) and bone volume (beta 3.0; 95% CI 1.40, 4.68) (P < 0.001) after adjustment for potential confounders. Conclusions Our results in a pain-free community-based population suggest that increased cross-sectional area of vastus medialis, which is associated with vigorous physical activity, and increased patella cartilage and bone volumes may benefit patellofemoral joint health and reduce the long-term risk of patellofemoral pathology. PMID:19077298

  11. Quantitative magnetic resonance imaging analysis of the cross-sectional areas of the anconeus epitrochlearis muscle, cubital tunnel, and ulnar nerve with the elbow in extension in patients with and without ulnar neuropathy.

    PubMed

    Eng, Hing Y; Gunio, Drew A; Benitez, Carlos L

    2018-05-10

    The purpose of this study was to assess the cross-sectional area of the anconeus epitrochlearis muscle (AEM), cubital tunnel, and ulnar nerve with the elbow in extension in patients with and without ulnar neuropathy. We performed a retrospective, level IV review of elbow magnetic resonance imaging (MRI) studies. Elbow MRI studies of 32 patients with an AEM (26 men and 6 women, aged 18-60 years), 32 randomly selected patients without an AEM (aged 16-71 years), and 32 patients with clinical ulnar neuritis (22 men and 10 women, aged 24-76 years) were reviewed. We evaluated the ulnar nerve cross-sectional area proximal to, within, and distal to the cubital tunnel; AEM cross-sectional area; and cubital tunnel cross-sectional area. We found no significant difference in the nerve caliber between patients with and without an AEM. No correlation was found between the AEM cross-sectional area and ulnar nerve cross-sectional area within the cubital tunnel (r = 0.14). The mean cubital tunnel cross-sectional area was larger in patients with an AEM. Only 4 of the 32 patients with an AEM had findings of ulnar neuritis on MRI. Of the 32 patients with a clinical diagnosis of ulnar neuritis, only 2 had an AEM. With the elbow in extension, the presence or cross-sectional area of an AEM does not correlate with the area of the ulnar nerve or cubital tunnel. Only a small number of individuals with MRI evidence of an AEM had clinical evidence of ulnar neuropathy. Likewise, MRI evidence of an AEM was found in only a small number of individuals with clinical evidence of ulnar neuropathy. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Magnetic resonance imaging of the normal bovine digit.

    PubMed

    Raji, A R; Sardari, K; Mirmahmoob, P

    2009-08-01

    The purpose of this study was defining the normal structures of the digits and hoof in Holstein dairy cattle using Magnetic Resonance Image (MRI). Transverse, Sagital and Dorsoplantar MRI images of three isolated cattle cadaver digits were obtained using Gyroscan T5-NT a magnet of 0.5 Tesla and T1 Weighted sequence. The MRI images were compared to corresponding frozen cross-sections and dissect specimens of the cadaver digits. Relevant anatomical structures were identified and labeled at each level. The MRI images provided anatomical detail of the digits and hoof in Holstein dairy cattle. Transversal images provided excellent depiction of anatomical structures when compared to corresponding frozen cross-sections. The information presented in this paper would serve as an initial reference to the evaluation of MRI images of the digits and hoof in Holstein dairy cattle, that can be used by radiologist, clinicians, surgeon or for research propose in bovine lameness.

  13. Computed tomography and cross-sectional anatomy of the metatarsus and digits of the one-humped camel (Camelus dromedarius) and buffalo ( Bos bubalis).

    PubMed

    El-Shafey, A; Kassab, A

    2013-04-01

    The purpose of the present study was to provide a detailed computed tomography (CT) and cross-sectional anatomic reference of the normal metatarsus and digits for the camel and buffalo, as well as to compare between metatarsus and digits in these animals to outstand a basis for diagnosis of their diseases. Advantages, including depiction of detailed cross-sectional anatomy, improved contrast resolution and computer reformatting, make it a potentially valuable diagnostic technique. The hind limbs of 12 healthy adult camel and buffalo were used. Clinically relevant anatomic structures were identified and labelled at each level in the corresponding images (CT and anatomic slices). CT images were used to identify the bony and soft tissue structures of the metatarsus and digits. The knowledge of normal anatomy of the camel and buffalo metatarsus and digits would serve as initial reference to the evaluation of CT images in these species. © 2012 Blackwell Verlag GmbH.

  14. Gravitational lensing frequencies - Galaxy cross-sections and selection effects

    NASA Technical Reports Server (NTRS)

    Fukugita, Masataka; Turner, Edwin L.

    1991-01-01

    Four issues - (1) the best currently available data on the galaxy velocity-dispersion distribution, (2) the effects of finite core radii potential ellipticity on lensing cross sections, (3) the predicted distribution of lens image separations compared to observational angular resolutions, and (4) the preferential inclusion of lens systems in flux limited samples - are considered in order to facilitate more realistic predictions of multiple image galaxy-quasar lensing frequencies. It is found that (1) the SIS lensing parameter F equals 0.047 +/-0.019 with almost 90 percent contributed by E and S0 galaxies, (2) observed E and S0 core radii are remarkably small, yielding a factor of less than about 2 reduction in total lensing cross sections, (3) 50 percent of galaxy-quasar lenses have image separations greater than about 1.3 arcsec, and (4) amplification bias factors are large and must be carefully taken into account. It is concluded that flat universe models excessively dominated by the cosmological constant are not favored by the small observed galaxy-quasar lensing rate.

  15. Two-Photon Optical Properties of Near-Infrared Dyes at 1.55 microns Excitation

    PubMed Central

    Berezin, Mikhail; Zhan, Chun; Lee, Hyeran; Joo, Chulmin; Akers, Walter; Yazdanfar, Siavash; Achilefu, Samuel

    2011-01-01

    Two-photon (2P) optical properties of cyanine dyes were evaluated using a 2P fluorescence spectrophotometer with 1.55 μm excitation. We report the 2P characteristics of common NIR polymethine dyes, including their 2P action cross-sections and the 2P excited fluorescence lifetime. One of the dyes, DTTC showed the highest 2P action cross-section (~103 ± 19 GM) and relatively high 2P excited fluorescence lifetime and can be used as a scaffold for the synthesis of 2P molecular imaging probes. The 2P action cross-section of DTTC and the lifetime were also highly sensitive to the solvent polarity, providing other additional parameters for its use in optical imaging and the mechanism for probing environmental factors Overall, this study demonstrated the quantitative measurement of 2P properties of NIR dyes and established the foundation for designing molecular probes for 2P imaging applications in the NIR region. PMID:21866928

  16. Undergraduate students introduction to manual and rotary root canal instrumentation.

    PubMed

    Leonardi, Denise Piotto; Haragushiku, Gisele Aihara; Tomazinho, Flavia Sens Fagundes; Furuse, Adilson Yoshio; Volpato, Lusiane; Baratto-Filho, Flares

    2012-01-01

    The aim of this study was to evaluate the performance of undergraduates in their first contact with manual and rotary root canal instrumentation. Forty-two students who had never worked on a root canal before instrumented 42 extracted lower-incisors. Participants were assigned to one of two groups: Rotary instrumentation or manual instrumentation. Pre- and post-operative computed tomography scans were obtained with a 3-dimensional dental imaging system. Starting and finishing times of preparation were recorded. The cross-sectional area of the root canal was analyzed with 2-mm-below-the-apex initial and final transverse images recorded through a digital imaging system and analyzed with software to measure the initial and final area of the root canal in mm(2). Data from the cross-sectional area of the root canal and time spent were subjected to the Mann-Whitney's U-test (p<0.05). The rotary instrumentation group showed smaller time for preparation (p=0.0204). No differences between rotary and manual instrumentation regarding the cross-sectional area of the root canal were observed (p=0.25). No accidents occurred. Undergraduate students showed good performance in their first contact with the manual and rotary instrumentation with regard to time spent and cross-sectional area of the root canal, with no operative accidents.

  17. Correlation between ultrasound imaging, cross-sectional anatomy, and histology of the brachial plexus: a review.

    PubMed

    van Geffen, Geert J; Moayeri, Nizar; Bruhn, Jörgen; Scheffer, Gert J; Chan, Vincent W; Groen, Gerbrand J

    2009-01-01

    The anatomy of the brachial plexus is complex. To facilitate the understanding of the ultrasound appearance of the brachial plexus, we present a review of important anatomic considerations. A detailed correlation of reconstructed, cross-sectional gross anatomy and histology with ultrasound sonoanatomy is provided.

  18. RootScan: Software for high-throughput analysis of root anatomical traits

    USDA-ARS?s Scientific Manuscript database

    RootScan is a program for semi-automated image analysis of anatomical phenes in root cross-sections. RootScan uses pixel value thresholds to separate the cross-section from its background and to visually dissect it into tissue regions. Area measurements and object counts are performed within various...

  19. Review of Extraskeletal Activity on Tc-99m Methylene Diphosphonate Bone Scintigraphy and Value of Cross-Sectional and SPECT-CT Imaging Correlation.

    PubMed

    Bermo, Mohammed; Behnia, Sanaz; Fair, Joanna; Miyaoka, Robert S; Elojeimy, Saeed

    2017-07-31

    Recognizing the different mechanisms and imaging appearance of extraskeletal Tc-99m methylene diphosphonate uptake enhances the diagnostic value of bone scan interpretation. In this article, we present a pictorial review of the different mechanisms of extraskeletal Tc-99m methylene diphosphonate uptake on bone scintigraphy including neoplastic, inflammatory, ischemic, traumatic, excretory, and iatrogenic. We also illustrate through case examples the added value of correlation with cross-sectional and single photon emission computed tomography and computed tomography imaging in localizing and characterizing challenging cases of extraskeletal uptake. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors

    NASA Astrophysics Data System (ADS)

    Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda

    2017-06-01

    This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.

  1. Different methods of image segmentation in the process of meat marbling evaluation

    NASA Astrophysics Data System (ADS)

    Ludwiczak, A.; Ślósarz, P.; Lisiak, D.; Przybylak, A.; Boniecki, P.; Stanisz, M.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Wojcieszak, D.; Janczak, D.; Bykowska, M.

    2015-07-01

    The level of marbling in meat assessment based on digital images is very popular, as computer vision tools are becoming more and more advanced. However considering muscle cross sections as the data source for marbling level evaluation, there are still a few problems to cope with. There is a need for an accurate method which would facilitate this evaluation procedure and increase its accuracy. The presented research was conducted in order to compare the effect of different image segmentation tools considering their usefulness in meat marbling evaluation on the muscle anatomical cross - sections. However this study is considered to be an initial trial in the presented field of research and an introduction to ultrasonic images processing and analysis.

  2. Imaging of arsenic traces in human hair by nano-SIMS 50

    NASA Astrophysics Data System (ADS)

    Audinot, J.-N.; Schneider, S.; Yegles, M.; Hallegot, P.; Wennig, R.; Migeon, H.-N.

    2004-06-01

    The nano-SIMS 50 allows ion imaging to be performed on microtomed hair cross-sections in order to determine the concentration and to localize the distribution of arsenic traces in hairs. Our study shows a linear relationship between the SIMS signal (As normalized with respect to CN) and the concentration determined by other analytical techniques. The advantages of SIMS imaging can be clearly proved by the capability to record quantitative distributions of As in the cross section. As a matter of fact, the nano-SIMS 50 images may allow differentiation between As located in the medulla, the cortex and the cuticle of the hair and thus distinguish between intoxication by indigestion and surface pollution of the sample.

  3. Diagnosis of long head of biceps tendinopathy in rotator cuff tear patients: correlation of imaging and arthroscopy data.

    PubMed

    Rol, Morgane; Favard, Luc; Berhouet, Julien

    2018-06-01

    The goal of this prospective study was to assess the reliability of pre-operative cross-sectional imaging for the diagnosis of long head of biceps (LHB) tendinopathy in patients with a rotator cuff tear. Cross-sectional imaging with MRI or CT arthrography data from 25 patients operated upon because of a rotator cuff tear between 1 October 2015 and 1 April 2016 was analysed by one experienced orthopaedic surgeon, one experienced radiologist and one orthopaedic resident. The analysis consisted of determining whether the LHB was present, the extrinsic tendon abnormalities (dislocation, tendon coverage) and intrinsic abnormalities (fraying, inflammation, degeneration). These findings were then compared to intra-operative arthroscopy findings, which were used as the benchmark. The interobserver correlation between the three different examiners for the cross-sectional imaging analysis as well as the correlation between the imaging and arthroscopy data were determined. The correlation between the imaging and arthroscopy data was the highest (80%) for the determination of LHB dislocation from the bicipital groove. The other diagnostic elements (subluxation, coverage and tendon degeneration) were difficult to discern with preoperative imaging, and correlated poorly with the arthroscopy findings (45% to 65%). The interobserver correlation was moderate to strong for the diagnosis of extrinsic tendon abnormalities. It was low to moderate for intrinsic abnormalities. Except for LHB dislocation, pre-operative imaging is not sufficient to make a reliable diagnosis of LHB tendinopathy. Arthroscopy remains the gold standard for the management of LHB tendinopathy, as diagnosed intra-operatively.

  4. Ultra-wideband Radar for Building Interior Imaging

    DTIC Science & Technology

    2008-12-01

    same cross range resolution as a monostatic configuration with an equal number of transmitters and receivers (Ressler et al., 2007). In terms of...By this procedure we ensure a constant cross range resolution across the entire image. 2.2. Measurements setup The one story abandoned barrack...identify its geometry and materials. Two-by-four wooden studs (3.8 cm x 8.9 cm cross -section dimensions) are used for most exterior and interior walls

  5. Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope

    PubMed Central

    Wilson, Jesse W.; Samineni, Prathyush; Warren, Warren S.; Fischer, Martin C.

    2012-01-01

    Microscopy with nonlinear phase contrast is achieved by a simple modification to a nonlinear pump-probe microscope. The technique measures cross-phase modulation by detecting a pump-induced spectral shift in the probe pulse. Images with nonlinear phase contrast are acquired both in transparent and absorptive media. In paraffin-embedded biopsy sections, cross-phase modulation complements the chemically-specific pump-probe images with structural context. PMID:22567580

  6. The Visible Human Project of the National Library of Medicine: Remote access and distribution of a multi-gigabyte data set

    NASA Technical Reports Server (NTRS)

    Ackerman, Michael J.

    1993-01-01

    As part of the 1986 Long-Range Plan for the National Library of Medicine (NLM), the Planning Panel on Medical Education wrote that NLM should '...thoroughly and systematically investigate the technical requirements for and feasibility of instituting a biomedical images library.' The panel noted the increasing use of images in clinical practice and biomedical research. An image library would complement NLM's existing bibliographic and factual database services and would ideally be available through the same computer networks as are these current NLM services. Early in 1989, NLM's Board of Regents convened an ad hoc planning panel to explore possible roles for the NLM in the area of electronic image libraries. In its report to the Board of Regents, the NLM Planning Panel on Electronic Image Libraries recommended that 'NLM should undertake a first project building a digital image library of volumetric data representing a complete, normal adult male and female. This Visible Human Project will include digitized photographic images for cryosectioning, digital images derived from computerized tomography, and digital magnetic resonance images of cadavers.' The technologies needed to support digital high resolution image libraries, including rapid development; and that NLM encourage investigator-initiated research into methods for representing and linking spatial and textual information, structural informatics. The first part of the Visible Human Project is the acquisition of cross-sectional CT and MRI digital images and cross-sectional cryosectional photographic images of a representative male and female cadaver at an average of one millimeter intervals. The corresponding cross-sections in each of the three modalities are to be registerable with one another.

  7. An intrahepatic calculus superimposed over the right renal shadow: a case of mistaken identity.

    PubMed

    Learney, Robert M; Shrotri, Nitin

    2010-08-01

    A 36-year-old Caucasian British woman presented with a classic case of right renal colic. Initial plain abdominal radiography and intravenous urography identified an 8 x 5 mm calculus apparently lying within a right lower pole calyx. Following failed extracorporeal lithotripsy and flexible ureterorenoscopy, cross-sectional imaging revealed a misdiagnosis by superposition of an intrahepatic calculus over the right renal shadow. This case serves to support cross-sectional imaging in the diagnosis of renal calculi. Copyright 2010 Elsevier Inc. All rights reserved.

  8. The chaotic saddle of a three degrees of freedom scattering system reconstructed from cross-section data

    NASA Astrophysics Data System (ADS)

    Drótos, G.; Jung, C.

    2016-06-01

    The topic of this paper is hyperbolic chaotic scattering in a three degrees of freedom system. We generalize how shadows in the domain of the doubly differential cross-section are found: they are traced out by the appropriately filtered unstable manifolds of the periodic trajectories in the chaotic saddle. These shadows are related to the rainbow singularities in the doubly differential cross-section. As a result of this relation, we discover a method of how to recognize in the cross section a smoothly deformed image of the chaotic saddle, allowing the reconstruction of the symbolic dynamics of the chaotic saddle, its topology and its scaling factors.

  9. Illustrated review of new imaging techniques in the diagnosis of abdominal wall hernias.

    PubMed

    Toms, A P; Dixon, A K; Murphy, J M; Jamieson, N V

    1999-10-01

    The assessment of abdominal wall hernias has long been a clinical skill that only occasionally required the supplementary radiological assistance of herniography. However, with the advent of cross-sectional imaging, a new range of diagnostic tools is now available to help the clinician in difficult cases. This review explores the ability of computed tomography and magnetic resonance imaging to demonstrate many of the hernias encountered in the anterior abdominal wall. Also discussed is the role of imaging techniques in the management of a variety of hernias. Cross-sectional imaging techniques are being employed with increasing frequency for the assessment of hernias. Although the anatomical detail can usually be delineated clearly, the accuracy of the various methods and their place in the clinical management of hernias has yet to be fully determined.

  10. KINKFOLD—an AutoLISP program for construction of geological cross-sections using borehole image data

    NASA Astrophysics Data System (ADS)

    Özkaya, Sait Ismail

    2002-04-01

    KINKFOLD is an AutoLISP program designed to construct geological cross-sections from borehole image or dip meter logs. The program uses the kink-fold method for cross-section construction. Beds are folded around hinge lines as angle bisectors so that bedding thickness remains unchanged. KINKFOLD may be used to model a wide variety of parallel fold structures, including overturned and faulted folds, and folds truncated by unconformities. The program accepts data from vertical or inclined boreholes. The KINKFOLD program cannot be used to model fault drag, growth folds, inversion structures or disharmonic folds where the bed thickness changes either because of deformation or deposition. Faulted structures and similar folds can be modelled by KINKFOLD by omitting dip measurements within fault drag zones and near axial planes of similar folds.

  11. Effects of target shape and reflection on laser radar cross sections.

    PubMed

    Steinvall, O

    2000-08-20

    Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.

  12. An Investigation of Fat Infiltration of the Multifidus Muscle in Patients With Severe Neck Symptoms Associated With Chronic Whiplash-Associated Disorder.

    PubMed

    Karlsson, Anette; Leinhard, Olof Dahlqvist; Åslund, Ulrika; West, Janne; Romu, Thobias; Smedby, Örjan; Zsigmond, Peter; Peolsson, Anneli

    2016-10-01

    Study Design Cross-sectional study. Background Findings of fat infiltration in cervical spine multifidus, as a sign of degenerative morphometric changes due to whiplash injury, need to be verified. Objectives To develop a method using water/fat magnetic resonance imaging (MRI) to investigate fat infiltration and cross-sectional area of multifidus muscle in individuals with whiplash-associated disorders (WADs) compared to healthy controls. Methods Fat infiltration and cross-sectional area in the multifidus muscles spanning the C4 to C7 segmental levels were investigated by manual segmentation using water/fat-separated MRI in 31 participants with WAD and 31 controls, matched for age and sex. Results Based on average values for data spanning C4 to C7, participants with severe disability related to WAD had 38% greater muscular fat infiltration compared to healthy controls (P = .03) and 45% greater fat infiltration compared to those with mild to moderate disability related to WAD (P = .02). There were no significant differences between those with mild to moderate disability and healthy controls. No significant differences between groups were found for multifidus cross-sectional area. Significant differences were observed for both cross-sectional area and fat infiltration between segmental levels. Conclusion Participants with severe disability after a whiplash injury had higher fat infiltration in the multifidus compared to controls and to those with mild/moderate disability secondary to WAD. Earlier reported findings using T1-weighted MRI were reproduced using refined imaging technology. The results of the study also indicate a risk when segmenting single cross-sectional slices, as both cross-sectional area and fat infiltration differ between cervical levels. J Orthop Sports Phys Ther 2016;46(10):886-893. Epub 2 Sep 2016. doi:10.2519/jospt.2016.6553.

  13. SU-E-U-02: The Development of a Practical Ultrasonic System for Cross-Sectional Imaging of Small Animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamp, J; Karmanos Cancer Institute - International Imaging Center, Detroit, MI; Malyarenko, E

    Purpose: To test the feasibility of developing a practical medium frequency ultrasound tomography method for small animal imaging. The ability to produce cross-sectional or full body images of a live small animal using a low-cost tabletop ultrasound scanner without any special license would be very beneficial to long term biological studies, where repeated scanning is often required over an extended period of time. Methods: The cross sectional images were produced by compounding multiple B-scans of a laboratory phantom or an animal acquired at different projection angles. Two imaging systems were used to test the concept. The first system included amore » programmable 64-channel phased array controller driving a 128-channel, 5–10 MHz linear probe to produce 143 B-Mode projections of the spinning object. The second system designed and manufactured in house, produced 64 or 128 B-Mode projections with a single unfocused 8 MHz transducer scanning with a 0.116 mm step size. Results: The phased array system provided good penetration through the phantoms/mice (with the exception of the lungs) and allowed to acquire data in a very short time. The cross-sectional images have enough resolution and dynamic range to detect both high- and low-contrast organs. The single transducer system takes longer to scan, and the data require more sophisticated processing. To date, our images allow seeing details as small as 1–2 mm in the phantoms and in small animals, with the contrast mostly due to highly reflecting bones and air inclusions. Conclusion: The work indicates that very detailed and anatomically correct images can be created by relatively simple and inexpensive means. With more advanced algorithms and improved system design, scan time can be reduced considerably, enabling high-resolution full 3D imaging. This will allow for quick and easy scans that can help monitor tumor growth and/or regression without contributing any dose to the animal. The authors would like to acknowledge the financial and engineering support from Tessonics.« less

  14. Longitudinal and cross-sectional structural magnetic resonance imaging correlates of AV-1451 uptake.

    PubMed

    Das, Sandhitsu R; Xie, Long; Wisse, Laura E M; Ittyerah, Ranjit; Tustison, Nicholas J; Dickerson, Bradford C; Yushkevich, Paul A; Wolk, David A

    2018-06-01

    We examined the relationship between in vivo estimates of tau deposition as measured by 18 F-AV-1451 tau positron emission tomography imaging and cross-sectional cortical thickness, as well as rates of antecedent cortical thinning measured from magnetic resonance imaging in individuals with and without evidence of cerebral amyloid in 63 participants from the Alzheimer's Disease Neuroimaging Initiative study, including 32 cognitively normal individuals (mean age 74 years), 27 patients with mild cognitive impairment (mean age 76.8 years), and 4 patients diagnosed with Alzheimer's disease (mean age 80 years). We hypothesized that structural measures would correlate with 18 F-AV-1451 in a spatially local manner and that this correlation would be stronger for longitudinal compared to cross-sectional measures of cortical thickness and in those with cerebral amyloid versus those without. Cross-sectional and longitudinal estimates of voxelwise atrophy were made from whole brain maps of cortical thickness and rates of thickness change. In amyloid-β-positive individuals, the correlation of voxelwise atrophy across the whole brain with a summary measure of medial temporal lobe (MTL) 18 F-AV-1451 uptake demonstrated strong local correlations in the MTL with longitudinal atrophy that was weaker in cross-sectional analysis. Similar effects were seen in correlations between 31 bilateral cortical regions of interest. In addition, several nonlocal correlations between atrophy and 18 F-AV-1451 uptake were observed, including association between MTL atrophy and 18 F-AV-1451 uptake in parietal lobe regions of interest such as the precuneus. Amyloid-β-negative individuals only showed weaker correlations in data uncorrected for multiple comparisons. While these data replicate previous reports of associations between 18 F-AV-1451 uptake and cross-sectional structural measures, the current results demonstrate a strong relationship with longitudinal measures of atrophy. These data support the notion that in vivo measures of tau pathology are tightly linked to the rate of neurodegenerative change. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Experimental and rendering-based investigation of laser radar cross sections of small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Bacher, Emmanuel; Christnacher, Frank

    2017-12-01

    Laser imaging systems are prominent candidates for detection and tracking of small unmanned aerial vehicles (UAVs) in current and future security scenarios. Laser reflection characteristics for laser imaging (e.g., laser gated viewing) of small UAVs are investigated to determine their laser radar cross section (LRCS) by analyzing the intensity distribution of laser reflection in high resolution images. For the first time, LRCSs are determined in a combined experimental and computational approaches by high resolution laser gated viewing and three-dimensional rendering. An optimized simple surface model is calculated taking into account diffuse and specular reflectance properties based on the Oren-Nayar and the Cook-Torrance reflectance models, respectively.

  16. Aortic Dissection in Patients With Bicuspid Aortic Valve–Associated Aneurysms

    PubMed Central

    Wojnarski, Charles M.; Svensson, Lars G.; Roselli, Eric E.; Idrees, Jay J.; Lowry, Ashley M.; Ehrlinger, John; Pettersson, Gösta B.; Gillinov, A. Marc; Johnston, Douglas R.; Soltesz, Edward G.; Navia, Jose L.; Hammer, Donald F.; Griffin, Brian; Thamilarasan, Maran; Kalahasti, Vidyasagar; Sabik, Joseph F.; Blackstone, Eugene H.; Lytle, Bruce W.

    2016-01-01

    Background Data regarding the risk of aortic dissection in patients with bicuspid aortic valve and large ascending aortic diameter are limited, and appropriate timing of prophylactic ascending aortic replacement lacks consensus. Thus our objectives were to determine the risk of aortic dissection based on initial cross-sectional imaging data and clinical variables and to isolate predictors of aortic intervention in those initially prescribed serial surveillance imaging. Methods From January 1995 to January 2014, 1,181 patients with bicuspid aortic valve underwent cross-sectional computed tomography (CT) or magnetic resonance imaging (MRI) to ascertain sinus or tubular ascending aortic diameter greater than or equal to 4.7 cm. Random Forest classification was used to identify risk factors for aortic dissection, and among patients undergoing surveillance, time-related analysis was used to identify risk factors for aortic intervention. Results Prevalence of type A dissection that was detected by imaging or was found at operation or on follow-up was 5.3% (n = 63). Probability of type A dissection increased gradually at a sinus diameter of 5.0 cm—from 4.1% to 13% at 7.2 cm—and then increased steeply at an ascending aortic diameter of 5.3 cm—from 3.8% to 35% at 8.4 cm—corresponding to a cross-sectional area to height ratio of 10 cm2/m for sinuses of Valsalva and 13 cm2/m for the tubular ascending aorta. Cross-sectional area to height ratio was the best predictor of type A dissection (area under the curve [AUC] = 0.73). Conclusions Early prophylactic ascending aortic replacement in patients with bicuspid aortic valve should be considered at high-volume aortic centers to reduce the high risk of preventable type A dissection in those with aortas larger than approximately 5.0 cm or with a cross-sectional area to height ratio greater than approximately 10 cm2/m. PMID:26209494

  17. German Radar Observation Shuttle Experiment (ROSE)

    NASA Technical Reports Server (NTRS)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  18. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo.

    PubMed

    Xia, Jun; Chatni, Muhammad R; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6  s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  19. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  20. Three-rooted premolar analyzed by high-resolution and cone beam CT.

    PubMed

    Marca, Caroline; Dummer, Paul M H; Bryant, Susan; Vier-Pelisser, Fabiana Vieira; Só, Marcus Vinicius Reis; Fontanella, Vania; Dutra, Vinicius D'avila; de Figueiredo, José Antonio Poli

    2013-07-01

    The aim of this study was to analyze the variations in canal and root cross-sectional area in three-rooted maxillary premolars between high-resolution computed tomography (μCT) and cone beam computed tomography (CBCT). Sixteen extracted maxillary premolars with three distinct roots and fully formed apices were scanned using μCT and CBCT. Photoshop CS software was used to measure root and canal cross-sectional areas at the most cervical and the most apical points of each root third in images obtained using the two tomographic computed (CT) techniques, and at 30 root sections equidistant from both root ends using μCT images. Canal and root areas were compared between each method using the Student t test for paired samples and 95 % confidence intervals. Images using μCT were sharper than those obtained using CBCT. There were statistically significant differences in mean area measurements of roots and canals between the μCT and CBCT techniques (P < 0.05). Root and canal areas had similar variations in cross-sectional μCT images and became proportionally smaller in a cervical to apical direction as the cementodentinal junction was approached, from where the area then increased apically. Although variation was similar in the roots and canals under study, CBCT produced poorer image details than μCT. Although CBCT is a strong diagnosis tool, it still needs improvement to provide accuracy in details of the root canal system, especially in cases with anatomical variations, such as the three-rooted maxillary premolars.

  1. Reliability and accuracy of three imaging software packages used for 3D analysis of the upper airway on cone beam computed tomography images.

    PubMed

    Chen, Hui; van Eijnatten, Maureen; Wolff, Jan; de Lange, Jan; van der Stelt, Paul F; Lobbezoo, Frank; Aarab, Ghizlane

    2017-08-01

    The aim of this study was to assess the reliability and accuracy of three different imaging software packages for three-dimensional analysis of the upper airway using CBCT images. To assess the reliability of the software packages, 15 NewTom 5G ® (QR Systems, Verona, Italy) CBCT data sets were randomly and retrospectively selected. Two observers measured the volume, minimum cross-sectional area and the length of the upper airway using Amira ® (Visage Imaging Inc., Carlsbad, CA), 3Diagnosys ® (3diemme, Cantu, Italy) and OnDemand3D ® (CyberMed, Seoul, Republic of Korea) software packages. The intra- and inter-observer reliability of the upper airway measurements were determined using intraclass correlation coefficients and Bland & Altman agreement tests. To assess the accuracy of the software packages, one NewTom 5G ® CBCT data set was used to print a three-dimensional anthropomorphic phantom with known dimensions to be used as the "gold standard". This phantom was subsequently scanned using a NewTom 5G ® scanner. Based on the CBCT data set of the phantom, one observer measured the volume, minimum cross-sectional area, and length of the upper airway using Amira ® , 3Diagnosys ® , and OnDemand3D ® , and compared these measurements with the gold standard. The intra- and inter-observer reliability of the measurements of the upper airway using the different software packages were excellent (intraclass correlation coefficient ≥0.75). There was excellent agreement between all three software packages in volume, minimum cross-sectional area and length measurements. All software packages underestimated the upper airway volume by -8.8% to -12.3%, the minimum cross-sectional area by -6.2% to -14.6%, and the length by -1.6% to -2.9%. All three software packages offered reliable volume, minimum cross-sectional area and length measurements of the upper airway. The length measurements of the upper airway were the most accurate results in all software packages. All software packages underestimated the upper airway dimensions of the anthropomorphic phantom.

  2. Body Image Disturbance in Patients with Acne Vulgaris

    PubMed Central

    Bowe, Whitney P.; Crerand, Canice E.; Margolis, David J.; Shalita, Alan R.

    2011-01-01

    Psychosocial outcome measures, which attempt to examine acne from the patient's perspective, have become increasingly important in dermatology research. One such measure is the Body Image Disturbance Questionnaire. The authors' primary aim was to determine the validity and internal consistency of the Body Image Disturbance Questionnaire in patients with acne vulgaris. The secondary aim was to investigate the relationship between body image disturbance and quality of life. This cross-sectional investigation included 52 consecutive acne patients presenting to an outpatient dermatology clinic. Subjects completed the Body Image Disturbance Questionnaire, Skindex-16, and other body image and psychosocial functioning measures. An objective assessment of acne was performed. The Body Image Disturbance Questionnaire was internally consistent and converged with other known body image indices. Body Image Disturbance Questionnaire scores also correlated with Skindex-16 scores, confirming that quality of life and body image are related psychosocial constructs. The Body Image Disturbance Questionnaire appears to be an accurate instrument that can assess appearance-related concern and impairment in patients with acne vulgaris. Limitations include a small sample size and the cross-sectional design. PMID:21779418

  3. Measuring changes in chemistry, composition, and molecular structure within hair fibers by infrared and Raman spectroscopic imaging.

    PubMed

    Zhang, Guojin; Senak, Laurence; Moore, David J

    2011-05-01

    Spatially resolved infrared (IR) and Raman images are acquired from human hair cross sections or intact hair fibers. The full informational content of these spectra are spatially correlated to hair chemistry, anatomy, and structural organization through univariate and multivariate data analysis. Specific IR and Raman images from untreated human hair describing the spatial dependence of lipid and protein distribution, protein secondary structure, lipid chain conformational order, and distribution of disulfide cross-links in hair protein are presented in this study. Factor analysis of the image plane acquired with IR microscopy in hair sections, permits delineation of specific micro-regions within the hair. These data indicate that both IR and Raman imaging of molecular structural changes in a specific region of hair will prove to be valuable tools in the understanding of hair structure, physiology, and the effect of various stresses upon its integrity.

  4. State-resolved differential cross-section measurement of Cl+C 2H 6→HCl+C 2H 5 reaction using single-beam velocity mapping

    NASA Astrophysics Data System (ADS)

    Samartzis, Peter C.; Smith, Derek J.; Rakitzis, T. Peter; Kitsopoulos, Theofanis N.

    2000-07-01

    The bimolecular reaction of atomic chlorine with ethane at a collision energy of 0.36 eV is studied in a single-beam experiment, using velocity mapping of a state-selected reaction product. The differential cross-section for HCl( v=0, J=1) product is directly determined from its Abel-inverted velocity map image. Our results are similar to previous measurements of the differential cross-section and suggest that the HCl( v=0, J=1) scattering is broad with a side-scattered peak. This Letter demonstrates the power of velocity mapping for measuring differential cross-sections for reactions for which one of the reactants is produced photolytically.

  5. Differential collision cross-sections for atomic oxygen: Analysis of space flight instruments for solar terrestrial physics

    NASA Technical Reports Server (NTRS)

    Torr, Douglas G.

    1991-01-01

    A summary of the status of the Cross-section Facility at MSFC is presented. A facility was designed, fabricated, assembled, tested, and operated for measurement of differential scattering cross sections important to understand the induced environment for a vehicle (e.g., Space Station) in low earth orbit. A user's manual for the facility is also presented. The performance of the facility was evaluated and found to be satisfactory in all the essential areas. Differential scattering cross sections were measured and results for the scattering measurements are included. Input to the development of the Ultraviolet Imager Optical System is also discussed. Design, fabrication, and evaluation of UV filters using a four-layer aluminum base are reported.

  6. Novel Robotic Tools for Piping Inspection and Repair, Phase 1

    DTIC Science & Technology

    2014-02-13

    35 Figure 57 - Accowle ODVS cross section and reflective path ......................................... 36 Figure 58 - Leopard Imaging HD...mounted to iPhone ............................................................................. 39 Figure 63 - Kogeto mounted to Leopard Imaging HD...40 Figure 65 - Leopard Imaging HD camera pipe test (letters) ............................................. 40 Figure 66 - Leopard Imaging HD camera

  7. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning.

    PubMed

    Treder, Maximilian; Lauermann, Jost Lennart; Eter, Nicole

    2018-02-01

    Our purpose was to use deep learning for the automated detection of age-related macular degeneration (AMD) in spectral domain optical coherence tomography (SD-OCT). A total of 1112 cross-section SD-OCT images of patients with exudative AMD and a healthy control group were used for this study. In the first step, an open-source multi-layer deep convolutional neural network (DCNN), which was pretrained with 1.2 million images from ImageNet, was trained and validated with 1012 cross-section SD-OCT scans (AMD: 701; healthy: 311). During this procedure training accuracy, validation accuracy and cross-entropy were computed. The open-source deep learning framework TensorFlow™ (Google Inc., Mountain View, CA, USA) was used to accelerate the deep learning process. In the last step, a created DCNN classifier, using the information of the above mentioned deep learning process, was tested in detecting 100 untrained cross-section SD-OCT images (AMD: 50; healthy: 50). Therefore, an AMD testing score was computed: 0.98 or higher was presumed for AMD. After an iteration of 500 training steps, the training accuracy and validation accuracies were 100%, and the cross-entropy was 0.005. The average AMD scores were 0.997 ± 0.003 in the AMD testing group and 0.9203 ± 0.085 in the healthy comparison group. The difference between the two groups was highly significant (p < 0.001). With a deep learning-based approach using TensorFlow™, it is possible to detect AMD in SD-OCT with high sensitivity and specificity. With more image data, an expansion of this classifier for other macular diseases or further details in AMD is possible, suggesting an application for this model as a support in clinical decisions. Another possible future application would involve the individual prediction of the progress and success of therapy for different diseases by automatically detecting hidden image information.

  8. Cross-sectional Imaging Review of Tuberous Sclerosis.

    PubMed

    Krishnan, Anant; Kaza, Ravi K; Vummidi, Dharshan R

    2016-05-01

    Tuberous sclerosis complex (TSC) is a multisystem, genetic disorder characterized by development of hamartomas in the brain, abdomen, and thorax. It results from a mutation in one of 2 tumor suppressor genes that activates the mammalian target of rapamycin pathway. This article discusses the origins of the disorder, the recently updated criteria for the diagnosis of TSC, and the cross-sectional imaging findings and recommendations for surveillance. Familiarity with the diverse radiological features facilitates diagnosis and helps in treatment planning and monitoring response to treatment of this multisystem disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Abdominal aortic aneurysms: pre- and post-procedural imaging.

    PubMed

    Hallett, Richard L; Ullery, Brant W; Fleischmann, Dominik

    2018-05-01

    Abdominal aortic aneurysm (AAA) is a relatively common, potentially life-threatening disorder. Rupture of AAA is potentially catastrophic with high mortality. Intervention for AAA is indicated when the aneurysm reaches 5.0-5.5 cm or more, when symptomatic, or when increasing in size > 10 mm/year. AAA can be accurately assessed by cross-sectional imaging including computed tomography angiography and magnetic resonance angiography. Current options for intervention in AAA patients include open surgery and endovascular aneurysm repair (EVAR), with EVAR becoming more prevalent over time. Cross-sectional imaging plays a crucial role in AAA surveillance, pre-procedural assessment, and post-EVAR management. This paper will discuss the current role of imaging in the assessment of AAA patients prior to intervention, in evaluation of procedural complications, and in long-term follow-up of EVAR patients.

  10. Remote sensing of rice fields and sea pollution by SIR-B

    NASA Technical Reports Server (NTRS)

    Fugono, N.; Furuhama, Y.; Takasugi, T.; Okamoto, K.; Fujita, M.; Yoshikado, S.; Masuko, H.; Shinozuka, T.; Inomata, H.; Shiro, I.

    1984-01-01

    Sensor calibration, rice fields, and sea pollution are to be investigated with respect to shuttle imaging radar-B (SIR-B). It is planned that the resolution characteristics of the SIR-B be evaluated, the sidelobe characteristics of the SIR-B be investigated, and the relationship between backscatter cross section and image intensity be established. The microwave-scattering characteristics of rice fields are to be studied using SIR-B data. The possibility of classifying crops from SIR-B data is to be explored. The characteristics of the radar image of oil-like surface films under several sea surface conditions are to be determined. The absolute measurement capability of the sea surface scattering cross section is to be estimated using the SIR.

  11. Theory of time-resolved photoelectron imaging. Comparison of a density functional with a time-dependent density functional approach

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshi-ichi; Seideman, Tamar; Stener, Mauro

    2004-01-01

    Time-resolved photoelectron differential cross sections are computed within a quantum dynamical theory that combines a formally exact solution of the nuclear dynamics with density functional theory (DFT)-based approximations of the electronic dynamics. Various observables of time-resolved photoelectron imaging techniques are computed at the Kohn-Sham and at the time-dependent DFT levels. Comparison of the results serves to assess the reliability of the former method and hence its usefulness as an economic approach for time-domain photoelectron cross section calculations, that is applicable to complex polyatomic systems. Analysis of the matrix elements that contain the electronic dynamics provides insight into a previously unexplored aspect of femtosecond-resolved photoelectron imaging.

  12. i-TED: A novel concept for high-sensitivity (n,γ) cross-section measurements

    NASA Astrophysics Data System (ADS)

    Domingo-Pardo, C.

    2016-07-01

    A new method for measuring (n , γ) cross-sections aiming at enhanced signal-to-background ratio is presented. This new approach is based on the combination of the pulse-height weighting technique with a total energy detection system that features γ-ray imaging capability (i-TED). The latter allows one to exploit Compton imaging techniques to discriminate between true capture γ-rays arising from the sample under study and background γ-rays coming from contaminant neutron (prompt or delayed) captures in the surrounding environment. A general proof-of-concept detection system for this application is presented in this paper together with a description of the imaging method and a conceptual demonstration based on Monte Carlo simulations.

  13. MORPH-I (Ver 1.0) a software package for the analysis of scanning electron micrograph (binary formatted) images for the assessment of the fractal dimension of enclosed pore surfaces

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf; Oscarson, Robert

    1998-01-01

    MORPH-I is a set of C-language computer programs for the IBM PC and compatible minicomputers. The programs in MORPH-I are used for the fractal analysis of scanning electron microscope and electron microprobe images of pore profiles exposed in cross-section. The program isolates and traces the cross-sectional profiles of exposed pores and computes the Richardson fractal dimension for each pore. Other programs in the set provide for image calibration, display, and statistical analysis of the computed dimensions for highly complex porous materials. Requirements: IBM PC or compatible; minimum 640 K RAM; mathcoprocessor; SVGA graphics board providing mode 103 display.

  14. Routine Cross-Sectional Head Imaging Before Electroconvulsive Therapy: A Tertiary Center Experience.

    PubMed

    Sajedi, Payam I; Mitchell, Jason; Herskovits, Edward H; Raghavan, Prashant

    2016-04-01

    Electroconvulsive therapy (ECT) is generally contraindicated in patients with intracranial mass lesions or in the presence of increased intracranial pressure. The purpose of this study was to determine the prevalence of incidental abnormalities on routine cross-sectional head imaging, including CT and MRI, that would preclude subsequent ECT. This retrospective study involved a review of the electronic medical records of 105 patients (totaling 108 imaging studies) between April 27, 2007, and March 20, 2015, referred for cranial CT or MRI with the primary indication of pre-ECT evaluation. The probability of occurrence of imaging findings that would preclude ECT was computed. A cost analysis was also performed on the practice of routine pre-ECT imaging. Of the 105 patients who presented with the primary indication of ECT clearance (totaling 108 scans), 1 scan (0.93%) revealed findings that precluded ECT. None of the studies demonstrated findings that indicated increased intracranial pressure. A cost analysis revealed that at least $18,662.70 and 521.97 relative value units must be expended to identify one patient with intracranial pathology precluding ECT. The findings of this study demonstrate an extremely low prevalence of findings that preclude ECT on routine cross-sectional head imaging. The costs incurred in identifying a potential contraindication are high. The authors suggest that the performance of pre-ECT neuroimaging be driven by the clinical examination. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  15. Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

  16. Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

  17. Determination of vessel cross-sectional area by thresholding in Radon space

    PubMed Central

    Gao, Yu-Rong; Drew, Patrick J

    2014-01-01

    The cross-sectional area of a blood vessel determines its resistance, and thus is a regulator of local blood flow. However, the cross-sections of penetrating vessels in the cortex can be non-circular, and dilation and constriction can change the shape of the vessels. We show that observed vessel shape changes can introduce large errors in flux calculations when using a single diameter measurement. Because of these shape changes, typical diameter measurement approaches, such as the full-width at half-maximum (FWHM) that depend on a single diameter axis will generate erroneous results, especially when calculating flux. Here, we present an automated method—thresholding in Radon space (TiRS)—for determining the cross-sectional area of a convex object, such as a penetrating vessel observed with two-photon laser scanning microscopy (2PLSM). The thresholded image is transformed back to image space and contiguous pixels are segmented. The TiRS method is analogous to taking the FWHM across multiple axes and is more robust to noise and shape changes than FWHM and thresholding methods. We demonstrate the superior precision of the TiRS method with in vivo 2PLSM measurements of vessel diameter. PMID:24736890

  18. 3D Measurement of Anatomical Cross-sections of Foot while Walking

    NASA Astrophysics Data System (ADS)

    Kimura, Makoto; Mochimaru, Masaaki; Kanade, Takeo

    Recently, techniques for measuring and modeling of human body are taking attention, because human models are useful for ergonomic design in manufacturing. We aim to measure accurate shape of human foot that will be useful for the design of shoes. For such purpose, shape measurement of foot in motion is obviously important, because foot shape in the shoe is deformed while walking or running. In this paper, we propose a method to measure anatomical cross-sections of foot while walking. No one had ever measured dynamic shape of anatomical cross-sections, though they are very basic and popular in the field of biomechanics. Our proposed method is based on multi-view stereo method. The target cross-sections are painted in individual colors (red, green, yellow and blue), and the proposed method utilizes the characteristic of target shape in the camera captured images. Several nonlinear conditions are introduced in the process to find the consistent correspondence in all images. Our desired accuracy is less than 1mm error, which is similar to the existing 3D scanners for static foot measurement. In our experiments, the proposed method achieved the desired accuracy.

  19. Analyses of Disruption of Cerebral White Matter Integrity in Schizophrenia with MR Diffusion Tensor Fiber Tracking Method

    NASA Astrophysics Data System (ADS)

    Yamamoto, Utako; Kobayashi, Tetsuo; Kito, Shinsuke; Koga, Yoshihiko

    We have analyzed cerebral white matter using magnetic resonance diffusion tensor imaging (MR-DTI) to measure the diffusion anisotropy of water molecules. The goal of this study is the quantitative evaluation of schizophrenia. Diffusion tensor images are acquired for patients with schizophrenia and healthy comparison subjects, group-matched for age, sex, and handedness. Fiber tracking is performed on the superior longitudinal fasciculus for the comparison between the patient and comparison groups. We have analysed and compared the cross-sectional area on the starting coronal plane and the mean and standard deviation of the fractional anisotropy and the apparent diffusion coefficient along fibers in the right and left hemispheres. In the right hemisphere, the cross-sectional areas in patient group are significantly smaller than those in the comparison group. Furthermore, in the comparison group, the cross-sectional areas in the right hemisphere are significantly larger than those in the left hemisphere, whereas there is no significant difference in the patient group. These results suggest that we may evaluate the disruption in white matter integrity in schizophrenic patients quantitatively by comparing the cross-sectional area of the superior longitudinal fasciculus in the right and left hemispheres.

  20. Iterative cross section sequence graph for handwritten character segmentation.

    PubMed

    Dawoud, Amer

    2007-08-01

    The iterative cross section sequence graph (ICSSG) is an algorithm for handwritten character segmentation. It expands the cross section sequence graph concept by applying it iteratively at equally spaced thresholds. The iterative thresholding reduces the effect of information loss associated with image binarization. ICSSG preserves the characters' skeletal structure by preventing the interference of pixels that causes flooding of adjacent characters' segments. Improving the structural quality of the characters' skeleton facilitates better feature extraction and classification, which improves the overall performance of optical character recognition (OCR). Experimental results showed significant improvements in OCR recognition rates compared to other well-established segmentation algorithms.

  1. Clinical applications of modern imaging technology: stereo image formation and location of brain cancer

    NASA Astrophysics Data System (ADS)

    Wang, Dezong; Wang, Jinxiang

    1994-05-01

    It is very important to locate the tumor for a patient, who has cancer in his brain. If he only gets X-CT or MRI pictures, the doctor does not know the size, shape location of the tumor and the relation between the tumor and other organs. This paper presents the formation of stereo images of cancer. On the basis of color code and color 3D reconstruction. The stereo images of tumor, brain and encephalic truncus are formed. The stereo image of cancer can be round on X, Y, Z-coordinates to show the shape from different directions. In order to show the location of tumor, stereo image of tumor and encephalic truncus are provided on different angles. The cross section pictures are also offered to indicate the relation of brain, tumor and encephalic truncus on cross sections. In this paper the calculating of areas, volume and the space between cancer and the side of the brain are also described.

  2. Anti-Stokes effect CCD camera and SLD based optical coherence tomography for full-field imaging in the 1550nm region

    NASA Astrophysics Data System (ADS)

    Kredzinski, Lukasz; Connelly, Michael J.

    2012-06-01

    Full-field Optical coherence tomography is an en-face interferometric imaging technology capable of carrying out high resolution cross-sectional imaging of the internal microstructure of an examined specimen in a non-invasive manner. The presented system is based on competitively priced optical components available at the main optical communications band located in the 1550 nm region. It consists of a superluminescent diode and an anti-stokes imaging device. The single mode fibre coupled SLD was connected to a multi-mode fibre inserted into a mode scrambler to obtain spatially incoherent illumination, suitable for OCT wide-field modality in terms of crosstalk suppression and image enhancement. This relatively inexpensive system with moderate resolution of approximately 24um x 12um (axial x lateral) was constructed to perform a 3D cross sectional imaging of a human tooth. To our knowledge this is the first 1550 nm full-field OCT system reported.

  3. In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Coughlan, Carolyn A.; Chou, Li-Dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.

    2016-03-01

    Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx.

  4. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    PubMed

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  5. Composite ultrasound imaging apparatus and method

    DOEpatents

    Morimoto, Alan K.; Bow, Jr., Wallace J.; Strong, David Scott; Dickey, Fred M.

    1998-01-01

    An imaging apparatus and method for use in presenting composite two dimensional and three dimensional images from individual ultrasonic frames. A cross-sectional reconstruction is applied by using digital ultrasound frames, transducer orientation and a known center. Motion compensation, rank value filtering, noise suppression and tissue classification are utilized to optimize the composite image.

  6. Composite ultrasound imaging apparatus and method

    DOEpatents

    Morimoto, A.K.; Bow, W.J. Jr.; Strong, D.S.; Dickey, F.M.

    1998-09-15

    An imaging apparatus and method for use in presenting composite two dimensional and three dimensional images from individual ultrasonic frames. A cross-sectional reconstruction is applied by using digital ultrasound frames, transducer orientation and a known center. Motion compensation, rank value filtering, noise suppression and tissue classification are utilized to optimize the composite image. 37 figs.

  7. Use of Cardiac Magnetic Resonance Imaging Based Measurements of Inferior Vena Cava Cross-Sectional Area in the Diagnosis of Pericardial Constriction.

    PubMed

    Hanneman, Kate; Thavendiranathan, Paaladinesh; Nguyen, Elsie T; Moshonov, Hadas; Wald, Rachel; Connelly, Kim A; Paul, Narinder S; Wintersperger, Bernd J; Crean, Andrew M

    2015-08-01

    To evaluate the value of cardiac magnetic resonance imaging (MRI)-based measurements of inferior vena cava (IVC) cross-sectional area in the diagnosis of pericardial constriction. Patients who had undergone cardiac MRI for evaluation of clinically suspected pericardial constriction were identified retrospectively. The diagnosis of pericardial constriction was established by clinical history, echocardiography, cardiac catheterization, intraoperative findings, and/or histopathology. Cross-sectional areas of the suprahepatic IVC and descending aorta were measured on a single axial steady-state free-precession (SSFP) image at the level of the esophageal hiatus in end-systole. Logistic regression and receiver-operating curve (ROC) analyses were performed. Thirty-six patients were included; 50% (n = 18) had pericardial constriction. Mean age was 53.9 ± 15.3 years, and 72% (n = 26) were male. IVC area, ratio of IVC to aortic area, pericardial thickness, and presence of respirophasic septal shift were all significantly different between patients with constriction and those without (P < .001 for all). IVC to aortic area ratio had the highest odds ratio for the prediction of constriction (1070, 95% confidence interval [8.0-143051], P = .005). ROC analysis illustrated that IVC to aortic area ratio discriminated between those with and without constriction with an area under the curve of 0.96 (95% confidence interval [0.91-1.00]). In patients referred for cardiac MRI assessment of suspected pericardial constriction, measurement of suprahepatic IVC cross-sectional area may be useful in confirming the diagnosis of constriction when used in combination with other imaging findings, including pericardial thickness and respirophasic septal shift. Copyright © 2015 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  8. Ultrahigh speed endoscopic optical coherence tomography for gastroenterology.

