Size and Shape of the Distant Magnetotail
NASA Technical Reports Server (NTRS)
Sibeck, D.G.; Lin, R.-Q.
2014-01-01
We employ a global magnetohydrodynamic model to study the effects of the interplanetary magnetic field (IMF) strength and direction upon the cross-section of the magnetotail at lunar distances. The anisotropic pressure of draped magnetosheath magnetic field lines and the inclusion of a reconnection-generated standing slow mode wave fan bounded by a rotational discontinuity within the definition of the magnetotail result in cross-sections elongated in the direction parallel to the component of the IMF in the plane perpendicular to the Sun-Earth line. Tilted cross-tail plasma sheets separate the northern and southern lobes within these cross-sections. Greater fast mode speeds perpendicular than parallel to the draped magnetos heath magnetic field lines result in greater distances to the bow shock in the direction perpendicular than parallel to the component of the IMF in the plane transverse to the Sun-Earth line. The magnetotail cross-section responds rapidly to reconnected magnetic field lines requires no more than the magnetosheath convection time to appear at any distance downstream, and further adjustments of the cross-section in response to the anisotropic pressures of the draped magnetic field lines require no more than 10-20 minutes. Consequently for typical ecliptic IMF orientations and strengths, the magnetotail cross-section is oblate while the bow shock is prolate.
The liquid fuel jet in subsonic crossflow
NASA Technical Reports Server (NTRS)
Nguyen, T. T.; Karagozian, A. R.
1990-01-01
An analytical/numerical model is described which predicts the behavior of nonreacting and reacting liquid jets injected transversely into subsonic cross flow. The compressible flowfield about the elliptical jet cross section is solved at various locations along the jet trajectory by analytical means for free-stream local Mach number perpendicular to jet cross section smaller than 0.3 and by numerical means for free-stream local Mach number perpendicular to jet cross section in the range 0.3-1.0. External and internal boundary layers along the jet cross section are solved by integral and numerical methods, and the mass losses due to boundary layer shedding, evaporation, and combustion are calculated and incorporated into the trajectory calculation. Comparison of predicted trajectories is made with limited experimental observations.
Giblin, Jay; Syed, Muhammad; Banning, Michael T; Kuno, Masaru; Hartland, Greg
2010-01-26
Absorption cross sections ((sigma)abs) of single branched CdSe nanowires (NWs) have been measured by photothermal heterodyne imaging (PHI). Specifically, PHI signals from isolated gold nanoparticles (NPs) with known cross sections were compared to those of individual CdSe NWs excited at 532 nm. This allowed us to determine average NW absorption cross sections at 532 nm of (sigma)abs = (3.17 +/- 0.44) x 10(-11) cm2/microm (standard error reported). This agrees well with a theoretical value obtained using a classical electromagnetic analysis ((sigma)abs = 5.00 x 10(-11) cm2/microm) and also with prior ensemble estimates. Furthermore, NWs exhibit significant absorption polarization sensitivities consistent with prior NW excitation polarization anisotropy measurements. This has enabled additional estimates of the absorption cross section parallel ((sigma)abs) and perpendicular ((sigma)abs(perpendicular) to the NW growth axis, as well as the corresponding NW absorption anisotropy ((rho)abs). Resulting values of (sigma)abs = (5.6 +/- 1.1) x 10(-11) cm2/microm, (sigma)abs(perpendicular) = (1.26 +/- 0.21) x 10(-11) cm2/microm, and (rho)abs = 0.63+/- 0.04 (standard errors reported) are again in good agreement with theoretical predictions. These measurements all indicate sizable NW absorption cross sections and ultimately suggest the possibility of future direct single NW absorption studies.
Material mechanical characterization method for multiple strains and strain rates
Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli
2016-01-19
A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaglobeli, N.S.; Budagov, Y.A.; Valkar, S.
1977-07-01
The invariant differential cross section f (x,p/sub perpendicular/) of the reaction ..pi../sup -/p..--> gamma../sup +/xxx at 5 GeV/c was measured in a broad range of x and p/sub perpendicular/. An approximating formula is found for f (x,p/sub perpendicular/). It is shown that the function f (x,p/sub perpendicular/) is not factorizable in the variables x and p/sub perpendicular/. In some regions of phase space scale-invariant (scaling) behavior of the differential cross section is observed. Analysis of the asymmetry of the longitudinal momentum spectrum of the photons indicates that the production mechanisms of neutral and charged pions are similar in the centralmore » region. The results of the analysis are in qualitative agreement with the predictions of the quark model of hadrons.« less
Triple differential cross-sections of Ne (2s2) in coplanar to perpendicular plane geometry
NASA Astrophysics Data System (ADS)
Chen, L. Q.; Khajuria, Y.; Chen, X. J.; Xu, K. Z.
2003-10-01
The distorted wave Born approximation (DWBA) with the spin averaged static exchange potential has been used to calculate the triple differential cross-sections (TDCSs) for Ne (2s^2) ionization by electron impact in coplanar to perpendicular plane symmetric geometry at 110.5 eV incident electron energy. The present theoretical results at gun angles Psi = 0^circ (coplanar symmetric geometry) and Psi = 90^circ (perpendicular plane geometry) are in satisfactory agreement with the available experimental data. A deep interference minimum appears in the TDCS in the coplanar symmetric geometry and a strong peak at scattering angle xi = 90^circ caused by the single collision mechanism has been observed in the perpendicular plane geometry. The TDCSs at the gun angles Psi = 30^circ, and Psi = 60^circ are predicted.
Compton Scattering Cross Sections in Strong Magnetic Fields: Advances for Neutron Star Applications
NASA Astrophysics Data System (ADS)
Eiles, Matthew; Gonthier, P. L.; Baring, M. G.; Wadiasingh, Z.
2013-04-01
Various telescopes including RXTE, INTEGRAL and Suzaku have detected non-thermal X-ray emission in the 10 - 200 keV band from strongly magnetic neutron stars. Inverse Compton scattering, a quantum-electrodynamical process, is believed to be a leading candidate for the production of this intense X-ray radiation. Magnetospheric conditions are such that electrons may well possess ultra-relativistic energies, which lead to attractive simplifications of the cross section. We have recently addressed such a case by developing compact analytic expressions using correct spin-dependent widths and Sokolov & Ternov (ST) basis states, focusing specifically on ground state-to-ground state scattering. However, inverse Compton scattering can cool electrons down to mildly-relativistic energies, necessitating the development of a more general case where the incoming photons acquire nonzero incident angles relative to the field in the rest frame of the electron, and the intermediate state can be excited to arbitrary Landau levels. In this paper, we develop results pertaining to this general case using ST formalism, and treating the plethora of harmonic resonances associated with various cyclotron transitions between Landau states. Four possible scattering modes (parallel-parallel, perpendicular-perpendicular, parallel-perpendicular, and perpendicular-parallel) encapsulate the polarization dependence of the cross section. We present preliminary analytic and numerical investigations of the magnitude of the extra Landau state contributions to obtain the full cross section, and compare these new analytic developments with the spin-averaged cross sections, which we develop in parallel. Results will find application to various neutron star problems, including computation of Eddington luminosities in the magnetospheres of magnetars. We express our gratitude for the generous support of the Michigan Space Grant Consortium, of the National Science Foundation (REU and RUI), and the NASA Astrophysics Theory and Fundamental Program.
Second Order Born Effects in the Perpendicular Plane Ionization of Xe (5p) Atoms
NASA Astrophysics Data System (ADS)
Purohit, G.; Singh, Prithvi; Patidar, Vinod
We report triple differential cross section (TDCS) results for the perpendicular plane ionization of xenon atoms at incident electron energies 5, 10, 20, 30, and 40 eV above ionization potential. The TDCS calculation have been preformed within the modified distorted wave Born approximation formalism including the second order Born (SBA) amplitude. We compare the (e, 2e) TDCS result of our calculation with the very recent measurements of Nixon and Murray [Phys. Rev. A 85, 022716 (2012)] and relativistic DWBA-G results of Illarionov and Stauffer [J. Phys. B: At. Mol. Opt. Phys. 45, 225202 (2012)] and discuss the process contributing to structure seen in the differential cross section.
Stress reduction for pillar filled structures
Nikolic, Rebecca J.; Conway, Adam; Shao, Qinghui; Voss, Lars; Cheung, Chin Li; Dar, Mushtaq A.
2015-09-01
According to one embodiment, an apparatus for detecting neutrons includes an array of pillars, wherein each of the pillars comprises a rounded cross sectional shape where the cross section is taken perpendicular to a longitudinal axis of the respective pillar, a cavity region between each of the pillars, and a neutron sensitive material located in each cavity region.
NASA Astrophysics Data System (ADS)
Ali, Esam; Madison, Don; Ren, X.; Dorn, A.; Ning, Chuangang
2014-10-01
Experimental and theoretical Triple Differential Cross Sections (TDCS) are presented for electron impact ionization-excitation of the 2 sσg state of H2 in the perpendicular plane. The excited 2 sσg state immediately dissociates and the alignment of the molecule is determined by detecting one of the fragments. Results are presented for three different alignments in the xy-plane (scattering plane is xz)-alignment along y-axis, x-axis, and 45° between the x- and y-axes for incident electron energies of 4, 10, and 25 eV and different scattered electron angles of 20° and 30° in the perpendicular plane. Theoretical M4DW (molecular 4-body distorted wave) results are compared to experimental data, and overall we found reasonably good agreement between experiment and theory. The Results show that (e,2e) cross sections for excitation-ionization depend strongly on the orientation of the H2 molecule.
Ibanescu, Mihai; Joannopoious, John D.; Fink, Yoel; Johnson, Steven G.; Fan, Shanhui
2005-06-21
Optical components including a laser based on a dielectric waveguide extending along a waveguide axis and having a refractive index cross-section perpendicular to the waveguide axis, the refractive index cross-section supporting an electromagnetic mode having a zero group velocity for a non-zero wavevector along the waveguide axis.
A new beam theory using first-order warping functions
NASA Technical Reports Server (NTRS)
Ie, C. A.; Kosmatka, J. B.
1990-01-01
Due to a certain type of loading and geometrical boundary conditions, each beam will respond differently depending on its geometrical form of the cross section and its material definition. As an example, consider an isotropic rectangular beam under pure bending. Plane sections perpendicular to the longitudinal axis of the beam will remain plane and perpendicular to the deformed axis after deformation. However, due to the Poisson effect, particles in the planes will move relative to each other resulting in a form of anticlastic deformation. In other words, even in pure bending of an isotropic beam, each cross section will deform in the plane. If the material of the beam above is replaced by a generally anisotropic material, then the cross sections will not only deform in the plane, but also out of plane. Hence, in general, both in-plane deformation and out-of-plane warping will exist and depend on the geometrical form and material definition of the cross sections and also on the loadings. For the purpose of explanation, an analogy is made. The geometrical forms of the bodies of each individual are unique. Hence, different sizes of clothes are needed. Finding the sizes of clothes for individuals is like determining the warping functions in beams. A new beam theory using first-order warping functions is introduced. Numerical examples will be presented for an isotropic beam with rectangular cross section. The theory can be extended for composite beams.
Transport in a toroidally confined pure electron plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crooks, S.M.; ONeil, T.M.
1996-07-01
O{close_quote}Neil and Smith [T.M. O{close_quote}Neil and R.A. Smith, Phys. Plasmas {bold 1}, 8 (1994)] have argued that a pure electron plasma can be confined stably in a toroidal magnetic field configuration. This paper shows that the toroidal curvature of the magnetic field of necessity causes slow cross-field transport. The transport mechanism is similar to magnetic pumping and may be understood by considering a single flux tube of plasma. As the flux tube of plasma undergoes poloidal {ital E}{bold {times}}{ital B} drift rotation about the center of the plasma, the length of the flux tube and the magnetic field strength withinmore » the flux tube oscillate, and this produces corresponding oscillations in {ital T}{sub {parallel}} and {ital T}{sub {perpendicular}}. The collisional relaxation of {ital T}{sub {parallel}} toward {ital T}{sub {perpendicular}} produces a slow dissipation of electrostatic energy into heat and a consequent expansion (cross-field transport) of the plasma. In the limit where the cross section of the plasma is nearly circular the radial particle flux is given by {Gamma}{sub {ital r}}=1/2{nu}{sub {perpendicular},{parallel}}{ital T}({ital r}/{rho}{sub 0}){sup 2}{ital n}/({minus}{ital e}{partial_derivative}{Phi}/{partial_derivative}{ital r}), where {nu}{sub {perpendicular},{parallel}} is the collisional equipartition rate, {rho}{sub 0} is the major radius at the center of the plasma, and {ital r} is the minor radius measured from the center of the plasma. The transport flux is first calculated using this simple physical picture and then is calculated by solving the drift-kinetic Boltzmann equation. This latter calculation is not limited to a plasma with a circular cross section. {copyright} {ital 1996 American Institute of Physics.}« less
KaDonna Randolph
2010-01-01
The use of the geometric and arithmetic means for estimating tree crown diameter and crown cross-sectional area were examined for trees with crown width measurements taken at the widest point of the crown and perpendicular to the widest point of the crown. The average difference between the geometric and arithmetic mean crown diameters was less than 0.2 ft in absolute...
John A. Schneeloch; Xu, Zhijun; Winn, B.; ...
2015-12-28
We report neutron inelastic scattering experiments on single-crystal PbMg 1/3Nb 2/3O 3 doped with 32% PbTiO 3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E showmore » no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.« less
NASA Astrophysics Data System (ADS)
Chaluvadi, Hari; Nixon, Kate; Murray, Andrew; Ning, Chuangang; Colgan, James; Madison, Don
2014-10-01
Experimental and theoretical Triply Differential Cross Sections (TDCS) will be presented for electron-impact ionization of sulfur hexafluoride (SF6) for the molecular orbital 1t1g. M3DW (molecular 3-body distorted wave) results will be compared with experiment for coplanar geometry and for perpendicular plane geometry (a plane which is perpendicular to the incident beam direction). In both cases, the final state electron energies and observation angles are symmetric and the final state electron energies range from 5 eV to 40 eV. It will be shown that there is a large difference between using the OAMO (orientation averaged molecular orbital) approximation and the proper average over all orientations and also that the proper averaged results are in much better agreement with experiment. Work supported by NSF under Grant Number PHY-1068237. Computational work was performed with Institutional resources made available through Los Alamos National Laboratory.
Structure of collagen-glycosaminoglycan matrix and the influence to its integrity and stability.
Bi, Yuying; Patra, Prabir; Faezipour, Miad
2014-01-01
Glycosaminoglycan (GAG) is a chain-like disaccharide that is linked to polypeptide core to connect two collagen fibrils/fibers and provide the intermolecular force in Collagen-GAG matrix (C-G matrix). Thus, the distribution of GAG in C-G matrix contributes to the integrity and mechanical properties of the matrix and related tissue. This paper analyzes the transverse isotropic distribution of GAG in C-G matrix. The angle of GAGs related to collagen fibrils is used as parameters to qualify the GAGs isotropic characteristic in both 3D and 2D rendering. Statistical results included that over one third of GAGs were perpendicular directed to collagen fibril with symmetrical distribution for both 3D matrix and 2D plane cross through collagen fibrils. The three factors tested in this paper: collagen radius, collagen distribution, and GAGs density, were not statistically significant for the strength of Collagen-GAG matrix in 3D rendering. However in 2D rendering, a significant factor found was the radius of collagen in matrix for the GAGs directed to orthogonal plane of Collagen-GAG matrix. Between two cross-section selected from Collagen-GAG matrix model, the plane cross through collagen fibrils was symmetrically distributed but the total percentage of perpendicular directed GAG was deducted by decreasing collagen radius. There were some symmetry features of GAGs angle distribution in selected 2D plane that passed through space between collagen fibrils, but most models showed multiple peaks in GAGs angle distribution. With less GAGs directed to perpendicular of collagen fibril, strength in collagen cross-section weakened. Collagen distribution was also a factor that influences GAGs angle distribution in 2D rendering. True hexagonal collagen packaging is reported in this paper to have less strength at collagen cross-section compared to quasi-hexagonal collagen arrangement. In this work focus is on GAGs matrix within the collagen and its relevance to anisotropy.
FDTD simulation of radar cross section reduction by a collisional inhomogeneous magnetized plasma
NASA Astrophysics Data System (ADS)
Foroutan, V.; Azarmanesh, M. N.; Foroutan, G.
2018-02-01
The recursive convolution finite difference time domain method is addressed in the scattered field formulation and employed to investigate the bistatic radar cross-section (RCS) of a square conductive plate covered by a collisional inhomogeneous magnetized plasma. The RCS is calculated for two different configurations of the magnetic field, i.e., parallel and perpendicular to the plate. The results of numerical simulations show that, for a perpendicularly applied magnetic field, the backscattered RCS is significantly reduced when the magnetic field intensity coincides with the value corresponding to the electron cyclotron resonance. By increasing the collision frequency, the resonant absorption is suppressed, but due to enhanced wave penetration and bending, the reduction in the bistatic RCS is improved. At very high collision frequencies, the external magnetic field has no significant impact on the bistatic RCS reduction. Application of a parallel magnetic field has an adverse effect near the electron cyclotron resonance and results in a large and asymmetric RCS profile. But, the problem is resolved by increasing the magnetic field and/or the collision frequency. By choosing proper values of the collision frequency and the magnetic field intensity, a perpendicular magnetic field can be effectively used to reduce the bistatic RCS of a conductive plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colgan, J.; Al-Hagan, O.; Madison, D. H.
A comprehensive theoretical and experimental investigation of the triple differential cross sections arising from the electron-impact ionization of molecular hydrogen is made, at an incident electron energy of 35.4 eV, for cases where the outgoing electrons have equal and unequal energies, and for a range of experimental geometries. Generally, good agreement is found between two theoretical approaches and experiment, with the best agreement arising for intermediate geometries with large gun angles and for the perpendicular geometry.
Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms
Armstrong, Gregory S. J.; Colgan, James Patrick; Pindzola, M. S.; ...
2015-09-11
Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this paper we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. Finally, we demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionizationmore » from excited Ca and Na atoms.« less
Bridge-scour analysis using the water surface profile (WSPRO) model
Mueller, David S.; ,
1993-01-01
A program was developed to extract hydraulic information required for bridge-scour computations, from the Water-Surface Profile computation model (WSPRO). The program is written in compiled BASIC and is menu driven. Using only ground points, the program can compute average ground elevation, cross-sectional area below a specified datum, or create a Drawing Exchange Format (DXF) fie of cross section. Using both ground points ad hydraulic information form the equal-conveyance tubes computed by WSPRO, the program can compute hydraulic parameters at a user-specified station or in a user-specified subsection of the cross section. The program can identify the maximum velocity in a cross section and the velocity and depth at a user-specified station. The program also can identify the maximum velocity in the cross section and the average velocity, average depth, average ground elevation, width perpendicular to the flow, cross-sectional area of flow, and discharge in a subsection of the cross section. This program does not include any help or suggestions as to what data should be extracted; therefore, the used must understand the scour equations and associated variables to the able to extract the proper information from the WSPRO output.
Functional Morphology at the Mall
ERIC Educational Resources Information Center
Hippensteel, Scott P.
2012-01-01
The primary decorative flooring tile in the Southpark Mall in Charlotte, North Carolina, is fossiliferous limestone that contains Jurassic ammonoids and belemnoids. Visible in these tiles are more than 500 ammonoids, many of which have been cross sectioned equatorially perpendicular to the plane of coiling. Upper-level undergraduate students from…
NASA Technical Reports Server (NTRS)
Kerley, James J., Jr. (Inventor)
1990-01-01
A cable compliant robotic joint includes two U configuration cross section brackets with their U cross sections lying in different planes, one of their brackets being connected to a robot arm and the other to a tool. Additional angle brackets are displaced from the other brackets at corners of the robotic joint. All the brackets are connected by cable segments which lie in one or more planes which are perpendicular to the direction of tool travel as it approaches a work object. The compliance of the joint is determined by the cable segment characteristics, such as their length, material, angle, stranding, pretwisting, and prestressing.
3D Printing of Preoperative Simulation Models of a Splenic Artery Aneurysm: Precision and Accuracy.
Takao, Hidemasa; Amemiya, Shiori; Shibata, Eisuke; Ohtomo, Kuni
2017-05-01
Three-dimensional (3D) printing is attracting increasing attention in the medical field. This study aimed to apply 3D printing to the production of hollow splenic artery aneurysm models for use in the simulation of endovascular treatment, and to evaluate the precision and accuracy of the simulation model. From 3D computed tomography (CT) angiography data of a splenic artery aneurysm, 10 hollow models reproducing the vascular lumen were created using a fused deposition modeling-type desktop 3D printer. After filling with water, each model was scanned using T2-weighted magnetic resonance imaging for the evaluation of the lumen. All images were coregistered, binarized, and then combined to create an overlap map. The cross-sectional area of the splenic artery aneurysm and its standard deviation (SD) were calculated perpendicular to the x- and y-axes. Most voxels overlapped among the models. The cross-sectional areas were similar among the models, with SDs <0.05 cm 2 . The mean cross-sectional areas of the splenic artery aneurysm were slightly smaller than those calculated from the original mask images. The maximum mean cross-sectional areas calculated perpendicular to the x- and y-axes were 3.90 cm 2 (SD, 0.02) and 4.33 cm 2 (SD, 0.02), whereas those calculated from the original mask images were 4.14 cm 2 and 4.66 cm 2 , respectively. The mean cross-sectional areas of the afferent artery were, however, almost the same as those calculated from the original mask images. The results suggest that 3D simulation modeling of a visceral artery aneurysm using a fused deposition modeling-type desktop 3D printer and computed tomography angiography data is highly precise and accurate. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fatima, A.; Sajjad Athar, M.; Singh, S. K.
2018-06-01
In this work, we have studied the total scattering cross section (σ, differential scattering cross section ( dσ/d Q2) as well as the longitudinal ( P_L(Ee,Q2)), perpendicular ( PP(Ee,Q2)), and transverse ( PT(Ee,Q2)) components of the polarization of the final hadron ( n, Λ and Σ0) produced in the electron proton scattering induced by the weak charged current. We have not assumed T-invariance which allows the transverse component of the hadron polarization perpendicular to the production plane to be non-zero. The numerical results are presented for all the above observables and their dependence on the axial vector form factor and the weak electric form factor are discussed. The present study enables the determination of the axial vector nucleon-hyperon transition form factors at high Q2 in the strangeness sector which can provide a test of the symmetries of the weak hadronic currents like T-invariance and SU(3) symmetry while assuming the hypothesis of conserved vector current and partial conservation of axial vector current.
Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA
2003-04-01
The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, S. Y.; Yuan, Z. G.; Wang, D. D.
We report on the observations of an electron vortex magnetic hole corresponding to a new type of coherent structure in the turbulent magnetosheath plasma using the Magnetospheric Multiscale mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 ρ {sub i} (∼30 ρ {submore » e}) in the quasi-circular cross-section perpendicular to its axis, where ρ {sub i} and ρ {sub e} are respectively the proton and electron gyroradius. There are no clear enhancements seen in high-energy electron fluxes. However, there is an enhancement in the perpendicular electron fluxes at 90° pitch angle inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components V {sub em} and V {sub en} suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the cross-section in the M – N plane. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.« less
REFLECTOR FOR NEUTRONIC REACTORS
Fraas, A.P.
1963-08-01
A reflector for nuclear reactors that comprises an assembly of closely packed graphite rods disposed with their major axes substantially perpendicular to the interface between the reactor core and the reflector is described. Each graphite rod is round in transverse cross section at (at least) its interface end and is provided, at that end, with a coaxial, inwardly tapering hole. (AEC)
Ohoyama, H
2014-10-16
We have studied the collision energy dependent cross section and alignment of NO (A (2)Σ(+)) rotation in the energy-transfer reaction of N2 (A (3)Σ(u)(+)) + NO (X (2)Π) → N2 (X (1)Σ(g)(+)) + NO (A (2)Σ(+)) at the collision energy (E) region of 0.03-0.2 eV. NO (A (2)Σ(+)) emission in two linear polarization directions in the collision frame (parallel (∥) and perpendicular (⊥) with respect to the relative velocity vector (vR)) has been measured as a function of collision energy. NO (A (2)Σ(+)) rotation (J-vector) turns out to be aligned perpendicular to vR. In addition, collision energy is found to enhance the degree of alignment of NO (A (2)Σ(+)) rotation. The collision energy dependent cross sections σ(∥,(⊥))(E) (excitation functions) show a rapid fall-off following an initial rise with a threshold less than 0.02 eV. The excitation function at the parallel alignment of NO (A (2)Σ(+)) rotation, σ(J∥v(R), (E), is slightly shifted to the low collision energy region as compared with σ(J ⊥ vR, E). We propose that the rapid fall-off feature in the excitation function is attributed to the multidimensional nonadiabatic transitions.
NASA Technical Reports Server (NTRS)
Eby, P. B.; Morgan, S. H.; Parnell, T. A.
1978-01-01
Energy deposition due to secondary electrons is calculated as a function of distance from the axis of the track of a heavy ion. The calculation incorporates the empirical formulas of Kobetich and Katz (1968) for delta-ray energy dissipation. Both the Mott and Born-approximation expressions for the delta-ray energy distributions are used, and the results are compared. The energy deposition projected along a line perpendicular to the track is also calculated. These results are used to estimate the effect that the use of the Mott cross section would have in the interpretation of photometric measurements on emulsion tracks of trans-iron cosmic-ray particles. It is shown that the use of 50 keV as a characteristic track-formation electron energy to estimate the effect of the Mott cross section systematically overestimates charge as derived from emulsions for Z greater than 20.
NASA Astrophysics Data System (ADS)
Mughnetsyan, V. N.; Barseghyan, M. G.; Kirakosyan, A. A.
2008-01-01
We consider the photoionization of a hydrogen-like impurity centre in a quantum wire approximated by a cylindrical well of finite depth in a magnetic field directed along the wire axis. The ground state energy and the wave function of the electron localized on on-axis impurity centre are calculated using the variational method. The wave functions and energies of the final states in an one-dimensional conduction subband are also presented. The dependences of photoionization cross-section of a donor centre on magnetic field and frequency of incident radiation both for parallel and perpendicular polarizations and corresponding selection rules for the allowed transitions are found in the dipole approximation. The estimates of photoionization cross-section for various values of wire radius and magnetic field induction for GaAs quantum wire embedded in Ga 1-xAl 1-xAs matrix are given.
Fabrication of GaAs symmetric pyramidal mesas prepared by wet-chemical etching using AlAs interlayer
NASA Astrophysics Data System (ADS)
Kicin, S.; Cambel, V.; Kuliffayová, M.; Gregušová, D.; Kováčová, E.; Novák, J.; Kostič, I.; Förster, A.
2002-01-01
We present a wet-chemical-etching method developed for the preparation of GaAs four-sided pyramid-shaped mesas. The method uses a fast lateral etching of AlAs interlayer that influences the cross-sectional profiles of etched structures. We have tested the method using H3PO4:H2O2:H2O etchant for the (100) GaAs patterning. The sidewalls of the prepared pyramidal structures together with the (100) bottom facet formed the cross-sectional angles 25° and 42° for mask edges parallel, resp. perpendicular to {011} cleavage planes. For mask edges turned in 45° according to the cleavage planes, 42° cross-sectional angles were obtained. Using the method, symmetric and more than 10-μm-high GaAs "Egyptian" pyramids with smooth tilted facets were prepared.
Watts, Kristen; Lagalante, Anthony
2018-06-06
Art conservation science is in need of a relatively nondestructive way of rapidly identifying the binding media within a painting cross-section and isolating binding media to specific layers within the cross-section. Knowledge of the stratigraphy of cross-sections can be helpful for removing possible unoriginal paint layers on the artistic work. Desorption electrospray ionization-mass spectrometry (DESI-MS) was used in ambient mode to study cross-sections from mock-up layered paint samples and samples from a 17th century baroque painting. The DESI spray was raster scanned perpendicular to the cross-section layers to maximize lateral resolution then analyzed with a triple quadrupole mass analyzer in linear ion trap mode. From these scans, isobaric mass maps were created to map the locations of masses indicative of particular binding media onto the cross-sections. Line paint-outs of pigments in different binding media showed specific and unique ions to distinguish between the modern acrylic media and the lipid containing binding media. This included: OP (EO) 9 surfactant in positive ESI for acrylic (m/z 621), and oleic (m/z 281), stearic (m/z 283), and azelaic (m/z 187) acids in negative ESI for oil and egg tempera. DESI-MS maps of mock-up cross-sections of layered pigmented binding media showed correlation between these ions and the layers with a spatial resolution of 100 μm. DESI-MS is effective in monitoring binding media within an intact painting cross-section via mass spectrometric methods. This includes distinguishing between lipid-containing and modern binding materials present in a known mockup cross section matrix as well as identifying lipid binding media in a 17th century baroque era painting. This article is protected by copyright. All rights reserved.
Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D
2013-02-01
We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0-400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.T.; Tang, F.; Brown, W.D.
1998-12-20
The authors present a theoretical model for calculating the spin-dependent cross section of the scattering of electrons by a magnetic layer system. The model demonstrates that the cross sections of the scattering are different for spin up and spin down electrons. The model assumes that the electrical resistivity in a conductor is proportional to the scattering cross section of the electron in it. It is believed to support the two channel mechanism in interpreting magneto-resistance (MR). Based on the model without considering the scattering due to the interfacial roughness and the spin flipping scattering, the authors have established a relationshipmore » between MR and the square of the magnetic moment in the bulk sample without considering the scattering due to the interfacial roughness and the spin flipping scattering. It can also qualitatively explain the MR difference between the current in plane (CIP) and current perpendicular to the plane (CPP) configurations. The predictions by the model agree well with the experimental findings.« less
Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J.; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D.
2013-01-01
We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0–400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument. PMID:23412564
NASA Technical Reports Server (NTRS)
Nieves-Chinchilla, T.; Colaninno, R.; Vourlidas, A.; Szabo, A.; Lepping, R. P.; Boardsen, S. A.; Anderson, B. J.; Korth, H.
2012-01-01
During June 16-21, 2010, an Earth-directed Coronal Mass Ejection (CME) event was observed by instruments onboard STEREO, SOHO, MESSENGER and Wind. This event was the first direct detection of a rotating CME in the middle and outer corona. Here, we carry out a comprehensive analysis of the evolution of the CME in the interplanetary medium comparing in-situ and remote observations, with analytical models and three-dimensional reconstructions. In particular, we investigate the parallel and perpendicular cross section expansion of the CME from the corona through the heliosphere up to 1 AU. We use height-time measurements and the Gradual Cylindrical Shell (GCS) technique to model the imaging observations, remove the projection effects, and derive the 3-dimensional extent of the event. Then, we compare the results with in-situ analytical Magnetic Cloud (MC) models, and with geometrical predictions from past works. We nd that the parallel (along the propagation plane) cross section expansion agrees well with the in-situ model and with the Bothmer & Schwenn [1998] empirical relationship based on in-situ observations between 0.3 and 1 AU. Our results effectively extend this empirical relationship to about 5 solar radii. The expansion of the perpendicular diameter agrees very well with the in-situ results at MESSENGER ( 0:5 AU) but not at 1 AU. We also find a slightly different, from Bothmer & Schwenn [1998], empirical relationship for the perpendicular expansion. More importantly, we find no evidence that the CME undergoes a significant latitudinal over-expansion as it is commonly assumed
Accurate treatment of total photoabsorption cross sections by an ab initio time-dependent method
NASA Astrophysics Data System (ADS)
Daud, Mohammad Noh
2014-09-01
A detailed discussion of parallel and perpendicular transitions required for the photoabsorption of a molecule is presented within a time-dependent view. Total photoabsorption cross sections for the first two ultraviolet absorption bands of the N2O molecule corresponding to transitions from the X1 A' state to the 21 A' and 11 A'' states are calculated to test the reliability of the method. By fully considering the property of the electric field polarization vector of the incident light, the method treats the coupling of angular momentum and the parity differently for two kinds of transitions depending on the direction of the vector whether it is: (a) situated parallel in a molecular plane for an electronic transition between states with the same symmetry; (b) situated perpendicular to a molecular plane for an electronic transition between states with different symmetry. Through this, for those transitions, we are able to offer an insightful picture of the dynamics involved and to characterize some new aspects in the photoabsorption process of N2O. Our calculations predicted that the parallel transition to the 21 A' state is the major dissociation pathway which is in qualitative agreement with the experimental observations. Most importantly, a significant improvement in the absolute value of the total cross section over previous theoretical results [R. Schinke, J. Chem. Phys. 134, 064313 (2011), M.N. Daud, G.G. Balint-Kurti, A. Brown, J. Chem. Phys. 122, 054305 (2005), S. Nanbu, M.S. Johnson, J. Phys. Chem. A 108, 8905 (2004)] was obtained.
NASA Astrophysics Data System (ADS)
Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.; Koesterke, Lars
2014-10-01
We present calculations for the dependence of the two-photon double ionization (DI) of H2 on the relative orientation of the linear laser polarization to the internuclear axis and the length of the pulse. We use the fixed-nuclei approximation at the equilibrium distance of 1.4 a0, where a0=0.529 ×10-10m is the Bohr radius. Central photon energies cover the entire direct DI domain from 26.5 to 34.0 eV. In contrast to the parallel geometry studied earlier [X. Guan, K. Bartschat, B. I. Schneider, and L. Koesterke, Phys. Rev. A 83, 043403 (2011), 10.1103/PhysRevA.83.043403], the effect of the pulse duration is almost negligible for the case when the two axes are perpendicular to each other. This is a consequence of the symmetry rules for dipole excitation in the two cases. In the parallel geometry, doubly excited states of 1Σu+ symmetry affect the cross section, while in the perpendicular geometry only much longer-lived 1Πu states are present. This accounts for the different convergence patterns observed in the calculated cross sections as a function of the pulse length. When the photon energy approaches the threshold of sequential DI, a sharp increase of the generalized total cross section (GTCS) with increasing pulse duration is also observed in the perpendicular geometry, very similar to the case of the molecular axis being oriented along the laser polarization direction. Our results differ from those of Colgan et al. [J. Colgan, M. S. Pindzola, and F. Robicheaux, J. Phys. B 41, 121002 (2008), 10.1088/0953-4075/41/12/121002] and Morales et al. [F. Morales, F. Martín, D. A. Horner, T. N. Rescigno, and C. W. McCurdy, J. Phys. B 42, 134013 (2009), 10.1088/0953-4075/42/13/134013], but are in excellent agreement with the GTCSs of Simonsen et al. [A. S. Simonsen, S. A. Sørngård, R. Nepstad, and M. Førre, Phys. Rev. A 85, 063404 (2012), 10.1103/PhysRevA.85.063404] over the entire domain of direct DI.
Plasma Centrifuge Heat Engine - a Route to Non-thermal p- 11 B Fusion
NASA Astrophysics Data System (ADS)
Barnes, D. C.
2007-06-01
An invention [US Patent and Trademark Office App. Nos. 60/596567 (2005) and 60/766791 (2006)] combines centrifugal and dipole confinement, with recent oscillating plasma theory. The plasma undergoes compression/expansion (C/E), parallel to B by centrifugal force and perpendicular to B by B variation, providing a thermal cycle which recovers most (>95%) of heating as mechanical energy. This gives a "Q-amplifier" for beam-target systems. Centrifugally confined Boron plasma undergoes C/E by slow, cross-B interchange activity. Parallel and perpendicular C/E are matched by the rotation profile which arises naturally. Hot plasma is heated and cold plasma is cooled. Beam-target fusion reactions occur in the hot plasma region and expansion returns most of the heat energy as rotation energy. Rotation energy, in turn, produces waves which drive protons to an energy near the fusion peak cross section. A possible machine, including the arrangement of magnets and HV, is described.
Gignac, Lynne M; Mittal, Surbhi; Bangsaruntip, Sarunya; Cohen, Guy M; Sleight, Jeffrey W
2011-12-01
The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.
Quasi-heterogeneous efficient 3-D discrete ordinates CANDU calculations using Attila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preeti, T.; Rulko, R.
2012-07-01
In this paper, 3-D quasi-heterogeneous large scale parallel Attila calculations of a generic CANDU test problem consisting of 42 complete fuel channels and a perpendicular to fuel reactivity device are presented. The solution method is that of discrete ordinates SN and the computational model is quasi-heterogeneous, i.e. fuel bundle is partially homogenized into five homogeneous rings consistently with the DRAGON code model used by the industry for the incremental cross-section generation. In calculations, the HELIOS-generated 45 macroscopic cross-sections library was used. This approach to CANDU calculations has the following advantages: 1) it allows detailed bundle (and eventually channel) power calculationsmore » for each fuel ring in a bundle, 2) it allows the exact reactivity device representation for its precise reactivity worth calculation, and 3) it eliminates the need for incremental cross-sections. Our results are compared to the reference Monte Carlo MCNP solution. In addition, the Attila SN method performance in CANDU calculations characterized by significant up scattering is discussed. (authors)« less
Controlling Sample Rotation in Acoustic Levitation
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Stoneburner, J. D.
1985-01-01
Rotation of acoustically levitated object stopped or controlled according to phase-shift monitoring and control concept. Principle applies to square-cross-section levitation chamber with two perpendicular acoustic drivers operating at same frequency. Phase difference between X and Y acoustic excitation measured at one corner by measuring variation of acoustic amplitude sensed by microphone. Phase of driver adjusted to value that produces no rotation or controlled rotation of levitated object.
High average power pockels cell
Daly, Thomas P.
1991-01-01
A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.
Three dimensional simulations of viscous folding in diverging microchannels
NASA Astrophysics Data System (ADS)
Xu, Bingrui; Chergui, Jalel; Shin, Seungwon; Juric, Damir
2016-11-01
Three dimensional simulations on the viscous folding in diverging microchannels reported by Cubaud and Mason are performed using the parallel code BLUE for multi-phase flows. The more viscous liquid L1 is injected into the channel from the center inlet, and the less viscous liquid L2 from two side inlets. Liquid L1 takes the form of a thin filament due to hydrodynamic focusing in the long channel that leads to the diverging region. The thread then becomes unstable to a folding instability, due to the longitudinal compressive stress applied to it by the diverging flow of liquid L2. We performed a parameter study in which the flow rate ratio, the viscosity ratio, the Reynolds number, and the shape of the channel were varied relative to a reference model. In our simulations, the cross section of the thread produced by focusing is elliptical rather than circular. The initial folding axis can be either parallel or perpendicular to the narrow dimension of the chamber. In the former case, the folding slowly transforms via twisting to perpendicular folding, or it may remain parallel. The direction of folding onset is determined by the velocity profile and the elliptical shape of the thread cross section in the channel that feeds the diverging part of the cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brason, J G
1977-05-01
Inclusive muon pair production by 225 GeV/c ..pi../sup +/, ..pi../sup -/ and proton beams incident upon carbon and tin targets was measured over a large range of kinematic variables (2m/sub ..mu../ < m/sub ..mu mu.. < 1 GeV/c/sup 2/, 0 < x/sub F/ < 1, P/sub perpendicular to/ < 4 GeV/c and vertical bar cos theta* vertical bar < .3). The value of the invariant cross section E d/sup 4/sigma/dmdx/sub f/dp/sup 2//sub perpendicular to/ is presented as a function of these variables. The vector mesons rho, ..omega.., phi, J and psi' appear in the data along with apparently nonresonant ..mu..-pairs.more » By looking for additional muons accompanying J ..-->.. ..mu../sup +/..mu../sup -/ events, a 1.0% upper limit on production of pairs of charmed particles in association with the J is obtained. Aspects of the continuum muon pair data are compared to Drell-Yan model calculations. The ratio of ..mu..-pairs produced by ..pi../sup +/ beam particles to ..mu..-pairs produced by ..pi../sup -/ beam particles supports electromagnetic production at high mass.« less
Viscoelastic analysis of seals for extended service life
NASA Technical Reports Server (NTRS)
Bower, Mark V.
1993-01-01
The space station is being developed for a service life of up to thirty years. As a consequence, the design requirements for the seals to be used are unprecedented. Full scale testing to assure the selected seals can satisfy the design requirements are not feasible. As an alternative, a sub-scale test program (2) has been developed by MSFC to calibrate the analysis tools to be used to certify the proposed design. This research has been conducted in support of the MSFC Integrated Seal Test Program. The ultimate objective of this research is to correlate analysis and test results to qualify the analytical tools which in turn, are to be used to qualify the flight hardware. Seals are simple devices, in wide spread use. The most common type of seal is the O-ring. O-ring seals are typically rings of rubber with a circular cross section. The rings are placed between the surfaces to be sealed, usually in a groove of some design. The particular design may differ based on a number of different factors. This research is focused on O-rings that are staticly compressed by perpendicular clamping forces, commonly referred to as face seals. In this type of seal the O-ring is clamped between the sealing surfaces by loads perpendicular to the circular cross section.
Automatic Monitoring of Tunnel Deformation Based on High Density Point Clouds Data
NASA Astrophysics Data System (ADS)
Du, L.; Zhong, R.; Sun, H.; Wu, Q.
2017-09-01
An automated method for tunnel deformation monitoring using high density point clouds data is presented. Firstly, the 3D point clouds data are converted to two-dimensional surface by projection on the XOY plane, the projection point set of central axis on XOY plane named Uxoy is calculated by combining the Alpha Shape algorithm with RANSAC (Random Sampling Consistency) algorithm, and then the projection point set of central axis on YOZ plane named Uyoz is obtained by highest and lowest points which are extracted by intersecting straight lines that through each point of Uxoy and perpendicular to the two -dimensional surface with the tunnel point clouds, Uxoy and Uyoz together form the 3D center axis finally. Secondly, the buffer of each cross section is calculated by K-Nearest neighbor algorithm, and the initial cross-sectional point set is quickly constructed by projection method. Finally, the cross sections are denoised and the section lines are fitted using the method of iterative ellipse fitting. In order to improve the accuracy of the cross section, a fine adjustment method is proposed to rotate the initial sectional plane around the intercept point in the horizontal and vertical direction within the buffer. The proposed method is used in Shanghai subway tunnel, and the deformation of each section in the direction of 0 to 360 degrees is calculated. The result shows that the cross sections becomes flat circles from regular circles due to the great pressure at the top of the tunnel
Coincidence studies of He ionized by C{sup 6+}, Au{sup 24+}, and Au{sup 53+}
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGovern, M.; Walters, H. R. J.; Assafrao, D.
2010-04-15
A recently developed [Phys. Rev. A 79, 042707 (2009)] impact parameter coupled pseudostate approximation (CP) is applied to calculate triple differential cross sections for single ionization of He by C{sup 6+}, Au{sup 24+}, and Au{sup 53+} projectiles at impact energies of 100 and 2 MeV/amu for C{sup 6+} and 3.6 MeV/amu for Au{sup 24+} and Au{sup 53+}. For C{sup 6+}, satisfactory, but not perfect, agreement is found with experimental measurements in coplanar geometry, but there is substantial disagreement with data taken in a perpendicular plane geometry. The CP calculations firmly contradict a projectile-nucleus interaction model which has been used tomore » support the perpendicular plane measurements. For Au{sup 24+} and Au{sup 53+}, there is a complete lack of accord with the available experiments. However, for Au{sup 24+} the theoretical position appears to be quite firm with clear indications of convergence in the CP approximation and very good agreement between CP and the completely different three-distorted-waves eikonal-initial-state (3DW-EIS) approximation. The situation for Au{sup 53+} is different. At the momentum transfers at which the measurements were made, there are doubts about the convergence of the CP approximation and a factor of 2 difference between the CP and 3DW-EIS predictions. The discord between theory and experiment is even greater with the experiment giving cross sections a factor of 10 larger than the theory. A study of the convergence of the CP approximation shows that it improves rapidly with reducing momentum transfer. As a consequence, lower-order cross sections than the triple are quite well converged and present an opportunity for a more reliable test of the experiment.« less
Aized, Dawood; Schwall, Robert E.
1999-06-22
A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.
Aized, Dawood; Schwall, Robert E.
1996-06-11
A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.
Indium hexagonal island as seed-layer to boost a-axis orientation of AlN thin films
NASA Astrophysics Data System (ADS)
Redjdal, N.; Salah, H.; Azzaz, M.; Menari, H.; Manseri, A.; Guedouar, B.; Garcia-Sanchez, A.; Chérif, S. M.
2018-06-01
Highly a-axis oriented aluminum nitride films have been grown on Indium coated (100) Si substrate by DC reactive magnetron sputtering. It is shown that In incorporated layer improve the extent of preferential growth along (100) axis and form dense AlN films with uniform surface and large grains, devoid of micro-cracks. As revealed by SEM cross section images, AlN structure consists of oriented columnar grains perpendicular to the Si surface, while AlN/In structure results in uniformely tilted column. SEM images also revealed the presence of In hexagonal islands persistent throughout the entire growth. Micro -Raman spectroscopy of the surface and the cross section of the AlN/In grown films evidenced their high degree of homogeneity and cristallinity.
Marro, James B.; Darroudi, Taghi; Okoro, Chukwudi A.; Obeng, Yaw S.; Richardson, Kathleen C.
2017-01-01
In this work we studied the impact of pulse electroplating parameters on the cross-sectional and surface microstructures of blanket copper films using electron backscattering diffraction and x-ray diffraction. The films evaluated were highly (111) textured in the direction perpendicular to the film surface. The degree of preferential orientation was found to decrease with longer pulse on-times, due to strain energy driven growth of other grain orientations. Residual biaxial stresses were also measured in the films and higher pulse frequencies during deposition led to smaller biaxial stresses in the films. Film stress was also found to correlate with the amount of twinning in the copper film cross-sections. This has been attributed to the twins’ thermal stability and mechanical properties. PMID:28239200
Mind the Microgap in Iridescent Cellulose Nanocrystal Films.
Fernandes, Susete N; Almeida, Pedro L; Monge, Nuno; Aguirre, Luis E; Reis, Dennys; de Oliveira, Cristiano L P; Neto, António M F; Pieranski, Pawel; Godinho, Maria H
2017-01-01
A new photonic structure is produced from cellulose nanocrystal iridescent films reflecting both right and left circularly polarized light. Micrometer-scale planar gaps perpendicular to the films' cross-section between two different left-handed films' cholesteric domains are impregnated with a nematic liquid crystal. This photonic feature is reversibly tuned by the application of an electric field or a temperature variation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aized, D.; Schwall, R.E.
1999-06-22
A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.
Multipole analysis of {sup 2}H({gamma},p)n in the {Delta} resonance region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whisnant, C.S.; Mize, W.K.; Pomarede, D.
1998-07-01
An energy-dependent multipole analysis of the photodisintegration of deuterium has been performed for photon energies between 187 and 314 MeV using recent data taken with linearly polarized photons. A good fit is obtained with 11 free parameters determining eight multipoles. A wide variety of multipole solutions has been examined and in all cases the cross section with photon polarization parallel to the reaction plane is dominated by electric transitions, with E2{bold {center_dot}}E1 interference responsible for the observed forward-backward angular asymmetry. The cross sections observed in perpendicular kinematics are dominated by magnetic multipoles. Several recent N{Delta}/NN coupled-channel calculations have predicted amore » pronounced 90{degree} dip in the cross section that is absent from the data. This dip can be reproduced by changing the M2 strength distribution in our fit. A comparison is made with multipoles calculated by Wilhelm and Arenh{umlt o}vel at 300 MeV. {copyright} {ital 1998} {ital The American Physical Society}« less
Xia, Yang; Mittelstaedt, Daniel; Ramakrishnan, Nagarajan; Szarko, Matthew; Bidthanapally, Aruna
2010-01-01
Full thickness blocks of canine humeral cartilage were microtomed into both perpendicular sections and a series of 100 parallel sections, each 6 μm thick. Fourier Transform Infrared Imaging (FTIRI) was used to image each tissue section eleven times under different infrared polarizations (from 0° to 180° polarization states in 20° increments and with an additional 90° polarization), at a spatial resolution of 6.25 μm and a wavenumber step of 8 cm−1. With increasing depth from the articular surface, amide anisotropies increased in the perpendicular sections and decreased in the parallel sections. Both types of tissue sectioning identified a 90° difference between amide I and amide II in the superficial zone of cartilage. The fibrillar distribution in the parallel sections from the superficial zone was shown to not be random. Sugar had the greatest anisotropy in the upper part of the radial zone in the perpendicular sections. The depth-dependent anisotropic data were fitted with a theoretical equation that contained three signature parameters, which illustrate the arcade structure of collagens with the aid of a fibril model. Infrared imaging of both perpendicular and parallel sections provides the possibility of determining the three-dimensional macromolecular structures in articular cartilage. Being sensitive to the orientation of the macromolecular structure in healthy articular cartilage aids the prospect of detecting the early onset of the tissue degradation that may lead to pathological conditions such as osteoarthritis. PMID:21274999
Cross section TEM characterization of high-energy-Xe-irradiated U-Mo
Ye, B.; Jamison, L.; Miao, Y.; ...
2017-03-09
U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Furthermore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo.
Laser-induced free-free transitions in elastic electron scattering from CO2
NASA Astrophysics Data System (ADS)
Musa, Mohamed; MacDonald, Amy; Tidswell, Lisa; Holmes, Jim; St. Francis Xavier Laser Scattering Lab Team
2011-03-01
This report presents measurements of laser-induced free-free transitions of electrons scattered from CO2 molecules in the ground electronic state at incident electron energies of 3.8 and 5.8 eV under pulsed CO2 laser field. The differential cross section of free-free transitions involving absorption and emission of up to two photons were measured at various scattering angles with the polarization of the laser either parallel with or perpendicular to the the momentum change vector of the scattered electrons. The results of the parallel geometry are found to be in qualitative agreement with the predictions of the Kroll-Watson approximation within the experimental uncertainty whereas those of the perpendicular geometry show marked discrepancy with the Kroll-Watson predictions. This work was supported by the Natural Sciences and Engineering Research Council of Canada and the St. Francis Xavier University Council for Research.
Acoustic transducer apparatus with reduced thermal conduction
NASA Technical Reports Server (NTRS)
Lierke, Ernst G. (Inventor); Leung, Emily W. (Inventor); Bhat, Balakrishna T. (Inventor)
1990-01-01
A horn is described for transmitting sound from a transducer to a heated chamber containing an object which is levitated by acoustic energy while it is heated to a molten state, which minimizes heat transfer to thereby minimize heating of the transducer, minimize temperature variation in the chamber, and minimize loss of heat from the chamber. The forward portion of the horn, which is the portion closest to the chamber, has holes that reduce its cross-sectional area to minimize the conduction of heat along the length of the horn, with the entire front portion of the horn being rigid and having an even front face to efficiently transfer high frequency acoustic energy to fluid in the chamber. In one arrangement, the horn has numerous rows of holes extending perpendicular to the length of horn, with alternate rows extending perpendicular to one another to form a sinuous path for the conduction of heat along the length of the horn.
Containers for use in a self supporting assembly
Gillespie, Peter J.
1982-07-13
This invention is directed to a container having side walls and end walls forming a body having a generally rectangular cross-section. Means for restraining lateral and rotational movement of the container relative to an adjacent container while allowing relatively unhindered movement perpendicular to the side walls is also included. The lateral and rotational movement is restrained in a plane parallel to the side walls. The means include a projection connected to at least one of the side walls and extending outwardly therefrom to engage the adjacent container. Also part of this invention is an assembly of containers which includes a plurality of the above described containers arranged side by side with the end walls generally coplanar and the side walls generally parallel. Means for restraining movement perpendicular to the side walls of the plurality of containers is also included. Each of the containers may house a plurality of battery electrodes.
Design and analysis of seals for extended service life
NASA Technical Reports Server (NTRS)
Bower, Mark V.
1992-01-01
Space Station Freedom is being developed for a service life of up to thirty years. As a consequence, the design requirements for the seals to be used are unprecedented. Full scale testing to assure the selected seals can satisfy the design requirements are not feasible. As an alternative, a sub-scale test program has been developed by MSFC to calibrate the analysis tools to be used to certify the proposed design. This research has been conducted in support of the MSFC Integrated Seal Test Program. The ultimate objective of this research is to correlate analysis and test results to qualify the analytical tools, which in turn, are to be used to qualify the flight hardware. This research is totally focused on O-rings that are compressed by perpendicular clamping forces. In this type of seal the O-ring is clamped between the sealing surfaces by loads perpendicular to the circular cross section.
NASA Astrophysics Data System (ADS)
Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.
2017-12-01
Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron vortex magnetic holes by electron temperature anisotropic instability.
NASA Technical Reports Server (NTRS)
Scruggs, T.; Moraguez, M.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.