    PubMed

    Tsai, Tsung-Han; Lee, Hsiang-Chieh; Ahsen, Osman O; Liang, Kaicheng; Giacomelli, Michael G; Potsaid, Benjamin M; Tao, Yuankai K; Jayaraman, Vijaysekhar; Figueiredo, Marisa; Huang, Qin; Cable, Alex E; Fujimoto, James; Mashimo, Hiroshi

    2014-12-01

    We describe an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor imaging catheter. The system had a 600 kHz axial scan rate and 8 µm axial resolution in tissue. Imaging was performed with a 3.2 mm diameter imaging catheter at 400 frames per second with a 12 µm spot size. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing upper and lower endoscopy. The use of distally actuated imaging catheters enabled OCT imaging with more flexibility, such as volumetric imaging in the small intestine and the assessment of hiatal hernia using retroflex imaging. The high rotational scanning stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face OCT and cross-sectional imaging, as well as OCT angiography (OCTA) for 3D visualization of subsurface microvasculature. The ability to perform both structural and functional 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies and enhance the sensitivity and specificity of OCT for detecting pathology.

  9. Ultrahigh speed endoscopic optical coherence tomography for gastroenterology

    PubMed Central

    Tsai, Tsung-Han; Lee, Hsiang-Chieh; Ahsen, Osman O.; Liang, Kaicheng; Giacomelli, Michael G.; Potsaid, Benjamin M.; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Figueiredo, Marisa; Huang, Qin; Cable, Alex E.; Fujimoto, James; Mashimo, Hiroshi

    2014-01-01

    We describe an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor imaging catheter. The system had a 600 kHz axial scan rate and 8 µm axial resolution in tissue. Imaging was performed with a 3.2 mm diameter imaging catheter at 400 frames per second with a 12 µm spot size. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing upper and lower endoscopy. The use of distally actuated imaging catheters enabled OCT imaging with more flexibility, such as volumetric imaging in the small intestine and the assessment of hiatal hernia using retroflex imaging. The high rotational scanning stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face OCT and cross-sectional imaging, as well as OCT angiography (OCTA) for 3D visualization of subsurface microvasculature. The ability to perform both structural and functional 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies and enhance the sensitivity and specificity of OCT for detecting pathology. PMID:25574446

  10. In vivo observation of the hypo-echoic "black hole" phenomenon in rat arterial bloodstream: a preliminary Study.

    PubMed

    Nam, Kweon-Ho; Paeng, Dong-Guk

    2014-07-01

    The "black hole," a hypo-echoic hole at the center of the bloodstream surrounded by a hyper-echoic zone in cross-sectional views, has been observed in ultrasound backscattering measurements of blood with red blood cell aggregation in in vitro studies. We investigated whether the phenomenon occurs in the in vivo arterial bloodstream of rats using a high-frequency ultrasound imaging system. Longitudinal and cross-sectional ultrasound images of the rat common carotid artery (CCA) and abdominal aorta were obtained using a 40-MHz ultrasound system. A high-frame-rate retrospective imaging mode was employed to precisely examine the dynamic changes in blood echogenicity in the arteries. When the imaging was performed with non-invasive scanning, blood echogenicity was very low in the CCA as compared with the surrounding tissues, exhibiting no hypo-echoic zone at the center of the vessel. Invasive imaging of the CCA by incising the skin and subcutaneous tissues at the imaging area provided clearer and brighter blood echo images, showing the "black hole" phenomenon near the center of the vessel in longitudinal view. The "black hole" was also observed in the abdominal aorta under direct imaging after laparotomy. The aortic "black hole" was clearly observed in both longitudinal and cross-sectional views. Although the "black hole" was always observed near the center of the arteries during the diastolic phase, it dissipated or was off-center along with the asymmetric arterial wall dilation at systole. In conclusion, we report the first in vivo observation of the hypo-echoic "black hole" caused by the radial variation of red blood cell aggregation in arterial bloodstream. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Vascular Imaging: The Evolving Role of the Multidisciplinary Team Meeting in Peripheral Vascular Disease

    PubMed Central

    Christie, Andrew; Roditi, Giles

    2014-01-01

    This article reviews the importance of preinterventional cross-sectional imaging in the evaluation of peripheral arterial disease, as well as discussing the pros and cons of each imaging modality. The importance of a multidisciplinary team approach is emphasized. PMID:25435657

  12. Dual instrument for in vivo and ex vivo OCT imaging in an ENT department

    PubMed Central

    Cernat, Ramona; Tatla, Taran S.; Pang, Jingyin; Tadrous, Paul J.; Bradu, Adrian; Dobre, George; Gelikonov, Grigory; Gelikonov, Valentin; Podoleanu, Adrian Gh.

    2012-01-01

    A dual instrument is assembled to investigate the usefulness of optical coherence tomography (OCT) imaging in an ear, nose and throat (ENT) department. Instrument 1 is dedicated to in vivo laryngeal investigation, based on an endoscope probe head assembled by compounding a miniature transversal flying spot scanning probe with a commercial fiber bundle endoscope. This dual probe head is used to implement a dual channel nasolaryngeal endoscopy-OCT system. The two probe heads are used to provide simultaneously OCT cross section images and en face fiber bundle endoscopic images. Instrument 2 is dedicated to either in vivo imaging of accessible surface skin and mucosal lesions of the scalp, face, neck and oral cavity or ex vivo imaging of the same excised tissues, based on a single OCT channel. This uses a better interface optics in a hand held probe. The two instruments share sequentially, the swept source at 1300 nm, the photo-detector unit and the imaging PC. An aiming red laser is permanently connected to the two instruments. This projects visible light collinearly with the 1300 nm beam and allows pixel correspondence between the en face endoscopy image and the cross section OCT image in Instrument 1, as well as surface guidance in Instrument 2 for the operator. The dual channel instrument was initially tested on phantom models and then on patients with suspect laryngeal lesions in a busy ENT practice. This feasibility study demonstrates the OCT potential of the dual imaging instrument as a useful tool in the testing and translation of OCT technology from the lab to the clinic. Instrument 1 is under investigation as a possible endoscopic screening tool for early laryngeal cancer. Larger size and better quality cross-section OCT images produced by Instrument 2 provide a reference base for comparison and continuing research on imaging freshly excised tissue, as well as in vivo interrogation of more superficial skin and mucosal lesions in the head and neck patient. PMID:23243583

  13. Revealing organization of cellulose in wood cell walls by Raman imaging

    Treesearch

    Umesh P. Agarwal; Sally A. Ralph

    2007-01-01

    Anisotropy of cellulose organization in mature black spruce wood cell wall was investigated by Raman imaging using a 1 [mu]m lateral-resolution capable confocal Raman microscope. In these studies, wood cross sections (CS) and radial longitudinal sections (LS) that were partially delignified by acid chlorite treatment were used. In the case of CS where latewood cells...

  14. The Value of Neurosurgical and Intraoperative Magnetic Resonance Imaging and Diffusion Tensor Imaging Tractography in Clinically Integrated Neuroanatomy Modules: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Familiari, Giuseppe; Relucenti, Michela; Heyn, Rosemarie; Baldini, Rossella; D'Andrea, Giancarlo; Familiari, Pietro; Bozzao, Alessandro; Raco, Antonino

    2013-01-01

    Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and…

  15. Cardiovascular and pulmonary dynamics by quantitative imaging

    NASA Technical Reports Server (NTRS)

    Wood, E. H.

    1976-01-01

    The accuracy and range of studies on cardiovascular and pulmonary functions can be greatly facilitated if the motions of the underlying organ systems throughout individual cycles can be directly visualized and readily measured with minimum or preferably no effect on these motions. Achievement of this objective requires development of techniques for quantitative noninvasive or minimally invasive dynamic and stop-action imaging of the organ systems. A review of advances in dynamic quantitative imaging of moving organs reveals that the revolutionary value of cross-sectional and three-dimensional images produced by various types of radiant energy such as X-rays and gamma rays, positrons, electrons, protons, light, and ultrasound for clinical diagnostic and biomedical research applications is just beginning to be realized. The fabrication of a clinically useful cross-section reconstruction device with sensing capabilities for both anatomical structural composition and chemical composition may be possible and awaits future development.

  16. Using Cross-Sectional Imaging to Convey Organ Relationships: An Integrated Learning Environment for Students of Gross Anatomy

    PubMed Central

    Forman, Bruce H.; Eccles, Randy; Piggins, Judith; Raila, Wayne; Estey, Greg; Barnett, G. Octo

    1990-01-01

    We have developed a visually oriented, computer-controlled learning environment designed for use by students of gross anatomy. The goals of this module are to reinforce the concepts of organ relationships and topography by using computed axial tomographic (CAT) images accessed from a videodisc integrated with color graphics and to introduce students to cross-sectional radiographic anatomy. We chose to build the program around CAT scan images because they not only provide excellent structural detail but also offer an anatomic orientation (transverse) that complements that used in the dissection laboratory (basically a layer-by-layer, anterior-to-posterior, or coronal approach). Our system, built using a Microsoft Windows-386 based authoring environment which we designed and implemented, integrates text, video images, and graphics into a single screen display. The program allows both user browsing of information, facilitated by hypertext links, and didactic sessions including mini-quizzes for self-assessment.

  17. [Contrast-enhanced ultrasound (CEUS) and image fusion for procedures of liver interventions].

    PubMed

    Jung, E M; Clevert, D A

    2018-06-01

    Contrast-enhanced ultrasound (CEUS) is becoming increasingly important for the detection and characterization of malignant liver lesions and allows percutaneous treatment when surgery is not possible. Contrast-enhanced ultrasound image fusion with computed tomography (CT) and magnetic resonance imaging (MRI) opens up further options for the targeted investigation of a modified tumor treatment. Ultrasound image fusion offers the potential for real-time imaging and can be combined with other cross-sectional imaging techniques as well as CEUS. With the implementation of ultrasound contrast agents and image fusion, ultrasound has been improved in the detection and characterization of liver lesions in comparison to other cross-sectional imaging techniques. In addition, this method can also be used for intervention procedures. The success rate of fusion-guided biopsies or CEUS-guided tumor ablation lies between 80 and 100% in the literature. Ultrasound-guided image fusion using CT or MRI data, in combination with CEUS, can facilitate diagnosis and therapy follow-up after liver interventions. In addition to the primary applications of image fusion in the diagnosis and treatment of liver lesions, further useful indications can be integrated into daily work. These include, for example, intraoperative and vascular applications as well applications in other organ systems.

  18. Magnetic resonance imaging and cross-sectional anatomy of the normal bovine tarsus.

    PubMed

    Ehlert, A; Ferguson, J; Gerlach, K

    2011-06-01

    The aim of the study was to describe the anatomy of the bovine tarsus using magnetic resonance imaging in a low-field scanner. T1-weighted transverse and sagittal images of five isolated hindlimbs were evaluated using a 0.5 Tesla magnet and a knee coil. The MR images were compared to corresponding frozen sections of cadaver limbs. Anatomical structures were labelled at each level. The resulting images provided excellent detail of the bovine tarsus. This study should serve as a basic reference for orthopaedic problems related to the tarsus in cattle. © 2011 Blackwell Verlag GmbH.

  19. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.

  20. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra.

    PubMed

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-07

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.

  1. A study on the measurement of radar cross section of flighting model based on the range-Doppler imaging

    NASA Astrophysics Data System (ADS)

    Hashimoto, Osamu; Mizokami, Osamu

    The method for measuring radar cross section (RCS) based on Range-Doppler Imaging is discussed. In this method, the measured targets are rotated and the Doppler frequencies caused by each scattering element along the targets are analyzed by FFT. Using this method, each scattered power peak along the flying model is measured. It is found that each part of the RCS of a flying model can be measured and its RCS of a main wing (about 46 dB/sq cm) is greater than of its body (about 20-30 dB/sq cm).

  2. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  3. Three-dimensional characterization of pigment dispersion in dried paint films using focused ion beam-scanning electron microscopy.

    PubMed

    Lin, Jui-Ching; Heeschen, William; Reffner, John; Hook, John

    2012-04-01

    The combination of integrated focused ion beam-scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.

  4. Design and application of a small size SAFT imaging system for concrete structure

    NASA Astrophysics Data System (ADS)

    Shao, Zhixue; Shi, Lihua; Shao, Zhe; Cai, Jian

    2011-07-01

    A method of ultrasonic imaging detection is presented for quick non-destructive testing (NDT) of concrete structures using synthesized aperture focusing technology (SAFT). A low cost ultrasonic sensor array consisting of 12 market available low frequency ultrasonic transducers is designed and manufactured. A channel compensation method is proposed to improve the consistency of different transducers. The controlling devices for array scan as well as the virtual instrument for SAFT imaging are designed. In the coarse scan mode with the scan step of 50 mm, the system can quickly give an image display of a cross section of 600 mm (L) × 300 mm (D) by one measurement. In the refined scan model, the system can reduce the scan step and give an image display of the same cross section by moving the sensor array several times. Experiments on staircase specimen, concrete slab with embedded target, and building floor with underground pipe line all verify the efficiency of the proposed method.

  5. Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope

    NASA Astrophysics Data System (ADS)

    Wall, R. Andrew; Barton, Jennifer K.

    2012-02-01

    A side-viewing, 2 mm diameter, surface magnifying chromoendoscopy (SMC)-optical coherence tomography (OCT) endoscope has been designed for simultaneous, non-destructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of mouse colon. A 30,000 element fiber bundle is combined with single mode fibers. The distal optics consist of a gradient-index lens and spacer to provide a magnification of 1 at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23 mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the GRIN lens assembly. The resulting 1:1 imaging system is capable of 3.9 μm lateral and 2.3 μm axial resolution in the OCT channel, and 125 lp/mm resolution across a 0.70 mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure.

  6. Comparisons of sets of electron-neutral scattering cross sections and calculated swarm parameters in Kr and Xe

    NASA Astrophysics Data System (ADS)

    Bordage, M. C.; Hagelaar, G. J. M.; Pitchford, L. C.; Biagi, S. F.; Puech, V.

    2011-10-01

    Xenon is used in a number of application areas ranging from light sources to x-ray detectors for imaging in medicine, border security and high-energy particle physics. There is a correspondingly large body of data available for electron scattering cross sections and swarm parameters in Xe, whereas data for Kr are more limited. In this communication we show intercomparisons of the cross section sets in Xe and Kr presently available on the LXCat site. Swarm parameters calculated using these cross sections sets are compared with experimental data, also available on the LXCat site. As was found for Ar, diffusion coefficients calculated using these cross section data in a 2-term Boltzmann solver are higher than Monte Carlo results by about 30% over a range of E/N from 1 to 100 Td. We find otherwise good agreement in Xe between 2-term and Monte Carlo results and between measured and calculated values of electron mobility, ionization rates and light emission (dimer) at atmospheric pressure. The available cross section data in Kr yield swarm parameters in agreement with the limited experimental data. The cross section compilations and measured swarm parameters used in this work are available on-line at www.lxcat.laplace. univ-tlse.fr.

  7. Cross-sections for (p,x) reactions on natural chromium for the production of 52,52m,54Mn radioisotopes

    DOE PAGES

    Wooten, A. Lake; Lewis, Benjamin C.; Lapi, Suzanne E.

    2014-12-11

    The production of positron-emitting isotopes of manganese is potentially important for developing contrast agents for dual-modality positron emission tomography and magnetic resonance (PET/MR) imaging, as well as for in vivo imaging of the biodistribution and toxicity of manganese. Furthermore, the decay properties of 52Mn make it an excellent candidate for these applications, and it can easily be produced by bombardment of a chromium target with protons or deuterons from a low-energy biomedical cyclotron. There are several parameters essential to this mode of production—target thickness, beam energy, beam current, and bombardment time—depend heavily on the availability of reliable, reproducible cross-section data.more » Our paper contributes to the routine production of 52gMn for biomedical research by contributing experimental cross-sections for natural chromium ( natCr) targets for the natCr(p,x) 52gMn reaction, as well as for the production of the radiocontaminants 52m, 54Mn.« less

  8. Signs of a Martian Ice Age

    NASA Image and Video Library

    2016-05-26

    This image montage features a two-dimensional radar cross section of Mars north polar cap collected by SHARAD instrument on NASA Mars Reconnaissance Orbiter spacecraft top, and a color image mosaic of the polar cap from NASA Viking project bottom

  9. Lesson learned and dispelled myths: three-dimensional imaging of the human vagina.

    PubMed

    Barnhart, Kurt T; Pretorius, E Scott; Malamud, Daniel

    2004-05-01

    Three-dimensional imaging of the human vagina demonstrates that the cross section can be a "W," rather than an "H," and that intravaginal gel can ascend into the endocervix and presumably into the endometrium.

  10. Body image flexibility moderates the association between disordered eating cognition and disordered eating behavior in a non-clinical sample of women: a cross-sectional investigation.

    PubMed

    Moore, Makeda; Masuda, Akihiko; Hill, Mary L; Goodnight, Bradley L

    2014-12-01

    Body image flexibility, a regulation process of openly and freely experiencing disordered eating thoughts and body dissatisfaction, has been found to be a buffering factor against disordered eating symptomatology. The present cross-sectional study investigates whether body image flexibility accounts for disordered eating behavior above and beyond disordered eating cognition, mindfulness, and psychological inflexibility in a sample of nonclinical women, and whether body image flexibility moderates the associations between these correlates and disordered eating behavior. Participants were 421 women, age 21±5.3 years old on average, who completed a web-based survey that included the self-report measures of interest. Results demonstrate the incremental effects of body image flexibility on disordered eating behavior above and beyond disordered eating cognition, mindfulness, and psychological inflexibility. Women with greater body image flexibility endorse disordered eating behavior less so than those with lower body image flexibility. Body image flexibility moderates the association between disordered eating cognition and disordered eating behavior; for women with greater body image flexibility, disordered eating cognition is not positively associated with disordered eating behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    PubMed Central

    2010-01-01

    Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262

  12. Validity of real-time ultrasound imaging to measure anterior hip muscle size: a comparison with magnetic resonance imaging.

    PubMed

    Mendis, M Dilani; Wilson, Stephen J; Stanton, Warren; Hides, Julie A

    2010-09-01

    Clinical measurement, criterion standard. To investigate the validity of real-time ultrasound imaging (USI) to measure individual anterior hip muscle cross-sectional area. The hip flexor muscles are important for hip joint function and could be affected by joint pathology or injury. Objectively documenting individual anterior hip muscle size can be useful in identifying muscle size asymmetry and monitoring treatment efficacy for patients with hip problems. USI offers a novel method of measuring individual muscle size in the clinic, but its validity in measuring the anterior hip muscles has not been investigated. Nine healthy participants (5 males, 4 females) underwent imaging of their iliopsoas, sartorius, and rectus femoris muscles with USI and magnetic resonance imaging. Bilateral muscle cross-sectional areas were measured on images from both modalities. There was no significant difference (P>.05) in mean cross-sectional area measurements from USI and magnetic resonance imaging for each muscle. Agreement between measurements was high for the iliopsoas (left: intraclass correlation coefficient [ICC3,1] = 0.86; 95% confidence interval [CI]: 0.51, 0.97; right: ICC3,1 = 0.88; 95% CI: 0.57, 0.97), sartorius (left: ICC3,1 = 0.82; 95% CI: 0.41, 0.96; right: ICC3,1 = 0.81; 95% CI: 0.39, 0.95), and rectus femoris (left: ICC3,1 = 0.85; 95% CI: 0.49, 0.96; right: ICC3,1 = 0.89; 95% CI: 0.61, 0.97). Reliability of measuring each muscle with USI was high between 2 trials (ICCs3,1 = 0.84 to 0.94). USI is a valid measure of iliopsoas, sartorius, and rectus femoris muscle size in healthy people, as long as a strict measurement protocol is followed.

  13. Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 2. Application to hyperspectral image data from the Platte River

    USGS Publications Warehouse

    Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T.

    2011-01-01

    This study examined the possibility of mapping depth from optical image data in turbid, sediment-laden channels. Analysis of hyperspectral images from the Platte River indicated that depth retrieval in these environments is feasible, but might not be highly accurate. Four methods of calibrating image-derived depth estimates were evaluated. The first involved extracting image spectra at survey point locations throughout the reach. These paired observations of depth and reflectance were subjected to optimal band ratio analysis (OBRA) to relate (R2 = 0.596) a spectrally based quantity to flow depth. Two other methods were based on OBRA of data from individual cross sections. A fourth strategy used ground-based reflectance measurements to derive an OBRA relation (R2 = 0.944) that was then applied to the image. Depth retrieval accuracy was assessed by visually inspecting cross sections and calculating various error metrics. Calibration via field spectroscopy resulted in a shallow bias but provided relative accuracies similar to image-based methods. Reach-aggregated OBRA was marginally superior to calibrations based on individual cross sections, and depth retrieval accuracy varied considerably along each reach. Errors were lower and observed versus predicted regression R2 values higher for a relatively simple, deeper site than a shallower, braided reach; errors were 1/3 and 1/2 the mean depth for the two reaches. Bathymetric maps were coherent and hydraulically reasonable, however, and might be more reliable than implied by numerical metrics. As an example application, linear discriminant analysis was used to produce a series of depth threshold maps for characterizing shallow-water habitat for roosting cranes. ?? 2011 by the American Geophysical Union.

  14. Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 2. application to hyperspectral image data from the Platte River

    USGS Publications Warehouse

    Legleiter, Carl J.; Kinzel, Paul J.; Overstreet, Brandon T.

    2011-01-01

    This study examined the possibility of mapping depth from optical image data in turbid, sediment-laden channels. Analysis of hyperspectral images from the Platte River indicated that depth retrieval in these environments is feasible, but might not be highly accurate. Four methods of calibrating image-derived depth estimates were evaluated. The first involved extracting image spectra at survey point locations throughout the reach. These paired observations of depth and reflectance were subjected to optimal band ratio analysis (OBRA) to relate (R2 = 0.596) a spectrally based quantity to flow depth. Two other methods were based on OBRA of data from individual cross sections. A fourth strategy used ground-based reflectance measurements to derive an OBRA relation (R2 = 0.944) that was then applied to the image. Depth retrieval accuracy was assessed by visually inspecting cross sections and calculating various error metrics. Calibration via field spectroscopy resulted in a shallow bias but provided relative accuracies similar to image-based methods. Reach-aggregated OBRA was marginally superior to calibrations based on individual cross sections, and depth retrieval accuracy varied considerably along each reach. Errors were lower and observed versus predicted regression R2 values higher for a relatively simple, deeper site than a shallower, braided reach; errors were 1/3 and 1/2 the mean depth for the two reaches. Bathymetric maps were coherent and hydraulically reasonable, however, and might be more reliable than implied by numerical metrics. As an example application, linear discriminant analysis was used to produce a series of depth threshold maps for characterizing shallow-water habitat for roosting cranes.

  15. Computed tomographic anatomy of the heads of blue-and-gold macaws (Ara ararauna), African grey parrots (Psittacus erithacus), and monk parakeets (Myiopsitta monachus).

    PubMed

    Veladiano, Irene A; Banzato, Tommaso; Bellini, Luca; Montani, Alessandro; Catania, Salvatore; Zotti, Alessandro

    2016-12-01

    OBJECTIVE To create an atlas of the normal CT anatomy of the head of blue-and-gold macaws (Ara ararauna), African grey parrots (Psittacus erithacus), and monk parakeets (Myiopsitta monachus). ANIMALS 3 blue-and-gold macaws, 5 African grey parrots, and 6 monk parakeets and cadavers of 4 adult blue-and-gold macaws, 4 adult African grey parrots, and 7 monk parakeets. PROCEDURES Contrast-enhanced CT imaging of the head of the live birds was performed with a 4-multidetector-row CT scanner. Cadaveric specimens were stored at -20°C until completely frozen, and each head was then sliced at 5-mm intervals to create reference cross sections. Frozen cross sections were cleaned with water and photographed on both sides. Anatomic structures within each head were identified with the aid of the available literature, labeled first on anatomic photographs, and then matched to and labeled on corresponding CT images. The best CT reconstruction filter, window width, and window level for obtaining diagnostic images of each structure were also identified. RESULTS Most of the clinically relevant structures of the head were identified in both the cross-sectional photographs and corresponding CT images. Optimal visibility of the bony structures was achieved via CT with a standard soft tissue filter and pulmonary window. The use of contrast medium allowed a thorough evaluation of the soft tissues. CONCLUSIONS AND CLINICAL RELEVANCE The labeled CT images and photographs of anatomic structures of the heads of common pet parrot species created in this study may be useful as an atlas to aid interpretation of images obtained with any imaging modality.

  16. Three-dimensional simulation of human teeth and its application in dental education and research.

    PubMed

    Koopaie, Maryam; Kolahdouz, Sajad

    2016-01-01

    Background: A comprehensive database, comprising geometry and properties of human teeth, is needed for dentistry education and dental research. The aim of this study was to create a three-dimensional model of human teeth to improve the dental E-learning and dental research. Methods: In this study, a cross-section picture of the three-dimensional model of the teeth was used. CT-Scan images were used in the first method. The space between the cross- sectional images was about 200 to 500 micrometers. Hard tissue margin was detected in each image by Matlab (R2009b), as image processing software. The images were transferred to Solidworks 2015 software. Tooth border curve was fitted on B-spline curves, using the least square-curve fitting algorithm. After transferring all curves for each tooth to Solidworks, the surface was created based on the surface fitting technique. This surface was meshed in Meshlab-v132 software, and the optimization of the surface was done based on the remeshing technique. The mechanical properties of the teeth were applied to the dental model. Results: This study presented a methodology for communication between CT-Scan images and the finite element and training software through which modeling and simulation of the teeth were performed. In this study, cross-sectional images were used for modeling. According to the findings, the cost and time were reduced compared to other studies. Conclusion: The three-dimensional model method presented in this study facilitated the learning of the dental students and dentists. Based on the three-dimensional model proposed in this study, designing and manufacturing the implants and dental prosthesis are possible.

  17. Three-dimensional simulation of human teeth and its application in dental education and research

    PubMed Central

    Koopaie, Maryam; Kolahdouz, Sajad

    2016-01-01

    Background: A comprehensive database, comprising geometry and properties of human teeth, is needed for dentistry education and dental research. The aim of this study was to create a three-dimensional model of human teeth to improve the dental E-learning and dental research. Methods: In this study, a cross-section picture of the three-dimensional model of the teeth was used. CT-Scan images were used in the first method. The space between the cross- sectional images was about 200 to 500 micrometers. Hard tissue margin was detected in each image by Matlab (R2009b), as image processing software. The images were transferred to Solidworks 2015 software. Tooth border curve was fitted on B-spline curves, using the least square-curve fitting algorithm. After transferring all curves for each tooth to Solidworks, the surface was created based on the surface fitting technique. This surface was meshed in Meshlab-v132 software, and the optimization of the surface was done based on the remeshing technique. The mechanical properties of the teeth were applied to the dental model. Results: This study presented a methodology for communication between CT-Scan images and the finite element and training software through which modeling and simulation of the teeth were performed. In this study, cross-sectional images were used for modeling. According to the findings, the cost and time were reduced compared to other studies. Conclusion: The three-dimensional model method presented in this study facilitated the learning of the dental students and dentists. Based on the three-dimensional model proposed in this study, designing and manufacturing the implants and dental prosthesis are possible. PMID:28491836

  18. 3D spherical-cap fitting procedure for (truncated) sessile nano- and micro-droplets & -bubbles.

    PubMed

    Tan, Huanshu; Peng, Shuhua; Sun, Chao; Zhang, Xuehua; Lohse, Detlef

    2016-11-01

    In the study of nanobubbles, nanodroplets or nanolenses immobilised on a substrate, a cross-section of a spherical cap is widely applied to extract geometrical information from atomic force microscopy (AFM) topographic images. In this paper, we have developed a comprehensive 3D spherical-cap fitting procedure (3D-SCFP) to extract morphologic characteristics of complete or truncated spherical caps from AFM images. Our procedure integrates several advanced digital image analysis techniques to construct a 3D spherical-cap model, from which the geometrical parameters of the nanostructures are extracted automatically by a simple algorithm. The procedure takes into account all valid data points in the construction of the 3D spherical-cap model to achieve high fidelity in morphology analysis. We compare our 3D fitting procedure with the commonly used 2D cross-sectional profile fitting method to determine the contact angle of a complete spherical cap and a truncated spherical cap. The results from 3D-SCFP are consistent and accurate, while 2D fitting is unavoidably arbitrary in the selection of the cross-section and has a much lower number of data points on which the fitting can be based, which in addition is biased to the top of the spherical cap. We expect that the developed 3D spherical-cap fitting procedure will find many applications in imaging analysis.

  19. Occult spinal canal stenosis due to C-1 hypoplasia in children with Down syndrome.

    PubMed

    Matsunaga, Shunji; Imakiire, Takanori; Koga, Hiroaki; Ishidou, Yasuhiro; Sasaki, Hiromi; Taketomi, Eiji; Higo, Masaru; Tanaka, Hiroshi; Komiya, Setsuro

    2007-12-01

    Little has been published about subclinical spinal canal stenosis due to C-1 hypoplasia in patients with Down syndrome. In this paper the authors performed a matched comparison study with cross-sectional survey to investigate occult spinal canal stenosis due to C-1 hypoplasia in children with Down syndrome. A total of 102 children with Down syndrome ranging in age from 10 to 15 years were matched according to age and physique with 176 normal children. In all participants, the anteroposterior (AP) diameter of C-1 and the atlas-dens interval (ADI) were measured on plain lateral x-ray images of the cervical spine. The cross-sectional area of the atlas was also measured from a cross-sectional computed tomography image of C-1. Eight children (6.7%) with Down syndrome developed atlantoaxial subluxation associated with myelopathy. The difference in the ADI between the patients and controls was not statistically significant. The average AP diameter of the atlas and the spinal canal area along the cross-section of the atlas were significantly smaller in children with Down syndrome than those in the control group. Atlantoaxial instability and occult spinal canal stenosis due to C-1 hypoplasia in patients with Down syndrome may significantly increase the risk of myelopathy.

  20. THz pulsed time-domain imaging of an oil canvas painting: a case study of a painting by Pablo Picasso

    NASA Astrophysics Data System (ADS)

    Fukunaga, Kaori; Ikari, Tomofumi; Iwai, Kikuko

    2016-02-01

    The terahertz pulsed time-domain imaging technique and near-infrared observation were applied to investigate an oil painting on canvas by Pablo Picasso. The multilayer structure is clearly observed in cross-sectional image by terahertz pulsed time-domain imaging, and particular Cubism style lines were revealed under newly painted area by near-infrared image.

  1. Fourier Domain Iterative Approach to Optical Sectioning of 3d Translucent Objects for Ophthalmology Purposes

    NASA Astrophysics Data System (ADS)

    Razguli, A. V.; Iroshnikov, N. G.; Larichev, A. V.; Romanenko, T. E.; Goncharov, A. S.

    2017-05-01

    In this paper we deal with the problem of optical sectioning. This is a post processing step while investigating of 3D translucent medical objects based on rapid refocusing of the imaging system by the adaptive optics technique. Each image, captured in focal plane, can be represented as the sum of in-focus true section and out-of-focus images of the neighboring sections of the depth that are undesirable in the subsequent reconstruction of 3D object. The problem of optical sectioning under consideration is to elaborate a robust approach capable of obtaining a stack of cross section images purified from such distortions. For a typical sectioning statement arising in ophthalmology we propose a local iterative method in Fourier spectral plane. Compared to the non-local constant parameter selection for the whole spectral domain, the method demonstrates both improved sectioning results and a good level of scalability when implemented on multi-core CPUs.

  2. Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants.

    PubMed

    Maciel, Alfredo; Presbítero, Gerardo; Piña, Cristina; del Pilar Gutiérrez, María; Guzmán, José; Munguía, Nadia

    2015-01-01

    A clear understanding of the dependence of mechanical properties of bone remains a task not fully achieved. In order to estimate the mechanical properties in bones for implants, pore cross-section area, calcium content, and apparent density were measured in trabecular bone samples for human implants. Samples of fresh and defatted bone tissue, extracted from one year old bovines, were cut in longitudinal and transversal orientation of the trabeculae. Pore cross-section area was measured with an image analyzer. Compression tests were conducted into rectangular prisms. Elastic modulus presents a linear tendency as a function of pore cross-section area, calcium content and apparent density regardless of the trabecular orientation. The best variable to estimate elastic modulus of trabecular bone for implants was pore cross-section area, and affirmations to consider Nukbone process appropriated for marrow extraction in trabecular bone for implantation purposes are proposed, according to bone mechanical properties. Considering stress-strain curves, defatted bone is stiffer than fresh bone. Number of pores against pore cross-section area present an exponential decay, consistent for all the samples. These graphs also are useful to predict elastic properties of trabecular samples of young bovines for implants.

  3. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing

    PubMed Central

    Yun, S.H.; Vakoc, B.J.; Shishkov, M.; Desjardins, A.E.; Park, B.H.; de Boer, J.F.; Tearney, G.J.; Bouma, B.E.

    2009-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. Instruments capable of applying these measurements percutaneously in vivo may provide new insights into coronary atherosclerosis and acute myocardial infarction. We have developed a polarization sensitive optical frequency domain imaging (PS-OFDI) system that enables high-speed intravascular birefringence imaging through a fiber-optic catheter. The novel design of this system utilizes frequency multiplexing to simultaneously measure reflectance of two incident polarization states, overcoming concerns regarding temporal variations of the catheter fiber birefringence and spatial variations in the birefringence of the sample. We demonstrate circular cross-sectional birefringence imaging of a human coronary artery ex vivo through a flexible fiber-optic catheter with an A-line rate of 62 kHz and a ranging depth of 6.2 mm. PMID:18542183

  4. Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope

    NASA Astrophysics Data System (ADS)

    Wall, R. Andrew; Barton, Jennifer K.

    2012-08-01

    A side-viewing, 2.3-mm diameter, surface magnifying chromoendoscopy-optical coherence tomography (SMC-OCT) endoscope has been designed for simultaneous, nondestructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of the mouse colon. A 30,000 element fiber bundle is combined with single mode fibers, for SMC and OCT imaging, respectively. The distal optics consist of a gradient-index lens and spacer to provide a 1× magnification at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23-mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the gradient-index lens assembly. The resulting 1∶1 imaging system is capable of 3.9-μm lateral and 2.3-μm axial resolution in the OCT channel, and 125-lp/mm resolution across a 0.70-mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure.

  5. Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope

    PubMed Central

    Wall, R. Andrew

    2012-01-01

    Abstract. A side-viewing, 2.3-mm diameter, surface magnifying chromoendoscopy-optical coherence tomography (SMC-OCT) endoscope has been designed for simultaneous, nondestructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of the mouse colon. A 30,000 element fiber bundle is combined with single mode fibers, for SMC and OCT imaging, respectively. The distal optics consist of a gradient-index lens and spacer to provide a 1× magnification at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23-mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the gradient-index lens assembly. The resulting 1∶1 imaging system is capable of 3.9-µm lateral and 2.3-µm axial resolution in the OCT channel, and 125-lp/mm resolution across a 0.70-mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure. PMID:23224190

  6. Dynamic-focusing microscope objective for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Murali, Supraja; Rolland, Jannick

    2007-01-01

    Optical Coherence Tomography (OCT) is a novel optical imaging technique that has assumed significant importance in bio-medical imaging in the last two decades because it is non-invasive and provides accurate, high resolution images of three dimensional cross-sections of body tissue, exceeding the capabilities of the current predominant imaging technique - ultrasound. In this paper, the application of high resolution OCT, known as optical coherence microscopy (OCM) is investigated for in vivo detection of abnormal skin pathology for the early diagnosis of cancer. A main challenge in OCM is maintaining invariant resolution throughout the sample. The technology presented is based on a dynamic focusing microscope imaging probe conceived for skin imaging and the detection of abnormalities in the epithelium. A novel method for dynamic focusing in the biological sample is presented using variable-focus lens technology to obtain three dimensional images with invariant resolution throughout the cross-section and depth of the sample is presented and discussed. A low coherence broadband source centered at near IR wavelengths is used to illuminate the sample. The design, analysis and predicted performance of the dynamic focusing microscope objective designed for dynamic three dimensional imaging at 5μm resolution for the chosen broadband spectrum is presented.

  7. Spectral-domain optical coherence tomography for endoscopic imaging

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Li, Qiao; Li, Wanhui; Wang, Yi; Yu, Daoyin

    2007-02-01

    Optical coherence tomography (OCT) is an emerging cross-sectional imaging technology. It uses broadband light sources to achieve axial image resolutions on the few micron scale. OCT is widely applied to medical imaging, it can get cross-sectional image of bio-tissue (transparent and turbid) with non-invasion and non-touch. In this paper, the principle of OCT is presented and the crucial parameters of the system are discussed in theory. With analysis of different methods and medical endoscopic system's feature, a design which combines the spectral domain OCT (SDOCT) technique and endoscopy is put forward. SDOCT provides direct access to the spectrum of the optical signal. It is shown to provide higher imaging speed when compared to time domain OCT. At the meantime, a novel OCT probe which uses advanced micromotor to drive reflecting prism is designed according to alimentary tract endoscopic feature. A simple optical coherence tomography system has been developed based on a fiber-based Michelson interferometer and spectrometer. An experiment which uses motor to drive prism to realize rotating imaging is done. Images obtained with this spectral interferometer are presented. The results verify the feasibility of endoscopic optical coherence tomography system with rotating scan.

  8. Passive seismic imaging based on seismic interferometry: method and its application to image the structure around the 2013 Mw6.6 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Gu, N.; Zhang, H.

    2017-12-01

    Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.

  9. Electron-impact-ionization dynamics of S F6

    NASA Astrophysics Data System (ADS)

    Bull, James N.; Lee, Jason W. L.; Vallance, Claire

    2017-10-01

    A detailed understanding of the dissociative electron ionization dynamics of S F6 is important in the modeling and tuning of dry-etching plasmas used in the semiconductor manufacture industry. This paper reports a crossed-beam electron ionization velocity-map imaging study on the dissociative ionization of cold S F6 molecules, providing complete, unbiased kinetic energy distributions for all significant product ions. Analysis of these distributions suggests that fragmentation following single ionization proceeds via formation of S F5 + or S F3 + ions that then dissociate in a statistical manner through loss of F atoms or F2, until most internal energy has been liberated. Similarly, formation of stable dications is consistent with initial formation of S F4 2 + ions, which then dissociate on a longer time scale. These data allow a comparison between electron ionization and photoionization dynamics, revealing similar dynamical behavior. In parallel with the ion kinetic energy distributions, the velocity-map imaging approach provides a set of partial ionization cross sections for all detected ionic fragments over an electron energy range of 50-100 eV, providing partial cross sections for S2 +, and enables the cross sections for S F4 2 + from S F+ to be resolved.

  10. Potential benefit of a simultaneous, side-by-side display of contrast MDCT and echocardiography over routine sequential imaging for assessment of adult congenital heart disease: A preliminary study.

    PubMed

    Oe, Hiroki; Watanabe, Nobuhisa; Miyoshi, Toru; Osawa, Kazuhiro; Akagi, Teiji; Kanazawa, Susumu; Ito, Hiroshi

    2018-06-18

    Management of adult congenital heart disease (ACHD) patients requires understanding of its complex morphology and functional features. An innovative imaging technique has been developed to display a virtual multi-planar reconstruction obtained from contrast-enhanced multidetector-computed tomography (MDCT) corresponding to the same cross-sectional image from transthoracic echocardiography (TTE). The aim of this study is to assess the usefulness of this imaging technology in ACHD patients. This study consisted of 46 consecutive patients (30 women; mean age, 52±18 years old) with ACHD who had undergone contrast MDCT. All patients underwent TTE within a week of MDCT. An experienced sonographer who did not know the results of MDCT conducted a diagnosis using TTE and, then, using the new imaging technology. We studied whether this imaging technology provided additional or unexpected findings or makes more accurate diagnosis. In this imaging technology, MDCT cross-section provides higher-resolution image to the deep compared to corresponding TTE image. Depending on the MDCT section which can be arbitrarily set under the echo guide, we can diagnose unexpected or incremental lesions or more accurately assess the severity of the lesion in 27 patients (59%) compared to TTE study alone. This imaging technology was useful in the following situations: CONCLUSIONS: This integrated imaging technology provides incremental role over TTE in complex anatomy, and allows functional information in ACHD patients. Copyright © 2018 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  11. Dissociative-ionization cross sections for 12-keV-electron impact on CO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Pragya; Singh, Raj; Yadav, Namita

    The dissociative ionization of a CO{sub 2} molecule is studied at an electron energy of 12 keV using the multiple ion coincidence imaging technique. The absolute partial ionization cross sections and the precursor-specific absolute partial ionization cross sections of resulting fragment ions are obtained and reported. It is found that {approx}75% of single ionization, 22% of double ionization, and {approx}2% of triple ionization of the parent molecule contribute to the total fragment ion yield; quadruple ionization of CO{sub 2} is found to make a negligibly small contribution. Furthermore, the absolute partial ionization cross sections for ion-pair and ion-triple formation aremore » measured for nine dissociative ionization channels of up to a quadruply ionized CO{sub 2} molecule. In addition, the branching ratios for single-ion, ion-pair, and ion-triple formation are also determined.« less

  12. A clinically oriented comprehensive pictorial review of canine elbow anatomy.

    PubMed

    Constantinescu, Gheorghe M; Constantinescu, Ileana A

    2009-02-01

    The clinically oriented canine elbow anatomy in its complexity earned a high importance in surgery especially after multiple imaging modalities have been used in the benefit of diagnosis and treatment of canine elbow disorders. The bony, joint, and muscular structures, the arteries, the veins and the nerves supplying the elbow are described and illustrated in textbooks and atlases in the context of the comparative anatomy. Nevertheless, there is no publication focused on all of these structures described together from the skin to the bones in a systematic and topographic order, nor through cross and/or sagittal and coronal sections. The figures used in this article are original and drawn after dissection, cross, sagittal, and coronal sections of the elbow structures. The sections are correlated to the multiple imaging modalities shown in the next article.

  13. Morphologic features of basal cell carcinoma using the en-face mode in frequency domain optical coherence tomography.

    PubMed

    von Braunmühl, T; Hartmann, D; Tietze, J K; Cekovic, D; Kunte, C; Ruzicka, T; Berking, C; Sattler, E C

    2016-11-01

    Optical coherence tomography (OCT) has become a valuable non-invasive tool in the in vivo diagnosis of non-melanoma skin cancer, especially of basal cell carcinoma (BCC). Due to an updated software-supported algorithm, a new en-face mode - similar to the horizontal en-face mode in high-definition OCT and reflectance confocal microscopy - surface-parallel imaging is possible which, in combination with the established slice mode of frequency domain (FD-)OCT, may offer additional information in the diagnosis of BCC. To define characteristic morphologic features of BCC using the new en-face mode in addition to the conventional cross-sectional imaging mode for three-dimensional imaging of BCC in FD-OCT. A total of 33 BCC were examined preoperatively by imaging in en-face mode as well as cross-sectional mode in FD-OCT. Characteristic features were evaluated and correlated with histopathology findings. Features established in the cross-sectional imaging mode as well as additional features were present in the en-face mode of FD-OCT: lobulated structures (100%), dark peritumoral rim (75%), bright peritumoral stroma (96%), branching vessels (90%), compressed fibrous bundles between lobulated nests ('star shaped') (78%), and intranodular small bright dots (51%). These features were also evaluated according to the histopathological subtype. In the en-face mode, the lobulated structures with compressed fibrous bundles of the BCC were more distinct than in the slice mode. FD-OCT with a new depiction for horizontal and vertical imaging modes offers additional information in the diagnosis of BCC, especially in nodular BCC, and enhances the possibility of the evaluation of morphologic tumour features. © 2016 European Academy of Dermatology and Venereology.

  14. Impact of CT perfusion imaging on the assessment of peripheral chronic pulmonary thromboembolism: clinical experience in 62 patients.

    PubMed

    Le Faivre, Julien; Duhamel, Alain; Khung, Suonita; Faivre, Jean-Baptiste; Lamblin, Nicolas; Remy, Jacques; Remy-Jardin, Martine

    2016-11-01

    To evaluate the impact of CT perfusion imaging on the detection of peripheral chronic pulmonary embolisms (CPE). 62 patients underwent a dual-energy chest CT angiographic examination with (a) reconstruction of diagnostic and perfusion images; (b) enabling depiction of vascular features of peripheral CPE on diagnostic images and perfusion defects (20 segments/patient; total: 1240 segments examined). The interpretation of diagnostic images was of two types: (a) standard (i.e., based on cross-sectional images alone) or (b) detailed (i.e., based on cross-sectional images and MIPs). The segment-based analysis showed (a) 1179 segments analyzable on both imaging modalities and 61 segments rated as nonanalyzable on perfusion images; (b) the percentage of diseased segments was increased by 7.2 % when perfusion imaging was compared to the detailed reading of diagnostic images, and by 26.6 % when compared to the standard reading of images. At a patient level, the extent of peripheral CPE was higher on perfusion imaging, with a greater impact when compared to the standard reading of diagnostic images (number of patients with a greater number of diseased segments: n = 45; 72.6 % of the study population). Perfusion imaging allows recognition of a greater extent of peripheral CPE compared to diagnostic imaging. • Dual-energy computed tomography generates standard diagnostic imaging and lung perfusion analysis. • Depiction of CPE on central arteries relies on standard diagnostic imaging. • Detection of peripheral CPE is improved by perfusion imaging.

  15. [Interventional radiology and radiation therapy].

    PubMed

    Hadjiev, Janaki

    2015-04-26

    The revolutionary role of modern cross-sectional imaging, the improved target definition in CT/MRI image guided brachytherapy, the precise topography for applicator and anatomy contribute to a better knowledge and management of tumors and critical organs. Further developments and functional imaging is expected to lead to a broad use of patient tailored therapy in the field of interventional radiation oncology.

  16. Cross Section High Resolution Imaging of Polymer-Based Materials

    NASA Astrophysics Data System (ADS)

    Delaportas, D.; Aden, P.; Muckle, C.; Yeates, S.; Treutlein, R.; Haq, S.; Alexandrou, I.

    This paper describes a methodology for preparing cross sections of organic layers suitable for transmission electron microscopy (TEM) at high resolution. Our principal aim is to prepare samples that are tough enough to allow the slicing into sub-150 nm sections. We also need strong contrast at the organic layer area to make it identifiable during TEM. Our approach is to deposit organic layers on flexible substrates and prepare thin cross sections using ultra-microtomy. We sandwich the organic layer between two metal thin films in order to isolate it and improve contrast. Our methodology is used to study the microstructure of polymer/nanotube composites, allowing us to accurately measure the organic layer thickness, determine nanotube dispersion and assess the effect of nanotube clustering on film structural stability.

  17. Neutron Imaging Developments at LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, Ron; Hunter, James; Schirato, Richard; Vogel, Sven; Swift, Alicia; Ickes, Tim; Ward, Bill; Losko, Adrian; Tremsin, Anton

    2015-10-01

    Neutron imaging is complementary to x-ray imaging because of its sensitivity to light elements and greater penetration of high-Z materials. Energy-resolved neutron imaging can provide contrast enhancements for elements and isotopes due to the variations with energy in scattering cross sections due to nuclear resonances. These cross section differences exist due to compound nuclear resonances that are characteristic of each element and isotope, as well as broader resonances at higher energies. In addition, multi-probe imaging, such as combined photon and neutron imaging, is a powerful tool for discerning properties and features in materials that cannot be observed with a single probe. Recently, we have demonstrated neutron imaging, both radiography and computed tomography, using the moderated (Lujan Center) and high-energy (WNR facility) neutron sources at LANSCE. Flat panel x-ray detectors with suitable scintillator-converter screens provide good sensitivity for both low and high neutron energies. Micro-Channel-Plate detectors and iCCD scintillator camera systems that provide the fast time gating needed for energy-resolved imaging have been demonstrated as well. Examples of recent work will be shown including fluid flow in plants and imaging through dense thick objects. This work is funded by the US Department of Energy, National Nuclear Security Administration, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  18. A novel three-dimensional image reconstruction method for near-field coded aperture single photon emission computerized tomography

    PubMed Central

    Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa

    2009-01-01

    Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769

  19. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.

    PubMed

    Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G; Ko, Tony; Schuman, Joel S; Kowalczyk, Andrzej; Duker, Jay S

    2005-10-01

    To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high-density data sets with large numbers of transverse positions on the retina, which reduces the possibility of missing focal pathologies. In addition to providing image information such as OCT cross-sectional images, OCT fundus images, and 3D rendering, quantitative measurement and mapping of intraretinal layer thickness and topographic features of the optic disc are possible. We hope that 3D OCT imaging may help to elucidate the structural changes associated with retinal disease as well as improve early diagnosis and monitoring of disease progression and response to treatment.

  20. A novel interpolation approach for the generation of 3D-geometric digital bone models from image stacks

    PubMed Central

    Mittag, U.; Kriechbaumer, A.; Rittweger, J.

    2017-01-01

    The authors propose a new 3D interpolation algorithm for the generation of digital geometric 3D-models of bones from existing image stacks obtained by peripheral Quantitative Computed Tomography (pQCT) or Magnetic Resonance Imaging (MRI). The technique is based on the interpolation of radial gray value profiles of the pQCT cross sections. The method has been validated by using an ex-vivo human tibia and by comparing interpolated pQCT images with images from scans taken at the same position. A diversity index of <0.4 (1 meaning maximal diversity) even for the structurally complex region of the epiphysis, along with the good agreement of mineral-density-weighted cross-sectional moment of inertia (CSMI), demonstrate the high quality of our interpolation approach. Thus the authors demonstrate that this interpolation scheme can substantially improve the generation of 3D models from sparse scan sets, not only with respect to the outer shape but also with respect to the internal gray-value derived material property distribution. PMID:28574415

  1. 1550 nm superluminescent diode and anti-Stokes effect CCD camera based optical coherence tomography for full-field optical metrology

    NASA Astrophysics Data System (ADS)

    Kredzinski, Lukasz; Connelly, Michael J.

    2011-06-01

    Optical Coherence Tomography (OCT) is a promising non-invasive imaging technology capable of carrying out 3D high-resolution cross-sectional images of the internal microstructure of examined material. However, almost all of these systems are expensive, requiring the use of complex optical setups, expensive light sources and complicated scanning of the sample under test. In addition most of these systems have not taken advantage of the competitively priced optical components available at wavelength within the main optical communications band located in the 1550 nm region. A comparatively simple and inexpensive full-field OCT system (FF-OCT), based on a superluminescent diode (SLD) light source and anti-stokes imaging device was constructed, to perform 3D cross-sectional imaging. This kind of inexpensive setup with moderate resolution could be easily applicable in low-level biomedical and industrial diagnostics. This paper involves calibration of the system and determines its suitability for imaging structures of biological tissues such as teeth, which has low absorption at 1550 nm.

  2. Increased anatomic severity predicts outcomes: Validation of the American Association for the Surgery of Trauma's Emergency General Surgery score in appendicitis.

    PubMed

    Hernandez, Matthew C; Aho, Johnathon M; Habermann, Elizabeth B; Choudhry, Asad J; Morris, David S; Zielinski, Martin D

    2017-01-01

    Determination and reporting of disease severity in emergency general surgery lacks standardization. Recently, the American Association for the Surgery of Trauma (AAST) proposed an anatomic severity grading system. We aimed to validate this system in patients with appendicitis and determine if cross-sectional imaging correlates with disease severity at operation. Patients 18 years or older undergoing treatment for acute appendicitis between 2013 and 2015 were identified. Baseline demographics, procedure types were recorded, and AAST grades were assigned based on intraoperative and radiologic findings. Outcomes including length of stay, 30-day mortality, and complications based on Clavien-Dindo categories and National Surgical Quality Improvement Program variables. Summary statistical univariate, nominal logistic, and standard least squares analyses were performed comparing AAST grade with key outcomes. Bland-Altman analysis compared operative findings with preoperative cross-sectional imaging to compare assigning grades. Three hundred thirty-four patients with mean (±SD) age of 39.3 years (±16.5) were included (53% men), and all patients had cross-sectional imaging. Two hundred ninety-nine underwent appendectomy, and 85% completed laparoscopic. Thirty-day mortality rate was 0.9%, complication rate was 21%. Increased (median [interquartile range, IQR]) AAST grade was recorded in patients with complications (2 [1-4]) compared with those without (1 [1-1], p = 0.001). For operative management, (median [IQR]) AAST grades were significantly associated with procedure type: laparoscopic (1 [1-1]), open (4 [2-5]), conversion to open (3 [1-4], p = 0.001). Increased (median [IQR]) AAST grades were significantly associated in nonoperative management: patients having a complication had a higher median AAST grade (4 [3-5]) compared with those without (3 [2-3], p = 0.001). Bland-Altman analysis comparing AAST grade and cross-sectional imaging demonstrated no difference (-0.02 ± 0.02; p = 0.2; coefficient of repeatability 0.9). The AAST grading system is valid in our population. Increased AAST grade is associated with open procedures, complications, and length of stay. The AAST emergency general surgery grade determined by preoperative imaging strongly correlated to operative findings. Epidemiologic/prognostic study, level III.

  3. Increased anatomic severity predicts outcomes: validation of the American Association for the Surgery of Trauma's emergency general surgery score in appendicitis

    PubMed Central

    Hernandez, Matthew; Aho, Johnathan M.; Habermann, Elizabeth B.; Choudhry, Asad; Morris, David; Zielinski, Martin

    2016-01-01

    Background Determination and reporting of disease severity in emergency general surgery (EGS) lacks standardization. Recently, the American Association for the Surgery of Trauma (AAST) proposed an anatomic severity grading system. We aimed to validate this system in patients with appendicitis, and determine if cross sectional imaging correlates with disease severity at operation. Methods Patients 18 years or older undergoing treatment for acute appendicitis between 2013 and 2015 were identified. Baseline demographics, procedure types were recorded, and AAST grades were assigned based on intraoperative and radiologic findings. Outcomes including length of stay, 30 day mortality, and complications based on Clavien-Dindo categories and National Surgical Quality Improvement Program variables. Summary statistical univariate, nominal logistic and standard least squares analyses were performed comparing AAST grade with key outcomes. Bland-Altman analysis compared operative findings to preoperative cross sectional imaging to compare assigning grades. Results 334 patients with mean (±SD) age of 39.3 years (±16.5) were included (53% male) and all patients had cross sectional imaging. 299 underwent appendectomy, and 85% completed laparoscopic. 30 day mortality rate was 0.9%, complication rate 21%. Increased median [IQR] AAST grade was recorded in patients with complications 2 [1-4] compared to those without 1 [1-1], p=0.001. For operative management, a median [IQR] AAST grades were significantly associated with procedure type: laparoscopic 1 [1-1], open 4 [2-5] conversion to open 3 [1-4], p=0.001. Increased median [IQR] AAST grades were significantly associated in non-operative management: patients having a complication had a higher median AAST grade of 4 [3-5], compared to those without 3 [2-3], p=0.001. Bland Altman analysis comparing AAST grade and cross sectional imaging demonstrated no difference; −0.02 ±0.02 p = 0.2 coefficient of repeatability 0.9. Conclusions The AAST grading system is valid in our population. Increased AAST grade is associated with open procedures, complications, and length of stay. AAST EGS grade determined by preoperative imaging strongly correlated to operative findings. PMID:27805996

  4. Methods and apparatus for transparent display using scattering nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2017-06-14

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  5. Methods and apparatus for transparent display using scattering nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2016-05-10

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  6. Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork

    PubMed Central

    Villafana, Tana Elizabeth; Brown, William P.; Delaney, John K.; Palmer, Michael; Warren, Warren S.; Fischer, Martin C.

    2014-01-01

    The layering structure of a painting contains a wealth of information about the artist's choice of materials and working methods, but currently, no 3D noninvasive method exists to replace the taking of small paint samples in the study of the stratigraphy. Here, we adapt femtosecond pump-probe imaging, previously shown in tissue, to the case of the color palette in paintings, where chromophores have much greater variety. We show that combining the contrasts of multispectral and multidelay pump-probe spectroscopy permits nondestructive 3D imaging of paintings with molecular and structural contrast, even for pigments with linear absorption spectra that are broad and relatively featureless. We show virtual cross-sectioning capabilities in mockup paintings, with pigment separation and nondestructive imaging on an intact 14th century painting (The Crucifixion by Puccio Capanna). Our approach makes it possible to extract microscopic information for a broad range of applications to cultural heritage. PMID:24449855

  7. A new detector for low Pt physics

    NASA Astrophysics Data System (ADS)

    Da Via, C.; DeSalvo, R.; Lundin, M.; Mondardini, M. R.; Orear, J.; Shimizu, T.; Shinji, O.

    1992-12-01

    Elastic pp (or poverlinep) scattering at microradian angles provides a measurement of the total pp (or poverlinep) cross sectio elastic scattering cross section with t (the square of the momentum transfer) and the ratio of real to imaginary scattering amplitudes, as well as an absolute luminosity calibration. A detector is proposed which can measure elastic scattering and small angle processes which are usually missed by a typical 4π detector. The detector consists of a bundle of scintillating fibers. Images from these fibers are transported via glass fiber optics and intensified with two proximity focused image intensifiers. Images are then reduced via an image taper and read out with a charge coupled device (CCD).

  8. Stratigraphic Framework of Cambrian and Ordovician Rocks in the Appalachian Basin from Sequatchie County, Tennessee, through Eastern Kentucky, to Mingo County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Crangle, Robert D.; Repetski, John E.; Harris, Anita G.

    2008-01-01

    Cross section H-H' is the seventh in a series of restored cross sections constructed by the lead author to show the stratigraphic framework of Cambrian and Ordovician rocks in the Appalachian basin from Pennsylvania to Tennessee. The sections show complexly intertongued carbonate and siliciclastic lithofacies, marked thickness variations, key marker horizons, unconformities, stratigraphic nomenclature of the Cambrian and Ordovician sequence, and major faults that offset Proterozoic basement and overlying lower Paleozoic rocks. Several of the drill holes along the cross section have yielded a variety of whole and (or) fragmented conodont elements. The identifiable conodonts are used to differentiate strata of Late Cambrian, Early Ordovician, and Middle Ordovician age, and their conodont color alteration index (CAI) values are used to establish the thermal maturity of the sequence. Previous cross sections in this series are G-G', F-F', E-E', D-D', C-C', and B-B'. Many of these cross sections (B-B', C-C', D-D', and G-G') have been improved with the addition of gamma-ray log traces, converted to digital images, and made accessible on the Web.

  9. Digital Reconstruction of 3D Polydisperse Dry Foam

    NASA Astrophysics Data System (ADS)

    Chieco, A.; Feitosa, K.; Roth, A. E.; Korda, P. T.; Durian, D. J.

    2012-02-01

    Dry foam is a disordered packing of bubbles that distort into familiar polyhedral shapes. We have implemented a method that uses optical axial tomography to reconstruct the internal structure of a dry foam in three dimensions. The technique consists of taking a series of photographs of the dry foam against a uniformly illuminated background at successive angles. By summing the projections we create images of the foam cross section. Image analysis of the cross sections allows us to locate Plateau borders and vertices. The vertices are then connected according to Plateau's rules to reconstruct the internal structure of the foam. Using this technique we are able to visualize a large number of bubbles of real 3D foams and obtain statistics of faces and edges.

  10. Imaging of dental material by polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.

    1999-05-01

    Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.

  11. Endoscopy and cross-sectional imaging for assessing Crohn׳s disease activity

    PubMed Central

    Stidham, Ryan W.; Cross, Raymond K.

    2016-01-01

    Crohn’s disease (CD) is principally characterized by chronic and recurrent inflammation of the gastrointestinal tract, most commonly found in the ileo-colonic region. The chronicity and severity of intestinal inflammation together contribute to progressive, cumulative, deep, transmural intestinal damage, including stricturing, obstruction, abscesses, and fistulae. Both intestinal inflammation and its chronic complications result in a range of symptoms subsequently leading to patient presentations with diarrhea, abdominal pain, and anemia related to intestinal blood loss. Measuring disease activity and severity are essential for decision of treatment intensity early in the disease course and longitudinal monitoring of therapeutic efficacy. This review will summarize the transition from subjective symptoms driving disease activity indices, into increasingly objective and quantitative measures of intestinal injury by direct mucosal assessment (endoscopy), cross-sectional imaging, and surrogate biomarkers. Specific commentary on intestinal stricture and perianal fistula assessment and management are presented in accompanying sections of this series. PMID:28458507

  12. Endoscopy and cross-sectional imaging for assessing Crohn׳s disease activity.

    PubMed

    Stidham, Ryan W; Cross, Raymond K

    2016-07-01

    Crohn's disease (CD) is principally characterized by chronic and recurrent inflammation of the gastrointestinal tract, most commonly found in the ileo-colonic region. The chronicity and severity of intestinal inflammation together contribute to progressive, cumulative, deep, transmural intestinal damage, including stricturing, obstruction, abscesses, and fistulae. Both intestinal inflammation and its chronic complications result in a range of symptoms subsequently leading to patient presentations with diarrhea, abdominal pain, and anemia related to intestinal blood loss. Measuring disease activity and severity are essential for decision of treatment intensity early in the disease course and longitudinal monitoring of therapeutic efficacy. This review will summarize the transition from subjective symptoms driving disease activity indices, into increasingly objective and quantitative measures of intestinal injury by direct mucosal assessment (endoscopy), cross-sectional imaging, and surrogate biomarkers. Specific commentary on intestinal stricture and perianal fistula assessment and management are presented in accompanying sections of this series.

  13. Comparison of magnetic resonance imaging with cross-sectional echocardiography in the assessment of left ventricular mass in children without heart disease and in aortic isthmic coarctation.

    PubMed

    Vogel, M; Stern, H; Bauer, R; Bühlmeyer, K

    1992-04-01

    Although left ventricular (LV) mass may be important to judge effects of left-sided cardiac obstruction or hypertension, reproducible noninvasively determined normal data in the pediatric age group are scarce. To validate cross-sectional echocardiographic LV mass determination, our data were compared with LV mass assessed by magnetic resonance imaging (MRI). MRI was considered to be a good reference method because there is usually no problem in defining endo- and epicardial borders with MRI. LV mass was assessed in 14 children aged 5.3 years (10 days to 14.7 years) with a mean body surface area of 0.78 m2 (range 0.25 to 1.61). With cross-sectional echocardiography the epicardial and endocardial volumes were calculated using a Simpsons rule algorithm in the apical 2- and 4-chamber view. The difference between epi- and endocardial volumes was multiplied by 1.05 to yield the mass. Mass was assessed with MRI using a multislice technique; the area of each myocardial slice was calculated and multiplied with the slice thickness, and the resultant slice volumes were added to obtain the myocardial volume. On cross-sectional echocardiography, the mass was 55 g (range 12 to 126) or 64 g/m2 (range 46 to 79); on MRI it was 60 g (range 33 to 87) or 69 g/m2 (range 46 to 89). Regression analysis yielded an r value of 0.98 with a standard error of the estimate of 5.7 g or a 10% difference. In older children, LV mass determined by MRI was bigger than the one derived by echocardiography. It is concluded that cross-sectional echocardiography can reliably assess LV myocardial mass in pediatric patients.

  14. Single cross-sectional area of pectoralis muscle by computed tomography - correlation with bioelectrical impedance based skeletal muscle mass in healthy subjects.

    PubMed

    Kim, Young Saing; Kim, Eun Young; Kang, Shin Myung; Ahn, Hee Kyung; Kim, Hyung Sik

    2017-09-01

    Skeletal muscle depletion is an important prognostic factor in patients with chronic obstructive pulmonary disease (COPD); a recent study demonstrated significant correlations between pectoralis muscle area on an axial CT image and COPD-related traits. The purpose of this study was to evaluate the relation between pectoralis muscle areas on CT scans and total body skeletal muscle mass (SMM) in healthy subjects. For 434 subjects that underwent a low-dose chest CT and bioelectrical impedance analysis (BIA) during health screening from January to June of 2014, cross-sectional area of pectoralis muscles were measured in CT scans. Pearson's correlation and multiple linear regression analysis were used to assess the relationship between cross-sectional CT areas of pectoralis muscles and BIA-assessed SMMs. Mean age was 50 ± 10 years (78·8% were male). The mean cross-sectional area of pectoralis muscles was 24·1 cm 2  ± 6·8. A moderate correlation was observed between pectoralis muscle area and BIA-based SMM (r = 0·665, P<0.001). Multivariable analysis showed CT determined pectoralis muscle area was significantly associated with BIA-assessed SMM after adjusting for gender, weight, height and age (β = 0·14 ± 0·02, P<0·001). Cross-sectional area of the pectoralis muscles on single axial CT images shows moderate correlation with total body SMM determined by BIA in healthy subjects. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  15. Comparative evaluation of the cadaveric and computed tomographic features of the coelomic cavity in the green iguana (Iguana iguana), black and white tegu (Tupinambis merianae) and bearded dragon (Pogona vitticeps).

    PubMed

    Banzato, T; Selleri, P; Veladiano, I A; Zotti, A

    2013-12-01

    Contrast-enhanced computed tomographic studies of the coelomic cavity in four green iguanas, four black and white tegus and four bearded dragons were performed using a conventional CT scanner. Anatomical reference cross sections were obtained from four green iguana, four black and white tegu and six bearded dragon cadavers; the specimens were stored in a -20°C freezer for 24 h then sliced into 5-mm intervals. The frozen sections were cleaned with water and photographed on both sides. The individual anatomical structures were identified by means of the available literature; these were labelled first on the anatomical images and then matched to the corresponding computed tomography images. The results provide an atlas of the normal cross-sectional and computed tomographic anatomy of the coelomic cavity in the green iguana, the black and white tegu and the bearded dragon, which is useful in the interpretation of any imaging modality. © 2013 Blackwell Verlag GmbH.

  16. Atelectasis observed by computerized tomography after Caesarean section.

    PubMed

    Meira, M N C; Carvalho, C R R; Galizia, M S; Borges, J B; Kondo, M M; Zugaib, M; Vieira, J E

    2010-06-01

    Atelectasis after either vaginal or Caesarean delivery has not been adequately quantified. This study addresses the hypothesis that atelectasis may be worse in women who undergo Caesarean section when compared with vaginal delivery under regional anaesthesia. Twenty healthy non-smoking women submitted to a chest computed tomography (CT) 2 h after delivery in a University Hospital, who had experienced vaginal delivery (n=10) under combined spinal-epidural analgesia or a Caesarean section (n=10) under spinal anaesthesia, were evaluated. The percentage cross-sectional area of atelectasis in dependent lung regions were measured from the CT images obtained at cross-section of the xiphoid process and the top of the diaphragm. The percentage cross-sectional area of atelectasis was 3.95% in the vaginal delivery group and 14.1% in the Caesarean group (P<0.001, Mann-Whitney rank sum test). These results suggested that pulmonary atelectasis is greater after Caesarean section delivery under spinal anaesthesia than after vaginal delivery with combined spinal-epidural analgesia.

  17. Holographic Reciprocity Law Failure, with Applications to the Three-Dimensional Display of Medical Data

    NASA Astrophysics Data System (ADS)

    Johnson, Kristina Mary

    In 1973 the computerized tomography (CT) scanner revolutionized medical imaging. This machine can isolate and display in two-dimensional cross-sections, internal lesions and organs previously impossible to visualize. The possibility of three-dimensional imaging however is not yet exploited by present tomographic systems. Using multiple-exposure holography, three-dimensional displays can be synthesizing from two-dimensional CT cross -sections. A multiple-exposure hologram is an incoherent superposition of many individual holograms. Intuitively it is expected that holograms recorded with equal energy will reconstruct images with equal brightness. It is found however, that holograms recorded first are brighter than holograms recorded later in the superposition. This phenomena is called Holographic Reciprocity Law Failure (HRLF). Computer simulations of latent image formation in multiple-exposure holography are one of the methods used to investigate HRLF. These simulations indicate that it is the time between individual exposures in the multiple -exposure hologram that is responsible for HRLF. This physical parameter introduces an asymmetry into the latent image formation process that favors the signal of previously recorded holograms over holograms recorded later in the superposition. The origin of this asymmetry lies in the dynamics of latent image formation, and in particular in the decay of single-atom latent image specks, which have lifetimes that are short compared to typical times between exposures. An analytical model is developed for a double exposure hologram that predicts a decrease in the brightness of the second exposure as compared to the first exposure as the time between exposures increases. These results are consistent with the computer simulations. Experiments investigating the influence of this parameter on the diffraction efficiency of reconstructed images in a double exposure hologram are also found to be consistent with the computer simulations and analytical results. From this information, two techniques are presented that correct for HRLF, and succeed in reconstructing multiple holographic images of CT cross-sections with equal brightness. The multiple multiple-exposure hologram is a new hologram that increases the number of equally bright images that can be superimposed on one photographic plate.

  18. Fiber Longitudinal Measurements for Predicting White Speck Contents of Dyed Cotton Fabrics

    USDA-ARS?s Scientific Manuscript database

    Fiber Image Analysis System (FIAS) was developed to provide an automatic method for measuring cotton maturity from fiber snippets or cross-sections . An uncombed cotton bundle is chopped and sprayed on a microscopic slide. The snippets are imaged sequentially on an microscope and measured with custo...

  19. Self-Esteem and Body Image Perception in a Sample of University Students

    ERIC Educational Resources Information Center

    Pop, Cristiana

    2016-01-01

    Problem Statement: This cross-sectional study was conducted to determine the relationship established between self-esteem and body image dissatisfaction, as subjective variables among young, female Romanian university students. Purpose of Study: We hypothesize that young women's body dissatisfaction is related to their self-esteem level. The…

  20. Young Girls' Eating Attitudes and Body Image Dissatisfaction: Associations with Communication and Modeling

    ERIC Educational Resources Information Center

    Kichler, Jessica C.; Crowther, Janis H.

    2009-01-01

    The relationships among communication, modeling, body image dissatisfaction, and maladaptive eating attitudes and behaviors in preadolescent girls were investigated in a cross-sectional study of 69 girls in fourth through sixth grade and their mothers. Participants completed questionnaires assessing familial and peer influences, body image…

  1. Higher-Order Optical Modes and Nanostructures for Detection and Imaging Applications

    NASA Astrophysics Data System (ADS)

    Schultz, Zachary D.; Levin, Ira W.

    2010-08-01

    Raman spectroscopy offers a label-free, chemically specific, method of detecting molecules; however, the low cross-section attendant to this scattering process has hampered trace detection. The realization that scattering is enhanced at a metallic surface has enabled new techniques for spectroscopic and imaging analysis.

  2. High-Resolution View of Cross-Section Through a Mars Ripple

    NASA Image and Video Library

    2012-10-11

    This image shows the wall of a scuffmark NASA Curiosity made in a windblown ripple of Martian sand with its wheel. The upper half of the image shows a small portion of the side wall of the scuff and a little bit of the floor of the scuff.

  3. Soft-Tissue Infections and Their Imaging Mimics: From Cellulitis to Necrotizing Fasciitis.

    PubMed

    Hayeri, Mohammad Reza; Ziai, Pouya; Shehata, Monda L; Teytelboym, Oleg M; Huang, Brady K

    2016-10-01

    Infection of the musculoskeletal system can be associated with high mortality and morbidity if not promptly and accurately diagnosed. These infections are generally diagnosed and managed clinically; however, clinical and laboratory findings sometimes lack sensitivity and specificity, and a definite diagnosis may not be possible. In uncertain situations, imaging is frequently performed to confirm the diagnosis, evaluate the extent of the disease, and aid in treatment planning. In particular, cross-sectional imaging, including computed tomography and magnetic resonance imaging, provides detailed anatomic information in the evaluation of soft tissues due to their inherent high spatial and contrast resolution. Imaging findings of soft-tissue infections can be nonspecific and can have different appearances depending on the depth and anatomic extent of tissue involvement. Although many imaging features of infectious disease can overlap with noninfectious processes, imaging can help establish the diagnosis when combined with the clinical history and laboratory findings. Radiologists should be familiar with the spectrum of imaging findings of soft-tissue infections to better aid the referring physician in managing these patients. The aim of this article is to review the spectrum of soft-tissue infections using a systematic anatomic compartment approach. We discuss the clinical features of soft-tissue infections, their imaging findings with emphasis on cross-sectional imaging, their potential mimics, and clinical management. © RSNA, 2016.

  4. A coupled-cluster study of photodetachment cross sections of closed-shell anions

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Decleva, Piero; Coriani, Sonia

    2014-11-01

    We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H-, Li-, Na-, F-, Cl-, and OH-. The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.

  5. A coupled-cluster study of photodetachment cross sections of closed-shell anions.

    PubMed

    Cukras, Janusz; Decleva, Piero; Coriani, Sonia

    2014-11-07

    We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H(-), Li(-), Na(-), F(-), Cl(-), and OH(-). The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.

  6. Modeling the Effects of Solar Cell Distribution on Optical Cross Section for Solar Panel Simulation

    DTIC Science & Technology

    2012-09-01

    cell material. The solar panel was created as a CAD model and simulated with the imaging facility parameters with TASAT. TASAT uses a BRDF to apply...1 MODELING THE EFFECTS OF SOLAR CELL DISTRIBUTION ON OPTICAL CROSS SECTION FOR SOLAR PANEL SIMULATION Kelly Feirstine Meiling Klein... model of a solar panel with various solar cell tip and tilt distribution statistics. Modeling a solar panel as a single sheet of “solar cell” material

  7. Carotid Plaque Morphological Classification Compared With Biomechanical Cap Stress: Implications for a Magnetic Resonance Imaging-Based Assessment.

    PubMed

    Gijsen, Frank J H; Nieuwstadt, Harm A; Wentzel, Jolanda J; Verhagen, Hence J M; van der Lugt, Aad; van der Steen, Antonius F W

    2015-08-01

    Two approaches to target plaque vulnerability-a histopathologic classification scheme and a biomechanical analysis-were compared and the implications for noninvasive risk stratification of carotid plaques using magnetic resonance imaging were assessed. Seventy-five histological plaque cross sections were obtained from carotid endarterectomy specimens from 34 patients (>70% stenosis) and subjected to both a Virmani histopathologic classification (thin fibrous cap atheroma with <0.2-mm cap thickness, presumed vulnerable) and a peak cap stress computation (<140 kPa: presumed stable; >300 kPa: presumed vulnerable). To demonstrate the implications for noninvasive plaque assessment, numeric simulations of a typical carotid magnetic resonance imaging protocol were performed (0.62×0.62 mm(2) in-plane acquired voxel size) and used to obtain the magnetic resonance imaging-based peak cap stress. Peak cap stress was generally associated with histological classification. However, only 16 of 25 plaque cross sections could be labeled as high-risk (peak cap stress>300 kPa and classified as a thin fibrous cap atheroma). Twenty-eight of 50 plaque cross sections could be labeled as low-risk (a peak cap stress<140 kPa and not a thin fibrous cap atheroma), leading to a κ=0.39. 31 plaques (41%) had a disagreement between both classifications. Because of the limited magnetic resonance imaging voxel size with regard to cap thickness, a noninvasive identification of only a group of low-risk, thick-cap plaques was reliable. Instead of trying to target only vulnerable plaques, a more reliable noninvasive identification of a select group of stable plaques with a thick cap and low stress might be a more fruitful approach to start reducing surgical interventions on carotid plaques. © 2015 American Heart Association, Inc.

  8. Ice Layer Cross-Section In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This image of shows a cross sectional view of the ice layers. Note the subtle peach banding on the left side of the image. The time variation that the bands represent is not yet understood.

    Image information: VIS instrument. Latitude 83.5, Longitude 118.2 East (241.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Measurement of anterior tibial muscle size using real-time ultrasound imaging.

    PubMed

    Martinson, H; Stokes, M J

    1991-01-01

    Cross-sectional images of the anterior tibial muscle group were obtained using real-time ultrasound scanning in 17 normal women. From photographs taken of the images, the cross-sectional area (CSA) and two linear measurements of muscle cross-section were determined. A measurement of the shortest distance of the muscle depth was termed DS, and a measurement of the longest distance through the muscle group was termed DL. Both linear dimensions showed a positive correlation with CSA and the best correlations were obtained when the dimensions were squared or combined (DS x DL). The correlation values were: CSA vs DS2, r = 0.9; CSA vs DL2, r = 0.75 and CSA vs DS x DL, r = 0.88. An approximate value for CSA could be calculated from DS2 by the equation 2 x DS2 + 1. A shape ratio, obtained by dividing DL by DS, was consistent within the group [mean 2.1 (SD 0.2)] and characterised the muscle geometrically. The CSA of repeated scans was assessed for repeatability between-days and between-scans by analysis of variance and the coefficient of variation (CV) calculated. Areas were repeatable between-days (CV 6.5%) and between-scans (CV 3.6%). Linear dimensions of the anterior tibial muscle group reflected CSA and their potential for assessing changes in muscle size with atrophy and hypertrophy have yet to be established.

  10. Observation of correlated excitations in bimolecular collisions

    NASA Astrophysics Data System (ADS)

    Gao, Zhi; Karman, Tijs; Vogels, Sjoerd N.; Besemer, Matthieu; van der Avoird, Ad; Groenenboom, Gerrit C.; van de Meerakker, Sebastiaan Y. T.

    2018-02-01

    Although collisions between atoms and molecules are largely understood, collisions between two molecules have proven much harder to study. In both experiment and theory, our ability to determine quantum-state-resolved bimolecular cross-sections lags behind their atom-molecule counterparts by decades. For many bimolecular systems, even rules of thumb—much less intuitive understanding—of scattering cross sections are lacking. Here, we report the measurement of state-to-state differential cross sections on the collision of state-selected and velocity-controlled nitric oxide (NO) radicals and oxygen (O2) molecules. Using velocity map imaging of the scattered NO radicals, the full product-pair correlations of rotational excitation that occurs in both collision partners from individual encounters are revealed. The correlated cross sections show surprisingly good agreement with quantum scattering calculations using ab initio NO-O2 potential energy surfaces. The observations show that the well-known energy-gap law that governs atom-molecule collisions does not generally apply to bimolecular excitation processes, and reveal a propensity rule for the vector correlation of product angular momenta.

  11. Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.; Sertel, Kubilay

    2015-07-01

    We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.

  12. Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes.

    PubMed

    Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Seo, Jin Keun; Lee, June-Yub; Baek, Woon Sik

    2003-07-07

    In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor.

  13. Optical biopsy of lymph node morphology using optical coherence tomography.

    PubMed

    Luo, Wei; Nguyen, Freddy T; Zysk, Adam M; Ralston, Tyler S; Brockenbrough, John; Marks, Daniel L; Oldenburg, Amy L; Boppart, Stephen A

    2005-10-01

    Optical diagnostic imaging techniques are increasingly being used in the clinical environment, allowing for improved screening and diagnosis while minimizing the number of invasive procedures. Diffuse optical tomography, for example, is capable of whole-breast imaging and is being developed as an alternative to traditional X-ray mammography. While this may eventually be a very effective screening method, other optical techniques are better suited for imaging on the cellular and molecular scale. Optical Coherence Tomography (OCT), for instance, is capable of high-resolution cross-sectional imaging of tissue morphology. In a manner analogous to ultrasound imaging except using optics, pulses of near-infrared light are sent into the tissue while coherence-gated reflections are measured interferometrically to form a cross-sectional image of tissue. In this paper we apply OCT techniques for the high-resolution three-dimensional visualization of lymph node morphology. We present the first reported OCT images showing detailed morphological structure and corresponding histological features of lymph nodes from a carcinogen-induced rat mammary tumor model, as well as from a human lymph node containing late stage metastatic disease. The results illustrate the potential for OCT to visualize detailed lymph node structures on the scale of micrometastases and the potential for the detection of metastatic nodal disease intraoperatively.

  14. Dark-field imaging in coronary atherosclerosis.

    PubMed

    Hetterich, Holger; Webber, Nicole; Willner, Marian; Herzen, Julia; Birnbacher, Lorenz; Auweter, Sigrid; Schüller, Ulrich; Bamberg, Fabian; Notohamiprodjo, Susan; Bartsch, Harald; Wolf, Johannes; Marschner, Mathias; Pfeiffer, Franz; Reiser, Maximilian; Saam, Tobias

    2017-09-01

    Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40kV), grating-interferometer and detector. Tomographic dark-field-, attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation- or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cross section measurements for production of positron emitters for PET imaging in carbon therapy

    NASA Astrophysics Data System (ADS)

    Salvador, S.; Colin, J.; Cussol, D.; Divay, C.; Fontbonne, J.-M.; Labalme, M.

    2017-04-01

    In light ion beam therapy, positron (β+) emitters are produced by the tissue nuclei through nuclear interactions with the beam ions. They can be used for the verification of the delivered dose using positron emission tomography by comparing the spatial distribution of the β+ emitters activity to a computer simulation taking into account the patient morphology and the treatment plan. However, the accuracy of the simulation greatly depends on the method used to generate the nuclear interactions producing these emitters. In the case of Monte Carlo (MC) simulations, the nuclear interaction models still lack the required accuracy due to insufficient experimental cross section data. This is particularly true for carbon therapy where literature data on fragmentation cross sections of a carbon beam with targets of medical interest are very scarce. Therefore, we performed at GANIL in July 2016 measurements on β+ emitter production cross sections with a carbon beam at 25, 50, and 95 MeV/nucleon on thin targets (C, N, O, and PMMA). We extracted the production cross section of C,1110, 13N, and O,1514 that are essential to constrain or develop MC nuclear fragmentation models.

  16. Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Ahsen, Osman O.; Lee, Hsiang-Chieh; Liang, Kaicheng; Giacomelli, Michael G.; Potsaid, Benjamin M.; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Kraus, Martin F.; Hornegger, Joachim; Figueiredo, Marisa; Huang, Qin; Mashimo, Hiroshi; Cable, Alex E.; Fujimoto, James G.

    2014-03-01

    We developed an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor based imaging catheter, which provided an imaging speed of 600 kHz axial scan rate and 8 μm axial resolution in tissue. The micromotor catheter was 3.2 mm in diameter and could be introduced through the 3.7 mm accessory port of an endoscope. Imaging was performed at 400 frames per second with an 8 μm spot size using a pullback to generate volumetric data over 16 mm with a pixel spacing of 5 μm in the longitudinal direction. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing standard upper and lower endoscopy at the Veterans Affairs Boston Healthcare System (VABHS). Patients with Barrett's esophagus, dysplasia, and inflammatory bowel disease were imaged. The use of distally actuated imaging catheters allowed OCT imaging with more flexibility such as volumetric imaging in the terminal ileum and the assessment of the hiatal hernia using retroflex imaging. The high rotational stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face and cross-sectional imaging. The ability to perform 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies to investigate the ability of OCT to detect pathology as well as assess treatment response.

  17. Absolute photoionization cross-section of the methyl radical.

    PubMed

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  18. Collision cross section measurements for biomolecules within a high-resolution FT-ICR cell: theory.

    PubMed

    Guo, Dan; Xin, Yi; Li, Dayu; Xu, Wei

    2015-04-14

    In this study, an energetic hard-sphere ion-neutral collision model was proposed to bridge-link ion collision cross section (CCS) with the image current collected from a high-resolution Fourier transform ion cyclotron resonance (FT-ICR) cell. By investigating the nonlinear effects induced by high-order electric fields and image charge forces, the energetic hard-sphere collision model was validated through experiments. Suitable application regions for the energetic hard-sphere collision model, as well as for the conventional Langevin and hard-sphere collision models, were also discussed. The energetic hard-sphere collision model was applied in the extraction of ion CCSs from high-resolution FT-ICR mass spectra. Discussions in the present study also apply to FT-Orbitraps and FT-quadrupole ion traps.

  19. Cirrus Cloud Optical and Morphological Variations within a Mesoscale Volume

    NASA Technical Reports Server (NTRS)

    Wolf, Walter W.

    1996-01-01

    Cirrus cloud optical and structural properties were measured above southern Wisconsin in two time segments between 18:07 and 21:20 GMT on December 1, 1989 by the volume imaging lidar (VIL) and the High Spectral Resolution Lidar (HSRL) and the visible infrared spin scan radiometer (VISSR) atmospheric sounder (VAS) on GOES. A new technique was used to calculate the cirrus cloud visible aerosol backscatter cross sections for a single channel elastic backscatter lidar. Cirrus clouds were viewed simultaneously by the VIL and the HSRL. This allowed the HSRL aerosol backscatter cross sections to be directly compared to the VIL single channel backscattered signal. This first attempt resulted in an adequate calibration. The calibration was extended to all the cirrus clouds in the mesoscale volume imaged by the VIL.

  20. Indium hexagonal island as seed-layer to boost a-axis orientation of AlN thin films

    NASA Astrophysics Data System (ADS)

    Redjdal, N.; Salah, H.; Azzaz, M.; Menari, H.; Manseri, A.; Guedouar, B.; Garcia-Sanchez, A.; Chérif, S. M.

    2018-06-01

    Highly a-axis oriented aluminum nitride films have been grown on Indium coated (100) Si substrate by DC reactive magnetron sputtering. It is shown that In incorporated layer improve the extent of preferential growth along (100) axis and form dense AlN films with uniform surface and large grains, devoid of micro-cracks. As revealed by SEM cross section images, AlN structure consists of oriented columnar grains perpendicular to the Si surface, while AlN/In structure results in uniformely tilted column. SEM images also revealed the presence of In hexagonal islands persistent throughout the entire growth. Micro -Raman spectroscopy of the surface and the cross section of the AlN/In grown films evidenced their high degree of homogeneity and cristallinity.

  1. Atrial septal aneurysm--a potential cause of systemic embolism. An echocardiographic study.

    PubMed Central

    Gallet, B; Malergue, M C; Adams, C; Saudemont, J P; Collot, A M; Druon, M C; Hiltgen, M

    1985-01-01

    Atrial septal aneurysm is an uncommon condition. Between 1981 and 1984 10 cases of atrial septal aneurysm were diagnosed by real time cross sectional echocardiography performed in 4840 patients. The aneurysm was associated either with mitral valve prolapse (three patients) or with atrial septal defect (three patients) or occurred in isolation (four patients, two of whom had had a previous embolic event leading to the diagnosis of atrial septal aneurysm by cross sectional echocardiography). During cross sectional echocardiography the aneurysm appeared as a localised bulging of the interatrial septum, which was best seen in the subcostal four chamber view and in the parasternal short axis view at the level of the aortic root. The aneurysm either protruded into only the right atrium (five patients) or moved backwards and forwards between the right and the left atria during the cardiac cycle (five patients). This motion pattern might be related to changes in the interatrial pressure gradient. The two patients who had had a systemic embolism were given anticoagulant treatment, but none underwent surgery. It is concluded that the true prevalence of atrial septal aneurysm might have been underestimated before the routine use of cross sectional echocardiography, that cross sectional echocardiography enables definitive diagnosis of this condition by a non-invasive technique, and that an atrial septal aneurysm should be suspected and looked for by cross sectional echocardiography after an unexplained systemic embolism. Images PMID:3970786

  2. Low-voltage cross-sectional EBIC for characterisation of GaN-based light emitting devices.

    PubMed

    Moldovan, Grigore; Kazemian, Payam; Edwards, Paul R; Ong, Vincent K S; Kurniawan, Oka; Humphreys, Colin J

    2007-01-01

    Electron beam induced current (EBIC) characterisation can provide detailed information on the influence of crystalline defects on the diffusion and recombination of minority carriers in semiconductors. New developments are required for GaN light emitting devices, which need a cross-sectional approach to provide access to their complex multi-layered structures. A sample preparation approach based on low-voltage Ar ion milling is proposed here and shown to produce a flat cross-section with very limited surface recombination, which enables low-voltage high resolution EBIC characterisation. Dark defects are observed in EBIC images and correlation with cathodoluminescence images identify them as threading dislocations. Emphasis is placed on one-dimensional quantification which is used to show that junction delineation with very good spatial resolution can be achieved, revealing significant roughening of this GaN p-n junction. Furthermore, longer minority carrier diffusion lengths along the c-axis are found at dislocation sites, in both p-GaN and the multi-quantum well (MQW) region. This is attributed to gettering of point defects at threading dislocations in p-GaN and higher escape rate from quantum wells at dislocation sites in the MQW region, respectively. These developments show considerable promise for the use of low-voltage cross-sectional EBIC in the characterisation of point and extended defects in GaN-based devices and it is suggested that this technique will be particularly useful for degradation analysis.

  3. Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans.

    PubMed

    Verbree, J; Bronzwaer, Agt; van Buchem, M A; Daemen, Mjap; van Lieshout, J J; van Osch, Mjp

    2017-08-01

    Transcranial Doppler (TCD) sonography is a frequently employed technique for quantifying cerebral blood flow by assuming a constant arterial diameter. Given that exercise increases arterial pressure by sympathetic activation, we hypothesized that exercise might induce a change in the diameter of large cerebral arteries. Middle cerebral artery (MCA) cross-sectional area was assessed in response to handgrip exercise by direct magnetic resonance imaging (MRI) observations. Twenty healthy subjects (11 female) performed three 5 min bouts of rhythmic handgrip exercise at 60% maximum voluntary contraction, alternated with 5 min of rest. High-resolution 7 T MRI scans were acquired perpendicular to the MCA. Two blinded observers manually determined the MCA cross-sectional area. Sufficient image quality was obtained in 101 MCA-scans of 19 subjects (age-range 20-59 years). Mixed effects modelling showed that the MCA cross-sectional area decreased by 2.1 ± 0.8% (p = 0.01) during handgrip, while the heart rate increased by 11 ± 2% (p < 0.001) at constant end-tidal CO 2 (p = 0.10). In conclusion, the present study showed a 2% decrease in MCA cross-sectional area during rhythmic handgrip exercise. This further strengthens the current concept of sympathetic control of large cerebral arteries, showing in vivo vasoconstriction during exercise-induced sympathetic activation. Moreover, care must be taken when interpreting TCD exercise studies as diameter constancy cannot be assumed.

  4. Morphology of the pore space in claystones - evidence from BIB/FIB ion beam sectioning and cryo-SEM observations

    NASA Astrophysics Data System (ADS)

    Desbois, G.; Urai, J. L.; Kukla, P. A.

    2009-12-01

    Mudrocks and clay-rich fault gouges are important mechanical elements in the Earth’s crust and form seals for crustal fluids such as groundwater and hydrocarbons. Other fields of interest are the storage of anthropogenic carbon dioxide and radioactive waste in geologic formations. In addition, coupled flows, capillary processes, and associated deformation are of importance in many applied fields. A key factor to understanding these processes is a detailed understanding of the morphology of the pore space. Classic studies of porosity in fine grained materials are performed on dried or freeze dried samples and include metal injection methods, magnetic susceptibility measurement, SEM and TEM imaging, neutron scattering, NMR spectroscopy, and ESEM. Confocal microscopy and X-ray tomography are used to image porosity in coarse grained sediments but the resolution of these techniques is not sufficient at present for applications to mudrocks or clay-rich fault gouges. Therefore, observations and interpretations remain difficult because none of these approaches is able to directly describe the in-situ porosity at the pore scale. In addition, some methods require dried samples in which the natural structure of pores may have been damaged to some extent due to desiccation and dehydration of the clay minerals. A recently developed alternative is to study wet samples using a cryo-SEM, which allows stabilization of wet media at cryo-temperature, in-situ sample preparation by ion beam cross-sectioning (BIB, FIB) and observations of the stabilized microstructure at high resolution. We report on a study of Boom clay from a proposed disposal site of radioactive waste (Mol site, Belgium) using cryo-SEM at cryogenic temperature, with ion beam cross-sectioning to prepare smooth, damage free surfaces. Pores commonly have crack-like tips, preferred orientation parallel to bedding and power law size distribution. We define a number of pore types depending on shape and location in the microstructure. 3-D reconstruction by serial cross-sectioning shows 3-D connectivity of the pore space. These findings offer a new insight into the morphology of pores down to nano-scale and provide the basis for microstructure-based models of transport in clays. SEM image (SE) of a Broad Ion Beam polished cross-section performed on dry Boom clay (Mol site, Belgium) showing the 2D apparent porosity (26.3%). The cross-section is perpendicular to the bedding.

  5. Complications of Whipple surgery: imaging analysis.

    PubMed

    Bhosale, Priya; Fleming, Jason; Balachandran, Aparna; Charnsangavej, Chuslip; Tamm, Eric P

    2013-04-01

    The purpose of this article is to describe and illustrate anatomic findings after the Whipple procedure, and the appearance of its complications, on imaging. Knowledge of the cross-sectional anatomy following the Whipple procedure, and clinical findings for associated complications, are essential to rapidly and accurately diagnose such complications on postoperative studies in order to optimize treatment.

  6. Body Image across the Life Span in Adult Women: The Role of Self-Objectification.

    ERIC Educational Resources Information Center

    Tiggemann, Marika; Lynch, Jessica E.

    2001-01-01

    Investigated body image across life span in cross-section of women ages 20-84 years. Found that although body dissatisfaction remained stable, self-objectification, habitual body monitoring, appearance anxiety, and disordered eating all significantly decreased with age. Self- objectification mediated the relationship between age and disordered…

  7. Iodine imaging in thyroid by fluorescent X-ray CT with 0.05 mm spatial resolution

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Yu, Q.; Yashiro, T.; Zeniya, T.; Wu, J.; Hasegawa, Y.; Thet-Thet-Lwin; Hyodo, K.; Yuasa, T.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    2001-07-01

    Fluorescent X-ray computed tomography (FXCT) at a 0.05 mm in-plane spatial resolution and 0.05 mm slice thickness depicted the cross sectional distribution of endogenous iodine within thyroid. The distribution obtained from the FXCT image correlated closely to that obtained from the pathological pictures.

  8. Accuracy verification of magnetic resonance imaging (MRI) technology for lower-limb prosthetic research: utilising animal soft tissue specimen and common socket casting materials.

    PubMed

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2012-01-01

    Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements.

  9. Investigation of nucleation and growth processes of diamond films by atomic force microscopy

    NASA Technical Reports Server (NTRS)

    George, M. A.; Burger, A.; Collins, W. E.; Davidson, J. L.; Barnes, A. V.; Tolk, N. H.

    1994-01-01

    The nucleation and growth of plasma-enhanced chemical-vapor deposited polycrystalline diamond films were studied using atomic force microscopy (AFM). AFM images were obtained for (1) nucleated diamond films produced from depositions that were terminated during the initial stages of growth, (2) the silicon substrate-diamond film interface side of diamond films (1-4 micrometers thick) removed from the original surface of the substrate, and (3) the cross-sectional fracture surface of the film, including the Si/diamond interface. Pronounced tip effects were observed for early-stage diamond nucleation attributed to tip convolution in the AFM images. AFM images of the film's cross section and interface, however, were not highly affected by tip convolution, and the images indicate that the surface of the silicon substrate is initially covered by a small grained polycrystalline-like film and the formation of this precursor film is followed by nucleation of the diamond film on top of this layer. X-ray photoelectron spectroscopy spectra indicate that some silicon carbide is present in the precursor layer.

  10. Accuracy Verification of Magnetic Resonance Imaging (MRI) Technology for Lower-Limb Prosthetic Research: Utilising Animal Soft Tissue Specimen and Common Socket Casting Materials

    PubMed Central

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2012-01-01

    Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements. PMID:22619599

  11. Cardiac Computed Tomography and Magnetic Resonance Imaging in the Evaluation of Mitral and Tricuspid Valve Disease: Implications for Transcatheter Interventions.

    PubMed

    Naoum, Christopher; Blanke, Philipp; Cavalcante, João L; Leipsic, Jonathon

    2017-03-01

    Transcatheter interventions to treat mitral and tricuspid valve disease are becoming increasingly available because of the growing number of elderly patients with significant comorbidities or high operative risk. Thorough clinical and imaging evaluation in these patients is essential. The latter involves both characterization of the mechanism and severity of valvular disease as well as determining the hemodynamic consequences and extent of ventricular remodeling, which is an important predictor of future outcomes. Moreover, an assessment of the suitability and risk of complications associated with device-specific therapies is also an important component of the preprocedural evaluation in this cohort. Although echocardiography including 2-dimensional and 3-dimensional methods has an important role in the initial assessment and procedural guidance, cross-sectional imaging, including both computed tomographic imagning and cardiac magnetic resonance imaging, is increasingly being integrated into the evaluation of mitral and tricuspid valve disease. In this review, we discuss the role of cross-sectional imaging in mitral and tricuspid valve disease, primarily valvular regurgitation assessment, with an emphasis on the preprocedural evaluation and implications for transcatheter interventions. © 2017 American Heart Association, Inc.

  12. StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images.

    PubMed

    De Backer, A; van den Bos, K H W; Van den Broek, W; Sijbers, J; Van Aert, S

    2016-12-01

    An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, has been investigated. The highest attainable precision is reached even for low dose images. Furthermore, the advantages of the model-based approach taking into account overlap between neighbouring columns are highlighted. This is done for the estimation of the distance between two neighbouring columns as a function of their distance and for the estimation of the scattering cross-section which is compared to the integrated intensity from a Voronoi cell. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Single element ultrasonic imaging of limb geometry: an in-vivo study with comparison to MRI

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Fincke, Jonathan R.; Anthony, Brian W.

    2016-04-01

    Despite advancements in medical imaging, current prosthetic fitting methods remain subjective, operator dependent, and non-repeatable. The standard plaster casting method relies on prosthetist experience and tactile feel of the limb to design the prosthetic socket. Often times, many fitting iterations are required to achieve an acceptable fit. Use of improper socket fittings can lead to painful pathologies including neuromas, inflammation, soft tissue calcification, and pressure sores, often forcing the wearer to into a wheelchair and reducing mobility and quality of life. Computer software along with MRI/CT imaging has already been explored to aid the socket design process. In this paper, we explore the use of ultrasound instead of MRI/CT to accurately obtain the underlying limb geometry to assist the prosthetic socket design process. Using a single element ultrasound system, multiple subjects' proximal limbs were imaged using 1, 2.25, and 5 MHz single element transducers. Each ultrasound transducer was calibrated to ensure acoustic exposure within the limits defined by the FDA. To validate image quality, each patient was also imaged in an MRI. Fiducial markers visible in both MRI and ultrasound were used to compare the same limb cross-sectional image for each patient. After applying a migration algorithm, B-mode ultrasound cross-sections showed sufficiently high image resolution to characterize the skin and bone boundaries along with the underlying tissue structures.

  14. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    NASA Astrophysics Data System (ADS)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  15. Visualizing Cross-sectional Data in a Real-World Context

    NASA Astrophysics Data System (ADS)

    Van Noten, K.; Lecocq, T.

    2016-12-01

    If you could fly around your research results in three dimensions, wouldn't you like to do it? Visualizing research results properly during scientific presentations already does half the job of informing the public on the geographic framework of your research. Many scientists use the Google Earth™ mapping service (V7.1.2.2041) because it's a great interactive mapping tool for assigning geographic coordinates to individual data points, localizing a research area, and draping maps of results over Earth's surface for 3D visualization. However, visualizations of research results in vertical cross-sections are often not shown simultaneously with the maps in Google Earth. A few tutorials and programs to display cross-sectional data in Google Earth do exist, and the workflow is rather simple. By importing a cross-sectional figure into in the open software SketchUp Make [Trimble Navigation Limited, 2016], any spatial model can be exported to a vertical figure in Google Earth. In this presentation a clear workflow/tutorial is presented how to image cross-sections manually in Google Earth. No software skills, nor any programming codes are required. It is very easy to use, offers great possibilities for teaching and allows fast figure manipulation in Google Earth. The full workflow can be found in "Van Noten, K. 2016. Visualizing Cross-Sectional Data in a Real-World Context. EOS, Transactions AGU, 97, 16-19".The video tutorial can be found here: https://www.youtube.com/watch?v=Tr8LwFJ4RYU&Figure: Cross-sectional Research Examples Illustrated in Google Earth

  16. ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse.

    PubMed

    Voras, Zachary E; deGhetaldi, Kristin; Wiggins, Marcie B; Buckley, Barbara; Baade, Brian; Mass, Jennifer L; Beebe, Thomas P

    2015-11-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as identifying unexpected organic materials in specific paint layers.

  17. ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse

    NASA Astrophysics Data System (ADS)

    Voras, Zachary E.; deGhetaldi, Kristin; Wiggins, Marcie B.; Buckley, Barbara; Baade, Brian; Mass, Jennifer L.; Beebe, Thomas P.

    2015-11-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as identifying unexpected organic materials in specific paint layers.

  18. Improved Interactive Medical-Imaging System

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  19. Computer image analysis traits of cross-sectioned dry-cured hams: a genetic analysis.

    PubMed

    Bonfatti, V; Cecchinato, A; Sturaro, E; Gallo, L; Carnier, P

    2011-08-01

    The aims of this study were to estimate genetic parameters of image analysis traits of cross-sectioned dry-cured hams and carcass weight (CW) and to investigate effects of some nongenetic sources of variation on these traits. Computer image analysis (CIA) had been carried out for digital images of the cross-section of 1,319 San Daniele dry-cured hams. The cross-sectional area (SA, cm(2)); the average thickness of subcutaneous fat (FT, cm); and the proportions of lean (LA, %), fat-eye (FEA, %), and subcutaneous fat area (SCF, %) to SA, and of biceps femoris (BFA, %) and semitendinosus muscle area (STA, %) to LA were recorded. Bivariate analyses were carried out for pairs of traits for estimation of genetic parameters using Bayesian methodology and linear models. Linear models included the nongenetic effects of slaughter groups and sex and the additive genetic effects of pigs and their ancestors (1,888 animals). Variation of FEA was nearly 4-fold that of SA and LA. Variation of CIA traits due to sex effect was not large, whereas slaughter group effects were relevant sources of variation for all traits. For all traits, with the exception of FEA, the posterior probability for the true heritability being greater than 0.1, was greater than 0.95. Point estimates of heritabilities for FT and SCF were 0.42 and 0.51, respectively. Heritability estimates for FEA, LA, BFA, and STA were 0.13, 0.44, 0.44, and 0.36, respectively. The genetic correlations between CW and CIA traits were positive and large for SA (0.86), positive and moderate for FT, FEA, and STA (0.47, 0.40, and 0.45, respectively) and negative with LA (-0.28). Although FEA, FT, and SCF were all measures of the extent of fat deposition in the ham, the genetic correlations between FT or SCF and FEA were very low. A very large estimate (0.74) was obtained for the genetic relationship between SA and FEA, suggesting that reduction of ham roundness through selective breeding would be beneficial for decreasing FEA. On the basis of the estimated parameters, genetic selection is expected to be effective in changing size of fatty and lean areas of the cross-section of dry-cured hams. Causes related to the abnormal development of the fat-eye depot remain unknown, but this study provided evidence that influences of polygenic effects on phenotypic variation of FEA are limited. © 2011 American Society of Animal Science. All rights reserved.

  20. Image charge effects on electron capture by dust grains in dusty plasmas.

    PubMed

    Jung, Y D; Tawara, H

    2001-07-01

    Electron-capture processes by negatively charged dust grains from hydrogenic ions in dusty plasmas are investigated in accordance with the classical Bohr-Lindhard model. The attractive interaction between the electron in a hydrogenic ion and its own image charge inside the dust grain is included to obtain the total interaction energy between the electron and the dust grain. The electron-capture radius is determined by the total interaction energy and the kinetic energy of the released electron in the frame of the projectile dust grain. The classical straight-line trajectory approximation is applied to the motion of the ion in order to visualize the electron-capture cross section as a function of the impact parameter, kinetic energy of the projectile ion, and dust charge. It is found that the image charge inside the dust grain plays a significant role in the electron-capture process near the surface of the dust grain. The electron-capture cross section is found to be quite sensitive to the collision energy and dust charge.