2016-01-01
Debris fragments from the hypervelocity impact testing of DebriSat are being collected and characterized for use in updating existing satellite breakup models. One of the key parameters utilized in these models is the ballistic coefficient of the fragment which is directly related to its area-to-mass ratio. However, since the attitude of fragments varies during their orbital lifetime, it is customary to use the average cross-sectional area in the calculation of the area-to-mass ratio. The average cross-sectional area is defined as the average of the projected surface areas perpendicular to the direction of motion and has been shown to be equal to one-fourth of the total surface area of a convex object. Unfortunately, numerous fragments obtained from the DebriSat experiment show significant concavity (i.e., shadowing) and thus we have explored alternate methods for computing the average cross-sectional area of the fragments. An imaging system based on the volumetric reconstruction of a 3D object from multiple 2D photographs of the object was developed for use in determining the size characteristic (i.e., characteristics length) of the DebriSat fragments. For each fragment, the imaging system generates N number of images from varied azimuth and elevation angles and processes them using a space-carving algorithm to construct a 3D point cloud of the fragment. This paper describes two approaches for calculating the average cross-sectional area of debris fragments based on the 3D imager. Approach A utilizes the constructed 3D object to generate equally distributed cross-sectional area projections and then averages them to determine the average cross-sectional area. Approach B utilizes a weighted average of the area of the 2D photographs to directly compute the average cross-sectional area. A comparison of the accuracy and computational needs of each approach is described as well as preliminary results of an analysis to determine the "optimal" number of images needed for the 3D imager to accurately measure the average cross sectional area of objects with known dimensions.
A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching.
Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan
2016-01-21
We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.
Vibration characteristics of a steadily rotating slender ring
NASA Technical Reports Server (NTRS)
Lallman, F. J.
1980-01-01
Partial differential equations are derived to describe the structural vibrations of a uniform homogeneous ring which is very flexible because the radius is very large compared with the cross sectional dimensions. Elementary beam theory is used and small deflections are assumed in the derivation. Four sets of structural modes are examined: bending and compression modes in the plane of the ring; bending modes perpendicular to the plane of the ring; and twisting modes about the centroid of the ring cross section. Spatial and temporal characteristics of these modes, presented in terms of vibration frequencies and ratios between vibration amplitudes, are demonstrated in several figures. Given a sufficiently high rotational rate, the dynamics of the ring approach those of a vibrating string. In this case, the velocity of traveling wave in the material of the ring approaches in velocity of the material relative to inertial space, resulting in structural modes which are almost stationary in space.
Neutral-beam deposition in large, finite-beta noncircular tokamak plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieland, R.M.; Houlberg, W.A.
1982-02-01
A parametric pencil beam model is introduced for describing the attenuation of an energetic neutral beam moving through a tokamak plasma. The nonnegligible effects of a finite beam cross section and noncircular shifted plasma cross sections are accounted for in a simple way by using a smoothing algorithm dependent linearly on beam radius and by including information on the plasma flux surface geometry explicitly. The model is benchmarked against more complete and more time-consuming two-dimensional Monte Carlo calculations for the case of a large D-shaped tokamak plasma with minor radius a = 120 cm and elongation b/a = 1.6. Depositionmore » profiles are compared for deuterium beam energies of 120 to 150 keV, central plasma densities of 8 x 10/sup 13/ - 2 x 10/sup 14/ cm/sup -3/, and beam orientation ranging from perpendicular to tangential to the inside wall.« less
Effects of polarization direction on laser-assisted free-free scattering
NASA Astrophysics Data System (ADS)
deHarak, B. A.; Kim, B. N.; Weaver, C. M.; Martin, N. L. S.; Siavashpouri, Mahsa; Nosarzewski, Benjamin
2016-06-01
This work will detail the effects of laser polarization direction (relative to the momentum transfer direction) on laser-assisted free-free scattering. Such processes play a role in the gas breakdown that occurs in electric discharges as well as providing a method for the laser heating of a plasma (Musa et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 175201, Mason 1993 Rep. Prog. Phys. 56 1275). Experimental results will be presented for electron-helium scattering in the presence of an Nd:YAG laser field (hν =1.17 eV) where the polarization direction was varied in a plane that is perpendicular to the scattering plane. To date, all of our experimental results are well described by the Kroll-Watson approximation (KWA) (Kroll and Watson 1973 Phys. Rev. A 8 804). The good agreement between our experiments and calculations using the KWA includes the case where the polarization is perpendicular to the momentum transfer direction, for which the KWA predicts vanishing cross section; other workers have found that the KWA tends to be inaccurate for cases where it predicts small cross sections (e.g. Musa et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 175201). We also present simulations of the effects that multiple scattering might have on experimental measurements. In particular, we examine conditions that are expected to be similar to those of the experiments reported by Wallbank and Holmes (Wallbank and Holmes 1993 Phys. Rev. A 48 R2515).
Segmented tubular cushion springs and spring assembly
NASA Technical Reports Server (NTRS)
Haslim, Leonard A. (Inventor)
1988-01-01
A spring (10) includes a tube (12) having an elliptical cross section, with the greater axial dimension (22) extending laterally and the lesser axial dimension (24) extending vertically. A plurality of cuts (20) in the form of slots passing through most of a wall of the tube (12) extend perpendicularly to a longitudinal axis (16) extending along the tube (12). An uncut portion (26) of the tube wall extends along the tube (12) for bonding or fastening the tube to a suitable base, such as a bottom (28) of a seat cushion (30).
1985-12-01
resonator optics consist of two porro prisms which are oriented 900 from one another about the cavity’s optical axis. In other words, the roof edges of each... prism are perpendicular to one another. The Nd:YAG laser rod measures 5 mm in diameter by 75 mm long and is optically pumped by a Xenon flashlamp. Q...Switching of the laser is performed by a Pockels Cell. A dielectric polarizer is sealed between two right angle prisms which are joined symetrically
11. UNDERSIDE, VIEW PERPENDICULAR TO PIERS, SHOWING FLOOR SYSTEM OBLIQUELY ...
11. UNDERSIDE, VIEW PERPENDICULAR TO PIERS, SHOWING FLOOR SYSTEM OBLIQUELY AND NORTH PIER. LOOKING NORTH. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ
Schwenke, T.; Wimmer, M. A.
2013-01-01
Wear of polyethylene (UHMWPE) is dependent on cross-shear. The aim of the present study was: 1) to develop a theoretical description of cross-shear, 2) to experimentally determine the relationship between cross-shear motion and UHMWPE wear using a wheel-on-flat apparatus, and 3) to calculate the work it takes to remove a unit volume of wear for the use in advanced computational models of wear. The theoretical description of cross-shear has been based on the previously reported finding that cross-shear is maximal when movement occurs perpendicular to fibril orientation. Here, cross-shear is described with a double-sinusoidal function that uses the angle between fibril orientation and velocity vector as input, and maximum cross-shear occurs at 90° and 270°. In the experimental part of the study, friction and wear of polyethylene were plotted against increasing sliding velocity vector angles, i.e. increasing cross-shear. It was found that wear intensified with increasing cross-shear, and wear depth could be predicted well using the double-sinusoidal function for cross-shear (r2=0.983). The friction data were then used to calculate the work to remove a unit particle by integrating the frictional force over the directional sliding distance. Using the wear volumes, determined for both longitudinal and perpendicular motion directions, the work to remove a unit volume of material was qy= 8.473 × 108 J/mm3 and qx= 1.321 × 108 J/mm3, respectively. Hence, 6.4 times more work was necessary to remove a unit wear volume in the direction of principal motion (i.e. along the molecular fibril orientation) than 90° perpendicular to it. In the future, these findings will be implemented in computational models to assess wear. PMID:23794761
Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans.
Verbree, J; Bronzwaer, Agt; van Buchem, M A; Daemen, Mjap; van Lieshout, J J; van Osch, Mjp
2017-08-01
Transcranial Doppler (TCD) sonography is a frequently employed technique for quantifying cerebral blood flow by assuming a constant arterial diameter. Given that exercise increases arterial pressure by sympathetic activation, we hypothesized that exercise might induce a change in the diameter of large cerebral arteries. Middle cerebral artery (MCA) cross-sectional area was assessed in response to handgrip exercise by direct magnetic resonance imaging (MRI) observations. Twenty healthy subjects (11 female) performed three 5 min bouts of rhythmic handgrip exercise at 60% maximum voluntary contraction, alternated with 5 min of rest. High-resolution 7 T MRI scans were acquired perpendicular to the MCA. Two blinded observers manually determined the MCA cross-sectional area. Sufficient image quality was obtained in 101 MCA-scans of 19 subjects (age-range 20-59 years). Mixed effects modelling showed that the MCA cross-sectional area decreased by 2.1 ± 0.8% (p = 0.01) during handgrip, while the heart rate increased by 11 ± 2% (p < 0.001) at constant end-tidal CO 2 (p = 0.10). In conclusion, the present study showed a 2% decrease in MCA cross-sectional area during rhythmic handgrip exercise. This further strengthens the current concept of sympathetic control of large cerebral arteries, showing in vivo vasoconstriction during exercise-induced sympathetic activation. Moreover, care must be taken when interpreting TCD exercise studies as diameter constancy cannot be assumed.
Fast visible imaging of turbulent plasma in TORPEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iraji, D.; Diallo, A.; Fasoli, A.
2008-10-15
Fast framing cameras constitute an important recent diagnostic development aimed at monitoring light emission from magnetically confined plasmas, and are now commonly used to study turbulence in plasmas. In the TORPEX toroidal device [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], low frequency electrostatic fluctuations associated with drift-interchange waves are routinely measured by means of extensive sets of Langmuir probes. A Photron Ultima APX-RS fast framing camera has recently been acquired to complement Langmuir probe measurements, which allows comparing statistical and spectral properties of visible light and electrostatic fluctuations. A direct imaging system has been developed, which allows viewingmore » the light, emitted from microwave-produced plasmas tangentially and perpendicularly to the toroidal direction. The comparison of the probability density function, power spectral density, and autoconditional average of the camera data to those obtained using a multiple head electrostatic probe covering the plasma cross section shows reasonable agreement in the case of perpendicular view and in the plasma region where interchange modes dominate.« less
NASA Technical Reports Server (NTRS)
Miller, Teresa Y.; Williams, George O.; Snyder, Robert S.
1985-01-01
The resolution of continuous flow electrophoresis systems is generally measured by the spread of the sample bands in the direction of the electrophoretic migration. This paper evaluates the cross section of the sample bands in the plane perpendicular to the flow and shows that the spread in the direction perpendicular to the migration increased significantly with the applied electric field. Concentrated samples of monodisperse latex particles and vinyltoluene T-butylstyrene particles in sample buffers of different electrical conductivities were used to map the shape of the sample bands relative to the zero electric field case. As the electric field was applied, the sample band spread from an initial diameter of only one-third the chamber thickness until it approached the chamber walls where electroosmosis significantly reduced the resolution of separation. It can be shown, however, that it is possible to minimize these distortions by careful sample preparation and experiment design.
Ockert, Ben; Braunstein, Volker; Sprecher, Christoph M; Shinohara, Yasushi; Milz, Stefan
2012-06-01
The nature and the distribution of fibrocartilage at the human glenoid labrum are unclear, and a better understanding may help to restore its function in open and arthroscopic Bankart repair. Aim of this study was to describe the fibrocartilage extent within the labrum at clinically relevant sites of the glenoid in order to relate the molecular composition of the labrum to its mechanical environment. Twelve fresh frozen human cadaveric shoulders (mean age 38 years) were obtained, and sections perpendicular to the glenoid rim at the 12, 2, 3, 4, 6 and 9 o' clock position were labelled with antibodies against collagen I and II, aggrecan and link protein. A fibrocartilaginous transition zone with a characteristic collagen fibre orientation was found in 81% of cases, evenly distributed (83-92%) around the glenoid rim. The percentage of labrum cross-sectional area comprised of fibrocartilage averaged 28% and ranged from 26% at 12 o'clock on the glenoid clock face to 30% at 3 o'clock. The highest amount of fibrocartilage (82%) was found in the region neighbouring the hyaline articular cartilage. In the region beyond the bony edge of the glenoid, fibrocartilage cross-sectional area did not exceed 12-17%. Fibrocartilage is present at all examined positions around the glenoid rim and constitutes up to 1/3 of the cross-sectional area of the labrum. In turn, the percentage of fibrocartilage in different regions of its cross-section varies considerably. The findings suggest that the penetration of fibrocartilaginous tissue may be reduced by avoiding the highly fibrocartilage transition zone during restoration of labral detachment.
DOT National Transportation Integrated Search
2017-08-01
Skewed bridges in Kansas are often designed such that the cross-frames are carried parallel to the skew angle up to 40, while many other states place cross-frames perpendicular to the girder for skew angles greater than 20. Skewed-parallel cross-...
DOT National Transportation Integrated Search
2017-08-01
Skewed bridges in Kansas are often designed such that the cross-frames are carried parallel to the skew angle up to 40, while many other states place cross-frames perpendicular to the girder for skew angles greater than 20. Skewed-parallel cross-...
Analysis of multiple scattering contributions in electron-impact ionization of molecular hydrogen
NASA Astrophysics Data System (ADS)
Ren, Xueguang; Hossen, Khokon; Wang, Enliang; Pindzola, M. S.; Dorn, Alexander; Colgan, James
2017-10-01
We report a combined experimental and theoretical study on the low-energy (E 0 = 31.5 eV) electron-impact ionization of molecular hydrogen (H2). Triple differential cross sections are measured for a range of fixed emission angles of one outgoing electron between {θ }1=-70^\\circ and -130° covering the full 4π solid angle of the second electron. The energy sharing of the outgoing electrons varies from symmetric ({E}1={E}2=8 eV) to highly asymmetric (E 1 = 1 eV and E 2 = 15 eV). In addition to the binary and recoil lobes, a structure is observed perpendicular to the incoming beam direction which is due to multiple scattering of the projectile inside the molecular potential. The absolutely normalized experimental cross sections are compared with results from the time-dependent close-coupling (TDCC) calculations. Molecular alignment dependent TDCC results demonstrate that these structures are only present if the molecule axis is lying in the scattering plane.
Photoionization of the hydrogen atom in strong magnetic fields
NASA Technical Reports Server (NTRS)
Potekhin, Aleksandr IU.; Pavlov, George G.
1993-01-01
The photoionization of the hydrogen atom in magnetic fields B about 10 exp 11 - 10 exp 13 G typical of the surface layers of neutron stars is investigated analytically and numerically. We consider the photoionization from various tightly bound and hydrogen-like states of the atom for photons with arbitrary polarizations and wave-vector directions. It is shown that the length form of the interaction matrix elements is more appropriate in the adiabatic approximation than the velocity form, at least in the most important frequency range omega much less than omega(B), where omega(B) is the electron cyclotron frequency. Use of the length form yields nonzero cross sections for photon polarizations perpendicular to the magnetic field at omega less than omega(B); these cross sections are the ones that most strongly affect the properties of the radiation escaping from an optically thick medium, e.g., from the atmosphere of a neutron star. The results of the numerical calculations are fitted by simple analytical formulas.
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Magold, N. J.
1990-01-01
Drop weight impact testing was utilized to inflict damage on eight-ply bidirectional and unidirectional samples of carbon/epoxy and carbon/PEEK (polyetheretherketone) test specimens with impact energies ranging from 0.80 J to 1.76 J. The impacting tip was of a smaller diameter (4.2-mm) than those used in most previous studies, and the specimens were placed with a diamond wheel wafering saw through the impacted area perpendicular to the outer fibers. Photographs at 12 x magnification were taken of these cross-sections and examined. The results on the bidirectional samples show little damage until 1.13 J, at which point delaminations were seen in the epoxy specimens. The PEEK specimens showed less delamination than the epoxy specimens for a given impact energy level. The unidirectional specimens displayed more damage than the bidirectional samples for a given impact energy, with the PEEK specimens showing much less damage than the epoxy material.
Ahu Akin, F; Ree, Jongbaik; Ervin, Kent M; Kyu Shin, Hyung
2005-08-08
The energetics and dynamics of collision-induced dissociation of O2- with Ar and Xe targets are studied experimentally using guided ion-beam tandem mass spectrometry. The cross sections and the collision dynamics are modeled theoretically by classical trajectory calculations. Experimental apparent threshold energies are 2.1 and 1.1 eV in excess of the thermochemical O2- bond dissociation energy for argon and xenon, respectively. Classical trajectory calculations confirm the observed threshold behavior and the dependence of cross sections on the relative kinetic energy. Representative trajectories reveal that the bond dissociation takes place on a short time scale of about 50 fs in strong direct collisions. Collision-induced dissociation is found to be remarkably restricted to the perpendicular approach of ArXe to the molecular axis of O2-, while collinear collisions do not result in dissociation. The higher collisional energy-transfer efficiency of xenon compared with argon is attributed to both mass and polarizability effects.
NASA Astrophysics Data System (ADS)
Krueger, Alexander; Knels, Lilla; Meissner, Sven; Wendel, Martina; Heller, Axel R.; Lambeck, Thomas; Koch, Thea; Koch, Edmund
2007-07-01
Fourier domain optical coherence tomography (FD-OCT) was used to acquire three-dimensional image stacks of isolated and perfused rabbit lungs (n = 4) at different constant pulmonary airway pressures (CPAP) and during vascular fixation. After despeckling and applying a threshold, the images were segmented into air and tissue, and registered to each other to compensate for movement between CPAP steps. The air-filled cross-sectional areas were quantified using a semi-automatic algorithm. The cross-sectional area of alveolar structures taken at all three perpendicular planes increased with increasing CPAP. Between the minimal CPAP of 3 mbar and the maximum of 25 mbar the areas increased to about 140% of their initial value. There was no systematic dependency of inflation rate on initial size of the alveolar structure. During the perfusion fixation of the lungs with glutaraldehyde morphometric changes of the alveolar geometry measured with FD-OCT were negligible.
Mechanisms of leading edge protrusion in interstitial migration
Wilson, Kerry; Lewalle, Alexandre; Fritzsche, Marco; Thorogate, Richard; Duke, Tom; Charras, Guillaume
2013-01-01
While the molecular and biophysical mechanisms underlying cell protrusion on two-dimensional substrates are well understood, our knowledge of the actin structures driving protrusion in three-dimensional environments is poor, despite relevance to inflammation, development and cancer. Here we report that, during chemotactic migration through microchannels with 5 μm × 5 μm cross-sections, HL60 neutrophil-like cells assemble an actin-rich slab filling the whole channel cross-section at their front. This leading edge comprises two distinct F-actin networks: an adherent network that polymerizes perpendicular to cell-wall interfaces and a ‘free’ network that grows from the free membrane at the cell front. Each network is polymerized by a distinct nucleator and, due to their geometrical arrangement, the networks interact mechanically. On the basis of our experimental data, we propose that, during interstitial migration, medial growth of the adherent network compresses the free network preventing its retrograde movement and enabling new polymerization to be converted into forward protrusion. PMID:24305616
Topological transitions in unidirectional flow of nematic liquid crystal
NASA Astrophysics Data System (ADS)
Cummings, Linda; Anderson, Thomas; Mema, Ensela; Kondic, Lou
2015-11-01
Recent experiments by Sengupta et al. (Phys. Rev. Lett. 2013) revealed interesting transitions that can occur in flow of nematic liquid crystal under carefully controlled conditions within a long microfluidic channel of rectangular cross-section, with homeotropic anchoring at the walls. At low flow rates the director field of the nematic adopts a configuration that is dominated by the surface anchoring, being nearly parallel to the channel height direction over most of the cross-section; but at high flow rates there is a transition to a flow-dominated state, where the director configuration at the channel centerline is aligned with the flow (perpendicular to the channel height direction). We analyze simple channel-flow solutions to the Leslie-Ericksen model for nematics. We demonstrate that two solutions exist, at all flow rates, but that there is a transition between the elastic free energies of these solutions: the anchoring-dominated solution has the lowest energy at low flow rates, and the flow-dominated solution has lowest energy at high flow rates. NSF DMS 1211713.
A predictor-corrector scheme for vortex identification
NASA Technical Reports Server (NTRS)
Singer, Bart A.; Banks, David C.
1994-01-01
A new algorithm for identifying and characterizing vortices in complex flows is presented. The scheme uses both the vorticity and pressure fields. A skeleton line along the center of a vortex is produced by a two-step predictor-corrector scheme. The technique uses the vector field to move in the direction of the skeleton line and the scalar field to correct the location in the plane perpendicular to the skeleton line. A general vortex cross section can be concisely defined with five parameters at each point along the skeleton line. The details of the method and examples of its use are discussed.
Effect of electron thermal anisotropy on the kinetic cross-field streaming instability
NASA Technical Reports Server (NTRS)
Tsai, S. T.; Tanaka, M.; Gaffey, J. D., Jr.; Wu, C. S.; Da Jornada, E. H.; Ziebell, L. F.
1984-01-01
The investigation of the kinetic cross-field streaming instability, motivated by the research of collisionless shock waves and previously studied by Wu et al. (1983), is discussed more fully. Since in the ramp region of a quasi-perpendicular shock electrons can be preferentially heated in the direction transverse to the ambient magnetic field, it is both desirable and necessary to include the effect of the thermal anisotropy on the instability associated with a shock. It is found that Te-perpendicular greater than Te-parallel can significantly enhance the peak growth rate of the cross-field streaming instability when the electron beta is sufficiently high. Furthermore, the present analysis also improves the analytical and numerical solutions previously obtained.
The linear combination of vectors implies the existence of the cross and dot products
NASA Astrophysics Data System (ADS)
Pujol, Jose
2018-07-01
Given two vectors u and v, their cross product u × v is a vector perpendicular to u and v. The motivation for this property, however, is never addressed. Here we show that the existence of the cross and dot products and the perpendicularity property follow from the concept of linear combination, which does not involve products of vectors. For our proof we consider the plane generated by a linear combination of uand v. When looking for the coefficients in the linear combination required to reach a desired point on the plane, the solution involves the existence of a normal vector n = u × v. Our results have a bearing on the history of vector analysis, as a product similar to the cross product but without the perpendicularity requirement existed at the same time. These competing products originate in the work of two major nineteen-century mathematicians, W. Hamilton, and H. Grassmann. These historical aspects are discussed in some detail here. We also address certain aspects of the teaching of u × v to undergraduate students, which is known to carry some difficulties. This includes the algebraic and geometric denitions of u × v, the rule for the direction of u × v, and the pseudovectorial nature of u × v.
NASA Technical Reports Server (NTRS)
Ford, Donald B. (Inventor)
2004-01-01
A sandwich core comprises two faceplates separated by a plurality of cells. The cells are comprised of walls positioned at oblique angles relative to a perpendicular axis extending through the faceplates. The walls preferably form open cells and are constructed from open cells and are constructed from rows of ribbons. The walls may be obliquely angled relative to more than one plane extending through the perpendicular axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masters, A.; Dougherty, M. K.; Sulaiman, A. H.
A leading explanation for the origin of Galactic cosmic rays is acceleration at high-Mach number shock waves in the collisionless plasma surrounding young supernova remnants. Evidence for this is provided by multi-wavelength non-thermal emission thought to be associated with ultrarelativistic electrons at these shocks. However, the dependence of the electron acceleration process on the orientation of the upstream magnetic field with respect to the local normal to the shock front (quasi-parallel/quasi-perpendicular) is debated. Cassini spacecraft observations at Saturn’s bow shock have revealed examples of electron acceleration under quasi-perpendicular conditions, and the first in situ evidence of electron acceleration at amore » quasi-parallel shock. Here we use Cassini data to make the first comparison between energy spectra of locally accelerated electrons under these differing upstream magnetic field regimes. We present data taken during a quasi-perpendicular shock crossing on 2008 March 8 and during a quasi-parallel shock crossing on 2007 February 3, highlighting that both were associated with electron acceleration to at least MeV energies. The magnetic signature of the quasi-perpendicular crossing has a relatively sharp upstream–downstream transition, and energetic electrons were detected close to the transition and immediately downstream. The magnetic transition at the quasi-parallel crossing is less clear, energetic electrons were encountered upstream and downstream, and the electron energy spectrum is harder above ∼100 keV. We discuss whether the acceleration is consistent with diffusive shock acceleration theory in each case, and suggest that the quasi-parallel spectral break is due to an energy-dependent interaction between the electrons and short, large-amplitude magnetic structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meftah, B.
1982-01-01
Present methods used in reactor analysis do not include adequately the effect of anisotropic scattering in the calculation of resonance effective cross sections. Also the assumption that the streaming term ..cap omega...del Phi is conserved when the total, absorption and transfer cross sections are conserved, is bad because the leakage from a heterogeneous cell will not be conserved and is strongly anisotropic. A third major consideration is the coupling between different regions in a multiregion reactor; currently this effect is being completely ignored. To assess the magnitude of these effects, a code based on integral transport formalism with linear anisotropicmore » scattering was developed. Also, a more adequate formulation of the diffusion coefficient in a heterogeneous cell was derived. Two reactors, one fast, ZPR-6/5, and one thermal, TRX-3, were selected for the study. The study showed that, in general, the inclusion of linear scattering anisotropy increases the cell effective capture cross section of U-238. The increase was up to 2% in TRX-3 and 0.5% in ZPR-6/5. The effect on the multiplication factor was -0.003% ..delta..k/k for ZPR-6/5 and -0.05% ..delta..k/k for TRX-3. For the case of the diffusion coefficient, the combined effect of heterogeneity and linear anisotropy gave an increase of up to 29% in the parallel diffusion coefficient of TRX-3 and 5% in the parallel diffusion coefficient of ZPR-6/5. In contrast, the change in the perpendicular diffusion coefficient did not exceed 2% in both systems.« less
NASA Astrophysics Data System (ADS)
Fukuzawa, H.; Yuasa, H.; Koi, K.; Iwasaki, H.; Tanaka, Y.; Takahashi, Y. K.; Hono, K.
2005-05-01
We have successfully observed a nanoconstricted structure for current-confined-path (CCP) effect in current-perpendicular-to-plane-giant-magnetoresistance (CPP-GMR) spin valves. By inserting an AlCu nano-oxide layer (NOL) formed by ion-assisted oxidation (IAO) between a pinned layer and a free layer, the MR ratio was increased while maintaining a small area resistance product (RA). The cross-sectional high-resolution transmission electron microscopy image of the sample with RA =380mΩμm2, ΔRA =16mΩμm2, and MR ratio=4.3% showed that an amorphous oxide layer is a main part of the NOL that blocks the electron conduction perpendicular to plane. Some parts of the NOL are punched through crystalline, metallic channels having a diameter of a few nanometers, which are thought to work as nanoconstricted electron conduction paths between the pinned layer and the free layer. Nano-energy-dispersive-x-ray-spectrum analysis also showed that Cu is enriched in the metallic channels, whereas Al is enriched in the amorphous oxide region, indicating that the metallic channel is made of Cu and the oxide is made of Al2O3. The nanoconstricted structure with good segregation between the metallic channel and the oxide layer enables us to realize a large MR ratio in CCP-CPP spin valves.
Walker, Ray A.; Reich, Fred R.; Russell, James T.
1978-01-01
An optical extensometer is described using sequentially pulsed light beams for measuring the dimensions of objects by detecting two opposite edges of the object without contacting the object. The light beams may be of different distinguishable light characteristics, such as polarization or wave length, and are time modulated in an alternating manner at a reference frequency. The light characteristics are of substantially the same total light energy and are distributed symmetrically. In the preferred embodiment two light beam segments of one characteristic are on opposite sides of a middle segment of another characteristic. As a result, when the beam segments are scanned sequentially across two opposite edges of the object, they produce a readout signal at the output of a photoelectric detector that is compared with the reference signal by a phase comparator to produce a measurement signal with a binary level transition when the light beams cross an edge. The light beams may be of different cross sectional geometries, including two superimposed and concentric circular beam cross sections of different diameter, or two rectangular cross sections which intersect with each other substantially perpendicular so only their central portions are superimposed. Alternately, a row of three light beams can be used including two outer beams on opposite sides and separate from a middle beam. The three beams may all be of the same light characteristic. However it is preferable that the middle beam be of a different characteristic but of the same total energy as the two outer beams.
NASA Technical Reports Server (NTRS)
Hartfield, Roy J.; Hollo, Steven D.; Mcdaniel, James C.
1990-01-01
Planar measurements of injectant mole fraction and temperature have been conducted in a nonreacting supersonic combustor configured with underexpanded injection in the base of a swept ramp. The temperature measurements were conducted with a Mach 2 test section inlet in streamwise planes perpendicular to the test section wall on which the ramp was mounted. Injection concentration measurements, conducted in cross flow planes with both Mach 2 and Mach 2.9 free stream conditions, dramatically illustrate the domination of the mixing process by streamwise vorticity generated by the ramp. These measurements, conducted using a nonintrusive optical technique (laser-induced iodine fluorescence), provide an accurate and extensive experimental data base for the validation of computation fluid dynamic codes for the calculation of highly three-dimensional supersonic combustor flow fields.
TRANSPORT OF SOLAR WIND H{sup +} AND He{sup ++} IONS ACROSS EARTH’S BOW SHOCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, G. K.; Lin, N.; Lee, E.
2016-07-10
We have investigated the dependence of mass, energy, and charge of solar wind (SW) transport across Earth’s bow shock. An examination of 111 crossings during quiet SW in both quasi-perpendicular and quasi-parallel shock regions shows that 64 crossings had various degrees of heating and thermalization of SW. We found 22 crossings where the SW speed was <400 km s{sup −1}. The shock potential of a typical supercritical quasi-perpendicular shock estimated from deceleration of the SW and cutoff energy of electron flat top distribution is ∼50 Volts. We find that the temperatures of H{sup +} and He{sup ++} beams that penetratemore » the shock can sometimes be nearly the same in the upstream and downstream regions, indicating little or no heating had occurred crossing the bow shock. None of the models predict that the SW can cross the bow shock without heating. Our observations are important constraints for new models of collisionless shocks.« less
Macroscopic strain controlled ion current in an elastomeric microchannel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Chin-Chang; Nguyen, Du; Buchsbaum, Steven
We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hystereticmore » (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.« less
Stress measurement in thick plates using nonlinear ultrasonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbasi, Zeynab, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu; Ozevin, Didem, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu
2015-03-31
In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interactionmore » of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.« less
Analytical Modeling of Weld Bead Shape in Dry Hyperbaric GMAW Using Ar-He Chamber Gas Mixtures
NASA Astrophysics Data System (ADS)
Azar, Amin S.; Ås, Sigmund K.; Akselsen, Odd M.
2013-03-01
Hyperbaric arc welding is a special application of joining the pipeline steels under seawater. In order to analyze the behavior of the arc under ambient pressure, a model is required to estimate the arc efficiency. A distributed point heat source model was employed. The simulated isotherms were calibrated iteratively to fit the actual bead cross section. Basic gas mixture rules and models were used to calculate the thermal properties of the low-temperature shielding gas under the ambient pressure of 10 bar. Nine bead-on-plate welds were deposited each of which under different Ar-He chamber gas compositions. The well-known correlation between arc efficiency (delivered heat) and the thermal conductivity was established for different gas mixtures. The arc efficiency was considered separately for the transverse and perpendicular heat sources. It was found that assigning single heat efficiency factor for the entire arc, which is usually below unity, causes a noticeable underestimation for the heat transfer in the perpendicular direction and a little overestimation in the transverse direction.
Self-Assembly of Magnetic Nanoparticles at the Surface and Within Block Copolymer Films
NASA Astrophysics Data System (ADS)
Xu, Chen; Ohno, Kohji; Composto, Russell
2007-03-01
We investigate the self-assembly of magnetic Fe3O4 nanoparticles in thin films of a symmetric block copolymer of poly(styrene-b-methyl methacrylate), PS-b-PMMA (75 kg/mol). The Fe3O4 nanoparticles (4nm) are grafted by poly(methyl methacrylate) (PMMA) (2.7 kg/mol) brushes to improve their compatibility. The weight percent of Fe3O4 in PS-b-PMMA is 1, 4 and 10. The Fe3O4 reside at the intermaterial dividing surface and also form small disk-like aggregates within the PMMA phase. The addition of Fe3O4 slows down the transition from perpendicular to parallel lamellae morphology at the surface and slowing down increases as weight percent Fe3O4 increases. Using cross-sectional TEM, nanoparticles are found to be rejected from the parallel lamellae and gather preferentially within the perpendicular lamellae. These studies demonstrate that the Fe3O4 particles influence thin film morphology and visa versa. Because of widespread interest in nanodevices, this study shows that arrays of functional nanoparticles can be formed using block copolymer templates.
NASA Technical Reports Server (NTRS)
Senior, T. B. A.; Weil, H.
1977-01-01
Important in the atmospheric heat balance are the reflection, transmission, and absorption of visible and infrared radiation by clouds and polluted atmospheres. Integral equations are derived to evaluate the scattering and absorption of electromagnetic radiation from thin cylindrical dielectric shells of arbitrary cross section when irradiated by a plane wave of any polarization incident in a plane perpendicular to the generators. Application of the method to infinitely long hexagonal cylinders has yielded numerical scattering and absorption data which simulate columnar sheath ice crystals. It is found that the numerical procedures are economical for cylinders having perimeters less than approximately fifteen free-space wavelengths.
Gas sensor protection device and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, David; Magera, Craig
A gas sensor includes a sensor housing and a sensing element located within the sensor housing. The sensing element has a distal end and defines an axis. The gas sensor also includes a sensor protection device coupled to the sensor housing and at least partially surrounding the distal end of the sensing element. The sensor protection device includes a first member coupled to the housing, the first member having a generally rectangular cross-sectional shape in a plane perpendicular to the axis. The first member includes a gas inlet and a gas outlet. The sensor protection device also includes a secondmore » member coupled to the housing.« less
Velocity field near the jet orifice of a round jet in a crossflow
NASA Technical Reports Server (NTRS)
Fearn, R. L.; Benson, J. P.
1979-01-01
Experimentally determined velocities at selected locations near the jet orifice are presented and analyzed for a round jet in crossflow. Jet-to-crossflow velocity ratios of four and eight were studied experimentally for a round subsonic jet of air exhausting perpendicularly through a flat plate into a subsonic crosswind of the same temperature. Velocity measurements were made in cross sections to the jet plume located from one to four jet diameters from the orifice. Jet centerline and vortex properties are presented and utilized to extend the results of a previous study into the region close to the jet orifice.
Magnetic vortex racetrack memory
NASA Astrophysics Data System (ADS)
Geng, Liwei D.; Jin, Yongmei M.
2017-02-01
We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.
Okazaki, Masayuki; Hirata, Isao; Matsumoto, Takuya; Takahashi, Junzo
2005-12-01
The chemical analysis of hydroxyapatite and fluorapatite was carried out using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Hydroxyapatite and fluorapatite were synthesized at 80 +/- 1 degrees C and pH 7.4 +/- 0.2. Fluorapatite was better crystallized, with its (300) reflection shifted to a slightly higher angle. High-resolution transmission electron microscopy clearly revealed a typical, regular hexagonal cross section perpendicular to the c-axis for fluorapatite and a flattened hexagonal cross section for hydroxyapatite. FT-IR spectra of fluorapatite confirmed the absence of OH absorption peak--which was seen in hydroxyapatite at about 3570 cm(-1). TOF-SIMS mass spectra showed a peak at 40 amu due to calcium. In addition, a peak at 19 amu due to fluorine could be clearly seen, although the intensities of PO, PO2, and PO3 were very low. It was confirmed that TOF-SIMS clearly showed the differences between positive and negative mass spectra of hydroxyapatite and fluorapatite, especially for F-. We concluded that TOF-SIMS exhibited distinct advantages compared with other methods of analysis.
Clark, Robert M.; Cronin, John C.
1977-01-01
A contamination control device for use in a gas-insulated transmission bus consisting of a cylindrical center conductor coaxially mounted within a grounded cylindrical enclosure. The contamination control device is electrically connected to the interior surface of the grounded outer shell and positioned along an axial line at the lowest vertical position thereon. The contamination control device comprises an elongated metallic member having a generally curved cross-section in a first plane perpendicular to the axis of the bus and having an arcuate cross-section in a second plane lying along the axis of the bus. Each opposed end of the metallic member and its opposing sides are tapered to form a pair of generally converging and downward sloping surfaces to trap randomly moving conductive particles in the relatively field-free region between the metallic member and the interior surface of the grounded outer shell. The device may have projecting legs to enable the device to be spot welded to the interior of the grounded housing. The control device provides a high capture probability and prevents subsequent release of the charged particles after the capture thereof.
The Effect of Prism Orientation in the Indentation Testing of Human Molar Enamel
Braly, A.; Darnell, L.A.; Mann, A.B.; Teaford, M.F.; Weihs, T.P.
2007-01-01
Recent nanoindentation studies have demonstrated that the hardness and Young's modulus of human molar enamel decreases by more than 50% on moving from the occlusal surface to the dentin-enamel junction on cross-sectional samples. Possible sources of these variations are changes in local chemistry, microstructure, and prism orientation. This study investigates the latter source by performing nanoindentation tests at two different orientations relative to the hydroxyapatite prisms: parallel and perpendicular. A single sample volume was tested in order to maintain a constant chemistry and microstructure. The resulting data show very small differences between the two orientations for both hardness and Young's modulus. The 1.5 to 3.0% difference is significantly less than the standard deviations found within the data set. Thus, the variations in hardness and Young's modulus on cross-sectional samples of human molar are attributed to changes in local chemistry (varying levels of mineralization, organic matter, and water content) and changes in microstructure (varying volume fractions of inorganic crystals and organic matrix). The impact of prism orientation on mechanical properties measured by nanoindentation appears to be minimal. PMID:17449008
Kang, Lu; Galvin, Alison L.; Brown, Thomas D.; Jin, Zhongmin; Fisher, John
2008-01-01
A computational model has been developed to quantify the degree of cross-shear of a polyethylene pin articulating against a metallic plate, based on the direct simulation of a multidirectional pin-on-plate wear machine. The principal molecular orientation (PMO) was determined for each polymer site. The frictional work in the direction perpendicular to the PMO was assumed to produce the greatest orientation softening (Wang et al., 1997). The cross-shear ratio (CS) was defined as the frictional work perpendicular to the PMO direction, divided by the total frictional work. Cross-shear on the pin contact surface was location-specific, and of continuously changing magnitude because the direction of frictional force continuously changed due to pin rotation. The polymer pin motion was varied from a purely linear track (CS=0) up to a maximum rotation of ±55° (CS=0.254). The relationship between wear factors (K) measured experimentally and theoretically predicted CS was defined using logarithmic functions for both conventional and highly cross-linked UHMWPE. Cross-shear increased the apparent wear factor for both polyethylenes by more than 5-fold compared to unidirectional wear. PMID:17936763
NASA Astrophysics Data System (ADS)
Jiang, M.; Zhong, W. L.; Xu, Y.; Shi, Z. B.; Chen, W.; Ji, X. Q.; Ding, X. T.; Yang, Z. C.; Shi, P. W.; Liang, A. S.; Wen, J.; Li, J. Q.; Zhou, Y.; Li, Y. G.; Yu, D. L.; Liu, Y.; Yang, Q. W.; the HL-2A Team
2018-02-01
The radial profiles of perpendicular flows in the presence of the m/n=2/1 magnetic island were firstly measured in the HL-2A tokamak by hopping the work frequency of the Doppler backward scattering reflectometer system along with a two-dimensional electron cyclotron emission imaging diagnostic identifying the island locations. It has been observed that across the O-point cut the perpendicular flow is quite small at the center of the island and strongly enhanced around the boundary of the island, resulting in a large increase of the flow shear in the outer half island, while across the X-point cut the flow is almost flat in the whole island region. Meanwhile it was found that the density fluctuations are generally weakened inside the island. The results indicate that both the perpendicular flow and the density fluctuation level are modulated by the naturally rotating tearing mode near the island boundary. The cross-correlation between the perpendicular flows and the oscillating electron temperature further reveals that the modulation of the perpendicular flow occurs mainly inside and in the vicinity of the island.
The Influence of IMF By on the Bow Shock: Observation Result
NASA Astrophysics Data System (ADS)
Wang, M.; Lu, J. Y.; Kabin, K.; Yuan, H. Z.; Liu, Z.-Q.; Zhao, J. S.; Li, G.
2018-03-01
In this study we use the bow shock crossings contained in the Space Physics Data Facility database, collected by four spacecraft (IMP 8, Geotail, Magion-4, and Cluster1) to analyze the effect of the interplanetary magnetic field (IMF) By component on the bow shock position and shape. Although the IMF Bz component is usually considered much more geoeffective than By, we find that the dayside bow shock is more responsive to the eastward component of the IMF than the north-south one. We believe that the explanation lies in the changes that the Bz component induces on the magnetopause location and shape, which largely compensate the corresponding changes in the dayside bow shock location. In the tail, we find that the bow shock cross section is elongated roughly in the direction perpendicular to the IMF direction, which agrees with earlier modeling studies.
Gas turbine vane platform element
Campbell, Christian X [Oviedo, FL; Schiavo, Anthony L [Oviedo, FL; Morrison, Jay A [Oviedo, FL
2012-08-28
A gas turbine CMC shroud plate (48A) with a vane-receiving opening (79) that matches a cross-section profile of a turbine vane airfoil (22). The shroud plate (48A) has first and second curved circumferential sides (73A, 74A) that generally follow the curves of respective first and second curved sides (81, 82) of the vane-receiving opening. Walls (75A, 76A, 77A, 78A, 80, 88) extend perpendicularly from the shroud plate forming a cross-bracing structure for the shroud plate. A vane (22) may be attached to the shroud plate by pins (83) or by hoop-tension rings (106) that clamp tabs (103) of the shroud plate against bosses (105) of the vane. A circular array (20) of shroud plates (48A) may be assembled to form a vane shroud ring in which adjacent shroud plates are separated by compressible ceramic seals (93).
Structural changes in loaded equine tendons can be monitored by a novel spectroscopic technique
Kostyuk, Oksana; Birch, Helen L; Mudera, Vivek; Brown, Robert A
2004-01-01
This study aimed to investigate the preferential collagen fibril alignment in unloaded and loaded tendons using elastic scattering spectroscopy. The device consisted of an optical probe, a pulsed light source (320–860 nm), a spectrometer and a PC. Two probes with either 2.75 mm or 300 μm source-detector separations were used to monitor deep and superficial layers, respectively. Equine superficial digital flexor tendons were subjected to ex vivo progressive tensional loading. Seven times more backscattered light was detected parallel rather than perpendicular to the tendon axis with the 2.75 mm separation probe in unloaded tendons. In contrast, using the 300 μm separation probe the plane of maximum backscatter (3-fold greater) was perpendicular to the tendon axis. There was no optical anisotropy in the cross-sectional plane of the tendon (i.e. the transversely cut tendon surface), with no structural anisotropy. During mechanical loading (9–14% strain) backscatter anisotropy increased 8.5- to 18.5-fold along the principal strain axis for 2.75 mm probe separation, but almost disappeared in the perpendicular plane (measured using the 300 μm probe separation). Optical (anisotropy) and mechanical (strain) measurements were highly correlated. We conclude that spatial anisotropy of backscattered light can be used for quantitative monitoring of collagen fibril alignment and tissue reorganization during loading, with the potential for minimally invasive real-time structural monitoring of fibrous tissues in normal, pathological or repairing tissues and in tissue engineering. PMID:14578479
Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process
NASA Astrophysics Data System (ADS)
Wodarz, Siggi; Hasegawa, Takashi; Ishio, Shunji; Homma, Takayuki
2017-05-01
CoPt nanodot arrays were fabricated by combining electrodeposition and electron beam lithography (EBL) for the use of bit-patterned media (BPM). To achieve precise control of deposition uniformity and coercivity of the CoPt nanodot arrays, their crystal structure and magnetic properties were controlled by controlling the diffusion state of metal ions from the initial deposition stage with the application of bath agitation. Following bath agitation, the composition gradient of the CoPt alloy with thickness was mitigated to have a near-ideal alloy composition of Co:Pt =80:20, which induces epitaxial-like growth from Ru substrate, thus resulting in the improvement of the crystal orientation of the hcp (002) structure from its initial deposition stages. Furthermore, the cross-sectional transmission electron microscope (TEM) analysis of the nanodots deposited with bath agitation showed CoPt growth along its c-axis oriented in the perpendicular direction, having uniform lattice fringes on the hcp (002) plane from the Ru underlayer interface, which is a significant factor to induce perpendicular magnetic anisotropy. Magnetic characterization of the CoPt nanodot arrays showed increase in the perpendicular coercivity and squareness of the hysteresis loops from 2.0 kOe and 0.64 (without agitation) to 4.0 kOe and 0.87 with bath agitation. Based on the detailed characterization of nanodot arrays, the precise crystal structure control of the nanodot arrays with ultra-high recording density by electrochemical process was successfully demonstrated.
NASA Technical Reports Server (NTRS)
Harper, L. L. (Inventor)
1983-01-01
An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.
NASA Astrophysics Data System (ADS)
Adhikari, L.; Zank, G. P.; Hunana, P.; Hu, Q.
2016-12-01
Shocks are thought to be responsible for the amplification of turbulence as well as for generating turbulence throughout the heliosphere. We study the interaction of turbulence with parallel and perpendicular shock waves using the six-coupled-equation turbulence transport model of Zank et al. We model a 1D stationary shock wave using a hyperbolic tangent function and the Rankine-Hugoniot conditions for both a reduced model with four coupled equations and the full model. Eight quasi-parallel and five quasi-perpendicular events in the WIND spacecraft data sets are identified, and we compute the fluctuating magnetic and kinetic energy, the energy in forward and backward propagating modes, the total turbulent energy, the normalized residual energy, and the normalized cross helicity upstream and downstream of the observed shocks. We compare the observed fitted values upstream and downstream of the shock with numerical solutions to our model equations. The comparison shows that our theoretical results are in reasonable agreement with observations for both quasi-parallel and perpendicular shocks. We find that (1) the total turbulent energy, the energy in forward and backward propagating modes, and the normalized residual energy increase across the shock, (2) the normalized cross helicity increases or decreases across the shock, and (3) the correlation length increases upstream and downstream of the shock, and slightly flattens or decreases across the shock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, L.; Zank, G. P.; Hunana, P.
Shocks are thought to be responsible for the amplification of turbulence as well as for generating turbulence throughout the heliosphere. We study the interaction of turbulence with parallel and perpendicular shock waves using the six-coupled-equation turbulence transport model of Zank et al. We model a 1D stationary shock wave using a hyperbolic tangent function and the Rankine–Hugoniot conditions for both a reduced model with four coupled equations and the full model. Eight quasi-parallel and five quasi-perpendicular events in the WIND spacecraft data sets are identified, and we compute the fluctuating magnetic and kinetic energy, the energy in forward and backwardmore » propagating modes, the total turbulent energy, the normalized residual energy, and the normalized cross helicity upstream and downstream of the observed shocks. We compare the observed fitted values upstream and downstream of the shock with numerical solutions to our model equations. The comparison shows that our theoretical results are in reasonable agreement with observations for both quasi-parallel and perpendicular shocks. We find that (1) the total turbulent energy, the energy in forward and backward propagating modes, and the normalized residual energy increase across the shock, (2) the normalized cross helicity increases or decreases across the shock, and (3) the correlation length increases upstream and downstream of the shock, and slightly flattens or decreases across the shock.« less
An ab initio study of ion induced charge transfer dynamics in collision of carbon ions with thymine.
Bacchus-Montabonel, Marie-Christine; Tergiman, Yvette Suzanne
2011-05-28
Charge transfer in collisions of carbon ions on a thymine target has been studied theoretically in a wide collision range by means of ab initio quantum chemistry molecular methods. The process appears markedly anisotropic in the whole energy domain, significantly favoured in the perpendicular orientation. A specific decrease of the charge transfer cross sections at low collision energies may be pointed out and could induce an enhancement of the complementary fragmentation processes for collision energies down to about 10 eV, as observed for the low-electron fragmentation process. Such feature may be of important interest in ion-induced biomolecular radiation damage. This journal is © the Owner Societies 2011
NASA Astrophysics Data System (ADS)
Regoutz, A.; Oropeza, F. E.; Poll, C. G.; Payne, D. J.; Palgrave, R. G.; Panaccione, G.; Borgatti, F.; Agrestini, S.; Utsumi, Y.; Tsuei, K. D.; Liao, Y. F.; Watson, G. W.; Egdell, R. G.
2016-03-01
The contributions of Sn 5s and Ti 4s states to the valence band electronic structure of Sn-doped anatase have been identified by hard X-ray photoelectron spectroscopy. The metal s state intensity is strongly enhanced relative to that of O 2p states at high photon energies due to matrix element effects when electrons are detected parallel to the direction of the polarisation vector of the synchrotron beam, but becomes negligible in the perpendicular direction. The experimental spectra in both polarisations are in good agreement with cross section and asymmetry parameter weighted partial densities of states derived from density functional theory calculations.
NASA Astrophysics Data System (ADS)
Krämer, Florian; Gratz, Micha; Tschöpe, Andreas
2016-07-01
The magnetic field-dependent optical transmission of dilute Ni nanorod aqueous suspensions was investigated. A series of four samples of nanorods were synthesized using the AAO template method and processed to stable colloids. The distributions of their length and diameter were characterized by analysis of TEM images and revealed average diameters of ˜25 nm and different lengths in the range of 60 nm-1100 nm. The collinear magnetic and optical anisotropy was studied by static field-dependent transmission measurements of linearly polarized light parallel and perpendicular to the magnetic field direction. The experimental results were modelled assuming the field-dependent orientation distribution function of a superparamagnetic ensemble for the uniaxial ferromagnetic nanorods in liquid dispersion and extinction cross sections for longitudinal and transversal optical polarization derived from different approaches, including the electrostatic approximation and the separation of variables method, both applied to spheroidal particles, as well as finite element method simulations of spheroids and capped cylindrical particles. The extinction cross sections were compared to reveal the differences associated with the approximations of homogeneous polarization and/or particle shape. The consequences of these approximations for the quantitative analysis of magnetic field-dependent optical transmission measurements were investigated and a reliable protocol derived. Furthermore, the changes in optical cross sections induced by electromagnetic interaction between two nanorods in parallel end-to-end and side-by-side configuration as a function of their separation were studied.
Computer measurement and representation of the heart in two and three dimensions
NASA Technical Reports Server (NTRS)
Rasmussen, D.
1976-01-01
Methods for the measurement and display by minicomputer of cardiac images obtained from fluoroscopy to permit an accurate assessment of functional changes are discussed. Heart contours and discrete points can be digitized automatically or manually, with the recorded image in a video, cine, or print format. As each frame is digitized it is assigned a code name identifying the data source, experiment, run, view, and frame, and the images are filed for future reference in any sequence. Two views taken at the same point in the heart cycle are used to compute the spatial position of the ventricle apex and the midpoint of the aortic valve. The remainder of the points on the chamber border are corrected for the linear distortion of the X-rays by projection to a plane containing the chord between the apex and the aortic valve center and oriented so that lines perpendicular to the chord are parallel to the image intensifier face. The image of the chamber surface is obtained by generating circular cross sections with diameters perpendicular to the major chord. The transformed two- and three-dimensional imagery can be displayed in either static or animated form using a graphics terminal.
Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center.
Peng, Tao; Sun, Quqin; Zhao, Jianlong; Jiang, Fan; Li, Liang; Xu, Qiang; Herlach, Fritz
2013-12-01
Pulsed magnets with fast cooling channels have been developed at the Wuhan National High Magnetic Field Center. Between the inner and outer sections of a coil wound with a continuous length of CuNb wire, G10 rods with cross section 4 mm × 5 mm were inserted as spacers around the entire circumference, parallel to the coil axis. The free space between adjacent rods is 6 mm. The liquid nitrogen flows freely in the channels between these rods, and in the direction perpendicular to the rods through grooves provided in the rods. For a typical 60 T pulsed magnetic field with pulse duration of 40 ms, the cooling time between subsequent pulses is reduced from 160 min to 35 min. Subsequently, the same technology was applied to a 50 T magnet with 300 ms pulse duration. The cooling time of this magnet was reduced from 480 min to 65 min.
16 CFR 1211.12 - Requirements for edge sensors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 1211.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... that the axis is perpendicular to the plane of the door. For an edge sensor intended to be used on a... direction perpendicular to the plane of the door. See figure 6. (2) With respect to the test of paragraph (a...
Nonlinear deformations of microcapsules in elongation flow
NASA Astrophysics Data System (ADS)
Deschamps, Julien; de Loubens, Clément; Boedec, Gwenn; Georgelin, Marc; Leonetti, Marc; Soft Matter; Biophysics Group Team
2014-11-01
Soft microcapsules are drops bounded by a thin elastic shell made of cross-linked proteins. They have numerous applications for drug delivery in bioengineering, pharmaceutics and medicine, where their mechanical stability and their dynamics under flow are crucial. They can also be used as red blood cells models. Here, we investigate the mechanical behaviour of microcapsules made of albumine in strong elongational flow, up to a stretching of 180% just before breaking. The set-up allows us to visualize the deformed shape in the two perpendicular main fields of view, to manage high capillary number and to manipulate soft microcapsules. The steady-state shape of a capsule in the planar elongational flow is non-axisymmetric. In each cross section, the shape is an ellipse but with different small axis which vary in opposite sense with the stretching. Whatever the degree of cross-linking and the size of the capsules, the deformations followed the same master-curve. Comparisons between numerical predictions and experimental results permit to conclude unambiguously that the more properly strain-energy model of membrane is the generalized Hooke model.