  1. Automated detection of the retinal from OCT spectral domain images of healthy eyes

    NASA Astrophysics Data System (ADS)

    Giovinco, Gaspare; Savastano, Maria Cristina; Ventre, Salvatore; Tamburrino, Antonello

    2015-06-01

    Optical coherence tomography (OCT) has become one of the most relevant diagnostic tools for retinal diseases. Besides being a non-invasive technique, one distinguished feature is its unique capability of providing (in vivo) cross-sectional view of the retinal. Specifically, OCT images show the retinal layers. From the clinical point of view, the identification of the retinal layers opens new perspectives to study the correlation between morphological and functional aspects of the retinal tissue. The main contribution of this paper is a new method/algorithm for the automated segmentation of cross-sectional images of the retina of healthy eyes, obtained by means of spectral domain optical coherence tomography (SD-OCT). Specifically, the proposed segmentation algorithm provides the automated detection of different retinal layers. Tests on experimental SD-OCT scans performed by three different instruments/manufacturers have been successfully carried out and compared to a manual segmentation made by an independent ophthalmologist, showing the generality and the effectiveness of the proposed method.

  2. Automated detection of retinal layers from OCT spectral-domain images of healthy eyes

    NASA Astrophysics Data System (ADS)

    Giovinco, Gaspare; Savastano, Maria Cristina; Ventre, Salvatore; Tamburrino, Antonello

    2015-12-01

    Optical coherence tomography (OCT) has become one of the most relevant diagnostic tools for retinal diseases. Besides being a non-invasive technique, one distinguished feature is its unique capability of providing (in vivo) cross-sectional view of the retina. Specifically, OCT images show the retinal layers. From the clinical point of view, the identification of the retinal layers opens new perspectives to study the correlation between morphological and functional aspects of the retinal tissue. The main contribution of this paper is a new method/algorithm for the automated segmentation of cross-sectional images of the retina of healthy eyes, obtained by means of spectral-domain optical coherence tomography (SD-OCT). Specifically, the proposed segmentation algorithm provides the automated detection of different retinal layers. Tests on experimental SD-OCT scans performed by three different instruments/manufacturers have been successfully carried out and compared to a manual segmentation made by an independent ophthalmologist, showing the generality and the effectiveness of the proposed method.

  3. Quantitative hard x-ray phase contrast imaging of micropipes in SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohn, V. G.; Argunova, T. S.; Je, J. H., E-mail: jhje@postech.ac.kr

    2013-12-15

    Peculiarities of quantitative hard x-ray phase contrast imaging of micropipes in SiC are discussed. The micropipe is assumed as a hollow cylinder with an elliptical cross section. The major and minor diameters can be restored using the least square fitting procedure by comparing the experimental data, i.e. the profile across the micropipe axis, with those calculated based on phase contrast theory. It is shown that one projection image gives an information which does not allow a complete determination of the elliptical cross section, if an orientation of micropipe is not known. Another problem is a weak accuracy in estimating themore » diameters, partly because of using pink synchrotron radiation, which is necessary because a monochromatic beam intensity is not sufficient to reveal the weak contrast from a very small object. The general problems of accuracy in estimating the two diameters using the least square procedure are discussed. Two experimental examples are considered to demonstrate small as well as modest accuracies in estimating the diameters.« less

  4. A new method to measure electron density and effective atomic number using dual-energy CT images

    NASA Astrophysics Data System (ADS)

    Ramos Garcia, Luis Isaac; Pérez Azorin, José Fernando; Almansa, Julio F.

    2016-01-01

    The purpose of this work is to present a new method to extract the electron density ({ρ\\text{e}} ) and the effective atomic number (Z eff) from dual-energy CT images, based on a Karhunen-Loeve expansion (KLE) of the atomic cross section per electron. This method was used to calibrate a Siemens Definition CT using the CIRS phantom. The predicted electron density and effective atomic number using 80 kVp and 140 kVp were compared with a calibration phantom and an independent set of samples. The mean absolute deviations between the theoretical and calculated values for all the samples were 1.7 %  ±  0.1 % for {ρ\\text{e}} and 4.1 %  ±  0.3 % for Z eff. Finally, these results were compared with other stoichiometric method. The application of the KLE to represent the atomic cross section per electron is a promising method for calculating {ρ\\text{e}} and Z eff using dual-energy CT images.

  5. Interpreting sea surface slicks on the basis of the normalized radar cross-section model using RADARSAT-2 copolarization dual-channel SAR images

    NASA Astrophysics Data System (ADS)

    Ivonin, D. V.; Skrunes, S.; Brekke, C.; Ivanov, A. Yu.

    2016-03-01

    A simple automatic multipolarization technique for discrimination of main types of thin oil films (of thickness less than the radio wave skin depth) from natural ones is proposed. It is based on a new multipolarization parameter related to the ratio between the damping in the slick of specially normalized resonant and nonresonant signals calculated using the normalized radar cross-section model proposed by Kudryavtsev et al. (2003a). The technique is tested on RADARSAT-2 copolarization (VV/HH) synthetic aperture radar images of slicks of a priori known provenance (mineral oils, e.g., emulsion and crude oil, and plant oil served to model a natural slick) released during annual oil-on-water exercises in the North Sea in 2011 and 2012. It has been shown that the suggested multipolarization parameter gives new capabilities in interpreting slicks visible on synthetic aperture radar images while allowing discrimination between mineral oil and plant oil slicks.

  6. Giant Raman scattering from J-aggregated dyes inside carbon nanotubes for multispectral imaging

    NASA Astrophysics Data System (ADS)

    Gaufrès, E.; Tang, N. Y.-Wa; Lapointe, F.; Cabana, J.; Nadon, M.-A.; Cottenye, N.; Raymond, F.; Szkopek, T.; Martel, R.

    2014-01-01

    Raman spectroscopy uses visible light to acquire vibrational fingerprints of molecules, thus making it a powerful tool for chemical analysis in a wide range of media. However, its potential for optical imaging at high resolution is severely limited by the fact that the Raman effect is weak. Here, we report the discovery of a giant Raman scattering effect from encapsulated and aggregated dye molecules inside single-walled carbon nanotubes. Measurements performed on rod-like dyes such as α-sexithiophene and β-carotene, assembled inside single-walled carbon nanotubes as highly polarizable J-aggregates, indicate a resonant Raman cross-section of (3 +/- 2) × 10-21 cm2 sr-1, which is well above the cross-section required for detecting individual aggregates at the highest optical resolution. Free from fluorescence background and photobleaching, this giant Raman effect allows the realization of a library of functionalized nanoprobe labels for Raman imaging with robust detection using multispectral analysis.

  7. A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology.

    PubMed

    Lifton, Joseph J; Malcolm, Andrew A; McBride, John W

    2015-01-01

    X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.

  8. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    DOE PAGES

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; ...

    2016-02-10

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less

  9. The Development of a Flexible Measuring System for Muscle Volume Using Ultrasonography

    NASA Astrophysics Data System (ADS)

    Fukumoto, Kiyotaka; Fukuda, Osamu; Tsubai, Masayoshi; Muraki, Satoshi

    Quantification of muscle volume can be used as a means for the estimation of muscle strength. Its measuring process does not need the subject's muscular contractions so it is completely safe and particularly suited for elderly people. Therefore, we have developed a flexible measuring system for muscle volume using ultrasonography. In this system, an ultrasound probe is installed on a link mechanism which continuously scans fragmental images along the human body surface. These images are then measured and composed into a wide area cross-sectional image based on the spatial compounding method. The flexibility of the link mechanism enables the operator to measure the images under any body postures and body site. The spatial compounding method significantly reduces speckle and artifact noises from the composed cross-sectional image so that the operator can observe the individual muscles, such as Rectus femoris, Vastus intermedius, and so on, in detail. We conducted the experiments in order to examine the advantages of this system we have developed. The experimental results showed a high accuracy of the measuring position which was calculated using the link mechanism and presented the noise reduction effect based on the spatial compounding method. Finally, we confirmed high correlations between the MRI images and the ones of the developed system to verify the validity of the system.

  10. Gold Nanoparticle Quantitation by Whole Cell Tomography.

    PubMed

    Sanders, Aric W; Jeerage, Kavita M; Schwartz, Cindi L; Curtin, Alexandra E; Chiaramonti, Ann N

    2015-12-22

    Many proposed biomedical applications for engineered gold nanoparticles require their incorporation by mammalian cells in specific numbers and locations. Here, the number of gold nanoparticles inside of individual mammalian stem cells was characterized using fast focused ion beam-scanning electron microscopy based tomography. Enhanced optical microscopy was used to provide a multiscale map of the in vitro sample, which allows cells of interest to be identified within their local environment. Cells were then serially sectioned using a gallium ion beam and imaged using a scanning electron beam. To confirm the accuracy of single cross sections, nanoparticles in similar cross sections were imaged using transmission electron microscopy and scanning helium ion microscopy. Complete tomographic series were then used to count the nanoparticles inside of each cell and measure their spatial distribution. We investigated the influence of slice thickness on counting single particles and clusters as well as nanoparticle packing within clusters. For 60 nm citrate stabilized particles, the nanoparticle cluster packing volume is 2.15 ± 0.20 times the volume of the bare gold nanoparticles.

  11. Body Image Concerns of Gay Men: The Roles of Minority Stress and Conformity to Masculine Norms

    ERIC Educational Resources Information Center

    Kimmel, Sara B.; Mahalik, James R.

    2005-01-01

    The authors hypothesized that gay men's experiences of minority stress and their conformity to masculine norms would be associated with increased body image dissatisfaction and masculine body ideal distress. For this cross-sectional study, 357 gay males completed a Web-based survey, and 2 multiple regression analyses indicated that minority stress…

  12. Characterization of essential oil distribution in the root cross-section of Valeriana officinalis L. s.l. by using histological imaging techniques.

    PubMed

    Penzkofer, Michael; Baron, Andrea; Naumann, Annette; Krähmer, Andrea; Schulz, Hartwig; Heuberger, Heidi

    2018-01-01

    The essential oil is an important compound of the root and rhizome of medicinally used valerian ( Valeriana officinalis L. s.l.), with a stated minimum content in the European pharmacopoeia. The essential oil is located in droplets, of which the position and distribution in the total root cross-section of different valerian varieties, root thicknesses and root horizons are determined in this study using an adapted fluorescence-microscopy and automatic imaging analysis method. The study was initiated by the following facts:A probable negative correlation between essential oil content and root thickness in selected single plants (elites), observed during the breeding of coarsely rooted valerian with high oil content.Higher essential oil content after careful hand-harvest and processing of the roots. In preliminary tests, the existence of oil containing droplets in the outer and inner regions of the valerian roots was confirmed by histological techniques and light-microscopy, as well as Fourier-transform infrared spectroscopy. Based on this, fluorescence-microscopy followed by image analysis of entire root cross-sections, showed that a large number of oil droplets (on average 43% of total oil droplets) are located close to the root surface. The remaining oil droplets are located in the inner regions (parenchyma) and showed varying density gradients from the inner to the outer regions depending on genotype, root thickness and harvesting depth. Fluorescence-microscopy is suitable to evaluate prevalence and distribution of essential oil droplets of valerian in entire root cross-sections. The oil droplet density gradient varies among genotypes. Genotypes with a linear rather than an exponential increase of oil droplet density from the inner to the outer parenchyma can be chosen for better stability during post-harvest processing. The negative correlation of essential oil content and root thickness as observed in our breeding material can be counteracted through a selection towards generally high oil droplet density levels, and large oil droplet sizes independent of root thickness.

  13. Multimodal ophthalmic imaging using swept source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Malone, Joseph D.; El-Haddad, Mohamed T.; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Tao, Yuankai K.

    2016-03-01

    Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) benefit clinical diagnostic imaging in ophthalmology by enabling in vivo noninvasive en face and volumetric visualization of retinal structures, respectively. Spectrally encoding methods enable confocal imaging through fiber optics and reduces system complexity. Previous applications in ophthalmic imaging include spectrally encoded confocal scanning laser ophthalmoscopy (SECSLO) and a combined SECSLO-OCT system for image guidance, tracking, and registration. However, spectrally encoded imaging suffers from speckle noise because each spectrally encoded channel is effectively monochromatic. Here, we demonstrate in vivo human retinal imaging using a swept source spectrally encoded scanning laser ophthalmoscope and OCT (SSSESLO- OCT) at 1060 nm. SS-SESLO-OCT uses a shared 100 kHz Axsun swept source, shared scanner and imaging optics, and are detected simultaneously on a shared, dual channel high-speed digitizer. SESLO illumination and detection was performed using the single mode core and multimode inner cladding of a double clad fiber coupler, respectively, to preserve lateral resolution while improving collection efficiency and reducing speckle contrast at the expense of confocality. Concurrent en face SESLO and cross-sectional OCT images were acquired with 1376 x 500 pixels at 200 frames-per-second. Our system design is compact and uses a shared light source, imaging optics, and digitizer, which reduces overall system complexity and ensures inherent co-registration between SESLO and OCT FOVs. En face SESLO images acquired concurrent with OCT cross-sections enables lateral motion tracking and three-dimensional volume registration with broad applications in multivolume OCT averaging, image mosaicking, and intraoperative instrument tracking.

  14. Static resistivity image of a cubic saline phantom in magnetic resonance electrical impedance tomography (MREIT).

    PubMed

    Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyeong; Kwon, Ohin; Seo, Jin Keun; Baek, Woon Sik

    2003-05-01

    In magnetic resonance electrical impedance tomography (MREIT) we inject currents through electrodes placed on the surface of a subject and try to reconstruct cross-sectional resistivity (or conductivity) images using internal magnetic flux density as well as boundary voltage measurements. In this paper we present a static resistivity image of a cubic saline phantom (50 x 50 x 50 mm3) containing a cylindrical sausage object with an average resistivity value of 123.7 ohms cm. Our current MREIT system is based on an experimental 0.3 T MRI scanner and a current injection apparatus. We captured MR phase images of the phantom while injecting currents of 28 mA through two pairs of surface electrodes. We computed current density images from magnetic flux density images that are proportional to the MR phase images. From the current density images and boundary voltage data we reconstructed a cross-sectional resistivity image within a central region of 38.5 x 38.5 mm2 at the middle of the phantom using the J-substitution algorithm. The spatial resolution of the reconstructed image was 64 x 64 and the reconstructed average resistivity of the sausage was 117.7 ohms cm. Even though the error in the reconstructed average resistivity value was small, the relative L2-error of the reconstructed image was 25.5% due to the noise in measured MR phase images. We expect improvements in the accuracy by utilizing an MRI scanner with higher SNR and increasing the size of voxels scarifying the spatial resolution.

  15. Analysis on the Effect of Sensor Views in Image Reconstruction Produced by Optical Tomography System Using Charge-Coupled Device.

    PubMed

    Jamaludin, Juliza; Rahim, Ruzairi Abdul; Fazul Rahiman, Mohd Hafiz; Mohd Rohani, Jemmy

    2018-04-01

    Optical tomography (OPT) is a method to capture a cross-sectional image based on the data obtained by sensors, distributed around the periphery of the analyzed system. This system is based on the measurement of the final light attenuation or absorption of radiation after crossing the measured objects. The number of sensor views will affect the results of image reconstruction, where the high number of sensor views per projection will give a high image quality. This research presents an application of charge-coupled device linear sensor and laser diode in an OPT system. Experiments in detecting solid and transparent objects in crystal clear water were conducted. Two numbers of sensors views, 160 and 320 views are evaluated in this research in reconstructing the images. The image reconstruction algorithms used were filtered images of linear back projection algorithms. Analysis on comparing the simulation and experiments image results shows that, with 320 image views giving less area error than 160 views. This suggests that high image view resulted in the high resolution of image reconstruction.

  16. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  17. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    PubMed Central

    Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508

  18. A series of terpyridine containing flexible amino diethylacetate derivatives with large two-photon action cross-sections for effective mitochondrial imaging in living liver cancerous cells

    NASA Astrophysics Data System (ADS)

    Jia, Ran; Zhu, Yingying; Hu, Lei; Xiong, Qiru; Zhao, Meng; Zhang, Mingzhu; Tian, Xiaohe

    2018-01-01

    Small molecules possess large two-photon action cross sections (Φσ) are highly demanded for biological purpose. Herein, three novel terpyridine containing flexible amino diethylacetate organic small molecules (A1, A2 and A3) were rationally designed and their photophysical properties were investigated both experimentally and theoretically. The results revealed that the three chromophores possess large Φσ and remarkable Stokes' shift in high polar solvents, which are particularly benefit for further biological imaging application. One chromophore (A1) displayed an effective intracellular uptake against lung cancerous living cells A549. Colocalization studies suggested the internalized subcellular compartment was mitochondria. Consequently, chromophore A1 provides a promising platform to directly monitor mitochondria in living cells under two-photon confocal laser scanning microscopy.

  19. Estimation of lean and fat composition of pork ham using image processing measurements

    NASA Astrophysics Data System (ADS)

    Jia, Jiancheng; Schinckel, Allan P.; Forrest, John C.

    1995-01-01

    This paper presents a method of estimating the lean and fat composition in pork ham from cross-sectional area measurements using image processing technology. The relationship between the quantity of ham lean and fat mass with the ham lean and fat areas was studied. The prediction equations for pork ham composition based on the ham cross-sectional area measurements were developed. The results show that ham lean weight was related to the ham lean area (r equals .75, P < .0001) while ham fat weight was related tot the ham fat area (r equals .79, P equals .0001). Ham lean weight was highly related to the product of ham total weight times percentage ham lean area (r equals .96, P < .0001). Ham fat weight was highly related to the product of ham total weight times percentage ham fat area (r equals .88, P < .0001). The best combination of independent variables for estimating ham lean weight was trimmed wholesale ham weight and percentage ham fat area with a coefficient of determination of 92%. The best combination of independent variables for estimating ham fat weight was trimmed wholesale ham weight and percentage ham fat area with a coefficient of determination of 78%. Prediction equations with either two or three independent variables did not significantly increase the accuracy of prediction. The results of this study indicate that the weight of ham lean and fat could be predicted from ham cross-sectional area measurements using image analysis in combination with wholesale ham weight.

  20. Quadriceps Function and Knee Joint Ultrasonography after ACL Reconstruction.

    PubMed

    Pamukoff, Derek N; Montgomery, Melissa M; Moffit, Tyler J; Vakula, Michael N

    2018-02-01

    Individuals with anterior cruciate ligament reconstruction (ACLR) are at greater risk for knee osteoarthritis, partially because of chronic quadriceps dysfunction. Articular cartilage is commonly assessed using magnetic resonance imaging and radiography, but these methods are expensive and lack portability. Ultrasound imaging may provide a cost-effective and portable alternative for imaging the femoral cartilage. The purpose of this study was to compare ultrasonography of the femoral cartilage between the injured and uninjured limbs of individuals with unilateral ACLR, and to examine the association between quadriceps function and ultrasonographic measures of femoral cartilage. Bilateral femoral cartilage thickness and quadriceps function were assessed in 44 individuals with unilateral ACLR. Quadriceps function was assessed using peak isometric strength, and early (RTD100) and late (RTD200) rate of torque development. Cartilage thickness at the medial femoral condyle (P < 0.001) and femoral cartilage cross-sectional area (P = 0.007) were smaller in the injured compared with the uninjured limb. After accounting for time since ACLR, quadriceps peak isometric strength was associated with cartilage thickness at the medial femoral condyle (r = 0.35, P = 0.02) and femoral cartilage cross-sectional area (r = 0.28, P = 0.04). RTD100 and RTD200 were not associated with femoral cartilage thickness or cross-sectional area. Individuals with ACLR have thinner cartilage in their injured limb compared with uninjured limb, and cartilage thickness is associated with quadriceps function. These results indicate that ultrasonography may be useful for monitoring cartilage health and osteoarthritis progression after ACLR.

  1. Rapid decrease of radar cross section of meteor head echo observed by the MU radar

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Nishio, M.; Sato, T.; Tsutsumi, S.; Tsuda, T.; Fushimi, K.

    The meteor head echo observation using the MU (Middle and Upper atmosphere) radar (46.5M Hz, 1MW), Shigaraki, Japan, was carried out simultaneously with a high sensitive ICCD (Image-intensified CCD) camera observation in November 2001. The time records were synchronized using GPS satellite signals, in order to compare instantaneous radar and optical meteor magnitudes. 26 faint meteors were successfully observed simultaneously by both equipments. Detailed comparison of the time variation of radar echo intensity and absolute optical magnitude showed that the radar scattering cross section is likely to decrease rapidly by 5 - 20 dB without no corresponding magnitude variation in the optical data. From a simple modeling, we concluded that such decrease of RCS (radar cross section ) is probably due to the transition from overdense head echo to underd ense head echo.

  2. Global Geometric Properties of Martian Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Sakimoto, S. E. H.; Schnetzler, C.; Frawley, J. J.

    1999-01-01

    Impact craters on Mars have been used to provide fundamental insights into the properties of the martian crust, the role of volatiles, the relative age of the surface, and on the physics of impact cratering in the Solar System. Before the three-dimensional information provided by the Mars Orbiter Laser Altimeter (MOLA) instrument which is currently operating in Mars orbit aboard the Mars Global Surveyor (MGS), impact features were characterized morphologically using orbital images from Mariner 9 and Viking. Fresh-appearing craters were identified and measurements of their geometric properties were derived from various image-based methods. MOLA measurements can now provide a global sample of topographic cross-sections of martian impact features as small as approx. 2 km in diameter, to basin-scale features. We have previously examined MOLA cross-sections of Northern Hemisphere and North Polar Region impact features, but were unable to consider the global characteristics of these ubiquitous landforms. Here we present our preliminary assessment of the geometric properties of a globally-distributed sample of martian impact craters, most of which were sampled during the initial stages of the MGS mapping mission (i.e., the first 600 orbits). Our aim is to develop a framework for reconsidering theories concerning impact cratering in the martian environment. This first global analysis is focused upon topographically-fresh impact craters, defined here on the basis of MOLA topographic profiles that cross the central cavities of craters that can be observed in Viking-based MDIM global image mosaics. We have considered crater depths, rim heights, ejecta topologies, cross-sectional "shapes", and simple physical models for ejecta emplacement. To date (May, 1999), we have measured the geometric properties of over 1300 impact craters in the 2 to 350 km diameter size interval. A large fraction of these measured craters were sampled with cavity-center cross-sections during the first two months of MGS mapping. Many of these craters are included in Nadine Barlow's Catalogue of Martian Impact Craters, although we have treated simple craters smaller than about 7 km in greater detail than all previous investigations. Additional information is contained in the original extended abstract.

  3. Log ASCII Standard (LAS) Files for Geophysical Wireline Well Logs and Their Application to Geologic Cross Sections Through the Central Appalachian Basin

    USGS Publications Warehouse

    Crangle, Robert D.

    2007-01-01

    Introduction The U.S. Geological Survey (USGS) uses geophysical wireline well logs for a variety of purposes, including stratigraphic correlation (Hettinger, 2001, Ryder, 2002), petroleum reservoir analyses (Nelson and Bird, 2005), aquifer studies (Balch, 1988), and synthetic seismic profiles (Kulander and Ryder, 2005). Commonly, well logs are easier to visualize, manipulate, and interpret when available in a digital format. In recent geologic cross sections E-E' and D-D', constructed through the central Appalachian basin (Ryder, Swezey, and others, in press; Ryder, Crangle, and others, in press), gamma ray well log traces and lithologic logs were used to correlate key stratigraphic intervals (Fig. 1). The stratigraphy and structure of the cross sections are illustrated through the use of graphical software applications (e.g., Adobe Illustrator). The gamma ray traces were digitized in Neuralog (proprietary software) from paper well logs and converted to a Log ASCII Standard (LAS) format. Once converted, the LAS files were transformed to images through an LAS-reader application (e.g., GeoGraphix Prizm) and then overlain in positions adjacent to well locations, used for stratigraphic control, on each cross section. This report summarizes the procedures used to convert paper logs to a digital LAS format using a third-party software application, Neuralog. Included in this report are LAS files for sixteen wells used in geologic cross section E-E' (Table 1) and thirteen wells used in geologic cross section D-D' (Table 2).

  4. Evaluation of aortic contractility based on analysis of CT images of the heart

    NASA Astrophysics Data System (ADS)

    DzierŻak, RóŻa; Maciejewski, Ryszard; Uhlig, Sebastian

    2017-08-01

    The paper presents a method to assess the aortic contractility based on the analysis of CT images of the heart. This is an alternative method that can be used for patients who cannot be examined by using echocardiography. Usage of medical imaging application for DICOM file processing allows to evaluate the aortic cross section during systole and diastole. It makes possible to assess the level of aortic contractility.

  5. Absolute photoionization cross section of the ethyl radical in the range 8-11.5 eV: synchrotron and vacuum ultraviolet laser measurements.

    PubMed

    Gans, Bérenger; Garcia, Gustavo A; Boyé-Péronne, Séverine; Loison, Jean-Christophe; Douin, Stéphane; Gaie-Levrel, François; Gauyacq, Dolores

    2011-06-02

    The absolute photoionization cross section of C(2)H(5) has been measured at 10.54 eV using vacuum ultraviolet (VUV) laser photoionization. The C(2)H(5) radical was produced in situ using the rapid C(2)H(6) + F → C(2)H(5) + HF reaction. Its absolute photoionization cross section has been determined in two different ways: first using the C(2)H(5) + NO(2) → C(2)H(5)O + NO reaction in a fast flow reactor, and the known absolute photoionization cross section of NO. In a second experiment, it has been measured relative to the known absolute photoionization cross section of CH(3) as a reference by using the CH(4) + F → CH(3) + HF and C(2)H(6) + F → C(2)H(5) + HF reactions successively. Both methods gave similar results, the second one being more precise and yielding the value: σ(C(2)H(5))(ion) = (5.6 ± 1.4) Mb at 10.54 eV. This value is used to calibrate on an absolute scale the photoionization curve of C(2)H(5) produced in a pyrolytic source from the C(2)H(5)NO(2) precursor, and ionized by the VUV beam of the DESIRS beamline at SOLEIL synchrotron facility. In this latter experiment, a recently developed ion imaging technique is used to discriminate the direct photoionization process from dissociative ionization contributions to the C(2)H(5)(+) signal. The imaging technique applied on the photoelectron signal also allows a slow photoelectron spectrum with a 40 meV resolution to be extracted, indicating that photoionization around the adiabatic ionization threshold involves a complex vibrational overlap between the neutral and cationic ground states, as was previously observed in the literature. Comparison with earlier photoionization studies, in particular with the photoionization yield recorded by Ruscic et al. is also discussed. © 2011 American Chemical Society

  6. Chicken (Gallus domesticus) inner ear afferents

    NASA Technical Reports Server (NTRS)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  7. Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations.

    PubMed

    Marais, Willem J; Holz, Robert E; Hu, Yu Hen; Kuehn, Ralph E; Eloranta, Edwin E; Willett, Rebecca M

    2016-10-10

    Atmospheric lidar observations provide a unique capability to directly observe the vertical column of cloud and aerosol scattering properties. Detector and solar-background noise, however, hinder the ability of lidar systems to provide reliable backscatter and extinction cross-section estimates. Standard methods for solving this inverse problem are most effective with high signal-to-noise ratio observations that are only available at low resolution in uniform scenes. This paper describes a novel method for solving the inverse problem with high-resolution, lower signal-to-noise ratio observations that are effective in non-uniform scenes. The novelty is twofold. First, the inferences of the backscatter and extinction are applied to images, whereas current lidar algorithms only use the information content of single profiles. Hence, the latent spatial and temporal information in noisy images are utilized to infer the cross-sections. Second, the noise associated with photon-counting lidar observations can be modeled using a Poisson distribution, and state-of-the-art tools for solving Poisson inverse problems are adapted to the atmospheric lidar problem. It is demonstrated through photon-counting high spectral resolution lidar (HSRL) simulations that the proposed algorithm yields inverted backscatter and extinction cross-sections (per unit volume) with smaller mean squared error values at higher spatial and temporal resolutions, compared to the standard approach. Two case studies of real experimental data are also provided where the proposed algorithm is applied on HSRL observations and the inverted backscatter and extinction cross-sections are compared against the standard approach.

  8. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced eachmore » phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.« less

  9. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound.

    PubMed

    Cary, Theodore W; Reamer, Courtney B; Sultan, Laith R; Mohler, Emile R; Sehgal, Chandra M

    2014-02-01

    To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  10. Low molecular weight dextran provides similar optical coherence tomography coronary imaging compared to radiographic contrast media.

    PubMed

    Frick, Kyle; Michael, Tesfaldet T; Alomar, Mohammed; Mohammed, Atif; Rangan, Bavana V; Abdullah, Shuaib; Grodin, Jerrold; Hastings, Jeffrey L; Banerjee, Subhash; Brilakis, Emmanouil S

    2014-11-01

    Optical coherence tomography (OCT) coronary imaging requires displacement of red blood cells from the vessel lumen. This is usually accomplished using radiographic contrast. Low molecular weight dextran has low cost and is safe in low volumes. In the present study, we compared dextran with contrast for coronary OCT imaging. Fifty-one vessels in 26 patients were sequentially imaged using manual injection of radiographic contrast (iodixanol) and dextran. OCT images were analyzed at 1 mm intervals to determine the image clarity (defined as a visible lumen border > 270°) and to measure the lumen area and lumen diameter. To correct for the refractive index of dextran, the dextran area measurements were multiplied by 1.117 and the dextran length measurements were multiplied by 1.057. A total of 3,418 cross-sections (1,709 with contrast and 1,709 with dextran) were analyzed. There were no complications related to OCT imaging or to contrast or dextran administration. Clear image segments were observed in 97.0% vs. 96.7% of the cross-sections obtained with contrast and dextran, respectively (P = 0.45). The mean lumen areas were also similar: 6.69 ± 1.95 mm(2) with iodixanol vs. 7.06 ± 2.06 mm(2) with dextran (correlation coefficient 0.984). The image quality and measurements during OCT image acquisition are similar for dextran and contrast. Dextran could be used instead of contrast for OCT imaging, especially in patients in whom contrast load minimization is desired. © 2013 Wiley Periodicals, Inc.

  11. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    PubMed Central

    Cary, Theodore W.; Reamer, Courtney B.; Sultan, Laith R.; Mohler, Emile R.; Sehgal, Chandra M.

    2014-01-01

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging. PMID:24506648

  12. Quantification of red myotomal muscle volume and geometry in the shortfin mako shark (Isurus oxyrinchus) and the salmon shark (Lamna ditropis) using T1-weighted magnetic resonance imaging.

    PubMed

    Perry, Cameron N; Cartamil, Daniel P; Bernal, Diego; Sepulveda, Chugey A; Theilmann, Rebecca J; Graham, Jeffrey B; Frank, Lawrence R

    2007-04-01

    T1-weighted magnetic resonance imaging (MRI) in conjunction with image and segmentation analysis (i.e., the process of digitally partitioning tissues based on specified MR image characteristics) was evaluated as a noninvasive alternative for differentiating muscle fiber types and quantifying the amounts of slow, red aerobic muscle in the shortfin mako shark (Isurus oxyrinchus) and the salmon shark (Lamna ditropis). MRI-determinations of red muscle quantity and position made for the mid-body sections of three mako sharks (73.5-110 cm fork length, FL) are in close agreement (within the 95% confidence intervals) with data obtained for the same sections by the conventional dissection method involving serial cross-sectioning and volumetric analyses, and with previously reported findings for this species. The overall distribution of salmon shark red muscle as a function of body fork length was also found to be consistent with previously acquired serial dissection data for this species; however, MR imaging revealed an anterior shift in peak red muscle cross-sectional area corresponding to an increase in body mass. Moreover, MRI facilitated visualization of the intact and anatomically correct relationship of tendon linking the red muscle and the caudal peduncle. This study thus demonstrates that MRI is effective in acquiring high-resolution three-dimensional digital data with high contrast between different fish tissue types. Relative to serial dissection, MRI allows more precise quantification of the position, volume, and other details about the types of muscle within the fish myotome, while conserving specimen structural integrity. Copyright (c) 2007 Wiley-Liss, Inc.

  13. Energy transfer of highly vibrationally excited biphenyl.

    PubMed

    Hsu, Hsu Chen; Dyakov, Yuri; Ni, Chi-Kung

    2010-11-07

    The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold biphenyl in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer of naphthalene, energy transfer of biphenyl shows more forward scattering, less complex formation, larger cross section for vibrational to translational (V→T) energy transfer, smaller cross section for translational to vibrational and rotational (T→VR) energy transfer, larger total collisional cross section, and more energy transferred from vibration to translation. Significant increase in the large V→T energy transfer probabilities, termed supercollisions, was observed. The difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally cold biphenyl is very similar to the difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally hot naphthalene. The low-frequency vibrational modes with out-of-plane motion and rotationlike wide-angle motion are attributed to make the energy transfer of biphenyl different from that of naphthalene.

  14. Ultrasound biomicroscopy. High-frequency ultrasound imaging of the eye at microscopic resolution.

    PubMed

    Pavlin, C J; Foster, F S

    1998-11-01

    UBM presents us with a new method of imaging the anterior segment of the eye at high resolution. Its strengths lie in its ability to produce cross-sections of the living eye at microscopic resolution without violating the integrity of the globe. UBM, although lacking the resolution of optical microscopy, gives us images in living eyes without affecting the internal relationships of the structures imaged. There are many other applications of this new imaging method. Examples of other uses include imaging adnexal pathology, assessing corneal changes with refractive surgery, the assessment of trauma, and determination of intraocular lens position.

  15. Near-field three-dimensional radar imaging techniques and applications.

    PubMed

    Sheen, David; McMakin, Douglas; Hall, Thomas

    2010-07-01

    Three-dimensional radio frequency imaging techniques have been developed for a variety of near-field applications, including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and nondestructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range, from less than 100 MHz to in excess of 350 GHz, with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    CRESSWELL,M.W.; ALLEN,R.A.; GHOSHTAGORE,R.N.

    This paper describes the fabrication and measurement of the linewidths of the reference segments of cross-bridge resistors patterned in (100) Bonded and Etched Back Silicon-on-Insulator (BESOI) material. The critical dimensions (CD) of the reference segments of a selection of the cross-bridge resistor test structures were measured both electrically and by Scanning-Electron Microscopy (SEM) cross-section imaging. The reference-segment features were aligned with <110> directions in the BESOI surface material and had drawn linewidths ranging from 0.35 to 3.0 {micro}m. They were defined by a silicon micro-machining process which results in their sidewalls being atomically-planar and smooth and inclined at 54.737{degree} tomore » the surface (100) plane of the substrate. This (100) implementation may usefully complement the attributes of the previously-reported vertical-sidewall one for selected reference-material applications. For example, the non-orthogonal intersection of the sidewalls and top-surface planes of the reference-segment features may alleviate difficulties encountered with atomic-force microscope measurements. In such applications it has been reported that it may be difficult to maintain probe-tip control at the sharp 90{degree} outside corner of the sidewalls and the upper surface. A second application is refining to-down image-processing algorithms and checking instrument performance. Novel aspects of the (100) SOI implementation that are reported here include the cross-bridge resistor test-structure architecture and details of its fabrication. The long-term goal is to develop a technique for the determination of the absolute dimensions of the trapezoidal cross-sections of the cross-bridge resistors' reference segments, as a prelude to developing them for dimensional reference applications. This is believed to be the first report of electrical CD measurements made on test structures of the cross-bridge resistor type that have been patterned in (100) SOI material. The electrical CD results are compared with cross-section SEM measurements made on the same features.« less

  17. A Simple Endoscopic Technique for Measuring the Cross-Sectional Area of the Upper Airway in a Rabbit Model.

    PubMed

    Wistermayer, Paul R; McIlwain, Wesley R; Ieronimakis, Nicholas; Rogers, Derek J

    2018-04-01

    Validate an accurate and reproducible method of measuring the cross-sectional area (CSA) of the upper airway. This is a prospective animal study done at a tertiary care medical treatment facility. Control images were obtained using endotracheal tubes of varying sizes. In vivo images were obtained from various timepoints of a concurrent study on subglottic stenosis. Using a 0° rod telescope, an instrument was placed at the level of interest, and a photo was obtained. Three independent and blinded raters then measured the CSA of the narrowest portion of the airway using open source image analysis software. Each blinded rater measured the CSA of 79 photos. The t testing to assess for accuracy showed no difference between measured and known CSAs of the control images ( P = .86), with an average error of 1.5% (SD = 5.5%). All intraclass correlation (ICC) values for intrarater agreement showed excellent agreement (ICC > .75). Interrater reliability among all raters in control (ICC = .975; 95% CI, .817-.995) and in vivo (ICC = .846;, 95% CI, .780-.896) images showed excellent agreement. We validate a simple, accurate, and reproducible method of measuring the CSA of the airway that can be used in a clinical or research setting.

  18. Cross sectional imaging of post partum headache and seizures.

    PubMed

    Hiremath, Rudresh; Mundaganur, Praveen; Sonwalkar, Pradeep; N S, Vishal; G S, Narendra; P, Sanjay

    2014-12-01

    To evaluate spectrum of causes & their characteristic findings in peripartum head ache and seizures on computed tomography & magnetic resonance imaging. Forty patients with complaints of peripartum headache and seizures underwent cross sectional imaging with computed tomography and magnetic resonance imaging during period of June 2011 to May 2012. Age group of subjects in this study was 18 to 38 y. Out of 40 patients 15 had history of eclampsia and remaining 25 patients were normotensive. Subjects with complaints of headache and seizures after six weeks of delivery were excluded from the study. Intravenous contrast was administered in cases with diagnostic dilemma. All results were reported and informed to the referring physicians on priority bases. Nine patients with peripartum headache and seizures revealed no brain parenchymal or cerebral vascular abnormalities on imaging. Eleven patients with a history of eclampsia showed features of eclamptic encephalopathy. Out 40 patients, 17 patients revealed cortical venous thrombosis with 14 patients showing parenchymal changes. One patient each showed features of meningoencephalitis, ischemic watershed territory infarct & region of gliosis. All results were analysed & tabulated. Eclamptic encephalopathy and cortical venous thrombosis are the major causes for post partum headache and seizures. Rational use of CT & MRI in the early course of the disease helps in characterizing the lesion and providing the appropriate treatment.

  19. Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers

    NASA Astrophysics Data System (ADS)

    Xie, Tuqiang; Xie, Huikai; Fedder, Gary K.; Pan, Yingtian

    2003-11-01

    Experimental results of a modified micromachined microelectromechanical systems (MEMS) mirror for substantial enhancement of the transverse laser scanning performance of endoscopic optical coherence tomography (EOCT) are presented. Image distortion due to buckling of MEMS mirror in our previous designs was analyzed and found to be attributed to excessive internal stress of the transverse bimorph meshes. The modified MEMS mirror completely eliminates bimorph stress and the resultant buckling effect, which increases the wobbling-free angular optical actuation to greater than 37°, exceeding the transverse laser scanning requirements for EOCT and confocal endoscopy. The new optical coherence tomography (OCT) endoscope allows for two-dimensional cross-sectional imaging that covers an area of 4.2 mm × 2.8 mm (limited by scope size) and at roughly 5 frames/s instead of the previous area size of 2.9 mm × 2.8 mm and is highly suitable for noninvasive and high-resolution imaging diagnosis of epithelial lesions in vivo. EOCT images of normal rat bladders and rat bladder cancers are compared with the same cross sections acquired with conventional bench-top OCT. The results clearly demonstrate the potential of EOCT for in vivo imaging diagnosis and precise guidance for excisional biopsy of early bladder cancers.

  20. Users Guide for Fire Image Analysis System - Version 5.0: A Tool for Measuring Fire Behavior Characteristics

    Treesearch

    Carl W. Adkins

    1995-01-01

    The Fire Image Analysis System is a tool for quantifying flame geometry and relative position at selected points along a spreading line fire. At present, the system requires uniform terrain (constant slope). The system has been used in field and laboratory studies for determining flame length, depth, cross sectional area, and rate of spread.

  1. Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages

    DOE PAGES

    Carlton, Holly D.; Elmer, John W.; Li, Yan; ...

    2016-04-13

    For this study synchrotron radiation micro-­tomography, a non-destructive three-dimensional imaging technique, is employed to investigate an entire microelectronic package with a cross-sectional area of 16 x 16 mm. Due to the synchrotron’s high flux and brightness the sample was imaged in just 3 minutes with an 8.7 μm spatial resolution.

  2. Plant Identification Based on Leaf Midrib Cross-Section Images Using Fractal Descriptors.

    PubMed

    da Silva, Núbia Rosa; Florindo, João Batista; Gómez, María Cecilia; Rossatto, Davi Rodrigo; Kolb, Rosana Marta; Bruno, Odemir Martinez

    2015-01-01

    The correct identification of plants is a common necessity not only to researchers but also to the lay public. Recently, computational methods have been employed to facilitate this task, however, there are few studies front of the wide diversity of plants occurring in the world. This study proposes to analyse images obtained from cross-sections of leaf midrib using fractal descriptors. These descriptors are obtained from the fractal dimension of the object computed at a range of scales. In this way, they provide rich information regarding the spatial distribution of the analysed structure and, as a consequence, they measure the multiscale morphology of the object of interest. In Biology, such morphology is of great importance because it is related to evolutionary aspects and is successfully employed to characterize and discriminate among different biological structures. Here, the fractal descriptors are used to identify the species of plants based on the image of their leaves. A large number of samples are examined, being 606 leaf samples of 50 species from Brazilian flora. The results are compared to other imaging methods in the literature and demonstrate that fractal descriptors are precise and reliable in the taxonomic process of plant species identification.

  3. Model-based cartilage thickness measurement in the submillimeter range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streekstra, G. J.; Strackee, S. D.; Maas, M.

    2007-09-15

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness wasmore » varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical sections. We present a method that yields virtually unbiased thickness estimates of cartilage layers in the submillimeter range. The good agreement of thickness estimates from CT images with estimates from anatomical sections is promising for clinical application of the method in cartilage integrity staging of the wrist and the ankle.« less

  4. Motion artifact and background noise suppression on optical microangiography frames using a naïve Bayes mask.

    PubMed

    Reif, Roberto; Baran, Utku; Wang, Ruikang K

    2014-07-01

    Optical coherence tomography (OCT) is a technique that allows for the three-dimensional (3D) imaging of small volumes of tissue (a few millimeters) with high resolution (∼10  μm). Optical microangiography (OMAG) is a method of processing OCT data, which allows for the extraction of the tissue vasculature with capillary resolution from the OCT images. Cross-sectional B-frame OMAG images present the location of the patent blood vessels; however, the signal-to-noise-ratio of these images can be affected by several factors such as the quality of the OCT system and the tissue motion artifact. This background noise can appear in the en face projection view image. In this work we propose to develop a binary mask that can be applied on the cross-sectional B-frame OMAG images, which will reduce the background noise while leaving the signal from the blood vessels intact. The mask is created by using a naïve Bayes (NB) classification algorithm trained with a gold standard image which is manually segmented by an expert. The masked OMAG images present better contrast for binarizing the image and quantifying the result without the influence of noise. The results are compared with a previously developed frequency rejection filter (FRF) method which is applied on the en face projection view image. It is demonstrated that both the NB and FRF methods provide similar vessel length fractions. The advantage of the NB method is that the results are applicable in 3D and that its use is not limited to periodic motion artifacts.

  5. Higher acid-chlorite reactivity of cell corner middle lamella lignin in black spruce

    Treesearch

    Umesh P. Agarwal

    2007-01-01

    To determine if there was a delignification behavior difference between secondary wall (S2) and middle lamella (cell corner or CC) lignin, black spruce cross-sections were acid-chlorite delignified and the tissue was evaluated in-situ by Raman imaging. Lignin concentration in S2 and CC was determined in numerous latewood cell areas in the two hour delignified cross...

  6. Silver nanoparticle-induced degranulation observed with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Wenzhong; Lee, Seungrag; Lee, Jiyong; Bae, Yoonsung; Kim, Dugyoung

    2010-07-01

    Monitoring a degranulation process in a live mast cell is a quite important issue in immunology and pharmacology. Because the size of a granule is normally much smaller than the resolution limit of an optical microscope system, there is no direct real-time live cell imaging technique for observing degranulation processes except for fluorescence imaging techniques. In this research, we propose optical quantitative phase microscopy (QPM) as a new observation tool to study degranulation processes in a live mast cell without any fluorescence labeling. We measure the cell volumes and the cross sectional profiles (x-z plane) of an RBL-2H3 cell and a HeLa cell, before and after they are exposed to calcium ionophore A23187 and silver nanoparticles (AgNPs). We verify that the volume and the cross sectional line profile of the RBL-2H3 cell were changed significantly when it was exposed to A23187. When 50 μg/mL of AgNP is used instead of A23187, the measurements of cell volume and cross sectional profiles indicate that RBL-2H3 cells also follow degranulation processes. Degranulation processes for these cells are verified by monitoring the increase of intracellular calcium ([Ca2+]i) and histamine with fluorescent methods.

  7. Posture and re-positioning considerations of a complete torso topographic analysis system for assessing scoliosis

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter O.; Durdle, Nelson G.; Hill, Doug L.; Raso, V. J.

    2006-02-01

    The influence of posture and re-positioning (sway and breathing) on the accuracy of a torso imaging system for assessing scoliosis was evaluated. The system comprised of a rotating positioning platform and one or two laser digitizers. It required four partial-scans taken at 90 ° intervals over 10 seconds to generate two complete torso scans. Its accuracy was previously determined to be 1.1+/-0.9mm. Ten evenly spaced cross-sections obtained from forty scans of five volunteers in four postures (free-standing, holding side supports, holding front supports and with their hands on their shoulders) were used to assess the variability due to posture. Twenty cross-sections from twenty scans of two volunteers holding side supports were used to assess the variability due to positioning. The variability due to posture was less than 4mm at each cross-section for all volunteers. Variability due to sway ranged from 0-3.5mm while that due to breathing ranged from 0-3mm for both volunteers. Holding side supports was the best posture. Taking the four shots within 10 seconds was optimal. As major torso features that are indicative of scoliosis are larger than 4mm in size, the system could be used in obtaining complete torso images used in assessing and managing scoliosis.

  8. On the radar cross section (RCS) prediction of vehicles moving on the ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabihi, Ahmad

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  9. Quantification of electrical field-induced flow reversal in a microchannel.

    PubMed

    Pirat, C; Naso, A; van der Wouden, E J; Gardeniers, J G E; Lohse, D; van den Berg, A

    2008-06-01

    We characterize the electroosmotic flow in a microchannel with field effect flow control. High resolution measurements of the flow velocity, performed by micro particle image velocimetry, evidence the flow reversal induced by a local modification of the surface charge due to the presence of the gate. The shape of the microchannel cross-section is accurately extracted from these measurements. Experimental velocity profiles show a quantitative agreement with numerical results accounting for this exact shape. Analytical predictions assuming a rectangular cross-section are found to give a reasonable estimate of the velocity far enough from the walls.

  10. Targeted Silver Nanoparticles for Dual-Energy Breast X-Ray Imaging

    DTIC Science & Technology

    2013-03-01

    imaging parameters. In addition, Ag performs better than I when imaging at the optimal conditions for I. For example, using a rhodium filter, the...Laboratory. XCOM: Photon Cross Sections Database. Retrieved December 10, 2011 2. Boone J.M. , Fewell, T.R., Jennings, R.J. Molybdenum, rhodium , and tungsten...and a 27 kVp low-energy beam with rhodium filtration, at a dose distribution of 50:50. This low-energy technique is a classic example of an

  11. Structure and chemical composition of the dentin-enamel junction analyzed by Confocal Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Desoutter, A.; Salehi, H.; Slimani, A.; Marquet, P.; Jacquot, B.; Tassery, H.; Cuisinier, F. J. G.

    2014-02-01

    The structure and chemical composition of the human dentin-enamel junction (DEJ) was studied using confocal Raman microscopy - a chemical imaging technique. Slices of non-fixed, sound teeth were prepared with an Isomet diamond saw and scanned with Witec Alpha300R system. The combination of different characteristics peaks of phosphate, carbonate and organic matrix (respectively 960, 1072 and 1545 cm-1), generates images representing the chemical composition of the DEJ area. Images are also calculated using peak ratios enabling precise determination of the chemical composition across the DEJ. Then, with two characterized peaks, different pictures are calculated to show the ratio of two components. The images of the spatial distribution of mineral phosphate (960cm-1) to organic matrix (1545 cm-1) ratios, mineral carbonates (1072cm-1) to mineral phosphate ratios; and mineral carbonates to organic matrix ratios were reconstructed. Cross sectional and calculated graphic profile show the variations of the different chemical component ratios through the enamel and the dentin. Phosphate to organic ratio shows an accumulation of organic material under the enamel surface. The cross sectional profile of these pictures shows a high phosphate content compared to enamel in the vicinity of the DEJ. The Confocal Raman imaging technique can be used to further provide full chemical imaging of tooth, particularly of the whole DEJ and to study enamel and dentin decay.

  12. Mixing entropy in Dean flows

    NASA Astrophysics Data System (ADS)

    Fodor, Petru; Vyhnalek, Brian; Kaufman, Miron

    2013-03-01

    We investigate mixing in Dean flows by solving numerically the Navier-Stokes equation for a circular channel. Tracers of two chemical species are carried by the fluid. The centrifugal forces, experienced as the fluid travels along a curved trajectory, coupled with the fluid incompressibility induce cross-sectional rotating flows (Dean vortices). These transversal flows promote the mixing of the chemical species. We generate images for different cross sections along the trajectory. The mixing efficiency is evaluated using the Shannon entropy. Previously we have found, P. S. Fodor and M. Kaufman, Modern Physics Letters B 25, 1111 (2011), this measure to be useful in understanding mixing in the staggered herringbone mixer. The mixing entropy is determined as function of the Reynolds number, the angle of the cross section and the observation scale (number of bins). Quantitative comparison of the mixing in the Dean micromixer and in the staggered herringbone mixer is attempted.

  13. Evaluation of the relationship between mandibular third molar and mandibular canal by different algorithms of cone-beam computed tomography.

    PubMed

    Mehdizadeh, Mojdeh; Ahmadi, Navid; Jamshidi, Mahsa

    2014-11-01

    Exact location of the inferior alveolar nerve (IAN) bundle is very important. The aim of this study is to evaluate the relationship between the mandibular third molar and the mandibular canal by cone-beam computed tomography. This was a cross-sectional study with convenience sampling. 94 mandibular CBCTs performed with CSANEX 3D machine (Soredex, Finland) and 3D system chosen. Vertical and horizontal relationship between the mandibular canal and the third molar depicted by 3D, panoramic reformat view of CBCT and cross-sectional view. Cross-sectional view was our gold standard and other view evaluated by it. There were significant differences between the vertical and horizontal relation of nerve and tooth in all views (p < 0.001). The results showed differences in the position of the inferior alveolar nerve with different views of CBCT, so CBCT images are not quite reliable and have possibility of error.

  14. The H2 + + He proton transfer reaction: quantum reactive differential cross sections to be linked with future velocity mapping experiments

    NASA Astrophysics Data System (ADS)

    Hernández Vera, Mario; Wester, Roland; Gianturco, Francesco Antonio

    2018-01-01

    We construct the velocity map images of the proton transfer reaction between helium and molecular hydrogen ion {{{H}}}2+. We perform simulations of imaging experiments at one representative total collision energy taking into account the inherent aberrations of the velocity mapping in order to explore the feasibility of direct comparisons between theory and future experiments planned in our laboratory. The asymptotic angular distributions of the fragments in a 3D velocity space is determined from the quantum state-to-state differential reactive cross sections and reaction probabilities which are computed by using the time-independent coupled channel hyperspherical coordinate method. The calculations employ an earlier ab initio potential energy surface computed at the FCI/cc-pVQZ level of theory. The present simulations indicate that the planned experiments would be selective enough to differentiate between product distributions resulting from different initial internal states of the reactants.

  15. An analysis of un-dissolved powders of instant powdered soup by using ultrasonographic image

    NASA Astrophysics Data System (ADS)

    Kawaai, Yukinori; Kato, Kunihito; Yamamoto, Kazuhiko; Kasamatsu, Chinatsu

    2008-11-01

    Nowadays, there are many instant powdered soups around us. When we make instant powdered soup, sometimes we cannot dissolve powders perfectly. Food manufacturers want to improve this problem in order to make better products. Therefore, they have to measure the state and volume of un-dissolved powders. Earlier methods for analyzing removed the un-dissolved powders from the container, the state of the un-dissolved power was changed. Our research using ultrasonographic image can measure the state of un-dissolved powders with no change by taking cross sections of the soup. We then make 3D soup model from these cross sections of soup. Therefore we can observe the inside of soup that we do not have ever seen. We construct accurate 3D model. We can visualize the state and volume of un-dissolved powders with analyzing the 3D soup models.