Suzuki, Michio; Kameda, Jun; Sasaki, Takenori; Saruwatari, Kazuko; Nagasawa, Hiromichi; Kogure, Toshihiro
2010-08-01
The microstructure and its crystallographic aspect of the shell of a limpet, Lottiakogamogai, have been investigated, as the first step to clarify the mechanism of shell formation in limpet. The shell consists of five distinct layers stacked along the shell thickness direction. Transmission electron microscopy (TEM) with the focused ion beam (FIB) sample preparation technique was primarily adopted, as well as scanning electron microscopy (SEM) with electron back-scattered diffraction (EBSD). The five layers were termed as M+3, M+2, M+1, M, M-1 from the outside to the inside in previous works, where M means myostracum. The outmost M+3 layer consists of calcite with a "mosaic" structure; granular submicron sub-grains with small-angle grain boundaries often accompanying dislocation arrays. M+2 layer consists of flat prismatic aragonite crystals with a leaf-like cross section, stacked obliquely to the shell surface. It looks that the prismatic crystals are surrounded by organic sheets, forming a compartment structure. M+1 and M-1 layers adopt a crossed lamellar structure consisting of aragonite flat prisms with rectangular cross section. M layer has a prismatic structure of aragonite perpendicular to the shell surface and with irregular shaped cross sections. Distinct organic sheets were not observed between the crystals in M+1, M and M-1 layers. The {110} twins are common in all aragonite M+2, M+1, M and M-1 layers, with the twin boundaries parallel to the prisms. These results for the microstructure of each layer should be considered in the discussion of the formation mechanism of the limpet shell structure. Copyright 2010 Elsevier Inc. All rights reserved.
X-Ray Fluorescence Solvent Detection at the Substrate-Adhesive Interface
NASA Technical Reports Server (NTRS)
Wurth, Laura; Evans, Kurt; Weber, Bart; Headrick, Sarah
2005-01-01
With environmental regulations limiting the use of volatile organic compounds, low-vapor pressure solvents have replaced traditional degreasing solvents for bond substrate preparation. When used to clean and prepare porous bond substrates such as phenolic composites, low vapor pressure solvents can penetrate deep into substrate pore networks and remain there for extended periods. Trapped solvents can interact with applied adhesives either prior to or during cure, potentially compromising bond properties. Currently, methods for characterizing solvent time-depth profiles in bond substrates are limited to bulk gravimetric or sectioning techniques. While sectioning techniques such as microtome allow construction of solvent depth profiles, their depth resolution and reliability are limited by substrate type. Sectioning techniques are particularly limited near the adhesive-substrate interface where depth resolution is further limited by adhesive-substrate hardness and, in the case of a partially cured adhesive, mechanical properties differences. Additionally, sectioning techniques cannot provide information about lateral solvent diffusion. Cross-section component mapping is an alternative method for measuring solvent migration in porous substrates that eliminates the issues associated with sectioning techniques. With cross-section mapping, the solvent-wiped substrate is sectioned perpendicular rather than parallel to the wiped surface, and the sectioned surface is analyzed for the solvent or solvent components of interest using a two-dimensional mapping or imaging technique. Solvent mapping can be performed using either direct or indirect methods. With a direct method, one or more solvent components are mapped using red or Raman spectroscopy together with a moveable sample stage and/or focal plane array detector. With an indirect method, an elemental "tag" not present in the substrate is added to the solvent before the substrate is wiped. Following cross sectioning, the tag element can then be mapped by its characteristic x-ray emission using either x-ray fluorescence, or electron-beam energy-and wavelength-dispersive x-ray spectrometry. The direct mapping techniques avoid issues of different diffusion or migration rates of solvents and elemental tags, while the indirect techniques avoid spectral resolution issues in cases where solvents and substrates have adjacent or overlapping peaks. In this study, cross-section component indirect mapping is being evaluated as a method for measuring migration of d-limonene based solvents in glass-cloth phenolic composite (GCP) prior to and during subsequent bonding and epoxy adhesive cure.
The effect of magnetic islands on Ion Temperature Gradient turbulence driven transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, P., E-mail: peter.hill@york.ac.uk; York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD; Hariri, F.
2015-04-15
In this work, we address the question of the influence of magnetic islands on the perpendicular transport due to steady-state ITG turbulence on the energy transport time scale. We demonstrate that turbulence can cross the separatrix and enhance the perpendicular transport across magnetic islands. As the perpendicular transport in the interior of the island sets the critical island size needed for growth of neoclassical tearing modes, this increased transport leads to a critical island size larger than that predicted from considering collisional conductivities, but smaller than that using anomalous effective conductivities. We find that on Bohm time scales, the turbulencemore » is able to re-establish the temperature gradient across the island for islands widths w ≲ λ{sub turb}, the turbulence correlation length. The reduction in the island flattening is estimated by comparison with simulations retaining only the perpendicular temperature and no turbulence. At intermediate island widths, comparable to λ{sub turb}, turbulence is able to maintain finite temperature gradients across the island.« less
Gorodnichev, E E
2018-04-01
The problem of multiple scattering of polarized light in a two-dimensional medium composed of fiberlike inhomogeneities is studied. The attenuation lengths for the density matrix elements are calculated. For a highly absorbing medium it is found that, as the sample thickness increases, the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the sample thickness, the off-diagonal elements which are responsible for correlations between the cross-polarized waves disappear. In the asymptotic limit of very thick samples the scattered light proves to be polarized perpendicular to the fibers. The difference in the attenuation lengths between the density matrix elements results in a nonmonotonic depth dependence of the degree of polarization. In the opposite case of a weakly absorbing medium, the off-diagonal element of the density matrix and, correspondingly, the correlations between the cross-polarized fields are shown to decay faster than the intensity of waves polarized along and perpendicular to the fibers.
Flow Duct Data for Validation of Acoustic Liner Codes for Impedance Eduction
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Munro, Scott; Gaeta, R. J., Jr.
2000-01-01
The objective of the study reported here was to acquire acoustic and flow data with hard and lined duct wall duct sections for validation of a liner prediction code being developed at NASA LaRC. Both the mean flowfield and acoustic flowfields were determined in a cross-plane of the rectangular duct. A flow duct facility with acoustic drivers connected to a rectangular (4.7 x 2.0 inch) source section and a linear acoustic liner mounted downstream of the source section was used in this study. The liner section was designed to allow liner materials to be placed on all 4 walls of the duct. The test liner was of the locally-reacting type and was made from a ceramic material. The material, consisting of a tubular structure, was provided by NASA LaRC. The liner was approximately 8.89 cm (3.5 inches) thick. For the current study, only the two "short" sides of the duct were lined with liner material. The other two sides were hard walls. Two especially built instrumentation sections were attached on either sides of the liner section to allow acoustic and flow measurements to be made upstream and downstream of the liner. The two instrumentation duct sections were built to allow measurement of acoustic and flow properties at planes perpendicular to flow upstream and downstream of the liner section. The instrumentation section was also designed to provide a streamwise gradient in acoustic (complex) pressure from which the acoustic particle velocity, needed for the model validation, can be computed. Flow measurements included pressure, temperature, and velocity profiles upstream of the liner section. The in-flow sound pressure levels and phases were obtained with a microphone probe equipped with a nose cone in two cross planes upstream of the liner and two cross plane downstream of the liner. In addition to the acoustic measurements at the cross planes. axial centerline acoustic data was acquired using an axially traversing microphone probe which was traversed from a location upstream of the liner to some distance downstream of the liner. All probes used here had to be calibrated with respect to a standard microphone equipped with a nose cone to allow for the effects of flow.
NASA Technical Reports Server (NTRS)
Lu, M. C.; Erdogan, F.
1980-01-01
The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled system of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered.
NASA Astrophysics Data System (ADS)
Broll, J. M.; Fuselier, S. A.; Trattner, K. J.; Giles, B. L.; Anderson, B. J.; Burch, J. L.
2017-12-01
Proton specular reflection at quasi-perpendicular shocks provides dissipation in cases where the upstream Mach number is too high for fluid dissipation mechanisms alone - as is almost always the case at Earth's bow shock. Some evidence of He++ specular reflection was found in reduced particle distributions measured by previous spacecraft at the bow shock. However, due to resolution constraints it was not possible to confirm that the bow shock was capable of reflecting solar wind He++. We present MMS observations of quasi-perpendicular bow shock crossing that are consistent with He++ specular reflection. These observations are supported by 1D particle-in- cell simulations demonstrating that a small amount of He++ can be turned back despite having twice the mass-per-charge of the protons.
The interaction of turbulence with parallel and perpendicular shocks
NASA Astrophysics Data System (ADS)
Adhikari, L.; Zank, G. P.; Hunana, P.; Hu, Q.
2016-11-01
Interplanetary shocks exist in most astrophysical flows, and modify the properties of the background flow. We apply the Zank et al 2012 six coupled turbulence transport model equations to study the interaction of turbulence with parallel and perpendicular shock waves in the solar wind. We model the 1D structure of a stationary perpendicular or parallel shock wave using a hyperbolic tangent function and the Rankine-Hugoniot conditions. A reduced turbulence transport model (the 4-equation model) is applied to parallel and perpendicular shock waves, and solved using a 4th- order Runge Kutta method. We compare the model results with ACE spacecraft observations. We identify one quasi-parallel and one quasi-perpendicular event in the ACE spacecraft data sets, and compute various turbulent observed values such as the fluctuating magnetic and kinetic energy, the energy in forward and backward propagating modes, the total turbulent energy in the upstream and downstream of the shock. We also calculate the error associated with each turbulent observed value, and fit the observed values by a least square method and use a Fourier series fitting function. We find that the theoretical results are in reasonable agreement with observations. The energy in turbulent fluctuations is enhanced and the correlation length is approximately constant at the shock. Similarly, the normalized cross helicity increases across a perpendicular shock, and decreases across a parallel shock.
Characterization of compact-toroid injection during formation, translation, and field penetration
NASA Astrophysics Data System (ADS)
Matsumoto, T.; Roche, T.; Allfrey, I.; Sekiguchi, J.; Asai, T.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.
2016-11-01
We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ˜1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.
Characterization of compact-toroid injection during formation, translation, and field penetration.
Matsumoto, T; Roche, T; Allfrey, I; Sekiguchi, J; Asai, T; Gota, H; Cordero, M; Garate, E; Kinley, J; Valentine, T; Waggoner, W; Binderbauer, M; Tajima, T
2016-11-01
We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.
Nucleation of diamond by pure carbon ion bombardment—a transmission electron microscopy study
NASA Astrophysics Data System (ADS)
Yao, Y.; Liao, M. Y.; Wang, Z. G.; Lifshitz, Y.; Lee, S. T.
2005-08-01
A cross-sectional high-resolution transmission electron microscopy (HRTEM) study of a film deposited by a 1 keV mass-selected carbon ion beam onto silicon held at 800 °C is presented. Initially, a graphitic film with its basal planes perpendicular to the substrate is evolving. The precipitation of nanodiamond crystallites in upper layers is confirmed by HRTEM, selected area electron diffraction, and electron energy loss spectroscopy. The nucleation of diamond on graphitic edges as predicted by Lambrecht et al. [W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, Nature, 364 607 (1993)] is experimentally confirmed. The results are discussed in terms of our recent subplantation-based diamond nucleation model.
Flow Modification Induced by Quincke Rotation in a Capillary
NASA Astrophysics Data System (ADS)
Cebers, A.; Lemaire, E.; Lobry, L.
When particles immersed in a semi-insulating liquid are submitted to a sufficiently high DC field, they can rotate spontaneously around any axis perpendicular to the field (Quincke rotation). Recently we have shown that due to Quincke effect the effective viscosity of a colloidal suspension could be reduced. When the suspension is submitted to a shear, the particles rotation is amplified by the electric torque and drives the suspending liquid. For a flow in a capillary, this effect manifests itself by an increase of the flow rate. We present the results of our experiments carried out with a rectangular cross section capillary. These results are compared with the direct determination of the apparent viscosity in a Couette flow rheometer.
Magnetically induced orientation of mesochannels in mesoporous silica films at 30 tesla.
Yamauchi, Yusuke; Sawada, Makoto; Komatsu, Masaki; Sugiyama, Atsushi; Osaka, Tetsuya; Hirota, Noriyuki; Sakka, Yoshio; Kuroda, Kazuyuki
2007-12-03
We demonstrate the magnetically induced orientation of mesochannels in mesoporous silica films prepared with low-molecular-weight surfactants under an extremely high magnetic field of 30 T. This process is principally applicable to any type of surfactant that has magnetic anisotropy because such a high magnetic field provides sufficient magnetic energy for smooth magnetic orientation. Hexadecyltrimethylammonium bromide (CTAB) and polyoxyethylene-10-cetyl ether (Brij 56) were used as cationic and nonionic surfactants, respectively. According to XRD and cross-sectional TEM, mesochannels aligned perpendicular to the substrates were observed in films prepared with low-molecular-weight surfactants, although the effect was incomplete. The evolution of these types of films should lead to future applications such as highly sensitive chemical sensors and selective separation.
A Martian global groundwater model
NASA Technical Reports Server (NTRS)
Howard, Alan D.
1991-01-01
A global groundwater flow model was constructed for Mars to study hydrologic response under a variety of scenarios, improving and extending earlier simple cross sectional models. The model is capable of treating both steady state and transient flow as well as permeability that is anisotropic in the horizontal dimensions. A single near surface confining layer may be included (representing in these simulations a coherent permafrost layer). Furthermore, in unconfined flow, locations of complete saturation and seepage are determined. The flow model assumes that groundwater gradients are sufficiently low that DuPuit conditions are satisfied and the flow component perpendicular to the ground surface is negligible. The flow equations were solved using a finite difference method employing 10 deg spacing of latitude and longitude.
Microstructure, magnetic and magnetocaloric properties in Ni42.9Co6.9Mn38.3Sn11.9 alloy ribbons
NASA Astrophysics Data System (ADS)
Ma, S. C.; Ge, Q.; Yang, S.; Liu, K.; Han, X. Q.; Yu, K.; Song, Y.; Zhang, Z. S.; Jiang, Q. Z.; Chen, C. C.; Liu, R. H.; Zhong, Z. C.
2018-05-01
The microstructure, magnetic and magnetocaloric properties are investigated in the melt-spun and annealed Ni42.9Co6.9Mn38.3Sn11.9 ribbons. The columnar grains grow perpendicular to ribbon surfaces. After annealing, the grain size increases greatly. Meanwhile, the parent phase is suppressed and therefore L10 martensite predominates, indicating obvious shift of martensitic transformation to high temperature. More interestingly, the martensite variants are distinctly observed on the fractured cross-section of annealed ribbons, not just on the free surface in general. The significant enhancement of magnetic entropy change and effective refrigerant capacities with relatively smaller thermal hysteresis make annealed ribbons potential candidate in magnetic refrigeration around room temperature.
Sulphur hexaflouride: low energy (e,2e) experiments and molecular three-body distorted wave theory
NASA Astrophysics Data System (ADS)
Nixon, Kate L.; Murray, Andrew J.; Chaluvadi, H.; Ning, C. G.; Colgan, James; Madison, Don H.
2016-10-01
Experimental and theoretical triple differential ionisation cross-sections (TDCSs) are presented for the highest occupied molecular orbital of sulphur hexafluoride. These measurements were performed in the low energy regime, with outgoing electron energies ranging from 5 to 40 eV in a coplanar geometry, and with energies of 10 and 20 eV in a perpendicular geometry. Complementary theoretical predictions of the TDCS were calculated using the molecular three-body distorted wave formalism. Calculations were performed using a proper average over molecular orientations as well as the orientation-averaged molecular orbital approximation. This more sophisticated model was found to be in closer agreement with the experimental data, however neither model accurately predicts the TDCS over all geometries and energies.
The deep planetary magnetotail revisited
NASA Technical Reports Server (NTRS)
Macek, Wieslaw M.
1989-01-01
The magnetotail model of Grzedzielski and Macek (1988) is extended to great distances in the antisolar direction. For typical solar wind parameters at 1 AU and the most probable set of parameters of the model as determined for the ISEE-3 region of 200 earth radii, R(E), the open geotail extends to at least 3000 - 4000 R(E) downstream from earth, where it forms a cavity filled with a dense hot plasma and low magnetic field strengths. The cross section of this cavity in the plane perpendicular to the earth-sun line has dimensions of 300 - 400 R(E) parallel to the ecliptic plane, but only 5 R(E) in the direction normal to the ecliptic. It seems likely that the magnetotail would become filamentary at such distances.
Collisionless dissipation in quasi-perpendicular shocks. [in terresrial bow waves
NASA Technical Reports Server (NTRS)
Forslund, D. W.; Quest, K. B.; Brackbill, J. U.; Lee, K.
1984-01-01
Microscopic dissipation processes in quasi-perpendicular shocks are studied by two-dimensional plasma simulations in which electrons and ions are treated as particles moving in self-consistent electric and magnetic fields. Cross-field currents induce substantial turbulence at the shock front reducing the reflected ion fraction, increasing the bulk ion temperature behind the shock, doubling the average magnetic ramp thickness, and enhancing the upstream field aligned electron heat flow. The short scale length magnetic fluctuations observed in the bow shock are probably associated with this turbulence.
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.; Moses, S. L.; Coroniti, F. V.; Farris, M. H.; Russell, C. T.
1993-01-01
ULF waves in Earth's foreshock cause the instantaneous angle theta-B(n) between the upstream magnetic field and the shock normal to deviate from its average value. Close to the quasi-parallel (Q-parallel) shock, the transverse components of the waves become so large that the orientation of the field to the normal becomes quasi-perpendicular (Q-perpendicular) during applicable phases of each wave cycle. Large upstream pulses of B were observed completely enclosed in excursions of Theta-B(n) into the Q-perpendicular range. A recent numerical simulation included Theta-B(n) among the parameters examined in Q-parallel runs, and described a similar coincidence as intrinsic to a stage in development of the reformation process of such shocks. Thus, the natural environment of the Q-perpendicular section of Earth's bow shock seems to include an identifiable class of enlarged magnetic pulses for which local Q-perpendicular geometry is a necessary association.
NASA Astrophysics Data System (ADS)
Desbois, G.; Urai, J. L.; Kukla, P. A.
2009-12-01
Mudrocks and clay-rich fault gouges are important mechanical elements in the Earth’s crust and form seals for crustal fluids such as groundwater and hydrocarbons. Other fields of interest are the storage of anthropogenic carbon dioxide and radioactive waste in geologic formations. In addition, coupled flows, capillary processes, and associated deformation are of importance in many applied fields. A key factor to understanding these processes is a detailed understanding of the morphology of the pore space. Classic studies of porosity in fine grained materials are performed on dried or freeze dried samples and include metal injection methods, magnetic susceptibility measurement, SEM and TEM imaging, neutron scattering, NMR spectroscopy, and ESEM. Confocal microscopy and X-ray tomography are used to image porosity in coarse grained sediments but the resolution of these techniques is not sufficient at present for applications to mudrocks or clay-rich fault gouges. Therefore, observations and interpretations remain difficult because none of these approaches is able to directly describe the in-situ porosity at the pore scale. In addition, some methods require dried samples in which the natural structure of pores may have been damaged to some extent due to desiccation and dehydration of the clay minerals. A recently developed alternative is to study wet samples using a cryo-SEM, which allows stabilization of wet media at cryo-temperature, in-situ sample preparation by ion beam cross-sectioning (BIB, FIB) and observations of the stabilized microstructure at high resolution. We report on a study of Boom clay from a proposed disposal site of radioactive waste (Mol site, Belgium) using cryo-SEM at cryogenic temperature, with ion beam cross-sectioning to prepare smooth, damage free surfaces. Pores commonly have crack-like tips, preferred orientation parallel to bedding and power law size distribution. We define a number of pore types depending on shape and location in the microstructure. 3-D reconstruction by serial cross-sectioning shows 3-D connectivity of the pore space. These findings offer a new insight into the morphology of pores down to nano-scale and provide the basis for microstructure-based models of transport in clays. SEM image (SE) of a Broad Ion Beam polished cross-section performed on dry Boom clay (Mol site, Belgium) showing the 2D apparent porosity (26.3%). The cross-section is perpendicular to the bedding.
Braga, Juliana Casagrande Tavoloni; Macedo, Mariana Petaccia; Pinto, Clovis; Duprat, João; Begnami, Maria Dirlei; Pellacani, Giovanni; Rezze, Gisele Gargantini
2013-01-01
Histopathologic interpretation of dermoscopic and reflectance confocal microscopy (RCM) features of cutaneous melanoma was timidly carried out using perpendicular histologic sections, which does not mimic the same plane of the image achieved at both techniques (horizontal plane). The aim of this study was to describe the transverse histologic sections research technique and correlate main dermoscopic features characteristic of cutaneous melanoma (atypical network, irregular globules and pseudopods) with RCM and histopathology in perpendicular and transverse sections in order to offer a more precise interpretation of in vivo detectable features. Four melanomas and 2 nevi with different dermoscopic clues have been studied. Lesion areas that showed characteristic dermoscopic features were imaged by dermoscopy and confocal microscopy and directly correlated with histopathology in perpendicular and transverse sections. We presented the possibility to perform transverse sections as a new approach to understand RCM features. Atypical network showed different aspects in the 2 melanomas: in one case it was characterized by pleomorphic malignant melanocytes with tendency to form aggregates, whereas in the other elongated dendritic cells crowded around dermal papillae, some of them forming bridges that resembled the mitochondrial aspect at confocal and histopathology transversal sections. Pigment globules in melanomas and nevi differed for the presence of large atypical cells in the former, and pseudopods showed up as elongated nests protruded toward the periphery of the lesion. Transverse histologic research sections have a consistent dermoscopic and confocal correlate, and it may represent an help in confocal feature interpretation and an advance in improving melanoma diagnosis and knowledge of the biology of melanocytic lesions.
Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock
NASA Astrophysics Data System (ADS)
Desai, M. I.; Burch, J. L.; Broll, J. M.; Genestreti, K.; Torbert, R. B.; Ergun, R.; Wei, H.; Giles, B. L.; Russell, C. T.; Phan, T.; Chen, L. J.; Lai, H.; Wang, S.; Schwartz, S. J.; Allen, R. C.; Mauk, B.; Gingell, I.
2017-12-01
NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. During Phase 1a, MMS also encountered and crossed the Earth's bow shock more than 300 times. We use burst data during 2 bow shock crossings to shed new light on key open questions regarding the formation, evolution, and dissipation mechanisms at collisionless shocks. Specifically, we focus on two events that exhibit clear differences in the ion and electron properties, the associated wave activity, and, therefore in the nature of the dissipation. In the case of a quasi-perpendicular, low beta shock crossing, we find that the dissipation processes are most likely associated with field-aligned electron beams that are coincident with high frequency electrostatic waves. On the other hand, the dissipation processes at an oblique, high beta shock crossing are largely governed by the quasi-static electric field and generation of magnetosonic whistler waves that result in perpendicular temperature anisotropy for the electrons. We also discuss the implications of these results for ion heating, reflection, and particle acceleration.
Two dimensional imaging of the virtual source of a supersonic beam: helium at 125 K.
Eder, S D; Bracco, G; Kaltenbacher, T; Holst, B
2014-01-09
Here we present the first two-dimensional images of the virtual source of a supersonic helium expansion. The images were obtained using a free-standing Fresnel zone plate with an outermost zone width of 50 nm as imaging lens and a beam cooled to around 125 K. The nozzle diameter was 10 μm. The virtual source diameter was found to increase with stagnation pressure from 140 ± 30 μm at po = 21 bar up to 270 ± 25 μm at po = 101 bar. The experimental results are compared to a theoretical model based on the solution of the Boltzmann equation by the method of moments. The quantum mechanical cross sections used in the model have been calculated for the Lennard-Jones (LJ) and the Hurly-Moldover (HM) potentials. By using a scaling of the perpendicular temperature that parametrizes the perpendicular velocity distribution based on a continuum expansion approach, the LJ potential shows a good overall agreement with the experiment. However, at higher pressures the data points lie in between the two theoretical curves and the slope of the trend is more similar to the HM curve. Real gas corrections to enthalpy are considered but they affect the results less than the experimental errors.
Gratings and Random Reflectors for Near-Infrared PIN Diodes
NASA Technical Reports Server (NTRS)
Gunapala, Sarath; Bandara, Sumith; Liu, John; Ting, David
2007-01-01
Crossed diffraction gratings and random reflectors have been proposed as means to increase the quantum efficiencies of InGaAs/InP positive/intrinsic/ negative (PIN) diodes designed to operate as near-infrared photodetectors. The proposal is meant especially to apply to focal-plane imaging arrays of such photodetectors to be used for near-infrared imaging. A further increase in quantum efficiency near the short-wavelength limit of the near-infrared spectrum of such a photodetector array could be effected by removing the InP substrate of the array. The use of crossed diffraction gratings and random reflectors as optical devices for increasing the quantum efficiencies of quantum-well infrared photodetectors (QWIPs) was discussed in several prior NASA Tech Briefs articles. While the optical effects of crossed gratings and random reflectors as applied to PIN photodiodes would be similar to those of crossed gratings and random reflectors as applied to QWIPs, the physical mechanisms by which these optical effects would enhance efficiency differ between the PIN-photodiode and QWIP cases: In a QWIP, the multiple-quantum-well layers are typically oriented parallel to the focal plane and therefore perpendicular or nearly perpendicular to the direction of incidence of infrared light. By virtue of the applicable quantum selection rules, light polarized parallel to the focal plane (as normally incident light is) cannot excite charge carriers and, hence, cannot be detected. A pair of crossed gratings or a random reflector scatters normally or nearly normally incident light so that a significant portion of it attains a component of polarization normal to the focal plane and, hence, can excite charge carriers. A pair of crossed gratings or a random reflector on a PIN photodiode would also scatter light into directions away from the perpendicular to the focal plane. However, in this case, the reason for redirecting light away from the perpendicular is to increase the length of the optical path through the detector to increase the probability of absorption of photons and thereby increase the resulting excitation of charge carriers. A pair of crossed gratings or a random reflector according to the proposal would be fabricated as an integral part of photodetector structure on the face opposite the focal plane (see figure). In the presence of crossed gratings, light would make four passes through the device before departing. In the presence of a random reflector, a significant portion of the light would make more than four passes: After each bounce, light would be scattered at a different random angle, and would have a chance to escape only when it was reflected, relative to the normal, at an angle less than the critical angle for total internal reflection. Given the indices of refraction of the photodiode materials, this angle would be about 17 . This amounts to a very narrow cone for escape of trapped light.
NASA Technical Reports Server (NTRS)
Lu, M.-C.; Erdogan, F.
1983-01-01
The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled systems of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered. Previously announced in STAR as N80-18428 and N80-18429
Flow in out-of-plane double S-bends
NASA Technical Reports Server (NTRS)
Schmidt, M. C.; Whitelaw, J. H.; Yianneskis, M.
1987-01-01
An experimental investigation of developing flows through a combination of out-of-plane S-bend ducts was conducted to gain insight into the redirection of flow in geometries similar to those encountered in practical aircraft wing-root intake ducts. The present double S-bend was fabricated by placing previously investigated S-ducts and S-diffusers in series and with perpendicular planes of symmetry. Laser-Doppler anemometry was employed to measure the three components of mean velocity, the corresponding rms quantities, and Reynolds stresses in the rectangular cross-section ducts. Due to limited optical access, only two mean and rms velocity components were resolved in the circular cross-section ducts. The velocity measurements were complemented by wall static pressure measurements. The data indicates that the flows at the exit are complex and asymmetric. Secondary flows generated by the pressure field in the first S-duct are complemented or counteracted by the secondary flows produced by the area expansion and the curvature of the S-diffuser. The results indicate the dominance of the inlet conditions and geometry upon the development of secondary flows and demonstrate that the flows are predominantly pressure-controlled. The pressure distribution caused by the duct geometry determines the direction and magnitude of the bulk flow while the turbulence dictates the mixing characteristics and profiles in the near wall region.
Method for crystal growth control
Yates, Douglas A.; Hatch, Arthur E.; Goldsmith, Jeff M.
1981-01-01
The growth of a crystalline body of a selected material is controlled so that the body has a selected cross-sectional shape. The apparatus is of the type which includes the structure normally employed in known capillary die devices as well as means for observing at least the portion of the surfaces of the growing crystalline body and the meniscus (of melt material from which the body is being pulled) including the solid/liquid/vapor junction in a direction substantially perpendicular to the meniscus surface formed at the junction when the growth of the crystalline body is under steady state conditions. The cross-sectional size of the growing crystalline body can be controlled by determining which points exhibit a sharp change in the amount of reflected radiation of a preselected wavelength and controlling the speed at which the body is being pulled or the temperature of the growth pool of melt so as to maintain those points exhibiting a sharp change at a preselected spatial position relative to a predetermined reference position. The improvement comprises reference object means positioned near the solid/liquid/vapor junction and capable of being observed by the means for observing so as to define said reference position so that the problems associated with convection current jitter are overcome.
Clinical implementation of stereotaxic brain implant optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenow, U.F.; Wojcicka, J.B.
1991-03-01
This optimization method for stereotaxic brain implants is based on seed/strand configurations of the basic type developed for the National Cancer Institute (NCI) atlas of regular brain implants. Irregular target volume shapes are determined from delineation in a stack of contrast enhanced computed tomography scans. The neurosurgeon may then select up to ten directions, or entry points, of surgical approach of which the program finds the optimal one under the criterion of smallest target volume diameter. Target volume cross sections are then reconstructed in 5-mm-spaced planes perpendicular to the implantation direction defined by the entry point and the target volumemore » center. This information is used to define a closed line in an implant cross section along which peripheral seed strands are positioned and which has now an irregular shape. Optimization points are defined opposite peripheral seeds on the target volume surface to which the treatment dose rate is prescribed. Three different optimization algorithms are available: linear least-squares programming, quadratic programming with constraints, and a simplex method. The optimization routine is implemented into a commercial treatment planning system. It generates coordinate and source strength information of the optimized seed configurations for further dose rate distribution calculation with the treatment planning system, and also the coordinate settings for the stereotaxic Brown-Roberts-Wells (BRW) implantation device.« less
Role of stag beetle jaw bending and torsion in grip on rivals.
Goyens, Jana; Dirckx, Joris; Piessen, Maxim; Aerts, Peter
2016-01-01
In aggressive battles, the extremely large male stag beetle jaws have to withstand strongly elevated bite forces. We found several adaptations of the male Cyclommatus metallifer jaw morphology for enhanced robustness that conspecific females lack. As a result, males improve their grip on opponents and they maintain their safety factor (5.2-7.2) at the same level as that of females (6.8), despite their strongly elevated bite muscle force (3.9 times stronger). Males have a higher second moment of area and torsion constant than females, owing to an enhanced cross-sectional area and shape. These parameters also increase faster with increasing bending moment towards the jaw base in males than in females. Male jaws are more bending resistant against the bite reaction force than against perpendicular forces (which remain lower in battles). Because of the triangular cross section of the male jaw base, it twists more easily than it bends. This torsional flexibility creates a safety system against overload that, at the same time, secures a firm grip on rivals. We found no structural mechanical function of the large teeth halfway along the male jaws. Therefore, it appears that the main purpose of these teeth is a further improvement of grip on rivals. © 2016 The Author(s).
Role of stag beetle jaw bending and torsion in grip on rivals
Goyens, Jana; Dirckx, Joris; Piessen, Maxim; Aerts, Peter
2016-01-01
In aggressive battles, the extremely large male stag beetle jaws have to withstand strongly elevated bite forces. We found several adaptations of the male Cyclommatus metallifer jaw morphology for enhanced robustness that conspecific females lack. As a result, males improve their grip on opponents and they maintain their safety factor (5.2–7.2) at the same level as that of females (6.8), despite their strongly elevated bite muscle force (3.9 times stronger). Males have a higher second moment of area and torsion constant than females, owing to an enhanced cross-sectional area and shape. These parameters also increase faster with increasing bending moment towards the jaw base in males than in females. Male jaws are more bending resistant against the bite reaction force than against perpendicular forces (which remain lower in battles). Because of the triangular cross section of the male jaw base, it twists more easily than it bends. This torsional flexibility creates a safety system against overload that, at the same time, secures a firm grip on rivals. We found no structural mechanical function of the large teeth halfway along the male jaws. Therefore, it appears that the main purpose of these teeth is a further improvement of grip on rivals. PMID:26763329
APPARATUS FOR MEASURING TOTAL NEUTRON CROSS SECTIONS
Cranberg, L.
1959-10-13
An apparatus is described for measuring high-resolution total neutron cross sections at high counting rate in the range above 50-kev neutron energy. The pulsed-beam time-of-flight technique is used to identify the neutrons of interest which are produced in the target of an electrostatic accelerator. Energy modulation of the accelerator . makes it possible to make observations at 100 energy points simultaneously. 761O An apparatus is described for monitoring the proton resonance of a liquid which is particulariy useful in the continuous purity analysis of heavy water. A hollow shell with parallel sides defines a meander chamber positioned within a uniform magnetic fieid. The liquid passes through an inlet at the outer edge of the chamber and through a spiral channel to the central region of the chamber where an outlet tube extends into the chamber perpendicular to the magnetic field. The radiofrequency energy for the monitor is coupled to a coil positioned coaxially with the outlet tube at its entrance point within the chamber. The improvement lies in the compact mechanical arrangement of the monitor unit whereby the liquid under analysis is subjected to the same magnetic field in the storage and sensing areas, and the entire unit is shielded from external electrostatic influences.
Magnetic small-angle neutron scattering of bulk ferromagnets.
Michels, Andreas
2014-09-24
We summarize recent theoretical and experimental work in the field of magnetic small-angle neutron scattering (SANS) of bulk ferromagnets. The response of the magnetization to spatially inhomogeneous magnetic anisotropy and magnetostatic stray fields is computed using linearized micromagnetic theory, and the ensuing spin-misalignment SANS is deduced. Analysis of experimental magnetic-field-dependent SANS data of various nanocrystalline ferromagnets corroborates the usefulness of the approach, which provides important quantitative information on the magnetic-interaction parameters such as the exchange-stiffness constant, the mean magnetic anisotropy field, and the mean magnetostatic field due to jumps ΔM of the magnetization at internal interfaces. Besides the value of the applied magnetic field, it turns out to be the ratio of the magnetic anisotropy field Hp to ΔM, which determines the properties of the magnetic SANS cross-section of bulk ferromagnets; specifically, the angular anisotropy on a two-dimensional detector, the asymptotic power-law exponent, and the characteristic decay length of spin-misalignment fluctuations. For the two most often employed scattering geometries where the externally applied magnetic field H0 is either perpendicular or parallel to the wave vector k0 of the incoming neutron beam, we provide a compilation of the various unpolarized, half-polarized (SANSPOL), and uniaxial fully-polarized (POLARIS) SANS cross-sections of magnetic materials.
Dilution jet configurations in a reverse flow combustor. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Zizelman, J.
1985-01-01
Results of measurements of both temperature and velocity fields within a reverse flow combustor are presented. Flow within the combustor is acted upon by perpendicularly injected cooling jets introduced at three different locations along the inner and outer walls of the combustor. Each experiment is typified by a group of parameters: density ratio, momentum ratio, spacing ratio, and confinement parameter. Measurements of both temperature and velocity are presented in terms of normalized profiles at azimuthal positions through the turn section of the combustion chamber. Jet trajectories defined by minimum temperature and maximum velocity give a qualitative indication of the location of the jet within the cross flow. Results of a model from a previous temperature study are presented in some of the plots of data from this work.
NASA Astrophysics Data System (ADS)
Mueller, J.; Petersen, J. C.; Pilz, E.; Wiegand, H.
1981-06-01
The flow behavior in a jet mixing visualization chamber for turbulent fuel spray mixing with air under compression, e.g., at top dead center in diesel engines, was investigated with a laser Doppler velocimeter. The measurements were performed in two cuts in the profile perpendicular to the flow direction. The range of flow conditions in the measuring chamber was tested. The measurements were conducted with and without turbulence grids and shear flow grids behind the inlet nozzle. Wire grids did not enhance the turbulence in the measuring chamber. One of the tested shear flow grids produced shear flow as expected. A turbulence grid whose design was based on experimental results, produced a turbulence degree of up to 30% over the whole measuring cross section.
Characterization of compact-toroid injection during formation, translation, and field penetration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T.
2016-11-15
We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation,more » ejection/translation from the MCPG, and penetration into transverse magnetic fields.« less
Adaptation of BAp crystal orientation to stress distribution in rat mandible during bone growth
NASA Astrophysics Data System (ADS)
Nakano, T.; Fujitani, W.; Ishimoto, T.; Umakoshi, Y.
2009-05-01
Biological apatite (BAp) c-axis orientation strongly depends on stress distribution in vivo and tends to align along the principal stress direction in bones. Dentulous mandible is subjected to a complicated stress condition in vivo during chewing but few studies have been carried out on the BAp c-axis orientation; so the adaptation of BAp crystal orientation to stress distribution was examined in rat dentulous mandible during bone growth and mastication. Female SD rats 4 to 14 weeks old were prepared, and the bone mineral density (BMD) and BAp crystal orientation were analyzed in a cross-section of mandible across the first molar focusing on two positions: separated from and just under the tooth root on the same cross-section perpendicular to the mesiodistal axis. The degree of BAp orientation was analyzed by a microbeam X-ray diffractometer using Cu-Kα radiation equipped with a detector of curved one-dimensional PSPC and two-dimensional PSPC in the reflection and transmission optics, respectively. BMD quickly increased during bone growth up to 14 weeks, although it was independent of the position from the tooth root. In contrast, BAp crystal orientation strongly depended on the age and the position from the tooth root, even in the same cross-section and direction, especially along the mesiodistal and the biting axes. With increased biting stress during bone growth, the degree of BAp orientation increased along the mesiodistal axis in a position separated from the tooth root more than that near the tooth root. In contrast, BAp preferential alignment clearly appeared along the biting axis near the tooth root. We conclude that BAp orientation rather than BMD sensitively adapts to local stress distribution, especially from the chewing stress in vivo in the mandible.
NASA Astrophysics Data System (ADS)
Wobus, C.; Tucker, G.; Anderson, R.; Kean, J.; Small, E.; Hancock, G.
2007-12-01
The cross-sectional form of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate changes in channel cross-sectional geometry through time. We have developed a 2D numerical model that computes the formation of a channel in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Boundary shear stress is calculated using a simple approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local boundary surface. The resulting model predictions for the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with the predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ~3%, and the predicted peak shear stress is consistent to within ~7%. The efficiency of our model makes it suitable for calculations of long-term morphologic change both in single cross-sections and in series of cross-sections arrayed downstream. For a uniform substrate, the model predicts a strong tendency toward a fixed width-to-depth ratio, regardless of gradient or discharge. The model predicts power-law relationships between width and discharge with an exponent near 2/5, and between width and gradient with an exponent near -1/5. Recent enhancements to the model include the addition of sediment, which increases the width-to-depth ratio at steady state by favoring erosion of the channel walls relative to the channel bed (the "cover effect"). Inclusion of a probability density function of discharges with a simple parameterization of weathering along channel banks leads to the formation of model strath terraces. Downstream changes in substrate erodibility or tectonic uplift rate lead to step-function changes in channel width, consistent with empirical observations. Finally, explicit inclusion of bedload transport allows channel width, gradient, and the pattern of sediment flux to evolve dynamically, allowing us to explore the response of bedrock channels to both spatial patterns of rock uplift, and temporal variations in sediment input.
NASA Astrophysics Data System (ADS)
Srinil, Narakorn; Ma, Bowen; Zhang, Licong
2018-05-01
This study is motivated by an industrial need to better understand the vortex-induced vibration (VIV) of a curved structure subject to current flows with varying directions whose data for model calibration and validation are lacking. In this paper, new experimental investigations on the two-degree-of-freedom in-plane/out-of-plane VIV of a rigid curved circular cylinder immersed in steady and uniform free-stream flows are presented. The principal objective is to examine how the approaching flow direction versus the cylinder curvature plane affects cross-flow and in-line VIV and the associated hydrodynamic properties. This is achieved by testing the curved cylinder in 3 different flow orientations comprising the parallel flows aligned with the curvature vertical plane in convex and concave configurations, and the flows perpendicular to the curvature plane. The case of varying flow velocities in a subcritical flow range with a maximum Reynolds number of about 50,000 is considered for the curved cylinder with a low mass ratio and damping ratio. Experimental results are presented and discussed in terms of the cylinder response amplitudes, inclination angles, mean displacements, motion trajectories, oscillation frequencies, hydrodynamic forces, relative phases, fluid excitation and added inertia coefficients. Comparisons with other experimental results of curved and straight cylinder VIV are also presented. The experiments highlight the important effects of cylinder curvature versus flow orientation on the combined cross-flow/in-line VIV. The maximum (minimum) responses occur in the perpendicular (convex) flow case whereas the extended lower-branch responses occur in the concave flow case. For perpendicular flows, some meaningful features are observed, including the appearances of cross-flow mean displacements and asymmetric eight-shaped motion trajectories due to multiple 2:1:1 resonances where two out-of-plane and one in-plane dominant frequencies are simultaneously excited. Overall VIV phenomena caused by the system asymmetry should be recognised in a prediction model and design codes to capture the combined effects of curved configuration and approaching flow direction.
Monitoring on Xi'an ground fissures deformation with TerraSAR-X data
Zhao, C.; Zhang, Q.; Zhu, W.; Lu, Z.
2012-01-01
Owing to the fine resolution of TerraSAR-X data provided since 2007, this paper applied 6 TerraSAR data (strip mode) during 3rd Dec. 2009 to 23rd Mar. 2010 to detect and monitor the active fissures over Xi'an region. Three themes have been designed for high precision detection and monitoring of Xi'an-Chang'an fissures, as small baseline subsets (SBAS) to test the atmospheric effects of differential interferograms pair stepwise, 2-pass differential interferogram with very short baseline perpendicular to generate the whole deformation map with 44 days interval, and finally, corner reflector (CR) technique was used to closely monitor the relative deformation time series between two CRs settled crossing two ground fissures. Results showed that TerraSAR data are a good choice for small-scale ground fissures detection and monitoring, while special considerations should be taken for their great temporal and baseline decorrelation. Secondly, ground fissures in Xi'an were mostly detected at the joint section of stable and deformable regions. Lastly, CR-InSAR had potential ability to monitor relative deformation crossing fissures with millimeter precision.
Drift-Alfven wave mediated particle transport in an elongated density depression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincena, Stephen; Gekelman, Walter
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function ofmore » frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.« less
NASA Astrophysics Data System (ADS)
Reif, Daniel; Grasemann, Bernhard; Lockhart, Duncan
2010-05-01
The Zagros fold-and-thrust belt has formed in detached Phanerozoic sedimentary cover rocks above a shortened crystalline Precambrian basement and evolved through the Late Cretaceous to Miocene collision between the Arabian and Eurasian plate, during which the Neotethys oceanic basin was closed. Deformation is partitioned in SW directed folding and thrusting of the sediments and NW-SE to N-S trending dextral strike slip faults. The sub-cylindrical doubly-plunging fold trains with wavelengths of 5 - 10 km host more than half of the world's hydrocarbon reserves in mostly anticlinal traps. Generally the Zagros is divided into three NW-SE striking tectonic units: the Zagros Imbricate Zone, the Zagros Simply Folded Belt and the Zagros Foredeep. This work presents a balanced cross-section through the Simply Folded Belt, NE of the city of Erbil (Kurdistan, Iraq). The regional stratigraphy comprises mainly Cretaceous to Cenozoic folded sediments consisting of massive, carbonate rocks (limestones, dolomites), reacting as competent layers during folding compared to the incompetent behavior of interlayered siltstones, claystones and marls. Although the overall security situation in Kurdistan is much better than in the rest of Iraq, structural field mapping was restricted to asphalt streets, mainly because of the contamination of the area with landmines and unexploded ordnance. In order to extend the structural measurements statistically over the investigated area, we used a newly developed software tool (www.terramath.com) for interactive structural mapping of spatial orientations (i.e. dip direction and dip angles) of the sedimentary beddings from digital elevation models. Structural field data and computed measurements where integrated and projected in NE-SW striking balanced cross-sections perpendicular to the regional trend of the fold axes. We used the software LithoTect (www.geologicsystems.com) for the restoration of the cross-sections. Depending on the interpretation of the shape of the synclines, which are not exposed and covered by Neogene sediments, the shortening is in the order of 10-20%. The restoration confirms that large scale faulting is only of minor importance in the Simply Folded Belt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Terry D.; Bingham, Dennis N.; Benefiel, Bradley C.
Reactors for carrying out a chemical reaction, as well as related components, systems and methods are provided. In accordance with one embodiment, a reactor is provided that includes a furnace and a crucible positioned for heating by the furnace. A downtube is disposed at least partially within the interior crucible along an axis. At least one structure is coupled with the downtube and extends substantially across the cross-sectional area of the interior volume taken in a direction substantially perpendicular to the axis. A plurality of holes is formed in the structure enabling fluid flow therethrough. The structure coupled with themore » downtube may include a lower body portion and an upper body portion coupled with the lower body portion, wherein the plurality of holes is formed in the lower body portion adjacent to, and radially outward from, a periphery of the upper body portion.« less
The Inertia Coefficients of an Airship in a Frictionless Fluid
NASA Technical Reports Server (NTRS)
Bateman, H.
1979-01-01
The apparent inertia of an airship hull is examined. The exact solution of the aerodynamical problem is studied for hulls of various shapes with special attention given to the case of an ellipsoidal hull. So that the results for the ellipsoidal hull may be readily adapted to other cases, they are expressed in terms of the area and perimeter of the largest cross section perpendicular to the direction of motion by means of a formula involving a coefficient kappa which varies only slowly when the shape of the hull is changed, being 0.637 for a circular or elliptic disk, 0.5 for a sphere, and about 0.25 for a spheroid of fineness ratio. The case of rotation of an airship hull is investigated and a coefficient is defined with the same advantages as the corresponding coefficient for rectilinear motion.
Growth of GaN micro/nanolaser arrays by chemical vapor deposition.
Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng
2016-09-02
Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm(-2). The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.
Stowage and Deployment of Slit Tube Booms
NASA Technical Reports Server (NTRS)
Adams, Larry (Inventor); Turse, Dana (Inventor); Richardson, Doug (Inventor)
2016-01-01
A system comprising a boom having a first end, a longitudinal length, and a slit that extends along the longitudinal length of the boom; a drum having an elliptic cross section and a longitudinal length; an attachment mechanism coupled with the first end of the boom and the drum such that the boom and the drum are substantially perpendicular relative to one another; an inner shaft having a longitudinal length, the inner shaft disposed within the drum, the longitudinal length of the inner shaft is aligned substantially parallel with the longitudinal length of the drum, the inner shaft at least partially rotatable relative to the drum, and the inner shaft is at least partially rotatable with the drum; and at least two cords coupled with the inner shaft and portions of the boom near the first end of the boom.
A new device for high-temperature in situ GISAXS measurements
NASA Astrophysics Data System (ADS)
Fritz-Popovski, Gerhard; Bodner, Sabine C.; Sosada-Ludwikowska, Florentyna; Maier, Günther A.; Morak, Roland; Chitu, Livia; Bruegemann, Lutz; Lange, Joachim; Krane, Hans-Georg; Paris, Oskar
2018-03-01
A heating stage originally designed for diffraction experiments is implemented into a Bruker NANOSTAR instrument for in situ grazing incidence small-angle x-ray scattering experiments. A controlled atmosphere is provided by a dome separating the sample environment from the evacuated scattering instrument. This dome is double shelled in order to enable cooling water to flow through it. A mesoporous silica film templated by a self-assembled block copolymer system is investigated in situ during step-wise heating in air. The GISAXS pattern shows the structural development of the ordered lattice of parallel cylindrical pores. The deformation of the elliptical pore-cross section perpendicular to the film surface was studied with increasing temperature. Moreover, the performance of the setup was tested by controlled in situ heating of a copper surface under controlled oxygen containing atmosphere.
NASA Technical Reports Server (NTRS)
Liu, Boyang (Inventor); Ho, Seng-Tiong (Inventor)
2010-01-01
An imaging device. In one embodiment, the imaging device includes a plurality of first electrode strips in parallel to each other along a first direction x, wherein each first electrode strip has an elongated body with a first surface and an opposite, second surface and a thickness n.sub.1. The imaging device also includes a plurality of second electrode strips in parallel to each other along a second direction y that is substantially perpendicular to the first direction x, wherein each second electrode strip has an elongated body with a first surface and an opposite, second surface and a thickness n.sub.2. The plurality of second electrode strips are positioned apart from the plurality of first electrode strips along a third direction z that is substantially perpendicular to the first direction x and the second direction y such that the plurality of first electrode strips and the plurality of second electrode strips are crossing each other accordingly to form a corresponding number of crossing points. And at each crossing point, a semiconductor component is filled between the second surface of a corresponding first electrode strip and the first surface of a corresponding second electrode strip to form an addressable pixel.
Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers
NASA Astrophysics Data System (ADS)
Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru
2018-05-01
Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.
Hanlon, Katharine L
2018-01-01
Cross-polarisation, with regard to visible light, is a process wherein two polarisers with perpendicular orientation to one another are used on the incident and reflected lights. Under cross-polarised light birefringent structures which are otherwise invisible become apparent. Cross-polarised light eliminates glare and specular highlights, allowing for an unobstructed view of subsurface pathology. Parallel-polarisation occurs when the polarisers are rotated to the same orientation. When cross- or parallel-polarisation is applied to photography, images can be generated which aid in visualisation of surface and subsurface elements. Improved access to equipment and education has the potential to benefit practitioners, researchers, investigators and patients.
A Perpendicular Biased 2nd Harmonic Cavity for the Fermilab Booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, C. Y.; Dey, J.; Madrak, R. L.
2015-07-13
A perpendicular biased 2nd harmonic cavity is currently being designed for the Fermilab Booster. Its purpose cavity is to flatten the bucket at injection and thus change the longitudinal beam distribution so that space charge effects are decreased. It can also with transition crossing. The reason for the choice of perpendicular biasing over parallel biasing is that the Q of the cavity is much higher and thus allows the accelerating voltage to be a factor of two higher than a similar parallel biased cavity. This cavity will also provide a higher accelerating voltage per meter than the present folded transmissionmore » line cavity. However, this type of cavity presents technical challenges that need to be addressed. The two major issues are cooling of the garnet material from the effects of the RF and the cavity itself from eddy current heating because of the 15 Hz bias field ramp. This paper will address the technical challenge of preventing the garnet from overheating.« less
NASA Astrophysics Data System (ADS)
Niu, Xiaojie; Sun, Shiyan; Wang, Fujun; Jia, Xiangfu
2017-08-01
The effect of final-state dynamic correlation is investigated for helium single ionization by 75-keV proton impact analyzing fully differential cross sections (FDCS). The final state is represented by a continuum correlated wave (CCW-PT) function which accounts for the interaction between the projectile and the residual target ion (PT interaction). This continuum correlated wave function partially includes the correlation of electron-projectile and electron-target relative motion as coupling terms of the wave equation. The transition matrix is evaluated using the CCW-PT function and the Born initial state. The analytical expression of the transition matrix has been obtained. We have shown that this series is strongly convergent and analyzed the contribution of their different terms to the FDCS within the perturbation method. Illustrative computations are performed in the scattering plane and in the perpendicular plane. Both the correlation effects and the PT interaction are checked by the preset calculations. Our results are compared with absolute experimental data as well as other theoretical models. We have shown that the dynamic correlation plays an important role in the single ionization of atoms by proton impact at intermediate projectile energies, especially at large transverse momentum transfer. While overall agreement between theory and the experimental data is encouraging, detailed agreement is lacking. The need for more theoretical and experimental work is emphasized.
Monitoring of Deformation in Ground Before and After Tunnel Excavation
NASA Astrophysics Data System (ADS)
Eren, Mehmet; Hilmi Erkoç, Muharrem
2017-04-01
As population increase in metropolitan city, we need transportation and transmission tunnel. In this context, the engineers and administors attach impotance to building and planning underground-tunnel. Moreover, we must at regular intervals monitoring to deformation in underground-tunnel for quality and safety. Firstly, a deformation monitoring network is designed as perpendicular to the tunnel main axis. Secondly, the prescribed number of deformation measurements must be made. Finally, the deformation analysis is evaluated and its results is interpreted. This study investigates how deformation in monitoring network during and after tunnel excavate change.For this purpose, a deformation monitoring network of 18 object point and 4 reference point was established. Object points networks was designed steeply to the tunnel main axis as 3 cross section. Each cross section consisted of 3 point left, 2 point right and 1 point at the flowing line. Initial conditional measurement was made before tunnel excavation. Then the deformation measurement was made 5 period (1 period measured after tunnel excavate). All data sets were adjusted according to free adjustment method. The results from the investigation considering the tunnel line, a symmetrical subsidence was observed. The following day of tunnel excavation, we were observed %68 per of the total deformation. At the end of the last period measurements, %99 per of the total deformation was detected. Keywords: Tunnel, Deformation, Subsidence, Excavation
Illustration of cross flow of polystyrene melts through a coathanger die
NASA Astrophysics Data System (ADS)
Schöppner, V.; Henke, B.
2015-05-01
To design an optimal coathanger die with a uniform flow rate distribution and low pressure drop, it is essential to understand the flow conditions in the die. This is important because the quality of the product is influenced by the flow velocity and the flow rate distribution. In extrusion dies, cross flows also occur in addition to the main flow, which flow perpendicular to the main flow. This results in pressure gradients in the extrusion direction, which have an influence on flow distribution and pressure drop in the die. In recent decades, quantitative representation and analysis of physical flow processes have made considerable progress in predicting the weather, developing drive technologies and designing aircraft using simulation methods and lab trials. Using the flow-line method, the flow is analyzed in flat film extrusion dies with a rectangular cross-section, in particular cross flows. The simplest method to visualize the flow is based on the measurement of obstacle orientation in the flow field by adding individual particles. A near-surface flow field can be visualized by using wool or textile yarns. By sticking thin, frayed at the ends of strands of wool surface that is to be examined cross flows, near-wall profiles of the flow and vortex and separation regions can be visualized. A further possibility is to add glass fibers and analyze the fiber orientation by microscopy and x-ray analysis. In this paper the influence of process parameters (e.g. melt temperatures and throughput) on cross flow and fiber orientation is described.
Direction control of anisotropy in the soft-magnetic underlayer for L10 Fe-Pt perpendicular media
NASA Astrophysics Data System (ADS)
Suzuki, Toshio
2005-05-01
Induced anisotropy of soft-magnetic underlayers (SUL) were pinned to radial and circumferential directions in double-layered perpendicular media, and effects of the directions on recording properties were studied for Fe-Pt media. A medium with the SUL of radial anisotropy showed a sharper cross-track profile than that of a medium with the SUL of circumferential anisotropy. Furthermore, signal-to-noise ratio (SNR) of the former was found to be 4dB higher than that of the latter at 500kfrpi. A SUL of radial anisotropy with an anisotropy-dispersion narrower could result in suppressing the fluctuation of write-field gradient and lead to further high SNR.
NASA Astrophysics Data System (ADS)
Cao, M.-H.; Jiang, H.-K.; Chin, J.-S.
1982-04-01
An improved flat-fan spray model is used for the semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow. The model assumes that, due to the aerodynamic force of the high-velocity cross air flow, the injected fuel immediately forms a flat-fan liquid sheet perpendicular to the cross flow. Once the droplets have been formed, the trajectories of individual droplets determine fuel distribution downstream. Comparison with test data shows that the proposed model accurately predicts liquid fuel distribution at any point downstream of a plain orifice injector under high-velocity, low-temperature uniform cross-stream air flow over a wide range of conditions.
Observation of organ-pipe acoustic excitations in supported thin films
NASA Astrophysics Data System (ADS)
Zhang, X.; Sooryakumar, R.; Every, A. G.; Manghnani, M. H.
2001-08-01
Brillouin light scattering from supported silicon oxynitride films reveal an extended series of acoustic excitations occurring at regular frequency intervals when the mode wave vector is perpendicular to the film surface. These periodic peaks are identified as distinct standing wave excitations that, similar to harmonics of an open-ended organ pipe, occur due to the boundary conditions imposed by the free surface and substrate-film interface. The surface ripple and volume elasto-optic scattering mechanisms contribute to the scattering cross sections and lead to dramatic interference effects at low frequencies where the surface corrugations play a dominant role. The transformation of these standing wave excitations to modes with finite in-plane wave vectors is also investigated. The results are discussed in the framework of a Green's-function formalism that reproduces the experimental features and illustrate the importance of the standing modes in evaluating the longitudinal elastic properties of the films.
Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex.
Skab, Ihor; Vasylkiv, Yurij; Savaryn, Viktoriya; Vlokh, Rostyslav
2011-04-01
We report the results of studies of the torsion effect on the optical birefringence in LiNbO(3) crystals. We found that the twisting of those crystals causes a birefringence distribution revealing nontrivial peculiarities. In particular, they have a special point at the center of the cross section perpendicular to the torsion axis where the zero birefringence value occurs. It has also been ascertained that the surface of the spatial birefringence distribution has a conical shape, with the cone axis coinciding with the torsion axis. We revealed that an optical vortex, with a topological charge equal to unity, appears under the torsion of LiNbO(3) crystals. It has been shown that, in contrast to the q plate, both the efficiency of spin-orbital coupling and the orbital momentum of the emergent light can be operated by the torque moment. © 2011 Optical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arman, B.; An, Q.; Luo, S. N.
We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore » CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less
Dong, Wenyong; Cheng, Haixing; Yao, Yuan; Zhou, Yongfeng; Tong, Gangsheng; Yan, Deyue; Lai, Yijian; Li, Wei
2011-01-04
In this Article, we combine the characters of hyperbranched polymers and the concept of double-hydrophilic block copolymer (DHBC) to design a 3D crystal growth modifier, HPG-COOH. The novel modifier can efficiently control the crystallization of CaCO(3) from amorphous nanoparticles to vaterite hollow spheres by a nonclassical crystallization process. The obtained vaterite hollow spheres have a special puffy dandelion-like appearance; that is, the shell of the hollow spheres is constructed by platelet-like vaterite mesocrystals, perpendicular to the globe surface. The cross-section of the wall of a vaterite hollow sphere is similar to that of nacres in microstructure, in which platelet-like calcium carbonate mesocrystals pile up with one another. These results reveal the topology effect of the crystal growth modifier on biomineralization and the essential role of the nonclassical crystallization for constructing hierarchical microstructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihelic, Andrej; Zitnik, Matjaz
2007-06-15
We study the Stark effect on doubly excited states of the helium atom below N=2. We present the ab initio photoionization and total inelastic photon scattering cross sections calculated with the method of complex scaling for field strengths F{<=}100 kV/cm. The calculations are compared to the measurements of the ion [Phys. Rev. Lett. 90, 133002 (2003)] and vacuum ultraviolet fluorescence yields [Phys. Rev. Lett. 96, 093001 (2006)]. For the case of photoionization and for incident photons with polarization vector P parallel to the electric field F, we confirm the propensity rule proposed by Tong and Lin [Phys. Rev. Lett. 92,more » 223003 (2004)]. Furthermore, the rule is also shown to apply for F perpendicular P and for the case of the inelastic scattering in both experimental geometries.« less
Hot SPOT Eclipses in Dwarf Novae
NASA Astrophysics Data System (ADS)
Smak, J.
1996-10-01
Eclipses of the hot spot in four dwarf novae: U Gem, IP Peg, Z Cha, and OY Car are re-analyzed, assuming two models for the shape of the spot. In Model 1 an elliptical spot is assumed, with the semi-axes s_a in the orbital plane and s_b perpendicular to the orbital plane, its center located on the stream trajectory. The results show that such an ellipse is, within errors, tangent to the disk's circumference. In all four cases the resulting dimensions of the spot s_a are larger than the theoretical cross-section of the stream. Accordingly, in Model2 the spot is assumed to consist of a head, centered on the stream trajectory, and a tail, extending downstream, ie., along disk's circumference. In some cases the resulting parameters, eg., mass ratios or disk radii, differ significantly from those obtained with Model 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Tartakovsky, Alexandre M.
This work presents a hierarchical model for solute transport in bounded layered porous media with random permeability. The model generalizes the Taylor-Aris dispersion theory to stochastic transport in random layered porous media with a known velocity covariance function. In the hierarchical model, we represent (random) concentration in terms of its cross-sectional average and a variation function. We derive a one-dimensional stochastic advection-dispersion-type equation for the average concentration and a stochastic Poisson equation for the variation function, as well as expressions for the effective velocity and dispersion coefficient. We observe that velocity fluctuations enhance dispersion in a non-monotonic fashion: the dispersionmore » initially increases with correlation length λ, reaches a maximum, and decreases to zero at infinity. Maximum enhancement can be obtained at the correlation length about 0.25 the size of the porous media perpendicular to flow.« less
Ultraviolet laser beam monitor using radiation responsive crystals
McCann, Michael P.; Chen, Chung H.
1988-01-01
An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.
NASA Astrophysics Data System (ADS)
Rosa, Barbara L. T.; Marçal, Lucas A. B.; Ribeiro Andrade, Rodrigo; Dornellas Pinto, Luciana; Rodrigues, Wagner N.; Lustoza Souza, Patrícia; Pamplona Pires, Mauricio; Wagner Nunes, Ricardo; Malachias, Angelo
2017-07-01
In this work we attempt to directly observe anisotropic partial relaxation of epitaxial InAs islands using transmission electron microscopy (TEM) and synchrotron x-ray diffraction on a 15 nm thick InAs:GaAs nanomembrane. We show that under such conditions TEM provides improved real-space statistics, allowing the observation of partial relaxation processes that were not previously detected by other techniques or by usual TEM cross section images. Besides the fully coherent and fully relaxed islands that are known to exist above previously established critical thickness, we prove the existence of partially relaxed islands, where incomplete 60° half-loop misfit dislocations lead to a lattice relaxation along one of the <110> directions, keeping a strained lattice in the perpendicular direction. Although individual defects cannot be directly observed, their implications to the resulting island registry are identified and discussed within the frame of half-loops propagations.
Giant magneto-optical Raman effect in a layered transition metal compound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Jianting; Zhang, Anmin; Fan, Jiahe
2016-02-16
Here, we report a dramatic change in the intensity of a Raman mode with applied magnetic field, displaying a gigantic magneto-optical effect. Using the nonmagnetic layered material MoS 2 as a prototype system, we demonstrate that the application of a magnetic field perpendicular to the layers produces a dramatic change in intensity for the out-of-plane vibrations of S atoms, but no change for the in-plane breathing mode. The distinct intensity variation between these two modes results from the effect of field-induced broken symmetry on Raman scattering cross-section. A quantitative analysis on the field-dependent integrated Raman intensity provides a unique methodmore » to precisely determine optical mobility. Our analysis is symmetry-based and material-independent, and thus the observations should be general and inspire a new branch of inelastic light scattering and magneto-optical applications.« less
Rosa, Barbara L T; Marçal, Lucas A B; Andrade, Rodrigo Ribeiro; Pinto, Luciana Dornellas; Rodrigues, Wagner N; Souza, Patrícia Lustoza; Pires, Mauricio Pamplona; Nunes, Ricardo Wagner; Malachias, Angelo
2017-07-28
In this work we attempt to directly observe anisotropic partial relaxation of epitaxial InAs islands using transmission electron microscopy (TEM) and synchrotron x-ray diffraction on a 15 nm thick InAs:GaAs nanomembrane. We show that under such conditions TEM provides improved real-space statistics, allowing the observation of partial relaxation processes that were not previously detected by other techniques or by usual TEM cross section images. Besides the fully coherent and fully relaxed islands that are known to exist above previously established critical thickness, we prove the existence of partially relaxed islands, where incomplete 60° half-loop misfit dislocations lead to a lattice relaxation along one of the 〈110〉 directions, keeping a strained lattice in the perpendicular direction. Although individual defects cannot be directly observed, their implications to the resulting island registry are identified and discussed within the frame of half-loops propagations.
Spin-dependent Seebeck effects in a graphene superlattice p-n junction with different shapes
NASA Astrophysics Data System (ADS)
Zhou, Benhu; Zhou, Benliang; Yao, Yagang; Zhou, Guanghui; Hu, Ming
2017-10-01
We theoretically calculate the spin-dependent transmission probability and spin Seebeck coefficient for a zigzag-edge graphene nanoribbon p-n junction with periodically attached stubs under a perpendicular magnetic field and a ferromagnetic insulator. By using the nonequilibrium Green’s function method combining with the tight-binding Hamiltonian, it is demonstrated that the spin-dependent transmission probability and spin Seebeck coefficient for two types of superlattices can be modulated by the potential drop, the magnetization strength, the number of periods of the superlattice, the strength of the perpendicular magnetic field, and the Anderson disorder strength. Interestingly, a metal to semiconductor transition occurs as the number of the superlattice for a crossed superlattice p-n junction increases, and its spin Seebeck coefficient is much larger than that for the T-shaped one around the zero Fermi energy. Furthermore, the spin Seebeck coefficient for crossed systems can be much pronounced and their maximum absolute value can reach 528 μV K-1 by choosing optimized parameters. Besides, the spin Seebeck coefficient for crossed p-n junction is strongly enhanced around the zero Fermi energy for a weak magnetic field. Our results provide theoretical references for modulating the thermoelectric properties of a graphene superlattice p-n junction by tuning its geometric structure and physical parameters.
Modeling the evolution of channel shape: Balancing computational efficiency with hydraulic fidelity
Wobus, C.W.; Kean, J.W.; Tucker, G.E.; Anderson, R. Scott
2008-01-01
The cross-sectional shape of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate evolution of channel cross-sectional geometry. However, fully two-dimensional (2-D) flow models are too computationally expensive to implement in large-scale landscape evolution models, while available simple empirical relationships between width and discharge do not adequately capture the dynamics of channel adjustment. We have developed a simplified 2-D numerical model of channel evolution in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Erosion is assumed to be proportional to boundary shear stress, which is calculated using an approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local channel bed. Model predictions of the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ???3%, and the predicted peak shear stress is consistent to within ???7%. Furthermore, the shear stress distributions predicted by our model compare favorably with available laboratory measurements for prescribed channel shapes. A modification to our simplified code in which the flow includes a high-velocity core allows the model to be extended to estimate shear stress distributions in channels with large width-to-depth ratios. Our model is efficient enough to incorporate into large-scale landscape evolution codes and can be used to examine how channels adjust both cross-sectional shape and slope in response to tectonic and climatic forcing. Copyright 2008 by the American Geophysical Union.
The role of local stress perturbation on the simultaneous opening of orthogonal fractures
NASA Astrophysics Data System (ADS)
Boersma, Quinten; Hardebol, Nico; Barnhoorn, Auke; Bertotti, Giovanni; Drury, Martyn
2016-04-01
Orthogonal fracture networks (ladder-like networks) are arrangements that are commonly observed in outcrop studies. They form a particularly dense and well connected network which can play an important role in the effective permeability of tight hydrocarbon or geothermal reservoirs. One issue is the extent to which both the long systematic and smaller cross fractures can be simultaneously critically stressed under a given stress condition. Fractures in an orthogonal network form by opening mode-I displacements in which the main component is separation of the two fracture walls. This opening is driven by effective tensile stresses as the smallest principle stress acting perpendicular to the fracture wall, which accords with linear elastic fracture mechanics. What has been well recognized in previous field and modelling studies is how both the systematic fractures and perpendicular cross fractures require the minimum principle stress to act perpendicular to the fracture wall. Thus, these networks either require a rotation of the regional stress field or local perturbations in stress field. Using a mechanical finite element modelling software, a geological case of layer perpendicular systematic mode I opening fractures is generated. New in our study is that we not only address tensile stresses at the boundary, but also address models using pore fluid pressure. The local stress in between systematic fractures is then assessed in order to derive the probability and orientation of micro crack propagation using the theory of sub critical crack growth and Griffith's theory. Under effective tensile conditions, the results indicate that in between critically spaced systematic fractures, local effective tensile stresses flip. Therefore the orientation of the least principle stress will rotate 90°, hence an orthogonal fracture is more likely to form. Our new findings for models with pore fluid pressures instead of boundary tension show that the magnitude of effective tension in between systematic fractures is reduced but does not remove the occurring stress flip. However, putting effective tension on the boundaries will give overestimates in the reduction of the local effective tensile stress perpendicular to the larger systematic fractures and therefore the magnitude of the stress flip. In conclusion, both model approaches indicate that orthogonal fractures can form while experiencing one regional stress regime. This also means that under these specific loading and locally perturbed stress conditions both sets of orthogonal fractures stay open and can provide a pathway for fluid circulation.
Subgap transport in silicene-based superconducting hybrid structures
NASA Astrophysics Data System (ADS)
Li, Hai
2016-08-01
We investigate the influences of exchange field and perpendicular electric field on the subgap transport in silicene-based ferromagnetic/superconducting (FS) and ferromagnetic/superconducting/ferromagnetic (FSF) junctions. Owing to the unique buckling structure of silicene, the Andreev reflection and subgap conductance can be effectively modulated by a perpendicular electric field. It is revealed that the subgap conductance in the FS junction can be distinctly enhanced by an exchange field. Remarkably, resorting to the tunable band gap of silicene, an exclusive crossed Andreev reflection (CAR) process in the FSF junction can be realized within a wide range of related parameters. Moreover, in the FSF junction the exclusive CAR and exclusive elastic cotunneling processes can be switched by reversing the magnetization direction in one of the ferromagnetic regions.
MMS Observation of Shock-Reflected He++ at Earth's Quasi-Perpendicular Bow Shock
NASA Astrophysics Data System (ADS)
Broll, Jeffrey Michael; Fuselier, S. A.; Trattner, K. J.; Schwartz, S. J.; Burch, J. L.; Giles, B. L.; Anderson, B. J.
2018-01-01
Specular reflection of protons at Earth's supercritical quasi-perpendicular bow shock has long been known to lead to the thermalization of solar wind particles by velocity-space dispersion. The same process has been proposed for He++ but could not be confirmed previously due to insufficient time resolution for velocity distribution measurements. We present observations and simulations of a bow shock crossing by the Magnetospheric Multiscale (MMS) mission on 20 November 2015 indicating that a very similar reflection process for He++ is possible, and further that the part of the incoming distribution with the highest probability of reflecting is the same for H+ and He++. However, the reflection process for He++ is accomplished by deeper penetration into the downstream magnetic fields.
Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi
2018-02-14
This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.
Interstrand contact resistances of Bi-2212 Rutherford cables for SMES
NASA Astrophysics Data System (ADS)
Kawagoe, A.; Kawabata, Y.; Sumiyoshi, F.; Nagaya, S.; Hirano, N.
2006-10-01
Interstrand contact resistances of Bi-2212 Rutherford cables for SMES coils were evaluated from a comparison between measured data and 2D-FEM analyses on interstrand coupling losses in these cables. The cables were composed of 30 non-twisted Bi-2212 strands with a diameter of 0.81 mm and a cable twist pitch of 90 mm. Three samples were measured; one of them had NiCr cores and the others had no cores. One of the latter two samples repeatedly experienced bending. The interstrand coupling losses were measured in liquid helium for the straight samples under transverse ac ripple magnetic fields superposed on dc bias magnetic fields. The transverse magnetic field was applied to the samples in directions both perpendicular and parallel to the flat face of the cable. The effect of the bending on the interstrand coupling losses could be neglected for the non-cored samples. The interstrand coupling losses of NiCr cored sample decreased by about 30% compared with the non-cored samples, in case the direction of the transverse magnetic fields applied to the cable is perpendicular to the flat face of the cable. Using these results and 2D-FEM analyses, taking into account that interstrand contact conditions vary from the center to the edge in the cross-section of cables, gave us the conclusion that the between side-by-side strands contact with metallurgical bond only in both edges of the cables.
Gharekhan, Anita H; Arora, Siddharth; Oza, Ashok N; Sureshkumar, Mundan B; Pradhan, Asima; Panigrahi, Prasanta K
2011-08-01
Using the multiresolution ability of wavelets and effectiveness of singular value decomposition (SVD) to identify statistically robust parameters, we find a number of local and global features, capturing spectral correlations in the co- and cross-polarized channels, at different scales (of human breast tissues). The copolarized component, being sensitive to intrinsic fluorescence, shows different behavior for normal, benign, and cancerous tissues, in the emission domain of known fluorophores, whereas the perpendicular component, being more prone to the diffusive effect of scattering, points out differences in the Kernel-Smoother density estimate employed to the principal components, between malignant, normal, and benign tissues. The eigenvectors, corresponding to the dominant eigenvalues of the correlation matrix in SVD, also exhibit significant differences between the three tissue types, which clearly reflects the differences in the spectral correlation behavior. Interestingly, the most significant distinguishing feature manifests in the perpendicular component, corresponding to porphyrin emission range in the cancerous tissue. The fact that perpendicular component is strongly influenced by depolarization, and porphyrin emissions in cancerous tissue has been found to be strongly depolarized, may be the possible cause of the above observation.
Competition of Perpendicular and Parallel Flows in a Straight Magnetic Field
NASA Astrophysics Data System (ADS)
Li, Jiacong; Diamond, Patrick; Hong, Rongjie; Tynan, George
2017-10-01
In tokamaks, intrinsic rotations in both toroidal and poloidal directions are important for the stability and confinement. Since they compete for energy from background turbulence, the coupling of them is the key to understanding the physics of turbulent state and transport bifurcations, e.g. L-H transition. V⊥ can affect the parallel Reynolds stress via cross phase and energetics, and thus regulates the parallel flow generation. In return, the turbulence driven V∥ plays a role in the mean vorticity flux, influencing the generation of V⊥. Also, competition of intrinsic azimuthal and axial flows is observed in CSDX-a linear plasma device with straight magnetic fields. CSDX is a well diagnosed venue to study the basic physics of turbulence-flow interactions in straight magnetic fields. Here, we study the turbulent energy branching between the turbulence driven parallel flow and perpendicular flow. Specifically, the ratio between parallel and perpendicular Reynolds power decreases when the mean perpendicular flow increases. As the mean parallel flow increases, this ratio first increases and then decreases before the parallel flow shear hits the parallel shear flow instability threshold. We seek to understand the flow states and compare with CSDX experiments. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.
NASA Astrophysics Data System (ADS)
Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.
2014-12-01
The three-dimensional Lagrangian particle-based smooth particle hydrodynamics method described in Part I of this two-part paper is used to simulate the flow of self-compacting concrete (SCC) with and without steel fibres in the L-box configuration. As in Part I, the simulation of the SCC mixes without fibres emphasises the distribution of large aggregate particles of different sizes throughout the flow, whereas the simulation of high strength SCC mixes which contain steel fibres is focused on the distribution of fibres and their orientation during the flow. The capabilities of this methodology are validated by comparing the simulation results with the L-box test carried out in the laboratory. A simple method is developed to assess the reorientation and distribution of short steel fibres in self-compacting concrete mixes during the flow. The reorientation of the fibres during the flow is used to estimate the fibre orientation factor (FOF) in a cross section perpendicular to the principal direction of flow. This estimation procedure involves the number of fibres cut by the section and their inclination to the cutting plane. This is useful to determine the FOF in practical image analysis on cut sections.
Bend-imitating models of abruptly bent electron waveguides
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2011-07-01
The fundamentals of bend-imitating approach regarding the one-electron quantum mechanics in abruptly bent ideal electron waveguides are given. In general, the theory allows to model each particular circularlike bend of a continuous quantum wire as some effective multichannel scatterer being pointlike in longitudinal direction. Its scattering ability is determined by the bending angle, mean bending radius, lateral coordinate (or coordinates) in wire cross section, time (or electronic energy), and possibly by the applied magnetic field. In an equivalent formulation, the theory gives rise to rather simple matching rules for the electron wave function and its longitudinal derivative affecting only the straight parts of a wire and thereby permitting to bypass a detailed quantum mechanical consideration of elbow domains. The proposed technique is applicable for the analytical investigation of spectral and transport electronic properties related to the ideal abruptly bent 3D wirelike structures of fixed cross section and is adaptable to the 2D wirelike structures as well as to the wirelike structures subjected to the magnetic field perpendicular to the plane of wire bending. In the framework of bend-imitating approach, the investigation of electron scattering in a singly bent 2D quantum wire and a doubly bent 2D quantum wire with S-like bend has been made and the explicit dependences of transmission and reflection coefficients on geometrical parameters of respective structure as well as on electron energy have been obtained. The total suppression of mixing between the scattering channels of S-like bent quantum wire is predicted.
Wireless induction coils embedded in diamond for power transfer in medical implants.
Sikder, Md Kabir Uddin; Fallon, James; Shivdasani, Mohit N; Ganesan, Kumaravelu; Seligman, Peter; Garrett, David J
2017-08-26
Wireless power and data transfer to medical implants is a research area where improvements in current state-of-the-art technologies are needed owing to the continuing efforts for miniaturization. At present, lithographical patterning of evaporated metals is widely used for miniature coil fabrication. This method produces coils that are limited to low micron or nanometer thicknesses leading to high impedance values and thus limiting their potential quality. In the present work we describe a novel technique, whereby trenches were milled into a diamond substrate and filled with silver active braze alloy, enabling the manufacture of small, high cross-section, low impedance microcoils capable of transferring up to 10 mW of power up to a distance of 6 mm. As a substitute for a metallic braze line used for hermetic sealing, a continuous metal loop when placed parallel and close to the coil surface reduced power transfer efficiency by 43%, but not significantly, when placed perpendicular to the microcoil surface. Encapsulation of the coil by growth of a further layer of diamond reduced the quality factor by an average of 38%, which can be largely avoided by prior oxygen plasma treatment. Furthermore, an accelerated ageing test after encapsulation showed that these coils are long lasting. Our results thus collectively highlight the feasibility of fabricating a high-cross section, biocompatible and long lasting miniaturized microcoil that could be used in either a neural recording or neuromuscular stimulation device.
Measurement of fatigue accumulation in high-strength steels by microstructural examination
NASA Astrophysics Data System (ADS)
Nakagawa, Y. G.; Yoshizawa, H.; Lapides, M. E.
1990-07-01
Fatigue test bars fabricated from an SA508 class 3 low-carbon steel plate were cyclically deformed at 300 °C (constant low-cycle fatigue, total strain range Δɛ = 0.78 pct and 0.48 pct) to crack initiation (100 pct cumulative damage, CD) and to the factors 75, 50, and 25 pct CD. The test bars were cut perpendicular to the stress axis at the center of the gage length. The X-ray diffraction line-broadening (XRD) was performed on the cross sections created by the cuts. Thin foils (˜0.1-μm thick) were prepared from each cross section and used for the transmission electron microscope (TEM) and selected area diffraction (SAD) study. The half-value line breadth change measured by the XRD increased with the CD increase up to 50 pct, beyond which a significant reduction was observed for the 75 and 100 pct CD sample regardless of the incident X-ray beam angle. By the TEM, the undamaged material (0 pct CD) was characterized by high-angle boundaries, small carbide precipitates, and dislocation cell networks in grains. These characteristics did not show any appreciable changes in all of the samples with fatigue damage of the respective levels. Micro-orientation changes of the dislocation cells studied by the SAD of the foils and a statistical data analysis clearly demonstrated that the mean orientation difference in the cells and its standard deviation increased gradually as the CD increased.
NASA Technical Reports Server (NTRS)
Fearn, R. L.; Weston, R. P.
1979-01-01
A subsonic round jet injected from a flat plate into a subsonic crosswind of the same temperature was investigated. Velocity and pressure measurements in planes perpendicular to the path of the jet were made for nominal jet injection angles of 45 deg, 60 deg, 75 deg, 90 deg, and 105 deg and for jet/cross flow velocity ratios of four and eight. The velocity measurements were obtained to infer the properties of the vortex pair associated with a jet in a cross flow. Jet centerline and vortex trajectories were determined and fit with an empirical equation that includes the effects of jet injection angle, jet core length, and jet/cross flow velocity ratios.
ERIC Educational Resources Information Center
Levine, Robert
2004-01-01
The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…
Estimating three-demensional energy transfer in isotropic turbulence
NASA Technical Reports Server (NTRS)
Li, K. S.; Helland, K. N.; Rosenblatt, M.
1980-01-01
To obtain an estimate of the spectral transfer function that indicates the rate of decay of energy, an x-wire probe was set at a fixed position, and two single wire probes were set at a number of locations in the same plane perpendicular to the mean flow in the wind tunnel. The locations of the single wire probes are determined by pseudo-random numbers (Monte Carlo). Second order spectra and cross spectra are estimated. The assumption of isotropy relative to second order spectra is examined. Third order spectra are also estimated corresponding to the positions specified. A Monte Carlo Fourier transformation of the downstream bispectra corresponding to integration across the plane perpendicular to the flow is carried out assuming isotropy. Further integration is carried out over spherical energy shells.
Change detection of riverbed movements using river cross-sections and LiDAR data
NASA Astrophysics Data System (ADS)
Vetter, Michael; Höfle, Bernhard; Mandlburger, Gottfried; Rutzinger, Martin
2010-05-01
Today, Airborne LiDAR derived digital terrain models (DTMs) are used for several aspects in different scientific disciplines, such as hydrology, geomorphology or archaeology. In the field of river geomorphology, LiDAR data sets can provide information on the riverine vegetation, the level and boundary of the water body, the elevation of the riparian foreland and their roughness. The LiDAR systems in use for topographic data acquisition mainly operate with wavelengths of at least 1064nm and, thus, are not able to penetrate water. LiDAR sensors with two wavelengths are available (bathymetric LiDAR), but they can only provide elevation information of riverbeds or lakes, if the water is clear and the minimum water depth exceeds 1.5m. In small and shallow rivers it is impossible to collect information of the riverbed, regardless of the used LiDAR sensor. In this article, we present a method to derive a high-resolution DTM of the riverbed and to combine it with the LiDAR DTM resulting in a watercourse DTM (DTM-W) as a basis for calculating the changes in the riverbed during several years. To obtain such a DTM-W we use river cross-sections acquired by terrestrial survey or echo-sounding. First, a differentiation between water and land has to be done. A highly accurate water surface can be derived by using a water surface delineation algorithm, which incorporates the amplitude information of the LiDAR point cloud and additional geometrical features (e.g. local surface roughness). The second step is to calculate a thalweg line, which is the lowest flow path in the riverbed. This is achieved by extracting the lowest point of each river cross section and by fitting a B-spline curve through those points. In the next step, the centerline of the river is calculated by applying a shrinking algorithm of the water boundary polygon. By averaging the thalweg line and the centerline, a main flow path line can be computed. Subsequently, a dense array of 2D-profiles perpendicular to the flow path line is defined and the heights are computed by linear interpolation of the original cross sections. Thus, a very dense 3D point cloud of the riverbed is obtained from which a grid model of the river bed can be calculated applying any suitable interpolation technique like triangulation, linear prediction or inverse distance mapping. In a final step, the river bed model and the LiDAR DTM are combined resulting in a watercourse DTM. By computing different DTM-Ws from multiple cross section data sets, the volume and the magnitude of changes in the riverbed can be estimated. Hence, the erosion or accumulation areas and their volume changes during several years can be quantified.
NASA Astrophysics Data System (ADS)
Zhang, Kunhua; Cheng, Qiang
2018-07-01
We investigate the crossed Andreev reflection in a ferromagnet–superconductor–ferromagnet junction on the surface of a topological insulator, where the magnetizations in the left and right leads are perpendicular to the surface. We find that the nonlocal transport process can be pure crossed Andreev reflection or pure elastic cotunneling, and the switch between the two processes can be controlled electrically. Pure crossed Andreev reflection appears for all bias voltages in the superconducting energy gap, which is independent of the configuration of the magnetizations in the two leads. The spin of the crossed Andreev reflected hole could be parallel to the spin of the incident electron, which is brought by the spin-triplet pairing correlation. The average transmission probability of crossed Andreev reflection can be larger than 90%, so a high efficiency nonlocal splitting of Cooper pairs can be generated, and turned on and off electrically.
Parallel heater system for subsurface formations
Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX
2011-10-25
A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.
Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Xiong, Xue; Yang, Ming; Liu, Changlin; Li, Xiaobo; Tang, Dawei
2017-07-01
The thermal conductivity of cross-linked bulk polyethylene is studied using molecular dynamics simulation. The atomic structure of the cross-linked polyethylene (PEX) is generated through simulated bond formation using LAMMPS. The thermal conductivity of PEX is studied with different degrees of crosslinking, chain length, and tensile strain. Generally, the thermal conductivity increases with the increasing degree of crosslinking. When the length of the primitive chain increases, the thermal conductivity increases linearly. When the polymer is stretched along one direction, the thermal conductivity increases in the stretched direction and decreases in the direction perpendicular to it. However, the thermal conductivity varies slightly when the polymer is stretched in three directions simultaneously.
Hara, Toru
2014-11-01
IntroductionWe installed the first "orthogonally-arranged" FIB-SEM in 2011. The most characteristic point of this instrument is that the FIB and SEM columns are perpendicularly mounted; this is specially designed to obtain a serial-sectioning dataset more accurately and precisely with higher contrast and higher spatial resolution compare to other current FIB-SEMs [1]. Since the installation in 2011, we have developed the hardware and methodology of the serial-sectioning based on this orthogonal FIB-SEM. In order to develop this technique, we have widely opened this instrument to every researcher of all fields. In the presentation, I would like to introduce some of application results that are obtained by users of this instrument. The characteristic points of the orthogonal systemFigure 1 shows a difference between the standard and the orthogonal FIB-SEM systems: In the standard system, shown in Fig.1(a), optical axes of a FIB and a SEM crosses around 60deg., while in the orthogonal system (Fig.1(b)), they are perpendicular to each other. The standard arrangement (a) is certainly suitable for TEM lamellae preparation etc. because the FIB and the SEM can see the same position simultaneously. However, for a serial-sectioning, it is not to say the best arrangement. One of the reasons is that the sliced plane by the FIB is not perpendicular to the electron beam so that the background contrast is not uniform and observed plane is distorted. On the other hand, in case of the orthogonally-arranged system,(b), these problems are resolved. In addition, spatial resolution can keep high enough even in a low accelerating voltage (e.g. 500V) because a working distance is set very small, 2mm. From these special design, we can obtain the serial-sectioning dataset from rather wide area (∼100um) with high spatial resolution (Max. 2×2×2nm). As this system has many kinds of detectors: SE, ET, Backscatter Electron(Energy-selective), EDS, EBSD, STEM(BF&ADF), with Ar+ ion-gun and a plasma cleaner, many kinds of signals can be obtained simultaneously.jmicro;63/suppl_1/i5-a/DFU077F1F1DFU077F1Fig. 1.Schematic illustration described (a) a standard type arrangement, (b) an orthogonal type arrangement. Recent topics and Future prospectsWe have applied this instrument for wide area of microstructure analysis; Metals and Alloys, Semiconductor devices, Battery electrodes, Minerals, Biomaterials, and so on. In my presentation, I would like to introduce some of our application results and will discuss about future development of the methodology of a FIB-SEM serial sectioning. As the applied research field becomes wider, various requests for the method were arisen. However, most requests can be summarized as follows: observation of larger area, expansion of applicable sample, obtain many kind of information, linkage with other instruments. AcknowledgmentsThe instrument introduced in this work was installed at NIMS by a part of "Low-carbon research network Japan" funded by the MEXT,Japan. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Anatomy and biomechanics of gluteus maximus and the thoracolumbar fascia at the sacroiliac joint.
Barker, P J; Hapuarachchi, K S; Ross, J A; Sambaiew, E; Ranger, T A; Briggs, C A
2014-03-01
Biomechanical models predict that recruitment of gluteus maximus (GMax) will exert a compressive force across the sacroiliac joint (SIJ), yet this muscle requires morphologic assessment. The aims of this study were to document GMax's proximal attachments and assess their capacity to generate forces including compressive force at the SIJ. In 11 embalmed cadaver limbs, attachments of GMax crossing the SIJ were dissected and their fascicle orientation, length and attachment volume documented. The physiological cross-sectional area (PCSA) of each attachment was calculated along with its estimated maximum force at the SIJ and lumbar spine. GMax fascicles originated from the gluteus medius fascia, ilium, thoracolumbar fascia, erector spinae aponeurosis, sacrum, coccyx, dorsal sacroiliac and sacrotuberous ligaments in all specimens. Their mean fascicle orientation ranged from 32 to 45° below horizontal and mean length from 11 to 18 cm. The mean total PCSA of GMax was 26 cm(2) (range 16-36), of which 70% crossed the SIJ. The average maximum force predicted to be generated by GMax's total attachments crossing each SIJ was 891 N (range 572-1,215), of which 70% (702 N: range 450-1,009) could act perpendicular to the plane of the SIJ. The capacity of GMax to generate an extensor moment at lower lumbar segments was estimated at 4 Nm (range 2-9.5). GMax may generate compressive forces at the SIJ through its bony and fibrous attachments. These may assist effective load transfer between lower limbs and trunk. Copyright © 2013 Wiley Periodicals, Inc.
Topographically driven groundwater flow and the San Andreas heat flow paradox revisited
Saffer, D.M.; Bekins, B.A.; Hickman, S.
2003-01-01
Evidence for a weak San Andreas Fault includes (1) borehole heat flow measurements that show no evidence for a frictionally generated heat flow anomaly and (2) the inferred orientation of ??1 nearly perpendicular to the fault trace. Interpretations of the stress orientation data remain controversial, at least in close proximity to the fault, leading some researchers to hypothesize that the San Andreas Fault is, in fact, strong and that its thermal signature may be removed or redistributed by topographically driven groundwater flow in areas of rugged topography, such as typify the San Andreas Fault system. To evaluate this scenario, we use a steady state, two-dimensional model of coupled heat and fluid flow within cross sections oriented perpendicular to the fault and to the primary regional topography. Our results show that existing heat flow data near Parkfield, California, do not readily discriminate between the expected thermal signature of a strong fault and that of a weak fault. In contrast, for a wide range of groundwater flow scenarios in the Mojave Desert, models that include frictional heat generation along a strong fault are inconsistent with existing heat flow data, suggesting that the San Andreas Fault at this location is indeed weak. In both areas, comparison of modeling results and heat flow data suggest that advective redistribution of heat is minimal. The robust results for the Mojave region demonstrate that topographically driven groundwater flow, at least in two dimensions, is inadequate to obscure the frictionally generated heat flow anomaly from a strong fault. However, our results do not preclude the possibility of transient advective heat transport associated with earthquakes.
NASA Astrophysics Data System (ADS)
Zel'dovich, Boris Ya; Miklyaev, Yu V.; Safonov, V. I.
1995-02-01
An analysis is made of the mechanism of formation of a stationary grating in a planar photorefractive waveguide by a travelling interference pattern with the aid of an alternating electric field applied perpendicular to the waveguide layer. A theoretical calculation is reported of the distribution of the space-charge field in a transverse section of the waveguide. Finite drift lengths and trap saturation are taken into account in these calculations, which are carried out on the assumption of a weak contrast in the interference pattern.
Heating the polar corona by collisionless shocks: an example of cross-fertilization in space physics
NASA Astrophysics Data System (ADS)
Zimbardo, Gaetano; Nistico, Giuseppe
We propose a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona. We consider that a large number of small scale shock waves can be present in the solar corona, as suggested by recent observations of polar coronal jets. The heavy ion energization mechanism is, essentially, the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = -V × B. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to E is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T⊥ T , in agreement with observations. Also, heating is more than mass proportional with respect to protons, because the heavy ion orbit is mostly upstream of the quasi-perpendicular shock foot. The observed temperature ratios between O5+ ions and protons in the polar corona, and between α particles and protons in the solar wind are easily recovered. Results of numerical simulations reproducing the heavy ion reflection will be presented. This work is an interesting example of cross-fertilization in space plasma physics: the non adiabatic heating of heavy ions comes from Speiser orbits in the magnetotail, observations of preferential heating of heavy ions at shocks comes from Ulysses data on corotating interaction regions shocks, heavy ion reflecton from a magnetic barrier is akin to the ion orbits in the Ferraro-Rosenbluth sheath considered for the magnetopause, the formation of shocks in the reconnection outflow regions comes from solar flare models, and evidence of reconnection and fast flows in the polar corona comes from Hinode and STEREO observations of coronal hole jets.
Stress intensity factors for bonded orthotropic strips with cracks
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1978-01-01
The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. It is assumed that the plane contains a series of collinear cracks perpendicular to the interfaces and is loaded in tension away from and perpendicular to the cracks. Cracks fully imbedded into the homogenous strips were analyzed as well as the singular behavior of the stresses for two special crack geometries. The analysis of cracks crossing interfaces indicates that, for certain orthotropic material combinations, the stress state at the point of intersection of a crack and an interface may be bounded. A number of numerical examples are worked out in order to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters.
On the Impact Angle of Hurricane Sandy's New Jersey Landfall
NASA Technical Reports Server (NTRS)
Hall, Timothy M.; Sobel, Adam H.
2013-01-01
Hurricane Sandy's track crossed the New Jersey coastline at an angle closer to perpendicular than any previous hurricane in the historic record, one of the factors contributing to recordsetting peak-water levels in parts of New Jersey and New York. To estimate the occurrence rate of Sandy-like tracks, we use a stochastic model built on historical hurricane data from the entire North Atlantic to generate a large sample of synthetic hurricanes. From this synthetic set we calculate that under long-term average climate conditions, a hurricane of Sandy's intensity or greater (category 1+) makes NJ landfall at an angle at least as close to perpendicular as Sandy's at an average annual rate of 0.0014 yr-1 (95% confidence range 0.0007 to 0.0023); i.e., a return period of 714 years (95% confidence range 435 to 1429).
Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks
NASA Technical Reports Server (NTRS)
Veltri, P.; Mangeney, A.; Scudder, J. D.
1992-01-01
The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.
Fatigue damage development of various CFRP-laminates
NASA Technical Reports Server (NTRS)
Schulte, K.; Baron, CH.
1988-01-01
The chronic strength and fatigue behavior of a woven carbon-fiber reinforced laminate in a balanced eight-shaft satin weave style was compared to nonwoven laminates with an equivalent cross-ply layup. Half the fibers were arranged in the direction of the load and the other half perpendicular to it. Two types of nonwoven laminates consisting of continuous fibers and aligned discontinuous fibers, both produced from carbon fiber prepregs, were studied. The cross-ply laminate with continuous fiber showed the best characteristics with regard to both static strength and fatigue. The similarities and differences in damage mechanisms in the laminates are described.
Quantitative 3D reconstruction of airway and pulmonary vascular trees using HRCT
NASA Astrophysics Data System (ADS)
Wood, Susan A.; Hoford, John D.; Hoffman, Eric A.; Zerhouni, Elias A.; Mitzner, Wayne A.
1993-07-01
Accurate quantitative measurements of airway and vascular dimensions are essential to evaluate function in the normal and diseased lung. In this report, a novel method is described for three-dimensional extraction and analysis of pulmonary tree structures using data from High Resolution Computed Tomography (HRCT). Serially scanned two-dimensional slices of the lower left lobe of isolated dog lungs were stacked to create a volume of data. Airway and vascular trees were three-dimensionally extracted using a three dimensional seeded region growing algorithm based on difference in CT number between wall and lumen. To obtain quantitative data, we reduced each tree to its central axis. From the central axis, branch length is measured as the distance between two successive branch points, branch angle is measured as the angle produced by two daughter branches, and cross sectional area is measured from a plane perpendicular to the central axis point. Data derived from these methods can be used to localize and quantify structural differences both during changing physiologic conditions and in pathologic lungs.
Three-dimensional cathodoluminescence characterization of a semipolar GaInN based LED sample
NASA Astrophysics Data System (ADS)
Hocker, Matthias; Maier, Pascal; Tischer, Ingo; Meisch, Tobias; Caliebe, Marian; Scholz, Ferdinand; Mundszinger, Manuel; Kaiser, Ute; Thonke, Klaus
2017-02-01
A semipolar GaInN based light-emitting diode (LED) sample is investigated by three-dimensionally resolved cathodoluminescence (CL) mapping. Similar to conventional depth-resolved CL spectroscopy (DRCLS), the spatial resolution perpendicular to the sample surface is obtained by calibration of the CL data with Monte-Carlo-simulations (MCSs) of the primary electron beam scattering. In addition to conventional MCSs, we take into account semiconductor-specific processes like exciton diffusion and the influence of the band gap energy. With this method, the structure of the LED sample under investigation can be analyzed without additional sample preparation, like cleaving of cross sections. The measurement yields the thickness of the p-type GaN layer, the vertical position of the quantum wells, and a defect analysis of the underlying n-type GaN, including the determination of the free charge carrier density. The layer arrangement reconstructed from the DRCLS data is in good agreement with the nominal parameters defined by the growth conditions.
Shock induced Richtmyer-Meshkov instability in the presence of a wall boundary layer
NASA Astrophysics Data System (ADS)
Jourdan, G.; Billiotte, M.; Houas, L.
1996-06-01
An experimental investigation on gaseous mixing zones originated from the Richtmyer-Meshkov instability has been undertaken in a square cross section shock tube. Mass concentration fields, of one of the two mixing constituents, have been determined within the mixing zone when the shock wave passes from the heavy gas to the light one, from one gas to an other of close density, and from the light gas to the heavy one. Results have been obtained before and after the coming back of the reflected shock wave. The diagnostic method is based on the infrared absorption of one of the two constituents of the mixing zone. It is shown that the mixing zone is strongly deformed by the wall boundary layer. The consequence is the presence of strong gradients of concentration in the direction perpendicular to the shock wave propagation. Finally, it is pointed out that the mixing goes more homogeneous when the Atwood number tends to zero.
Flexure-Ring for Centering a Concave Lens in a Bore of a Housing for an Optical System
NASA Technical Reports Server (NTRS)
Ford, Virginia G. (Inventor)
2002-01-01
A flexure-ring is provided for centering a lens in a bore of a housing with 3N lens contacting stubs, where N is an integer equal to or greater than one. The stubs are formed by increasing the inside diameter of the ring made to fit tightly around a lens except at 3N locations for the aforesaid stubs, and said ring having an outside diameter made to fit tightly inside the housing bore locations. Behind each stub, a segment of the ring is removed down to a chord perpendicular to a ring diameter passing through the center of each stub. That chord is selected to have a length greater than the lens contacting surface of the stub, thereby to produce a reduced cross section of the ring on both sides of the stub to serve as flexures in relieving stresses due to different coefficients of thermal expansion of the three parts involved due to changes in temperature while in use.
Horio, Takuya; Maeda, Satoshi; Kishimoto, Naoki; Ohno, Koichi
2006-09-28
Ionic-state-resolved collision energy dependence of Penning ionization cross sections for OCS with He*(2(3)S) metastable atoms was measured in a wide collision energy range from 20 to 350 meV. Anisotropic interaction potential for the OCS-He*(2(3)S) system was obtained by comparison of the experimental data with classical trajectory simulations. It has been found that attractive potential wells around the O and S atoms are clearly different in their directions. Around the O atom, the collinear approach is preferred (the well depth is ca. 90 meV), while the perpendicular approach is favored around the S atom (the well depth is ca. 40 meV). On the basis of the optimized potential energy surface and theoretical simulations, stereo reactivity around the O and S atoms was also investigated. The results were discussed in terms of anisotropy of the potential energy surface and the electron density distribution of molecular orbitals to be ionized.
NASA Astrophysics Data System (ADS)
Watson, J. A.; Cardenas, M. B.; Neilson, B. T.; Bennett, P. C.
2015-12-01
Thermal flux related to regulated river hydropeaking has been extensively researched at the single-study site scale, but little work has been done quantifying the downstream attenuation of a single regulated flood pulse at multiple sites. In order to better understand this flood pulse attenuation we instrumented four sites with temperature probes along a 91 km stretch of the Colorado River downstream of longhorn dam, Austin, TX. Piezometer transects perpendicular to the river at each site were instrumented with HOBO thermistors over a 1.4m screened interval within the saturated zone at 20cm spacing. As flood pulses are attenuated downstream, temperature gradients and distance of lateral temperature pulse penetration into the bank are hypothesized to decrease. The data collected in this investigation will test this hypothesis by providing 2D temperature cross-sections along an attenuating flood pulse, providing detailed spatial data on temperature gradients adjacent to the river.
Performance comparison of Rayleigh and STW modes on quartz crystal for strain sensor application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Chen; Lee, Ki Jung; Lee, Keekeun
2016-07-14
In this study, we compare two kinds of strain sensors based on Rayleigh wave and surface transverse wave (STW) modes, respectively. First, we perform a strain-and-stress analysis using the finite element method, and we consider the contribution to a surface acoustic wave (SAW) velocity shift. Prior to fabrication, we use a coupling-of-modes model to simulate and optimize two-port SAW resonators for both modes. We use a network analyzer to measure and characterize the two devices. Further, we perform an experiment using a strain-testing system with a tapered cross-section cantilever beam. The experimental results show that the ratio of the frequencymore » shift to the strain for the Rayleigh wave mode is −1.124 ppm/με in the parallel direction and 0.109 ppm/με in the perpendicular direction, while the corresponding values for the STW mode are 0.680 ppm/με and 0.189 ppm/με, respectively.« less
Liquid-Embedded Elastomer Electronics
NASA Astrophysics Data System (ADS)
Kramer, Rebecca; Majidi, Carmel; Park, Yong-Lae; Paik, Jamie; Wood, Robert
2012-02-01
Hyperelastic sensors are fabricated by embedding a silicone rubber film with microchannels of conductive liquid. In the case of soft tactile sensors, pressing the surface of the elastomer will deform the cross-section of underlying channels and change their electrical resistance. Soft pressure sensors may be employed in a variety of applications. For example, a network of pressure sensors can serve as artificial skin by yielding detailed information about contact pressures. This concept was demonstrated in a hyperelastic keypad, where perpendicular conductive channels form a quasi-planar network within an elastomeric matrix that registers the location, intensity and duration of applied pressure. In a second demonstration, soft curvature sensors were used for joint angle proprioception. Because the sensors are soft and stretchable, they conform to the host without interfering with the natural mechanics of motion. This marked the first use of liquid-embedded elastomer electronics to monitor human or robotic motion. Finally, liquid-embedded elastomers may be implemented as conductors in applications that call for flexible or stretchable circuitry, such as robotic origami.
Species-Independent Modeling of High-Frequency Ultrasound Backscatter in Hyaline Cartilage.
Männicke, Nils; Schöne, Martin; Liukkonen, Jukka; Fachet, Dominik; Inkinen, Satu; Malo, Markus K; Oelze, Michael L; Töyräs, Juha; Jurvelin, Jukka S; Raum, Kay
2016-06-01
Apparent integrated backscatter (AIB) is a common ultrasound parameter used to assess cartilage matrix degeneration. However, the specific contributions of chondrocytes, proteoglycan and collagen to AIB remain unknown. To reveal these relationships, this work examined biopsies and cross sections of human, ovine and bovine cartilage with 40-MHz ultrasound biomicroscopy. Site-matched estimates of collagen concentration, proteoglycan concentration, collagen orientation and cell number density were employed in quasi-least-squares linear regression analyses to model AIB. A positive correlation (R(2) = 0.51, p < 10(-4)) between AIB and a combination model of cell number density and collagen concentration was obtained for collagen orientations approximately perpendicular (>70°) to the sound beam direction. These findings indicate causal relationships between AIB and cartilage structural parameters and could aid in more sophisticated future interpretations of ultrasound backscatter. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
The p({gamma}, {pi}{sup 0}) reaction in the {Delta}(1232) region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, R.M.; Gutenberg, J.; Mukhopadhyay, N.C.
Linearly polarized photons from the Laser Electron Gamma Source (LEGS) have been used by Blanpied et al. to study the p({gamma}, {pi}{sup 0}) reaction, looking for the E2 transition amplitude in the nucleon to Delta(1232) excitation. These authors contrast their measured cross-section ratio d{sigma}{parallel}/d{sigma}{perpendicular}, with expectations of earlier analyses, by the authors and Wittman (DMW), by Nozawa et al. (NBL), and using the multipoles of Behrends and Donnachie directly, and find {open_quotes}large discrepancies{close_quotes} among them. Here the authors clarify these discrepancies. The crucial difference between DMW and NBL calculations is the inclusion of the u-channel {Delta} contribution in DMW, omittedmore » in NBL. The authors find for a fair, though not perfect, agreement with the new data: E{sub 1+}{sup {pi}}{sup 0} {r_arrow}2.1E{sub 1+}{sup {pi}}{sup 0}, keeping other multipoles fixed.« less
Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading
Arman, B.; An, Q.; Luo, S. N.; ...
2011-01-04
We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore » CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less
A distal earthquake cluster concurrent with the 2006 explosive eruption of Augustine Volcano, Alaska
Fisher, M.A.; Ruppert, N.A.; White, R.A.; Wilson, Frederic H.; Comer, D.; Sliter, R.W.; Wong, F.L.