  16. Three-dimensional radar imaging techniques and systems for near-field applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.

    2016-05-12

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  17. Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes.

    PubMed

    Franklyn, Melanie; Oakes, Barry; Field, Bruce; Wells, Peter; Morgan, David

    2008-06-01

    Various tibial dimensions and geometric parameters have been linked to stress fractures in athletes and military recruits, but many mechanical parameters have still not been investigated. Sedentary people, athletes with medial tibial stress syndrome, and athletes with stress fractures have smaller tibial geometric dimensions and parameters than do uninjured athletes. Cohort study; Level of evidence, 3. Using a total of 88 subjects, male and female patients with either a tibial stress fracture or medial tibial stress syndrome were compared with both uninjured aerobically active controls and uninjured sedentary controls. Tibial scout radiographs and cross-sectional computed tomography images of all subjects were scanned at the junction of the midthird and distal third of the tibia. Tibial dimensions were measured directly from the films; other parameters were calculated numerically. Uninjured exercising men have a greater tibial cortical cross-sectional area than do their sedentary and injured counterparts, resulting in a greater value of some other cross-sectional geometric parameters, particularly the section modulus. However, for women, the cross-sectional areas are either not different or only marginally different, and there are few tibial dimensions or geometric parameters that distinguish the uninjured exercisers from the sedentary and injured subjects. In women, the main difference between the groups was the distribution of cortical bone about the centroid as a result of the different values of section modulus. Last, medial tibial stress syndrome subjects had smaller tibial cross-sectional dimensions than did their uninjured exercising counterparts, suggesting that medial tibial stress syndrome is not just a soft-tissue injury but also a bony injury. The results show that in men, the cross-sectional area and the section modulus are the key parameters in the tibia to distinguish exercise and injury status, whereas for women, it is the section modulus only.

  18. Polarization and wavelength diversities of Gulf Stream fronts imaged by AIRSAR

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Jansen, R. W.; Marmorino, G. O.; Chubb, S. R.

    1995-01-01

    During the 1990 Gulf Stream Experiment, NASA/JPL AIRSAR imaged the north edge of the Gulf Stream near the coast of Virginia. Simultaneous in-situ measurements of currents, temperatures, salinities, etc. were made for several crossings of the north edge by the R/V Cape Henlopen. Measurements identified two fronts with shearing and converging flows. The polarimetric SAR images from the fronts showed two bright linear features. One of them corresponds to the temperature front, which separated the warm Gulf Stream water to the south from a cool, freshwater filament to the north. The other line, located about 8 km north of the temperature front, is believed to correspond to the velocity front between the filament and the slope water. At these fronts, wave-current interactions produced narrow bands of steep and breaking waves manifesting higher radar returns in polarimetric SAR images. In general, our AIRSAR imagery shows that the signal-to-clutter ratio of radar cross sections for the temperature front is higher than that of the velocity front. In this paper, we study the polarization and wavelength diversities of radar response of these two fronts using the P-, L-, and C-Band Polarimetric SAR data. The north-south flight path of the AIRSAR crossed the temperature front several times and provided valuable data for analysis. Three individual passes are investigated. We found that for the temperature front, the cross-pol (HV) responses are much higher than co-pol responses (VV and HH), and that P-Band HV has the highest signal to clutter ratio. For the velocity front, the ratio is the strongest in P-Band VV, and it is indistinguishable for all polarizations in C-Band. The radar cross sections for all three polarization (HH, HV, and VV) and for all three bands are modelled using an ocean wave model and a composite Bragg scattering model. In our initial investigations, the theoretical model agrees qualitatively with the AIRSAR observations.

  19. Rehabilitative ultrasound imaging of the supraspinatus muscle: Intra- and interrater reliability of thickness and cross-sectional area.

    PubMed

    Schneebeli, Alessandro; Egloff, Michele; Giampietro, Amelia; Clijsen, Ron; Barbero, Marco

    2014-04-01

    To examine intra- and interrater reliability of thickness and cross-sectional area (CSA) measurements of the supraspinatus muscle using rehabilitative ultrasound imaging (RUSI). Two physical therapists acquired b-mode images of the supraspinatus muscles in twenty-five healthy subjects. Thickness and CSA were measured. Intra- and interrater reliability were examined. Intrarater reliability for thickness was high, (ICC1.1 0.91) for rater 1 and (ICC1.1 0.92) for rater 2. Intrarater reliability for CSA was also high, (ICC1.1 0.90) for rater 1 and (ICC1.1 0.85) for rater 2. Interrater reliability for the thickness was high, (ICC3.1 0.86). For CSA, interrater reliability was moderate, (ICC3.1 0.70). Supraspinatus muscle thickness and CSA can be reliably measured by physical therapists in healthy subjects. These findings confirm that RUSI has an interesting potential for physiotherapy clinical practice, especially to assess morphometric changes in skeletal muscles. Further research is needed in subjects with shoulder disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Lumbo-pelvic joint protection against antigravity forces: motor control and segmental stiffness assessed with magnetic resonance imaging.

    PubMed

    Richardson, C A; Hides, J A; Wilson, S; Stanton, W; Snijders, C J

    2004-07-01

    The antigravity muscles of the lumbo-pelvic region, especially transversus abdominis (TrA), are important for the protection and support of the weightbearing joints. Measures of TrA function (the response to the postural cue of drawing in the abdominal wall) have been developed and quantified using magnetic resonance imaging (MRI). Cross-sections through the trunk allowed muscle contraction as well as the large fascial attachments of the TrA to be visualized. The cross sectional area (CSA) of the deep musculo-fascial system was measured at rest and in the contracted state, using static images as well as a cine sequence. In this developmental study, MRI measures were undertaken on a small sample of low back pain (LBP) and non LBP subjects. Results demonstrated that, in non LBP subjects, the draw in action produced a symmetrical deep musculo-fascial "corset" which encircles the abdomen. This study demonstrated a difference in this "corset" measure between subjects with and without LBP. These measures may also prove useful to quantify the effect of unloading in bedrest and microgravity exposure.

  1. On the absolute photoionization cross section and dissociative photoionization of cyclopropenylidene.

    PubMed

    Holzmeier, Fabian; Fischer, Ingo; Kiendl, Benjamin; Krueger, Anke; Bodi, Andras; Hemberger, Patrick

    2016-04-07

    We report the determination of the absolute photoionization cross section of cyclopropenylidene, c-C3H2, and the heat of formation of the C3H radical and ion derived by the dissociative ionization of the carbene. Vacuum ultraviolet (VUV) synchrotron radiation as provided by the Swiss Light Source and imaging photoelectron photoion coincidence (iPEPICO) were employed. Cyclopropenylidene was generated by pyrolysis of a quadricyclane precursor in a 1 : 1 ratio with benzene, which enabled us to derive the carbene's near threshold absolute photoionization cross section from the photoionization yield of the two pyrolysis products and the known cross section of benzene. The cross section at 9.5 eV, for example, was determined to be 4.5 ± 1.4 Mb. Upon dissociative ionization the carbene decomposes by hydrogen atom loss to the linear isomer of C3H(+). The appearance energy for this process was determined to be AE(0K)(c-C3H2; l-C3H(+)) = 13.67 ± 0.10 eV. The heat of formation of neutral and cationic C3H was derived from this value via a thermochemical cycle as Δ(f)H(0K)(C3H) = 725 ± 25 kJ mol(-1) and Δ(f)H(0K)(C3H(+)) = 1604 ± 19 kJ mol(-1), using a previously reported ionization energy of C3H.

  2. Nondestructive Imaging of Internal Structures of Frog (Xenopus laevis) Embryos by Shadow-Projection X-Ray Microtomography

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Yoneda, Ikuo; Nagai, Takeharu; Ueno, Naoto; Murakami, Kazuo

    1994-04-01

    Nondestructive high-resolution imaging of frog ( Xenopus laevis) embryos has been developed by X-ray microtomography. Shadow-projection X-ray microtomography with a brilliant fine focus laboratory X-ray source could image fine structures of Xenopus embryos which were embedded in paraffin wax. The imaging system enabled us to not only distinguish endoderm from ectoderm at the gastrula stage, but also to obtain a cross-section view of the tail bud embryo showing muscle, notochord and neural tube without staining. Furthermore, the distribution of myosin was also imaged in combination with whole-mount immunohistochemistry.

  3. Fiber optic-based optical coherence tomography (OCT) for dental applications

    NASA Astrophysics Data System (ADS)

    Everett, Matthew J.; Colston, Bill W., Jr.; Da Silva, Luiz B.; Otis, Linda L.

    1998-09-01

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity. We have produced, using this scanning device, in vivo cross-sectional images of hard and soft dental tissues in human volunteers. Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento- enamel junction, were visible in all the images. The cemento- enamel junction and the alveolar bone were identified in approximately two thirds of the images. These images represent, or our knowledge, the first in vivo OCT images of human dental tissue.

  4. Three-dimensional structure determination protocol for noncrystalline biomolecules using x-ray free-electron laser diffraction imaging.

    PubMed

    Oroguchi, Tomotaka; Nakasako, Masayoshi

    2013-02-01

    Coherent and intense x-ray pulses generated by x-ray free-electron laser (XFEL) sources are paving the way for structural determination of noncrystalline biomolecules. However, due to the small scattering cross section of electrons for x rays, the available incident x-ray intensity of XFEL sources, which is currently in the range of 10(12)-10(13) photons/μm(2)/pulse, is lower than that necessary to perform single-molecule diffraction experiments for noncrystalline biomolecules even with the molecular masses of megadalton and submicrometer dimensions. Here, we propose an experimental protocol and analysis method for visualizing the structure of those biomolecules by the combined application of coherent x-ray diffraction imaging and three-dimensional reconstruction methods. To compensate the small scattering cross section of biomolecules, in our protocol, a thin vitreous ice plate containing several hundred biomolecules/μm(2) is used as sample, a setup similar to that utilized by single-molecule cryoelectron microscopy. The scattering cross section of such an ice plate is far larger than that of a single particle. The images of biomolecules contained within irradiated areas are then retrieved from each diffraction pattern, and finally provide the three-dimensional electron density model. A realistic atomic simulation using large-scale computations proposed that the three-dimensional structure determination of the 50S ribosomal subunit embedded in a vitreous ice plate is possible at a resolution of 0.8 nm when an x-ray beam of 10(16) photons/500×500 nm(2)/pulse is available.

  5. Cross-Sectional Imaging of Boundary Lubrication Layer Formed by Fatty Acid by Means of Frequency-Modulation Atomic Force Microscopy.

    PubMed

    Hirayama, Tomoko; Kawamura, Ryota; Fujino, Keita; Matsuoka, Takashi; Komiya, Hiroshi; Onishi, Hiroshi

    2017-10-10

    To observe in situ the adsorption of fatty acid onto metal surfaces, cross-sectional images of the adsorption layer were acquired by frequency-modulation atomic force microscopy (FM-AFM). Hexadecane and palmitic acid were used as the base oil and typical fatty acid, respectively. A Cu-coated silicon wafer was prepared as the target substrate. The solvation structure formed by hexadecane molecules at the interface between the Cu substrate and the hexadecane was observed, and the layer pitch was found to be about 0.6 nm, which corresponds to the height of hexadecane molecules. This demonstrates that hexadecane molecules physically adsorbed onto the surface due to van der Waals forces with lying orientation because hexadecane is a nonpolar hydrocarbon. When hexadecane with palmitic acid was put on the Cu substrate instead of pure hexadecane, an adsorption layer of palmitic acid was observed at the interface. The layer pitch was about 2.5-2.8 nm, which matches the chain length of palmitic acid molecules well. This indicates that the original adsorption layer was monolayer or single bilayer in the local area. In addition, a cross-sectional image captured 1 h after observation started to reveal that the adsorbed additive layer gradually grew up to be thicker than about 20 nm due to an external stimulus, such as cantilever oscillation. This is the first report of in situ observation of an adsorbed layer by FM-AFM in the tribology field and demonstrates that FM-AFM is useful for clarifying the actual boundary lubrication mechanism.

  6. Fabrication of concave micromirrors for single cell imaging via controlled over-exposure of organically modified ceramics in single step lithography

    PubMed Central

    Bonabi, A.; Cito, S.; Tammela, P.; Jokinen, V.

    2017-01-01

    This work describes the fabrication of concave micromirrors to improve the sensitivity of fluorescence imaging, for instance, in single cell analysis. A new approach to fabrication of tunable round (concave) cross-sectional shaped microchannels out of the inorganic-organic hybrid polymer, Ormocomp®, via single step optical lithography was developed and validated. The concave micromirrors were implemented by depositing and patterning thin films of aluminum on top of the concave microchannels. The round cross-sectional shape was due to residual layer formation, which is inherent to Ormocomp® upon UV exposure in the proximity mode. We show that it is possible to control the residual layer thickness and thus the curved shape of the microchannel cross-sectional profile and eventually the focal length of the micromirror, by simply adjusting the UV exposure dose and the distance of the proximity gap (to the photomask). In general, an increase in the exposure dose or in the distance of the proximity gap results in a thicker residual layer and thus an increase in the radius of the microchannel curvature. Under constant exposure conditions, the radius of curvature is almost linearly dependent on the microchannel aspect ratio, i.e., the width (here, 20–200 μm) and the depth (here, 15–45 μm). Depending on the focal length, up to 8-fold signal enhancement over uncoated, round Ormocomp® microchannels was achieved in single cell imaging with the help of the converging micromirrors in an epifluorescence microscopy configuration. PMID:28652888

  7. Fabrication of concave micromirrors for single cell imaging via controlled over-exposure of organically modified ceramics in single step lithography.

    PubMed

    Bonabi, A; Cito, S; Tammela, P; Jokinen, V; Sikanen, T

    2017-05-01

    This work describes the fabrication of concave micromirrors to improve the sensitivity of fluorescence imaging, for instance, in single cell analysis. A new approach to fabrication of tunable round (concave) cross-sectional shaped microchannels out of the inorganic-organic hybrid polymer, Ormocomp ® , via single step optical lithography was developed and validated. The concave micromirrors were implemented by depositing and patterning thin films of aluminum on top of the concave microchannels. The round cross-sectional shape was due to residual layer formation, which is inherent to Ormocomp ® upon UV exposure in the proximity mode. We show that it is possible to control the residual layer thickness and thus the curved shape of the microchannel cross-sectional profile and eventually the focal length of the micromirror, by simply adjusting the UV exposure dose and the distance of the proximity gap (to the photomask). In general, an increase in the exposure dose or in the distance of the proximity gap results in a thicker residual layer and thus an increase in the radius of the microchannel curvature. Under constant exposure conditions, the radius of curvature is almost linearly dependent on the microchannel aspect ratio, i.e., the width (here, 20-200  μ m) and the depth (here, 15-45  μ m). Depending on the focal length, up to 8-fold signal enhancement over uncoated, round Ormocomp ® microchannels was achieved in single cell imaging with the help of the converging micromirrors in an epifluorescence microscopy configuration.

  8. Unresolved fine-scale structure in solar coronal loop-tops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.

    2014-12-10

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certainmore » circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.« less

  9. Evaluation of the Sendai and 2012 International Consensus Guidelines based on cross-sectional imaging findings performed for the initial triage of mucinous cystic lesions of the pancreas: a single institution experience with 114 surgically treated patients.

    PubMed

    Goh, Brian K P; Thng, Choon-Hua; Tan, Damien M Y; Low, Albert S C; Wong, Jen-San; Cheow, Peng-Chung; Chow, Pierce K H; Chung, Alexander Y F; Wong, Wai-Keong; Ooi, London L P J

    2014-08-01

    The Sendai Consensus Guidelines (SCG) were formulated in 2006 to guide the management of mucinous cystic lesions of the pancreas (CLPs) and were updated in 2012 (International Consensus Guidelines, ICG 2012). This study aims to evaluate the clinical utility of the ICG 2012 with the SCG based on initial cross-sectional imaging findings. One hundred fourteen patients with mucinous CLPs were reviewed and classified according to the ICG 2012 as high risk (HR(ICG2012)), worrisome (W(ICG2012)), and low risk (LR(ICG2012)), and according to the SCG as high risk (HR(SCG)) and low risk (LR(SCG)). On univariate analysis, the presence of symptoms, obstructive jaundice, elevated serum carcinoembryonic antigen (CEA)/carbohydrate antigen (CA)19-9, solid component, main pancreatic duct ≥ 10 mm, and main pancreatic duct ≥ 5 mm was associated with high grade dysplasia/invasive carcinoma in all mucinous CLPs. Increasing number of HR(SCG) or HR(ICG2012) features was associated with a significantly increased likelihood of malignancy. The positive predictive value of HR(SCG) and HR(ICG2012) for high grade dysplasia/invasive carcinoma was 46% and 62.5% respectively. The negative predictive value of both LR(SCG) and LR(ICG2012) was 100%. Both the guidelines were useful in the initial cross-sectional imaging evaluation of mucinous CLPs. The ICG 2012 guidelines were superior to the SCG guidelines. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. 3D printed pathological sectioning boxes to facilitate radiological-pathological correlation in hepatectomy cases.

    PubMed

    Trout, Andrew T; Batie, Matthew R; Gupta, Anita; Sheridan, Rachel M; Tiao, Gregory M; Towbin, Alexander J

    2017-11-01

    Radiogenomics promises to identify tumour imaging features indicative of genomic or proteomic aberrations that can be therapeutically targeted allowing precision personalised therapy. An accurate radiological-pathological correlation is critical to the process of radiogenomic characterisation of tumours. An accurate correlation, however, is difficult to achieve with current pathological sectioning techniques which result in sectioning in non-standard planes. The purpose of this work is to present a technique to standardise hepatic sectioning to facilitateradiological-pathological correlation. We describe a process in which three-dimensional (3D)-printed specimen boxes based on preoperative cross-sectional imaging (CT and MRI) can be used to facilitate pathological sectioning in standard planes immediately on hepatic resection enabling improved tumour mapping. We have applied this process in 13 patients undergoing hepatectomy and have observed close correlation between imaging and gross pathology in patients with both unifocal and multifocal tumours. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Fabrication of an X-Ray Imaging Detector

    NASA Technical Reports Server (NTRS)

    Alcorn, G. E.; Burgess, A. S.

    1986-01-01

    X-ray detector array yields mosaic image of object emitting 1- to 30-keV range fabricated from n-doped silicon wafer. In proposed fabrication technique, thin walls of diffused n+ dopant divide wafer into pixels of rectangular cross section, each containing central electrode of thermally migrated p-type metal. This pnn+ arrangement reduces leakage current by preventing transistor action caused by pnp structure of earlier version.

  12. Laser Covariance Vibrometry for Unsymmetrical Mode Detection

    DTIC Science & Technology

    2006-09-01

    surface rough- ness. Results show that the remote sensing spectra adequately match the structural vibration, including non – imaging spatially...the speckle. 10 profile (cross – section), is an air turbulence effect ignored in this work that will affect both the sensed vibration phase change and...like spike impulse. 13 Chapter three describes optical processing issues. This chapter delineates the image propagation algorithms used for the work

  13. Temporal Effects on Internal Fluorescence Emissions Associated with Aflatoxin Contamination from Corn Kernel Cross-Sections Inoculated with Toxigenic and Atoxigenic Aspergillus flavus.

    PubMed

    Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E

    2017-01-01

    Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus . Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus , were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points.

  14. Temporal Effects on Internal Fluorescence Emissions Associated with Aflatoxin Contamination from Corn Kernel Cross-Sections Inoculated with Toxigenic and Atoxigenic Aspergillus flavus

    PubMed Central

    Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2017-01-01

    Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus. Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus, were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points. PMID:28966606

  15. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    NASA Astrophysics Data System (ADS)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  16. Evolution of deep gray matter volume across the human lifespan.

    PubMed

    Narvacan, Karl; Treit, Sarah; Camicioli, Richard; Martin, Wayne; Beaulieu, Christian

    2017-08-01

    Magnetic resonance imaging of subcortical gray matter structures, which mediate behavior, cognition and the pathophysiology of several diseases, is crucial for establishing typical maturation patterns across the human lifespan. This single site study examines T1-weighted MPRAGE images of 3 healthy cohorts: (i) a cross-sectional cohort of 406 subjects aged 5-83 years; (ii) a longitudinal neurodevelopment cohort of 84 subjects scanned twice approximately 4 years apart, aged 5-27 years at first scan; and (iii) a longitudinal aging cohort of 55 subjects scanned twice approximately 3 years apart, aged 46-83 years at first scan. First scans from longitudinal subjects were included in the cross-sectional analysis. Age-dependent changes in thalamus, caudate, putamen, globus pallidus, nucleus accumbens, hippocampus, and amygdala volumes were tested with Poisson, quadratic, and linear models in the cross-sectional cohort, and quadratic and linear models in the longitudinal cohorts. Most deep gray matter structures best fit to Poisson regressions in the cross-sectional cohort and quadratic curves in the young longitudinal cohort, whereas the volume of all structures except the caudate and globus pallidus decreased linearly in the longitudinal aging cohort. Males had larger volumes than females for all subcortical structures, but sex differences in trajectories of change with age were not significant. Within subject analysis showed that 65%-80% of 13-17 year olds underwent a longitudinal decrease in volume between scans (∼4 years apart) for the putamen, globus pallidus, and hippocampus, suggesting unique developmental processes during adolescence. This lifespan study of healthy participants will form a basis for comparison to neurological and psychiatric disorders. Hum Brain Mapp 38:3771-3790, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Evaluation of radiographic, computed tomographic, and cadaveric anatomy of the head of boa constrictors.

    PubMed

    Banzato, Tommaso; Russo, Elisa; Di Toma, Anna; Palmisano, Giuseppe; Zotti, Alessandro

    2011-12-01

    To evaluate the radiographic, computed tomographic (CT), and cadaveric anatomy of the head of boa constrictors. 4 Boa constrictor imperator cadavers. Cadavers weighed 3.4 to 5.6 kg and had a body length ranging from 189 to 221 cm. Radiographic and CT images were obtained with a high-detail screen-film combination, and conventional CT was performed with a slice thickness of 1.5 mm. Radiographic images were obtained in ventrodorsal, dorsoventral, and left and right laterolateral recumbency; CT images were obtained with the animals positioned in ventral recumbency directly laying on a plastic support. At the end of the radiographic and CT imaging session, 2 heads were sectioned following a stratigraphic approach; the other 2, carefully maintained in the same position on the plastic support, were moved into a freezer (-20°C) until completely frozen and then sectioned into 3-mm slices, respecting the imaging protocol. The frozen sections were cleaned and then photographed on each side. Anatomic structures were identified and labeled on gross anatomic images and on the corresponding CT or radiographic image with the aid of available literature. Radiographic and CT images provided high detail for visualization of bony structures; soft tissues were not easily identified on radiographic and CT images. Results provide an atlas of stratigraphic and cross-sectional gross anatomy and radiographic and CT anatomy of the heads of boa constrictors that might be useful in the interpretation of any imaging modality in this species.

  18. Engineering support for an ultraviolet imager for the ISTP mission

    NASA Technical Reports Server (NTRS)

    Torr, Douglas G.

    1991-01-01

    Design and development activities were carried out for the Ultraviolet Imager (UVI) to be flown on the Polar Spacecraft of the INternational Solar Terrestrial Physics (ISTP) Mission. The following tasks were performed: (1) design and fabrication of prototype/engineering model of the UVI imager; (2) preliminary design review; (3) vacuum ultraviolet filter design; (4) auroral energy deposition code; (5) model of LBH vehicle glow; (6) laboratory measurement program of collision cross-sections; and (7) support of ISTP meetings.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Missert, Nancy; Kotula, Paul G.; Rye, Michael

    We used a focused ion beam to obtain cross-sectional specimens from both magnetic multilayer and Nb/Al-AlOx/Nb Josephson junction devices for characterization by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX). An automated multivariate statistical analysis of the EDX spectral images produced chemically unique component images of individual layers within the multilayer structures. STEM imaging elucidated distinct variations in film morphology, interface quality, and/or etch artifacts that could be correlated to magnetic and/or electrical properties measured on the same devices.

  20. Cross-Sectional Imaging in a Case of Adventitial Cystic Disease of the Popliteal Artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, Paolo; Panzetti, Claudio; Mastantuono, Marco

    1999-01-15

    Adventitial cystic disease of the popliteal artery is an unusual condition of uncertain etiology, in which a mucin-containing cyst forms in the wall of the artery and produces lower extremity claudication, typically in young and middle-aged men. A diagnosis of adventitial cystic disease of the popliteal artery was made preoperatively in a 47-year-old man by means of several imaging modalities, including angiography, magnetic resonance imaging, and ultrasound. The pathological findings confirmed the suggested diagnosis.

  1. Optical cross-talk and surface characterization of SERS nanoimaging bundle substrates

    NASA Astrophysics Data System (ADS)

    Kiser, John B.; Cullum, Brian M.

    2010-04-01

    Due to the narrow vibrational bandwidths and unique molecular fingerprints, Raman spectroscopy can be an information rich transduction technique for chemical imaging. Dynamic systems are often difficult to measure using spontaneous Raman due to the relatively weak scattering cross-sections. Using a Raman enhancement mechanism such as surface enhanced Raman scattering (SERS), exposure times can be reduced to a reasonable level for dynamic imaging, due to the increased Raman signal intensity. This paper will discuss the development of a novel SERS substrate, fabricated on the tips of fiber-optic imaging bundles, which can be integrated into a multispectral imaging system for non-scanning chemical imaging. These substrates are fabricated by mechanically tapering a polished fiber optic imaging bundle consisting of 30,000 individual elements; producing 100-nm or smaller diameter core elements on the distal tip. Chemical etching with hydrofluoric acid creates uniform cladding spikes onto which a SERS active metal is vacuum deposited, forming the SERS active surface. By varying the size of the silver islands deposited on the cladding peaks active, surface plasmons can be tuned to various excitation frequencies. The surface of these tapered fiber optic probes will be evaluated by analysis of the SERS signal, location and shape of the active surface plasmons. The cross talk between the fiber elements will also be evaluated.

  2. A method for automatic grain segmentation of multi-angle cross-polarized microscopic images of sandstone

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Gu, Qing; Hao, Huizhen; Li, Na; Wang, Bingqian; Hu, Xiumian

    2018-06-01

    Automatic grain segmentation of sandstone is to partition mineral grains into separate regions in the thin section, which is the first step for computer aided mineral identification and sandstone classification. The sandstone microscopic images contain a large number of mixed mineral grains where differences among adjacent grains, i.e., quartz, feldspar and lithic grains, are usually ambiguous, which make grain segmentation difficult. In this paper, we take advantage of multi-angle cross-polarized microscopic images and propose a method for grain segmentation with high accuracy. The method consists of two stages, in the first stage, we enhance the SLIC (Simple Linear Iterative Clustering) algorithm, named MSLIC, to make use of multi-angle images and segment the images as boundary adherent superpixels. In the second stage, we propose the region merging technique which combines the coarse merging and fine merging algorithms. The coarse merging merges the adjacent superpixels with less evident boundaries, and the fine merging merges the ambiguous superpixels using the spatial enhanced fuzzy clustering. Experiments are designed on 9 sets of multi-angle cross-polarized images taken from the three major types of sandstones. The results demonstrate both the effectiveness and potential of the proposed method, comparing to the available segmentation methods.

  3. Learning a cost function for microscope image segmentation.

    PubMed

    Nilufar, Sharmin; Perkins, Theodore J

    2014-01-01

    Quantitative analysis of microscopy images is increasingly important in clinical researchers' efforts to unravel the cellular and molecular determinants of disease, and for pathological analysis of tissue samples. Yet, manual segmentation and measurement of cells or other features in images remains the norm in many fields. We report on a new system that aims for robust and accurate semi-automated analysis of microscope images. A user interactively outlines one or more examples of a target object in a training image. We then learn a cost function for detecting more objects of the same type, either in the same or different images. The cost function is incorporated into an active contour model, which can efficiently determine optimal boundaries by dynamic programming. We validate our approach and compare it to some standard alternatives on three different types of microscopic images: light microscopy of blood cells, light microscopy of muscle tissue sections, and electron microscopy cross-sections of axons and their myelin sheaths.

  4. Variation in the human ribs geometrical properties and mechanical response based on X-ray computed tomography images resolution.

    PubMed

    Perz, Rafał; Toczyski, Jacek; Subit, Damien

    2015-01-01

    Computational models of the human body are commonly used for injury prediction in automobile safety research. To create these models, the geometry of the human body is typically obtained from segmentation of medical images such as computed tomography (CT) images that have a resolution between 0.2 and 1mm/pixel. While the accuracy of the geometrical and structural information obtained from these images depend greatly on their resolution, the effect of image resolution on the estimation of the ribs geometrical properties has yet to be established. To do so, each of the thirty-four sections of ribs obtained from a Post Mortem Human Surrogate (PMHS) was imaged using three different CT modalities: standard clinical CT (clinCT), high resolution clinical CT (HRclinCT), and microCT. The images were processed to estimate the rib cross-section geometry and mechanical properties, and the results were compared to those obtained from the microCT images by computing the 'deviation factor', a metric that quantifies the relative difference between results obtained from clinCT and HRclinCT to those obtained from microCT. Overall, clinCT images gave a deviation greater than 100%, and were therefore deemed inadequate for the purpose of this study. HRclinCT overestimated the rib cross-sectional area by 7.6%, the moments of inertia by about 50%, and the cortical shell area by 40.2%, while underestimating the trabecular area by 14.7%. Next, a parametric analysis was performed to quantify how the variations in the estimate of the geometrical properties affected the rib predicted mechanical response under antero-posterior loading. A variation of up to 45% for the predicted peak force and up to 50% for the predicted stiffness was observed. These results provide a quantitative estimate of the sensitivity of the response of the FE model to the resolution of the images used to generate it. They also suggest that a correction factor could be derived from the comparison between microCT and HRclinCT images to improve the response of the model developed based on HRclinCT images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Measurements of cross-sectional instantaneous phase distribution in gas-liquid pipe flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roitberg, E.; Shemer, L.; Barnea, D.

    Two novel complementing methods that enable experimental study of gas and liquid phases distribution in two-phase pipe flow are considered. The first measuring technique uses a wire-mesh sensor that, in addition to providing data on instantaneous phase distribution in the pipe cross-section, also allows measuring instantaneous propagation velocities of the phase interface. A novel algorithm for processing the wire-mesh sensor data is suggested to determine the instantaneous boundaries of gas-liquid interface. The second method applied here takes advantage of the existence of sharp visible boundaries between the two phases. This optical instrument is based on a borescope that is connectedmore » to a digital video camera. Laser light sheet illumination makes it possible to obtain images in the illuminated pipe cross-section only. It is demonstrated that the wire-mesh-derived results based on application of the new algorithm improve the effective spatial resolution of the instrument and are in agreement with those obtained using the borescope. Advantages and limitations of both measuring techniques for the investigations of cross-sectional instantaneous phase distribution in two-phase pipe flows are discussed. (author)« less

  6. Is localized infrared spectroscopy now possible in the electron microscope?

    PubMed

    Rez, Peter

    2014-06-01

    The recently developed in-column monochromators make it possible to record energy-c spectra with resolutions better than 30 meV from nanometer-sized regions. It should therefore in principle be possible to detect localized vibrational excitations. The scattering geometry in the electron microscope means that bond stretching in the specimen plane or longitudinal optic phonons dominate the scattering. Most promising for initial studies are vibrations with energies between 300 and 400 meV from hydrogen bonded to other atoms. Estimates of the scattering cross-sections on the basis of a simple model show that they are about the same as inner shell scattering cross-sections. Cross-sections also increase with charge transfer between the atoms, and theory incorporating realistic charge distributions shows that signal/noise is the only limitation to high-resolution imaging. Given the magnitude of the scattering cross-sections, minimizing the tail of the zero-loss peak is just as important as achieving a small-width at half-maximum. Improvements in both resolution and controlling the zero-loss tail will be necessary before it is practical to detect optic phonons in solids between 40 and 60 meV.

  7. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope.

    PubMed

    Wu, J S; Kim, A M; Bleher, R; Myers, B D; Marvin, R G; Inada, H; Nakamura, K; Zhang, X F; Roth, E; Li, S Y; Woodruff, T K; O'Halloran, T V; Dravid, Vinayak P

    2013-05-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Strain relaxation induced surface morphology of heterogeneous GaInNAs layers grown on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Gelczuk, Ł.; Jóźwiak, G.; Moczała, M.; Dłużewski, P.; Dąbrowska-Szata, M.; Gotszalk, T. P.

    2017-07-01

    The partially-relaxed heterogeneous GaInNAs layers grown on GaAs substrate by atmospheric pressure vapor phase epitaxy (AP-MOVPE) were investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The planar-view TEM image shows a regular 2D network of misfit dislocations oriented in two orthogonal 〈1 1 0〉 crystallographic directions at the (0 0 1) layer interface. Moreover, the cross-sectional view TEM image reveals InAs-rich and V-shaped precipitates in the near surface region of the GaInNAs epitaxial layer. The resultant undulating surface morphology, known as a cross-hatch pattern, is formed as observed by AFM. The numerical analysis of the AFM image of the GaInNAs layer surface with the well-defined cross-hatch morphology enabled us to determine a lower bound of actual density of misfit dislocations. However, a close correspondence between the asymmetric distribution of interfacial misfit dislocations and undulating surface morphology is observed.

  9. Targeted sections in either XY or XZ plane with dual-axes confocal endomicroscope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R.; Wang, Thomas D.

    2017-02-01

    We demonstrate a dual axes confocal architecture, which can be used to collect horizontal(XY-plane) or vertical cross-sectional(XZ-plane) images for tissue. This scanner head is 5.5mm in outer diameter(OD), and integrates a 3D MEMS scanner with a compact chip size of 3.2×2.9mm2. To realize the miniaturization, there are some obstacles of the small size of 3D MEMS scanner, MEMS wire bundle, the air pressure effect for MEMS motion, the processing of parabolic mirror, and optical alignment to come over. In our probe, separation mechanical structure for optical alignment was adopted and a step shape MEMS holder was designed to deal with the difficult of MEMS wire bundle. Peptides have been demonstrated tremendous potential for in vivo use to detect colonic dysplasia. This class of in vivo molecular probe can be labeled with near-infrared (NIR) dyes for visualizing the full depth of the epithelium in small animals. To confirm our probe performance, we take use of USAF 1951 resolution target to test its lateral and axial resolution. It has lateral and axial resolution of 2.49um and 4.98um, respectively. When we collect the fluorescence imaging of colon, it shows that the field of view are 1000um×1000um (horizontal) and 1000um×430um (vertical). The horizontal and vertical cross-sectional images of fresh mouse colonic mucosa demonstrate imaging performance with this miniature instrument.

  10. Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography

    PubMed Central

    Choi, WooJhon; Mohler, Kathrin J.; Potsaid, Benjamin; Lu, Chen D.; Liu, Jonathan J.; Jayaraman, Vijaysekhar; Cable, Alex E.; Duker, Jay S.; Huber, Robert; Fujimoto, James G.

    2013-01-01

    We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure without the need for exogenous fluorophores by detecting erythrocyte motion contrast between OCT intensity cross-sectional images acquired rapidly and repeatedly from the same location on the retina. En face OCT angiograms of the choriocapillaris and choroidal vasculature are visualized by acquiring cross-sectional OCT angiograms volumetrically via raster scanning and segmenting the three-dimensional angiographic data at multiple depths below the retinal pigment epithelium (RPE). Fine microvasculature of the choriocapillaris, as well as tightly packed networks of feeding arterioles and draining venules, can be visualized at different en face depths. Panoramic ultra-wide field stitched OCT angiograms of the choriocapillaris spanning ∼32 mm on the retina show distinct vascular structures at different fundus locations. Isolated smaller fields at the central fovea and ∼6 mm nasal to the fovea at the depths of the choriocapillaris and Sattler's layer show vasculature structures consistent with established architectural morphology from histological and electron micrograph corrosion casting studies. Choriocapillaris imaging was performed in eight healthy volunteers with OCT angiograms successfully acquired from all subjects. These results demonstrate the feasibility of ultrahigh speed OCT for in vivo dye-free choriocapillaris and choroidal vasculature imaging, in addition to conventional structural imaging. PMID:24349078

  11. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography.

    PubMed

    Choi, WooJhon; Mohler, Kathrin J; Potsaid, Benjamin; Lu, Chen D; Liu, Jonathan J; Jayaraman, Vijaysekhar; Cable, Alex E; Duker, Jay S; Huber, Robert; Fujimoto, James G

    2013-01-01

    We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure without the need for exogenous fluorophores by detecting erythrocyte motion contrast between OCT intensity cross-sectional images acquired rapidly and repeatedly from the same location on the retina. En face OCT angiograms of the choriocapillaris and choroidal vasculature are visualized by acquiring cross-sectional OCT angiograms volumetrically via raster scanning and segmenting the three-dimensional angiographic data at multiple depths below the retinal pigment epithelium (RPE). Fine microvasculature of the choriocapillaris, as well as tightly packed networks of feeding arterioles and draining venules, can be visualized at different en face depths. Panoramic ultra-wide field stitched OCT angiograms of the choriocapillaris spanning ∼32 mm on the retina show distinct vascular structures at different fundus locations. Isolated smaller fields at the central fovea and ∼6 mm nasal to the fovea at the depths of the choriocapillaris and Sattler's layer show vasculature structures consistent with established architectural morphology from histological and electron micrograph corrosion casting studies. Choriocapillaris imaging was performed in eight healthy volunteers with OCT angiograms successfully acquired from all subjects. These results demonstrate the feasibility of ultrahigh speed OCT for in vivo dye-free choriocapillaris and choroidal vasculature imaging, in addition to conventional structural imaging.

  12. Multi-contrast MRI registration of carotid arteries based on cross-sectional images and lumen boundaries

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Xia; Zhang, Xi; Xu, Xiao-Pan; Liu, Yang; Zhang, Guo-Peng; Li, Bao-Juan; Chen, Hui-Jun; Lu, Hong-Bing

    2017-02-01

    Ischemic stroke has great correlation with carotid atherosclerosis and is mostly caused by vulnerable plaques. It's particularly important to analysis the components of plaques for the detection of vulnerable plaques. Recently plaque analysis based on multi-contrast magnetic resonance imaging has attracted great attention. Though multi-contrast MR imaging has potentials in enhanced demonstration of carotid wall, its performance is hampered by the misalignment of different imaging sequences. In this study, a coarse-to-fine registration strategy based on cross-sectional images and wall boundaries is proposed to solve the problem. It includes two steps: a rigid step using the iterative closest points to register the centerlines of carotid artery extracted from multi-contrast MR images, and a non-rigid step using the thin plate spline to register the lumen boundaries of carotid artery. In the rigid step, the centerline was extracted by tracking the crosssectional images along the vessel direction calculated by Hessian matrix. In the non-rigid step, a shape context descriptor is introduced to find corresponding points of two similar boundaries. In addition, the deterministic annealing technique is used to find a globally optimized solution. The proposed strategy was evaluated by newly developed three-dimensional, fast and high resolution multi-contrast black blood MR imaging. Quantitative validation indicated that after registration, the overlap of two boundaries from different sequences is 95%, and their mean surface distance is 0.12 mm. In conclusion, the proposed algorithm has improved the accuracy of registration effectively for further component analysis of carotid plaques.

  13. Computer aided three-dimensional reconstruction and modeling of the pelvis, by using plastinated cross sections, as a powerful tool for morphological investigations.

    PubMed

    Sora, Mircea-Constantin; Jilavu, Radu; Matusz, Petru

    2012-10-01

    The aim of this study was to describe a method of developing a computerized model of the human female pelvis using plastinated slices. Computerized reconstruction of anatomical structures is becoming very useful for developing anatomical teaching, research modules and animations. Although databases consisting of serial sections derived from frozen cadaver material exist, plastination represents an alternative method for developing anatomical data useful for computerized reconstruction. A slice anatomy study, using plastinated transparent pelvis cross sections, was performed to obtain a 3D reconstruction. One female human pelvis used for this study, first plastinated as a block, then sliced into thin slices and in the end subjected to 3D computerized reconstruction using WinSURF modeling system (SURFdriver Software). To facilitate the understanding of the complex pelvic floor anatomy on sectional images obtained through MR imaging, and to make the representation more vivid, a female pelvis computer-aided 3D model was created. Qualitative observations revealed that the morphological features of the model were consistent with those displayed by typical cadaveric specimens. The quality of the reconstructed images appeared distinct, especially the spatial positions and complicated relationships of contiguous structures of the female pelvis. All reconstructed structures can be displayed in groups or as a whole and interactively rotated in 3D space. The utilization of plastinates for generating tissue sections is useful for 3D computerized modeling. The 3D model of the female pelvis presented in this paper provides a stereoscopic view to study the adjacent relationship and arrangement of respective pelvis sections. A better understanding of the pelvic floor anatomy is relevant to gynaecologists, radiologists, surgeons, urologists, physical therapists and all professionals who take care of women with pelvic floor dysfunction.

  14. NEEDLE ANATOMY CHANGES WITH INCREASING TREE AGE IN DOUGLAS FIR

    EPA Science Inventory

    Morphological differences between old growth and sapling (Pseudotsuga menziesii, (Mirb.) Franco) Douglas fir trees may extend to differences in needle anatomy. We used microscopy with image analysis to compare and quantify anatomical parameters in cross-sections of previous year...

  15. MIXING QUANTIFICATION BY VISUAL IMAGING ANALYSIS

    EPA Science Inventory

    This paper reports on development of a method for quantifying two measures of mixing, the scale and intensity of segregation, through flow visualization, video recording, and software analysis. This non-intrusive method analyzes a planar cross section of a flowing system from an ...

  16. Absence of a Periampullary Mass on Cross-sectional Imaging Delays Diagnosis and Time to Pancreatoduodenectomy But Does Not Impair Outcome.

    PubMed

    Takahashi, Hideo; Moslim, Maitham A; Presser, Naftali; O'Rourke, Colin; Wey, Jane; Chalikonda, Sricharan; Walsh, Matthew R; Morris-Stiff, Gareth

    2016-06-01

    The aim of this study was to assess whether the lack of a radiological mass in patients with periampullary malignancies led to protracted diagnosis, delayed resection, and an inferior outcome. The departmental database was interrogated to identify all patients undergoing pancreatoduodenectomy during the period 2000-2014. The absence of a mass on cross-sectional and endoscopic ultrasound was noted. The interval between imaging and surgery was evaluated and related to the absence of a mass. The relationship between mass/no mass and the pathological profile was also assessed. Among 490 patients who underwent pancreatoduodenectomy for periampullary malignancies, masses were detected in 299 patients. Patients with undetected mass on either endoscopic ultrasonography (EUS) or computed tomography (CT)/magnetic resonance imaging (MRI) had a longer median interval from initial imaging to resection than detected mass with no difference in survival (66 vs. 41 days, p = 0.001). The absence of a mass was more common in cholangiocarcinomas (p < 0.001). The absence of a mass on imaging was associated with smaller size on final histopathology (2.4 vs. 2.8 cm; p < 0.001). The absence of a mass with all modalities in patients with a periampullary malignancy leads to a delayed diagnosis without a significant effect on survival.

  17. Digital preservation of anatomical variation: 3D-modeling of embalmed and plastinated cadaveric specimens using uCT and MRI.

    PubMed

    Moore, Colin W; Wilson, Timothy D; Rice, Charles L

    2017-01-01

    Anatomy educators have an opportunity to teach anatomical variations as a part of medical and allied health curricula using both cadaveric and three-dimensional (3D) digital models of these specimens. Beyond published cadaveric case reports, anatomical variations identified during routine gross anatomy dissection can be powerful teaching tools and a medium to discuss several anatomical sub-disciplines from embryology to medical imaging. The purpose of this study is to document how cadaveric anatomical variation identified during routine dissection can be scanned using medical imaging techniques to create two-dimensional axial images and interactive 3D models for teaching and learning of anatomical variations. Three cadaveric specimens (2 formalin embalmed, 1 plastinated) depicting anatomical variations and an embryological malformation were scanned using magnetic resonance imaging (MRI) and micro-computed tomography (μCT) for visualization in cross-section and for creation of 3D volumetric models. Results provide educational options to enable visualization and facilitate learning of anatomical variations from cross-sectional scans. Furthermore, the variations can be highlighted, digitized, modeled and manipulated using 3D imaging software and viewed in the anatomy laboratory in conjunction with traditional anatomical dissection. This study provides an example for anatomy educators to teach and describe anatomical variations in the undergraduate medical curriculum. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Energy-selective Neutron Imaging for Three-dimensional Non-destructive Probing of Crystalline Structures

    NASA Astrophysics Data System (ADS)

    Peetermans, S.; Bopp, M.; Vontobel, P.; Lehmann, E. H.

    Common neutron imaging uses the full polychromatic neutron beam spectrum to reveal the material distribution in a non-destructive way. Performing it with a reduced energy band, i.e. energy-selective neutron imaging, allows access to local variation in sample crystallographic properties. Two sample categories can be discerned with different energy responses. Polycrystalline materials have an energy-dependent cross-section featuring Bragg edges. Energy-selective neutron imaging can be used to distinguish be- tween crystallographic phases, increase material sensitivity or penetration, improve quantification etc. An example of the latter is shown by the examination of copper discs prior to machining them into linear accelerator cavity structures. The cross-section of single crystals features distinct Bragg peaks. Based on their pattern, one can determine the orientation of the crystal, as in a Laue pattern, but with the tremendous advantage that the operation can be performed for each pixel, yielding crystal orientation maps at high spatial resolution. A wholly different method to investigate such samples is also introduced: neutron diffraction imaging. It is based on projections formed by neutrons diffracted from the crystal lattice out of the direct beam. The position of these projections on the detector gives information on the crystal orientation. The projection itself can be used to reconstruct the crystal shape. A three-dimensional mapping of local Bragg reflectivity or a grain orientation mapping can thus be obtained.

  19. Potential and field produced by a uniform or non-uniform elliptical beam inside a confocal elliptic vacuum chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regenstreif, E.

    The potential produced by an isolated beam of elliptic cross-section seems to have been considered first by L.C. Teng. Image effects of line charges in elliptic vacuum chambers were introduced into accelerator theory by L. J. Laslett. Various approximate solutions for elliptic beams of finite cross-section coasting inside an elliptic vacuum chamber were subsequently proposed by P. Lapostolle and C. Bovet. A rigorous expression is derived for the potential produced by an elliptic beam inside an elliptic vacuum chamber, provided the beam envelope and the vacuum chamber can be assimilated to confocal ellipses.

  20. Multispectral near-infrared reflectance and transillumination imaging of occlusal carious lesions: variations in lesion contrast with lesion depth

    NASA Astrophysics Data System (ADS)

    Simon, Jacob C.; Curtis, Donald A.; Darling, Cynthia L.; Fried, Daniel

    2018-02-01

    In vivo and in vitro studies have demonstrated that near-infrared (NIR) light at λ=1300-1700-nm can be used to acquire high contrast images of enamel demineralization without interference of stains. The objective of this study was to determine if a relationship exists between the NIR image contrast of occlusal lesions and the depth of the lesion. Extracted teeth with varying amounts of natural occlusal decay were measured using a multispectral-multimodal NIR imaging system which captures λ=1300-nm occlusal transillumination, and λ=1500-1700-nm cross-polarized reflectance images. Image analysis software was used to calculate the lesion contrast detected in both images from matched positions of each imaging modality. Samples were serially sectioned across the lesion with a precision saw, and polarized light microscopy was used to measure the respective lesion depth relative to the dentinoenamel junction. Lesion contrast measured from NIR crosspolarized reflectance images positively correlated (p<0.05) with increasing lesion depth and a statistically significant difference between inner enamel and dentin lesions was observed. The lateral width of pit and fissures lesions measured in both NIR cross-polarized reflectance and NIR transillumination positively correlated with lesion depth.

  1. Silicon technology-based micro-systems for atomic force microscopy/photon scanning tunnelling microscopy.

    PubMed

    Gall-Borrut, P; Belier, B; Falgayrettes, P; Castagne, M; Bergaud, C; Temple-Boyer, P

    2001-04-01

    We developed silicon nitride cantilevers integrating a probe tip and a wave guide that is prolonged on the silicon holder with one or two guides. A micro-system is bonded to a photodetector. The resulting hybrid system enables us to obtain simultaneously topographic and optical near-field images. Examples of images obtained on a longitudinal cross-section of an optical fibre are shown.

  2. Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation

    DTIC Science & Technology

    2012-08-01

    early rejection of the grafts, there was no significant functional recovery noted on electromyography or Catwalk gait analysis. However, in vitro...Figure 10: Light Microscopic Image (100X, stained with Toluidine Blue): Nerve Cross Section 5-8 mm distal to anastomosis site. Representative... images from (A) Systemic MSC therapy, (B) Local MSC therapy and (c) No treatment Control Figure 11: Sciatic Nerve Transection and Repair (6

  3. Viewing Welds By Computer Tomography

    NASA Technical Reports Server (NTRS)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  4. Development of an ultra wide band microwave radar based footwear scanning system

    NASA Astrophysics Data System (ADS)

    Rezgui, Nacer Ddine; Bowring, Nicholas J.; Andrews, David A.; Harmer, Stuart W.; Southgate, Matthew J.; O'Reilly, Dean

    2013-10-01

    At airports, security screening can cause long delays. In order to speed up screening a solution to avoid passengers removing their shoes to have them X-ray scanned is required. To detect threats or contraband items hidden within the shoe, a method of screening using frequency swept signals between 15 to 40 GHz has been developed, where the scan is carried out whilst the shoes are being worn. Most footwear is transparent to microwaves to some extent in this band. The scans, data processing and interpretation of the 2D image of the cross section of the shoe are completed in a few seconds. Using safe low power UWB radar, scattered signals from the shoe can be observed which are caused by changes in material properties such as cavities, dielectric or metal objects concealed within the shoe. By moving the transmission horn along the length of the shoe a 2D image corresponding to a cross section through the footwear is built up, which can be interpreted by the user, or automatically, to reveal the presence of concealed threat within the shoe. A prototype system with a resolution of 6 mm or less has been developed and results obtained for a wide range of commonly worn footwear, some modified by the inclusion of concealed material. Clear differences between the measured images of modified and unmodified shoes are seen. Procedures for enhancing the image through electronic image synthesis techniques and image processing methods are discussed and preliminary performance data presented.

  5. Interior tomographic imaging for x-ray coherent scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pang, Sean; Zhu, Zheyuan

    2017-05-01

    Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.

  6. Small vertebral cross-sectional area and tall intervertebral disc in adolescent idiopathic scoliosis.

    PubMed

    Ponrartana, Skorn; Fisher, Carissa L; Aggabao, Patricia C; Chavez, Thomas A; Broom, Alexander M; Wren, Tishya A L; Skaggs, David L; Gilsanz, Vicente

    2016-09-01

    When compared to boys, girls have smaller vertebral cross-sectional area, which conveys a greater spinal flexibility, and a higher prevalence of adolescent idiopathic scoliosis. To test the hypothesis that small vertebral cross-sectional area and tall intervertebral disc height are structural characteristics of patients with adolescent idiopathic scoliosis. Using multiplanar imaging techniques, measures of vertebral cross-sectional area, vertebral height and intervertebral disc height in the lumbar spine were obtained in 35 pairs of girls and 11 pairs of boys with and without adolescent idiopathic scoliosis of the thoracic spine matched for age, height and weight. Compared to adolescents without spinal deformity, girls and boys with adolescent idiopathic scoliosis had, on average, 9.8% (6.68 ± 0.81 vs. 7.40 ± 0.99 cm(2); P = 0.0007) and 13.9% (8.22 ± 0.84 vs. 9.55 ± 1.61 cm(2); P = 0.009) smaller vertebral cross-sectional dimensions, respectively. Additionally, patients with adolescent idiopathic scoliosis had significantly greater values for intervertebral disc heights (9.06 ± 0.85 vs. 7.31 ± 0.62 mm and 9.09 ± 0.87 vs. 7.61 ± 1.00 mm for girls and boys respectively; both P ≤ 0.011). Multiple regression analysis indicated that the presence of scoliosis was negatively associated with vertebral cross-sectional area and positively with intervertebral disc height, independent of sex, age and body mass index. We provide new evidence that girls and boys with adolescent idiopathic scoliosis have significantly smaller vertebral cross-sectional area and taller intervertebral disc heights - two major structural determinants that influence trunk flexibility. With appropriate validation, these findings may have implications for the identification of children at the highest risk for developing scoliosis.