2009-01-01
Clustered earthquakes located 25??km northeast of Augustine Volcano began about 6??months before and ceased soon after the volcano's 2006 explosive eruption. This distal seismicity formed a dense cluster less than 5??km across, in map view, and located in depth between 11??km and 16??km. This seismicity was contemporaneous with sharply increased shallow earthquake activity directly below the volcano's vent. Focal mechanisms for five events within the distal cluster show strike-slip fault movement. Cluster seismicity best defines a plane when it is projected onto a northeast-southwest cross section, suggesting that the seismogenic fault strikes northwest. However, two major structural trends intersect near Augustine Volcano, making it difficult to put the seismogenic fault into a regional-geologic context. Specifically, interpretation of marine multichannel seismic-reflection (MCS) data shows reverse faults, directly above the seismicity cluster, that trend northeast, parallel to the regional geologic strike but perpendicular to the fault suggested by the clustered seismicity. The seismogenic fault could be a reactivated basement structure.
High speed curved position sensitive detector
Hendricks, Robert W.; Wilson, Jack W.
1989-01-01
A high speed curved position sensitive porportional counter detector for use in x-ray diffraction, the detection of 5-20 keV photons and the like. The detector employs a planar anode assembly of a plurality of parallel metallic wires. This anode assembly is supported between two cathode planes, with at least one of these cathode planes having a serpentine resistive path in the form of a meander having legs generally perpendicular to the anode wires. This meander is produced by special microelectronic fabrication techniques whereby the meander "wire" fans outwardly at the cathode ends to produce the curved aspect of the detector, and the legs of the meander are small in cross-section and very closely spaced whereby a spatial resolution of about 50 .mu.m can be achieved. All of the other performance characteristics are about as good or better than conventional position sensitive proportional counter type detectors. Count rates of up to 40,000 counts per second with 0.5 .mu.s shaping time constants are achieved.
Role of Cu layer thickness on the magnetic anisotropy of pulsed electrodeposited Ni/Cu/Ni tri-layer
NASA Astrophysics Data System (ADS)
Dhanapal, K.; Prabhu, D.; Gopalan, R.; Narayanan, V.; Stephen, A.
2017-07-01
The Ni/Cu/Ni tri-layer film with different thickness of Cu layer was deposited using pulsed electrodeposition method. The XRD pattern of all the films show the formation of fcc structure of nickel and copper. This shows the orientated growth in the (2 2 0) plane of the layered films as calculated from the relative intensity ratio. The layer formation in the films were observed from cross sectional view using FE-SEM and confirms the decrease in Cu layer thickness with decreasing deposition time. The magnetic anisotropy behaviour was measured using VSM with two different orientations of layered film. This shows that increasing anisotropy energy with decreasing Cu layer thickness and a maximum of -5.13 × 104 J m-3 is observed for copper deposited for 1 min. From the K eff.t versus t plot, development of perpendicular magnetic anisotropy in the layered system is predicted below 0.38 µm copper layer thickness.
16 CFR 1217.2 - Requirements for toddler beds.
Code of Federal Regulations, 2012 CFR
2012-01-01
... requirements specified in section 6.7 of ASTM F 1169-10 Safety Standard for Full-Size Baby Cribs, approved June..., apply an 80 lbf (355.8 N) perpendicular to the plane of the side at the midpoint, between the top and...
Geographic boundary of the “Pacific Anomaly” near the Earth’s core-mantle boundary
NASA Astrophysics Data System (ADS)
He, Y.; Wen, L.
2009-12-01
Seismic tomography have revealed a broad, seismically low velocity anomaly in the Earth’s lower mantle beneath the Pacific (we term it the “Pacific Anomaly”), surrounded by the circum-Pacific high velocity zone. Here, we determine geographical boundary and average shear velocity structure of the Pacific Anomaly near the core-mantle boundary based on travel time analysis of ScSH-SH and ScS2-SS phases. We further constrain the detailed structure of the transition from the base of the Pacific Anomaly to the northern high velocity zone along two perpendicular cross sections on the basis of forward waveform modeling of the seismic data. Two cross-sections include one great arc across the Anomaly from New Zealand to Alaska and another from Solomon Islands to North America. Our seismic data are collected from those recorded in the China National Digital Seismographic Network, and many permanent and temporal arrays from the Incorporated Research Institutions for Seismology. The observed ScS-SH and ScS2-SS differential travel time residuals allow the entire geographic boundary of the anomaly to be clearly defined. The seismic data suggest that the average shear velocity reduction inside the anomaly reaches -5% in the lowermost 300 km of the mantle. Waveform analysis of the seismic data sampling the edge of the anomaly further validates the model of the boundary previously deduced by differential-travel-time-residual data, and suggests that the northern boundary is characterized by a shear velocity model with the low-velocity region accompanied by a high velocity structure.
Mehra, Lalit; Raheja, Shashi; Agarwal, Sneh; Rani, Yashoda; Kaur, Kulwinder; Tuli, Anita
2016-03-01
Percutaneous transvenous mitral annuloplasty (PTMA) has evolved as a latest procedure for the treatment of functional mitral regurgitation. It reduces mitral valve annulus (MVA) size and increases valve leaflet coaptation via compression of coronary sinus (CS). Anatomical considerations for this procedure were elucidated in the present study. In 40 formalin fixed adult cadaveric human hearts, relation of the venous channel formed by CS and great cardiac vein (GCV) to MVA and the adjacent arteries was described, at 6 points by making longitudinal sections perpendicular to the plane of MVA, numbered 1-6 starting from CS ostium. CS/GCV formed a semicircular venous channel on the atrial side of MVA. Based on the distance of CS/GCV from MVA, two patterns were identified. In 37 hearts, the venous channel at point 2 was widely separated from the MVA compared to the two ends and in three hearts a nonconsistent pattern was observed. GCV crossed circumflex artery superficially. GCV or CS crossed the left marginal artery and ventricular branches of circumflex artery superficially in 17 and 23 hearts, respectively. As the venous channel was related more to the left atrial wall, PTMA devices probably exert an indirect traction on MVA. The arteries crossing deep to the venous channel may be compressed by PTMA device leading to myocardial ischemia. Knowledge of the spatial relations of MVA and a preoperative and postoperative angiogram may help to reduce such complications during PTMA.
Microanalysis of dental caries using laser-scanned fluorescence
NASA Astrophysics Data System (ADS)
Barron, Joseph R.; Paton, Barry E.; Zakariasen, Kenneth L.
1992-06-01
It is well known that enamel and dentin fluoresce when illuminated by short-wavelength optical radiation. Fluorescence emission from carious and non-carious regions of teeth have been studied using a new experimental scanning technique for fluorescence analysis of dental sections. Scanning in 2 dimensions will allow surface maps of dental caries to be created. These surface images are then enhanced using the conventional and newer image processing techniques. Carious regions can be readily identified and contour maps can be used to graphically display the degree of damage on both surfaces and transverse sections. Numerous studies have shown that carious fluorescence is significantly different than non-carious regions. The scanning laser fluorescence spectrometer focuses light from a 25 mW He-Cd laser at 442 nm through an objective lens onto a cross-section area as small as 3 micrometers in diameter. Microtome prepared dental samples 100 micrometers thick are laid flat onto an optical bench perpendicular to the incident beam. The sample is moved under computer control in X & Y with an absolute precision of 0.1 micrometers . The backscattered light is both spatial and wavelength filtered before being measured on a long wavelength sensitized photomultiplier tube. High precision analysis of dental samples allow detailed maps of carious regions to be determined. Successive images allow time studies of caries growth and even the potential for remineralization studies of decalcified regions.
Measurement of the length of pedestrian crossings from image data
NASA Astrophysics Data System (ADS)
Uddin, Mohammad S.; Shioyama, Tadayoshi
2004-10-01
A computer vision based new method for the measurement of the length of pedestrian crossings using a single camera is described. The main objective of this research is to develop a travel aid for the blind people. In a crossing, the usual black road surface is painted with constant width periodic white bands. In Japan, this width is 45 cm. The crossing region as well as its length is detected using this concept. At first, the crossing direction is determined from the power spectrum using fast Fourier transform. The periodic white and black bands are detected using integration along the crossing direction and then differentiation of the integral data perpendicular to crossing. This detection may be erroneous due to adverse effects of the neighboring region of crossing, as the intensity of the whole image is used for bands detection. To remove the neighboring effects, the crossing region is extracted. Then the crossing bands are detected from the image intensity using the crossing region only. Experiment is performed using 32 real road scenes with pedestrian crossing. The rms error is found 2.28 m. The technique determines the crossing length with good accuracy for crossings marked clearly with white paintings as well as fine image resolution.
2006-03-17
perpendicularly. Each source chamber is pumped by a 2000 ls-1 and a 430 ls-1 maglev pump (Osaka Vacuum; TG2003 and TG430) to the low 10-8 torr region...the operation of pulsed and continuous sources increases the pressure to about 10-5 torr and 10-4 torr, respectively. All maglev pumps require no
Vortex cutting in superconductors
Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; ...
2016-08-09
Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details ofmore » the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.« less
Vortex cutting in superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.
Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details ofmore » the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.« less
16 CFR § 1217.2 - Requirements for toddler beds.
Code of Federal Regulations, 2013 CFR
2013-01-01
... requirements specified in section 6.7 of ASTM F 1169-10 Safety Standard for Full-Size Baby Cribs, approved June..., apply an 80 lbf (355.8 N) perpendicular to the plane of the side at the midpoint, between the top and...
16 CFR 1509.6 - Component-spacing test method.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Component-spacing test method. 1509.6 Section 1509.6 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... applied to the wedge perpendicular to the plane of the crib side. ...
Flexible thermal apparatus for mounting of thermoelectric cooler
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Bard, Steven (Inventor)
1991-01-01
A flexible heat transfer apparatus used to flexibly connect and thermally couple a thermoelectric cooler to an object to be cooled is disclosed. The flexible heat transfer apparatus consists of a pair of flexible corrugated sheets made from high thermal conductivity materials such as copper, aluminum, gold, or silver. The ridges of the corrugated sheets are oriented perpendicular to one another and bonded sandwich-fashion between three plates to define an upper section and a lower section. The upper section provides X flexure, the lower section provides Y flexure, and both sections together provide Z flexure.
NASA Technical Reports Server (NTRS)
Breneman, A. W.; Cattell, C.
2013-01-01
We present the first observations of electron cyclotron harmonic waves at the Earth's bow shock from STEREO and Wind burst waveform captures. These waves are observed at magnetic field gradients at a variety of shock geometries ranging from quasi-parallel to nearly perpendicular along with whistler mode waves, ion acoustic waves, and electrostatic solitary waves. Large amplitude cyclotron harmonic waveforms are also observed in the magnetosheath in association with magnetic field gradients convected past the bow shock. Amplitudes of the cyclotron harmonic waves range from a few tens to more than 500 millivolts/meter peak-peak. A comparison between the short (15 meters) and long (100 meters) Wind spin plane antennas shows a similar response at low harmonics and a stronger response on the short antenna at higher harmonics. This indicates that wavelengths are not significantly larger than 100 meters, consistent with the electron cyclotron radius. Waveforms are broadband and polarizations are distinctively comma-shaped with significant power both perpendicular and parallel to the magnetic field. Harmonics tend to be more prominent in the perpendicular directions. These observations indicate that the waves consist of a combination of perpendicular Bernstein waves and field-aligned waves without harmonics. A likely source is the electron cyclotron drift instability which is a coupling between Bernstein and ion acoustic waves. These waves are the most common type of high-frequency wave seen by STEREO during bow shock crossings and magnetosheath traversals and our observations suggest that they are an important component of the high-frequency turbulent spectrum in these regions.
Peculiarities of field penetration in the presence of cross-flux interaction
NASA Astrophysics Data System (ADS)
Berseth, V.; Buzdin, A. I.; Indenbom, M. V.; Benoit, W.
1996-02-01
The attractive core interaction between two orthogonal vortex lattices in alayered superconductor is calculated. When one of these lattices is moving, this interaction gives rise to a drag force acting on the other one. Considering a moving in-plane flux lattice, the effect of the drag force on the perpendicular flux is modelled through a modification of the bulk critical current for this field component. The new critical current depends on the direction of motion of both parallel and perpendicular vortices. The results are derived within the critical-state model for the infinite slab and for the thin strip. For this latter geometry, computations are made with the help of a new numerical method simulating flux penetration in the critical state. The new predicted qualitative phenomena (like the formation of a vortex-free region between two zones of opposite flux in the flat geometry) can be directly verified by the magneto-optic technique.
NASA Astrophysics Data System (ADS)
Gedalin, M.; Liverts, M.; Balikhin, M. A.
2008-05-01
Field-aligned and gyrophase bunched ion beams are observed in the foreshock of the Earth bow shock. One of the mechanisms proposed for their production is non-specular reflection at the shock front. We study the distributions which are formed at the stationary quasi-perpendicular shock front within the same process which is responsible for the generation of reflected ions and transmitted gyrating ions. The test particle motion analysis in a model shock allows one to identify the parameters which control the efficiency of the process and the features of the escaping ion distribution. These parameters are: the angle between the shock normal and the upstream magnetic field, the ratio of the ion thermal velocity to the flow velocity upstream, and the cross-shock potential. A typical distribution of escaping ions exhibits a bimodal pitch angle distribution (in the plasma rest frame).
NASA Astrophysics Data System (ADS)
Pryadun, Vladimir
2005-03-01
Rectification of AC current has been observed in plain superconducting Nb films and in Nb/Ni films with symmetric periodic pinning centers. The rectified DC voltage appears for various sample geometries (cross or strip) both along and transverse to the alternating current direction, is nearly anti-symmetric with perpendicular magnetic field and strongly dependent on temperature below Tc. Analyses of the data at different temperatures, drive frequencies from 100kHz to 150MHz and at the different sample sides [1] shows that not far below Tc the rectification phenomena can be understood in terms of generation of electric fields due to local excess of critical current. Further below Tc anisotropic pinning effects could also contribute to the rectification. [1] F.G.Aliev, et al., Cond. Mat.405656. Supported by Comunidad Autonoma de Madrid -CAM/07N/0050/2002
NASA Astrophysics Data System (ADS)
Lang, Jörg; Sievers, Julian; Loewer, Markus; Igel, Jan; Winsemann, Jutta
2017-12-01
Bedforms related to supercritical flows are increasingly recognised as important constituents of many depositional environments, but outcrop studies are commonly hampered by long bedform wavelengths and complex three-dimensional geometries. We combined outcrop-based facies analysis with ground-penetrating radar (GPR) surveys to analyse the 3D facies architecture of subaqueous ice-contact fan and glacifluvial delta deposits. The studied sedimentary systems were deposited at the margins of the Middle Pleistocene Scandinavian ice sheets in Northern Germany. Glacifluvial Gilbert-type deltas are characterised by steeply dipping foreset beds, comprising cyclic-step deposits, which alternate with antidune deposits. Deposits of cyclic steps consist of lenticular scours infilled by backset cross-stratified pebbly sand and gravel. The GPR sections show that the scour fills form trains along the delta foresets, which can locally be traced for up to 15 m. Perpendicular and oblique to palaeoflow direction, these deposits appear as troughs with concentric or low-angle cross-stratified infills. Downflow transitions from scour fills into sheet-like low-angle cross-stratified or sinusoidally stratified pebbly sand, deposited by antidunes, are common. Cyclic steps and antidunes were deposited by sustained and surge-type supercritical density flows, which were related to hyperpycnal flows, triggered by major meltwater discharge or slope-failure events. Subaqueous ice-contact fan deposits include deposits of progradational scour fills, isolated hydraulic jumps, antidunes and (humpback) dunes. The gravel-rich fan succession consists of vertical stacks of laterally amalgamated pseudo-sheets, indicating deposition by pulses of waning supercritical flows under high aggradation rates. The GPR sections reveal the large-scale architecture of the sand-rich fan succession, which is characterised by lobe elements with basal erosional surfaces associated with scours filled with backsets related to hydraulic jumps, passing upwards and downflow into deposits of antidunes and (humpback) dunes. The recurrent facies architecture of the lobe elements and their prograding and retrograding stacking pattern are interpreted as related to autogenic flow morphodynamics.
NASA Astrophysics Data System (ADS)
Pavelka, Jan; Smetanová, Anna; Rejman, Jerzy; Kováčik, Peter
2017-04-01
Despite recognising the role of tillage erosion in landforms evolution, little research has documented its effects in prehistoric times. Herein, an interdisciplinary archaeological-geomorphological experiment with reconstructed tillage tools and management was conducted in order to measure tillage erosion when a new field in grasslands was established in the Bronze Age-Iron Age. Three wooden ards were reconstructed based on archaeological findings. They were tested in a cross-tillage experiment, consisting of a tillage pass perpendicular to the primary slope (6.5-9.7%), and a second tillage pass parallel to the primary slope of a convex-convex ridge with mowed grass (0.2 m high, vegetation cover >90%). The standard sole ard proved to be the most effective, with a mean tillage depth of 0.12 m, a mean tillage speed of 3.8 km h-1, and a mean distance between furrows of 0.20-0.25 m. Only 13% of the 264 tracers placed on 6 transects were displaced, and the mean tracers displacement parallel to the primary slope was 0.04 ± 0.17 m. Contour tillage perpendicular to primary slope created V or U shaped furrows with a mean depth of 0.1-0.12 m, a mean width of 0.05-0.1 m, and incision under the main root zone. Only soil in direct contact with the ard was displaced, with a mean translocation distance of 0.06 ± 0.2 m parallel and 0.06 ± 0.3 m perpendicular to the primary slope. During tillage parallel to slope, soil clods of 0.20 x 0.25 x 0.10 m were created and slightly disturbed or turned over one another. The tracers moved within the furrows and with the soil clods. Loose soil, resembling a seedbed, was not covered by soil clods. Mean displacement during the second pass was 0.03 ± 0.19 m parallel and 0.00 ± 0.15 m perpendicular to primary slope. The displacement from cross-tillage with a wooden ard in permanent grasslands was lower than many previously measured values of traditional animal-powered metal ploughs in permanent fields. No relationship between mean soil displacement and slope gradient was found. Dense vegetation and root structure influenced ard soil-penetration, its movement within the soil, and the displacement of tracers packed between the roots. Cross-tillage with a wooden ard proved to be insufficient for seedbed preparation. The results suggest that grazing or fire management, followed by repeated tillage with ard or hoe in order to destroy soil clods were necessary to establish a new field in grasslands during the Bronze Age-Iron Age.
Rhodes, Terry L.; Peebles, William A.; Crocker, Neal A.; ...
2014-08-05
The design and performance of a new cross-polarization scattering (CPS) system for the localized measurement of internal magnetic fluctuations is presented. CPS is a process whereby magnetic fluctuations scatter incident electromagnetic radiation into a perpendicular polarization which is subsequently detected. A new CPS design that incorporates a unique scattering geometry was laboratory tested, optimized, and installed on the DIII-D tokamak. Plasma tests of signal-to-noise, polarization purity, and frequency response indicate proper functioning of the system. Lastly, CPS data show interesting features related to internal MHD perturbations known as sawteeth that are not observed on density fluctuations.
Crossed-field divertor for a plasma device
Kerst, Donald W.; Strait, Edward J.
1981-01-01
A divertor for removal of unwanted materials from the interior of a magnetic plasma confinement device includes the division of the wall of the device into segments insulated from each other in order to apply an electric field having a component perpendicular to the confining magnetic field. The resulting crossed-field drift causes electrically charged particles to be removed from the outer part of the confinement chamber to a pumping chamber. This method moves the particles quickly past the saddle point in the poloidal magnetic field where they would otherwise tend to stall, and provides external control over the rate of removal by controlling the magnitude of the electric field.
Lightweight electrical connector split backshell
NASA Technical Reports Server (NTRS)
Goldman, Elliot (Inventor)
2009-01-01
An electrical connector split backshell is provided, comprising two substantially identical backshell halves. Each half includes a first side and a cam projecting therefrom along an axis perpendicular thereto, the cam having an alignment tooth with a constant radius and an engagement section with a radius that increases with angular distance from the alignment tooth. Each half further includes a second side parallel to the first side and a circular sector opening disposed in the second side, the circular sector opening including an inner surface configured as a ramp with a constant radius, the ramp being configured to engage with an engagement section of a cam of the other half, the circular sector opening further including a relieved pocket configured to receive an alignment tooth of the cam of the other half. Each half further includes a back side perpendicular to the first and second sides and a wire bundle notch disposed in the back side, the wire bundle notch configured to align with a wire bundle notch of the other half to form a wire bundle opening. The two substantially identical halves are rotatably coupled by engaging the engagement section of each half to the ramp of the other half.
Investigations of stacking fault density in perpendicular recording media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piramanayagam, S. N., E-mail: prem-SN@dsi.a-star.edu.sg; Varghese, Binni; Yang, Yi
In magnetic recording media, the grains or clusters reverse their magnetization over a range of reversal field, resulting in a switching field distribution. In order to achieve high areal densities, it is desirable to understand and minimize such a distribution. Clusters of grains which contain stacking faults (SF) or fcc phase have lower anisotropy, an order lower than those without them. It is believed that such low anisotropy regions reverse their magnetization at a much lower reversal field than the rest of the material with a larger anisotropy. Such clusters/grains cause recording performance deterioration, such as adjacent track erasure andmore » dc noise. Therefore, the observation of clusters that reverse at very low reversal fields (nucleation sites, NS) could give information on the noise and the adjacent track erasure. Potentially, the observed clusters could also provide information on the SF. In this paper, we study the reversal of nucleation sites in granular perpendicular media based on a magnetic force microscope (MFM) methodology and validate the observations with high resolution cross-section transmission electron microscopy (HRTEM) measurements. Samples, wherein a high anisotropy CoPt layer was introduced to control the NS or SF in a systematic way, were evaluated by MFM, TEM, and magnetometry. The magnetic properties indicated that the thickness of the CoPt layer results in an increase of nucleation sites. TEM measurements indicated a correlation between the thickness of CoPt layer and the stacking fault density. A clear correlation was also observed between the MFM results, TEM observations, and the coercivity and nucleation field of the samples, validating the effectiveness of the proposed method in evaluating the nucleation sites which potentially arise from stacking faults.« less
Vegetation Impacts on Near Bank Flows
NASA Astrophysics Data System (ADS)
Hopkinson, L. C.; Wynn, T. M.
2008-12-01
Sediment, a leading cause of water quality impairment, damages aquatic ecosystems and interferes with recreational uses and water treatment processes. A significant sediment source to streams, streambank retreat, has largely been ignored. Vegetation is an important component of stream restoration designs used to control streambank retreat, but vegetation effects on near bank flows need to be quantified. The goal of this research is to evaluate the effects of streambank vegetation on near bank flows and boundary shear stress. A flume experiment was conducted comparing three distinct streambank vegetation types: trees, shrubs, and grass. A second order prototype stream (Tom's Creek in Blacksburg, VA), with individual reaches dominated by the vegetation treatments was modeled using a fixed-bed Froude-scale modeling technique. One model streambank of the prototype stream was constructed for each vegetation type and compared to a bare control (only grain roughness). Simulated vegetation (e.g. woven grass mat and wooden dowels) was attached in locations identified in a field survey. Velocity profiles perpendicular to the flume model boundary will be evaluated along five cross sections for each vegetation treatment. Reynolds, law of the wall, and turbulent kinetic energy shear stresses will be analyzed using velocity measurements made with a three-dimensional acoustic Doppler velocimeter (ADV). Velocity profiles perpendicular to the flume model streambank will also be evaluated. The velocity profiles will be compared among vegetation types to see if profiles are similar along the bank face. This research is intended to improve our understanding of the role of riparian vegetation in stream morphology by evaluating the effects of vegetation on boundary shear stress, providing insight to the type and density of vegetation required for streambank stability. The results will also aide in quantifying sediment inputs from streambanks, providing quantitative information for stream restoration projects and watershed management planning.
16 CFR 1750.5 - Detailed requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Detailed requirements. 1750.5 Section 1750.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION REFRIGERATOR SAFETY ACT REGULATIONS STANDARD FOR... directed perpendicularly to the plane of the door and applied anywhere along the latch edge of the inside...
Towards Thermal Reading of Magnetic States in Hall Crosses
NASA Astrophysics Data System (ADS)
Xu, Y.; Petit-Watelot, S.; Polewczyk, V.; Parent, G.; Montaigne, F.; Wegrowe, J.-E.; Mangin, S.; Lacroix, D.; Hehn, M.; Lacour, D.
2018-03-01
The 3 ω method is a standard way to measure the thermal conductivity of thin films. In this study, we apply the method to read the magnetic state of a perpendicularly magnetized CoTb ferrimagnetic Hall cross using a thermal excitation. In order to generate the thermal excitation, an oscillating current at an ω frequency is applied to the Hall cross using different geometries. The magnetic signals oscillating at ω , 2 ω , and 3 ω are probed using a lock-in technique. From the analysis of the power dependence, we can attribute the 3 ω response to the temperature oscillation and the 2 ω to the temperature-gradient oscillation. Finally, the frequency dependence of the magnetic signals can be understood by considering the heat diffusion in a two-dimensional model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, Alejandro Bañón, E-mail: banon@physics.ucla.edu; Jenko, Frank, E-mail: jenko@physics.ucla.edu; Teaca, Bogdan, E-mail: bogdan.teaca@coventry.ac.uk
For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values formore » the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each perpendicular direction is introduced as well, which shows that the redistribution of energy in the presence of zonal flows is highly anisotropic.« less
Broadband Via-Less Microwave Crossover Using Microstrip-CPW Transitions
NASA Technical Reports Server (NTRS)
Stevenson, Thomas; U-Yen, Kongpop; Wollack, Edward; Moseley, Samuel; Hsieh, Wen-Ting
2011-01-01
The front-to-back interface between microstrip and CPW (coplanar waveguide) typically requires complex fabrication or has high radiation loss. The microwave crossover typically requires a complex fabrication step. The prior art in microstrip-CPW transition requires a physical vias connection between the microstrip and CPW line on a separate layer. The via-less version of this transition was designed empirically and does not have a close form solution. The prior art of the micro wave crossover requires either additional substrate or wire bond as an air bridge to isolate two microwave lines at the crossing junction. The disadvantages are high radiation loss, no analytical solution to the problem, lengthy simulation time, and complex fabrication procedures to generate air bridges or via. The disadvantage of the prior crossover is a complex fabrication procedure, which also affects the device reliability and yield. This microstrip-CPW transition is visualized as two microstrip-slotline transitions combined in a way that the radiation from two slotlines cancels each other out. The invention is designed based on analytical methods; thus, it significantly reduces the development time. The crossover requires no extra layer to cross two microwave signals and has low radiation loss. The invention is simple to fabricate and design. It produces low radiation loss and can be designed with low insertion loss, with some tradeoff with signal isolation. The microstrip-CPW transition is used as an interface to connect between the device and the circuit outside the package. The via-less microwave crossover is used to allow two signals to cross without using an extra layer or fabrication processing step to enable this function. This design allows the solution to be determined entirely though analytical techniques. In addition, a planar via-less microwave crossover using this technique was proposed. The experimental results show that the proposed crossover at 5 GHz has a minimum isolation of 32 dB. It also has low in-band insertion loss and return loss of 1.2 dB and 18 dB, respectively, over more than 44 percent of bandwidth at room temperature. This microstrip-CPW transition requires the microstrip line to be split into two sections. Each section is connected to a microstrip quarter-wavelength openended stub. A slotline is also placed perpendicular to the microstrip section. The slot is connected to a grounded-end quarter-wavelength slotline and generates a microstrip-slotline transition. When two of these sections are placed in parallel and with the microstrip section combined at transition, a microstrip- CPW transition is formed. The slotline radiation is suppressed as two slots are excited with the electric field in an opposite direction, which cancels the radiation in far field. The invention on the crossover consists of the invented microstrip-CPW transitions combined back-to-back and a microstrip low-pass filter. One signal is crossed through to the microstrip layer, while the other signal is crossed through the CPW line located on the ground plane of the microstrip line. The microstrip low-pass filter produces a narrow line at the crossing point to enhance the system isolation. It also produces broadband response in the operating frequency band. The microstrip-CPW transition allows a microwave signal to travel from microstrip line to CPW line with low radiation loss. The crossover allows two microwave signals to cross with minimal parasitic coupling.
16 CFR 1211.11 - Requirements for photoelectric sensors.
Code of Federal Regulations, 2010 CFR
2010-01-01
....11 Section 1211.11 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY...) long. The obstruction is to be centered under the door perpendicular to the plane of the door when in... photoelectric sensor's beam from a position 45 degrees from the plane of the door when in the closed position...
Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides
NASA Astrophysics Data System (ADS)
Tsilipakos, Odysseas; Kriezis, Emmanouil E.; Bozhevolnyi, Sergey I.
2011-04-01
Thermo-optic switching elements made of dielectric-loaded plasmonic (DLSPP) waveguides are theoretically investigated by utilizing the three-dimensional vector finite element method. The configurations considered employ microring resonators, whose resonant frequency is varied by means of thermal tuning. First, a classic add-drop filter with parallel access waveguides is examined. Such a component features very poor drop port extinction ratio (ER). We therefore extend the analysis to add-drop filters with perpendicular access waveguides, which are found to exhibit superior drop port ERs, due to interference effects associated with the drop port transmission. In the process, the performance of a DLSPP waveguide crossing is also assessed, since it is a building block of those filters whose bus waveguides intersect. An elliptic tapering scheme is proposed for minimizing cross talk and its effect on the filter performance is explored. The dual-resonator add-drop filter with perpendicular bus waveguides and an untreated waveguide crossing of Sec. V can act as an efficient 2×2 switching element (the single-resonator variant can only act as a 1×2 switch due to structure asymmetry), possessing two equivalent input ports and featuring high ERs for both output ports over a broad wavelength range. Specifically, an extinction ratio of at least 8 dB can be attained for both output ports over a wavelength range of 3.2 nm, accommodating four 100-GHz-spaced channels. Switching times are in the order of a few microseconds, rendering the aforementioned structure capable of handling real-world routing scenarios.
NASA Astrophysics Data System (ADS)
Maeno, Tsuyoshi; Sakurai, Yukihiko; Unou, Takanori; Ichikawa, Kouji; Fujiwara, Osamu
It is well-known that electromagnetic (EM) disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns with slits. To evaluate the noise current outflows from the PCBs of this kind, we previously measured noise current outflows from four types of simple three-layer PCBs having two perpendicular signal traces and different ground patterns with/without slits, and showed that slits on a ground pattern allow conducted noise currents to flow out from PCBs, while the levels for the symmetric slits ground type are smaller compared to the case for two asymmetric slits ground types. In the present study, to further investigate the above finding, we fabricated six types of simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits, and measured the cross-talk noise between the traces. As a result, we found that the ground patterns with the slits perpendicular to the traces increase the cross-talk noise levels, which are larger by 19-42 dB than those for the ground pattern with no slits, while the ground patterns with the slits in parallel with the traces can suppress the noise levels, which are slightly smaller by 2.5-4.5 dB compared to the case for the no-slit ground pattern. These results were confirmed by the FDTD simulation, and were also qualitatively explained from an equivalent bridge circuit model we previously proposed.
NASA Astrophysics Data System (ADS)
Nakapelyukh, Mykhaylo; Bubniak, Ihor; Bubniak, Andriy; Jonckheere, Raymond; Ratschbacher, Lothar
2018-01-01
The Carpathians are part of the Alpine-Carpathian-Dinaridic orogen surrounding the Pannonian basin. Their Ukrainian part constitutes an ancient subduction-accretion complex that evolved into a foreland fold-thrust belt with a shortening history that was perpendicular to the orogenic strike. Herein, we constrain the evolution of the Ukrainian part of the Carpathian fold-thrust belt by apatite fission-track dating of sedimentary and volcanic samples and cross-section balancing and restoration. The apatite fission-track ages are uniform in the inner―southwestern part of the fold-thrust belt, implying post-shortening erosion since 12-10 Ma. The ages in the leading and trailing edges record provenance, i.e., sources in the Trans-European suture zone and the Inner Carpathians, respectively, and show that these parts of the fold-thrust were not heated to more than 100 °C. Syn-orogenic strata show sediment recycling: in the interior of the fold-thrust belt―the most thickened and most deeply eroded nappes―the apatite ages were reset, eroded, and redeposited in the syn-orogenic strata closer to the fore- and hinterland; the lag times are only a few million years. Two balanced cross sections, one constructed for this study and based on field and subsurface data, reveal an architecture characterized by nappe stacks separated by high-displacement thrusts; they record 340-390 km shortening. A kinematic forward model highlights the fold-thrust belt evolution from the pre-contractional configuration over the intermediate geometries during folding and thrusting and the post-shortening, erosional-unloading configuration at 12-10 Ma to the present-day geometry. Average shortening rates between 32-20 Ma and 20-12 Ma amounted to 13 and 21 km/Ma, respectively, implying a two-phased deformation of the Ukrainian fold-thrust belt.
Meisner, Eric M; Hager, Gregory D; Ishman, Stacey L; Brown, David; Tunkel, David E; Ishii, Masaru
2013-11-01
To evaluate the accuracy of three-dimensional (3D) airway reconstructions obtained using quantitative endoscopy (QE). We developed this novel technique to reconstruct precise 3D representations of airway geometries from endoscopic video streams. This method, based on machine vision methodologies, uses a post-processing step of the standard videos obtained during routine laryngoscopy and bronchoscopy. We hypothesize that this method is precise and will generate assessment of airway size and shape similar to those obtained using computed tomography (CT). This study was approved by the institutional review board (IRB). We analyzed video sequences from pediatric patients receiving rigid bronchoscopy. We generated 3D scaled airway models of the subglottis, trachea, and carina using QE. These models were compared to 3D airway models generated from CT. We used the CT data as the gold standard measure of airway size, and used a mixed linear model to estimate the average error in cross-sectional area and effective diameter for QE. The average error in cross sectional area (area sliced perpendicular to the long axis of the airway) was 7.7 mm(2) (variance 33.447 mm(4)). The average error in effective diameter was 0.38775 mm (variance 2.45 mm(2)), approximately 9% error. Our pilot study suggests that QE can be used to generate precise 3D reconstructions of airways. This technique is atraumatic, does not require ionizing radiation, and integrates easily into standard airway assessment protocols. We conjecture that this technology will be useful for staging airway disease and assessing surgical outcomes. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Polyaxial Screws in Locked Plating of Tibial Pilon Fractures.
Yenna, Zachary C; Bhadra, Arup K; Ojike, Nwakile I; Burden, Robert L; Voor, Michael J; Roberts, Craig S
2015-08-01
This study examined the axial and torsional stiffness of polyaxial locked plating techniques compared with fixed-angle locked plating techniques in a distal tibia pilon fracture model. The effect of using a polyaxial screw to cross the fracture site was examined to determine its ability to control relative fracture site motion. A laboratory experiment was performed to investigate the biomechanical stiffness of distal tibia fracture models repaired with 3.5-mm anterior polyaxial distal tibial plates and locking screws. Sawbones Fourth Generation Composite Tibia models (Pacific Research Laboratories, Inc, Vashon, Washington) were used to model an Orthopaedic Trauma Association 43-A1.3 distal tibia pilon fracture. The polyaxial plates were inserted with 2 central locking screws at a position perpendicular to the cortical surface of the tibia and tested for load as a function of axial displacement and torque as a function of angular displacement. The 2 screws were withdrawn and inserted at an angle 15° from perpendicular, allowing them to span the fracture and insert into the opposing fracture surface. Each tibia was tested again for axial and torsional stiffness. In medial and posterior loading, no statistically significant difference was found between tibiae plated with the polyaxial plate and the central screws placed in the neutral position compared with the central screws placed at a 15° position. In torsional loading, a statistically significant difference was noted, showing greater stiffness in tibiae plated with the polyaxial plate and the central screws placed at a 15° position compared with tibiae plated with the central screws placed at a 0° (or perpendicular) position. This study showed that variable angle constructs show similar stiffness properties between perpendicular and 15° angle insertions in axial loading. The 15° angle construct shows greater stiffness in torsional loading. Copyright 2015, SLACK Incorporated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Motoshi; Morita, Shigeru
Emission lines in the visible/UV wavelength ranges are observed with 80 lines of sight which cover an entire poloidal cross section of the plasma in the Large Helical Device. The emitted light is received with optical fibers having 100 {mu}m diameter and is guided into a 1.33 m Czerny-Turner-type spectrometer based on spherical mirrors for collimating and focusing. A charge-coupled device having 13.3x13.3 mm{sup 2} area size is used as the detector and the spectra from all the lines of sight are recorded perpendicularly to the wavelength dispersion. The spectrometer is equipped with optics located in front of the entrancemore » slit to correct the difference between the meridional and sagittal focal points, and thus the astigmatism, which otherwise causes severe cross talk between adjacent optical fiber images on the detector, is corrected. Consequently, simultaneous spectral measurement with 80 lines of sight is realized. The Zeeman splitting of a neutral helium line, {lambda}667.8 nm (2 {sup 1}P-3 {sup 1}D), which is caused by the magnetic field for plasma confinement, is measured with the spectrometer. Though the obtained line profile is in general a superposition of several components on the same line of sight, they can be separated according to their different splitting widths. The two-dimensional poloidal distribution of the helium line intensity is obtained with the help of a tomographic technique.« less
Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit
Stone, William C.; Witzgall, Christoph
2006-01-01
A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the “LO2” and “LH2” tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered. PMID:27274926
NASA Astrophysics Data System (ADS)
Jones, Fábio Herbert; Scherer, Claiton Marlon dos Santos; Kuchle, Juliano
2016-05-01
The Permian Caldeirão Member (Santa Brígida Formation), located in the Tucano Central Basin, northeast region of Brazil, is characterized by a sandstone succession of aeolian origin that comprises the preserved deposits of dunes and interdunes. Grainflow and translatent wind-ripple strata, and frequent presence of reactivation surface, compose the cross-bedding of crescent aeolian dune deposits. The aeolian cross-strata show a mean dip toward the ENE. In places, interlayered with dune cross-beds, occur interdune units composed of facies indicative of dry, damp and wet condition of the substrate, suggesting spatial and/or temporal variations in the moisture content of the interdune accumulation surface. The presence of NNW current ripple cross-lamination in wet interdune areas indicates streamflows confined to interdune corridors and oriented perpendicular to aeolian transport direction. Lenses of damp and wet interdune strata exhibit mainly interdigitated and transitional relationships with the toe-sets of overlying aeolian dune units in sections parallel to aeolian transport, indicating that dune migration was contemporaneous with accumulation in adjacent interdunes. Lateral variations in the preserved thickness of the interdune units and the associated rare occurrence of abrupt and erosive contacts between interdune and overlying dune sets, suggest temporal variations in the angle of dune and interdune climb that may be related to high-frequency changes in water table position. Four stratigraphic intervals in the Caldeirão Member can be identified, two intervals showing cross-bedding of aeolian dunes without wet interdune areas and two intervals exhibiting aeolian dunes separated by wet interdune areas, marking the transition between dry aeolian systems (Intervals I and III) and wet aeolian systems (Intervals II and IV). The temporal alternations between dry and wet aeolian systems reflect changes in the availability of dry sand and/or the rate in the water table rise, possibly controlled by orbitally-driven climatic fluctuations.
[Vision-astigmatometer and methods of its use].
Dashevskiĭ, A I; Kirrilov, Iu A
1991-01-01
A combination of astigmatic figures with black strips in different directions every 45 degrees and of two mutually perpendicular figures combined with an angle on a rotating disk on the front side of the astigmatometer and a combination of an angle and visometric cross of Landolt's optotypes on its back side with the similar disk, and a table of optotypes on the same side is suggested, that was tried in clinic. The directions of optotype ring ruptures are situated in 8 meridians. The front side of the astigmatometer shows a scheme for vector analysis of lenticular astigmatism. The method employed by the authors simplifies and accelerates the investigation, making unnecessary clouding and use of cross cylinders.
Ji, Hong-Mei; Zhang, Wen-Qian; Wang, Xu; Li, Xiao-Wu
2015-01-01
The three-point bending strength and fracture behavior of single oriented crossed-lamellar structure in Scapharca broughtonii shell were investigated. The samples for bending tests were prepared with two different orientations perpendicular and parallel to the radial ribs of the shell, which corresponds to the tiled and stacked directions of the first-order lamellae, respectively. The bending strength in the tiled direction is approximately 60% higher than that in the stacked direction, primarily because the regularly staggered arrangement of the second-order lamellae in the tiled direction can effectively hinder the crack propagation, whereas the cracks can easily propagate along the interfaces between lamellae in the stacked direction. PMID:28793557
Nonlinear flap-lag-axial equations of a rotating beam with arbitrary precone angle
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.; White, W. F., Jr.; Kaza, K. R. V.
1978-01-01
In an attempt both to unify and extend the analytical basis of several aspects of the dynamic behavior of flexible rotating beams, the second-degree nonlinear equations of motion for the coupled flapwise bending, lagwise bending, and axial extension of an untwisted, torsionally rigid, nonuniform, rotating beam having an arbitrary angle of precone with the plane perpendicular to the axis of rotation are derived using Hamilton's principle. The derivation of the equations is based on the geometric nonlinear theory of elasticity and the resulting equations are consistent with the assumption that the strains are negligible compared to unity. No restrictions are imposed on the relative displacements or angular rotations of the cross sections of the beam other than those implied by the assumption of small strains. Illustrative numerical results, obtained by using an integrating matrix as the basis for the method of solution, are presented both for the purpose of validating the present method of solution and indicating the range of applicability of the equations of motion and the method of solution.
Cylindrical Piezoelectric Fiber Composite Actuators
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.
NASA Technical Reports Server (NTRS)
Hildebrand, Francis B
1943-01-01
A mathematical procedure is herein developed for obtaining exact solutions of shear-lag problems in flat panels and box beams: the method is based on the assumption that the amount of stretching of the sheets in the direction perpendicular to the direction of essential normal stresses is negligible. Explicit solutions, including the treatment of cut-outs, are given for several cases and numerical results are presented in graphic and tabular form. The general theory is presented in a from which further solutions can be readily obtained. The extension of the theory to cover certain cases of non-uniform cross section is indicated. Although the solutions are obtained in terms of infinite series, the present developments differ from those previously given in that, in practical cases, the series usually converge so rapidly that sufficient accuracy is afforded by a small number of terms. Comparisons are made in several cases between the present results and the corresponding solutions obtained by approximate procedures devised by Reissner and by Kuhn and Chiarito.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhanov, G. S.; Kolchugina, N. B.; Chzhan, V. B.
2014-06-16
High-purity Gd prepared by distillation is a structurally inhomogeneous system consisting of needle-shaped crystals of cross section 0.5–2.5 μm with near-c-axis orientation embedded in a matrix of nanosized (30–100 nm) grains. By measuring the magnetocaloric effect (MCE) directly, we find that the MCE values differ markedly for the plate-shaped samples cut out of a distillate along and perpendicular to the crystals. The effect of small controlled amounts of impurity (hydrogen) on the properties of distilled Gd is further studied. We observe opposite trends in the MCE response to hydrogen charging with respect to the crystal's orientation within the samples and discuss mechanismsmore » interrelating the unique structural morphology with the impurity behavior. As an overall assessment, the Curie temperatures of α-GdH{sub x} solid solutions increase from 291 K up to 294 K when increasing hydrogen concentration x from 0 to 0.15. Hydrogenation is found to broaden the ferromagnetic-to-paramagnetic phase transition. Hydrogen-containing specimens demonstrate reversibility of MCE at these temperatures.« less
Spray Cooling Trajectory Angle Impact Upon Heat Flux Using a Straight Finned Enhanced Surface
NASA Technical Reports Server (NTRS)
Silk, Eric A.; Kim, Jungho; Kiger, Ken
2005-01-01
Experiments were conducted to study the effects of spray trajectory angles upon heat flux for flat and enhanced surface spray cooling. The surface enhancement consisted of straight fins machined on the top surface of a copper heater block. Spray cooling curves were obtained with the straight fin surface aligned both parallel (axial) and perpendicular (transverse) to the spray axis. Measurements were also obtained on a flat surface heater block for comparison purposes. Each copper block had a cross-sectional area of 2.0 sq cm. A 2x2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data was obtained under nominally degassed (chamber pressure of 41.4 kPa) conditions. Results show that the maximum CHF in all cases was attained for a trajectory angle of 30' from the surface normal. Furthermore, trajectory angles applied to straight finned surfaces can have a critical heat flux (CHF) enhancement as much as 75% (heat flux value of 140 W/sq cm) relative to the vertical spray orientation for the analogous flat surface case under nominally degassed conditions.
Driving magnetic turbulence using flux ropes in a moderate guide field linear system
NASA Astrophysics Data System (ADS)
Brookhart, Matthew I.; Stemo, Aaron; Waleffe, Roger; Forest, Cary B.
2017-12-01
We present a series of experiments on novel, line-tied plasma geometries as a study of the generation of chaos and turbulence in line-tied systems. Plasma production and the injection scale for magnetic energy is provided by spatially discrete plasma guns that inject both plasma and current. The guns represent a technique for controlling the injection scale of magnetic energy. A two-dimensional (2-D) array of magnetic probes provides spatially resolved time histories of the magnetic fluctuations at a single cross-section of the experimental cylinder, allowing simultaneous spatial measurements of chaotic and turbulent behaviour. The first experiment shows chaotic fluctuations and self-organization in a hollow-current line-tied screw pinch. These dynamics is modulated primarily by the applied magnetic field and weakly by the plasma current and safety factor. The second experiment analyses the interactions of multiple line-tied flux ropes. The flux ropes all exhibit chaotic behaviour, and under certain conditions develop an inverse cascade to larger scales and a turbulent inertial range with magnetic energy ( ) related to perpendicular wave number ( \\bot $ ) as \\bot -2.5\\pm 0.5$ .
NASA Astrophysics Data System (ADS)
Li, Yinbo; Yang, Zequan; French, Brent A.; Hossack, John A.
2005-04-01
An intact mouse model of surgically-induced myocardial infarction (MI) caused by permanent occlusion of the Left Anterior Descending (LAD) coronary artery was studied. Normal mice with no occlusion were also studied as controls. For each mouse, contrast enhanced ultrasound images of the heart were acquired in parallel cross-sections perpendicular to the sternum at millimeter increments. For accurate 3D reconstruction, ECG gating and a tri-axial adjustable micromanipulator were used for temporal and spatial registration. Ultrasound images at steady-state of blood refilling were color-coded in each slice to show relative perfusion. Myocardial perfusion defects and necrosis were also examined postmortem by staining with Phthalo blue and TTC red dyes. Good correlation (R>0.93) in perfused area size was observed between in vivo measurements and histological staining. A 3D multi-slice model and a 3D rendering of perfusion distribution were created and showed a promising match with postmortem results, lending further credence to its use as a more comprehensive and more reliable tool for in vivo assessment of myocardial perfusion than 2D tomographic analysis.
NASA Astrophysics Data System (ADS)
Cao, Yanli; Lu, Xiaozuo; Wang, Xuemin
2010-04-01
The meridian is a concept central to traditional Chinese medical techniques such as acupuncture. There is no physically verifiable anatomical or histological basis for the existence of meridians. In Chinese medicine, the meridians are channels along which the energy of the psychological system is considered to flow. It has been proven that the resistance along the meridian channels is lower compared to other paths. Based on this knowledge, we proposed using electrical impedance tomography (EIT) to visualize the meridians of human being. A simplified three dimensional (3D) mathematical model of the forearm developed. Current was injected in the direction perpendicular to the cross-section where eight electrodes were equally placed around the surface of the forearm for the voltage measurements. The model was solved using Finite Element Method (FEM) and dynamic image was reconstructed using truncated singular value decomposition (TSVD) regularization method. The conductivity distributions were compared with different current injections, along the meridian channel and channels around respectively. We also conducted experiments on models and the meridians were shown in final reconstructed images.
Origin and Manipulation of Stable Vortex Ground States in Permalloy Nanotubes.
Zimmermann, Michael; Meier, Thomas Norbert Gerhard; Dirnberger, Florian; Kákay, Attila; Decker, Martin; Wintz, Sebastian; Finizio, Simone; Josten, Elisabeth; Raabe, Jörg; Kronseder, Matthias; Bougeard, Dominique; Lindner, Jürgen; Back, Christian Horst
2018-05-09
We present a detailed study on the static magnetic properties of individual permalloy nanotubes (NTs) with hexagonal cross-sections. Anisotropic magnetoresistance (AMR) measurements and scanning transmission X-ray microscopy (STXM) are used to investigate their magnetic ground states and its stability. We find that the magnetization in zero applied magnetic field is in a very stable vortex state. Its origin is attributed to a strong growth-induced anisotropy with easy axis perpendicular to the long axis of the tubes. AMR measurements of individual NTs in combination with micromagnetic simulations allow the determination of the magnitude of the growth-induced anisotropy for different types of NT coatings. We show that the strength of the anisotropy can be controlled by introducing a buffer layer underneath the magnetic layer. The magnetic ground states depend on the external magnetic field history and are directly imaged using STXM. Stable vortex domains can be introduced by external magnetic fields and can be erased by radio-frequency magnetic fields applied at the center of the tubes via a strip line antenna.
NASA Astrophysics Data System (ADS)
Surmeneva, Maria A.; Surmenev, Roman A.; Nikonova, Yulia A.; Selezneva, Irina I.; Ivanova, Anna A.; Putlyaev, Valery I.; Prymak, Oleg; Epple, Matthias
2014-10-01
A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.
NASA Astrophysics Data System (ADS)
Talbi, A.; Petit, A.; Melhem, A.; Stolz, A.; Boulmer-Leborgne, C.; Gautier, G.; Defforge, T.; Semmar, N.
2016-06-01
In this study, laser induced periodic surface structures were formed on mesoporous silicon by irradiation of Nd:YAG picosecond pulsed laser beam at 266 nm wavelength at 1 Hz repetition rate and with 42 ps pulse duration. The effects of laser processing parameters as laser beam fluence and laser pulse number on the formation of ripples were investigated. Scanning electron microscopy and atomic force microscopy were used to image the surface morphologies and the cross section of samples after laser irradiation. At relatively low fluence ∼20 mJ/cm2, ripples with period close to the laser beam wavelength (266 nm) and with an always controlled orientation (perpendicular to the polarization of ps laser beam) appeared after a large laser pulse number of 12,000. It has been found that an initial random distribution of SiOx nanoparticles is periodically structured with an increase of the laser pulse number. Finally, it is experimentally demonstrated that we formed a 100 nm liquid phase under the protusion zones including the pores in the picosecond regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuba, J; Slaughter, D R; Fittinghoff, D N
We present a detailed comparison of the measured characteristics of Thomson backscattered x-rays produced at the PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility at Lawrence Livermore National Laboratory to predicted results from a newly developed, fully three-dimensional time and frequency-domain code. Based on the relativistic differential cross section, this code has the capability to calculate time and space dependent spectra of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser bandwidth, perpendicular wave vector components in themore » laser focus, and the transverse and longitudinal phase space of the electron beam are included. Electron beam energy, energy spread, and transverse phase space measurements of the electron beam at the interaction point are presented, and the corresponding predicted x-ray characteristics are determined. In addition, time-integrated measurements of the x-rays produced from the interaction are presented, and shown to agree well with the simulations.« less
NASA Astrophysics Data System (ADS)
Butler, D. K.; Whitten, C. B.; Smith, F. L.
1983-03-01
Results of a microgravimetric survey at Manatee Springs, Levy County, Fla., are presented. The survey area was 100 by 400 ft, with 20-ft gravity station spacing, and with the long dimension of the area approximately perpendicular to the known trend of the main cavity. The main cavity is about 80 to 100 ft below the surface and has a cross section about 16 to 20 ft in height and 30 to 40 ft in width beneath the survey area. Using a density contrast of -1.3 g/cucm, the gravity anomaly is calculated to be -35 micro Gal with a width at half maximum of 205 ft. The microgravimetric survey results clearly indicate a broad negative anomaly coincident with the location and trend of the cavity system across the survey area. The anomaly magnitude and width are consistent with those calculated from the known depth and dimensions of the main cavity. In addition, a small, closed negative anomaly feature, superimposed on the broad negative feature due to the main cavity, satisfactorily delineated a small secondary cavity feature which was discovered and mapped by cave divers.
NASA Astrophysics Data System (ADS)
Perez, J. C.; Chandran, B. D.