  7. Cross-sectional transmission electron microscopic study of irradiation induced nano-crystallization of nickel in a W/Ni multilayer.

    PubMed

    Bagchi, Sharmistha; Lalla, N P

    2008-06-11

    The present study reports the cross-sectional transmission electron microscopic investigations of swift heavy ion-irradiation induced nano-size recrystallization of Ni in a nearly immiscible W/Ni multilayer structure. Multilayer structures (MLS) of [W(25 Å)/Ni(25 Å)](10BL) were grown on Si-(100) substrate by the ion-beam sputtering technique. The as-synthesized MLS were subjected to 120 MeV-Au(9+) ion-irradiation to a fluence of ∼5 × 10(13) ions cm(-2). Wide-angle x-ray diffraction studies of pristine as well as irradiated W/Ni multilayers show deterioration of the superlattice structure, whereas x-ray reflectivity (XRR) measurement reveals a nearly unaffected microstructure after irradiation. Analysis of the XRR data using 'Parratt's formalism' does show a significant increase of W/Ni interface roughness. Cross-sectional transmission electron microscopy (TEM) studies carried out in diffraction and imaging modes (including bright-field and dark-field imaging), show that at high irradiation dose the intralayer microstructure of Ni becomes nano-crystalline (1-2 nm). During these irradiation induced changes of the intralayer microstructure, the interlayer definition of the W and Ni layers still remains intact. The observed nano-recrystallization of Ni has been attributed to competition between low miscibility of the W/Ni interface and the ion-beam induced mixing kinetics.

  8. Anomalous Rayleigh scattering with dilute concentrations of elements of biological importance

    NASA Astrophysics Data System (ADS)

    Hugtenburg, Richard P.; Bradley, David A.

    2004-01-01

    The anomalous scattering factor (ASF) correction to the relativistic form-factor approximation for Rayleigh scattering is examined in support of its utilization in radiographic imaging. ASF corrected total cross-section data have been generated for a low resolution grid for the Monte Carlo code EGS4 for the biologically important elements, K, Ca, Mn, Fe, Cu and Zn. Points in the fixed energy grid used by EGS4 as well as 8 other points in the vicinity of the K-edge have been chosen to achieve an uncertainty in the ASF component of 20% according to the Thomas-Reiche-Kuhn sum rule and an energy resolution of 20 eV. Such data is useful for analysis of imaging with a quasi-monoenergetic source. Corrections to the sampled distribution of outgoing photons, due to ASF, are given and new total cross-section data including that of the photoelectric effect have been computed using the Slater exchange self-consistent potential with the Latter tail. A measurement of Rayleigh scattering in a dilute aqueous solution of manganese (II) was performed, this system enabling determination of the absolute cross-section, although background subtraction was necessary to remove K β fluorescence and resonant Raman scattering occurring within several 100 eV of the edge. Measurements confirm the presence of below edge bound-bound structure and variation in the structure due to the ionic state that are not currently included in tabulations.

  9. Arecibo Radar Observation of Near-Earth Asteroids: Expanded Sample Size, Determination of Radar Albedos, and Measurements of Polarization Ratios

    NASA Astrophysics Data System (ADS)

    Lejoly, Cassandra; Howell, Ellen S.; Taylor, Patrick A.; Springmann, Alessondra; Virkki, Anne; Nolan, Michael C.; Rivera-Valentin, Edgard G.; Benner, Lance A. M.; Brozovic, Marina; Giorgini, Jon D.

    2017-10-01

    The Near-Earth Asteroid (NEA) population ranges in size from a few meters to more than 10 kilometers. NEAs have a wide variety of taxonomic classes, surface features, and shapes, including spheroids, binary objects, contact binaries, elongated, as well as irregular bodies. Using the Arecibo Observatory planetary radar system, we have measured apparent rotation rate, radar reflectivity, apparent diameter, and radar albedos for over 350 NEAs. The radar albedo is defined as the radar cross-section divided by the geometric cross-section. If a shape model is available, the actual cross-section is known at the time of the observation. Otherwise we derive a geometric cross-section from a measured diameter. When radar imaging is available, the diameter was measured from the apparent range depth. However, when radar imaging was not available, we used the continuous wave (CW) bandwidth radar measurements in conjunction with the period of the object. The CW bandwidth provides apparent rotation rate, which, given an independent rotation measurement, such as from lightcurves, constrains the size of the object. We assumed an equatorial view unless we knew the pole orientation, which gives a lower limit on the diameter. The CW also provides the polarization ratio, which is the ratio of the SC and OC cross-sections.We confirm the trend found by Benner et al. (2008) that taxonomic types E and V have very high polarization ratios. We have obtained a larger sample and can analyze additional trends with spin, size, rotation rate, taxonomic class, polarization ratio, and radar albedo to interpret the origin of the NEAs and their dynamical processes. The distribution of radar albedo and polarization ratio at the smallest diameters (≤50 m) differs from the distribution of larger objects (>50 m), although the sample size is limited. Additionally, we find more moderate radar albedos for the smallest NEAs when compared to those with diameters 50-150 m. We will present additional trends we find in this data set.

  10. Scalable Multiplexed Ion Trap (SMIT) Program

    DTIC Science & Technology

    2010-12-08

    an integrated micromirror . The symmetric cross and the mirror trap had a number of complex design features. Both traps shaped the electrodes in...genetic algorithm. 6. Integrated micromirror . The Gen II linear trap (as well as the linear sections of the mirror and the cross) had a number of new...conventional imaging system constructed by off-the-shelf optical components and a micromirror located very close to the ion. A large fraction of photons

  11. Pediatric lymphangiectasia: an imaging spectrum.

    PubMed

    Malone, Ladonna J; Fenton, Laura Z; Weinman, Jason P; Anagnost, Miran R; Browne, Lorna P

    2015-04-01

    Lymphangiectasia is a rarely encountered lymphatic dysplasia characterized by lymphatic dilation without proliferation. Although it can occur anywhere, the most common locations are the central conducting lymphatics and the pulmonary and intestinal lymphatic networks. Recent advances in lymphatic interventions have resulted in an increased reliance on imaging to characterize patterns of disease. To describe the patient populations, underlying conditions, and imaging features of lymphangiectasia encountered at a tertiary pediatric institution over a 10-year period and correlate these with pathology and patient outcomes. We retrospectively reviewed the pathology database from 2002 to 2012 to identify patients with pathologically or surgically proven lymphangiectasia who had undergone cross-sectional imaging. Medical records were reviewed for patient demographics, underlying conditions, treatment and outcome. Thirteen children were identified, ranging in age from 1 month to 16 years. Five had pulmonary lymphangiectasia, four intestinal and four diffuse involvement. Pulmonary imaging findings include diffuse or segmental interlobular septal thickening, pleural effusions and dilated mediastinal lymphatics. Intestinal imaging findings include focal or diffuse bowel wall thickening with central lymphatic dilation. Diffuse involvement included dilation of the central lymphatics and involvement of more than one organ system. Children with infantile presentation and diffuse pulmonary, intestinal or diffuse lymphatic abnormalities had a high mortality rate. Children with later presentations and segmental involvement demonstrated clinical improvement with occasional regression of disease. Three children with dilated central lymphatics on imaging underwent successful lymphatic duct ligation procedures with improved clinical course. Lymphangiectasia is a complex disorder with a spectrum of presentations, imaging appearances, treatments and outcomes. Cross-sectional imaging techniques distinguish segmental involvement of a single system (pulmonary or intestinal) from diffuse disease and may show dilated central conducting lymphatics, which may benefit from interventions such as ligation or occlusion.

  12. Modification of Kirchhoff migration with variable sound speed and attenuation for acoustic imaging of media and application to tomographic imaging of the breast

    PubMed Central

    Schmidt, Steven; Duric, Nebojsa; Li, Cuiping; Roy, Olivier; Huang, Zhi-Feng

    2011-01-01

    Purpose: To explore the feasibility of improving cross-sectional reflection imaging of the breast using refractive and attenuation corrections derived from ultrasound tomography data. Methods: The authors have adapted the planar Kirchhoff migration method, commonly used in geophysics to reconstruct reflection images, for use in ultrasound tomography imaging of the breast. Furthermore, the authors extended this method to allow for refractive and attenuative corrections. Using clinical data obtained with a breast imaging prototype, the authors applied this method to generate cross-sectional reflection images of the breast that were corrected using known distributions of sound speed and attenuation obtained from the same data. Results: A comparison of images reconstructed with and without the corrections showed varying degrees of improvement. The sound speed correction resulted in sharpening of detail, while the attenuation correction reduced the central darkening caused by path length dependent losses. The improvements appeared to be greatest when dense tissue was involved and the least for fatty tissue. These results are consistent with the expectation that denser tissues lead to both greater refractive effects and greater attenuation. Conclusions: Although conventional ultrasound techniques use time-gain control to correct for attenuation gradients, these corrections lead to artifacts because the true attenuation distribution is not known. The use of constant sound speed leads to additional artifacts that arise from not knowing the sound speed distribution. The authors show that in the context of ultrasound tomography, it is possible to construct reflection images of the breast that correct for inhomogeneous distributions of both sound speed and attenuation. PMID:21452737

  13. Turning Discovery Into Health – Asthma | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Asthma Turning Discovery Into Health – Asthma Past Issues / Fall 2011 Table of Contents (Top ... show a cross-section of an airway during asthma symptoms and attack. CLICK IMAGE TO ENLARGE R ...

  14. 25-Hydroxyvitamin D, dementia, and cerebrovascular pathology in elders receiving home services

    USDA-ARS?s Scientific Manuscript database

    Vitamin D deficiency has potential adverse effects on neurocognitive health and subcortical function. However, no studies have examined the association between vitamin D status, dementia, and cranial magnetic resonance imaging (MRI) indicators of cerebrovascular disease (CVD). Cross-sectional inves...

  15. Optical Coherence Tomography

    PubMed Central

    Huang, David; Swanson, Eric A.; Lin, Charles P.; Schuman, Joel S.; Stinson, William G.; Chang, Warren; Hee, Michael R.; Flotte, Thomas; Gregory, Kenton; Puliafito, Carmen A.; Fujimoto, James G.

    2015-01-01

    A technique called optical coherence tomography (OCT) has been developed for noninvasive cross-sectional imaging in biological systems. OCT uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way that is analogous to ultrasonic pulse-echo imaging. OCT has longitudinal and lateral spatial resolutions of a few micrometers and can detect reflected signals as small as ~10−10 of the incident optical power. Tomographic imaging is demonstrated in vitro in the peripapillary area of the retina and in the coronary artery, two clinically relevant examples that are representative of transparent and turbid media, respectively. PMID:1957169

  16. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  17. Determination of fiber volume in graphite/epoxy materials using computer image analysis

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.

    1990-01-01

    The fiber volume of graphite/epoxy specimens was determined by analyzing optical images of cross sectioned specimens using image analysis software. Test specimens were mounted and polished using standard metallographic techniques and examined at 1000 times magnification. Fiber volume determined using the optical imaging agreed well with values determined using the standard acid digestion technique. The results were found to agree within 5 percent over a fiber volume range of 45 to 70 percent. The error observed is believed to arise from fiber volume variations within the graphite/epoxy panels themselves. The determination of ply orientation using image analysis techniques is also addressed.

  18. Ultra-Bright and -Stable Red and Near-Infrared Squaraine Fluorophores for In Vivo Two-Photon Imaging

    PubMed Central

    Podgorski, Kaspar; Terpetschnig, Ewald; Klochko, Oleksii P.; Obukhova, Olena M.; Haas, Kurt

    2012-01-01

    Fluorescent dyes that are bright, stable, small, and biocompatible are needed for high-sensitivity two-photon imaging, but the combination of these traits has been elusive. We identified a class of squaraine derivatives with large two-photon action cross-sections (up to 10,000 GM) at near-infrared wavelengths critical for in vivo imaging. We demonstrate the biocompatibility and stability of a red-emitting squaraine-rotaxane (SeTau-647) by imaging dye-filled neurons in vivo over 5 days, and utility for sensitive subcellular imaging by synthesizing a specific peptide-conjugate label for the synaptic protein PSD-95. PMID:23251670

  19. [Possibilities of sonographic image fusion: Current developments].

    PubMed

    Jung, E M; Clevert, D-A

    2015-11-01

    For diagnostic and interventional procedures ultrasound (US) image fusion can be used as a complementary imaging technique. Image fusion has the advantage of real time imaging and can be combined with other cross-sectional imaging techniques. With the introduction of US contrast agents sonography and image fusion have gained more importance in the detection and characterization of liver lesions. Fusion of US images with computed tomography (CT) or magnetic resonance imaging (MRI) facilitates the diagnostics and postinterventional therapy control. In addition to the primary application of image fusion in the diagnosis and treatment of liver lesions, there are more useful indications for contrast-enhanced US (CEUS) in routine clinical diagnostic procedures, such as intraoperative US (IOUS), vascular imaging and diagnostics of other organs, such as the kidneys and prostate gland.

  20. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.

    PubMed

    Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T

    2011-08-15

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics

    PubMed Central

    Kocaoglu, Omer P.; Cense, Barry; Jonnal, Ravi S.; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T.

    2011-01-01

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3 μm3 resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29–62yrs). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a seven month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30–50μm, thickness: 10–15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30–45μm, thickness: 20–40μm). Width and thickness RNFB measurements taken seven months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were −0.1±4.0 μm (width) and 0.3±1.5 μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. PMID:21722662

  2. Genetic parameters for image analysis traits on M. longissimus thoracis and M. trapezius of carcass cross section in Japanese Black steers.

    PubMed

    Osawa, T; Kuchida, K; Hidaka, S; Kato, T

    2008-01-01

    In Japan, the degree of marbling in ribeye (M. longissimus thoracis) is evaluated in the beef meat grading process. However, other muscles (e.g., M. trapezius) are also important in determining the meat quality and carcass market prices. The purpose of this study was to estimate genetic parameters for M. longissimus thoracis (M-LONG) and M. trapezius (M-TRAP) of carcass cross section of Japanese Black steers by computer image analysis. The number of records of Japanese Black steers and the number of pedigree records were 2,925 and 10,889, respectively. Digital images of the carcass cross section were taken between the sixth and seventh ribs by photographing equipment. Muscle area (MA), fat area ratio (FAR), overall coarseness of marbling particles (OCM), and coarseness of maximum marbling particle (MMC) in M-LONG and M-TRAP were calculated by image analysis. Genetic parameters for these traits were estimated using the AIREMLF90 program with an animal model. Fixed effects that were included in the model were dates of arrival at the carcass market and slaughter age (mo), and random effects of fattening farms, additive genetic effects and residuals were included in the model. For M-LONG, heritability estimates (+/-SE) were 0.46 +/- 0.06, 0.59 +/- 0.06, 0.47 +/- 0.06, and 0.20 +/- 0.05 for MA, FAR, OCM, and MMC, respectively. Heritability estimates (+/-SE) in M-TRAP were 0.47 +/- 0.06, 0.57 +/- 0.07, 0.49 +/- 0.07, and 0.13 +/- 0.04 for the same traits. Genetic correlations between subcutaneous fat thickness and FAR for M-LONG and M-TRAP were negative (-0.21 and -0.19, respectively). Those correlations between M-LONG and M-TRAP were moderate to high for MA, FAR, OCM, and MMC (0.38, 0.52, 0.39, and 0.60, respectively). These results indicate that other muscles including M-LONG should be evaluated for more efficient genetic improvement.

  3. Impact of videogame play on the brain's microstructural properties: cross-sectional and longitudinal analyses.

    PubMed

    Takeuchi, H; Taki, Y; Hashizume, H; Asano, K; Asano, M; Sassa, Y; Yokota, S; Kotozaki, Y; Nouchi, R; Kawashima, R

    2016-12-01

    Videogame play (VGP) has been associated with numerous preferred and non-preferred effects. However, the effects of VGP on the development of microstructural properties in children, particularly those associated with negative psychological consequences of VGP, have not been identified to date. The purpose of this study was to investigate this issue through cross-sectional and longitudinal prospective analyses. In the present study of humans, we used the diffusion tensor imaging mean diffusivity (MD) measurement to measure microstructural properties and examined cross-sectional correlations with the amount of VGP in 114 boys and 126 girls. We also assessed correlations between the amount of VGP and longitudinal changes in MD that developed after 3.0±0.3 (s.d.) years in 95 boys and 94 girls. After correcting for confounding factors, we found that the amount of VGP was associated with increased MD in the left middle, inferior and orbital frontal cortex; left pallidum; left putamen; left hippocampus; left caudate; right putamen; right insula; and thalamus in both cross-sectional and longitudinal analyses. Regardless of intelligence quotient type, higher MD in the areas of the left thalamus, left hippocampus, left putamen, left insula and left Heschl gyrus was associated with lower intelligence. We also confirmed an association between the amount of VGP and decreased verbal intelligence in both cross-sectional and longitudinal analyses. In conclusion, increased VGP is directly or indirectly associated with delayed development of the microstructure in extensive brain regions and verbal intelligence.

  4. Impact of videogame play on the brain's microstructural properties: cross-sectional and longitudinal analyses

    PubMed Central

    Takeuchi, H; Taki, Y; Hashizume, H; Asano, K; Asano, M; Sassa, Y; Yokota, S; Kotozaki, Y; Nouchi, R; Kawashima, R

    2016-01-01

    Videogame play (VGP) has been associated with numerous preferred and non-preferred effects. However, the effects of VGP on the development of microstructural properties in children, particularly those associated with negative psychological consequences of VGP, have not been identified to date. The purpose of this study was to investigate this issue through cross-sectional and longitudinal prospective analyses. In the present study of humans, we used the diffusion tensor imaging mean diffusivity (MD) measurement to measure microstructural properties and examined cross-sectional correlations with the amount of VGP in 114 boys and 126 girls. We also assessed correlations between the amount of VGP and longitudinal changes in MD that developed after 3.0±0.3 (s.d.) years in 95 boys and 94 girls. After correcting for confounding factors, we found that the amount of VGP was associated with increased MD in the left middle, inferior and orbital frontal cortex; left pallidum; left putamen; left hippocampus; left caudate; right putamen; right insula; and thalamus in both cross-sectional and longitudinal analyses. Regardless of intelligence quotient type, higher MD in the areas of the left thalamus, left hippocampus, left putamen, left insula and left Heschl gyrus was associated with lower intelligence. We also confirmed an association between the amount of VGP and decreased verbal intelligence in both cross-sectional and longitudinal analyses. In conclusion, increased VGP is directly or indirectly associated with delayed development of the microstructure in extensive brain regions and verbal intelligence. PMID:26728566

  5. Cross-sectional echocardiographic diagnosis of systemic venous return.

    PubMed Central

    Huhta, J C; Smallhorn, J F; Macartney, F J; Anderson, R H; de Leval, M

    1982-01-01

    To determine the sensitivity and specificity of cross-sectional echocardiography in diagnosing anomalous systemic venous return we used the technique in 800 consecutive children with congenital heart disease and whom the diagnosis was ultimately confirmed by angiography. Cross-sectional echocardiography was performed without prior knowledge of the diagnosis in all but 11 patients, who were recalled because of a known abnormality of atrial situs. The sensitivity of cross-sectional echocardiographic detection of various structures was as follows: right superior vena cava 792/792 (100%); left superior vena cava 46/48 (96%); bilateral superior vena cava 38/40 (95%); bridging innominate vein with bilateral superior vena cava 13/18 (72%); connection of superior caval segment to heart (coronary sinus or either atrium) (100%); absence of suprarenal inferior vena cava 23/23 (100%); azygos continuation of the inferior vena cava 31/33 (91%); downstream connection of azygos continuation, once seen, 21/21 (100%); partial anomalous hepatic venous connection (one hepatic vein not connected to the inferior vena cava) 1/1 (100%); total anomalous hepatic venous connection (invariably associated with left isomerism) 23/23 (100%). The specificity of each above diagnoses was 100% except in one infant with exomphalos in whom absence of the suprarenal inferior vena cava was incorrectly diagnosed. Thus cross-sectional echocardiography is an extremely specific and highly sensitive method of recognizing anomalous systemic venous return. It is therefore of great value of planning both cardiac catheterisation and cannulation for open heart surgery. Images PMID:6751361

  6. Emerging optical methods for surveillance of Barrett's oesophagus.

    PubMed

    Sturm, Matthew B; Wang, Thomas D

    2015-11-01

    The rapid rise in incidence of oesophageal adenocarcinoma has motivated the need for improved methods for surveillance of Barrett's oesophagus. Early neoplasia is flat in morphology and patchy in distribution and is difficult to detect with conventional white light endoscopy (WLE). Light offers numerous advantages for rapidly visualising the oesophagus, and advanced optical methods are being developed for wide-field and cross-sectional imaging to guide tissue biopsy and stage early neoplasia, respectively. We review key features of these promising methods and address their potential to improve detection of Barrett's neoplasia. The clinical performance of key advanced imaging technologies is reviewed, including (1) wide-field methods, such as high-definition WLE, chromoendoscopy, narrow-band imaging, autofluorescence and trimodal imaging and (2) cross-sectional techniques, such as optical coherence tomography, optical frequency domain imaging and confocal laser endomicroscopy. Some of these instruments are being adapted for molecular imaging to detect specific biological targets that are overexpressed in Barrett's neoplasia. Gene expression profiles are being used to identify early targets that appear before morphological changes can be visualised with white light. These targets are detected in vivo using exogenous probes, such as lectins, peptides, antibodies, affibodies and activatable enzymes that are labelled with fluorescence dyes to produce high contrast images. This emerging approach has potential to provide a 'red flag' to identify regions of premalignant mucosa, outline disease margins and guide therapy based on the underlying molecular mechanisms of cancer progression. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. A network analysis of ¹⁵O-H₂O PET reveals deep brain stimulation effects on brain network of Parkinson's disease.

    PubMed

    Park, Hae-Jeong; Park, Bumhee; Kim, Hae Yu; Oh, Maeng-Keun; Kim, Joong Il; Yoon, Misun; Lee, Jong Doo; Chang, Jin Woo

    2015-05-01

    As Parkinson's disease (PD) can be considered a network abnormality, the effects of deep brain stimulation (DBS) need to be investigated in the aspect of networks. This study aimed to examine how DBS of the bilateral subthalamic nucleus (STN) affects the motor networks of patients with idiopathic PD during motor performance and to show the feasibility of the network analysis using cross-sectional positron emission tomography (PET) images in DBS studies. We obtained [¹⁵O]H₂O PET images from ten patients with PD during a sequential finger-to-thumb opposition task and during the resting state, with DBS-On and DBS-Off at STN. To identify the alteration of motor networks in PD and their changes due to STN-DBS, we applied independent component analysis (ICA) to all the cross-sectional PET images. We analysed the strength of each component according to DBS effects, task effects and interaction effects. ICA blindly decomposed components of functionally associated distributed clusters, which were comparable to the results of univariate statistical parametric mapping. ICA further revealed that STN-DBS modifies usage-strengths of components corresponding to the basal ganglia-thalamo-cortical circuits in PD patients by increasing the hypoactive basal ganglia and by suppressing the hyperactive cortical motor areas, ventrolateral thalamus and cerebellum. Our results suggest that STN-DBS may affect not only the abnormal local activity, but also alter brain networks in patients with PD. This study also demonstrated the usefulness of ICA for cross-sectional PET data to reveal network modifications due to DBS, which was not observable using the subtraction method.

  8. Regionally-Specific Diffusion Tensor Imaging in Mild Cognitive Impairment and Alzheimer’s Disease

    PubMed Central

    Mielke, M.M.; Kozauer, N.A.; Chan, K.C.G.; George, M.; Toroney, J.; Zerrate, M.; Bandeen-Roche, K.; Wang, M-C; vanZijl, P.; Pekar, J.J.; Mori, S.; Lyketsos, C.G.; Albert, M.

    2009-01-01

    Background Diffusion tensor imaging (DTI) studies have shown significant cross-sectional differences among normal controls (Bozzali et al., 2002), mild cognitive impairment (Robbins et al.) and Alzheimer’s disease (AD) patients in several fiber tracts in the brain, but longitudinal assessment is needed. Methods We studied 75 participants (25 NC, 25 amnestic MCI, and 25 mild AD) at baseline and 3 months later, with both imaging and clinical evaluations. Fractional anisotropy (Bozzali et al., 2002) was analyzed in regions of interest (ROIs) in: (1) fornix, (2) cingulum bundle, (3) splenium, and (4) cerebral peduncles. Clinical data included assessments of clinical severity and cognitive function. Cross-sectional and longitudinal differences in FA, within each ROI, were analyzed with generalized estimating equations (GEE). Results Cross-sectionally, AD patients had lower FA than NC (p<0.05) at baseline and 3 months in the fornix and anterior portion of the cingulum bundle. Compared to MCI, AD cases had lower FA (p<0.05) in these regions and the splenium at 0 and 3 months. Both the fornix and anterior cingulum correlated across all clinical cognitive scores; lower FA in these ROIs corresponded to worse performance. Over the course of 3 months, when the subjects were clinically stable, the ROIs were also largely stable. Conclusions Using DTI, findings indicate FA is decreased in specific fiber tracts among groups of subjects that vary along the spectrum from normal to AD, and that this measure is stable over short periods of time. The fornix is a predominant outflow tract of the hippocampus and may be an important indicator of AD progression. PMID:19457371

  9. Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study

    PubMed Central

    2017-01-01

    Purpose Optical coherence tomography (OCT) is a noninvasive diagnostic technique that may be useful for both qualitative and quantitative analyses of the periodontium. Micro-computed tomography (micro-CT) is another noninvasive imaging technique capable of providing submicron spatial resolution. The purpose of this study was to present periodontal images obtained using ex vivo dental OCT and to compare OCT images with micro-CT images and histologic sections. Methods Images of ex vivo canine periodontal structures were obtained using OCT. Biologic depth measurements made using OCT were compared to measurements made on histologic sections prepared from the same sites. Visual comparisons were made among OCT, micro-CT, and histologic sections to evaluate whether anatomical details were accurately revealed by OCT. Results The periodontal tissue contour, gingival sulcus, and the presence of supragingival and subgingival calculus could be visualized using OCT. OCT was able to depict the surface topography of the dentogingival complex with higher resolution than micro-CT, but the imaging depth was typically limited to 1.2–1.5 mm. Biologic depth measurements made using OCT were a mean of 0.51 mm shallower than the histologic measurements. Conclusions Dental OCT as used in this study was able to generate high-resolution, cross-sectional images of the superficial portions of periodontal structures. Improvements in imaging depth and the development of an intraoral sensor are likely to make OCT a useful technique for periodontal applications. PMID:28261522

  10. Estimation of pseudo-2D shear-velocity section by inversion of high frequency surface waves

    USGS Publications Warehouse

    Luo, Y.; Liu, J.; Xia, J.; Xu, Y.; Liu, Q.

    2006-01-01

    A scheme to generate pseudo-2D shear-velocity sections with high horizontal resolution and low field cost by inversion of high frequency surface waves is presented. It contains six steps. The key step is the joint method of crossed correlation and phase shift scanning. This joint method chooses only two traces to generate image of dispersion curve. For Rayleigh-wave dispersion is most important for estimation of near-surface shear-wave velocity, it can effectively obtain reliable images of dispersion curves with a couple of traces. The result of a synthetic example shows the feasibility of this scheme. ?? 2005 Society of Exploration Geophysicists.

  11. Lumbar Spine Paraspinal Muscle and Intervertebral Disc Height Changes in Astronauts After Long-Duration Spaceflight on the International Space Station.

    PubMed

    Chang, Douglas G; Healey, Robert M; Snyder, Alexander J; Sayson, Jojo V; Macias, Brandon R; Coughlin, Dezba G; Bailey, Jeannie F; Parazynski, Scott E; Lotz, Jeffrey C; Hargens, Alan R

    2016-12-15

    Prospective case series. Evaluate lumbar paraspinal muscle (PSM) cross-sectional area and intervertebral disc (IVD) height changes induced by a 6-month space mission on the International Space Station. The long-term objective of this project is to promote spine health and prevent spinal injury during space missions and here on Earth. National Aeronautics and Space Administration (NASA) crewmembers have a 4.3 times higher risk of herniated IVDs, compared with the general and military aviator populations. The highest risk occurs during the first year after a mission. Microgravity exposure during long-duration spaceflights results in approximately 5 cm lengthening of body height, spinal pain, and skeletal deconditioning. How the PSMs and IVDs respond during spaceflight is not well described. Six NASA crewmembers were imaged supine with a 3 Tesla magnetic resonance imaging. Imaging was conducted preflight, immediately postflight, and then 33 to 67 days after landing. Functional cross-sectional area (FCSA) measurements of the PSMs were performed at the L3-4 level. FCSA was measured by grayscale thresholding within the posterior lumbar extensors to isolate lean muscle on T2-weighted scans. IVD heights were measured at the anterior, middle, and posterior sections of all lumbar levels. Repeated measures analysis of variance was used to determine significance at P < 0.05, followed by post-hoc testing. Paraspinal lean muscle mass, as indicated by the FCSA, decreased from 86% of the total PSM cross-sectional area down to 72%, immediately after the mission. Recovery of 68% of the postflight loss occurred during the next 6 weeks, still leaving a significantly lower lean muscle fractional content compared with preflight values. In contrast, lumbar IVD heights were not appreciably different at any time point. The data reveal lumbar spine PSM atrophy after long-duration spaceflight. Some FCSA recovery was seen with 46 days postflight in a terrestrial environment, but it remained incomplete compared with preflight levels. 4.

  12. Why Do Silver Trimers Intercalated in DNA Exhibit Unique Nonlinear Properties That Are Promising for Applications?

    PubMed

    Bonačić-Koutecký, Vlasta; Perić, Martina; Sanader, Željka

    2018-05-17

    Our investigation of one-photon absorption (OPA) and nonlinear optical (NLO) properties such as two-photon absorption (TPA) of silver trimer intercalated in DNA based on TDDFT approach allowed us to propose a mechanism responsible for large TPA cross sections of such NLO-phores. We present a concept that illustrates the key role of quantum cluster as well as of nucleotide bases from the immediate neighborhood. For this purpose, different surroundings consisting of guanine-cytosine and adenine-thymine such as (GCGC) and (ATAT) have been investigated that are exhibiting substantially different values of TPA cross sections. This has been confirmed by extending the immediate surroundings as well as using the two-layer quantum mechanics/molecular mechanics (QM/MM) approach. We focus on the cationic closed-shell system and illustrate that the neutral open-shell system shifts OPA spectra into the NIR regime, which is suitable for applications. Thus, in this contribution, we propose novel NLO-phores inducing large TPA cross sections, opening the route for multiphoton imaging.

  13. Particle Deposition in Human Lungs due to Varying Cross-Sectional Ellipticity of Left and Right Main Bronchi

    NASA Astrophysics Data System (ADS)

    Roth, Steven; Oakes, Jessica; Shadden, Shawn

    2015-11-01

    Particle deposition in the human lungs can occur with every breathe. Airbourne particles can range from toxic constituents (e.g. tobacco smoke and air pollution) to aerosolized particles designed for drug treatment (e.g. insulin to treat diabetes). The effect of various realistic airway geometries on complex flow structures, and thus particle deposition sites, has yet to be extensively investigated using computational fluid dynamics (CFD). In this work, we created an image-based geometric airway model of the human lung and performed CFD simulations by employing multi-domain methods. Following the flow simulations, Lagrangian particle tracking was used to study the effect of cross-sectional shape on deposition sites in the conducting airways. From a single human lung model, the cross-sectional ellipticity (the ratio of major and minor diameters) of the left and right main bronchi was varied systematically from 2:1 to 1:1. The influence of the airway ellipticity on the surrounding flow field and particle deposition was determined.

  14. Comparison of the sagittal sinus cross-sectional area between patients with multiple sclerosis, hydrocephalus, intracranial hypertension and spontaneous intracranial hypotension: a surrogate marker of venous transmural pressure?

    PubMed

    Bateman, Grant A; Lechner-Scott, Jeannette; Copping, Ross; Moeskops, Christopher; Yap, Swee Leong

    2017-07-06

    There is evidence that patients with multiple sclerosis (MS) and hydrocephalus share some common pathophysiological mechanisms. Alterations in CSF pressure are known to affect cerebral venous sinus geometry. To further explore these mechanisms, we measured the superior sagittal sinus (SSS) cross-sectional area 3 cm above the torcular using T2 images in 20 MS, 10 spontaneous intracranial hypotension (SIH), 21 hydrocephalus and 20 idiopathic intracranial hypertension (IIH) patients and compared with 20 matched controls. The SSS area was reduced by 25% in hydrocephalus (p = 0.0008), increased by 22% (p = 0.037) in SIH and unchanged in IIH compared to matched controls. In MS there was a 16% increase in SSS area (p = 0.01).The findings suggest that changes in SSS cross-sectional are common between MS and SIH patients, while in hydrocephalus and IIH these are different.

  15. Azimuthally anisotropic hydride lens structures in Zircaloy 4 nuclear fuel cladding: High-resolution neutron radiography imaging and BISON finite element analysis

    NASA Astrophysics Data System (ADS)

    Lin, Jun-Li; Zhong, Weicheng; Bilheux, Hassina Z.; Heuser, Brent J.

    2017-12-01

    High-resolution neutron radiography has been used to image bulk circumferential hydride lens particles in unirradiated Zircaloy 4 tubing cross section specimens. Zircaloy 4 is a common light water nuclear reactor (LWR) fuel cladding; hydrogen pickup, hydride formation, and the concomitant effect on the mechanical response are important for LWR applications. Ring cross section specimens with three hydrogen concentrations (460, 950, and 2830 parts per million by weight) and an as-received reference specimen were imaged. Azimuthally anisotropic hydride lens particles were observed at 950 and 2830 wppm. The BISON finite element analysis nuclear fuel performance code was used to model the system elastic response induced by hydride volumetric dilatation. The compressive hoop stress within the lens structure becomes azimuthally anisotropic at high hydrogen concentrations or high hydride phase fraction. This compressive stress anisotropy matches the observed lens anisotropy, implicating the effect of stress on hydride formation as the cause of the observed lens azimuthal asymmetry. The cause and effect relation between compressive stress and hydride lens anisotropy represents an indirect validation of a key BISON output, the evolved hoop stress associated with hydride formation.

  16. Navigation-supported diagnosis of the substantia nigra by matching midbrain sonography and MRI

    NASA Astrophysics Data System (ADS)

    Salah, Zein; Weise, David; Preim, Bernhard; Classen, Joseph; Rose, Georg

    2012-03-01

    Transcranial sonography (TCS) is a well-established neuroimaging technique that allows for visualizing several brainstem structures, including the substantia nigra, and helps for the diagnosis and differential diagnosis of various movement disorders, especially in Parkinsonian syndromes. However, proximate brainstem anatomy can hardly be recognized due to the limited image quality of B-scans. In this paper, a visualization system for the diagnosis of the substantia nigra is presented, which utilizes neuronavigated TCS to reconstruct tomographical slices from registered MRI datasets and visualizes them simultaneously with corresponding TCS planes in realtime. To generate MRI tomographical slices, the tracking data of the calibrated ultrasound probe are passed to an optimized slicing algorithm, which computes cross sections at arbitrary positions and orientations from the registered MRI dataset. The extracted MRI cross sections are finally fused with the region of interest from the ultrasound image. The system allows for the computation and visualization of slices at a near real-time rate. Primary tests of the system show an added value to the pure sonographic imaging. The system also allows for reconstructing volumetric (3D) ultrasonic data of the region of interest, and thus contributes to enhancing the diagnostic yield of midbrain sonography.

  17. Lower tract neoplasm: Update of imaging evaluation.

    PubMed

    Hartman, Robert; Kawashima, Akira

    2017-12-01

    Cancers of the lower urinary tract can arise from the bladder, urachus or urethra. Urothelial carcinoma of the bladder (UCB) is the most common of these. The presentation of bladder, urachal and urethral cancers can differ but many result in hematuria as an initial indication. The diagnosis and staging of these cancers often necessitate radiologic imaging often in the form of cross-section CT urography or MR urography. The following article reviews the specific nature of lower tract cancers and their imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  19. Three-dimensional Fourier-domain optical coherence tomography of alveolar mechanics in stepwise inflated and deflated isolated and perfused rabbit lungs

    NASA Astrophysics Data System (ADS)

    Krueger, Alexander; Knels, Lilla; Meissner, Sven; Wendel, Martina; Heller, Axel R.; Lambeck, Thomas; Koch, Thea; Koch, Edmund

    2007-07-01

    Fourier domain optical coherence tomography (FD-OCT) was used to acquire three-dimensional image stacks of isolated and perfused rabbit lungs (n = 4) at different constant pulmonary airway pressures (CPAP) and during vascular fixation. After despeckling and applying a threshold, the images were segmented into air and tissue, and registered to each other to compensate for movement between CPAP steps. The air-filled cross-sectional areas were quantified using a semi-automatic algorithm. The cross-sectional area of alveolar structures taken at all three perpendicular planes increased with increasing CPAP. Between the minimal CPAP of 3 mbar and the maximum of 25 mbar the areas increased to about 140% of their initial value. There was no systematic dependency of inflation rate on initial size of the alveolar structure. During the perfusion fixation of the lungs with glutaraldehyde morphometric changes of the alveolar geometry measured with FD-OCT were negligible.

  20. Ultra wide band 3-D cross section (RCS) holography

    NASA Astrophysics Data System (ADS)

    Collins, H. D.; Hall, T. E.

    1992-07-01

    Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target's scattering areas, and uniquely identifies the 'hot spot' locations on the target. In addition, the target and calibration sphere's plane wave angular spectrums are computed (via digital algorithm) and used to generate the target's far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 (times) 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.

  1. Free-electron-laser coherent diffraction images of individual drug-carrying liposome particles in solution.

    PubMed

    Huang, Chi-Feng; Liang, Keng S; Hsu, Tsui-Ling; Lee, Tsung-Tse; Chen, Yi-Yun; Yang, Shun-Min; Chen, Hsiang-Hsin; Huang, Shih-Hsin; Chang, Wei-Hau; Lee, Ting-Kuo; Chen, Peilin; Peng, Kuei-En; Chen, Chien-Chun; Shi, Cheng-Zhi; Hu, Yu-Fang; Margaritondo, Giorgio; Ishikawa, Tetsuya; Wong, Chi-Huey; Hwu, Y

    2018-02-08

    Using the excellent performances of a SACLA (RIKEN/HARIMA, Japan) X-ray free electron laser (X-FEL), coherent diffraction imaging (CDI) was used to detect individual liposome particles in water, with or without inserted doxorubicin nanorods. This was possible because of the electron density differences between the carrier, the liposome, and the drug. The result is important since liposome nanocarriers at present dominate drug delivery systems. In spite of the low cross-section of the original ingredients, the diffracted intensity of drug-free liposomes was sufficient for spatial reconstruction yielding quantitative structural information. For particles containing doxorubicin, the structural parameters of the nanorods could be extracted from CDI. Furthermore, the measurement of the electron density of the solution enclosed in each liposome provides direct evidence of the incorporation of ammonium sulphate into the nanorods. Overall, ours is an important test for extending the X-FEL analysis of individual nanoparticles to low cross-sectional systems in solution, and also for its potential use to optimize the manufacturing of drug nanocarriers.

  2. Effects of Intracranial Trochlear Neurectomy on the Structure of the Primate Superior Oblique Muscle

    PubMed Central

    Poukens, Vadims; Ying, Howard; Shan, Xiaoyan; Tian, Jing; Zee, David S.

    2010-01-01

    Purpose. Although cyclovertical strabismus in humans is frequently attributed to superior oblique (SO) palsy, anatomic effects of SO denervation have not been studied. Magnetic resonance imaging (MRI) and orbital histology was used to study the effects of acute trochlear (CN4) denervation on the monkey SO. Methods. Five juvenile macaque monkeys were perfused with formalin for 5 weeks: 15 months after unilateral or bilateral 10-mm intracranial trochlear neurectomy. Denervated and fellow orbits were imaged by MRI, embedded whole in paraffin, serially sectioned at 10-μm thickness, and stained with Masson trichrome. Whole muscle and individual fiber cross sections were quantified in SO muscles throughout the orbit and traced larger fibers in one specimen where they were present. Results. MRI demonstrated marked reduction in midorbital cross section in denervated SO muscles, with anterior shift of SO mass preserving overall volume. Muscle fibers exhibited variable atrophy along their lengths. Denervated orbital layer (OL) fiber cross sections were slightly but significantly reduced from control at most anteroposterior locations, but this reduction was much more profound in global layer (GL) fibers. Intraorbital and intramuscular CN4 were uniformly fibrotic. In one animal, there were scattered clusters of markedly hypertrophic GL fibers that exhibited only sparse myomyous junctions only anteriorly. Conclusions. CN4 denervation produces predominantly SO GL atrophy with relative OL sparing. Overall midorbital SO atrophy was evident by MRI as early as 5 weeks after denervation, as denervated SO volume shifted anteriorly. Occasional GL fiber hypertrophy suggests that at least some SO fibers extend essentially the full muscle length after trochlear neurectomy. PMID:20164458

  3. Solar physics applications of computer graphics and image processing

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.

    1985-01-01

    Computer graphics devices coupled with computers and carefully developed software provide new opportunities to achieve insight into the geometry and time evolution of scalar, vector, and tensor fields and to extract more information quickly and cheaply from the same image data. Two or more different fields which overlay in space can be calculated from the data (and the physics), then displayed from any perspective, and compared visually. The maximum regions of one field can be compared with the gradients of another. Time changing fields can also be compared. Images can be added, subtracted, transformed, noise filtered, frequency filtered, contrast enhanced, color coded, enlarged, compressed, parameterized, and histogrammed, in whole or section by section. Today it is possible to process multiple digital images to reveal spatial and temporal correlations and cross correlations. Data from different observatories taken at different times can be processed, interpolated, and transformed to a common coordinate system.

  4. Quantitative comparison of high-resolution MRI and myelin-stained histology of the human cerebral cortex.

    PubMed

    Osechinskiy, Sergey; Kruggel, Frithjof

    2009-01-01

    The architectonic analysis of the human cerebral cortex is presently based on the examination of stained tissue sections. Recent progress in high-resolution magnetic resonance imaging (MRI) promotes the feasibility of an in vivo architectonic analysis. Since the exact relationship between the laminar fine-structure of a cortical MRI signal and histological cyto-and myeloarchitectonic staining patterns is not known, a quantitative study comparing high-resolution MRI to histological ground truth images is necessary for validating a future MRI based architectonic analysis. This communication describes an ongoing study comparing post mortem MR images to a myelin-stained histology of the brain cortex. After establishing a close spatial correspondence between histological sections and MRI using a slice-to-volume nonrigid registration algorithm, transcortical intensity profiles, extracted from both imaging modalities along curved trajectories of a Laplacian vector field, are compared via a cross-correlational analysis.

  5. Density measurement in air with saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    Approaches which have the potential to make density measurements in a compressible flow, where one or more laser beams are used as probes, were investigated. Saturation in sulfur hexafluoride iodine and a crossed beam technique where one beam acts as a saturating beam and the other is at low intensity and acts as a probe beam are considered. It is shown that a balance between an increase in fluorescence intensity with increasing pressure from line broadening and the normal decrease in intensity with increasing pressure from quenching can be used to develop a linear relation between fluorescence intensity and number density and lead to a new density measurement scheme. The method is used to obtain a density image of the cross section of an iodine seeded underexpanded supersonic jet of nitrogen, by illuminating the cross section by a sheet of laser light.

  6. Multimodal ophthalmic imaging using handheld spectrally encoded coherence tomography and reflectometry (SECTR)

    NASA Astrophysics Data System (ADS)

    Leeburg, Kelsey C.; El-Haddad, Mohamed T.; Malone, Joseph D.; Terrones, Benjamin D.; Tao, Yuankai K.

    2018-02-01

    Scanning laser ophthalmoscopy (SLO) provides high-speed, noninvasive en face imaging of the retinal fundus. Optical coherence tomography (OCT) is the current "gold-standard" for ophthalmic diagnostic imaging and enables depth-resolved visualization of ophthalmic structures and image-based surrogate biomarkers of disease. We present a compact optical and mechanical design for handheld spectrally encoded coherence tomography and reflectometry (SECTR) for multimodality en face spectrally encoded reflectometry (SER) and cross-sectional OCT imaging. We custom-designed a double-pass telecentric scan lens, which halves the size of 4-f optical relays and allowed us to reduce the footprint of our SECTR scan-head by a factor of >2.7x (volume) over our previous design. The double-pass scan lens was optimized for diffraction-limited performance over a +/-10° scan field. SECTR optics and optomechanics were combined in a compact rapid-prototyped enclosure with dimensions 87 x 141.8 x 137 mm (w x h x d). SECTR was implemented using a custom-built 400 kHz 1050 nm swept-source. OCT and SER were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.4 GS/s per channel. In vivo human en face SER and cross-sectional OCT images were acquired at 350 fps. OCT volumes of 1000 B-scans were acquired in 2.86 s. We believe clinical translation of our compact handheld design will benefit point-of-care ophthalmic diagnostics in patients who are unable to be imaged on conventional slit-lamp based systems, such as infants and the bedridden. When combined with multi-volumetric registration methods, handheld SECTR will have advantages in motion-artifact free imaging over existing handheld technologies.

  7. CloudSat Image of Tropical Thunderstorms Over Africa

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1

    CloudSat image of a horizontal cross-section of tropical clouds and thunderstorms over east Africa. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, which the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudS at Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) visible image taken at nearly the same time.

  8. Sectioning studies of biomimetic collagen-hydroxyapatite coatings on Ti-6Al-4V substrates using focused ion beam

    NASA Astrophysics Data System (ADS)

    Hu, Changmin; Yu, Le; Wei, Mei

    2018-06-01

    A biomimetic bone-like collagen-hydroxyapatite (Col-HA) composite coating was formed on a surface-treated Ti-6Al-4V alloy substrate via simultaneous collagen self-assembly and hydroxyapatite nucleation. The coating process has been carried out by immersing sand-blasted, acid-etched and UV irradiated Ti-6Al-4V alloy in type I collagen-containing modified simulated body fluid (m-SBF). The surface morphology and phase composition of the coating were characterized using various techniques. More importantly, dual-beam FIB/SEMs with either gallium ion source (GFIB) or xenon plasma ion source (PFIB) were used to investigate the cross-sectional features of the biomimetic Col-HA composite coating in great details. As a result, the cross-sectional images and thin transmission electron microscopy (TEM) specimens were successfully obtained from the composite coating with no obvious damages or milling ion implantations. Both the cross-sectional SEM and TEM results have confirmed that the Col-HA coating demonstrates a similar microstructure to that of pure HA coating with homogeneously distributed elements across the whole cross section. Both coatings consist of a uniform, crack-free gradient structure with a dense layer adjacent to the interface between the Ti-6Al-4V substrate and the coating facilitating a strong bonding, while a porous structure at the coating surface aiding cell attachment.

  9. Imaging the Material Properties of Bone Specimens using Reflection-Based Infrared Microspectroscopy

    PubMed Central

    Acerbo, Alvin S.; Carr, G. Lawrence; Judex, Stefan; Miller, Lisa M.

    2012-01-01

    Fourier Transform InfraRed Microspectroscopy (FTIRM) is a widely used method for mapping the material properties of bone and other mineralized tissues, including mineralization, crystallinity, carbonate substitution, and collagen cross-linking. This technique is traditionally performed in a transmission-based geometry, which requires the preparation of plastic-embedded thin sections, limiting its functionality. Here, we theoretically and empirically demonstrate the development of reflection-based FTIRM as an alternative to the widely adopted transmission-based FTIRM, which reduces specimen preparation time and broadens the range of specimens that can be imaged. In this study, mature mouse femurs were plastic-embedded and longitudinal sections were cut at a thickness of 4 μm for transmission-based FTIRM measurements. The remaining bone blocks were polished for specular reflectance-based FTIRM measurements on regions immediately adjacent to the transmission sections. Kramers-Kronig analysis of the reflectance data yielded the dielectric response from which the absorption coefficients were directly determined. The reflectance-derived absorbance was validated empirically using the transmission spectra from the thin sections. The spectral assignments for mineralization, carbonate substitution, and collagen cross-linking were indistinguishable in transmission and reflection geometries, while the stoichiometric/non-stoichiometric apatite crystallinity parameter shifted from 1032 / 1021 cm−1 in transmission-based to 1035 / 1025 cm−1 in reflection-based data. This theoretical demonstration and empirical validation of reflection-based FTIRM eliminates the need for thin sections of bone and more readily facilitates direct correlations with other methods such nanoindentation and quantitative backscatter electron imaging (qBSE) from the same specimen. It provides a unique framework for correlating bone’s material and mechanical properties. PMID:22455306

  10. Quantitative imaging biomarkers for dural sinus patterns in idiopathic intracranial hypertension.

    PubMed

    Zur, Dinah; Anconina, Reut; Kesler, Anat; Lublinsky, Svetlana; Toledano, Ronen; Shelef, Ilan

    2017-02-01

    To quantitatively characterize transverse dural sinuses (TS) on magnetic resonance venography (MRV) in patients with idiopathic intracranial hypertension (IIH), compared to healthy controls, using a computer assisted detection (CAD) method. We retrospectively analyzed MRV studies of 38 IIH patients and 30 controls, matched by age and gender. Data analysis was performed using a specially developed Matlab algorithm for vessel cross-sectional analysis. The cross-sectional area and shape measurements were evaluated in patients and controls. Mean, minimal, and maximal cross-sectional areas as well as volumetric parameters of the right and left transverse sinuses were significantly smaller in IIH patients than in controls ( p  < .005 for all). Idiopathic intracranial hypertension patients showed a narrowed segment in both TS, clustering near the junction with the sigmoid sinus. In 36% (right TS) and 43% (left TS), the stenosis extended to >50% of the entire length of the TS, i.e. the TS was hypoplastic. Narrower vessels tended to have a more triangular shape than did wider vessels. Using CAD we precisely quantified TS stenosis and its severity in IIH patients by cross-sectional and volumetric analysis. This method can be used as an exact tool for investigating mechanisms of IIH development and response to treatment.

  11. Quadratus lumborum asymmetry and lumbar spine injury in cricket fast bowlers.

    PubMed

    Kountouris, Alex; Portus, Marc; Cook, Jill

    2012-09-01

    Previous studies have demonstrated quadratus lumborum asymmetry in cricket fast bowlers, but there has been conflicting evidence regarding the relationship to lumbar spine injury, particularly vertebral bone stress injuries. This study investigated the relationship between quadratus lumborum asymmetry and lumbar spine injury in adolescent cricket fast bowlers. The study was a prospective cohort design. Magnetic resonance imaging of 38 adolescent cricket fast bowlers was completed prior to a cricket season, and the cross sectional area of the quadratus lumborum muscle was measured at each lumbar spinal level. The bowlers were followed through the cricket season and those that reported lumbar spine injuries were investigated and classified as either having a soft tissue injury or a bone stress injury. The pre-season cross sectional area of quadratus lumborum was associated with injury status at the conclusion of the cricket season. Twenty-one percent of the cohort developed lumbar bone stress injuries during the cricket season. There was no significant relationship between lumbar spine injury and quadratus lumborum cross sectional area. A high incidence of lumbar bone stress injuries was demonstrated in adolescent fast bowlers. Unlike previous research that demonstrated a link between lumbar spine bone stress injuries and quadratus lumborum cross-sectional area, no such relationship was found. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. Automated brain volumetrics in multiple sclerosis: a step closer to clinical application

    PubMed Central

    Beadnall, H N; Hatton, S N; Bader, G; Tomic, D; Silva, D G

    2016-01-01

    Background Whole brain volume (WBV) estimates in patients with multiple sclerosis (MS) correlate more robustly with clinical disability than traditional, lesion-based metrics. Numerous algorithms to measure WBV have been developed over the past two decades. We compare Structural Image Evaluation using Normalisation of Atrophy-Cross-sectional (SIENAX) to NeuroQuant and MSmetrix, for assessment of cross-sectional WBV in patients with MS. Methods MRIs from 61 patients with relapsing-remitting MS and 2 patients with clinically isolated syndrome were analysed. WBV measurements were calculated using SIENAX, NeuroQuant and MSmetrix. Statistical agreement between the methods was evaluated using linear regression and Bland-Altman plots. Precision and accuracy of WBV measurement was calculated for (1) NeuroQuant versus SIENAX and (2) MSmetrix versus SIENAX. Results Precision (Pearson's r) of WBV estimation for NeuroQuant and MSmetrix versus SIENAX was 0.983 and 0.992, respectively. Accuracy (Cb) was 0.871 and 0.994, respectively. NeuroQuant and MSmetrix showed a 5.5% and 1.0% volume difference compared with SIENAX, respectively, that was consistent across low and high values. Conclusions In the analysed population, NeuroQuant and MSmetrix both quantified cross-sectional WBV with comparable statistical agreement to SIENAX, a well-validated cross-sectional tool that has been used extensively in MS clinical studies. PMID:27071647

  13. Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging

    PubMed Central

    Lammeier, Carmen; Li, YuPing; Lunos, Scott; Fok, Alex; Rudney, Joel

    2012-01-01

    Abstract. The purpose of this study was to investigate cross-polarization-optical coherence tomography (CP-OCT) signal attenuation through different resin material compositions. Four distinct composite systems were used: Filtek supreme ultra (FSU) (3M ESPE), IPS empress direct (EMD) (Ivoclar Vivadent), estelite sigma quick (SQK) (Tokuyama Dental), and Z100 (3M ESPE). Cross-sectional images of different composite-demineralized phantoms (n=108) were collected using a 1310-nm intraoral cross-polarization swept source OCT (CP-OCT) imaging system. %T quantified the CP-OCT signal attenuation. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectrometer chemical analysis was utilized to determine how different matrix/filler compositions affected attenuation of the near infrared (NIR) signal. CP-OCT imaging of dental resin composites showed enormous variation in signal attenuation. For each of our composite systems, there was not a consistent attenuation difference in the NIR signal for A to D shades. The four composites had similar measured backscattering values but attenuated the overall signal to different degrees. When comparing the A2 shades between the four different composite systems, the order of highest to lowest of %T was EMD>Z100, FSU>SQK (ANOVA, Tukey, p<0.0001). As a result, we demonstrate the importance of understanding how the constituents of composite materials affect CP-OCT signal attenuation. PMID:23224001

  14. Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Lammeier, Carmen; Li, YuPing; Lunos, Scott; Fok, Alex; Rudney, Joel; Jones, Robert S.

    2012-10-01

    The purpose of this study was to investigate cross-polarization-optical coherence tomography (CP-OCT) signal attenuation through different resin material compositions. Four distinct composite systems were used: Filtek supreme ultra (FSU) (3M ESPE), IPS empress direct (EMD) (Ivoclar Vivadent), estelite sigma quick (SQK) (Tokuyama Dental), and Z100 (3M ESPE). Cross-sectional images of different composite-demineralized phantoms (n=108) were collected using a 1310-nm intraoral cross-polarization swept source OCT (CP-OCT) imaging system. %T quantified the CP-OCT signal attenuation. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectrometer chemical analysis was utilized to determine how different matrix/filler compositions affected attenuation of the near infrared (NIR) signal. CP-OCT imaging of dental resin composites showed enormous variation in signal attenuation. For each of our composite systems, there was not a consistent attenuation difference in the NIR signal for A to D shades. The four composites had similar measured backscattering values but attenuated the overall signal to different degrees. When comparing the A2 shades between the four different composite systems, the order of highest to lowest of %T was EMD>Z100, FSU>SQK (ANOVA, Tukey, p<0.0001). As a result, we demonstrate the importance of understanding how the constituents of composite materials affect CP-OCT signal attenuation.

  15. Spatially resolved investigation of systemic and contact pesticides in plant material by desorption electrospray ionization mass spectrometry imaging (DESI-MSI).

    PubMed

    Gerbig, Stefanie; Brunn, Hubertus E; Spengler, Bernhard; Schulz, Sabine

    2015-09-01

    Distribution of pesticides both on the surface of leaves and in cross sections of plant stem and leaves was investigated using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) with a spatial resolution of 50-100 μm. Two commercially available insecticide sprays containing different contact pesticides were applied onto leaves of Cotoneaster horizontalis, and the distributions of all active ingredients were directly analyzed. The first spray contained pyrethrins and rapeseed oil, both known as natural insecticides. Each component showed an inhomogeneous spreading throughout the leaf, based on substance polarity and solubility. The second spray contained the synthetic insecticides imidacloprid and methiocarb. Imidacloprid accumulated on the border of the leaf, while methiocarb was distributed more homogenously. In order to investigate the incorporation of a systemically acting pesticide into Kalanchoe blossfeldiana, a commercially available insecticide tablet containing dimethoate was spiked to the soil of the plant. Cross sections of the stem and leaf were obtained 25 and 60 days after application. Dimethoate was mainly detected in the transport system of the plant after 25 days, while it was found to be homogenously distributed in a leaf section after 60 days.

  16. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    PubMed Central

    Osechinskiy, Sergey; Kruggel, Frithjof

    2011-01-01

    Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290

  17. Radar imaging of Saturn's rings

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip D.; French, Richard G.; Campbell, Donald B.; Margot, Jean-Luc; Nolan, Michael C.; Black, Gregory J.; Salo, Heikki J.

    2005-09-01

    We present delay-Doppler images of Saturn's rings based on radar observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°⩽|B|⩽26.7°. The average radar cross-section of the A ring is ˜77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the cross-section of the C ring and 9% on that of the Cassini Division. These results are consistent with those obtained by Ostro et al. [1982, Icarus 49, 367-381] from radar observations at |B|=21.4°, but provide higher resolution maps of the rings' reflectivity profile. The average cross-section of the A and B rings, normalized by their projected unblocked area, is found to have decreased from 1.25±0.31 to 0.74±0.19 as the rings have opened up, while the circular polarization ratio has increased from 0.64±0.06 to 0.77±0.06. The steep decrease in cross-section is at variance with previous radar measurements [Ostro et al., 1980, Icarus 41, 381-388], and neither this nor the polarization variations are easily understood within the framework of either classical, many-particle-thick or monolayer ring models. One possible explanation involves vertical size segregation in the rings, whereby observations at larger elevation angles which see deeper into the rings preferentially see the larger particles concentrated near the rings' mid-plane. These larger particles may be less reflective and/or rougher and thus more depolarizing than the smaller ones. Images from all four years show a strong m=2 azimuthal asymmetry in the reflectivity of the A ring, with an amplitude of ±20% and minima at longitudes of 67±4° and 247±4° from the sub-Earth point. We attribute the asymmetry to the presence of gravitational wakes in the A ring as invoked by Colombo et al. [1976, Nature 264, 344-345] to explain the similar asymmetry long seen at optical wavelengths. A simple radiative transfer model suggests that the enhancement of the azimuthal asymmetry in the radar images compared with that seen at optical wavelengths is due to the forward-scattering behavior of icy ring particles at decimeter wavelengths. A much weaker azimuthal asymmetry with a similar orientation may be present in the B ring.

  18. Computed tomographic imaging characteristics of the normal canine lacrimal glands

    PubMed Central

    2014-01-01

    Background The canine lacrimal gland (LG) and accessory lacrimal gland of the third eyelid (TEG) are responsible for production of the aqueous portion of the precorneal tear film. Immune-mediated, toxic, neoplastic, or infectious processes can affect the glands directly or can involve adjacent tissues, with secondary gland involvement. Disease affecting these glands can cause keratoconjunctivitis sicca, corneal ulcers, and loss of vision. Due to their location in the orbit, these small structures are difficult to evaluate and measure, making cross-sectional imaging an important diagnostic tool. The detailed cross-sectional imaging appearance of the LG and TEG in dogs using computed tomography (CT) has not been reported to date. Results Forty-two dogs were imaged, and the length, width, and height were measured and the volume calculated for the LGs & TEGs. The glands were best visualized in contrast-enhanced CT images. The mean volume of the LG was 0.14 cm3 and the TEG was 0.1 cm3. The mean height, width, and length of the LG were, 9.36 mm, 4.29 mm, and 9.35 mm, respectively; the corresponding values for the TEG was 2.02 mm, 9.34 mm, and 7.90 mm. LG and TEG volume were positively correlated with body weight (p < 0.05). Conclusions Contrast-enhanced CT is a valuable tool for noninvasive assessment of canine lacrimal glands. PMID:24886364

  19. Comparison of cross-sectional anatomy and computed tomography of the tarsus in horses.

    PubMed

    Raes, Els V; Bergman, Eric H J; van der Veen, Henk; Vanderperren, Katrien; Van der Vekens, Elke; Saunders, Jimmy H

    2011-09-01

    To compare computed tomography (CT) images of equine tarsi with cross-sectional anatomic slices and evaluate the potential of CT for imaging pathological tarsal changes in horses. 6 anatomically normal equine cadaveric hind limbs and 4 tarsi with pathological changes. Precontrast CT was performed on 3 equine tarsi; sagittal and dorsal reconstructions were made. In all limbs, postcontrast CT was performed after intra-articular contrast medium injection of the tarsocrural, centrodistal, and tarsometatarsal joints. Images were matched with corresponding anatomic slices. Four tarsi with pathological changes underwent CT examination. The tibia, talus, calcaneus, and central, fused first and second, third, and fourth tarsal bones were clearly visualized as well as the long digital extensor, superficial digital flexor, lateral digital flexor (with tarsal flexor retinaculum), gastrocnemius, peroneus tertius, and tibialis cranialis tendons and the long plantar ligament. The lateral digital extensor, medial digital flexor, split peroneus tertius, and tibialis cranialis tendons and collateral ligaments could be located but not always clearly identified. Some small tarsal ligaments were identifiable, including plantar, medial, interosseus, and lateral talocalcaneal ligaments; interosseus talocentral, centrodistal, and tarsometatarsal ligaments; proximal and distal plantar ligaments; and talometatarsal ligament. Parts of the articular cartilage could be assessed on postcontrast images. Lesions were detected in the 4 tarsi with pathological changes. CT of the tarsus is recommended when radiography and ultrasonography are inconclusive and during preoperative planning for treatment of complex fractures. Images from this study can serve as a CT reference, and CT of pathological changes was useful.

  20. Deep 3D convolution neural network for CT brain hemorrhage classification

    NASA Astrophysics Data System (ADS)

    Jnawali, Kamal; Arbabshirani, Mohammad R.; Rao, Navalgund; Patel, Alpen A.

    2018-02-01

    Intracranial hemorrhage is a critical conditional with the high mortality rate that is typically diagnosed based on head computer tomography (CT) images. Deep learning algorithms, in particular, convolution neural networks (CNN), are becoming the methodology of choice in medical image analysis for a variety of applications such as computer-aided diagnosis, and segmentation. In this study, we propose a fully automated deep learning framework which learns to detect brain hemorrhage based on cross sectional CT images. The dataset for this work consists of 40,367 3D head CT studies (over 1.5 million 2D images) acquired retrospectively over a decade from multiple radiology facilities at Geisinger Health System. The proposed algorithm first extracts features using 3D CNN and then detects brain hemorrhage using the logistic function as the last layer of the network. Finally, we created an ensemble of three different 3D CNN architectures to improve the classification accuracy. The area under the curve (AUC) of the receiver operator characteristic (ROC) curve of the ensemble of three architectures was 0.87. Their results are very promising considering the fact that the head CT studies were not controlled for slice thickness, scanner type, study protocol or any other settings. Moreover, the proposed algorithm reliably detected various types of hemorrhage within the skull. This work is one of the first applications of 3D CNN trained on a large dataset of cross sectional medical images for detection of a critical radiological condition

  1. High resolution microphotonic needle for endoscopic imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tadayon, Mohammad Amin; Mohanty, Aseema; Roberts, Samantha P.; Barbosa, Felippe; Lipson, Michal

    2017-02-01

    GRIN (Graded index) lens have revolutionized micro endoscopy enabling deep tissue imaging with high resolution. The challenges of traditional GRIN lenses are their large size (when compared with the field of view) and their limited resolution. This is because of the relatively weak NA in standard graded index lenses. Here we introduce a novel micro-needle platform for endoscopy with much higher resolution than traditional GRIN lenses and a FOV that corresponds to the whole cross section of the needle. The platform is based on polymeric (SU-8) waveguide integrated with a microlens micro fabricated on a silicon substrate using a unique molding process. Due to the high index of refraction of the material the NA of the needle is much higher than traditional GRIN lenses. We tested the probe in a fluorescent dye solution (19.6 µM Alexa Flour 647 solution) and measured a numerical aperture of 0.25, focal length of about 175 µm and minimal spot size of about 1.6 µm. We show that the platform can image a sample with the field of view corresponding to the cross sectional area of the waveguide (80x100 µm2). The waveguide size can in principle be modified to vary size of the imaging field of view. This demonstration, combined with our previous work demonstrating our ability to implant the high NA needle in a live animal, shows that the proposed system can be used for deep tissue imaging with very high resolution and high field of view.

  2. Comparative evaluation of the cadaveric, radiographic and computed tomographic anatomy of the heads of green iguana (Iguana iguana), common tegu (Tupinambis merianae) and bearded dragon (Pogona vitticeps).

    PubMed

    Banzato, Tommaso; Selleri, Paolo; Veladiano, Irene A; Martin, Andrea; Zanetti, Emanuele; Zotti, Alessandro

    2012-05-11

    Radiology and computed tomography are the most commonly available diagnostic tools for the diagnosis of pathologies affecting the head and skull in veterinary practice. Nevertheless, accurate interpretation of radiographic and CT studies requires a thorough knowledge of the gross and the cross-sectional anatomy. Despite the increasing success of reptiles as pets, only a few reports over their normal imaging features are currently available. The aim of this study is to describe the normal cadaveric, radiographic and computed tomographic features of the heads of the green iguana, tegu and bearded dragon. 6 adult green iguanas, 4 tegus, 3 bearded dragons, and, the adult cadavers of: 4 green iguana, 4 tegu, 4 bearded dragon were included in the study. 2 cadavers were dissected following a stratigraphic approach and 2 cadavers were cross-sectioned for each species. These latter specimens were stored in a freezer (-20°C) until completely frozen. Transversal sections at 5 mm intervals were obtained by means of an electric band-saw. Each section was cleaned and photographed on both sides. Radiographs of the head of each subject were obtained. Pre- and post- contrast computed tomographic studies of the head were performed on all the live animals. CT images were displayed in both bone and soft tissue windows. Individual anatomic structures were first recognised and labelled on the anatomic images and then matched on radiographs and CT images. Radiographic and CT images of the skull provided good detail of the bony structures in all species. In CT contrast medium injection enabled good detail of the soft tissues to be obtained in the iguana whereas only the eye was clearly distinguishable from the remaining soft tissues in both the tegu and the bearded dragon. The results provide an atlas of the normal anatomical and in vivo radiographic and computed tomographic features of the heads of lizards, and this may be useful in interpreting any imaging modality involving these species.

  3. Comparative evaluation of the cadaveric, radiographic and computed tomographic anatomy of the heads of green iguana (Iguana iguana) , common tegu ( Tupinambis merianae) and bearded dragon ( Pogona vitticeps)

    PubMed Central

    2012-01-01

    Background Radiology and computed tomography are the most commonly available diagnostic tools for the diagnosis of pathologies affecting the head and skull in veterinary practice. Nevertheless, accurate interpretation of radiographic and CT studies requires a thorough knowledge of the gross and the cross-sectional anatomy. Despite the increasing success of reptiles as pets, only a few reports over their normal imaging features are currently available. The aim of this study is to describe the normal cadaveric, radiographic and computed tomographic features of the heads of the green iguana, tegu and bearded dragon. Results 6 adult green iguanas, 4 tegus, 3 bearded dragons, and, the adult cadavers of : 4 green iguana, 4 tegu, 4 bearded dragon were included in the study. 2 cadavers were dissected following a stratigraphic approach and 2 cadavers were cross-sectioned for each species. These latter specimens were stored in a freezer (−20°C) until completely frozen. Transversal sections at 5 mm intervals were obtained by means of an electric band-saw. Each section was cleaned and photographed on both sides. Radiographs of the head of each subject were obtained. Pre- and post- contrast computed tomographic studies of the head were performed on all the live animals. CT images were displayed in both bone and soft tissue windows. Individual anatomic structures were first recognised and labelled on the anatomic images and then matched on radiographs and CT images. Radiographic and CT images of the skull provided good detail of the bony structures in all species. In CT contrast medium injection enabled good detail of the soft tissues to be obtained in the iguana whereas only the eye was clearly distinguishable from the remaining soft tissues in both the tegu and the bearded dragon. Conclusions The results provide an atlas of the normal anatomical and in vivo radiographic and computed tomographic features of the heads of lizards, and this may be useful in interpreting any imaging modality involving these species. PMID:22578088

  4. Integrated light-sheet imaging and flow-based enquiry (iLIFE) system for 3D in-vivo imaging of multicellular organism

    NASA Astrophysics Data System (ADS)

    Rasmi, Chelur K.; Padmanabhan, Sreedevi; Shirlekar, Kalyanee; Rajan, Kanhirodan; Manjithaya, Ravi; Singh, Varsha; Mondal, Partha Pratim

    2017-12-01

    We propose and demonstrate a light-sheet-based 3D interrogation system on a microfluidic platform for screening biological specimens during flow. To achieve this, a diffraction-limited light-sheet (with a large field-of-view) is employed to optically section the specimens flowing through the microfluidic channel. This necessitates optimization of the parameters for the illumination sub-system (illumination intensity, light-sheet width, and thickness), microfluidic specimen platform (channel-width and flow-rate), and detection sub-system (camera exposure time and frame rate). Once optimized, these parameters facilitate cross-sectional imaging and 3D reconstruction of biological specimens. The proposed integrated light-sheet imaging and flow-based enquiry (iLIFE) imaging technique enables single-shot sectional imaging of a range of specimens of varying dimensions, ranging from a single cell (HeLa cell) to a multicellular organism (C. elegans). 3D reconstruction of the entire C. elegans is achieved in real-time and with an exposure time of few hundred micro-seconds. A maximum likelihood technique is developed and optimized for the iLIFE imaging system. We observed an intracellular resolution for mitochondria-labeled HeLa cells, which demonstrates the dynamic resolution of the iLIFE system. The proposed technique is a step towards achieving flow-based 3D imaging. We expect potential applications in diverse fields such as structural biology and biophysics.

  5. MORPH-II, a software package for the analysis of scanning-electron-micrograph images for the assessment of the fractal dimension of exposed stone surfaces

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf

    2000-01-01

    Turcotte, 1997, and Barton and La Pointe, 1995, have identified many potential uses for the fractal dimension in physicochemical models of surface properties. The image-analysis program described in this report is an extension of the program set MORPH-I (Mossotti and others, 1998), which provided the fractal analysis of electron-microscope images of pore profiles (Mossotti and Eldeeb, 1992). MORPH-II, an integration of the modified kernel of the program MORPH-I with image calibration and editing facilities, was designed to measure the fractal dimension of the exposed surfaces of stone specimens as imaged in cross section in an electron microscope.

  6. Unlocking the jaw: advanced imaging of the temporomandibular joint.

    PubMed

    Petscavage-Thomas, Jonelle M; Walker, Eric A

    2014-11-01

    Temporomandibular joint (TMJ) dysfunction is a common condition, affecting up to 28% of the population. The TMJ can be affected by abnormal dynamics of the disk-condyle complex, degenerative arthritis, inflammatory arthritis, and crystal arthropathy. Less commonly, neoplasms and abnormal morphologic features of the condyle are causes of TMJ symptoms. Cross-sectional imaging is frequently used for diagnosis. Knowledge of the normal imaging appearance of the TMJ, its appearance on radiological examination, and interventional techniques are useful for providing a meaningful radiologic contribution. This article will review normal TMJ anatomy; describe the normal ultrasound, CT, and MRI appearances of TMJ; provide imaging examples of abnormal TMJs; and illustrate imaging-guided therapeutic TMJ injection.

  7. Nano-Computed Tomography: Technique and Applications.

    PubMed

    Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A

    2016-02-01

    Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.

  8. Improved parameter extraction and classification for dynamic contrast enhanced MRI of prostate

    NASA Astrophysics Data System (ADS)

    Haq, Nandinee Fariah; Kozlowski, Piotr; Jones, Edward C.; Chang, Silvia D.; Goldenberg, S. Larry; Moradi, Mehdi

    2014-03-01

    Magnetic resonance imaging (MRI), particularly dynamic contrast enhanced (DCE) imaging, has shown great potential in prostate cancer diagnosis and prognosis. The time course of the DCE images provides measures of the contrast agent uptake kinetics. Also, using pharmacokinetic modelling, one can extract parameters from the DCE-MR images that characterize the tumor vascularization and can be used to detect cancer. A requirement for calculating the pharmacokinetic DCE parameters is estimating the Arterial Input Function (AIF). One needs an accurate segmentation of the cross section of the external femoral artery to obtain the AIF. In this work we report a semi-automatic method for segmentation of the cross section of the femoral artery, using circular Hough transform, in the sequence of DCE images. We also report a machine-learning framework to combine pharmacokinetic parameters with the model-free contrast agent uptake kinetic parameters extracted from the DCE time course into a nine-dimensional feature vector. This combination of features is used with random forest and with support vector machine classi cation for cancer detection. The MR data is obtained from patients prior to radical prostatectomy. After the surgery, wholemount histopathology analysis is performed and registered to the DCE-MR images as the diagnostic reference. We show that the use of a combination of pharmacokinetic parameters and the model-free empirical parameters extracted from the time course of DCE results in improved cancer detection compared to the use of each group of features separately. We also validate the proposed method for calculation of AIF based on comparison with the manual method.

  9. En-face optical coherence tomography in the diagnosis and management of age-related macular degeneration and polypoidal choroidal vasculopathy.

    PubMed

    Lau, Tiffany; Wong, Ian Y; Iu, Lawrence; Chhablani, Jay; Yong, Tao; Hideki, Koizumi; Lee, Jacky; Wong, Raymond

    2015-05-01

    Optical coherence tomography (OCT) is a noninvasive imaging modality providing high-resolution images of the central retina that has completely transformed the field of ophthalmology. While traditional OCT has produced longitudinal cross-sectional images, advancements in data processing have led to the development of en-face OCT, which produces transverse images of retinal and choroidal layers at any specified depth. This offers additional benefit on top of longitudinal cross-sections because it provides an extensive overview of pathological structures in a single image. The aim of this review was to discuss the utility of en-face OCT in the diagnosis and management of age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV). En-face imaging of the inner segment/outer segment junction of retinal photoreceptors has been shown to be a useful indicator of visual acuity and a predictor of the extent of progression of geographic atrophy. En-face OCT has also enabled high-resolution analysis and quantification of pathological structures such as reticular pseudodrusen (RPD) and choroidal neovascularization, which have the potential to become useful markers for disease monitoring. En-face Doppler OCT enables subtle changes in the choroidal vasculature to be detected in eyes with RPD and AMD, which has significantly advanced our understanding of their pathogenesis. En-face Doppler OCT has also been shown to be useful for detecting the polypoid lesions and branching vascular networks diagnostic of PCV. It may therefore serve as a noninvasive alternative to fluorescein and indocyanine green angiography for the diagnosis of PCV and other forms of the exudative macular disease.

  10. Primary bone tumors of adulthood

    PubMed Central

    Teo, Harvey E L; Peh, Wilfred C G

    2004-01-01

    Imaging plays a crucial role in the evaluation of primary bone tumors in adults. Initial radiographic evaluation is indicated in all cases with suspected primary bone tumors. Radiographs are useful for providing the diagnosis, a short list of differential diagnosis or at least indicating the degree of aggressiveness of the lesion. More detailed information about the lesion, such as cortical destruction or local spread, can be obtained using cross-sectional imaging techniques such as computed tomography and magnetic resonance imaging. This article discusses the characteristic features of the more common primary bone tumors of adulthood, and also the pre-treatment evaluation and staging of these lesions using imaging techniques. PMID:18250012

  11. Rotational imaging optical coherence tomography for full-body mouse embryonic imaging

    PubMed Central

    Wu, Chen; Sudheendran, Narendran; Singh, Manmohan; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2016-01-01

    Abstract. Optical coherence tomography (OCT) has been widely used to study mammalian embryonic development with the advantages of high spatial and temporal resolutions and without the need for any contrast enhancement probes. However, the limited imaging depth of traditional OCT might prohibit visualization of the full embryonic body. To overcome this limitation, we have developed a new methodology to enhance the imaging range of OCT in embryonic day (E) 9.5 and 10.5 mouse embryos using rotational imaging. Rotational imaging OCT (RI-OCT) enables full-body imaging of mouse embryos by performing multiangle imaging. A series of postprocessing procedures was performed on each cross-section image, resulting in the final composited image. The results demonstrate that RI-OCT is able to improve the visualization of internal mouse embryo structures as compared to conventional OCT. PMID:26848543

  12. Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages.

    PubMed

    Carlton, Holly D; Elmer, John W; Li, Yan; Pacheco, Mario; Goyal, Deepak; Parkinson, Dilworth Y; MacDowell, Alastair A

    2016-04-13

    Synchrotron radiation micro-tomography (SRµT) is a non-destructive three-dimensional (3D) imaging technique that offers high flux for fast data acquisition times with high spatial resolution. In the electronics industry there is serious interest in performing failure analysis on 3D microelectronic packages, many which contain multiple levels of high-density interconnections. Often in tomography there is a trade-off between image resolution and the volume of a sample that can be imaged. This inverse relationship limits the usefulness of conventional computed tomography (CT) systems since a microelectronic package is often large in cross sectional area 100-3,600 mm(2), but has important features on the micron scale. The micro-tomography beamline at the Advanced Light Source (ALS), in Berkeley, CA USA, has a setup which is adaptable and can be tailored to a sample's properties, i.e., density, thickness, etc., with a maximum allowable cross-section of 36 x 36 mm. This setup also has the option of being either monochromatic in the energy range ~7-43 keV or operating with maximum flux in white light mode using a polychromatic beam. Presented here are details of the experimental steps taken to image an entire 16 x 16 mm system within a package, in order to obtain 3D images of the system with a spatial resolution of 8.7 µm all within a scan time of less than 3 min. Also shown are results from packages scanned in different orientations and a sectioned package for higher resolution imaging. In contrast a conventional CT system would take hours to record data with potentially poorer resolution. Indeed, the ratio of field-of-view to throughput time is much higher when using the synchrotron radiation tomography setup. The description below of the experimental setup can be implemented and adapted for use with many other multi-materials.

  13. Preparation and characterization of gold nanodumbbells

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; Chiu, Pin-Hsiang; Wang, Yeong-Her; Chen, Wen-Ray; Meen, Teen-Hang; Yang, Cheng-Fu

    2006-11-01

    Well-dispersed gold nanodumbbells (GNDs) in an aqueous phase have been successfully fabricated by an electrochemical method using a micelle template formed by two surfactants with the addition of acetone solvent during electrolysis, the primary surfactant being cetyltrimethylammonium bromide (CTABr) and the cosurfactant being tetradecyltrimethylammonium bromide (TTABr). The role of acetone solvent is found to change the gold nanoparticles' shape from a rod to a dumbbell. The shape of the GNDs is fatter at the two ends and thinner in the middle section. The GNDs have been determined to be pure gold with a single-crystalline face-centred cubic (FCC) structure from selected area electron diffraction (SAED) patterns. Morphology features of GNDs in cross-section have also been investigated by dark field (DF) transmission electron microscopy (TEM) images. These GNDs exhibit octagonal structure in cross-section and an aspect ratio of around 3.

  14. Rotationally inelastic scattering of ND3 with H2 as a probe of the intermolecular potential energy surface

    NASA Astrophysics Data System (ADS)

    Tkáč, Ondřej; Saha, Ashim K.; Loreau, Jérôme; Ma, Qianli; Dagdigian, Paul J.; Parker, David H.; van der Avoird, Ad; Orr-Ewing, Andrew J.

    2015-12-01

    Differential cross sections (DCSs) are reported for rotationally inelastic scattering of ND3 with H2, measured using a crossed molecular beam apparatus with velocity map imaging (VMI). ND3 molecules were quantum-state selected in the ground electronic and vibrational levels and, optionally, in the j±k = 11- rotation-inversion level prior to collisions. Inelastic scattering of state-selected ND3 with H2 was measured at the mean collision energy of 580 cm-1 by resonance-enhanced multiphoton ionisation spectroscopy and VMI of ND3 in selected single final j'±k' levels. Comparison of experimental DCSs with close-coupling quantum-mechanical scattering calculations serves as a test of a recently reported ab initio potential energy surface. Calculated integral cross sections reveal the propensities for scattering into various final j'±k' levels of ND3 and differences between scattering by ortho and para H2. Integral and differential cross sections are also computed at a mean collision energy of 430 cm-1 and compared to our recent results for inelastic scattering of state-selected ND3 with He.

  15. A signature correlation study of ground target VHF/UHF ISAR imagery

    NASA Astrophysics Data System (ADS)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Kersey, William T.; Waldman, Jerry; Carter, Steve; Nixon, William E.

    2003-09-01

    VV and HH-polarized radar signatures of several ground targets were acquired in the VHF/UHF band (171-342 MHz) by using 1/35th scale models and an indoor radar range operating from 6 to 12 GHz. Data were processed into medianized radar cross sections as well as focused, ISAR imagery. Measurement validation was confirmed by comparing the radar cross section of a test object with a method of moments radar cross section prediction code. The signatures of several vehicles from three vehicle classes (tanks, trunks, and TELs) were measured and a signature cross-correlation study was performed. The VHF/UHF band is currently being exploited for its foliage penetration ability, however, the coarse image resolution which results from the relatively long radar wavelengths suggests a more challenging target recognition problem. One of the study's goals was to determine the amount of unique signature content in VHF/UHF ISAR imagery of military ground vehicles. Open-field signatures are compared with each other as well as with simplified shapes of similar size. Signatures were also acquired on one vehicle in a variety of configurations to determine the impact of monitor target variations on the signature content at these frequencies.

  16. Hilar cholangiocarcinoma: Cross sectional evaluation of disease spectrum

    PubMed Central

    Mahajan, Mangal S; Moorthy, Srikanth; Karumathil, Sreekumar P; Rajeshkannan, R; Pothera, Ramchandran

    2015-01-01

    Although hilar cholangiocarcinoma is relatively rare, it can be diagnosed on imaging by identifying its typical pattern. In most cases, the tumor appears to be centered on the right or left hepatic duct with involvement of the ipsilateral portal vein, atrophy of hepatic lobe on that side, and invasion of adjacent liver parenchyma. Multi-detector computed tomography (MDCT) and magnetic resonance cholangiopancreatography (MRCP) are commonly used imaging modalities to assess the longitudinal and horizontal spread of tumor. PMID:25969643

  17. Adolescents' Sexual Wellbeing in Southwestern Uganda: A Cross-Sectional Assessment of Body Image, Self-Esteem and Gender Equitable Norms.

    PubMed

    Kemigisha, Elizabeth; Nyakato, Viola N; Bruce, Katharine; Ndaruhutse Ruzaaza, Gad; Mlahagwa, Wendo; Ninsiima, Anna B; Coene, Gily; Leye, Els; Michielsen, Kristien

    2018-02-22

    Measures of sexual wellbeing and positive aspects of sexuality in the World Health Organization definition for sexual health are rarely studied and remain poorly understood, especially among adolescents in Sub-Saharan Africa. The objective of this study was to assess sexual wellbeing in its broad sense-i.e., body image, self-esteem, and gender equitable norms-and associated factors in young adolescents in Uganda. A cross-sectional survey of adolescents ages 10-14 years in schools was carried out between June and July 2016. Among 1096 adolescents analyzed, the median age was 12 (Inter-Quartile Range (IQR): 11, 13) and 58% were female. Self-esteem and body image scores were high with median 24 (IQR: 22, 26, possible range: 7-28) and median 22 (IQR: 19, 24, possible range: 5-25) respectively. Gender equitable norms mean score was 28.1 (SD 5.2: possible range 11-44). We noted high scores for self-esteem and body image but moderate scores on gender equitable norms. Girls had higher scores compared to boys for all outcomes. A higher age and being sexually active were associated with lower scores on gender equitable norms. Gender equitable norms scores decreased with increasing age of adolescents. Comprehensive and timely sexuality education programs focusing on gender differences and norms are recommended.

  18. The study on changes of rectum area in proton prostate cancer therapy

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Lee, H. K.; Shin, H. W.; Kim, S. C.; Cho, J. H.

    2015-10-01

    The purpose of this study is to determine the changes in the rectum area during treatment and to identify the rectum area within the given field of view in order to reproduce the same pose as that presented during therapy planning to properly deliver the planned dose to the prostate. We obtained digitally reconstructed radiographs after planning treatment for 30 patients out of all patients who had been subjected to proton prostate cancer therapy from August 2012 to November 2014 at this hospital. We then obtained an image using a digital imaging positioning system (DIPS) on the first day of treatment. When planning the digitally reconstructed radiograph treatment, we determined the change in size of the rectum between the actual treatment and treatment planning by measuring the cross section of the rectum and the cross section on the image from the DIPS. The results indicated that the rectum area in the digitally reconstructed radiograph taken during treatment planning and the rectum area obtained from the DIPS image during treatment were different. As a consequence, when region targeted for proton treatment of prostate cancer does not maintain a constant volume, the position of the prostate does not receive an adequate dose due to such changes. Therefore, the results of this study will be useful to determine the corresponding volume during a prostate treatment plan.

  19. Magnetic resonance imaging for precise radiotherapy of small laboratory animals.

    PubMed

    Frenzel, Thorsten; Kaul, Michael Gerhard; Ernst, Thomas Michael; Salamon, Johannes; Jäckel, Maria; Schumacher, Udo; Krüll, Andreas

    2017-03-01

    Radiotherapy of small laboratory animals (SLA) is often not as precisely applied as in humans. Here we describe the use of a dedicated SLA magnetic resonance imaging (MRI) scanner for precise tumor volumetry, radiotherapy treatment planning, and diagnostic imaging in order to make the experiments more accurate. Different human cancer cells were injected at the lower trunk of pfp/rag2 and SCID mice to allow for local tumor growth. Data from cross sectional MRI scans were transferred to a clinical treatment planning system (TPS) for humans. Manual palpation of the tumor size was compared with calculated tumor size of the TPS and with tumor weight at necropsy. As a feasibility study MRI based treatment plans were calculated for a clinical 6MV linear accelerator using a micro multileaf collimator (μMLC). In addition, diagnostic MRI scans were used to investigate animals which did clinical poorly during the study. MRI is superior in precise tumor volume definition whereas manual palpation underestimates their size. Cross sectional MRI allow for treatment planning so that conformal irradiation of mice with a clinical linear accelerator using a μMLC is in principle feasible. Several internal pathologies were detected during the experiment using the dedicated scanner. MRI is a key technology for precise radiotherapy of SLA. The scanning protocols provided are suited for tumor volumetry, treatment planning, and diagnostic imaging. Copyright © 2016. Published by Elsevier GmbH.

  20. Role of radiology in the management of primary aldosteronism.

    PubMed

    Patel, Shilpan M; Lingam, Ravi K; Beaconsfield, Tina I; Tran, Tan L; Brown, Beata

    2007-01-01

    The diagnosis of primary aldosteronism, the most common form of secondary hypertension, is based on clinical and biochemical features. Although radiology plays no role in the initial diagnosis, it has an important role in differentiating between the two main causes of primary aldosteronism: aldosterone-producing adenoma (APA) and bilateral adrenal hyperplasia (BAH). This distinction is important because APAs are generally managed surgically and BAH medically. Adrenal venous sampling is considered the standard of reference for determining the cause of primary aldosteronism but is technically demanding, operator dependent, costly, and time consuming, with a low but significant complication rate. Other imaging modalities, including computed tomography, magnetic resonance imaging, and adrenal scintigraphy, have also been used to determine the cause of primary aldosteronism. Cross-sectional imaging has traditionally focused on establishing the diagnosis of an APA, with that of BAH being one of exclusion. A high specificity for detecting an APA is desirable, since it will avert unnecessary surgery in patients with BAH. However, an overreliance on cross-sectional imaging can lead to the incorrect treatment of affected patients, mainly due to the wide variation in the reported diagnostic performance of these modalities. A combination of modalities is usually required to confidently determine the cause of primary aldosteronism. The quest for optimal radiologic management of primary aldosteronism continues just over a half century since this disease entity was first described. RSNA, 2007

  1. Adolescents’ Sexual Wellbeing in Southwestern Uganda: A Cross-Sectional Assessment of Body Image, Self-Esteem and Gender Equitable Norms

    PubMed Central

    Kemigisha, Elizabeth; Nyakato, Viola N.; Bruce, Katharine; Ndaruhutse Ruzaaza, Gad; Mlahagwa, Wendo; Ninsiima, Anna B.; Coene, Gily; Leye, Els; Michielsen, Kristien

    2018-01-01

    Measures of sexual wellbeing and positive aspects of sexuality in the World Health Organization definition for sexual health are rarely studied and remain poorly understood, especially among adolescents in Sub-Saharan Africa. The objective of this study was to assess sexual wellbeing in its broad sense—i.e., body image, self-esteem, and gender equitable norms—and associated factors in young adolescents in Uganda. A cross-sectional survey of adolescents ages 10–14 years in schools was carried out between June and July 2016. Among 1096 adolescents analyzed, the median age was 12 (Inter-Quartile Range (IQR): 11, 13) and 58% were female. Self-esteem and body image scores were high with median 24 (IQR: 22, 26, possible range: 7–28) and median 22 (IQR: 19, 24, possible range: 5–25) respectively. Gender equitable norms mean score was 28.1 (SD 5.2: possible range 11–44). We noted high scores for self-esteem and body image but moderate scores on gender equitable norms. Girls had higher scores compared to boys for all outcomes. A higher age and being sexually active were associated with lower scores on gender equitable norms. Gender equitable norms scores decreased with increasing age of adolescents. Comprehensive and timely sexuality education programs focusing on gender differences and norms are recommended. PMID:29470388

  2. The effect of time-of-flight and point spread function modeling on 82Rb myocardial perfusion imaging of obese patients.

    PubMed

    Dasari, Paul K R; Jones, Judson P; Casey, Michael E; Liang, Yuanyuan; Dilsizian, Vasken; Smith, Mark F

    2018-06-15

    The effect of time-of-flight (TOF) and point spread function (PSF) modeling in image reconstruction has not been well studied for cardiac PET. This study assesses their separate and combined influence on 82 Rb myocardial perfusion imaging in obese patients. Thirty-six obese patients underwent rest-stress 82 Rb cardiac PET. Images were reconstructed with and without TOF and PSF modeling. Perfusion was quantitatively compared using the AHA 17-segment model for patients grouped by BMI, cross-sectional body area in the scanner field of view, gender, and left ventricular myocardial volume. Summed rest scores (SRS), summed stress scores (SSS), and summed difference scores (SDS) were compared. TOF improved polar map visual uniformity and increased septal wall perfusion by up to 10%. This increase was greater for larger patients, more evident for patients grouped by cross-sectional area than by BMI, and more prominent for females. PSF modeling increased perfusion by about 1.5% in all cardiac segments. TOF modeling generally decreased SRS and SSS with significant decreases between 2.4 and 3.0 (P < .05), which could affect risk stratification; SDS remained about the same. With PSF modeling, SRS, SSS, and SDS were largely unchanged. TOF and PSF modeling affect regional and global perfusion, SRS, and SSS. Clinicians should consider these effects and gender-dependent differences when interpreting 82 Rb perfusion studies.

  3. Dynamic in vivo imaging of small animal brain using pulsed laser diode-based photoacoustic tomography system

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2017-09-01

    We demonstrate dynamic in vivo imaging using a low-cost portable pulsed laser diode (PLD)-based photoacoustic tomography system. The system takes advantage of an 803-nm PLD having high-repetition rate ˜7000 Hz combined with a fast-scanning single-element ultrasound transducer leading to a 5 s cross-sectional imaging. Cortical vasculature is imaged in scan time of 5 s with high signal-to-noise ratio ˜48. To examine the ability for dynamic imaging, we monitored the fast uptake and clearance process of indocyanine green in the rat brain. The system will find applications to study neurofunctional activities, characterization of pharmacokinetic, and biodistribution profiles in the development process of drugs or imaging agents.

  4. Raman Imaging in Cell Membranes, Lipid-Rich Organelles, and Lipid Bilayers.

    PubMed

    Syed, Aleem; Smith, Emily A

    2017-06-12

    Raman-based optical imaging is a promising analytical tool for noninvasive, label-free chemical imaging of lipid bilayers and cellular membranes. Imaging using spontaneous Raman scattering suffers from a low intensity that hinders its use in some cellular applications. However, developments in coherent Raman imaging, surface-enhanced Raman imaging, and tip-enhanced Raman imaging have enabled video-rate imaging, excellent detection limits, and nanometer spatial resolution, respectively. After a brief introduction to these commonly used Raman imaging techniques for cell membrane studies, this review discusses selected applications of these modalities for chemical imaging of membrane proteins and lipids. Finally, recent developments in chemical tags for Raman imaging and their applications in the analysis of selected cell membrane components are summarized. Ongoing developments toward improving the temporal and spatial resolution of Raman imaging and small-molecule tags with strong Raman scattering cross sections continue to expand the utility of Raman imaging for diverse cell membrane studies.

  5. Stereodynamics in NO(X) + Ar inelastic collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brouard, M., E-mail: mark.brouard@chem.ox.ac.uk; Chadwick, H.; Gordon, S. D. S.

    2016-06-14

    The effect of orientation of the NO(X) bond axis prior to rotationally inelastic collisions with Ar has been investigated experimentally and theoretically. A modification to conventional velocity-map imaging ion optics is described, which allows the orientation of hexapole state-selected NO(X) using a static electric field, followed by velocity map imaging of the resonantly ionized scattered products. Bond orientation resolved differential cross sections are measured experimentally for a series of spin-orbit conserving transitions and compared with quantum mechanical calculations. The agreement between experimental results and those from quantum mechanical calculations is generally good. Parity pairs, which have previously been observed inmore » collisions of unpolarized NO with various rare gases, are not observed due to the coherent superposition of the two j = 1/2, Ω = 1/2 Λ-doublet levels in the orienting field. The normalized difference differential cross sections are found to depend predominantly on the final rotational state, and are not very sensitive to the final Λ-doublet level. The differential steric effect has also been investigated theoretically, by means of quantum mechanical and classical calculations. Classically, the differential steric effect can be understood by considering the steric requirement for different types of trajectories that contribute to different regions of the differential cross section. However, classical effects cannot account quantitatively for the differential steric asymmetry observed in NO(X) + Ar collisions, which reflects quantum interference from scattering at either end of the molecule. This quantum interference effect is dominated by the repulsive region of the potential.« less

  6. Effects of anchoring and arc structure on the control authority of a rail plasma actuator

    NASA Astrophysics Data System (ADS)

    Choi, Young-Joon; Gray, Miles; Sirohi, Jayant; Raja, Laxminarayan L.

    2017-09-01

    Experiments were conducted on a rail plasma actuator (RailPAc) with different electrode cross sections (rails or rods) to assess methods to improve the actuation authority, defined as the impulse generated for a given electrical input. The arc was characterized with electrical measurements and high-speed images, while impulse measurements quantified the actuation authority. A RailPAc power supply capable of delivering  ∼1 kA of current at  ∼100 V was connected to rod electrodes (free-floating with circular cross-section) and rail electrodes (flush-mounted in a flat plate with rectangular cross-section). High-speed images show that the rail electrodes cause the arc to anchor itself to the anode electrode and transit in discrete jumps, while rod electrodes permit the arc to transit smoothly without anchoring. The impulse measurements reveal that the anchoring reduces the actuation authority by  ∼21% compared to a smooth transit, and the effect of anchoring can be suppressed by reducing the gap between the rails to 2 mm. The study further demonstrates that if a smooth transit is achieved, the control authority can be increased with a larger gap and larger arc current. In conclusion, the actuation authority of a RailPAc can be maximized by carefully choosing a gap width that prevents anchoring. Further study is warranted to increase the RailPAc actuation authority by introducing multiple turns of wires beneath the RailPAc to augment the induced magnetic field.

  7. Imaging of fullerene-like structures in CNx thin films by electron microscopy; sample preparation artefacts due to ion-beam milling.

    PubMed

    Czigány, Zs; Neidhardt, J; Brunell, I F; Hultman, L

    2003-04-01

    The microstructure of CN(x) thin films, deposited by reactive magnetron sputtering, was investigated by transmission electron microscopy (TEM) at 200kV in plan-view and cross-sectional samples. Imaging artefacts arise in high-resolution TEM due to overlap of nm-sized fullerene-like features for specimen thickness above 5nm. The thinnest and apparently artefact-free areas were obtained at the fracture edges of plan-view specimens floated-off from NaCl substrates. Cross-sectional samples were prepared by ion-beam milling at low energy to minimize sample preparation artefacts. The depth of the ion-bombardment-induced surface amorphization was determined by TEM cross sections of ion-milled fullerene-like CN(x) surfaces. The thickness of the damaged surface layer at 5 degrees grazing incidence was 13 and 10nm at 3 and 0.8keV, respectively, which is approximately three times larger than that observed on Si prepared under the same conditions. The shallowest damage depth, observed for 0.25keV, was less than 1nm. Chemical changes due to N loss and graphitization were also observed by X-ray photoelectron spectroscopy. As a consequence of chemical effects, sputtering rates of CN(x) films were similar to that of Si, which enables relatively fast ion-milling procedure compared to carbon compounds. No electron beam damage of fullerene-like CN(x) was observed at 200kV.

  8. Tomographic sensing and localization of fluorescently labeled circulating cells in mice in vivo

    NASA Astrophysics Data System (ADS)

    Zettergren, Eric; Swamy, Tushar; Runnels, Judith; Lin, Charles P.; Niedre, Mark

    2012-07-01

    Sensing and enumeration of specific types of circulating cells in small animals is an important problem in many areas of biomedical research. Microscopy-based fluorescence in vivo flow cytometry methods have been developed previously, but these are typically limited to sampling of very small blood volumes, so that very rare circulating cells may escape detection. Recently, we described the development of a ‘diffuse fluorescence flow cytometer’ (DFFC) that allows sampling of much larger blood vessels and therefore circulating blood volumes in the hindlimb, forelimb or tail of a mouse. In this work, we extend this concept by developing and validating a method to tomographically localize circulating fluorescently labeled cells in the cross section of a tissue simulating optical flow phantom and mouse limb. This was achieved using two modulated light sources and an array of six fiber-coupled detectors that allowed rapid, high-sensitivity acquisition of full tomographic data sets at 10 Hz. These were reconstructed into two-dimensional cross-sectional images using Monte Carlo models of light propagation and the randomized algebraic reconstruction technique. We were able to obtain continuous images of moving cells in the sample cross section with 0.5 mm accuracy or better. We first demonstrated this concept in limb-mimicking optical flow photons with up to four flow channels, and then in the tails of mice with fluorescently labeled multiple myeloma cells. This approach increases the overall diagnostic utility of our DFFC instrument.

  9. Congenital anatomic variants of the kidney and ureter: a pictorial essay.

    PubMed

    Srinivas, M R; Adarsh, K M; Jeeson, Riya; Ashwini, C; Nagaraj, B R

    2016-03-01

    Congenital renal parenchymal and pelvicalyceal abnormalities have a wide spectrum. Most of them are asymptomatic, like that of ectopia, cross fused kidney, horseshoe kidney, etc., while a few of them become complicated, leading to renal failure and death. It is very important for the radiologist to identify these anatomic variants and guide the clinicians for surgical and therapeutic procedures. Cross-sectional imaging with a volume rendered technique/maximum intensity projection has overcome ultrasonography and IVU for identification and interpretation of some of these variants.

  10. Automated abdominal plane and circumference estimation in 3D US for fetal screening

    NASA Astrophysics Data System (ADS)

    Lorenz, C.; Brosch, T.; Ciofolo-Veit, C.; Klinder, T.; Lefevre, T.; Cavallaro, A.; Salim, I.; Papageorghiou, A. T.; Raynaud, C.; Roundhill, D.; Rouet, L.; Schadewaldt, N.; Schmidt-Richberg, A.

    2018-03-01

    Ultrasound is increasingly becoming a 3D modality. Mechanical and matrix array transducers are able to deliver 3D images with good spatial and temporal resolution. The 3D imaging facilitates the application of automated image analysis to enhance workflows, which has the potential to make ultrasound a less operator dependent modality. However, the analysis of the more complex 3D images and definition of all examination standards on 2D images pose barriers to the use of 3D in daily clinical practice. In this paper, we address a part of the canonical fetal screening program, namely the localization of the abdominal cross-sectional plane with the corresponding measurement of the abdominal circumference in this plane. For this purpose, a fully automated pipeline has been designed starting with a random forest based anatomical landmark detection. A feature trained shape model of the fetal torso including inner organs with the abdominal cross-sectional plane encoded into the model is then transformed into the patient space using the landmark localizations. In a free-form deformation step, the model is individualized to the image, using a torso probability map generated by a convolutional neural network as an additional feature image. After adaptation, the abdominal plane and the abdominal torso contour in that plane are directly obtained. This allows the measurement of the abdominal circumference as well as the rendering of the plane for visual assessment. The method has been trained on 126 and evaluated on 42 abdominal 3D US datasets. An average plane offset error of 5.8 mm and an average relative circumference error of 4.9 % in the evaluation set could be achieved.

  11. MR Imaging in Spinocerebellar Ataxias: A Systematic Review.

    PubMed

    Klaes, A; Reckziegel, E; Franca, M C; Rezende, T J R; Vedolin, L M; Jardim, L B; Saute, J A

    2016-08-01

    Polyglutamine expansion spinocerebellar ataxias are autosomal dominant slowly progressive neurodegenerative diseases with no current treatment. MR imaging is the best-studied surrogate biomarker candidate for polyglutamine expansion spinocerebellar ataxias, though with conflicting results. We aimed to review quantitative central nervous system MR imaging technique findings in patients with polyglutamine expansion spinocerebellar ataxias and correlations with well-established clinical and molecular disease markers. We searched MEDLINE, LILACS, and Cochrane data bases of clinical trials between January 1995 and January 2016, for quantitative MR imaging volumetric approaches, MR spectroscopy, diffusion tensor imaging, or other quantitative techniques, comparing patients with polyglutamine expansion spinocerebellar ataxias (SCAs) with controls. Pertinent details for each study regarding participants, imaging methods, and results were extracted. After reviewing the 706 results, 18 studies were suitable for inclusion: 2 studies in SCA1, 1 in SCA2, 15 in SCA3, 1 in SCA7, 1 in SCA1 and SCA6 presymptomatic carriers, and none in SCA17 and dentatorubropallidoluysian atrophy. Cerebellar hemispheres and vermis, whole brain stem, midbrain, pons, medulla oblongata, cervical spine, striatum, and thalamus presented significant atrophy in SCA3. The caudate, putamen and whole brain stem presented similar sensitivity to change compared with ataxia scales after 2 years of follow-up in a single prospective study in SCA3. MR spectroscopy and DTI showed abnormalities only in cross-sectional studies in SCA3. Results from single studies in other polyglutamine expansion spinocerebellar ataxias should be replicated in different cohorts. Additional cross-sectional and prospective volumetric analysis, MR spectroscopy, and DTI studies are necessary in polyglutamine expansion spinocerebellar ataxias. The properties of preclinical disease biomarkers (presymptomatic) of MR imaging should be targeted in future studies. © 2016 by American Journal of Neuroradiology.