2013-12-01
We present direct numerical simulations of inhomogeneous reduced magnetohydrodynamic (RMHD) turbulence between the Sun and the Alfvén critical point. These are the first such simulations that take into account the solar-wind outflow velocity and the radial inhomogeneity of the background solar wind without approximating the nonlinear terms in the governing equations. Our simulation domain is a narrow magnetic flux tube with a square cross section centered on a radial magnetic field line. We impose periodic boundary conditions in the plane perpendicular to the background magnetic field B0. RMHD turbulence is driven by outward-propagating Alfvén waves (z+ fluctuations) launched from the Sun, which undergo partial non-WKB reflection to produce sunward-propagating Alfvén waves (z- fluctuations). Nonlinear interactions between z+ and z- then cause fluctuation energy to cascade from large scales to small scales and dissipate. We present ten simulations with different values of the correlation time τ+c⊙ and perpendicular correlation length L⊥⊙ of outward-propagating Alfvén waves (AWs) at the coronal base. We find that between 15% and 33% of the z+ energy launched into the corona dissipates between the coronal base and Alfvén critical point, which is at rA = 11.1R⊙ in our model solar wind. Between 33% and 40% of this input energy goes into work on the solar-wind outflow, and between 22% and 36% escapes as z+ fluctuations through the simulation boundary at r=rA. Except in the immediate vicinity of r=R⊙, the z× power spectra scale like k⊥-α×, where k⊥ is the wavenumber in the plane perpendicular to B0. In our simulation with the smallest value of τ+c⊙ (~2 min) and largest value of L⊥⊙ (~2×104 km), we find that α+ decreases approximately linearly with increasing ln(r), reaching a value of~1.3 at r=11.1R⊙. Our simulations with larger values of τ+c⊙ exhibit alignment between the contours of constant Φ× and Ω×, where Φ× are the Elsässer potentials and Ω× are the outer-scale parallel Elsässer vorticities. This alignment reduces the efficiency of nonlinear interactions at r≥2R⊙ to a degree that increases with increasing τ+c⊙.
36 CFR 7.49 - Cape Lookout National Seashore.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Cape Lookout National Seashore. 7.49 Section 7.49 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... conditions: (1) PWC must be operated at flat-wake speed; (2) PWC must travel perpendicular to shore; (3) PWC...
36 CFR 7.49 - Cape Lookout National Seashore.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Cape Lookout National Seashore. 7.49 Section 7.49 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... conditions: (1) PWC must be operated at flat-wake speed; (2) PWC must travel perpendicular to shore; (3) PWC...
36 CFR 7.49 - Cape Lookout National Seashore.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Cape Lookout National Seashore. 7.49 Section 7.49 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... conditions: (1) PWC must be operated at flat-wake speed; (2) PWC must travel perpendicular to shore; (3) PWC...
36 CFR 7.49 - Cape Lookout National Seashore.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Cape Lookout National Seashore. 7.49 Section 7.49 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... conditions: (1) PWC must be operated at flat-wake speed; (2) PWC must travel perpendicular to shore; (3) PWC...
36 CFR 7.49 - Cape Lookout National Seashore.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Cape Lookout National Seashore. 7.49 Section 7.49 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... conditions: (1) PWC must be operated at flat-wake speed; (2) PWC must travel perpendicular to shore; (3) PWC...
Exploring Unsteady Sail Propulsion in Olympic Class Sailboats
NASA Astrophysics Data System (ADS)
Schutt, Riley; Williamson, C. H. K.
2014-11-01
Unsteady sailing techniques, defined as ``flicking,'' ``roll-tacking'' and ``roll-gybing'' are used by athletes to propel their boats on an Olympic race course faster than using the wind alone. Body weight movements induce unsteady sail motion, increasing driving force and enhancing maneuvering performance. In this research, we explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and camera array. The velocity heading of a sailing boat is oriented at an apparent wind angle to the flow. In contrast to classic flapping propulsion, the heaving of the sail section (induced by the sailor's body movement) is not perpendicular to the sail's motion through the air. This leads to an ``exotic heave,'' with components parallel and perpendicular to the incident flow. The characteristic motion is recreated in a towing tank where the vortex structures generated by a representative 2-D sail section are observed, along with a measurement of thrust and lift forces. When combined with turning maneuvers, these heaving sail motions can lead to significant increases in velocity made good, a critical variable used when assessing racing performance.
Shear wave transducer for boreholes
Mao, N.H.
1984-08-23
A technique and apparatus is provided for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data are used to back-calculate the applied stress.
Shear wave transducer for stress measurements in boreholes
Mao, Nai-Hsien
1987-01-01
A technique and apparatus for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data is used to back-calculate the applied stress.
Digital Data Acquisition for Laser Radar for Vibration Analysis
1998-06-01
and the resulting signal is a function of the relative phase of the two waves , which changes as the target vibrates. The relative phase is inversely...light crosses the medium in a direction perpendicular to the acoustic waves , a modulated optical wave front will result. A standing acoustic wave in the...mean that the frequency can be up or down-shifted, depending on the orientation of the AOM, or the direction of the traveling acoustic waves . An
Peculiarity of the Relationship between the Seismicity and Tectonic Structure of the Pyrenees
NASA Astrophysics Data System (ADS)
Lukk, A. A.; Shevchenko, V. I.
2018-05-01
The geotectonic position of the Pyrenees mountain massif in the Alpine-Indonesian mobile belt is considered. The geological data testify to the formation of the structure of the Pyrenees in the setting of a subhorizontal compression perpendicular to the ridge. The commonly accepted interpretation considers this compression in the context of plate tectonic notions related to the collision between the Iberian and Eurasian lithospheric plates resulting from the convergence of the Eurasian and African plates. However, this interpretation is challenged by the the geodetic and seismological measurements. The GPS measurements suggest a certain cross-strike spreading rather than shortening of the Earth's crust; the focal mechanisms of the earthquakes indicate the predominance of a subhorizontal extension perpendicular to the strike of the Pyrenees mountain range. The processes of the gravitational collapse of the mountain chain during the isostatic upwelling of the orogenic crust are considered as the most probable cause of this spreading by a number of the authors.
Magneto-ballistic transport in GaN nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoruvo, Giovanni, E-mail: giovanni.santoruvo@epfl.ch; Allain, Adrien; Ovchinnikov, Dmitry
2016-09-05
The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuationsmore » and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.« less
Thermal Programmed Desorption of C32 H 66
NASA Astrophysics Data System (ADS)
Cisternas, M.; Del Campo, V.; Cabrera, A. L.; Volkmann, U. G.; Hansen, F. Y.; Taub, H.
2011-03-01
Alkanes are of interest as prototypes for more complex molecules and membranes. In this work we study the desorption kinetics of dotriacontane C32 adsorbed on Si O2 /Si substrate. We combine in our instrument High Resolution Ellipsometry (HRE) and Thermal Programmed Desorption (TPD). C32 monolayers were deposited in high vacuum from a Knudsen cell on the substrate, monitorizing sample thickness in situ with HRE. Film thickness was in the range of up to 100 AA, forming a parallel bilayer and perpendicular C32 layer. The Mass Spectrometer (RGA) of the TPD section was detecting the shift of the desorption peaks at different heating rates applied to the sample. The mass registered with the RGA was AMU 57 for parallel and perpendicular layers, due to the abundance of this mass value in the disintegration process of C32 in the mass spectrometers ionizer. Moreover, the AMU 57 signal does not interfere with other signals coming from residual gases in the vacuum chamber. The desorption energies obtained were ΔEdes = 11,9 kJ/mol for the perpendicular bilayer and ΔEdes = 23 ,5 kJ/mol for the parallel bilayer.
NASA Astrophysics Data System (ADS)
Klimin, V. S.; Il'ina, M. V.; Il'in, O. I.; Rudyk, N. N.; Ageev, O. A.
2017-11-01
This experimental work is devoted to the regimes of obtaining arrays of carbon nanotubes. Arrays of perpendicular nanotubes perpendicular to the surface were obtained by the method of Plasma-enhanced chemical vapor deposition. In this paper, geometric and electronic parameters of carbon nanotubes were investigated depending on the material of the sublayer. The rates of growth of carbon nanotubes on various structures were also determined. In the experiments for growth, structures such as Ni-Al-Si, Ni-V-Si, Ni-Ti-Si, Ni-Cr-Si were used. The growth rates for the intensive section were for the Ni-Cr-Si structure, the growth rate is about 1 μm / min, for the Ni-V-Si structure it is 0.55 μm / min. The growth rates for the saturation region for the Ni-Cr-Si structure, the growth rate is about 0.2 μm / min, for the Ni-V-Si structure 0.16 μm / min. The results obtained in this paper can be used to optimize the growth regimes perpendicularly oriented to the substrate carbon nanotubes, which are used as various elements in modern nanoelectronics.
Circulation in the region of the Reykjanes Ridge in June-July 2015
NASA Astrophysics Data System (ADS)
Tillys, Petit; Herle, Mercier; Virginie, Thierry
2017-04-01
The Reykjanes Ridge is a major topographic feature of the North-Atlantic Ocean lying south of Iceland that strongly influences the pathways of the upper and lower limbs of the meridional overturning cell. The circulation in the vicinity of the Reykjanes Ridge is anticyclonic and characterized by a southwestward flow (the East Reykjanes Ridge Current, ERRC) along the eastern flank and a northeastward flow (the Irminger Current, IC) along the western flank. Even if it is admitted that the ERRC feeds the IC through a cross-ridge flow, details and magnitude of this circulation remain unclear. In this study, the circulation in the region of the Reykjanes Ridge was investigated based on ADCP and CTDO2 measurements carried out from the R/V Thalassa during the RREX cruise, which provided a snapshot of the water mass distribution and circulation during summer 2015. One hydrographic section followed the top of the Reykjanes Ridge between Iceland and 50˚ N and three other sections were carried out perpendicularly to the ridge at 62˚ N, 58.5˚ N and 56˚ N. Geostrophic transports were estimated by combining ADCP and hydrographic data. Those observations were used to provide an estimate of the circulation around the Ridge and to discuss the meridional evolutions of the ERRC and IC transports along the Ridge and their connection to the cross-Ridge flows. The section along the top of the Reykjanes Ridge allowed us to describe the cross ridge exchanges. A westward flow crossed the Ridge between Iceland and 53˚ N. Its top to bottom integrated transport was estimated at 17.7 Sv. Two main passages were identified for the westward crossing. A first passage is located near 57˚ N (Bight Fracture Zone, BFZ) in agreement with previous studies. More surprisingly, a second passage is located near 59˚ N. The top-to-bottom transports of those two main flows were estimated at 6.5 and 8 Sv respectively. The IC and ERRC top-to-bottom integrated transports were maximum at 58.5˚ N and estimated at 24.7 Sv and 17.6 Sv respectively. At 58.5˚ N, the IC was composed of two baroclinic branches while the ERRC was composed of one barotropic branch. The analysis also suggested that the IC was partly fed by the subpolar branch of the North Atlantic Current characterized by relatively low salinity and temperature. This subpolar branch would directly feed the IC without entering in the Iceland Basin. The northward increase in salinity and temperature of the IC core between 56˚ N and 62˚ N highlights the entrainment in the IC of saltier and warmer subtropical waters coming from the eastern side of the Ridge.
Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.
2014-01-01
An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.
Angular Dependence of Liquid Crystal Based Nematic Acoustic Field Imaging Devices
1980-04-01
wave arid a linearl t Polarized light wave# The nematic cell is constructed bv insertinsI the liouid crvstal between two sheets of glass cheicallA...perpendicular to the glass sheets. Noratall no li:. ht is transmitted if the cell is observed between crossed- Folarizers. However, if an ultrasonic...reported the rarrow’ar,:ialar r;n.rte for the effect becomes broadened when thin glass is used for the cell, -el • _____ __ Xi this repcrt we rjescribe
Self-aligning biaxial load frame
Ward, M.B.; Epstein, J.S.; Lloyd, W.R.
1994-01-18
An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Aggson, T. L.; Mangeney, A.; Lacombe, C.; Harvey, C. C.
1986-01-01
Using the results of Scudder et al. (1986) on the bow shock wave observed by ISEE satellites, a quantitative description is presented of the electrodynamics of ion and electron fluids, and phase-standing wave interaction which manifests itself as a supercritical MHD shock. The cross-shock electrical profile was determined in both the normal incidence frame and in the deHoffman-Teller frame by two different methods, and the results were compared with dc electric field measurements.
Universal programmable logic gate and routing method
NASA Technical Reports Server (NTRS)
Vatan, Farrokh (Inventor); Akarvardar, Kerem (Inventor); Mojarradi, Mohammad M. (Inventor); Fijany, Amir (Inventor); Cristoloveanu, Sorin (Inventor); Kolawa, Elzbieta (Inventor); Blalock, Benjamin (Inventor); Chen, Suheng (Inventor); Toomarian, Nikzad (Inventor)
2009-01-01
An universal and programmable logic gate based on G.sup.4-FET technology is disclosed, leading to the design of more efficient logic circuits. A new full adder design based on the G.sup.4-FET is also presented. The G.sup.4-FET can also function as a unique router device offering coplanar crossing of signal paths that are isolated and perpendicular to one another. This has the potential of overcoming major limitations in VLSI design where complex interconnection schemes have become increasingly problematic.
The Hydrogen Abstraction from A Diamond(111) Surface in A Uniform Electric Field
NASA Technical Reports Server (NTRS)
Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Kang, Jeung Ku.; Musgrave, Charles B.; Arnold, James O. (Technical Monitor)
1998-01-01
Bond breaking in a strong electric field is shown to arise from a crossing of the ionic and covalent asymptotes. The specific example of hydrogen abstraction from a diamond(111) surface is studied using a cluster model. The addition of nearby atoms in both the parallel and perpendicular direction to the electric field are found to have an effect. It is also shown that the barrier is not only related to the position of the ionic and covalent asymptotes.
Electrostatics of crossed arrays of strips.
Danicki, Eugene
2010-07-01
The BIS-expansion method is widely applied in analysis of SAW devices. Its generalization is presented for two planar periodic systems of perfectly conducting strips arranged perpendicularly on both sides of a dielectric layer. The generalized method can be applied in the evaluation of capacitances of strips on printed circuits boards and certain microwave devices, but primarily it may help in evaluation of 2-D piezoelectric sensors and actuators, with row and column addressing their elements, and also piezoelectric bulk wave resonators.
Step patterns on vicinal reconstructed surfaces
NASA Astrophysics Data System (ADS)
Vilfan, Igor
1996-04-01
Step patterns on vicinal (2 × 1) reconstructed surfaces of noble metals Au(110) and Pt(110), miscut towards the (100) orientation, are investigated. The free energy of the reconstructed surface with a network of crossing opposite steps is calculated in the strong chirality regime when the steps cannot make overhangs. It is explained why the steps are not perpendicular to the direction of the miscut but form in equilibrium a network of crossing steps which make the surface to look like a fish skin. The network formation is the consequence of competition between the — predominantly elastic — energy loss and entropy gain. It is in agreement with recent scanning tunnelling microscopy observations on vicinal Au(110) and Pt(110) surfaces.
Li, Tao; Li, Xin; Zhao, Xihai; Zhou, Weihua; Cai, Zulong; Yang, Li; Guo, Aitao; Zhao, Shaohong
2012-05-01
The objective of our study was to evaluate the feasibility of ex vivo high-resolution multicontrast-weighted MRI to accurately classify human coronary atherosclerotic plaques according to the American Heart Association classification. Thirteen human cadaver heart specimens were imaged using high-resolution multicontrast-weighted MR technique (T1-weighted, proton density-weighted, and T2-weighted). All MR images were matched with histopathologic sections according to the landmark of the bifurcation of the left main coronary artery. The sensitivity and specificity of MRI for the classification of plaques were determined, and Cohen's kappa analysis was applied to evaluate the agreement between MRI and histopathology in the classification of atherosclerotic plaques. One hundred eleven MR cross-sectional images obtained perpendicular to the long axis of the proximal left anterior descending artery were successfully matched with the histopathologic sections. For the classification of plaques, the sensitivity and specificity of MRI were as follows: type I-II (near normal), 60% and 100%; type III (focal lipid pool), 80% and 100%; type IV-V (lipid, necrosis, fibrosis), 96.2% and 88.2%; type VI (hemorrhage), 100% and 99.0%; type VII (calcification), 93% and 100%; and type VIII (fibrosis without lipid core), 100% and 99.1%, respectively. Isointensity, which indicates lipid composition on histopathology, was detected on MRI in 48.8% of calcified plaques. Agreement between MRI and histopathology for plaque classification was 0.86 (p < 0.001). Ex vivo high-resolution multicontrast-weighted MRI can accurately classify advanced atherosclerotic plaques in human coronary arteries.
Numerical simulations of an impinging liquid spray in a cross-flow
NASA Astrophysics Data System (ADS)
Gomatam, Sreekar; Vengadesan, S.; Chakravarthy, S. R.
2017-11-01
The characteristics of a liquid spray in a uniform cross-flow field are numerically simulated in this study. A hollow cone liquid spray is injected perpendicular to the air stream flowing through a rectangular duct under room temperature and pressure. An Eulerian-Lagrangian framework is adopted to simulate the spray in cross-flow phenomenon. The cross-flow velocity is varied from 6-12 m/s while the liquid injection pressure is varied from 0.3-0.6 MPa. The liquid droplets from the injected spray undergo breakup and/or coalescence further in the cross-flow. Moreover, the spray injected into the cross-flow impinges on the opposite wall resulting in the formation of a liquid film. This liquid film disintegrates further into discrete droplets because of the impingement of the droplets from the spray and the shear from the cross-flow. The overall distribution of the droplets in the cross-flow for varying conditions is studied in detail. The evolution of the liquid film with space and time for varying conditions is also investigated. Suitable sub-models are used to numerically model the droplet break-up, coalescence, liquid film formation and disintegration, splashing of the droplets on the film and subsequent formation of daughter droplets. Department of Applied Mechanics, Indian Inst of Tech-Madras.
NASA Astrophysics Data System (ADS)
Doi, Atsushi; Kasahara, Shunji; Katô, Hajime; Baba, Masaaki
2004-04-01
Sub-Doppler high-resolution excitation spectra and the Zeeman effects of the 601, 101601, and 102601 bands of the S1 1B2u←S0 1A1g transition of benzene were measured by crossing laser beam perpendicular to a collimated molecular beam. 1593 rotational lines of the 101601 band and 928 lines of the 102601 band were assigned, and the molecular constants of the excited states were determined. Energy shifts were observed for the S1 1B2u(v1=1,v6=1,J,Kl=-11) levels, and those were identified as originating from a perpendicular Coriolis interaction. Many energy shifts were observed for the S1 1B2u(v1=2,v6=1,J,Kl) levels. The Zeeman splitting of a given J level was observed to increase with K and reach the maximum at K=J, which demonstrates that the magnetic moment lies perpendicular to the molecular plane. The Zeeman splittings of the K=J levels were observed to increase linearly with J. From the analysis, the magnetic moment is shown to be originating mostly from mixing of the S1 1B2u and S2 1B1u states by the J-L coupling (electronic Coriolis interaction). The number of perturbations was observed to increase as the excess energy increases, and all the perturbing levels were found to be a singlet state from the Zeeman spectra.
Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation
Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu
2015-01-01
In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... the vertical frame, the handling area and the projecting edges or toe plate, and any combination... edge or edges, or toe plate, perpendicular or angled to the vertical frame, at or near the lower section of the vertical frame. The projecting edge or edges, or toe plate, slides under a load for...
NASA Astrophysics Data System (ADS)
Takács, S.; Iwakuma, M.; Funaki, K.
2000-04-01
Two effects are considered which can influence the effective resistance between crossing strands on flat cables or filaments in twisted tapes. As analogous cases, the one-layer Rutherford-type cable with classical superconductors and the tapes with twisted BSCCO filaments in a silver matrix in perpendicular magnetic fields are considered as a model. At first, the amount of the central core between the strands and the silver matrix between the filaments increases the effective conductance compared with the direct current paths, which is supposed to be proportional to the touching area of filaments. The increase factor is about two and can be easily suppressed by other effects, such as the contact resistance between the superconductor and the matrix. However, due to the strong anisotropy of critical parameters for high temperature superconductors, this effect can partially compensate the influence of the usually weaker critical current density perpendicular to the tape. The second effect is connected with the existence of the induced voltage between any points of crossing filaments. This leads to an additional effective conductance, proportional to the square of the total number of the filaments. This contribution is prevailing for the anisotropic superconductors. Therefore, to obtain low ac coupling losses in BSCCO tapes, structures with smaller filament number are required. This case is analogous to round structures, leading to ac losses proportional to the square of the layer number in the field direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J. S.; Wu, D. J.; Voitenko, Y.
We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigatemore » two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bemporad, G.A.; Rubin, H.
This manuscript concerns the onset of thermohaline convection in a solar pond subject to field conditions as well as a small scale laboratory test section simulating the solar pond performance. The onset of thermohaline convection is analyzed in this study by means of a linear stability analysis in which the flow field perturbations are expended in sets of complete orthonormal functions satisfying the boundary conditions of the flow field. The linear stability analysis is first performed with regard to an advanced solar pond (ASP) subject to field conditions in which thermohaline convection develops in planes perpendicular to the unperturbed flowmore » velocity vector. In the laboratory simulator of the ASP the width and depth are of the same order of magnitude. In this case it is found that the side walls delay the onset of convection in planes perpendicular to the unperturbed flow velocity vector. The presence of the side walls may cause the planes parallel to the flow velocity to be the most susceptible to the development on all three spatial variables, are predicted. They may develop in planes parallel or perpendicular to the unperturbed velocity vector according to the value of the Reynolds number of the unperturbed flow and the ratio between the width and depth of the ASP simulator.« less
NASA Astrophysics Data System (ADS)
Gurer, M.; Sullivan, S.; Masteller, C.
2016-12-01
Bedload is a regime of sediment transport that occurs when particles roll, hop, or bounce downstream. This mode of transport represents an important portion of the sediment load in a gravel river. Despite numerous studies focused on bedload transport, it still remains difficult to predict accurately due to the complex arrangement of riverbed particles. The formation of gravel clusters, stones being imbricated, or streamlined, and other interlocked arrangements, as well as grains armoring the bed, all tend to stabilize gravel channels and decrease bed mobility. Typically, the development of bed structure usually occurs as sediment moves downstream. However, it is unclear that gravel bed structure can be developed during weaker flows that do not generate significant sediment transport. We examine how individual sediment grains reorient themselves during low flow conditions, in the absence of sediment transport, and during high flow conditions, as bedload transport occurs. We then perform flume experiments where we expose a gravel bed to varying durations of low flow and raise the water level, simulating a flood and transporting sediment. We also compare the long-axis orientations of grains before and after each low flow period and transport. We find that sediment grains reorient themselves differently during low and high flows. During low flow, grains appear to reorient themselves with the long-axes towards cross-stream direction, or perpendicular to the flow, with longer duration flows resulting in more pronounced cross-stream orientation. During high flow, grains orient themselves with their long-axes facing downstream or parallel to the flow, similar to imbricated grains observed in the sedimentary record. Further, when transport occurs, we find that median grain orientation is strongly correlated with bedload transport rates (R^2 = 0.98). We also observe that median grain orientations more perpendicular to downstream flow result in reduced transport rates. This new result suggests that the low flow reorientation of grains perpendicular to downstream flow drives observed differences in bedload transport during high flows. We conclude that low flow periods are important for the creation of bed structure and the stabilization of gravel river channels.
Aseismic slip and surface creep on the Hazar-Palu Section of the East Anatolian Fault, Turkey
NASA Astrophysics Data System (ADS)
Ergintav, S.; Cakir, Z.; Dogan, U.; Cetin, S.; Senturk, S.; Karabulut, H.; Saroglu, F.; Dikmen, U.; Bilham, R. G.; Ozdemir, A.; Julaiti, W.; Ozener, H.
2017-12-01
Forming the boundary between the Anatolian and Arabian plates in Turkey, the East Anatolian fault (EAF) is one of the most important tectonic structures in the Eastern Mediterranean region. Together with its conjugate, the North Anatolian Fault (NAF), it accommodates the westward motion of the Anatolian plate at a rate of 10 mm/yr. We study the interseismic deformation along the eastern section of the EAF using SAR data (2012-2017). Interferograms are calculated, using GMT5SAR software (Sandwell et al., 2011). The interferograms are then used to map the velocity field with the Stanford Method for Persistent Scatterers technique (STAMPS; Hooper et al., 2012). In 2015 a new GPS network was established with 6 fault perpendicular profiles crossing segments identified to be creeping from SAR analysis. The closest GPS sites are within 2 km from the surface EAF. Far-field continuous GPS sites permit us to determine the long-term slip rate and hence the depth of creep on the fault using dislocation models. Additionally, two creepmeters were installed to monitor fault creep in a railway tunnel crossing the fault at ≈50 m depth below the ruined medieval village of Palu, at a location where the walls of the tunnel have been offset by 10-20 cm since construction in the middle of the last century. To confirm these results, earthquake catalogs were, also, re-analyzed. The preliminary results, which are obtained from multidisciplinary data, confirm the average slip rate of the EAF is about 10 mm/yr. The results also reveal that the 100-km-long Palu segment in the Elazıg-Bingöl seismic gap is exhibiting aseismic creep at the surface. The surface creep rate varies along the fault locally attaining the far field plate velocity (i.e. 10 mm/yr), implying that significant portion of the elastic strain has been released aseismically. Preliminary modelling with elastic dislocations suggests that some sections of the fault may be creeping from the surface down to the entire seismogenic crust. Our data are the first to confirm aseismic slip on the EAF (supported by TUBITAK 1001 project no:114Y250)
Photoeffect cross sections of some rare-earth elements at 145.4 keV
NASA Astrophysics Data System (ADS)
Umesh, T. K.; Ranganathaiah, C.; Sanjeevaiah, B.
1985-08-01
Total attenuation cross sections in the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er were derived from the measured total cross sections of their simple oxide compounds, by employing the mixture rule at 145.4-keV photon energy. The compound cross sections have been measured by performing transmission experiments in a good geometry setup. From the derived total cross sections of elements, photoeffect cross sections have been obtained by subtracting the theoretical scattering cross sections. A good agreement is observed between the present data of photoeffect cross sections and Scofield's theoretical data.
Micromagnetic Study of Perpendicular Magnetic Recording Media
NASA Astrophysics Data System (ADS)
Dong, Yan
With increasing areal density in magnetic recording systems, perpendicular recording has successfully replaced longitudinal recording to mitigate the superparamagnetic limit. The extensive theoretical and experimental research associated with perpendicular magnetic recording media has contributed significantly to improving magnetic recording performance. Micromagnetic studies on perpendicular recording media, including aspects of the design of hybrid soft underlayers, media noise properties, inter-grain exchange characterization and ultra-high density bit patterned media recording, are presented in this dissertation. To improve the writability of recording media, one needs to reduce the head-to-keeper spacing while maintaining a good texture growth for the recording layer. A hybrid soft underlayer, consisting of a thin crystalline soft underlayer stacked above a non-magnetic seed layer and a conventional amorphous soft underlayer, provides an alternative approach for reducing the effective head-to-keeper spacing in perpendicular recording. Micromagnetic simulations indicate that the media using a hybrid soft underlayer helps enhance the effective field and the field gradient in comparison with conventional media that uses only an amorphous soft underlayer. The hybrid soft underlayer can support a thicker non-magnetic seed layer yet achieve an equivalent or better effective field and field gradient. A noise plateau for intermediate recording densities is observed for a recording layer of typical magnetization. Medium noise characteristics and transition jitter in perpendicular magnetic recording are explored using micromagnetic simulation. The plateau is replaced by a normal linear dependence of noise on recording density for a low magnetization recording layer. We show analytically that a source of the plateau is similar to that producing the Non-Linear-Transition-Shift of signal. In particular, magnetostatic effects are predicted to produce positive correlation of jitter and thus negative correlation of noise at the densities associated with the plateau. One focus for developing perpendicular recording media is on how to extract intergranular exchange coupling and intrinsic anisotropy field dispersion. A micromagnetic numerical technique is developed to effectively separate the effects of intergranular exchange coupling and anisotropy dispersion by finding their correlation to differentiated M-H curves with different initial magnetization states, even in the presence of thermal fluctuation. The validity of this method is investigated with a series of intergranular exchange couplings and anisotropy dispersions for different media thickness. This characterization method allows for an experimental measurement employing a vibrating sample magnetometer (VSM). Bit patterned media have been suggested to extend areal density beyond 1 Tbit/in2. The feasibility of 4 Tbit/in2 bit patterned recording is determined by aspects of write head design and media fabrication, and is estimated by the bit error rate. Micromagnetic specifications including 2.3:1 BAR bit patterned exchange coupled composite media, trailing shield, and side shields are proposed to meet the requirement of 3x10 -4 bit error rate, 4 nm fly height, 5% switching field distribution, 5% timing and 5% jitter errors for 4 Tbit/in2 bit-patterned recording. Demagnetizing field distribution is examined by studying the shielding effect of the side shields on the stray field from the neighboring dots. For recording self-assembled bit-patterned media, the head design writes two staggered tracks in a single pass and has maximum perpendicular field gradients of 580 Oe/nm along the down-track direction and 476 Oe/nm along the cross-track direction. The geometry demanded by self-assembly reduces recording density to 2.9 Tbit/in 2.
NASA Astrophysics Data System (ADS)
Bartolome, R.; Danobeitia, J.; Barba, D. C., Sr.; Nunez-Cornu, F. J.; Cameselle, A. L.; Estrada, F.; Prada, M.; Bandy, W. L.
2014-12-01
During the spring of 2014, a team of Spanish and Mexican scientists explored the western margin of Mexico in the frame of the TSUJAL project. The two main objectives were to characterize the nature and structure of the lithosphere and to identify potential sources triggering earthquakes and tsunamis at the contact between Rivera plate-Jalisco block with the North American Plate. With these purposes a set of marine geophysical data were acquired aboard the RRS James Cook. This work is focus in the southern part of the TSUJAL survey, where we obtain seismic images from the oceanic domain up to the continental shelf. Thus, more than 800 km of MCS data, divided in 7 profiles, have been acquired with a 6km long streamer and using an air-gun sources ranging from 5800 c.i. to 3540 c.i. Furthermore, a wide-angle seismic profile of 190 km length was recorded in 16 OBS deployed perpendicular to the coast of Manzanillo. Gravity and magnetic, multibeam bathymetry and sub-bottom profiler data were recorded simultaneously with seismic data in the offshore area. Preliminary stacked MCS seismic sections reveal the crustal structure in the different domains of the Mexican margin. The contact between the Rivera and NA Plates is observed as a strong reflection at 6 s two way travel time (TWTT), in a parallel offshore profile (TS01), south of Manzanillo. This contact is also identified in a perpendicular profile, TS02, along a section of more than 100 km in length crossing the Rivera transform zone, and the plate boundary between Cocos and Rivera Plates. Northwards, offshore Pto. Vallarta, the MCS data reveals high amplitude reflections at around 7-8.5 s TWTT, roughly 2.5-3.5 s TWTT below the seafloor, that conspicuously define the subduction plane (TS06b). These strong reflections which we interpret as the Moho discontinuity define the starting bending of subduction of Rivera Plate. Another clear pattern observed within the first second of the MCS data shows evidences of a bottom simulating reflector (BSR) along the continental margin, particularly strong offshore Pto. Vallarta. The integration of all these acquired geophysical information will allow obtaining a comprehensive image of the lithosphere that will be valuable for the seismic and tsunamigenic hazard assessment.
Thermodynamics around the first-order ferromagnetic phase transition of Fe2P single crystals
NASA Astrophysics Data System (ADS)
Hudl, M.; Campanini, D.; Caron, L.; Höglin, V.; Sahlberg, M.; Nordblad, P.; Rydh, A.
2014-10-01
The specific heat and thermodynamics of Fe2P single crystals around the first-order paramagnetic to ferromagnetic (FM) phase transition at TC≃217 K are empirically investigated. The magnitude and direction of the magnetic field relative to the crystal axes govern the derived H -T phase diagram. Strikingly different phase contours are obtained for fields applied parallel and perpendicular to the c axis of the crystal. In parallel fields, the FM state is stabilized, while in perpendicular fields the phase transition is split into two sections, with an intermediate FM phase where there is no spontaneous magnetization along the c axis. The zero-field transition displays a textbook example of a first-order transition with different phase stability limits on heating and cooling. The results have special significance since Fe2P is the parent material to a family of compounds with outstanding magnetocaloric properties.
NASA Astrophysics Data System (ADS)
Geurts, Bernard J.; Wiegel, Frederik W.; Creswick, Richard J.
1990-05-01
The motion in the plane of an harmonically bound charged particle interacting with a magnetic field and a half-plane barrier along the positive x-axis is studied. The magnetic field is perpendicular to the plane in which the particle moves. This motion is integrable in between collisions of the particle with the barrier. However, the overall motion of the particle is very complicated. Chaotic regions in phase space exist next to island structures associated with linearly stable periodic orbits. We study in detail periodic orbits of low period and in particular their bifurcation behavior. Independent sequences of period doubling bifurcations and resonant bifurcations are observed associated with independent fixed points in the Poincaré section. Due to the perpendicular magnetic field an orientation is induced on the plane and time-reversal symmetry is broken.
Cross-Propagation Sum-Frequency Generation Vibrational Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Li; Chen, Shun-li; Gan, Wei
2016-02-27
Here we report the theory formulation and the experiment realization of sum-frequency generation vibrational spectroscopy (SFG-VS) in the cross-propagation (XP) geometry or configuration. In the XP geometry, the visible and the infrared (IR) beams in the SFG experiment are delivered to the same location on the surface from visible and IR incident planes perpendicular to each other, avoiding the requirement to have windows or optics to be transparent to both the visible and IR frequencies. Therefore, the XP geometry is applicable to study surfaces in the enclosed vacuum or high pressure chambers with far infrared (FIR) frequencies that can directlymore » access the metal oxide and other lower frequency surface modes, with much broader selection of visible and IR transparent window materials.« less
Cross-stream migration of active particles
NASA Astrophysics Data System (ADS)
Uspal, William; Katuri, Jaideep; Simmchen, Juliane; Miguel-Lopez, Albert; Sanchez, Samuel
For natural microswimmers, the interplay of swimming activity and external flow can promote robust directed motion, e.g. propulsion against (upstream rheotaxis) or perpendicular to the direction of flow. These effects are generally attributed to their complex body shapes and flagellar beat patterns. Here, using catalytic Janus particles as a model system, we report on a strong directional response that naturally emerges for spherical active particles in a channel flow. The particles align their propulsion axis to be perpendicular to both the direction of flow and the normal vector of a nearby bounding surface. We develop a deterministic theoretical model that captures this spontaneous transverse orientational order. We show how the directional response emerges from the interplay of external shear flow and swimmer/surface interactions (e.g., hydrodynamic interactions) that originate in swimming activity. Finally, adding the effect of thermal noise, we obtain probability distributions for the swimmer orientation that show good agreement with the experimental probability distributions. Our findings show that the qualitative response of microswimmers to flow is sensitive to the detailed interaction between individual microswimmers and bounding surfaces.
Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Hao; Zhang, Tao; Han, Xiang
2015-08-15
An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured bymore » the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s.« less
Whitaker, Kirstie J; Kang, Xiaojian; Herron, Timothy J; Woods, David L; Robertson, Lynn C; Alvarez, Bryan D
2014-04-15
In this study we show, for the first time, a correlation between the neuroanatomy of the synesthetic brain and a metric that measures behavior not exclusive to the synesthetic experience. Grapheme-color synesthetes (n=20), who experience colors triggered by viewing or thinking of specific letters or numbers, showed altered white matter microstructure, as measured using diffusion tensor imaging, compared with carefully matched non-synesthetic controls. Synesthetes had lower fractional anisotropy and higher perpendicular diffusivity when compared to non-synesthetic controls. An analysis of the mode of anisotropy suggested that these differences were likely due to the presence of more crossing pathways in the brains of synesthetes. Additionally, these differences in white matter microstructure correlated negatively, and only for synesthetes, with a measure of the vividness of their visual imagery. Synesthetes who reported the most vivid visual imagery had the lowest fractional anisotropy and highest perpendicular diffusivity. We conclude that synesthetes as a population vary along a continuum while showing categorical differences in neuroanatomy and behavior compared to non-synesthetes. Copyright © 2013 Elsevier Inc. All rights reserved.
Multispacecraft study of shock-flux rope interaction
NASA Astrophysics Data System (ADS)
Blanco-Cano, X.; Burgess, D.; Sundberg, T.; Kajdic, P.
2016-12-01
Interplanetary (IP) shocks can be driven in the solar wind by fast coronal mass ejections. These shocks play an active role in particle acceleration near the Sun and through the heliosphere, being associated to solar energetic particle (SEP) and energetic storm particle (ESP) events. IP shocks can interact with structures in the solar wind, and with planetary magnetospheres. In this work we study how the properties of an IP shock change when it interacts with a medium scale flux rope (FR). We use measurements from CLUSTER, WIND and ACE. These three spacecraft observed the shock-FR interaction at different stages of its evolution. We find that the shock-FR interaction locally changes the shock geometry, affecting ion injection processes, and the upstream and downstream regions. While WIND and ACE observed a quasi-perpendicular shock, CLUSTER crossed a quasi-parallel shock and a foreshock with a variety of ion distributions. The complexity of the ion foreshock can be explained by the dynamics of the shock transitioning from quasi-perpendicular to quasi-parallel, and the geometry of the magnetic field around the flux rope.
Two-dimensional imaging via a narrowband MIMO radar system with two perpendicular linear arrays.
Wang, Dang-wei; Ma, Xiao-yan; Su, Yi
2010-05-01
This paper presents a system model and method for the 2-D imaging application via a narrowband multiple-input multiple-output (MIMO) radar system with two perpendicular linear arrays. Furthermore, the imaging formulation for our method is developed through a Fourier integral processing, and the parameters of antenna array including the cross-range resolution, required size, and sampling interval are also examined. Different from the spatial sequential procedure sampling the scattered echoes during multiple snapshot illuminations in inverse synthetic aperture radar (ISAR) imaging, the proposed method utilizes a spatial parallel procedure to sample the scattered echoes during a single snapshot illumination. Consequently, the complex motion compensation in ISAR imaging can be avoided. Moreover, in our array configuration, multiple narrowband spectrum-shared waveforms coded with orthogonal polyphase sequences are employed. The mainlobes of the compressed echoes from the different filter band could be located in the same range bin, and thus, the range alignment in classical ISAR imaging is not necessary. Numerical simulations based on synthetic data are provided for testing our proposed method.
NASA Astrophysics Data System (ADS)
Bourguet, Remi; Gsell, Simon; Braza, Marianna
2017-11-01
The flow patterns developing downstream of slender bodies with bluff cross-section have been the object of intense research in the past decades. Particular attention was paid to the vortex patterns emerging in the plane perpendicular to the body axis. In the present study, focus is placed on the spanwise structure of the flow, in the early turbulent regime. The existence of dominant spanwise wavelengths had already been reported. However, many aspects remained to be explored, among others, the streamwise evolution of the spanwise patterns and their possible alteration when the body oscillates. These aspects are examined here on the basis of direct numerical simulations of the flow past a circular cylinder at Reynolds number 3900. The body is either fixed or subjected to vortex-induced vibrations. A systematic analysis of the spanwise patterns reveals persistent trends of their amplitude and wavelength in the different compartments of the flow, i.e. the separating shear layer and wake regions. Physical mechanisms are proposed to explain these trends. It is also found that the spanwise structure of the flow is differently altered in these two regions once the cylinder vibrates, the alteration being concentrated in the separating shear layers.
Electron Beam Transport in Advanced Plasma Wave Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Ronald L
2013-01-31
The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams weremore » generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.« less
NASA Astrophysics Data System (ADS)
Zhao, Zhong-Xun; Ma, Xiao; Cao, Shan-Shan; Ke, Chang-Bo; Zhang, Xin-Ping
2017-12-01
The present study focuses on the anisotropic negative thermal expansion (NTE) behaviors of Ti-rich (Ti54Ni46) and equiatomic Ti-Ni (Ti50Ni50) alloys fabricated by vacuum arc melting and without subsequent plastic deformation. Both alloys exhibit NTE responses in vertical and horizontal directions, and the total strains and CTEs of the NTE stage along the two mutually perpendicular measuring directions are obviously different, indicating obvious anisotropic NTE behavior of the alloys. Besides, the numerical differences between the starting temperature of NTE and austenitic transformation and between the finishing temperature of NTE and austenitic transformation are very small, which indicates that an apparent relationship exists between the NTE behavior and the phase transformation. The microstructure in the vertical cross sections shows obviously preferential orientation characteristics: Ti2Ni phases of both alloys grow along the vertical direction, and B19' martensite of Ti50Ni50 alloy has distinct preferential orientation, which results from a large temperature gradient between the top and the bottom of the button ingots during solidification. The microstructure with preferential orientation induces the anisotropic NTE behavior of the samples.
Boyde, A
1997-01-01
Enamel is a composite material consisting of mineral and organic phases. The properties of the mineral phase are modulated dramatically by its division into microscopic crystals, cemented together by the organic matrix protein polymer. A good concept of the 3D orientations of the crystals derives from visualizing their growth perpendicular to the surface in which they develop, which is pitted by the secretory poles of the ameloblasts. The arrangement of the crystals is the cause of the discontinuities, known as the prism boundaries or junctions, in the otherwise continuous structure. These locations acquire a more concentrated organic matrix during maturation, and they are both crack stoppers and crack propagation tracks in the adult tissue. Any tendency of prisms to cleave may be reduced by their varicosities, which reflect daily variations in the rate of production; their cross-sectional shape; the non-parallelism of adjacent groups, which develops through translocation of groups of cells across the surface during development; and the support of any one microscopic tissue element by other tissue, including dentine, placed to resist an applied load. Incremental growth lines are preferential cleavage planes within the enamel. Failure patterns of enamel in normal and abnormal use can be explained by these parameters, with additional consideration of functional variation and fatigue.
RCS Diversity of Electromagnetic Wave Carrying Orbital Angular Momentum.
Zhang, Chao; Chen, Dong; Jiang, Xuefeng
2017-11-13
An electromagnetic (EM) wave with orbital angular momentum (OAM) has a helical wave front, which is different from that of the plane wave. The phase gradient can be found perpendicular to the direction of propagation and proportional to the number of OAM modes. Herein, we study the backscattering property of the EM wave with different OAM modes, i.e., the radar cross section (RCS) of the target is measured and evaluated with different OAM waves. As indicated by the experimental results, different OAM waves have the same RCS fluctuation for the simple target, e.g., a small metal ball as the target. However, for complicated targets, e.g., two transverse-deployed small metal balls, different RCSs can be identified from the same incident angle. This valuable fact helps to obtain RCS diversity, e.g., equal gain or selective combining of different OAM wave scattering. The majority of the targets are complicated targets or expanded targets; the RCS diversity can be utilized to detect a weak target traditionally measured by the plane wave, which is very helpful for anti-stealth radar to detect the traditional stealth target by increasing the RCS with OAM waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preece, D.S.
Pretest 3-D finite element calculations have been performed on the wedge pillar portion of the WIPP Geomechanical Evaluation Experiment. The wedge pillar separates two drifts that intersect at an angle of 7.5/sup 0/. Purpose of the experiment is to provide data on the creep behavior of the wedge and progressive failure at the tip. The first set of calculations utilized a symmetry plane on the center-line of the wedge which allowed treatment of the entire configuration by modeling half of the geometry. Two 3-D calculations in this first set were performed with different drift widths to study the influence ofmore » drift size on closure and maximum stress. A cross-section perpendicular to the wedge was also analyzed with 2-D finite element models and the results compared to the 3-D results. In another set of 3-D calculations both drifts were modeled but with less distance between the drifts and the outer boundaries. Results of these calculations are compared with results from the other calculations to better understand the influence of boundary conditions.« less
A spectrally accurate boundary-layer code for infinite swept wings
NASA Technical Reports Server (NTRS)
Pruett, C. David
1994-01-01
This report documents the development, validation, and application of a spectrally accurate boundary-layer code, WINGBL2, which has been designed specifically for use in stability analyses of swept-wing configurations. Currently, we consider only the quasi-three-dimensional case of an infinitely long wing of constant cross section. The effects of streamwise curvature, streamwise pressure gradient, and wall suction and/or blowing are taken into account in the governing equations and boundary conditions. The boundary-layer equations are formulated both for the attachment-line flow and for the evolving boundary layer. The boundary-layer equations are solved by marching in the direction perpendicular to the leading edge, for which high-order (up to fifth) backward differencing techniques are used. In the wall-normal direction, a spectral collocation method, based upon Chebyshev polynomial approximations, is exploited. The accuracy, efficiency, and user-friendliness of WINGBL2 make it well suited for applications to linear stability theory, parabolized stability equation methodology, direct numerical simulation, and large-eddy simulation. The method is validated against existing schemes for three test cases, including incompressible swept Hiemenz flow and Mach 2.4 flow over an airfoil swept at 70 deg to the free stream.
Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping
2015-05-01
We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.
NASA Astrophysics Data System (ADS)
Keefe, Steffanie H.; Daniels, Joan S. (Thullen); Runkel, Robert L.; Wass, Roland D.; Stiles, Eric A.; Barber, Larry B.
2010-11-01
A series of tracer experiments were conducted biannually at the start and end of the vegetation growing season in a surface flow wastewater treatment wetland located near Phoenix, AZ. Tracer experiments were conducted prior to and following reconfiguration and replanting of a 1.2 ha treatment wetland from its original design of alternating shallow and deep zones to incorporate hummocks (shallow planting beds situated perpendicular to flow). Tracer test data were analyzed using analysis of moments and the one-dimensional transport with inflow and storage numerical model to evaluate the effects of the seasonal vegetation growth cycle and hummocks on solute transport. Following reconfiguration, vegetation coverage was relatively small, and minor changes in spatial distribution influenced wetland hydraulics. During start-up conditions, the wetland underwent an acclimation period characterized by small vegetation coverage and large transport cross-sectional areas. At the start of the growing season, new growth of emergent vegetation enhanced hydraulic performance. At the end of the growing season, senescing vegetation created short-circuiting. Wetland hydrodynamics were associated with high volumetric efficiencies and velocity heterogeneities. The hummock design resulted in breakthrough curves characterized by multiple secondary tracer peaks indicative of varied flow paths created by bottom topography.
Evaluation of magnetic field's uniformity inside electromagnetic coils using graphene
NASA Astrophysics Data System (ADS)
Amanatiadis, Stamatios A.; Kantartzis, Nikolaos V.; Ohtani, Tadao; Kanai, Yasushii
2018-05-01
The distribution of the magnetic field in electromagnetic coils, such as those employed in magnetic resonance imaging (MRI), is evaluated in this paper, through graphene gyrotropic properties. Initially, the rotation of an incident linearly polarized plane wave, due to an infinite graphene layer, is studied theoretically via the extraction of the perpendicular, to the polarization, electric component of the transmitted wave. Moreover, the influence of the magnetic bias field strength on this component is, also, examined, indicating the eligibility of graphene to detect magnetostatic field variations. To this aim, a specific device is proposed, consisting of a high frequency source, an electric field detector, and a finite graphene sheet that differs from the infinite one of the analytical case. To quantify the distance that the gyrotropic effects are detectable, the effective region is introduced and extracted via a properly modified finite-difference time-domain (FDTD) algorithm. The featured device is verified through a setup comprising a uniform electromagnetic coil, where the generated magnetostatic field is calculated at several cross-sections of the coil and compared to actual field values. Results indicate the accuracy and sensitivity of the designed device for the unambiguous regions.
Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties
NASA Astrophysics Data System (ADS)
Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian
2018-04-01
Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.
NASA Astrophysics Data System (ADS)
Zhao, Zhong-Xun; Ma, Xiao; Cao, Shan-Shan; Ke, Chang-Bo; Zhang, Xin-Ping
2018-03-01
The present study focuses on the anisotropic negative thermal expansion (NTE) behaviors of Ti-rich (Ti54Ni46) and equiatomic Ti-Ni (Ti50Ni50) alloys fabricated by vacuum arc melting and without subsequent plastic deformation. Both alloys exhibit NTE responses in vertical and horizontal directions, and the total strains and CTEs of the NTE stage along the two mutually perpendicular measuring directions are obviously different, indicating obvious anisotropic NTE behavior of the alloys. Besides, the numerical differences between the starting temperature of NTE and austenitic transformation and between the finishing temperature of NTE and austenitic transformation are very small, which indicates that an apparent relationship exists between the NTE behavior and the phase transformation. The microstructure in the vertical cross sections shows obviously preferential orientation characteristics: Ti2Ni phases of both alloys grow along the vertical direction, and B19' martensite of Ti50Ni50 alloy has distinct preferential orientation, which results from a large temperature gradient between the top and the bottom of the button ingots during solidification. The microstructure with preferential orientation induces the anisotropic NTE behavior of the samples.
Electron-Impact Ionization Cross Section Database
National Institute of Standards and Technology Data Gateway
SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access) This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.
NASA Astrophysics Data System (ADS)
Huber, A.; Chankin, A. V.
2017-06-01
A simple two-point representation of the tokamak scrape-off layer (SOL) in the conduction limited regime, based on the parallel and perpendicular energy balance equations in combination with the heat flux width predicted by a heuristic drift-based model, was used to derive a scaling for the cross-field thermal diffusivity {χ }\\perp . For fixed plasma shape and neglecting weak power dependence indexes 1/8, the scaling {χ }\\perp \\propto {P}{{S}{{O}}{{L}}}/(n{B}θ {R}2) is derived.
The CfA redshift survey - Data for the NGP + 30 zone
NASA Technical Reports Server (NTRS)
Huchra, John P.; Geller, Margaret J.; De Lapparent, Valerie; Corwin, Harold G., Jr.
1990-01-01
Redshifts and morphological types are presented for a complete sample of 1093 galaxies with m(pg) less than or equal to 15.5 mag in a 6-deg-wide strip crossing the north Galactic pole. Also presented are redshifts for an additional 92 fainter galaxies in the same strip. Outside of the core of the Coma Cluster, both early- and late-type galaxies trace essentially the same structures in redshift space. Thinner slices illustrate the small velocity dispersion perpendicular to the surfaces in the survey.
Motley, R.W.; Glanz, J.
1982-10-25
A device is described for coupling RF power (a plasma sweeper) from RF power introducing means to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the RF power introducing means. Means are described for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.
NASA Astrophysics Data System (ADS)
Kol'tsov, A. V.; Serov, Alexander V.
1995-03-01
A theoretical investigation is made of the time dependence of the spatial distribution of particles injected perpendicular to the direction of propagation of a linearly polarised inhomogeneous electromagnetic wave and reflected by this wave. It is shown that such reflection modulates the particle density in a beam which is homogeneous at injection. Stimulated emission of radiation from a ribbon electron beam reflected by a wave is considered. The spectral—angular and polarisation characteristics of such radiation are investigated.
Procedure for estimating fracture energy from fracture surface roughness
Williford, Ralph E.
1989-01-01
The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.
Berenbrock, Charles E.
2015-01-01
The effects of reduced cross-sectional data points on steady-flow profiles were also determined. Thirty-five cross sections of the original steady-flow model of the Kootenai River were used. These two methods were tested for all cross sections with each cross section resolution reduced to 10, 20 and 30 data points, that is, six tests were completed for each of the thirty-five cross sections. Generally, differences from the original water-surface elevation were smaller as the number of data points in reduced cross sections increased, but this was not always the case, especially in the braided reach. Differences were smaller for reduced cross sections developed by the genetic algorithm method than the standard algorithm method.
NASA Astrophysics Data System (ADS)
Sarkadi, L.
2018-04-01
Fully differential cross sections (FDCSs) have been calculated for the single ionization of helium by 1- and 3-MeV proton and 100-MeV/u C6 + ion impact using the classical trajectory Monte Carlo (CTMC) method in the nonrelativistic, three-body approximation. The calculations were made employing a Wigner-type model in which the quantum-mechanical position distribution of the electron is approximated by a weighted integral of the microcanonical distribution over a range of the binding energy of the electron. In the scattering plane, the model satisfactorily reproduces the observed shape of the binary peak. In the region of the peak the calculated FDCSs agree well with the results of continuum-distorted-wave calculations for all the investigated collisions. For 1-MeV proton impact the experimentally observed shift of the binary peak with respect to the first Born approximation is compared with the shifts obtained by different higher-order quantum-mechanical theories and the present CTMC method. The best result was achieved by CTMC, but still a large part of the shift remained unexplained. Furthermore, it was found that the classical theory failed to reproduce the shape of the recoil peak observed in the experiments, it predicts a much narrower peak. This indicates that the formation of the recoil peak is dominated by quantum-mechanical effects. For 100-MeV/u C6 + ion impact the present CTMC calculations confirmed the existence of the "double-peak" structure of the angular distribution of the electron in the plane perpendicular to the momentum transfer, in accordance with the observation, the prediction of an incoherent semiclassical model, and previous CTMC results. This finding together with wave-packet calculations suggests that the "C6 + puzzle" may be solved by considering the loss of the projectile coherence. Experiments to be conducted using ion beams of anisotropic coherence are proposed for a more differential investigation of the ionization dynamics.
Imaging b-value depth variations within the Cocos and Rivera plates at the Mexican subduction zone
NASA Astrophysics Data System (ADS)
Rodríguez-Pérez, Quetzalcoatl; Zuñiga, F. Ramón
2018-06-01
By a systematic mapping of the b-value along profiles perpendicular to the Mexican Wadati-Benioff zone, we obtained important characteristics pertaining the stress state and faulting style related to the subduction process. To this purpose, we used data from the earthquake catalog reported by the Servicio Sismologico Nacional (1988-2016). We investigate depth variations of the b-value for the Cocos and Rivera under North American plates interface, by a detailed analysis of 15 cross-sections. The obtained b-value profiles vary from 0.50 to 2.50, which nevertheless appear related to the faulting style and stress state. By comparing the locations and focal mechanism of the largest events with the b-values of the surrounding regions, our analysis corroborates the dependence of the b-value on the faulting style. Thrust events occur in regions of low and high b-value at depths <50 km. Normal-faulting events occur mainly in high b-value regions at all shallow (Z < 30 km) and intermediate depths (Z > 30 km), in agreement with global studies. These results support the hypothesis that differential stress processes may be behind the occurrence of the different faulting style. On the contrary, by analyzing the mean b-values for both types of faulting mechanism at each of the cross-sections, we found a significantly lower mean b-value related to normal faulting for those regions where the 8 (Mw 8.2) and 19 (Mw 7.1) September 2017 earthquakes occur. These results lead us to conclude that those regions experienced an increased stress state prone to the occurrence of normal-intraplate events. We also compare the b-value distribution with Vp and Q tomography studies obtaining a good correlation between them. We found evidence to relate b-value variations with subduction processes such as stress state due to tectonic and flexural conditions, and to a lesser extent to material heterogeneity and fluid dehydration.
NASA Astrophysics Data System (ADS)
Rossi, L.; Hu, X.; Kametani, F.; Abraimov, D.; Polyanskii, A.; Jaroszynski, J.; Larbalestier, D. C.
2016-05-01
We present a broad study by multiple techniques of the critical current and critical current density of a small but representative set of nominally identical commercial RE123 (REBa2Cu3O7-δ , RE = rare Earth, here Y and Gd) coated conductors (CC) recently fabricated by SuperPower Inc. to the same nominal high pinning specification with BaZrO3 and RE2O3 nanoprecipitate pinning centers. With high-field low-temperature applications to magnet technology in mind, we address the nature of their tape-to-tape variations and length-wise I c inhomogeneities by measurements on a scale of about 2 cm rather than the 5 m scale normally supplied by the vendor and address the question of whether these variations have their origin in cross-sectional or in vortex pinning variations. Our principal method has been a continuous measurement transport critical current tool (YateStar) that applies about 0.5 T perpendicular and parallel to the tape at 77 K, thus allowing variations of c-axis and ab-plane properties to be clearly distinguished in the temperature and field regime where strong pinning defects are obvious. We also find such in-field measurements at 77 K to be more valuable in predicting 4.2 K, high-field properties than self-field, 77 K properties because the pinning centers controlling 77 K performance play a decisive role in introducing point defects that also add strongly to J c at 4.2 K. We find that the dominant source of I c variation is due to pinning center fluctuations that control J c, rather than to production defects that locally reduce the active cross-section. Given the 5-10 nm scale of these pinning centers, it appears that the route to greater I c homogeneity is through more stringent control of the REBCO growth conditions in these Zr-doped coated conductors.
NASA Astrophysics Data System (ADS)
Ambos, E. L.; Hussong, D. M.
1986-02-01
A high quality seismic refraction data set was collected near the intersection of the tranform portion of the Oceanographer Fracture Zone (OFZ) with the adjacent northern limb of the Mid-Atlantic Ridge spreading center (MAR). One seismic line was shot down the axis of the transform valley. Another was shot parallel to the spreading center, crossing from normal oceanic crust into the transform valley, and out again. This latter line was recorded by four Ocean Bottom Seismometers (OBSs) spaced along its length, providing complete reversed coverage over the crucial transform valley zone. Findings indicate that whereas the crust of the transform valley is only slightly thinner (4.5 km) compared to normal oceanic crust (5-8 km), the structure is different. Velocities in the range of 6.9 to 7.7. km/sec, which are characteristics of seismic layer 3B, are absent, although a substantial thickness (approximately 3 km) of 6.1-6.8 km/sec material does appear to be present. The upper crust, some 2 km in thickness, is characterized by a high velocity gradient (1.5 sec -1) in which veloxity increases from 2.7 km/sec at the seafloor to 5.8 km/sec at the base of the section. A centrally-located deep of the transform valley has thinner crust (1-2 km), whereas the crust gradually thickens past the transform valley-spreading center intersection. Analysis of the seismic line crossing sub-perpendicular to the transform valley demonstrates abrupt thinning of the upper crustal section, and thickening of the lower crust outside of the trasform valley. In addition, high-velocity material seems to occur under the valley flanks, particularly the southern flanking ridge. This ridge, which is on the side of the transform opposite to the intersection of spreading ridge and transform, may be an expression of uplifted, partially serpentinized upper mantle rocks.
Method of measuring cross-flow vortices by use of an array of hot-film sensors
NASA Technical Reports Server (NTRS)
Agarwal, Aval K. (Inventor); Maddalon, Dal V. (Inventor); Mangalam, Siva M. (Inventor)
1993-01-01
The invention is a method for measuring the wavelength of cross-flow vortices of air flow having streamlines of flow traveling across a swept airfoil. The method comprises providing a plurality of hot-film sensors. Each hot-film sensor provides a signal which can be processed, and each hot-film sensor is spaced in a straight-line array such that the distance between successive hot-film sensors is less than the wavelength of the cross-flow vortices being measured. The method further comprises determining the direction of travel of the streamlines across the airfoil and positioning the straight-line array of hot film sensors perpendicular to the direction of travel of the streamlines, such that each sensor has a spanwise location. The method further comprises processing the signals provided by the sensors to provide root-mean-square values for each signal, plotting each root-mean-square value as a function of its spanwise location, and determining the wavelength of the cross-flow vortices by noting the distance between two maxima or two minima of root-mean-square values.
Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.
2015-08-24
The Frazier Mountain paleoseismic site is located within the northern Big Bend of the southern San Andreas Fault (lat 34.8122° N., lon 118.9034° W.), in a small structural basin formed by the fault (fig. 1). The site has been the focus of over a decade of paleoseismic study due to high stratigraphic resolution and abundant dateable material. Trench 1 (T1) was initially excavated as a 50-m long, fault-perpendicular trench crossing the northern half of the basin (Lindvall and others, 2002; Scharer and others, 2014a). Owing to the importance of a high-resolution trench site at this location on a 200-km length of the fault with no other long paleoseismic records, later work progressively lengthened and deepened T1 in a series of excavations, or cuts, that enlarged the original excavation. Scharer and others (2014a) provide the photomosaics and event evidence for the first four cuts, which largely show the upper section of the site, represented by alluvial deposits that date from about A.D. 1500 to present. Scharer and others (2014b) discuss the earthquake evidence and dating at the site within the context of prehistoric rupture lengths and magnitudes on the southern San Andreas Fault. Here we present the photomosaics and event evidence for a series of cuts from the lower section, covering sediments that were deposited from about A.D. 500 to 1500 (fig. 2).
Experiments on Antiprotons: Antiproton-Nucleon Cross Sections
DOE R&D Accomplishments Database
Chamberlain, Owen; Keller, Donald V.; Mermond, Ronald; Segre, Emilio; Steiner, Herbert M.; Ypsilantis, Tom
1957-07-22
In this paper experiments are reported on annihilation and scattering of antiprotons in H{sub 2}O , D{sub 2}O, and O{sub 2}. From the data measured it is possible to obtain an antiproton-proton and an antiproton-deuteron cross section at 457 Mev (lab). Further analysis gives the p-p and p-n cross sections as 104 mb for the p-p reaction cross section and 113 mb for the p-n reaction cross section. The respective annihilation cross sections are 89 and 74 mb. The Glauber correction necessary in order to pass from the p-d to the p-n cross section by subtraction of the p-p cross section is unfortunately large and somewhat uncertain. The data are compared with the p-p and p-n cross sections and with other results on p-p collisions.
Study of BenW (n = 1-12) clusters: An electron collision perspective
NASA Astrophysics Data System (ADS)
Modak, Paresh; Kaur, Jaspreet; Antony, Bobby
2017-08-01
This article explores electron scattering cross sections by Beryllium-Tungsten clusters (BenW). Beryllium and tungsten are important elements for plasma facing wall components, especially for the deuterium/tritium phase of ITER and in the recently installed JET. The present study focuses on different electron impact interactions in terms of elastic cross section (Qel), inelastic cross section (Qinel), ionization cross section (Qion), and momentum transfer cross section (Qmtcs) for the first twelve clusters belonging to the BenW family. It also predicts the evolution of the cross section with the size of the cluster. These cross sections are used as an input to model processes in plasma. The ionization cross section presented here is compared with the available reported data. This is the first comprehensive report on cross section data for all the above-mentioned scattering channels, to the best of our knowledge. Such broad analysis of cross section data gives vital insight into the study of local chemistry of electron interactions with BenW (n = 1-12) clusters in plasma.
Optic properties of bile liquid crystals in human body
Yang, Hai Ming; Wu, Jie; Li, Jin Yi; Zhou, Jian Li; He, Li Jun; Xu, Xian Fang
2000-01-01
AIM: To further study the properties of bile liquid crystals, and probe into the relationship between bile liquid crystals and gallbladder stone formation, and provide evidence for the prevention and treatment of cholecystolithiasis. METHODS: The optic properties of bile liquid crystals in human body were determined by the method of crystal optics under polarizing microscope with plane polarized light and perpendicular polarized light. RESULTS: Under a polarizing microscope with plane polarized light, bile liquid crystals scattered in bile appeared round, oval or irregularly round. The color of bile liquid crystals was a little lighter than that of the bile around. When the stage was turned round, the color of bile liquid crystals or the darkness and lightness of the color did not change obviously. On the border between bile liquid crystals and the bile around, brighter Becke-Line could be observed. When the microscope tube is lifted, Becke-Line moved inward, and when lowered, Becke-Line moved outward. Under a perpendicular polarized light, bile liquid crystals showd some special interference patterns, called Malta cross. When the stage was turning round at an angle of 360°, the Malta cross showed four times of extinction. In the vibrating direction of 45° angle of relative to upper and lower polarizing plate, gypsum test-board with optical path difference of 530 nm was inserted, the first and the third quadrants of Malt a cross appeared to be blue, and the second and the fourth quadrants appeared orange. When mica test-board with optical path difference of 147 nm was inserted, the first and the third quadrants of Malta cross appeared yellow, and the second and the fourth quadrants appeared dark grey. CONCLUSION: The bile liquid crystals were distributed in bile in the form of global grains. Their polychroism and absorption were slight, but the edge and Becke*Line were very clear. Its refractive index was larger than that of the bile. These liquid crystals were uniaxial positive crystals. The interference colors were the first order grey-white. The double refractive index of the liquid crystals was Δn = 0.011-0.015. PMID:11819567
Averaging cross section data so we can fit it
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.
2014-10-23
The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).
New cross sections for H on H2 collisional transitions
NASA Astrophysics Data System (ADS)
Zou, Qianxia
2011-12-01
The cross section for H on H2 collisions is important for astrophysics as well as our understanding of the simple chemical systems. This is the simplest atom-molecule cross section. With a new H3 potential surface by Mielke et al., we have modified the ABC code by Skouteris, Castillo and Manolopoulos to calculate new cross sections. These cross sections are compared to previous cross section calculations.
A computer program for analyzing channel geometry
Regan, R.S.; Schaffranek, R.W.
1985-01-01
The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)
Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
Grefe, Sarah E; Leiva, Daan; Mastel, Stefan; Dhuey, Scott D; Cabrini, Stefano; Schuck, P James; Abate, Yohannes
2013-11-21
Near-field dipolar plasmon interactions of multiple infrared antenna structures in the strong coupling limit are studied using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical finite-difference time-domain (FDTD) calculations. We monitor in real-space the evolution of plasmon dipolar mode of a stationary antenna structure as multiple resonantly matched dipolar plasmon particles are closely approaching it. Interparticle separation, length and polarization dependent studies show that the cross geometry structure favors strong interparticle charge-charge, dipole-dipole and charge-dipole Coulomb interactions in the nanometer scale gap region, which results in strong field enhancement in cross-bowties and further allows these structures to be used as polarization filters. The nanoscale local field amplitude and phase maps show that due to strong interparticle Coulomb coupling, cross-bowtie structures redistribute and highly enhance the out-of-plane (perpendicular to the plane of the sample) plasmon near-field component at the gap region relative to ordinary bowties.
Development of a temperature measurement system with application to a jet in a cross flow experiment
NASA Technical Reports Server (NTRS)
Wark, C.; Foss, J. F.
1985-01-01
A temperature measurement system, which allows the simultaneous sampling of up to 80 separate thermocouples, was developed. The minimum resolution for the system corresponds to + or - 0.16 C per least significant bit of the A/D converter. The time constant values lambda, for each of the 64 thermocouples, were determined experimentally at 7 mps. Software routines were used to correct the measured temperatures for the effect of lambda for each thermocouple. The temperature measurement system was utilized to study the thermal field of a heated jet discharging perpendicularly into a low and a high disturbance level cross stream for a given momentum flux ratio and for three overheated values. The peak instantaneous temperatures reveal that strong molecular diffusion was operative. Various measures of the thermal field, for the disturbed case, suggest that the jet column remains relatively compact while being buffeted by the ambient turbulence field and that its penetration, into the cross wind, is inhibited by the presence of the strong disturbance field.
Theoretical approach to obtaining dynamic characteristics of noncontacting spiral-grooved seals
NASA Technical Reports Server (NTRS)
Iwatsubo, Takuzo; Yang, Bo-Suk; Ibaraki, Ryuji
1987-01-01
The dynamic characteristics of spiral-grooved seals are theoretically obtained by using the Navier-Stokes equation. First, with the inertia term of the fluid considered, the flow and pressure in the steady state are obtained for the directions parallel to and perpendicular to the groove. Next, the dynamic character is obtained by analyzing the steady state and by analyzing the labyrinth seal. As a result, the following conclusions were drawn: (1) As the land width becomes shorter or the helix angle decreases, the cross-coupling stiffness, direct and cross-coupling damping, and add mass coefficients decrease; (2) As the axial Reynolds number increases, the stiffness and damping coefficients increase. But the add mass coefficient is not influenced by the axial Reynolds number; (3) The rotational Reynolds number influences greatly the direct and cross-coupling stiffness and direct damping coefficients; and (4) As the journal rotating frequency increases, the leakage flow decreases. Therefore zero net leakage flow is possible at a particular rotating frequency.
Dense Array Optimization of Cross-Flow Turbines
NASA Astrophysics Data System (ADS)
Scherl, Isabel; Strom, Benjamin; Brunton, Steven; Polagye, Brian
2017-11-01
Cross-flow turbines, where the axis of rotation is perpendicular to the freestream flow, can be used to convert the kinetic energy in wind or water currents to electrical power. By taking advantage of mean and time-resolved wake structures, the optimal density of an array of cross-flow turbines has the potential for higher power output per unit area of land or sea-floor than an equivalent array of axial-flow turbines. In addition, dense arrays in tidal or river channels may be able to further elevate efficiency by exploiting flow confinement and surface proximity. In this work, a two-turbine array is optimized experimentally in a recirculating water channel. The spacing between turbines, as well as individual and coordinated turbine control strategies are optimized. Array efficiency is found to exceed the maximum efficiency for a sparse array (i.e., no interaction between turbines) for stream-wise rotor spacing of less than two diameters. Results are discussed in the context of wake measurements made behind a single rotor.
Liang, Ting; van Kuringen, Huub P C; Mulder, Dirk J; Tan, Shuai; Wu, Yong; Borneman, Zandrie; Nijmeijer, Kitty; Schenning, Albertus P H J
2017-10-11
In this work, the decisive role of rigidity, orientation, and order in the smectic liquid crystalline network on the anisotropic proton and adsorbent properties is reported. The rigidity in the hydrogen-bonded polymer network has been altered by changing the cross-link density, the order by using different mesophases (smectic, nematic, and isotropic phases), whereas the orientation of the mesogens was controlled by alignment layers. Adding more cross-linkers improved the integrity of the polymer films. For the proton conduction, an optimum was found in the amount of cross-linker and the smectic organization results in the highest anhydrous proton conduction. The polymer films show anisotropic proton conductivity with a 54 times higher conductivity in the direction perpendicular to the molecular director. After a base treatment of the smectic liquid crystalline network, a nanoporous polymer film is obtained that also shows anisotropic adsorption of dye molecules and again straight smectic pores are favored over disordered pores in nematic and isotropic networks. The highly cross-linked films show size-selective adsorption of dyes. Low cross-linked materials do not show this difference due to swelling, which decreases the order and creates openings in the two-dimensional polymer layers. The latter is, however, beneficial for fast adsorption kinetics.
Multistrand superconductor cable
Borden, A.R.
1984-03-08
Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easil
Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R; Wang, Thomas D
2017-07-01
The epithelium is a thin layer of tissue that lines hollow organs, such as colon. Visualizing in vertical cross sections with sub-cellular resolution is essential to understanding early disease mechanisms that progress naturally in the plane perpendicular to the tissue surface. The dual axes confocal architecture collects optical sections in tissue by directing light at an angle incident to the surface using separate illumination and collection beams to reduce effects of scattering, enhance dynamic range, and increase imaging depth. This configuration allows for images to be collected in the vertical as well as horizontal planes. We designed a fast, compact monolithic scanner based on the principle of parametric resonance. The mirrors were fabricated using microelectromechanical systems (MEMS) technology and were coated with aluminum to maximize near-infrared reflectivity. We achieved large axial displacements [Formula: see text] and wide lateral deflections >20°. The MEMS chip has a 3.2×2.9 mm 2 form factor that allows for efficient packaging in the distal end of an endomicroscope. Imaging can be performed in either the vertical or horizontal planes with [Formula: see text] depth or 1 ×1 mm 2 area, respectively, at 5 frames/s. We systemically administered a Cy5.5-labeled peptide that is specific for EGFR, and collected near-infrared fluorescence images ex vivo from pre-malignant mouse colonic epithelium to reveal the spatial distribution of this molecular target. Here, we demonstrate a novel scanning mechanism in a dual axes confocal endomicroscope that collects optical sections of near-infrared fluorescence in either vertical or horizontal planes to visualize molecular expression in the epithelium.
MMS observations and hybrid simulations of rippled and reforming quasi-parallel shocks
NASA Astrophysics Data System (ADS)
Gingell, I.; Schwartz, S. J.; Burgess, D.; Johlander, A.; Russell, C. T.; Burch, J. L.; Ergun, R.; Fuselier, S. A.; Gershman, D. J.; Giles, B. L.; Goodrich, K.; Khotyaintsev, Y. V.; Lavraud, B.; Lindqvist, P. A.; Strangeway, R. J.; Trattner, K. J.; Torbert, R. B.; Wilder, F. D.
2017-12-01
Surface ripples, i.e. deviations in the nominal local shock orientation, are expected to propagate in the ramp and overshoot of collisionless shocks. These ripples have typically been associated with observations and simulations of quasi-perpendicular shocks. We present observations of a crossing of Earth's marginally quasi-parallel (θBn ˜ 45°) bow shock by the MMS spacecraft on 2015-11-27 06:01:44 UTC, for which we identify signatures consistent with a propagating surface ripple. In order to demonstrate the differences between ripples at quasi-perpendicular and quasi-parallel shocks, we also present two-dimensional hybrid simulations over a range of shock normal angles θBn under the observed solar wind conditions. We show that in the quasi-parallel cases surface ripples are transient phenomena modulated by the cyclic reformation of the shock front. These ripples develop faster than an ion gyroperiod and only during the period of the reformation cycle when a newly developed shock ramp is unaffected by turbulence in the foot. We conclude that the change of properties of the surface ripple observed by MMS while crossing Earth's quasi-parallel bow shock are consistent with the influence of cyclic reformation on shock structure. Given that both surface ripples and cyclic reformation are expected to affect the acceleration of electrons within the shock, the interaction of these phenomena and any other sources of shock non-stationary are important for models of particle acceleration. We therefore discuss signatures of electron heating and acceleration in several rippled shocks observed by MMS.
NASA Technical Reports Server (NTRS)
Dugan, J. V., Jr.; Canright, R. B., Jr.
1972-01-01
The numerical capture cross section is calculated from the capture ratio, defined as the fraction of trajectories reaching a prescribed minimum separation of 3 A. The calculated capture cross sections for a rotational temperature of 77 K suggest large reaction cross sections in 80 K experiments for the large dipole-moment target, methyl cyanide.
Solar Wind Proton Temperature Anisotropy: Linear Theory and WIND/SWE Observations
NASA Technical Reports Server (NTRS)
Hellinger, P.; Travnicek, P.; Kasper, J. C.; Lazarus, A. J.
2006-01-01
We present a comparison between WIND/SWE observations (Kasper et al., 2006) of beta parallel to p and T perpendicular to p/T parallel to p (where beta parallel to p is the proton parallel beta and T perpendicular to p and T parallel to p are the perpendicular and parallel proton are the perpendicular and parallel proton temperatures, respectively; here parallel and perpendicular indicate directions with respect to the ambient magnetic field) and predictions of the Vlasov linear theory. In the slow solar wind, the observed proton temperature anisotropy seems to be constrained by oblique instabilities, by the mirror one and the oblique fire hose, contrary to the results of the linear theory which predicts a dominance of the proton cyclotron instability and the parallel fire hose. The fast solar wind core protons exhibit an anticorrelation between beta parallel to c and T perpendicular to c/T parallel to c (where beta parallel to c is the core proton parallel beta and T perpendicular to c and T parallel to c are the perpendicular and parallel core proton temperatures, respectively) similar to that observed in the HELIOS data (Marsch et al., 2004).
Kasai, Takehiro; Ishiguro, Naoki; Matsui, Yasumoto; Harada, Atsushi; Takemura, Marie; Yuki, Atsumu; Kato, Yuki; Otsuka, Rei; Ando, Fujiko; Shimokata, Hiroshi
2015-06-01
Sex- and age-related differences in mid-thigh composition and muscle quality remain unclear. The present study aimed to clarify these differences using computed tomography in middle-aged and elderly Japanese. A total of 2310 participants (age 40-89 years), who were randomly selected from the local residents, underwent computed tomography examination of the right mid-thigh. Thigh circumference and cross-sectional areas of the thigh, muscle, quadriceps, non-quadriceps, fat, and bone were measured. Knee extension strength and muscle quality index (knee extension strength/quadriceps cross-sectional area) were also assessed. Sex- and age-related differences in these indices were analyzed. The thigh cross-sectional area in men and women decreased by 0.6% and 0.5%/year, respectively, because of a decrease in muscle cross-sectional area (men 75.2%, women 40.6%), fat cross-sectional area (men 24.4%, women 59.6%) and bone cross-sectional area (men 0.5%, women -0.2%). Muscle cross-sectional area in men and women decreased by 0.6% and 0.4%/year, respectively, because of a decrease in quadriceps cross-sectional area (men 65.6%, women 81.6%) and non-quadriceps cross-sectional area (men 34.4%, women 18.4%). Muscle quality in men and women decreased by 0.4% and 0.3%/year, respectively. Thigh cross-sectional area decreased with age mainly because of a decrease in muscle cross-sectional area in men and fat cross-sectional area in women. The rate of decrease in muscle cross-sectional area was 1.5-fold higher in men than in women. Muscle cross-sectional area decreased with age mainly because of a decrease in quadriceps cross-sectional area, especially in women. Decrease in muscle quality with age was similar in both sexes. © 2014 Japan Geriatrics Society.
Behaviour of Mechanically Laminated CLT Members
NASA Astrophysics Data System (ADS)
Kuklík, P.; Velebil, L.
2015-11-01
Cross laminated timber (CLT) is one of the structural building systems based on the lamination of multiple layers, where each layer is oriented perpendicularly to each other. Recent requirements are placed to develop an alternative process based on the mechanical lamination of the layers, which is of particular interest to our research group at the University Centre for Energy Efficient Buildings. The goal is to develop and verify the behaviour of mechanically laminated CLT wall panels exposed to shear stresses in the plane. The shear resistance of mechanically jointed CLT is ensured by connecting the layers by screws. The paper deals with the experimental analysis focused on the determination of the torsional stiffness and the slip modulus of crossing areas for different numbers of orthogonally connected layers. The results of the experiments were compared with the current analytical model.
Perpendicular recording media for hard disk drives
NASA Astrophysics Data System (ADS)
Piramanayagam, S. N.
2007-07-01
Perpendicular recording technology has recently been introduced in hard disk drives for computer and consumer electronics applications. Although conceptualized in the late 1970s, making a product with perpendicular recording that has competing performance, reliability, and price advantage over the prevalent longitudinal recording technology has taken about three decades. One reason for the late entry of perpendicular recording is that the longitudinal recording technology was quite successful in overcoming many of its problems and in staying competitive. Other reasons are the risks, problems, and investment needed in making a successful transition to perpendicular recording technology. Iwasaki and co-workers came up with many inventions in the late 1970s, such as single-pole head, CoCr alloy media with a perpendicular anisotropy, and recording media with soft magnetic underlayers [S. Iwasaki and K. Takemura, IEEE Trans. Magn. 11, 1173 (1975); S. Iwasaki and Y. Nakamura, IEEE Trans. Magn. 14, 436 (1978); S. Iwasaki, Y. Nakamura, and K. Ouchi, IEEE Trans. Magn. 15, 1456 (1979)]. Nevertheless, the research on perpendicular recording media has been intense only in the past five years or so. The main reason for the current interest comes from the need to find an alternative technology to get away from the superparamagnetic limit faced by the longitudinal recording. Out of the several recording media materials investigated in the past, oxide based CoCrPt media have been considered a blessing. The media developed with CoCrPt-oxide or CoCrPt -SiO2 have shown much smaller grain sizes, lower noise, and larger thermal stability than the perpendicular recording media of the past, which is one of the reasons for the success of perpendicular recording. Moreover, oxide-based perpendicular media have also overtaken the current longitudinal recording media in terms of better recording performance. Several issues that were faced with the soft underlayers have also been solved by the use of antiferromagnetically coupled soft underlayers and soft underlayers that are exchange coupled with an antiferromagnetic layer. Significant improvements have also been made in the head design. All these factors now make perpendicular recording more competitive. It is expected that the current materials could theoretically support areal densities of up to 500-600Gbits/in.2. In this paper, the technologies associated with perpendicular recording media are reviewed. A brief background of magnetic recording and the challenges faced by longitudinal recording technology are presented first, followed by the discussions on perpendicular recording media. Detailed discussions on various layers in the perpendicular recording media and the recent advances in these layers have been made. Some of the future technologies that might help the industry beyond the conventional perpendicular recording technology are discussed at the end of the paper.
NASA Technical Reports Server (NTRS)
Diana, L. M.; Chaplin, R. L.; Brooks, D. L.; Adams, J. T.; Reyna, L. K.
1990-01-01
An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease.
Ling, Biyun; Peng, Chunrong; Ren, Ren; Chu, Zhaozhi; Zhang, Zhouwei; Lei, Hucheng; Xia, Shanhong
2018-01-01
One of the major concerns in the development of three-dimensional (3D) electric field sensors (EFSs) is their susceptibility to cross-axis coupling interference. The output signal for each sensing axis of a 3D EFS is often coupled by electric field components from the two other orthogonal sensing axes. In this paper, a one-dimensional (1D) electric field sensor chip (EFSC) with low cross-axis coupling interference is presented. It is designed to be symmetrical, forming a pair of in-plane symmetrically-located sensing structures. Using a difference circuit, the 1D EFSC is capable of sensing parallel electric fields along symmetrical structures and eliminating cross-axis coupling interference, which is contrast to previously reported 1D EFSCs designed for perpendicular electric field component measurement. Thus, a 3D EFS with low cross-axis coupling interference can be realized using three proposed 1D EFSCs. This 3D EFS has the advantages of low cross-axis coupling interference, small size, and high integration. The testing and calibration systems of the proposed 3D EFS were developed. Experimental results show that in the range of 0–120 kV/m, cross-axis sensitivities are within 5.48%, and the total measurement errors of this 3D EFS are within 6.16%. PMID:29543744
Nano-fabricated plasmonic optical transformer
Choo, Hyuck; Cabrini, Stefano; Schuck, P. James; Liang, Xiaogan; Yablonovitch, Eli
2015-06-09
The present invention provides a plasmonic optical transformer to produce a highly focuses optical beam spot, where the transformer includes a first metal layer, a dielectric layer formed on the first metal layer, and a second metal layer formed on the dielectric layer, where the first metal layer, the dielectric layer, and the second layer are patterned to a shape including a first section having a first cross section, a second section following the first section having a cross-section tapering from the first section to a smaller cross-section, and a third section following the second section having a cross-section matching the tapered smaller cross-section of the second section.
Ryder, Robert T.; Trippi, Michael H.; Swezey, Christopher S.; Crangle, Robert D.; Hope, Rebecca S.; Rowan, Elisabeth L.; Lentz, Erika E.
2012-01-01
Geologic cross section C-C' is the third in a series of cross sections constructed by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section C-C' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from north-central Ohio to the Valley and Ridge province in south-central Pennsylvania, a distance of approximately 260 miles (mi). This cross section is a companion to cross sections E-E' and D-D' that are located about 50 to 125 mi and 25 to 50 mi, respectively, to the southwest. Cross section C-C' contains much information that is useful for evaluating energy resources in the Appalachian basin. Although specific petroleum systems are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on what is shown on the cross section. Cross section C-C' also provides a general framework (stratigraphic units and general rock types) for the coal-bearing section, although the cross section lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank). In addition, cross section C-C' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.
Multistrand superconductor cable
Borden, Albert R.
1985-01-01
Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.
AMPX: a modular code system for generating coupled multigroup neutron-gamma libraries from ENDF/B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, N.M.; Lucius, J.L.; Petrie, L.M.
1976-03-01
AMPX is a modular system for producing coupled multigroup neutron-gamma cross section sets. Basic neutron and gamma cross-section data for AMPX are obtained from ENDF/B libraries. Most commonly used operations required to generate and collapse multigroup cross-section sets are provided in the system. AMPX is flexibly dimensioned; neutron group structures, and gamma group structures, and expansion orders to represent anisotropic processes are all arbitrary and limited only by available computer core and budget. The basic processes provided will (1) generate multigroup neutron cross sections; (2) generate multigroup gamma cross sections; (3) generate gamma yields for gamma-producing neutron interactions; (4) combinemore » neutron cross sections, gamma cross sections, and gamma yields into final ''coupled sets''; (5) perform one-dimensional discrete ordinates transport or diffusion theory calculations for neutrons and gammas and, on option, collapse the cross sections to a broad-group structure, using the one-dimensional results as weighting functions; (6) plot cross sections, on option, to facilitate the ''evaluation'' of a particular multigroup set of data; (7) update and maintain multigroup cross section libraries in such a manner as to make it not only easy to combine new data with previously processed data but also to do it in a single pass on the computer; and (8) output multigroup cross sections in convenient formats for other codes. (auth)« less
Increasing the switching speed of liquid crystal devices with magnetic nanorods
NASA Astrophysics Data System (ADS)
Garbovskiy, Yu.; Baptist, J. R.; Thompson, J.; Hunter, T.; Lim, J. H.; Gi Min, Seong; Wiley, J. B.; Malkinski, L. M.; Glushchenko, A.; Celinski, Z.
2012-10-01
Liquid crystal (LC)/magnetic nanorods colloids were fabricated and tested using a magneto-optical setup. These thermotropic ferronematics do not show any signs of macroscopic aggregation, exhibit enhanced magnetic sensitivity, and faster time response in the simultaneous presence of crossed electric and magnetic fields. Magnetic nanorods increase an effective magnetic anisotropy of the colloid and decrease magnetic Freedericksz threshold. Applying a magnetic field along the direction perpendicular to the applied electric field leads to a decrease of the time OFF by a factor of 6 for pure liquid crystals, and by a factor of 9—for ferronematics.
Simultaneous two-dimensional laser-induced-fluorescence measurements of argon ions.
Hansen, A K; Galante, Matthew; McCarren, Dustin; Sears, Stephanie; Scime, E E
2010-10-01
Recent laser upgrades on the Hot Helicon Experiment at West Virginia University have enabled multiplexed simultaneous measurements of the ion velocity distribution function at a single location, expanding our capabilities in laser-induced fluorescence diagnostics. The laser output is split into two beams, each modulated with an optical chopper and injected perpendicular and parallel to the magnetic field. Light from the crossing point of the beams is transported to a narrow-band photomultiplier tube filtered at the fluorescence wavelength and monitored by two lock-in amplifiers, each referenced to one of the two chopper frequencies.
Crack growth in bonded elastic half planes
NASA Technical Reports Server (NTRS)
Goree, J. G.
1975-01-01
Two solutions were developed for the two dimensional problem of bonded linearly elastic half-planes. For each solution, numerical results are presented for the stress intensity factors, strain energy release rate, stresses, and displacements. The behavior predicted by the studies was investigated experimentally using polymers for the material pairs. Close agreement was found for the critical stress intensity factor at fracture for the perpendicular crack near the interface. Fracture along the interface proved to be inconclusive due to difficulties in obtaining a brittle bond. Some interesting and predictable behavior regarding the potential for the crack to cross the interface was observed and is discussed.
Patra, Goutam Kumar; Mukherjee, Anindita; Ng, Seik Weng
2009-07-04
1,1',2,2'-tetra-phenyl-2,2'-azinodiethanone), C(28)H(20)N(2)O(2), was obtained by the reaction of benzil monohydrazone with chromium(III) nitrate. The dibenzyl-idene hydrazine unit is nearly planar (r.m.s. deviation = 0.073 Å) and the two benzoyl units are oriented almost perpendicular to it [dihedral angle = 87.81 (2), 87.81 (2)°]. The mol-ecules are linked into chains along the c axis by C-H⋯O hydrogen bonds and the chains are cross-linked via C-H⋯π inter-actions involving the benzoyl phenyl rings.
Generating polarization-entangled photon pairs using cross-spliced birefringent fibers.
Meyer-Scott, Evan; Roy, Vincent; Bourgoin, Jean-Philippe; Higgins, Brendon L; Shalm, Lynden K; Jennewein, Thomas
2013-03-11
We demonstrate a novel polarization-entangled photon-pair source based on standard birefringent polarization-maintaining optical fiber. The source consists of two stretches of fiber spliced together with perpendicular polarization axes, and has the potential to be fully fiber-based, with all bulk optics replaced with in-fiber equivalents. By modelling the temporal walk-off in the fibers, we implement compensation necessary for the photon creation processes in the two stretches of fiber to be indistinguishable. Our source subsequently produces a high quality entangled state having (92.2 ± 0.2) % fidelity with a maximally entangled Bell state.
Sions, Jaclyn Megan; Smith, Andrew Craig; Hicks, Gregory Evan; Elliott, James Matthew
2016-08-01
To evaluate intra- and inter-examiner reliability for the assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area, i.e., total cross-sectional area minus intramuscular fat, from T1-weighted magnetic resonance images obtained in older adults with chronic low back pain. Reliability study. n = 13 (69.3 ± 8.2 years old) After lumbar magnetic resonance imaging, two examiners produced relative cross-sectional area measurements of multifidi, erector spinae, psoas, and quadratus lumborum by tracing regions of interest just inside fascial borders. Pixel-intensity summaries were used to determine muscle-to-fat infiltration indices; relative muscle cross-sectional area was calculated. Intraclass correlation coefficients were used to estimate intra- and inter-examiner reliability; standard error of measurement was calculated. Intra-examiner intraclass correlation coefficient point estimates for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area were excellent for multifidi and erector spinae across levels L2-L5 (ICC = 0.77-0.99). At L3, intra-examiner reliability was excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area for both psoas and quadratus lumborum (ICC = 0.81-0.99). Inter-examiner intraclass correlation coefficients ranged from poor to excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area. Assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area in older adults with chronic low back pain can be reliably determined by one examiner from T1-weighted images. Such assessments provide valuable information, as muscle-to-fat infiltration indices and relative muscle cross-sectional area indicate that a substantial amount of relative cross-sectional area may be magnetic resonance-visible intramuscular fat in older adults with chronic low back pain. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cross-bedding Related Anisotropy and its Role in the Orientation of Joints in an Aeolian Sandstone
NASA Astrophysics Data System (ADS)
Deng, S.; Cilona, A.; Mapeli, C.; Panfilau, A.; Aydin, A.; Prasad, M.
2014-12-01
Previous research revealed that the cross-bedding related anisotropy in aeolian sandstones affects the orientation of compaction bands, also known as anticracks. We hypothesize that cross-bedding should a have similar influence on the orientation of the joints within the same rock at the same location. To test this hypothesis, we investigated the relationship between the cross-beds and the cross-bed package confined joints in the Jurassic aeolian Aztec Sandstone cropping out in the Valley of Fire State Park, Nevada. The field data demonstrates that the cross-bed package confined joints occur at high-angle to bedding and trend roughly parallel to the dip direction of the cross-beds. This shows that the cross-bed orientation and the associated anisotropy also exert a strong control on the formation and orientation of the joints. In order to characterize the anisotropy due to cross-bedding in the Aztec Sandstone, we measured the P-wave velocities parallel and perpendicular to bedding from 11 samples in the laboratory using a bench-top ultrasonic assembly. The measured P-wave anisotropy is about 13% on average. Based on these results, a numerical model based on the generalized Hooke's law for anisotropic materials is analyzed assuming the cross-bedded sandstone to be transversely isotropic. Using this model, we tested various cross-bed orientations as well as different strain boundary conditions (uniaxial, axisymmetric and triaxial). It is possible to define a boundary condition under which the modeled results roughly match with the observed relationship between cross-bed package confined joints and cross-beds. These results have important implications for fluid flow through aeolian sandstones in reservoirs and aquifers.
NASA Astrophysics Data System (ADS)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby
2016-07-01
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.
Parameterized Cross Sections for Pion Production in Proton-Proton Collisions
NASA Technical Reports Server (NTRS)
Blattnig, Steve R.; Swaminathan, Sudha R.; Kruger, Adam T.; Ngom, Moussa; Norbury, John W.; Tripathi, R. K.
2000-01-01
An accurate knowledge of cross sections for pion production in proton-proton collisions finds wide application in particle physics, astrophysics, cosmic ray physics, and space radiation problems, especially in situations where an incident proton is transported through some medium and knowledge of the output particle spectrum is required when given the input spectrum. In these cases, accurate parameterizations of the cross sections are desired. In this paper much of the experimental data are reviewed and compared with a wide variety of different cross section parameterizations. Therefore, parameterizations of neutral and charged pion cross sections are provided that give a very accurate description of the experimental data. Lorentz invariant differential cross sections, spectral distributions, and total cross section parameterizations are presented.
A Measurement of Long-Term Tilt in Colorado and Wyoming.
1980-06-01
aligned with the axes of the tiltmeters . (It is exactly parallel to the sensitive axis of one sensor and hence is perpendicular to the sensitive axis of...Borehole tiltmeters aeconceptuallyatrciefrmnoigln-pid crustal deformation and the spatial variations of tidal tilt response due to crustal inhomogeneities...against a stainless steel casing section at the bottom of a hole cased with standard steel pipe. The capsule contains two tilt sensors on a leveling
Bonded orthotropic strips with cracks
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1979-01-01
The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. It is assumed that the plane contains a series of collinear cracks perpendicular to the interfaces and is loaded in tension away from and perpendicular to the cracks. The problem of cracks fully imbedded into the homogeneous strips is considered. The singular behavior of the stresses for two special crack geometries is studied. The first is the case of a broken laminate in which the crack tips touch the interfaces. The second is the case of cracks crossing the interfaces. An interesting result found from the analysis of the latter is that for certain orthotropic material combinations the stress state at the point of intersection of a crack and an interface may be bounded whereas in isotropic materials at this point stresses are always singular. A number of numerical examples are worked out to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters. Some numerical results are given for the stress intensity factors in certain basic crack geometries and for typical material combinations.
Anisotropic shock jump conditions: Theory and observations
NASA Technical Reports Server (NTRS)
Chao, J. K.; Zhang, X. X.; Song, P.
1995-01-01
The MHD Rankine-Hugoniot (RH) relations for shock waves in a collisionless plasma with bi-Maxwellian distribution functions are considered. While by introducing the pressure anisotropy parameter xi in the RH relations, the number of unknowns -- B, V, n, p and xi (a total of 9) -- becomes one more than the total number of the conservation equations, it is possible to use the observed quantities on both sides of the shock to study the anisotropy changes across the shock. A simple relation for the anisotropy change across the shock is derived as a function of the ratio of magnetic fields m(= B'/B), the shock normal angle theta(sub Bn) and the plasma beta and beta' (primes are downstream values). Since m and theta(sub Bn) can be determined accurately in observation, the reliability of the anisotropy change deduced is mostly dependent on the accuracy of the measurements beta and beta'. We have applied the results to six low-beta quasi-perpendicular (Q perpendicular) laminar bow shock crossings with temperature anisotropy measured in the magnetosheath. In the six test cases, it is found that the predicted pressure anisotropies agree well with those observed in the magnetosheath.
Multispacecraft study of shock-flux rope interaction
NASA Astrophysics Data System (ADS)
Blanco-Cano, Xochitl; Burgess, David; Sundberg, Torbjorn; Kajdic, Primoz
2017-04-01
Interplanetary (IP) shocks can be driven in the solar wind by fast coronal mass ejections. These shocks can accelerate particles near the Sun and through the heliosphere, being associated to solar energetic particle (SEP) and energetic storm particle (ESP) events. IP shocks can interact with structures in the solar wind, and with planetary magnetospheres. In this study we show how the properties of an IP shock change when it interacts with a medium scale flux rope (FR) like structure. We use data measurements from CLUSTER, WIND and ACE. These three spacecraft observed the shock-FR interaction at different stages of its evolution. We find that the shock-FR interaction locally changes the shock geometry, affecting ion injection processes, and the upstream and downstream regions. While WIND and ACE observed a quasi-perpendicular shock, CLUSTER crossed a quasi-parallel shock and a foreshock with a variety of ion distributions. The complexity of the ion foreshock can be explained by the dynamics of the shock transitioning from quasi-perpendicular to quasi-parallel, and the geometry of the magnetic field around the flux rope. Interactions such as the one we discuss can occur often along the extended IP shock fronts, and hence their importance towards a better understanding of shock acceleration.
NASA Astrophysics Data System (ADS)
Chen, Zhi-Hui; Yu, Zhong-Yuan; Lu, Peng-Fei; Liu, Yu-Min
2009-10-01
Depositions of Si, Ge and C atoms onto a preliminary Si (001) substrate at different temperatures are investigated by using the molecular dynamics method. The mechanism of atomic self-assembling occurring locally on the flat terraces between steps is suggested. Diffusion and arrangement patterns of adatoms at different temperatures are observed. At 900 K, the deposited atoms are more likely to form dimers in the perpendicular [110] direction due to the more favourable movement along the perpendicular [110] direction. C adatoms are more likely to break or reconstruct the dimers on the substrate surface and have larger diffusion distances than Ge and Si adatoms. Exchange between C adatoms and substrate atoms are obvious and the epitaxial thickness is small. Total potential energies of adatoms and substrate atoms involved in the simulation cell are computed. When a newly arrived adatom reaches the stable position, the potential energy of the system will decrease and the curves turns into a ladder-like shape. It is found that C adatoms can lead to more reduction of the system energy and the potential energy of the system will increase as temperature increases.
A novel method to correct for pitch and yaw patient setup errors in helical tomotherapy.
Boswell, Sarah A; Jeraj, Robert; Ruchala, Kenneth J; Olivera, Gustavo H; Jaradat, Hazim A; James, Joshua A; Gutierrez, Alonso; Pearson, Dave; Frank, Gary; Mackie, T Rock
2005-06-01
An accurate means of determining and correcting for daily patient setup errors is important to the cancer outcome in radiotherapy. While many tools have been developed to detect setup errors, difficulty may arise in accurately adjusting the patient to account for the rotational error components. A novel, automated method to correct for rotational patient setup errors in helical tomotherapy is proposed for a treatment couch that is restricted to motion along translational axes. In tomotherapy, only a narrow superior/inferior section of the target receives a dose at any instant, thus rotations in the sagittal and coronal planes may be approximately corrected for by very slow continuous couch motion in a direction perpendicular to the scanning direction. Results from proof-of-principle tests indicate that the method improves the accuracy of treatment delivery, especially for long and narrow targets. Rotational corrections about an axis perpendicular to the transverse plane continue to be implemented easily in tomotherapy by adjustment of the initial gantry angle.
An investigation of MCNP6.1 beryllium oxide S(α, β) cross sections
Sartor, Raymond F.; Glazener, Natasha N.
2016-03-08
In MCNP6.1, materials are constructed by identifying the constituent isotopes (or elements in a few cases) individually. This list selects the corresponding microscopic cross sections calculated from the free-gas model to create the material macroscopic cross sections. Furthermore, the free-gas model and the corresponding material macroscopic cross sections assume that the interactions of atoms do not affect the nuclear cross sections.
DBCC Software as Database for Collisional Cross-Sections
NASA Astrophysics Data System (ADS)
Moroz, Daniel; Moroz, Paul
2014-10-01
Interactions of species, such as atoms, radicals, molecules, electrons, and photons, in plasmas used for materials processing could be very complex, and many of them could be described in terms of collisional cross-sections. Researchers involved in plasma simulations must select reasonable cross-sections for collisional processes for implementing them into their simulation codes to be able to correctly simulate plasmas. However, collisional cross-section data are difficult to obtain, and, for some collisional processes, the cross-sections are still not known. Data on collisional cross-sections can be obtained from numerous sources including numerical calculations, experiments, journal articles, conference proceedings, scientific reports, various universities' websites, national labs and centers specifically devoted to collecting data on cross-sections. The cross-sections data received from different sources could be partial, corresponding to limited energy ranges, or could even not be in agreement. The DBCC software package was designed to help researchers in collecting, comparing, and selecting cross-sections, some of which could be constructed from others or chosen as defaults. This is important as different researchers may place trust in different cross-sections or in different sources. We will discuss the details of DBCC and demonstrate how it works and why it is beneficial to researchers working on plasma simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarman, Sten, E-mail: sarman@ownit.nu; Wang, Yong-Lei; Laaksonen, Aatto
The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlinesmore » and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.« less
Intrinsic suppression of turbulence in linear plasma devices
NASA Astrophysics Data System (ADS)
Leddy, J.; Dudson, B.
2017-12-01
Plasma turbulence is the dominant transport mechanism for heat and particles in magnetised plasmas in linear devices and tokamaks, so the study of turbulence is important in limiting and controlling this transport. Linear devices provide an axial magnetic field that serves to confine a plasma in cylindrical geometry as it travels along the magnetic field from the source to the strike point. Due to perpendicular transport, the plasma density and temperature have a roughly Gaussian radial profile with gradients that drive instabilities, such as resistive drift-waves and Kelvin-Helmholtz. If unstable, these instabilities cause perturbations to grow resulting in saturated turbulence, increasing the cross-field transport of heat and particles. When the plasma emerges from the source, there is a time, {τ }\\parallel , that describes the lifetime of the plasma based on parallel velocity and length of the device. As the plasma moves down the device, it also moves azimuthally according to E × B and diamagnetic velocities. There is a balance point in these parallel and perpendicular times that sets the stabilisation threshold. We simulate plasmas with a variety of parallel lengths and magnetic fields to vary the parallel and perpendicular lifetimes, respectively, and find that there is a clear correlation between the saturated RMS density perturbation level and the balance between these lifetimes. The threshold of marginal stability is seen to exist where {τ }\\parallel ≈ 11{τ }\\perp . This is also associated with the product {τ }\\parallel {γ }* , where {γ }* is the drift-wave linear growth rate, indicating that the instability must exist for roughly 100 times the growth time for the instability to enter the nonlinear growth phase. We explore the root of this correlation and the implications for linear device design.
Time-series analysis to study the impact of an intersection on dispersion along a street canyon.
Richmond-Bryant, Jennifer; Eisner, Alfred D; Hahn, Intaek; Fortune, Christopher R; Drake-Richman, Zora E; Brixey, Laurie A; Talih, M; Wiener, Russell W; Ellenson, William D
2009-12-01
This paper presents data analysis from the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study to assess the transport of ultrafine particulate matter (PM) across urban intersections. Experiments were performed in a street canyon perpendicular to a highway in Brooklyn, NY, USA. Real-time ultrafine PM samplers were positioned on either side of an intersection at multiple locations along a street to collect time-series number concentration data. Meteorology equipment was positioned within the street canyon and at an upstream background site to measure wind speed and direction. Time-series analysis was performed on the PM data to compute a transport velocity along the direction of the street for the cases where background winds were parallel and perpendicular to the street. The data were analyzed for sampler pairs located (1) on opposite sides of the intersection and (2) on the same block. The time-series analysis demonstrated along-street transport, including across the intersection when background winds were parallel to the street canyon and there was minimal transport and no communication across the intersection when background winds were perpendicular to the street canyon. Low but significant values of the cross-correlation function (CCF) underscore the turbulent nature of plume transport along the street canyon. The low correlations suggest that flow switching around corners or traffic-induced turbulence at the intersection may have aided dilution of the PM plume from the highway. This observation supports similar findings in the literature. Furthermore, the time-series analysis methodology applied in this study is introduced as a technique for studying spatiotemporal variation in the urban microscale environment.
NASA Astrophysics Data System (ADS)
Gliss, Jonas; Stebel, Kerstin; Kylling, Arve; Solvejg Dinger, Anna; Sihler, Holger; Sudbø, Aasmund
2017-04-01
UV SO2 cameras have become a common method for monitoring SO2 emission rates from volcanoes. Scattered solar UV radiation is measured in two wavelength windows, typically around 310 nm and 330 nm (distinct / weak SO2 absorption) using interference filters. The data analysis comprises the retrieval of plume background intensities (to calculate plume optical densities), the camera calibration (to convert optical densities into SO2 column densities) and the retrieval of gas velocities within the plume as well as the retrieval of plume distances. SO2 emission rates are then typically retrieved along a projected plume cross section, for instance a straight line perpendicular to the plume propagation direction. Today, for most of the required analysis steps, several alternatives exist due to ongoing developments and improvements related to the measurement technique. We present piscope, a cross platform, open source software toolbox for the analysis of UV SO2 camera data. The code is written in the Python programming language and emerged from the idea of a common analysis platform incorporating a selection of the most prevalent methods found in literature. piscope includes several routines for plume background retrievals, routines for cell and DOAS based camera calibration including two individual methods to identify the DOAS field of view (shape and position) within the camera images. Gas velocities can be retrieved either based on an optical flow analysis or using signal cross correlation. A correction for signal dilution (due to atmospheric scattering) can be performed based on topographic features in the images. The latter requires distance retrievals to the topographic features used for the correction. These distances can be retrieved automatically on a pixel base using intersections of individual pixel viewing directions with the local topography. The main features of piscope are presented based on dataset recorded at Mt. Etna, Italy in September 2015.
NASA Astrophysics Data System (ADS)
Ji, Xu; Jiang, Lan; Li, Xiaowei; Han, Weina; Liu, Yang; Wang, Andong; Lu, Yongfeng
2015-01-01
A cross-patterned surface periodic structure in femtosecond laser processing of crystalline silicon was revealed under a relatively low shots (4 < N < 10) with the pulse energy slightly higher than the ablation threshold. The experimental results indicated that the cross-pattern was composed of mutually orthogonal periodic structures (ripples). Ripples with a direction perpendicular to laser polarization (R⊥) spread in the whole laser-modified region, with the periodicity around 780 nm which was close to the central wavelength of the laser. Other ripples with a direction parallel to laser polarization (R‖) were found to be distributed between two of the adjacent ripples R⊥, with a periodicity about the sub-wavelength of the irradiated laser, 390 nm. The geometrical morphology of two mutually orthogonal ripples under static femtosecond laser irradiation could be continuously rotated as the polarization directions changed, but the periodicity remained almost unchanged. The underlying physical mechanism was revealed by numerical simulations based on the finite element method. It was found that the incubation effect with multiple shots, together with the redistributed electric field after initial ablation, plays a crucial role in the generation of the cross-patterned periodic surface structures.
Ryder, Robert T.; Swezey, Christopher S.; Crangle, Robert D.; Trippi, Michael H.