  12. Multimodal ophthalmic imaging using spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mohamed T.; Malone, Joseph D.; Li, Jianwei D.; Bozic, Ivan; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-08-01

    Ophthalmic surgery involves manipulation of delicate, layered tissue structures on milli- to micrometer scales. Traditional surgical microscopes provide an inherently two-dimensional view of the surgical field with limited depth perception which precludes accurate depth-resolved visualization of these tissue layers, and limits the development of novel surgical techniques. We demonstrate multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) to address current limitations of image-guided ophthalmic microsurgery. SS-SESLO-OCT provides inherently co-registered en face and cross-sectional field-of-views (FOVs) at a line rate of 400 kHz and >2 GPix/s throughput. We show in vivo imaging of the anterior segment and retinal fundus of a healthy volunteer, and preliminary results of multi-volumetric mosaicking for ultrawide-field retinal imaging with 90° FOV. Additionally, a scan-head was rapid-prototyped with a modular architecture which enabled integration of SS-SESLO-OCT with traditional surgical microscope and slit-lamp imaging optics. Ex vivo surgical maneuvers were simulated in cadaveric porcine eyes. The system throughput enabled volumetric acquisition at 10 volumes-per-second (vps) and allowed visualization of surgical dynamics in corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. SESLO en face images enabled simple real-time co-registration with the surgical microscope FOV, and OCT cross-sections provided depth-resolved visualization of instrument-tissue interactions. Finally, we demonstrate novel augmented-reality integration with the surgical view using segmentation overlays to aid surgical guidance. SS-SESLO-OCT may benefit clinical diagnostics by enabling aiming, registration, and mosaicking; and intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted biomarkers of disease.

  13. MRI-related magnetic field exposures and risk of commuting accidents - A cross-sectional survey among Dutch imaging technicians.

    PubMed

    Huss, Anke; Schaap, Kristel; Kromhout, Hans

    2017-07-01

    Imaging technicians working with magnetic resonance imaging (MRI) may experience acute effects such as vertigo or dizziness when being exposed. A previous study also reported an increased risk of accidents in MRI exposed staff. We aimed at evaluating commuting accident risk in Dutch imaging technicians. Of invited imaging technicians, 490 (29%) filled in a questionnaire pertaining to (near) accidents when driving or riding a bike, health, lifestyle and work practices. We used logistic regression to evaluate the association between exposure to MRI-related electromagnetic fields and risk of commuting (near) accidents in the year prior to the survey, adjusted for a range of potential confounders. Our cross-sectional study indicated an increased risk of (near) accidents if imaging technicians had worked with MRI in the year prior to the survey (odds ratio OR 2.13, 95%CI 1.23-3.69). Risks were higher in persons who worked with MRI more often (OR 2.32, 95%CI 1.25-4.31) compared to persons who worked sometimes with MRI (OR 1.91, 95%CI 0.98-3.72), and higher in those who had likely experienced higher peak exposures to static and time-varying magnetic fields (OR 2.18, 95%CI 1.06-4.48). The effect was seen on commuting accidents that had occurred on the commute from home to work as well as accidents from work to home or elsewhere. Imaging technicians working with MRI scanners may be at an increased risk of commuting (near) accidents. This result needs confirmation and potential risks for other groups (volunteers, patients) should be investigated. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Anatomic brain disease in hemodialysis patients: a cross-sectional study

    USDA-ARS?s Scientific Manuscript database

    Although dialysis patients are at high risk of stroke and have a high burden of cognitive impairment, there are few reports of anatomic brain findings in the hemodialysis population. Using magnetic resonance imaging of the brain, we compared the prevalence of brain abnormalities in hemodialysis pati...

  15. Widespread Cortical Thinning Is a Robust Anatomical Marker for Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Narr, Katherine L.; Woods, Roger P.; Lin, James; Kim, John; Phillips, Owen R.; Del'Homme, Melissa; Caplan, Rochelle; Toga, Arthur W.; McCracken, James T.; Levitt, Jennifer G.

    2009-01-01

    Objective: This cross-sectional study sought to confirm the presence and regional profile of previously reported changes in laminar cortical thickness in children and adolescents with attention-deficit/hyperactivity disorder (ADHD) compared with typically developing control subjects. Method: High-resolution magnetic resonance images were obtained…

  16. Error Processing and Gender-Shared and -Specific Neural Predictors of Relapse in Cocaine Dependence

    ERIC Educational Resources Information Center

    Luo, Xi; Zhang, Sheng; Hu, Sien; Bednarski, Sarah R.; Erdman, Emily; Farr, Olivia M.; Hong, Kwang-Ik; Sinha, Rajita; Mazure, Carolyn M.; Li, Chiang-shan R.

    2013-01-01

    Deficits in cognitive control are implicated in cocaine dependence. Previously, combining functional magnetic resonance imaging and a stop signal task, we demonstrated altered cognitive control in cocaine-dependent individuals. However, the clinical implications of these cross-sectional findings and, in particular, whether the changes were…

  17. Second Language Research Using Magnetoencephalography: A Review

    ERIC Educational Resources Information Center

    Schmidt, Gwen L.; Roberts, Timothy P. L.

    2009-01-01

    In this review we show how magnetoencephalography (MEG) is a constructive tool for language research and review MEG findings in second language (L2) research. MEG is the magnetic analog of electroencephalography (EEG), and its primary advantage over other cross-sectional (e.g. magnetic resonance imaging, or positron emission tomography) functional…

  18. REM Dreaming and Cognitive Skills at Ages 5-8: A Cross-Sectional Study.

    ERIC Educational Resources Information Center

    Foulkes, David; And Others

    1990-01-01

    Describes laboratory research on REM (rapid eye movement) sleep in children ages five to eight. Image quality, self-representation, and narrative complexity of dreams all develop as age progresses. Children's representational intelligence predicts their rate of dream production, but language skills do not. (GH)

  19. Energy transfer of highly vibrationally excited phenanthrene and diphenylacetylene.

    PubMed

    Hsu, Hsu Chen; Tsai, Ming-Tsang; Dyakov, Yuri; Ni, Chi-Kung

    2011-05-14

    The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold phenanthrene and diphenylacetylene in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer between naphthalene and Kr, energy transfer between phenanthrene and Kr shows a larger cross-section for vibrational to translational (V → T) energy transfer, a smaller cross-section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation. These differences are further enlarged in the comparison between naphthalene and diphenylacetylene. In addition, less complex formation and significant increases in the large V → T energy transfer probabilities, termed supercollisions in diphenylacetylene and Kr collisions were observed. The differences in the energy transfer between these highly vibrationally excited molecules are attributed to the low-frequency vibrational modes, especially those vibrations with rotation-like wide-angle motions.

  20. Adding the third dimension on adaptive optics retina imager thanks to full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Blavier, Marie; Blanco, Leonardo; Glanc, Marie; Pouplard, Florence; Tick, Sarah; Maksimovic, Ivan; Mugnier, Laurent; Chènegros, Guillaume; Rousset, Gérard; Lacombe, François; Pâques, Michel; Le Gargasson, Jean-François; Sahel, José-Alain

    2009-02-01

    Retinal pathologies, like ARMD or glaucoma, need to be early detected, requiring imaging instruments with resolution at a cellular scale. However, in vivo retinal cells studies and early diagnoses are severely limited by the lack of resolution on eye-fundus images from classical ophthalmologic instruments. We built a 2D retina imager using Adaptive Optics to improve lateral resolution. This imager is currently used in clinical environment. We are currently developing a time domain full-field optical coherence tomograph. The first step was to conceive the images reconstruction algorithms and validation was realized on non-biological samples. Ex vivo retina are currently being imaged. The final step will consist in coupling both setups to acquire high resolution retina cross-sections.

  1. High resolution three-dimensional photoacoustic imaging of human finger joints in vivo

    NASA Astrophysics Data System (ADS)

    Xi, Lei; Jiang, Huabei

    2015-08-01

    We present a method for noninvasively imaging the hand joints using a three-dimensional (3D) photoacoustic imaging (PAI) system. This 3D PAI system utilizes cylindrical scanning in data collection and virtual-detector concept in image reconstruction. The maximum lateral and axial resolutions of the PAI system are 70 μm and 240 μm. The cross-sectional photoacoustic images of a healthy joint clearly exhibited major internal structures including phalanx and tendons, which are not available from the current photoacoustic imaging methods. The in vivo PAI results obtained are comparable with the corresponding 3.0 T MRI images of the finger joint. This study suggests that the proposed method has the potential to be used in early detection of joint diseases such as osteoarthritis.

  2. Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk.

    PubMed

    Murach, Michelle M; Kang, Yun-Seok; Goldman, Samuel D; Schafman, Michelle A; Schlecht, Stephen H; Moorhouse, Kevin; Bolte, John H; Agnew, Amanda M

    2017-09-01

    The human thorax is commonly injured in motor vehicle crashes, and despite advancements in occupant safety rib fractures are highly prevalent. The objective of this study was to quantify the ability of gross and cross-sectional geometry, separately and in combination, to explain variation of human rib structural properties. One hundred and twenty-two whole mid-level ribs from 76 fresh post-mortem human subjects were tested in a dynamic frontal impact scenario. Structural properties (peak force and stiffness) were successfully predicted (p < 0.001) by rib cross-sectional geometry obtained via direct histological imaging (total area, cortical area, and section modulus) and were improved further when utilizing a combination of cross-sectional and gross geometry (robusticity, whole bone strength index). Additionally, preliminary application of a novel, adaptive thresholding technique, allowed for total area and robusticity to be measured on a subsample of standard clinical CT scans with varied success. These results can be used to understand variation in individual rib response to frontal loading as well as identify important geometric parameters, which could ultimately improve injury criteria as well as the biofidelity of anthropomorphic test devices (ATDs) and finite element (FE) models of the human thorax.

  3. Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk

    PubMed Central

    Murach, Michelle M.; Kang, Yun-Seok; Goldman, Samuel D.; Schafman, Michelle A.; Schlecht, Stephen H.; Moorhouse, Kevin; Bolte, John H.; Agnew, Amanda M.

    2018-01-01

    The human thorax is commonly injured in motor vehicle crashes, and despite advancements in occupant safety rib fractures are highly prevalent. The objective of this study was to quantify the ability of gross and cross-sectional geometry, separately and in combination, to explain variation of human rib structural properties. One hundred and twenty-two whole mid-level ribs from 76 fresh post-mortem human subjects were tested in a dynamic frontal impact scenario. Structural properties (peak force and stiffness) were successfully predicted (p<0.001) by rib cross-sectional geometry obtained via direct histological imaging (total area, cortical area, and section modulus) and were improved further when utilizing a combination of cross-sectional and gross geometry (robusticity, whole bone strength index). Additionally, preliminary application of a novel, adaptive thresholding technique, allowed for total area and robusticity to be measured on a subsample of standard clinical CT scans with varied success. These results can be used to understand variation in individual rib response to frontal loading as well as identify important geometric parameters, which could ultimately improve injury criteria as well as the biofidelity of anthropomorphic test devices (ATDs) and finite element (FE) models of the human thorax. PMID:28547660

  4. Stakeout surveys for check dams in gullied areas by using the FreeXSap photogrammetric method

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Marín-Moreno, Víctor; Taguas, Encarnación V.

    2017-04-01

    Prior to any check dam construction work, it is necessary to carry out field stakeout surveys to define the layout of the dam series according to spacing criteria. While in expensive and complex settings, accurate measurement techniques might be justified (e.g. differential GPS), for small to medium-sized check dams typical of areas affected by gully erosion, simpler methodologies might be more cost-efficient. Innovative 3D photogrammetric techniques based on Structure-from-Motion (SfM) algorithms have proved to be useful across different geomorphological applications and have been successfully applied for gully assessment. In this communication, we present an efficient methodology consisting of the application of a free interface for photogrammetric reconstruction (FreeXSap) combined with simple distance measurements to obtain channel cross-sections determining the width and height of the check dam for a particular cross-section. We will illustrate its use for a hundred-meter-long gully under conventional agriculture in Córdoba (Spain). FreeXSap is an easy-to-use graphical user interface written in Matlab Code (Mathworks, 2016) for the reconstruction of 3D models from image sets taken with digital consumer-grade cameras. The SfM algorithms are based on MicMac scripts (Pierrot-Deseilligny and Cléry, 2011) along with routines specifically developed for the orientation, determination and geometrical analysis of cross-sections. It only requires the collection of a few pictures of a channel cross-section (normally below 5) by the camera operator to build an accurate 3D model, while a second operator holds a pole in vertical position (with the help of a bubble level attached to the pole) in order to provide orientation and scale for further processing. The spacing between check dams was determined using the head-to-toe rule by using a clinometer App on a Smartphone. In this work we will evaluate the results of the application of this methodology in terms of time and cost requirements and the capabilities and operation procedure of FreeXSap will be presented. This tool will be available for free download. REFERENCES Pierrot-Deseilligny, M and Cléry, I. APERO, an Open Source Bundle Adjusment Software for Automatic Calibration and Orientation of a Set of Images. Proceedings of the ISPRS Commission V Symposium, Image Engineering and Vision Metrology, Trento, Italy, 2-4 March 2011.

  5. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    NASA Astrophysics Data System (ADS)

    Bauer, J.; Unholtz, D.; Kurz, C.; Parodi, K.

    2013-08-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β+ activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β+ activity induced in the investigated targets within a few per cent. Moreover, the simulated distal activity fall-off positions, representing the central quantity for treatment monitoring in terms of beam range verification, are found to agree within 0.6 mm with the measurements at different initial beam energies in both homogeneous and heterogeneous targets. Based on work presented at the Third European Workshop on Monte Carlo Treatment Planning (Seville, 15-18 May 2012).

  6. Meteoroid and debris special investigation group; status of 3-D crater analysis from binocular imagery

    NASA Technical Reports Server (NTRS)

    Sapp, Clyde A.; See, Thomas H.; Zolensky, Michael E.

    1992-01-01

    During the 3 month deintegration of the LDEF, the M&D SIG generated approximately 5000 digital color stereo image pairs of impact related features from all space exposed surfaces. Currently, these images are being processed at JSC to yield more accurate feature information. Work is currently underway to determine the minimum number of data points necessary to parametrically define impact crater morphologies in order to minimize the man-hour intensive task of tie point selection. Initial attempts at deriving accurate crater depth and diameter measurements from binocular imagery were based on the assumption that the crater geometries were best defined by paraboloid. We made no assumptions regarding the crater depth/diameter ratios but instead allowed each crater to define its own coefficients by performing a least-squares fit based on user-selected tiepoints. Initial test cases resulted in larger errors than desired, so it was decided to test our basic assumptions that the crater geometries could be parametrically defined as paraboloids. The method for testing this assumption was to carefully slice test craters (experimentally produced in an appropriate aluminum alloy) vertically through the center resulting in a readily visible cross-section of the crater geometry. Initially, five separate craters were cross-sectioned in this fashion. A digital image of each cross-section was then created, and the 2-D crater geometry was then hand-digitized to create a table of XY position for each crater. A 2nd order polynomial (parabolic) was fitted to the data using a least-squares approach. The differences between the fit equation and the actual data were fairly significant, and easily large enough to account for the errors found in the 3-D fits. The differences between the curve fit and the actual data were consistent between the caters. This consistency suggested that the differences were due to the fact that a parabola did not sufficiently define the generic crater geometry. Fourth and 6th order equations were then fitted to each crater cross-section, and significantly better estimates of the crater geometry were obtained with each fit. Work is presently underway to determine the best way to make use of this new parametric crater definition.

  7. Analysis of Multilayer Devices for Superconducting Electronics by High-Resolution Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy

    DOE PAGES

    Missert, Nancy; Kotula, Paul G.; Rye, Michael; ...

    2017-02-15

    We used a focused ion beam to obtain cross-sectional specimens from both magnetic multilayer and Nb/Al-AlOx/Nb Josephson junction devices for characterization by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX). An automated multivariate statistical analysis of the EDX spectral images produced chemically unique component images of individual layers within the multilayer structures. STEM imaging elucidated distinct variations in film morphology, interface quality, and/or etch artifacts that could be correlated to magnetic and/or electrical properties measured on the same devices.

  8. Dynamic imaging and RCS measurements of aircraft

    NASA Astrophysics Data System (ADS)

    Jain, Atul; Patel, Indu

    1995-01-01

    Results on radar cross section (RCS) measurements and inverse synthetic aperture radar images of a Mooney 231 aircraft using a ground-to-air measurement system (GTAMS) and a KC-135 airplane using an airborne radar are presented. The Mooney 231 flew in a controlled path in both clockwise and counterclockwise orbits, and successively with the gear down, flaps in the take-off position and with the speed brakes up. The data indicates that RCS pattern measurements from both ground-based and airborne radar of flying aircraft are useful and that the inverse synthetic aperture radar (ISAR) images obtained are valuable for signature diagnostics.

  9. Frequency Based Design Partitioning to Achieve Higher Throughput in Digital Cross Correlator for Aperture Synthesis Passive MMW Imager.

    PubMed

    Asif, Muhammad; Guo, Xiangzhou; Zhang, Jing; Miao, Jungang

    2018-04-17

    Digital cross-correlation is central to many applications including but not limited to Digital Image Processing, Satellite Navigation and Remote Sensing. With recent advancements in digital technology, the computational demands of such applications have increased enormously. In this paper we are presenting a high throughput digital cross correlator, capable of processing 1-bit digitized stream, at the rate of up to 2 GHz, simultaneously on 64 channels i.e., approximately 4 Trillion correlation and accumulation operations per second. In order to achieve higher throughput, we have focused on frequency based partitioning of our design and tried to minimize and localize high frequency operations. This correlator is designed for a Passive Millimeter Wave Imager intended for the detection of contraband items concealed on human body. The goals are to increase the system bandwidth, achieve video rate imaging, improve sensitivity and reduce the size. Design methodology is detailed in subsequent sections, elaborating the techniques enabling high throughput. The design is verified for Xilinx Kintex UltraScale device in simulation and the implementation results are given in terms of device utilization and power consumption estimates. Our results show considerable improvements in throughput as compared to our baseline design, while the correlator successfully meets the functional requirements.

  10. Obturator mononeuropathy caused by lipomatosis of the nerve: a case report.

    PubMed

    Nardone, Raffaele; Venturi, Alessandro; Ladurner, Gunther; Golaszewski, Stefan; Psenner, Konrad; Tezzon, Frediano

    2008-08-01

    We report a patient who presented with the clinical features of obturator mononeuropathy. Abdomino-pelvic computed tomography revealed a fusiform mass in the right perivesical space; magnetic resonance imaging (MRI) showed characteristic "coaxial-cable-like" appearance in cross-section and "spaghetti-like" appearance in longitudinal section, pathognomonic of lipomatosis of the nerve. Nerve lipomatosis as the cause of obturator neuropathy has not been previously reported. MRI provides definite and graphic proof of the diagnosis.

  11. CT of hepatic schistosomiasis mansoni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fataar, S.; Bassiony, H.; Satyanath, S.

    1985-07-01

    Schistosomal periportal fibrosis produced a typical pattern on computed tomography in five patients. Low-density periportal tissue, present throughout the liver, enhanced strongly after the administration of contrast medium. While rounded in cross section, the thickened periportal tissue produced linear and branching patterns when imaged in longitudinal section. In all cases, the sonographic features were typical of schistosomal periportal fibrosis. A lack of awareness of the distinctive features of periportal fibrosis may result in a mistaken diagnosis of hepatic metastases.

  12. Impact of endobronchial coiling on segmental bronchial lumen in treated and untreated lung lobes: Correlation with changes in lung volume, clinical and pulmonary function tests.

    PubMed

    Kloth, C; Thaiss, W M; Hetzel, J; Ditt, H; Grosse, U; Nikolaou, K; Horger, M

    2016-07-01

    To assess the impact of endobronchial coiling on the segment bronchus cross-sectional area and volumes in patients with lung emphysema using quantitative chest-CT measurements. Thirty patients (female = 15; median age = 65.36 years) received chest-CT before and after endobronchial coiling for lung volume reduction (LVR) between January 2010 and December 2014. Thin-slice (0.6 mm) non-enhanced image data sets were acquired both at end-inspiration and end-expiration using helical technique and 120 kV/100-150 mAs. Clinical response was defined as an increase in the walking distance (Six-minute walk test; 6MWT) after LVR-therapy. Additionally, pulmonary function test (PFT) measurements were used for clinical correlation. In the treated segmental bronchia, the cross-sectional lumen area showed significant reduction (p < 0.05) in inspiration and tendency towards enlargement in expiration (p > 0.05). In the ipsilateral lobes, the lumina showed no significant changes. In the contralateral lung, we found tendency towards increased cross-sectional area in inspiration (p = 0.06). Volumes of the treated segments correlated with the treated segmental bronchial lumina in expiration (r = 0.80, p < 0.001). Clinical correlation with changes in 6MWT/PFT showed a significant decrease of the inspiratory volume of the treated lobe in responders only. Endobronchial coiling causes significant decrease in the cross-sectional area of treated segment bronchi in inspiration and a slight increase in expiration accompanied by a volume reduction. • Endobronchial coiling has indirect impact on cross-sectional area of treated segment bronchi • Volume changes of treated lobes correlate with changes in bronchial cross-sectional area • Coil-induced effects reflect their stabilizing and stiffening impact on lung parenchyma • Endobronchial coiling reduces bronchial collapsing compensating the loss of elasticity.

  13. Association between vertebral cross-sectional area and lumbar lordosis angle in adolescents.

    PubMed

    Wren, Tishya A L; Aggabao, Patricia C; Poorghasamians, Ervin; Chavez, Thomas A; Ponrartana, Skorn; Gilsanz, Vicente

    2017-01-01

    Lumbar lordosis (LL) is more prominent in women than in men, but the mechanisms responsible for this discrepancy are poorly defined. A recent study indicates that newborn girls have smaller vertebral cross-sectional area (CSA) when compared to boys-a difference that persists throughout life and is independent of body size. We determined the relations between vertebral cross-sectional area (CSA) and LL angle and whether sex differences in lumbar lordosis are related to sex differences in vertebral CSA. Using multi-planar magnetic resonance imaging (MRI), we measured vertebral cross-sectional area (CSA) and vertebral height of the spine of 40 healthy boys and 40 girls, ages 9-13 years. Measures of the CSA of the lumbar vertebrae significantly differed between sexes (9.38 ± 1.46 vs. 7.93 ± 0.69 in boys and girls, respectively; P < 0.0001), while the degree of LL was significantly greater in girls than in boys (23.7 ± 6.1 vs. 27.6 ± 8.0 in boys and girls, respectively; P = 0.02). When all subjects were analyzed together, values for LL angle were negatively correlated to vertebral CSA (r = -0.47; P < 0.0001); this was also true when boys and girls were analyzed separately. Multivariate regression analysis indicated that vertebral CSA was independently associated with LL, even after accounting for sex, age, height or vertebral height, and weight. Similar negative relations were present when thoracic vertebrae were analyzed (Model P < 0.0001, R2 = 0.37, thoracic vertebral CSA slope P < 0.0001), suggesting that deficient vertebral cross-sectional dimensions are not merely the consequence of the anterior lumbar curvature. We conclude that vertebral CSA is negatively associated with LL, and that the greater degree of LL in females could, at least in part, be due to smaller vertebral cross-sectional dimensions. Studies are needed to examine the potential relations between vertebral CSA and spinal conditions known to be associated with increased LL, such as spondylolysis and spondylolisthesis.

  14. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Fukunaga, T.; Roy, R. R.; Shellock, F. G.; Hodgson, J. A.; Day, M. K.; Lee, P. L.; Kwong-Fu, H.; Edgerton, V. R.

    1992-01-01

    Magnetic resonance imaging techniques were used to determine the physiological cross-sectional areas (PCSAs) of the major muscles or muscle groups of the lower leg. For 12 healthy subjects, the boundaries of each muscle or muscle group were digitized from images taken at 1-cm intervals along the length of the leg. Muscle volumes were calculated from the summation of each anatomical CSA (ACSA) and the distance between each section. Muscle length was determined as the distance between the most proximal and distal images in which the muscle was visible. The PCSA of each muscle was calculated as muscle volume times the cosine of the angle of fiber pinnation divided by fiber length, where published fiber length:muscle length ratios were used to estimate fiber lengths. The mean volumes of the major plantarflexors were 489, 245, and 140 cm3 for the soleus and medial (MG) and lateral (LG) heads of the gastrocnemius. The mean PCSA of the soleus was 230 cm2, about three and eight times larger than the MG (68 cm2) and LG (28 cm2), respectively. These PCSA values were eight (soleus), four (MG), and three (LG) times larger than their respective maximum ACSA. The major dorsiflexor, the tibialis anterior (TA), had a muscle volume of 143 cm2, a PCSA of 19 cm2, and an ACSA of 9 cm2. With the exception of the soleus, the mean fiber length of all subjects was closely related to muscle volume across muscles. The soleus fibers were unusually short relative to the muscle volume, thus potentiating its force potential.(ABSTRACT TRUNCATED AT 250 WORDS).

  15. OCT angiography by absolute intensity difference applied to normal and diseased human retinas

    PubMed Central

    Ruminski, Daniel; Sikorski, Bartosz L.; Bukowska, Danuta; Szkulmowski, Maciej; Krawiec, Krzysztof; Malukiewicz, Grazyna; Bieganowski, Lech; Wojtkowski, Maciej

    2015-01-01

    We compare four optical coherence tomography techniques for noninvasive visualization of microcapillary network in the human retina and murine cortex. We perform phantom studies to investigate contrast-to-noise ratio for angiographic images obtained with each of the algorithm. We show that the computationally simplest absolute intensity difference angiographic OCT algorithm that bases only on two cross-sectional intensity images may be successfully used in clinical study of healthy eyes and eyes with diabetic maculopathy and branch retinal vein occlusion. PMID:26309740

  16. PET and Single-Photon Emission Computed Tomography in Brain Concussion.

    PubMed

    Raji, Cyrus A; Henderson, Theodore A

    2018-02-01

    This article offers an overview of the application of PET and single photon emission computed tomography brain imaging to concussion, a type of mild traumatic brain injury and traumatic brain injury, in general. The article reviews the application of these neuronuclear imaging modalities in cross-sectional and longitudinal studies. Additionally, this article frames the current literature with an overview of the basic physics and radiation exposure risks of each modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Maximum angular accuracy of pulsed laser radar in photocounting limit.

    PubMed

    Elbaum, M; Diament, P; King, M; Edelson, W

    1977-07-01

    To estimate the angular position of targets with pulsed laser radars, their images may be sensed with a fourquadrant noncoherent detector and the image photocounting distribution processed to obtain the angular estimates. The limits imposed on the accuracy of angular estimation by signal and background radiation shot noise, dark current noise, and target cross-section fluctuations are calculated. Maximum likelihood estimates of angular positions are derived for optically rough and specular targets and their performances compared with theoretical lower bounds.

  18. Cross-sectional imaging of congenital and acquired abnormalities of the portal venous system

    PubMed Central

    Özbayrak, Mustafa; Tatlı, Servet

    2016-01-01

    Knowing the normal anatomy, variations, congenital and acquired pathologies of the portal venous system are important, especially when planning liver surgery and percutaneous interventional procedures. The portal venous system pathologies can be congenital such as agenesis of portal vein (PV) or can be involved by other hepatic disorders such as cirrhosis and malignancies. In this article, we present normal anatomy, variations, and acquired pathologies involving the portal venous system as seen on computed tomography (CT) and magnetic resonance imaging (MRI). PMID:27731302

  19. Investigation of the Acoustics of Marine Sediments Using an Impedance Tube and Continued Investigation of the Acoustics of Marine Sediments Using Impedance Tube and Acoustic Resonator Techniques

    DTIC Science & Technology

    2010-08-02

    properties of three gulf-coast species, Thalassia testudinum (turtle grass), Syringodium filiforme (manatee grass), and Halodule wrightii (shoal... Thalassia testudinum (turtle grass) is shown in Fig. 12. The two curves show plant volume fraction Vleaves/Vlot (measured by acoustic and image-based...cross-section image analysis (Fig. 13), was found to be X\\<*t = 0.23. Similar results were found the Thalassia testudinum (turtle grass) rhizomes

  20. Quickbird Satellite in-orbit Modulation Transfer Function (MTF) Measurement Using Edge, Pulse and Impulse Methods for Summer 2003

    NASA Technical Reports Server (NTRS)

    Helder, Dennis; Choi, Taeyoung; Rangaswamy, Manjunath

    2005-01-01

    The spatial characteristics of an imaging system cannot be expressed by a single number or simple statement. However, the Modulation Transfer Function (MTF) is one approach to measure the spatial quality of an imaging system. Basically, MTF is the normalized spatial frequency response of an imaging system. The frequency response of the system can be evaluated by applying an impulse input. The resulting impulse response is termed the Point Spread function (PSF). This function is a measure of the amount of blurring present in the imaging system and is itself a useful measure of spatial quality. An underlying assumption is that the imaging system is linear and shift-independent. The Fourier transform of the PSF is called the Optical Transfer Function (OTF) and the normalized magnitude of the OTF is the MTF. In addition to using an impulse input, a knife-edge in technique has also been used in this project. The sharp edge exercises an imaging system at all spatial frequencies. The profile of an edge response from an imaging system is called an Edge Spread Function (ESF). Differentiation of the ESF results in a one-dimensional version of the Point Spread Function (PSF). Finally, MTF can be calculated through use of Fourier transform of the PSF as stated previously. Every image includes noise in some degree which makes MTF of PSF estimation more difficult. To avoid the noise effects, many MTF estimation approaches use smooth numerical models. Historically, Gaussian models and Fermi functions were applied to reduce the random noise in the output profiles. The pulse-input method was used to measure the MTF of the Landsat Thematic Mapper (TM) using 8th order even functions over the San Mateo Bridge in San Francisco, California. Because the bridge width was smaller than the 30-meter ground sample distance (GSD) of the TM, the Nyquist frequency was located before the first zero-crossing point of the sinc function from the Fourier transformation of the bridge pulse. To avoid the zero-crossing points in the frequency domain from a pulse, the pulse width should be less than the width of two pixels (or 2 GSD's), but the short extent of the pulse results in a poor signal-to-noise ratio. Similarly, for a high-resolution satellite imaging system such as Quickbird, the input pulse width was critical because of the zero crossing points and noise present in the background area. It is important, therefore, that the width of the input pulse be appropriately sized. Finally, the MTF was calculated by taking ratio between Fourier transform of output and Fourier transform of input. Regardless of whether the edge, pulse and impulse target method is used, the orientation of the targets is critical in order to obtain uniformly spaced sub-pixel data points. When the orientation is incorrect, sample data points tend to be located in clusters that result in poor reconstruction of the edge or pulse profiles. Thus, a compromise orientation must be selected so that all spectral bands can be accommodated. This report continues by outlining the objectives in Section 2, procedures followed in Section 3, descriptions of the field campaigns in Section 4, results in Section 5, and a brief summary in Section 6.

  1. Immunohistochemistry of carcinoembryonic antigen: characterisation of cross-reactions with other glycoproteins.

    PubMed Central

    Isaacson, P; Judd, M A

    1977-01-01

    In the course of demonstrating carcinoembryonic antigen (CEA) in normal human small intestine cross-reactivity of specific antiserum against red blood cells, vascular endothelium, and Paneth cell granules was noted. Pretreatment of sections with periodic acid eliminated these cross-reactions without affecting the staining of CEA, indicating that the antigenic determinants shared between CEA and other glycoproteins are in the carbohydrate portion of the molecules. These findings emphasise the caution with which immunohistochemical results should be regarded even when they are apparently well controlled. Images Fig. 6 Fig. 7 Fig. 8 Fig. 3 Fig. 4 Fig. 5 Fig. 1 Fig. 2 PMID:73495

  2. Two Photon Absorption in II-VI Semiconductors: The Influence of Dimensionality and Size.

    PubMed

    Scott, Riccardo; Achtstein, Alexander W; Prudnikau, Anatol; Antanovich, Artsiom; Christodoulou, Sotirios; Moreels, Iwan; Artemyev, Mikhail; Woggon, Ulrike

    2015-08-12

    We report a comprehensive study on the two-photon absorption cross sections of colloidal CdSe nanoplatelets, -rods, and -dots of different sizes by the means of z-scan and two-photon excitation spectroscopy. Platelets combine large particle volumes with ultra strong confinement. In contrast to weakly confined nanocrystals, the TPA cross sections of CdSe nanoplatelets scale superlinearly with volume (V(∼2)) and show ten times more efficient two-photon absorption than nanorods or dots. This unexpectedly strong shape dependence goes well beyond the effect of local fields. The larger the particles' aspect ratio, the greater is the confinement related electronic contribution to the increased two-photon absorption. Both electronic confinement and local field effects favor the platelets and make them unique two-photon absorbers with outstanding cross sections of up to 10(7) GM, the largest ever reported for (colloidal) semiconductor nanocrystals and ideally suited for two-photon imaging and nonlinear optoelectronics. The obtained results are confirmed by two independent techniques as well as a new self-referencing method.

  3. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    DOE PAGES

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till; ...

    2017-07-07

    In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less

  4. Value of transperineal ultrasound on the observation of paravaginal support.

    PubMed

    Dou, Chaoran; Li, Qin; Ying, Tao; Shui, Wen; Yan, Yulin; Luo, Yijia; Wang, Xia

    2018-04-01

    To explore the feasibility of three-dimensional (3D) transperineal ultrasound on the observation of paravaginal support in nulliparous and postpartum women. Volume datasets were acquired in 50 nulliparous and 100 postpartum women using 3D transperineal ultrasound. Paravaginal supports were observed by studying the vaginal cross-sectional morphology. The extent of paravaginal support in specific level were evaluated by counting out at a 2 mm interval in tomographic ultrasound imaging mode in all subjects. The Mann-Whitney U test were applied to establish comparisons between the two groups. Three representative manifestations of vaginal cross-sectional morphology corresponding to different paravaginal support were presented from the dorsal side to the caudal side, both in nulliparous women and postpartum women. The extent of paravaginal support in middle vagina was 11 slices (range 9-12) in nulliparous women and 7 slices (range 4-10) in postpartum women (P < 0.05). This pilot study confirmed that it was feasible to indirectly study paravaginal support by observing the vaginal cross-sectional morphology using 3D transperineal ultrasound.

  5. Arbitrary cross-section SEM-cathodoluminescence imaging of growth sectors and local carrier concentrations within micro-sampled semiconductor nanorods

    PubMed Central

    Watanabe, Kentaro; Nagata, Takahiro; Oh, Seungjun; Wakayama, Yutaka; Sekiguchi, Takashi; Volk, János; Nakamura, Yoshiaki

    2016-01-01

    Future one-dimensional electronics require single-crystalline semiconductor free-standing nanorods grown with uniform electrical properties. However, this is currently unrealistic as each crystallographic plane of a nanorod grows at unique incorporation rates of environmental dopants, which forms axial and lateral growth sectors with different carrier concentrations. Here we propose a series of techniques that micro-sample a free-standing nanorod of interest, fabricate its arbitrary cross-sections by controlling focused ion beam incidence orientation, and visualize its internal carrier concentration map. ZnO nanorods are grown by selective area homoepitaxy in precursor aqueous solution, each of which has a (0001):+c top-plane and six {1–100}:m side-planes. Near-band-edge cathodoluminescence nanospectroscopy evaluates carrier concentration map within a nanorod at high spatial resolution (60 nm) and high sensitivity. It also visualizes +c and m growth sectors at arbitrary nanorod cross-section and history of local transient growth events within each growth sector. Our technique paves the way for well-defined bottom-up nanoelectronics. PMID:26881966

  6. Calculation of photodetachment cross sections and photoelectron angular distributions of negative ions using density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuan; Ning, Chuangang, E-mail: ningcg@tsinghua.edu.cn; Collaborative Innovation Center of Quantum Matter, Beijing

    2015-10-14

    Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculationsmore » on Li{sup −}, C{sup −}, O{sup −}, F{sup −}, CH{sup −}, OH{sup −}, NH{sub 2}{sup −}, O{sub 2}{sup −}, and S{sub 2}{sup −} show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.« less

  7. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    NASA Technical Reports Server (NTRS)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; hide

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  8. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till

    In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less

  9. Percent area coverage through image analysis

    NASA Astrophysics Data System (ADS)

    Wong, Chung M.; Hong, Sung M.; Liu, De-Ling

    2016-09-01

    The notion of percent area coverage (PAC) has been used to characterize surface cleanliness levels in the spacecraft contamination control community. Due to the lack of detailed particle data, PAC has been conventionally calculated by multiplying the particle surface density in predetermined particle size bins by a set of coefficients per MIL-STD-1246C. In deriving the set of coefficients, the surface particle size distribution is assumed to follow a log-normal relation between particle density and particle size, while the cross-sectional area function is given as a combination of regular geometric shapes. For particles with irregular shapes, the cross-sectional area function cannot describe the true particle area and, therefore, may introduce error in the PAC calculation. Other errors may also be introduced by using the lognormal surface particle size distribution function that highly depends on the environmental cleanliness and cleaning process. In this paper, we present PAC measurements from silicon witness wafers that collected fallouts from a fabric material after vibration testing. PAC calculations were performed through analysis of microscope images and compare them to values derived through the MIL-STD-1246C method. Our results showed that the MIL-STD-1246C method does provide a reasonable upper bound to the PAC values determined through image analysis, in particular for PAC values below 0.1.

  10. Safety screw fixation technique in a case of coracoid base fracture with acromioclavicular dislocation and coracoid base cross-sectional size data from a computed axial tomography study.

    PubMed

    Kawasaki, Yoshiteru; Hirano, Tetsuya; Miyatake, Katsutoshi; Fujii, Koji; Takeda, Yoshitsugu

    2014-07-01

    Coracoid base fracture accompanied by acromioclavicular joint dislocation with intact coracoclavicular ligaments is a rare injury. Generally, an open reduction with screw fixation is the first treatment choice, as it protects the important structures around the coracoid process. This report presents a new technique of screw fixation for coracoid base fracture and provides anatomic information on cross-sectional size of the coracoid base obtained by computed tomography (CT). An axial image of the coracoid base was visualized over the neck of the scapula, and a guidewire was inserted into this circle under fluoroscopic guidance. The wire was inserted easily into the neck of scapula across the coracoid base fracture with imaging in only 1 plane. In addition, 25 measurements of the coracoid base were made in 25 subjects on axial CT images. Average length of the long and short axes at the thinnest part of the coracoid base was 13.9 ± 2.0 mm (range 10.6-17.0) and 10.5 ± 2.2 mm (6.6-15.1), respectively. This new screw fixation technique and measurement data on the coracoid base may be beneficial for safety screw fixation of coracoid base fracture.

  11. In Vivo Near Infrared Virtual Intraoperative Surgical Photoacoustic Optical Coherence Tomography

    PubMed Central

    Lee, Donghyun; Lee, Changho; Kim, Sehui; Zhou, Qifa; Kim, Jeehyun; Kim, Chulhong

    2016-01-01

    Since its first implementation in otolaryngological surgery nearly a century ago, the surgical microscope has improved the accuracy and the safety of microsurgeries. However, the microscope shows only a magnified surface view of the surgical region. To overcome this limitation, either optical coherence tomography (OCT) or photoacoustic microscopy (PAM) has been independently combined with conventional surgical microscope. Herein, we present a near-infrared virtual intraoperative photoacoustic optical coherence tomography (NIR-VISPAOCT) system that combines both PAM and OCT with a conventional surgical microscope. Using optical scattering and absorption, the NIR-VISPAOCT system simultaneously provides surgeons with real-time comprehensive biological information such as tumor margins, tissue structure, and a magnified view of the region of interest. Moreover, by utilizing a miniaturized beam projector, it can back-project 2D cross-sectional PAM and OCT images onto the microscopic view plane. In this way, both microscopic and cross-sectional PAM and OCT images are concurrently displayed on the ocular lens of the microscope. To verify the usability of the NIR-VISPAOCT system, we demonstrate simulated surgeries, including in vivo image-guided melanoma resection surgery and in vivo needle injection of carbon particles into a mouse thigh. The proposed NIR-VISPAOCT system has potential applications in neurosurgery, ophthalmological surgery, and other microsurgeries. PMID:27731390

  12. Potential Bone to Implant Contact Area of Short Versus Standard Implants: An In Vitro Micro-Computed Tomography Analysis.

    PubMed

    Quaranta, Alessandro; DʼIsidoro, Orlando; Bambini, Fabrizio; Putignano, Angelo

    2016-02-01

    To compare the available potential bone-implant contact (PBIC) area of standard and short dental implants by micro-computed tomography (μCT) assessment. Three short implants with different diameters (4.5 × 6 mm, 4.1 × 7 mm, and 4.1 × 6 mm) and 2 standard implants (3.5 × 10 mm and 3.3 × 9 mm) with diverse design and surface features were scanned with μCT. Cross-sectional images were obtained. Image data were manually processed to find the plane that corresponds to the most coronal contact point between the crestal bone and implant. The available PBIC was calculated for each sample. Later on, the cross-sectional slices were processed by a 3-dimensional (3D) software, and 3D images of each sample were used for descriptive analysis and display the microtopography and macrotopography. The wide-diameter short implant (4.5 × 6 mm) showed the higher PBIC (210.89 mm) value followed by the standard (178.07 mm and 185.37 mm) and short implants (130.70 mm and 110.70 mm). Wide-diameter short implants show a surface area comparable with standard implants. Micro-CT analysis is a promising technique to evaluate surface area in dental implants with different macrodesign, microdesign, and surface features.

  13. Mobility of the forearm in the raccoon (Procyon lotor), raccoon dog (Nyctereutes procyonoides) and red panda (Ailurus fulgens).

    PubMed

    Kamioka, Minao; Sasaki, Motoki; Yamada, Kazutaka; Endo, Hideki; Oishi, Motoharu; Yuhara, Kazutoshi; Tomikawa, Sohei; Sugimoto, Miki; Oshida, Tatsuo; Kondoh, Daisuke; Kitamura, Nobuo

    2017-01-24

    The ranges of pronation/supination of forearms in raccoons, raccoon dogs and red pandas were nondestructively examined. Three carcasses of each species were used for CT analysis, and the left forearms were scanned with a CT scanner in two positions: maximal supination and maximal pronation. Scanning data were reconstructed into three-dimensional images, cross-sectional images were extracted at the position that shows the largest area in the distal part of ulna, and then, the centroids of each cross section of the radius and ulna were detected. CT images of two positions were superimposed, by overlapping the outlines of each ulna, and then, the centroids were connected by lines to measure the angle of rotation, as an index of range of mobility. The measurements in each animal were analyzed, using the Tukey-Kramer method. The average angle of rotation was largest in raccoons and smallest in raccoon dogs, and the difference was significant. In the maximally pronated forearm of all species, the posture was almost equal to the usual grounding position with palms touching the ground. Therefore, the present results demonstrate that the forearms of raccoons can supinate to a greater degree from the grounding position with palms on the ground, as compared with those of raccoon dogs and red pandas.

  14. Sensitivity of endoscopic ultrasound, multidetector computed tomography, and magnetic resonance cholangiopancreatography in the diagnosis of pancreas divisum: a tertiary center experience.

    PubMed

    Kushnir, Vladimir M; Wani, Sachin B; Fowler, Kathryn; Menias, Christine; Varma, Rakesh; Narra, Vamsi; Hovis, Christine; Murad, Faris M; Mullady, Daniel K; Jonnalagadda, Sreenivasa S; Early, Dayna S; Edmundowicz, Steven A; Azar, Riad R

    2013-04-01

    There are limited data comparing imaging modalities in the diagnosis of pancreas divisum. We aimed to: (1) evaluate the sensitivity of endoscopic ultrasound (EUS), magnetic resonance cholangiopancreatography (MRCP), and multidetector computed tomography (MDCT) for pancreas divisum; and (2) assess interobserver agreement (IOA) among expert radiologists for detecting pancreas divisum on MDCT and MRCP. For this retrospective cohort study, we identified 45 consecutive patients with pancreaticobiliary symptoms and pancreas divisum established by endoscopic retrograde pancreatography who underwent EUS and cross-sectional imaging. The control group was composed of patients without pancreas divisum who underwent endoscopic retrograde pancreatography and cross-sectional imaging. The sensitivity of EUS for pancreas divisum was 86.7%, significantly higher than the sensitivity reported in the medical records for MDCT (15.5%) or MRCP (60%) (P < 0.001 for each). On review by expert radiologists, the sensitivity of MDCT increased to 83.3% in cases where the pancreatic duct was visualized, with fair IOA (κ = 0.34). Expert review of MRCPs did not identify any additional cases of pancreas divisum; IOA was moderate (κ = 0.43). Endoscopic ultrasound is a sensitive test for diagnosing pancreas divisum and is superior to MDCT and MRCP. Review of MDCT studies by expert radiologists substantially raises its sensitivity for pancreas divisum.

  15. Measurements of the radar cross section and Inverse Synthetic Aperture Radar (ISAR) images of a Piper Navajo at 9.5 GHz and 49 GHz

    NASA Astrophysics Data System (ADS)

    Dinger, R.; Kinzel, G.; Lam, W.; Jones, S.

    1993-01-01

    Studies were conducted of the enhanced radar cross section (RCS) and improved inverse synthetic aperture radar (ISAR) image quality that may result at millimeter-wave (mmw) frequencies. To study the potential for mmw radar in these areas, a program was initiated in FY-90 to design and fabricate a 49.0- to 49.5-GHz stepped-frequency radar. After conducting simultaneous measurements of the RCS of an airborne Piper Navajo twin-engine aircraft at 9.0 and 49.0 GHz, the RCS at 49.0 GHz was always found to be higher than at 9.0 GHz by an amount that depended on the target aspect angle. The largest increase was 19 dB and was measured at nose-on incidence; at other angles of incidence, the increase ranged from 3 to 10 dB. The increase averaged over a 360-degree aspect-angle change was 7.2 dB. The 49.0-GHz radar has demonstrated a capability to gather well-calibrated millimeter-wave RCS data of flying targets. In addition, the successful ISAR images obtainable with short aperture time suggest that 49.0-GHz radar may have a role to play in noncooperative target identification (NCTI).

  16. Factors Affecting the Perceived Effectiveness of Pictorial Health Warnings on Cigarette Packages in Gulf Countries: A Cross-sectional Study.

    PubMed

    Mansour, Ameerah Y; Bakhsh, Zuhair

    2017-01-01

    To explore the perceived effectiveness of pictorial health warning (PHW) labels required by the Gulf Cooperation Council, to compare them with the Food and Drug Administration-approved PHW labels, and to determine factors affecting their perceived effectiveness. A cross-sectional study using a convenience sample of adult smokers and nonsmokers was conducted. The data were collected through a self-administered online questionnaire. The perceived effectiveness scores of PHW labels were calculated and compared among different subgroups using the Kruskal-Wallis test and the Dunn multiple comparison test at a .05 significance level. Of the 90 people invited to participate in the survey, 77 (86%) completed it, with 39 (50%) nonsmokers, 22 (29%) smokers, and 16 (21%) former smokers. Overall, labels having graphic images of illness or pathology are perceived to be most effective. Smokers generally perceived labels significantly less effective compared with former smokers and nonsmokers. Also, 55 respondents (71%) suggested that the presence of a telephone quit-line would be effective. Smoking status and image type had the most effect on the perceived effectiveness of the PHW labels on cigarette packs. Pictorial health warning labels with graphic images of pathology and a telephone quit-line are perceived to be most effective.

  17. Quantitative Evaluation of Adult Subglottic Stenosis Using Intraoperative Long-range Optical Coherence Tomography

    PubMed Central

    Sharma, Giriraj K.; Loy, Anthony Chin; Su, Erica; Jing, Joe; Chen, Zhongping; Wong, Brian J-F.; Verma, Sunil

    2016-01-01

    Objectives To determine the feasibility of long-range optical coherence tomography (LR-OCT) as a tool to intraoperatively image and measure the subglottis and trachea during suspension microlaryngoscopy before and after endoscopic treatment of subglottic stenosis (SGS). Methods Long-range optical coherence tomography of the adult subglottis and trachea was performed during suspension microlaryngoscopy before and after endoscopic treatment for SGS. The anteroposterior and transverse diameters, cross-sectional area (CSA), distance from the vocal cords, and length of the SGS were measured using a MATLAB software. Pre-intervention and postintervention airway dimensions were compared. Three-dimensional volumetric airway reconstructions were generated using medical image processing software (MIMICS). Results Intraoperative LR-OCT imaging was performed in 3 patients undergoing endoscopic management of SGS. Statistically significant differences in mean anteroposterior diameter (P < .01), transverse diameter (P < .001), and CSA (P < .001) were noted between pre-intervention and postintervention data. Three-dimensional airway models were viewed in cross-sectional format and via virtual “fly through” bronchoscopy. Conclusions This is the first report of intraoperative LR-OCT of the subglottic and tracheal airway before and after surgical management of SGS in humans. Long-range optical coherence tomography offers a practical means to measure the dimensions of SGS and acquire objective data on the response to endoscopic treatment of SGS. PMID:27354215

  18. Validity of linear encoder measurement of sit-to-stand performance power in older people.

    PubMed

    Lindemann, U; Farahmand, P; Klenk, J; Blatzonis, K; Becker, C

    2015-09-01

    To investigate construct validity of linear encoder measurement of sit-to-stand performance power in older people by showing associations with relevant functional performance and physiological parameters. Cross-sectional study. Movement laboratory of a geriatric rehabilitation clinic. Eighty-eight community-dwelling, cognitively unimpaired older women (mean age 78 years). Sit-to-stand performance power and leg power were assessed using a linear encoder and the Nottingham Power Rig, respectively. Gait speed was measured on an instrumented walkway. Maximum quadriceps and hand grip strength were assessed using dynamometers. Mid-thigh muscle cross-sectional area of both legs was measured using magnetic resonance imaging. Associations of sit-to-stand performance power with power assessed by the Nottingham Power Rig, maximum gait speed and muscle cross-sectional area were r=0.646, r=0.536 and r=0.514, respectively. A linear regression model explained 50% of the variance in sit-to-stand performance power including muscle cross-sectional area (p=0.001), maximum gait speed (p=0.002), and power assessed by the Nottingham Power Rig (p=0.006). Construct validity of linear encoder measurement of sit-to-stand power was shown at functional level and morphological level for older women. This measure could be used in routine clinical practice as well as in large-scale studies. DRKS00003622. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  19. Enhancement of morphological and vascular features in OCT images using a modified Bayesian residual transform

    PubMed Central

    Tan, Bingyao; Wong, Alexander; Bizheva, Kostadinka

    2018-01-01

    A novel image processing algorithm based on a modified Bayesian residual transform (MBRT) was developed for the enhancement of morphological and vascular features in optical coherence tomography (OCT) and OCT angiography (OCTA) images. The MBRT algorithm decomposes the original OCT image into multiple residual images, where each image presents information at a unique scale. Scale selective residual adaptation is used subsequently to enhance morphological features of interest, such as blood vessels and tissue layers, and to suppress irrelevant image features such as noise and motion artefacts. The performance of the proposed MBRT algorithm was tested on a series of cross-sectional and enface OCT and OCTA images of retina and brain tissue that were acquired in-vivo. Results show that the MBRT reduces speckle noise and motion-related imaging artefacts locally, thus improving significantly the contrast and visibility of morphological features in the OCT and OCTA images. PMID:29760996

  20. Quantitative analysis of the polarization characteristics of atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Kirillin, Michail Y.; Dudenkova, Varvara V.; Kiseleva, Elena B.; Moiseev, Alexander A.; Gelikonov, Grigory V.; Timofeeva, Lidia B.; Fiks, Ilya I.; Feldchtein, Felix I.; Gladkova, Natalia D.

    2016-04-01

    In this study we demonstrate the capability of cross-polarization optical coherence tomography (CP OCT) to assess collagen and elastin fibers condition in atherosclerotic plaques basing on ratio of the OCT signal levels in cross- and co- polarizations. We consider the depolarization factor (DF) and the effective birefringence (Δn) as quantitative characteristics of CP OCT images. We revealed that calculation of both DF and Δn in the region of interest (fibrous cap) yields a statistically significant difference between stable and unstable plaques (0.46+/-0.21 vs 0.09+/-0.04 for IDF; (4.7+/-1.0)•10-4 vs (2.5+/-0.7)•10-4 for Δn p<0.05). In parallel with CP OCT we used the nonlinear microscopy for analysis of thin cross-section of atherosclerotic plaque, revealing the different average isotropy index of collagen and elastin fibers for stable and unstable plaques (0.30 +/- 0.10 vs 0.70 +/- 0.08; p<0.001). The proposed approach for quantitative assessment of CP OCT images allows cross-scattering and birefringence characterization of stable and unstable atherosclerotic plaques.

Top