2008-01-01
Geologic cross section E-E' is the first in a series of cross sections planned by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section E-E' provides a regional view of the structural and stratigraphic framework of the basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 380 miles (mi) (fig. 1, on sheet 1). Cross section E-E' updates earlier geologic cross sections through the central Appalachian basin by Renfro and Feray (1970), Bennison (1978), and Bally and Snelson (1980) and a stratigraphic cross section by Colton (1970). Although other published cross sections through parts of the basin show more structural detail (for example, Shumaker, 1985; Kulander and Dean, 1986) and stratigraphic detail (for example, Ryder, 1992; de Witt and others, 1993; Hettinger, 2001), these other cross sections are of more limited extent geographically and stratigraphically. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section E-E' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section E-E' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste (for example, Colton, 1961; Lloyd and Reid, 1990) or for the sequestration of carbon dioxide (for example, Smith and others, 2002; Lucier and others, 2006).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aceves, Salvador M.; Ledesma-Orozco, Elias Rigoberto; Espinosa-Loza, Francisco
A pressure vessel apparatus for cryogenic capable storage of hydrogen or other cryogenic gases at high pressure includes an insert with a parallel inlet duct, a perpendicular inlet duct connected to the parallel inlet. The perpendicular inlet duct and the parallel inlet duct connect the interior cavity with the external components. The insert also includes a parallel outlet duct and a perpendicular outlet duct connected to the parallel outlet duct. The perpendicular outlet duct and the parallel outlet duct connect the interior cavity with the external components.
A comparison of total reaction cross section models used in particle and heavy ion transport codes
NASA Astrophysics Data System (ADS)
Sihver, Lembit; Lantz, M.; Takechi, M.; Kohama, A.; Ferrari, A.; Cerutti, F.; Sato, T.
To be able to calculate the nucleon-nucleus and nucleus-nucleus total reaction cross sections with precision is very important for studies of basic nuclear properties, e.g. nuclear structure. This is also of importance for particle and heavy ion transport calculations because, in all particle and heavy ion transport codes, the probability function that a projectile particle will collide within a certain distance x in the matter depends on the total reaction cross sections. Furthermore, the total reaction cross sections will also scale the calculated partial fragmentation cross sections. It is therefore crucial that accurate total reaction cross section models are used in the transport calculations. In this paper, different models for calculating nucleon-nucleus and nucleus-nucleus total reaction cross sections are compared and discussed.
Vertically stabilized elongated cross-section tokamak
Sheffield, George V.
1977-01-01
This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.
BACKSCAT Lidar Simulation Version 3.0: Technical Documentation and Users Guide
1992-12-03
Raman Cross Section of Some Simple Gases, J. Opt. Soc. Am., 63:73. 20 Penny, C.M., St. Peters, R.L., and Lapp, M., (1974) Absolute Rotational Raman...of the molecule, and the remaining columns list the relative normalized cross sections for the respective excitation wavelength. The absolute Raman...cross section is obtained by simply multiplying the relative normalized cross section for a molecular species of interest by the absolute cross section
Energy and Mass-Number Dependence of Hadron-Nucleus Total Reaction Cross Sections
NASA Astrophysics Data System (ADS)
Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro
2016-09-01
We thoroughly investigate how proton-nucleus total reaction cross sections depend on the target mass number A and the proton incident energy. In doing so, we systematically analyze nuclear reaction data that are sensitive to nuclear size, namely, proton-nucleus total reaction cross sections and differential elastic cross sections, using a phenomenological black-sphere approximation of nuclei that we are developing. In this framework, the radius of the black sphere is found to be a useful length scale that simultaneously accounts for the observed proton-nucleus total reaction cross section and first diffraction peak in the proton elastic differential cross section. This framework, which is shown here to be applicable to antiprotons, is expected to be applicable to any kind of projectile that is strongly attenuated in the nucleus. On the basis of a cross-section formula constructed within this framework, we find that a less familiar A1/6 dependence plays a crucial role in describing the energy dependence of proton-nucleus total reaction cross sections.
Activation cross section and isomeric cross-section ratio for the 151Eu(n,2n)150m,gEu process
NASA Astrophysics Data System (ADS)
Luo, Junhua; Li, Suyuan; Jiang, Li
2018-07-01
The cross sections of 151Eu(n,2n)150m,gEu reactions and their isomeric cross section ratios σm/σt have been measured experimentally. Cross sections are measured, relative to a reference 93Nb(n,2n)92mNb reaction cross section, by means of the activation technique at three neutron energies 13.5, 14.1, and 14.8 MeV. Monoenergetic neutron beams were formed via the 3H(d,n)4He reaction and both Eu2O3 samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The activities induced in the reaction products were measured using high-resolution gamma ray spectroscopy. Cross sections were also evaluated theoretically using the numerical nuclear model code, TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.
Total reaction cross sections in CEM and MCNP6 at intermediate energies
Kerby, Leslie M.; Mashnik, Stepan G.
2015-05-14
Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less
Total reaction cross sections in CEM and MCNP6 at intermediate energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerby, Leslie M.; Mashnik, Stepan G.
Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less
Liu, Chengwei; Szostak, Michal
2017-05-29
The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crossed-coil detection of two-photon excited nuclear quadrupole resonance
NASA Astrophysics Data System (ADS)
Eles, Philip T.; Michal, Carl A.
2005-08-01
Applying a recently developed theoretical framework for determining two-photon excitation Hamiltonians using average Hamiltonian theory, we calculate the excitation produced by half-resonant irradiation of the pure quadrupole resonance of a spin-3/2 system. This formalism provides expressions for the single-quantum and double-quantum nutation frequencies as well as the Bloch-Siegert shift. The dependence of the excitation strength on RF field orientation and the appearance of the free-induction signal along an axis perpendicular to the excitation field provide an unmistakable signature of two-photon excitation. We demonstrate single- and double-quantum excitation in an axially symmetric system using 35Cl in a single crystal of potassium chlorate ( ωQ = 28 MHz) with crossed-coil detection. A rotation plot verifies the orientation dependence of the two-photon excitation, and double-quantum coherences are observed directly with the application of a static external magnetic field.
Double-slit interference in H2^, subjected to ultrashort x-ray radiation
NASA Astrophysics Data System (ADS)
Secor, Ethan; Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.
2012-06-01
Extending our earlier work [1], we consider the double-slit interference effect [2,3] in the H2^, ion irradiated by intense short x-ray laser pulses with central photon energies from 200-500 eV. The time-dependent Schr"odinger equation in prolate spheroidal coordinates is solved to extract the angle-differential cross section of the photo-electron. The spatical coordinates are discretized by means of a finite-element discrete-variable representation. We discuss the confinement effect [3] in the parallel geometry, in which the emission mode of the photoelectron along the laser polarization direction is dynamically forbidden. This confinement appears periodically, with the details depending on both the momentum of the electron and the internuclear separation. On the other hand, the effect disappears in the perpendicular geometry. We compare our results to those obtained from a simple plane-wave model based on time-independent perturbation theory.[4pt] [1] X. Guan, E. Secor, K. Bartschat, and B. I. Schneider, Phys. Rev. A 84 (2011) 032420.[0pt] [2] I. G. Kaplan and A. P. Markin, Sov. Phys. Dokl. 14 (1969) 36.[0pt] [3] J. Fern'andez, F. L. Yip, T. N. Rescigno, C. W. McCurdy, and F. Mart'in, Phys. Rev. A 79 (2009) 043409.
Fault geometries in basement-induced wrench faulting under different initial stress states
NASA Astrophysics Data System (ADS)
Naylor, M. A.; Mandl, G.; Supesteijn, C. H. K.
Scaled sandbox experiments were used to generate models for relative ages, dip, strike and three-dimensional shape of faults in basement-controlled wrench faulting. The basic fault sequence runs from early en échelon Riedel shears and splay faults through 'lower-angle' shears to P shears. The Riedel shears are concave upwards and define a tulip structure in cross-section. In three dimensions, each Riedel shear has a helicoidal form. The sequence of faults and three-dimensional geometry are rationalized in terms of the prevailing stress field and Coulomb-Mohr theory of shear failure. The stress state in the sedimentary overburden before wrenching begins has a substantial influence on the fault geometries and on the final complexity of the fault zone. With the maximum compressive stress (∂ 1) initially parallel to the basement fault (transtension), Riedel shears are only slightly en échelon, sub-parallel to the basement fault, steeply dipping with a reduced helicoidal aspect. Conversely, with ∂ 1 initially perpendicular to the basement fault (transpression), Riedel shears are strongly oblique to the basement fault strike, have lower dips and an exaggerated helicoidal form; the final fault zone is both wide and complex. We find good agreement between the models and both mechanical theory and natural examples of wrench faulting.
CPP-GMR films with a current-confined-path nano-oxide layer (CCP-NOL)
NASA Astrophysics Data System (ADS)
Fukuzawa, Hideaki; Yuasa, Hiromi; Iwasaki, Hitoshi
2007-03-01
We investigated the film performance and nanostructure of current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) spin-valve film with a current-confined-path nano-oxide layer (CCP-NOL). By applying ion-assisted oxidation (IAO) for the CCP-NOL formation, we enhanced the MR ratio to 5.4% at a small RA value of 500 mΩ µm2 for conventional Co90Fe10 layers. Furthermore, the use of bcc-Fe50Co50 also increased the MR ratio to 8.2% at a small RA value of 580 mΩ µm2. A modified Valet-Fert model for the CCP-NOL showed that the MR enhancement by the IAO is due to the improvement in resistivity of the CCP, and that by Fe50Co50 is due to a larger spin-dependent interface scattering effect. Analysis by cross-sectional TEM and three-dimensional atom probe confirmed the formation of the CCP-NOL structure. A reliability test for test element devices showed almost no change even under acceleration stress. The CPP-GMR spin-valve film with the CCP-NOL is extendable to future high-density recording heads due to its potential for a higher MR ratio at a small value of RA.
Spatial structure of kinetic energy spectra in LES simulations of flow in an offshore wind farm
NASA Astrophysics Data System (ADS)
Fruh, Wolf-Gerrit; Creech, Angus
2017-04-01
The evolution of wind turbine and wind farm wakes was investigated numerically for the case of Lillgrund wind farm consisting of a tightly packed array of 48 turbines. The simulations for a number of wind directions at a free wind speed of just under the rated wind speed in a neutrally stable atmosphere were carried out using Large-Eddy Simulations with the adaptive Finite-Element CFD solver Fluidity. The results were interpolated from the irregularly spaced mesh nodes onto a regular grid with comparable spatial resolution at horizontal slices at various heights. To investigate the development of the wake as the flow evolves through the array, spectra of the kinetic energy in sections perpendicular to the wind directions within the wake and to the sides of the array were calculated. This paper will present the key features and spectral slopes of the flow as a function of downstream distance from the front turbine through and beyond the array. The main focus will be on the modification of the spectra as the flow crosses a row of turbines followed by its decay in the run-up to the next row, but we will also present to wake decay of the wind farm wake downstream of the array.
Alarcón, Julio; Ponce, Silvia; Paraguay-Delgado, Francisco; Rodríguez, Juan
2011-12-01
The growth of ZnO nanorods on a flat substrate containing γ-irradiated seeds and their ability to photocatalytically eliminate bacteria in water were studied. The seed layer was obtained, by the spray pyrolysis technique, from zinc acetate solutions γ-irradiated within the range from 0 to 100 kGy. Subsequently, to grow the rods, the seeds were immersed in a basic solution of zinc nitrate maintained at 90 °C. The rate of crystal growth on the seed layer during the thermal bath treatment was kept constant. The resulting materials were characterized morphologically by scanning electron and atomic force microscopies; X-ray diffraction was used to study their morphology and structure and ultraviolet-visible spectroscopy to determine their absorbance. The obtained seed films were morphologically dependent on the radiation dose and this was correlated with the ZnO nanorod films which presented a texture in the (002) direction perpendicular to the substrate. The rods have a hexagonal mean cross section between 20 and 140 nm. Using these rods, the photocatalytic degradation of Escherichia coli bacteria in water was studied; a positive influence of the crystalline texture on the degradation rate was observed. Copyright © 2011 Elsevier Inc. All rights reserved.
Daban, Joan-Ramon
2015-10-08
The three-dimensional organization of tightly condensed chromatin within metaphase chromosomes has been one of the most challenging problems in structural biology since the discovery of the nucleosome. This study shows that chromosome images obtained from typical banded karyotypes and from different multicolour cytogenetic analyses can be used to gain information about the internal structure of chromosomes. Chromatin bands and the connection surfaces in sister chromatid exchanges and in cancer translocations are planar and orthogonal to the chromosome axis. Chromosome stretching produces band splitting and even the thinnest bands are orthogonal and well defined, indicating that short stretches of DNA can occupy completely the chromosome cross-section. These observations impose strong physical constraints on models that attempt to explain chromatin folding in chromosomes. The thin-plate model, which consists of many stacked layers of planar chromatin perpendicular to the chromosome axis, is compatible with the observed orientation of bands, with the existence of thin bands, and with band splitting; it is also compatible with the orthogonal orientation and planar geometry of the connection surfaces in chromosome rearrangements. The results obtained provide a consistent interpretation of the chromosome structural properties that are used in clinical cytogenetics for the diagnosis of hereditary diseases and cancers.
Evaluation of high-resolution MRI for preoperative screening for cochlear implantation
NASA Astrophysics Data System (ADS)
Madzivire, Mambidzeni; Camp, Jon J.; Lane, John; Witte, Robert J.; Robb, Richard A.
2002-05-01
The success of a cochlear implant is dependent on a functioning auditory nerve. An accurate noninvasive method for screening cochlear implant patients to help determine viability of the auditory nerve would allow physicians to better predict the success of the operation. In this study we measured the size of the auditory nerve relative to the size of the juxtaposed facial nerve and correlated these measurements with audiologic test results. The study involved 15 patients, and three normal volunteers. Noninvasive high-resolution bilateral MRI images were acquired from both 1.5T and 3T scanners. The images were reformatted to obtain an anatomically referenced oblique plane perpendicular to the auditory nerve. The cross- sectional areas of the auditory and facial nerves were determined in this plane. Assessment of the data is encouraging. The ratios of auditory to facial nerve size in the control subjects are close to the expected value of 1.0. Patient data ratios range from 0.73 to 1.3, with numbers significantly less than 1.0 suggesting auditory nerve atrophy. The acoustic nerve area correlated to audiologic test findings, particularly (R2equals0.68) to the count of words understood from a list of 100 words. These preliminary analyses suggest that a threshold of size may be determined to differentiate functional from nonfunctional auditory nerves.
The Zagros hinterland fold-and-thrust belt in-sequence thrusting, Iran
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil; Ghanbarian, Mohammad Ali
2014-05-01
The collision of the Iranian microcontinent with the Afro-Arabian continent resulted in the deformation of the Zagros orogenic belt. The foreland of this belt in the Persian Gulf and Arabian platform has been investigated for its petroleum and gas resource potentials, but the Zagros hinterland is poorly investigated and our knowledge about its deformation is much less than other parts of this orogen. Therefore, this work presents a new geological map, stratigraphic column and two detailed geological cross sections. This study indicates the presence of a hinterland fold-and-thrust belt on northeastern side of the Zagros orogenic core that consists of in-sequence thrusting and basement involvement in this important part of the Zagros hinterland. The in-sequence thrusting resulted in first- and second-order duplex systems, Mode I fault-bend folding, fault-propagation folding and asymmetric detachment folding which indicate close relationships between folding and thrusting. Study of fault-bend folds shows that layer-parallel simple shear has the same role in the southeastern and northwestern parts of the study area (αe = 23.4 ± 9.1°). A major lateral ramp in the basement beneath the Talaee plain with about one kilometer of vertical offset formed parallel to the SW movement direction and perpendicular to the major folding and thrusting.
Occurrence of riverine wetlands on floodplains along a climatic gradient
Kroes, D.E.; Brinson, M.M.
2004-01-01
The relation between the occurrence of riverine wetlands in floodplains along a humid to semi-arid climatic continuum was studied in two regions. The first included 36 mid-reach streams from Colorado to Iowa, USA, a region with a broad range of PET ratios (potential evapotranspiration/precipitation) from 0.70 to 1.75. The second region included 16 headwater streams in eastern North Carolina with PET ratios ranging from 0.67 to 0.83. Wetland boundaries were identified in the field along transects perpendicular to the floodplain. The width of jurisdictional wetlands was compared with flood-prone width (FPW) and expressed as a percent. An increase in PET ratio corresponded to an exponential decrease in the percentage of the FPW that is wetland. Soil texture, duration of overbank flow, and stream order did not correlate with percentage of FPW that was wetland. Streams with a PET ratio greater than 0.98 did not have wetlands associated with them. Greater channel cross-sectional areas correlated positively with greater wetland widths in both study regions. Overbank flow did not appear to contribute to wetland prevalence. Supplemental ground-water sources, however, as indicated by greater base flows, could not be ruled out as sources contributing to wetland occurrence. ?? 2004, The Society of Wetland Scientists.
NASA Astrophysics Data System (ADS)
Liu, D.
2017-12-01
Plants, especially trees, in the riparian zone may have a significant impact on the flow rate, temperature and chemical properties of groundwater. A field study was conducted in the downstream bank of the Xin'an River dam, Zhejiang, China. In the field, two areas of about 20 meters apart were chosen, of which one was a open place and the other was covered with many orange trees. Comparison of hyporheic flow and water quality in the open and tree-covered banks were made by monitoring the water level, water temperature, water chemistry (March, 2015) along the cross sections perpendicular to the river. The analyses indicated that water level around the trees was relatively low in the day and high in the evening, thus changed the direction and magnitude of the natural groundwater flow velocity, totally strengthened the hyporheic exchange between the groundwater and river. The trees also changed the temperature distribution of the natural river bank, and induced the wider infiltration range of the low-temperature water. The temperature around the trees was relatively low in the day, yet it was high in the evening. Dissolved oxygen (DO) and electricity conductivity (EC) around the trees were significantly increased, yet the pH was almost unaffected.
Li, Ying; Liu, Dan; Xu, Kailiang; Le, Lawrence H.; Wang, Weiqi
2017-01-01
Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S0 and A0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S0 and A0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A0, while the amplitude of S0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S0 and A0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S0 and A0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring. PMID:28182135
Suh, Hyo Seon; Chen, Xuanxuan; Rincon-Delgadillo, Paulina A.; ...
2016-04-22
Grazing-incidence small-angle X-ray scattering (GISAXS) is increasingly used for the metrology of substrate-supported nanoscale features and nanostructured films. In the case of line gratings, where long objects are arranged with a nanoscale periodicity perpendicular to the beam, a series of characteristic spots of high-intensity (grating truncation rods, GTRs) are recorded on a two-dimensional detector. The intensity of the GTRs is modulated by the three-dimensional shape and arrangement of the lines. Previous studies aimed to extract an average cross-sectional profile of the gratings, attributing intensity loss at GTRs to sample imperfections. Such imperfections are just as important as the average shapemore » when employing soft polymer gratings which display significant line-edge roughness. Herein are reported a series of GISAXS measurements of polymer line gratings over a range of incident angles. Both an average shape and fluctuations contributing to the intensity in between the GTRs are extracted. Lastly, the results are critically compared with atomic force microscopy (AFM) measurements, and it is found that the two methods are in good agreement if appropriate corrections for scattering from the substrate (GISAXS) and contributions from the probe shape (AFM) are accounted for.« less
Comet Wild 2 and the two kinds of cometary sub-nuclei population
NASA Astrophysics Data System (ADS)
Illes-Almar, E.
On the 2nd January 2004 Stardust encountered the nucleus of comet Wild 2 by 240 km. 72 images have been collected - among them the up-till-now best views of a cometary nucleus. The "pockmarked" surface of the comet is peculiar as the "craters" are not normal craters: neither in shape nor in cross section. Their shapes are rather irregular and generally not central or axisymmetric. Furthermore they have flat bottoms and very steep walls that seem almost perpendicular to the surface. One has the feeling that they are not impact craters. In the framework of our `two kinds of cometary sub-nuclei population' hypothesis (Illés-Almár, 1995, 2002) the cavities can be explained by the stronger sublimation where the loose sub-nuclei are exposed to the surface. The almost vertical walls resemble to the vertical walls of the sublimated CO2 ice on the South polar cap of Mars. References: Illés-Almár, E.: On two different populations of cometary sub-nuclei. Antarctic Meteorites XX. June 6-8, 1995, Tokyo. Abstracts pp. 93-94, 1995. Illés-Almár, E.: Comet Borrelly and the two kinds of cometary sub-nuclei population. (submitted to Adv. Sp. Res. in 2002)
NASA Astrophysics Data System (ADS)
Soleimanipour, Zohre; Baghshahi, Saeid; Shoja-razavi, Reza
2017-04-01
In the present study, laser cladding of alumina on the top surface of YSZ thermal barrier coatings (TBC) was conducted via Nd:YAG pulsed laser. The thermal shock behavior of the TBC before and after laser cladding was modified by heating at 1000 °C for 15 min and quenching in cold water. Phase analysis, microstructural evaluation and elemental analysis were performed using x-ray diffractometry, scanning electron microscopy (SEM), and energy-dispersive spectroscopy. The results of thermal shock tests indicated that the failure in the conventional YSZ (not laser clad) and the laser clad coatings happened after 200 and 270 cycles, respectively. The SEM images of the samples showed that delamination and spallation occurred in both coatings as the main mechanism of failure. Formation of TGO was also observed in the fractured cross section of the samples, which is also a main reason for degradation. Thermal shock resistance in the laser clad coatings improved about 35% after cladding. The improvement is due to the presence of continuous network cracks perpendicular to the surface in the clad layer and also the thermal stability and high melting point of alumina in Al2O3/ZrO2 composite.
Shoreline recovery from storms on the east coast of Southern Africa
NASA Astrophysics Data System (ADS)
Corbella, S.; Stretch, D. D.
2012-01-01
Episodic extreme waves due to sea storms can cause severe coastal erosion. The recovery times of such events are important for the analysis of risk and coastal vulnerability. The recovery period of a storm damaged coastline represents a time when the coastline is most vulnerable and nearby infrastructure is at the greatest risk. We propose that identification of the beach recovery period can be used as a coastal management tool when determining beach usage. As a case study, we analyse 37 yr of beach profile data on the east coast of South Africa. Considering beach length and cross-sectional area, we establish a global recovery period and rate and identify the physical characteristics of the coastlines that either accelerate or retard recovery. The beaches in the case study were found to take an average of two years to recover at a rate of approximately 90 m3 m-1 yr-1. Beach profiles with vegetated dunes recovered faster than urbanized beaches. Perpendicular beach structures have both positive and negative effects on beach recovery. Coastlines with rock outcrops in the surf zone tend to recover slowly and long-term sediment loss was identified in cases where storm damaged beaches have not recovered to pre-erosion levels.
Electron beam physical vapor deposition of YSZ electrolyte coatings for SOFCs
NASA Astrophysics Data System (ADS)
He, Xiaodong; Meng, Bin; Sun, Yue; Liu, Bochao; Li, Mingwei
2008-09-01
YSZ electrolyte coatings were prepared by electron beam physical vapor deposition (EB-PVD) at a high deposition rate of up to 1 μm/min. The YSZ coating consisted of a single cubic phase and no phase transformation occurred after annealing treatment at 1000 °C. A typical columnar structure was observed in this coating by SEM and feather-like characteristics appeared in every columnar grain. In columnar grain boundaries there were many micron-sized gaps and pores. In TEM image, many white lines were found, originating from the alignment of nanopores existing within feather-like columnar grains. The element distribution along the cross-section of the coating was homogeneous except Zr with a slight gradient. The coating exhibited a characteristic anisotropic behavior in electrical conductivity. In the direction perpendicular to coating surface the electrical conductivity was remarkably higher than that in the direction parallel to coating surface. This mainly attributed to the typical columnar structure for EB-PVD coating and the existence of many grain boundaries along the direction parallel to coating surface. For as-deposited coating, the gas permeability coefficient of 9.78 × 10 -5 cm 4 N -1 s -1 was obtained and this value was close to the critical value of YSZ electrolyte layer required for solid oxide fuel cell (SOFC) operation.
Horath, T; Neu, T R; Bachofen, R
2006-04-01
A community of endolithic microorganisms dominated by phototrophs was found as a distinct band a few millimeters below the surface of bare exposed dolomite rocks in the Piora Valley in the Alps. Using in situ reflectance spectroscopy, we detected chlorophyll a (Chl a), phycobilins, carotenoids, and an unknown type of bacteriochlorophyll-like pigment absorbing in vivo at about 720 nm. In cross sections, the data indicated a defined distribution of different groups of organisms perpendicular to the rock surface. High-performance liquid chromatography analyses of pigments extracted with organic solvents confirmed the presence of two types of bacteriochlorophylls besides chlorophylls and various carotenoids. Spherical organisms of varying sizes and small filaments were observed in situ with scanning electron microscopy and confocal laser scanning microscopy (one- and two-photon technique). The latter allowed visualization of the distribution of phototrophic microorganisms by the autofluorescence of their pigments within the rock. Coccoid cyanobacteria of various sizes predominated over filamentous ones. Application of fluorescence-labeled lectins demonstrated that most cyanobacteria were embedded in an exopolymeric matrix. Nucleic acid stains revealed a wide distribution of small heterotrophs. Some biological structures emitting a green autofluorescence remain to be identified.
Li, Ying; Liu, Dan; Xu, Kailiang; Ta, Dean; Le, Lawrence H; Wang, Weiqi
2017-01-01
Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S 0 and A 0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S 0 and A 0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A 0, while the amplitude of S 0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S 0 and A 0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S 0 and A 0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring.
Power, J F
2009-06-01
Light profile microscopy (LPM) is a direct method for the spectral depth imaging of thin film cross-sections on the micrometer scale. LPM uses a perpendicular viewing configuration that directly images a source beam propagated through a thin film. Images are formed in dark field contrast, which is highly sensitive to subtle interfacial structures that are invisible to reference methods. The independent focusing of illumination and imaging systems allows multiple registered optical sources to be hosted on a single platform. These features make LPM a powerful multi-contrast (MC) imaging technique, demonstrated in this work with six modes of imaging in a single instrument, based on (1) broad-band elastic scatter; (2) laser excited wideband luminescence; (3) coherent elastic scatter; (4) Raman scatter (three channels with RGB illumination); (5) wavelength resolved luminescence; and (6) spectral broadband scatter, resolved in immediate succession. MC-LPM integrates Raman images with a wider optical and morphological picture of the sample than prior art microprobes. Currently, MC-LPM resolves images at an effective spectral resolution better than 9 cm(-1), at a spatial resolution approaching 1 microm, with optics that operate in air at half the maximum numerical aperture of the prior art microprobes.
The Inertial Coefficients of an Airship in a Frictionless Fluid
NASA Technical Reports Server (NTRS)
Bateman, H
1924-01-01
This report deals with the investigation of the apparent inertia of an airship hull. The exact solution of the aerodynamical problem has been studied for hulls of various shapes and special attention has been given to the case of an ellipsoidal hull. In order that the results for this last case may be readily adapted to other cases, they are expressed in terms of the area and perimeter of the largest cross section perpendicular to the direction motion by means of a formula involving a coefficient K which varies only slowly when the shape of the hull is changed, being 0.637 for a circular or elliptic disk, 0.5 for a sphere, and about 0.25 for a spheroid of fineness ratio 7. For rough purposes it is sufficient to employ the coefficients, originally found for ellipsoids, for hulls otherwise shaped. When more exact values of the inertia are needed, estimates may be based on a study of the way in which K varies with different characteristics and for such a study the new coefficient possesses some advantage over one which is defined with reference to the volume of fluid displaced. The case of rotation of an airship hull has been investigated also and a coefficient has been defined with the same advantages as the corresponding coefficient for rectilinear motion.
Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.
2001-01-01
Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observationsmore » for all the targets reported here, especially for the total cross section.« less
Temperature dependence of the HNO3 UV absorption cross sections
NASA Technical Reports Server (NTRS)
Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan
1993-01-01
The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.
Cross sections for direct and dissociative ionization of NH3 and CS2 by electron impact
NASA Technical Reports Server (NTRS)
Rao, M. V. V. S.; Srivastava, S. K.
1991-01-01
A crossed electron beam-molecular beam collision geometry is used to measure cross sections for the production of positive ions by electron impact on NH3 and CS2. Ionization cross-section data for NH3 and the values of various cross sections are presented, as well as ionization efficiency curves for CS2. Considerable differences are found between the various results on NH3. The present values are close to the data of Djuric et al. (1981). The semiempirical calculations of Hare and Meath (1987) differ considerably in the absolute values of cross sections. Discrepancies were observed in comparisons of cross sections of other fragment ions resulting from the ionization and dissociate ionization of NH3.
Nuclear Forensics and Radiochemistry: Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.
Fragmentation Cross Sections of Medium-Energy 35Cl, 40Ar, and 48TiBeams on Elemental Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitlin, C.; Guetersloh, S.; Heilbronn, L.
Charge-changing and fragment production cross sections at 0degrees have been obtained for interactions of 290, 400, and 650MeV/nucleon 40Ar beams, 650 and 1000 MeV/nucleon 35Cl beams, and a 1000MeV/nucleon 48Ti beam. Targets of C, CH2, Al, Cu, Sn, and Pb were used.Using standard analysis methods, we obtain fragment cross sections forcharges as low as 8 for Cl and Ar beams, and as low as 10 for the Tibeam. Using data obtained with small-acceptance detectors, we reportfragment production cross sections for charges as low as 5, corrected foracceptance using a simple model of fragment angular distributions. Withthe lower-charged fragment cross sections,more » we cancompare the data topredictions from several models (including NUCFRG2, EPAX2, and PHITS) ina region largely unexplored in earlier work. As found in earlier workwith other beams, NUCFRG2 and PHITS predictions agree reasonably wellwith the data for charge-changing cross sections, but do not accuratelypredict the fragment production cross sections. The cross sections forthe lightest fragments demonstrate the inadequacy of several models inwhich the cross sections fall monotonically with the charge of thefragment. PHITS, despite not agreeing particularly well with the fragmentproduction cross sections on average, nonetheless qualitativelyreproduces somesignificant features of the data that are missing from theother models.« less
NASA Astrophysics Data System (ADS)
Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.
2014-03-01
Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.
NASA Astrophysics Data System (ADS)
Chen, L.-J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Viñas, A. F.-; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J. L.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R. E.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Yu. V.
2017-12-01
Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We 'image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.
NASA Astrophysics Data System (ADS)
Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.
2017-12-01
Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.
Minimization of Retinal Slip Cannot Explain Human Smooth-Pursuit Eye Movements
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Beutter, Brent R.; Null, Cynthia H. (Technical Monitor)
1998-01-01
Existing models assume that pursuit attempts a direct minimization of retinal image motion or "slip" (e.g. Robinson et al., 1986; Krauzlis & Weisberger, 1989). Using occluded line-figure stimuli, we have previously shown that humans can accurately pursue stimuli for which perfect tracking does not zero retinal slip (Neurologic ARCO). These findings are inconsistent with the standard control strategy of matching eye motion to a target-motion signal reconstructed by adding retinal slip and eye motion, but consistent with a visual front-end which estimates target motion via a global spatio-temporal integration for pursuit and perception. Another possible explanation is that pursuit simply attempts to minimize slip perpendicular to the segments (and neglects parallel "sliding" motion). To resolve this, 4 observers (3 naive) were asked to pursue the center of 2 types of stimuli with identical velocity-space descriptions and matched motion energy. The line-figure "diamond" stimulus was viewed through 2 invisible 3 deg-wide vertical apertures (38 cd/m2 equal to background) such that only the sinusoidal motion of 4 oblique line segments (44 cd/m2 was visible. The "cross" was identical except that the segments exchanged positions. Two trajectories (8's and infinity's) with 4 possible initial directions were randomly interleaved (1.25 cycles, 2.5s period, Ax = Ay = 1.4 deg). In 91% of trials, the diamond appeared rigid. Correspondingly, pursuit was vigorous (mean Again: 0.74) with a V/H aspect ratio approx. 1 (mean: 0.9). Despite a valid rigid solution, the cross however appeared rigid in 8% of trials. Correspondingly, pursuit was weaker (mean Hgain: 0.38) with an incorrect aspect ratio (mean: 1.5). If pursuit were just minimizing perpendicular slip, performance would be the same in both conditions.
NASA Technical Reports Server (NTRS)
Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.
1992-01-01
Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-19
CEPXS is a multigroup-Legendre cross-section generating code. The cross sections produced by CEPXS enable coupled electron-photon transport calculations to be performed with multigroup radiation transport codes, e.g. MITS and SCEPTRE. CEPXS generates multigroup-Legendre cross sections for photons, electrons and positrons over the energy range from 100 MeV to 1.0 keV. The continuous slowing-down approximation is used for those electron interactions that result in small-energy losses. The extended transport correction is applied to the forward-peaked elastic scattering cross section for electrons. A standard multigroup-Legendre treatment is used for the other coupled electron-photon cross sections. CEPXS extracts electron cross-section information from themore » DATAPAC data set and photon cross-section information from Biggs-Lighthill data. The model that is used for ionization/relaxation in CEPXS is essentially the same as that employed in ITS.« less
Partial Photoneutron Cross Sections for 207,208Pb
NASA Astrophysics Data System (ADS)
Kondo, T.; Utsunomiya, H.; Goriely, S.; Iwamoto, C.; Akimune, H.; Yamagata, T.; Toyokawa, H.; Harada, H.; Kitatani, F.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.
2014-05-01
Using linearly-polarized laser-Compton scattering γ-rays, partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near neutron threshold by measuring anisotropies in photoneutron emission. Separately, total photoneutron cross sections were measured for 207,208Pb with a high-efficiency 4π neutron detector. The partial cross section measurement provides direct evidence for the presence of pygmy dipole resonance (PDR) in 207,208Pb in the vicinity of neutron threshold. The strength of PDR amounts to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to M1 cross sections less than 10% of the total photoneutron cross sections.
46 CFR 179.310 - Collision bulkheads.
Code of Federal Regulations, 2011 CFR
2011-10-01
... as far inboard as practicable and they have a means to make them watertight. (b) The forward... more than 15 percent of the length between perpendiculars (LBP) aft of the forward perpendicular, or for vessels with bulbous bows extending forward of the forward perpendicular and contributing more...
46 CFR 179.310 - Collision bulkheads.
Code of Federal Regulations, 2010 CFR
2010-10-01
... as far inboard as practicable and they have a means to make them watertight. (b) The forward... more than 15 percent of the length between perpendiculars (LBP) aft of the forward perpendicular, or for vessels with bulbous bows extending forward of the forward perpendicular and contributing more...
NASA Astrophysics Data System (ADS)
Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wei, D. H.; Zhao, J. H.
2018-01-01
We report on the spontaneous perpendicular exchange bias effect in as-grown L10-MnGa/FeMn bilayers. An FeMn layer with different thicknesses is introduced as an antiferromagnetic layer to couple with single-crystalline ferromagnetic L10-MnGa, which is epitaxially grown on a GaAs (001) substrate by molecular-beam epitaxy. The perpendicular exchange bias shows a strong dependence on both the thickness of the FeMn layer and the measurement temperature. A large spontaneous perpendicular exchange bias up to 8.9 kOe is achieved in L10-MnGa/FeMn bilayers at 5 K without any external magnetic treatment. The corresponding effective interfacial exchange energy Jeff is estimated to be 1.4 mJ/m2. The spontaneous perpendicular exchange bias effect in the (001) textured L10-MnGa/FeMn bilayers paves the way for spintronic devices based on exchange biased perpendicularly magnetized materials.
A Multidirectional Tribo-System: Wear of UHMWPE under Sliding, Rolling, and Rotation
NASA Astrophysics Data System (ADS)
Patten, Elias Wolfgang
Total knee replacements (TKR) have become a successful surgical procedure for addressing end-stage osteoarthritis, with ultra-high molecular weight polyethylene and cobalt chrome alloy (UHMWPE/Co-Cr) serving as the bearing materials of choice for decades. However, more than 10% of TKRs fail and require revision surgery. The predominant challenge with UHMWPE is the particulate debris generated through wear-mediated processes; wear debris from the UHMWPE tibial bearing surface leading to loosening is still the main cause for post-fifth-year revisions. UHMWPE wear in hip arthroplasty has been linked to microstructural evolution at the surface from multidirectional sliding in the hip joint but little is known about how the microstructure responds to clinically relevant sliding conditions in the knee. This is likely because wear tests are typically performed under basic motion parameters with simplified geometry (pin-on-disk tests) while the knee has more complex kinematics: it is neither a ball-and-socket joint nor a simple hinge joint, but has 2D sliding, rolling/slip motion, and rotation. There is also disagreement over how to best quantify cross-shear and how to model how much wear it will cause. A custom multidirectional tribo-system was used to investigate the individual and combined effects of the different motions in TKR: 2D sliding, rolling, and rotation, for a total of eight separate kinematic conditions. The trends in wear rates and wear factors for these different motions were compared with many different definitions for magnitudes and ratios of cross-shear. Additionally, the wear surfaces were examined for wear mechanism and the microstructural changes in lamellae orientation for the different motions were analyzed. To mimic the tribological conditions of a condyle in a TKR, polished Co-Cr spheres were articulated against flat, smooth UHMWPE disks with physiologically relevant loading, speed, and lubrication conditions. The motion parameters were selected based on the lowest and highest reasonable amounts of cross-shear that each motion type would generate during a realistic gait cycle: a reciprocating line or a "figure 8" with a 15° crossing angle, no rolling or a 0.4 slide-to-roll ratio, and no rotation or a 1°/mm of rotation. The amount of wear was measured with optical profilometry of the cross-section at the middle of the wear scar, after allowing for a resting period for the material creep to recover. To calculate the amount of cross-shear at this cross-section, the sliding interface was simulated with a computer Matlab model. Multiple definitions of cross-shear were used, including the traditional, cycle-based approaches and newer, memory-based approaches. The wear surfaces were examined using optical microscopy and scanning electron microscopy (SEM). The lamellar microstructure at the wear surface and below the wear surface was examined using an oxidizing etch to remove the amorphous phase. The remaining lamellae were imaged using SEM and their orientations and alignment was quantified using an image analysis program. Wear factors were between 0.3 and 8.7 µm2/(Nm/mm), significantly increasing with motion complexity and cross-shear, with the "figure 8" sliding path having the greatest effect. Volumetric wear rates correlated linearly with the total amount of cross-shear, while wear factors correlated linearly with ratios of cross-shear. The best predictors of the wear factor were the normalized crossing intensity and normalized, memory-based cross-shear ratios, with R2 values of 0.98 and 0.97, although many of the cross-shear ratios also had a good linear fits with wear factor. The kinematic parameters in this experiment did not differentiate the various cross-shear parameters enough to conclusively determine which are most appropriate, although some have a stronger theoretical foundation than others. SEM analysis of the wear scar surface revealed slight scratching and instances of rippling and surface cracking perpendicular to the primary sliding directions. These are consistent with abrasive wear, plastic flow and adhesive wear, and fatigue wear mechanisms reported in other
Ryder, Robert T.; Crangle, Robert D.; Trippi, Michael H.; Swezey, Christopher S.; Lentz, Erika E.; Rowan, Elisabeth L.; Hope, Rebecca S.
2009-01-01
Geologic cross section D-D' is the second in a series of cross sections constructed by the U.S. Geological Survey to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section D-D' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 290 miles. The information shown on the cross section is based on geological and geophysical data from 13 deep drill holes, several of which penetrate the Paleozoic sedimentary rocks of the basin and bottom in Mesoproterozoic (Grenville-age) crystalline basement rocks. This cross section is a companion to cross section E-E' (Ryder and others, 2008) that is located about 25 to 50 mi to the southwest. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section D-D' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general geologic framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section D-D' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.
MMS Observations of Parallel Electric Fields During a Quasi-Perpendicular Bow Shock Crossing
NASA Astrophysics Data System (ADS)
Goodrich, K.; Schwartz, S. J.; Ergun, R.; Wilder, F. D.; Holmes, J.; Burch, J. L.; Gershman, D. J.; Giles, B. L.; Khotyaintsev, Y. V.; Le Contel, O.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C.; Torbert, R. B.
2016-12-01
Previous observations of the terrestrial bow shock have frequently shown large-amplitude fluctuations in the parallel electric field. These parallel electric fields are seen as both nonlinear solitary structures, such as double layers and electron phase-space holes, and short-wavelength waves, which can reach amplitudes greater than 100 mV/m. The Magnetospheric Multi-Scale (MMS) Mission has crossed the Earth's bow shock more than 200 times. The parallel electric field signatures observed in these crossings are seen in very discrete packets and evolve over time scales of less than a second, indicating the presence of a wealth of kinetic-scale activity. The high time resolution of the Fast Particle Instrument (FPI) available on MMS offers greater detail of the kinetic-scale physics that occur at bow shocks than ever before, allowing greater insight into the overall effect of these observed electric fields. We present a characterization of these parallel electric fields found in a single bow shock event and how it reflects the kinetic-scale activity that can occur at the terrestrial bow shock.
Design of New Muzzle for 80mm Diamter Single-Stage Gas Gun
NASA Astrophysics Data System (ADS)
Russell, R. T.; Starks, K. S.; Grote, D. L., II; Vandersall, K. S.; Zhou, M.; Thadhani, N. N.
1999-06-01
In this paper, we describe the design of a new muzzle for the Georgia Institute of Technology's 80mm diameter single-stage gas gun. The muzzle is designed to accommodate both normal and inclined impact experiments. Modular target-holding assemblies are mounted on a hardened tool steel annular plate 3 inches in thickness and 15 inches in diameter. This plate is threaded on to the gun barrel and locked into place by an anti-backlash assembly to prevent loss of alignment. The target mount for normal impact experiments consists of two 4.5 inch diameter semi-cylindrical ring sections with surfaces lapped perpendicular to the major bore axis. The inclined target mount includes a pair of concentric cylinder sections with an inner diameter of 8 inches. Tilt adjustment is achieved around two mutually perpendicular and intersecting axis of rotation, as in a gimbals assembly. Coarse alignment allows for angles between -10 and +30 degrees. Fine alignment is achieved using 3/8 inch machine screws with 40 threads per inch. This mechanism yields a precision of 0.025 inches per revolution, the same precision found in a micrometer. The linear distance between the adjustment mechanisms and the axes of rotation geometrically enhances fine alignment. Velocity measurement assemblies using shear pins, time of arrival pins, and laser/photo-diode circuits are designed as bolt-on modules.
Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Trajmar, S.
1982-01-01
Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.
Proton-Nucleus Total Cross Sections in Coupled-Channel Approach
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.
2000-01-01
Recently, nucleon-nucleon (N-N) cross sections in the medium have been extracted directly from experiment. The in-medium N-N cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. In the present study the ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium N-N cross sections to calculate total proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.
NASA Technical Reports Server (NTRS)
Green, T. J.
1973-01-01
Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.
Electron impact scattering study of hypohalous acids HOX (X = F, Cl, Br, I)
NASA Astrophysics Data System (ADS)
Yadav, Hitesh; Bhutadia, Harshad; Prajapati, Dinesh; Desai, Hardik; Vinodkumar, Minaxi; Vinodkumar, P. C.
2018-05-01
In this article we aim to report total cross sections (TCS) QT, total elastic cross sections (Qel), total inelastic cross sections (Qinel) i.e. (total ionizations cross sections (Qion)+total electronic excitation cross sections (Qexc)) from threshold of the target to 5000 eV energy range. We have used a well-defined theoretical methodology Spherical Complex Optical Potential (SCOP) to compute QT, Qel and Qinel and Complex Scattering Potential - ionization contribution (CSP - ic) method to report the (Qion). The cross-sectional data reported here for the Hypohalous Acids is for the first time and the present data can become a guideline for the experimentalist to study these targets.
Sutton, Jeffrey A; Driscoll, James F
2004-11-15
Rayleigh scattering cross sections are measured for nine combustion species (Ar, N2, O2, CO2, CO, H2, H2O, CH4, and C3H8) at wavelengths of 266, 355, and 532 nm and at temperatures ranging from 295 to 1525 K. Experimental results show that, as laser wavelengths become shorter, polarization effects become important and the depolarization ratio of the combustion species must be accounted for in the calculation of the Rayleigh scattering cross section. Temperature effects on the scattering cross section are also measured. Only a small temperature dependence is measured for cross sections at 355 nm, resulting in a 2-8% increase in cross section at temperatures of 1500 K. This temperature dependence increases slightly for measurements at 266 nm, resulting in a 5-11% increase in cross sections at temperatures of 1450 K.
Cross sections for n+{sup 14}N from an R-matrix analysis of the {sup 15}N system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, G.M.; Young, P.G.; Chadwick, M.B.
1994-06-01
As part of the Hiroshima-Nagasaki Dose Reevaluation Program, a new evaluation of the neutron cross sections for {sup 14}N was made for ENDF/B-VI, based at energies below 2.5 MeV on a multichannel R-matrix analysis of reactions in the {sup 15}N system. The types of data used in the analysis, and the resulting cross sections and resonance structure for {sup 15}N are briefly described. The resonant features of the neutron cross sections were especially well determined by including precise, high-resolution neutron total cross section measurements from ORNL. While the new evaluated cross section appear to be significant improvements over the earliermore » ones, they still need to be tested more extensively against recent measurements of the differential elastic cross section from Oak Ridge.« less
Electron impact cross sections for the 2,2P state excitation of lithium
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Trajmar, S.; Register, D. F.
1982-01-01
Electron impact excitation of the 2p 2P state of Li was studied at 10, 20, 60, 100, 150 and 200 eV. Relative differential cross sections in the angular range 3-120 deg were measured and then normalized to the absolute scale by using the optical f value. Integral and momentum transfer cross sections were obtained by extrapolating the differential cross sections to 0 deg and to 180 deg. The question of normalizing electron-metal-atom collision cross sections in general was examined and the method of normalization to optical f values in particular was investigated in detail. It has been concluded that the extrapolation of the apparent generalized oscillator strength (obtained from the measured differential cross sections) to the zero momentum transfer limit with an expression using even powers of the momentum transfer and normalization of the limit to the optical f value yields reliable absolute cross sections.
The 75As(n,2n) Cross Sections into the 74As Isomer and Ground State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, W; Garrett, P E; Becker, J A
2003-06-30
The {sup 75}As(n, 2n) cross section for the population of the T{sub 1/2} = 26.8-ns isomer at E{sub x} = 259.3 keV in {sup 74}As has been measured as a function of incident neutron energy, from threshold to E{sub n} = 20 MeV. The cross section was measured using the GEANIE spectrometer at LANSCE/WNR. For convenience, the {sup 75}As(n, 2n) population cross section for the {sup 74}As ground state has been deduced as the difference between the previously-known (n, 2n) reaction cross section and the newly measured {sup 75}As(n, 2n){sup 74}As{sup m} cross section. The (n, 2n) reaction, ground-state, andmore » isomer population cross sections are tabulated in this paper.« less
Total and partial photoneutron cross sections for Pb isotopes
NASA Astrophysics Data System (ADS)
Kondo, T.; Utsunomiya, H.; Goriely, S.; Daoutidis, I.; Iwamoto, C.; Akimune, H.; Okamoto, A.; Yamagata, T.; Kamata, M.; Itoh, O.; Toyokawa, H.; Lui, Y.-W.; Harada, H.; Kitatani, F.; Hilaire, S.; Koning, A. J.
2012-07-01
Using quasimonochromatic laser-Compton scattering γ rays, total photoneutron cross sections were measured for 206,207,208Pb near neutron threshold with a high-efficiency 4π neutron detector. Partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near threshold by measuring anisotropies in photoneutron emission with linearly polarized γ rays. The E1 strength dominates over the M1 strength in the neutron channel where E1 photoneutron cross sections show extra strength of the pygmy dipole resonance in 207,208Pb near the neutron threshold corresponding to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to an M1 cross section less than 10% of the total photoneutron cross section.
Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer
NASA Technical Reports Server (NTRS)
Herrero, Federico A.; Finne, Theodore T.
2010-01-01
Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about 350 mW. The entrance aperture has a diameter of 0.004 in. (0.10 mm) to provide the required energy resolution between 0.05 and 0.15. This design (see Figure 2) provides a WTS occupying a volume less than 40 cm(sup 3), on a footprint of diameter about 1.5 in. (38 mm). The Crossed SDEA offers many advantages in the measurements of neutral wind and ion drifts in the Earth's thermosphere. As such, it will be useful in future commercial satellites dedicated to monitoring the ionosphere with a view to improving the integrity and predictability of GPS operations.
Mental Visualization of Objects from Cross-Sectional Images
ERIC Educational Resources Information Center
Wu, Bing; Klatzky, Roberta L.; Stetten, George D.
2012-01-01
We extended the classic anorthoscopic viewing procedure to test a model of visualization of 3D structures from 2D cross-sections. Four experiments were conducted to examine key processes described in the model, localizing cross-sections within a common frame of reference and spatiotemporal integration of cross sections into a hierarchical object…
Viscous Flow through Pipes of Various Cross-Sections
ERIC Educational Resources Information Center
Lekner, John
2007-01-01
An interesting variety of pipe cross-sectional shapes can be generated, for which the Navier-Stokes equations can be solved exactly. The simplest cases include the known solutions for elliptical and equilateral triangle cross-sections. Students can find pipe cross-sections from solutions of Laplace's equation in two dimensions, and then plot the…
Activation cross section and isomeric cross section ratio for the 76Ge(n,2n)75m,gGe process
NASA Astrophysics Data System (ADS)
Luo, Junhua; Jiang, Li; Wang, Xinxing
2018-04-01
We measured neutron-induced reaction cross sections for the 76Ge(n,2n)75m,gGe reactions and their isomeric cross section ratios σm/σg at three neutron energies between 13 and 15MeV by an activation and off-line γ-ray spectrometric technique using the K-400 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). Ge samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The monoenergetic neutron beams were formed via the 3H( d, n)4He reaction. The pure cross section of the ground state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. The cross sections were also calculated using the nuclear model code TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20MeV. Results are discussed and compared with the corresponding literature data.
O2 absorption cross sections /187-225 nm/ from stratospheric solar flux measurements
NASA Technical Reports Server (NTRS)
Herman, J. R.; Mentall, J. E.
1982-01-01
The absorption cross sections of molecular oxygen are calculated in the wavelength range from 187 to 230 nm from solar flux measurements obtained within the stratosphere. Within the Herzberg continuum wavelength region the molecular oxygen cross sections are found to be about 30% smaller than the laboratory results of Shardanand and Rao (1977) from 200 to 210 nm and about 50% smaller than those of Hasson and Nicholls (1971). At wavelengths longer than 210 nm the cross sections agree with those of Shardanand and Rao. The effective absorption cross sections of O2 in the Schumann-Runge band region from 187 to 200 nm are calculated and compared to the empirical fit given by Allen and Frederick (1982). The calculated cross sections indicate that the transmissivity of the atmosphere may be underestimated by the use of the Allen and Frederic cross sections between 195 and 200 nm. The ozone column content between 30 and 40 km and the relative ozone cross sections are determined from the same solar flux data set.
NASA Astrophysics Data System (ADS)
Battistella, C.; Robinson, D.; McQuarrie, N.; Ghoshal, S.
2017-12-01
Multiple valid balanced cross sections can be produced from mapped surface and subsurface data. By integrating low temperature thermochronologic data, we are better able to predict subsurface geometries. Existing valid balanced cross section for far western Nepal are few (Robinson et al., 2006) and do not incorporate thermochronologic data because the data did not exist. The data published along the Simikot cross section along the Karnali River since then include muscovite Ar, zircon U-Th/He and apatite fission track. We present new mapping and a new valid balanced cross section that takes into account the new field data as well as the limitations that thermochronologic data places on the kinematics of the cross section. Additional constrains include some new geomorphology data acquired since 2006 that indicate areas of increased vertical uplift, which indicate locations of buried ramps in the Main Himalayan thrust and guide the locations of Lesser Himalayan ramps in the balanced cross section. Future work will include flexural modeling, new low temperature thermochronometic data, and 2-D thermokinematic models from a sequentially forward modeled balanced cross sections in far western Nepal.
NASA Technical Reports Server (NTRS)
Fahr, A.; Braun, W.; Kurylo, M. J.
1993-01-01
Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.
Low-energy proton induced M X-ray production cross sections for 70Yb, 81Tl and 82Pb
NASA Astrophysics Data System (ADS)
Shehla; Mandal, A.; Kumar, Ajay; Roy Chowdhury, M.; Puri, Sanjiv; Tribedi, L. C.
2018-07-01
The cross sections for production of Mk (k = Mξ, Mαβ, Mγ, Mm1) X-rays of 70Yb, 81Tl and 82Pb induced by 50-250 keV protons have been measured in the present work. The experimental cross sections have been compared with the earlier reported values and those calculated using the ionization cross sections based on the ECPSSR (Perturbed (P) stationary(S) state(S), incident ion energy (E) loss, Coulomb (C) deflection and relativistic (R) correction) model, the X-ray emission rates based on the Dirac-Fock model, the fluorescence and Coster-Kronig yields based on the Dirac-Hartree-Slater (DHS) model. In addition, the present measured proton induced X-ray production cross sections have also been compared with those calculated using the Dirac-Hartree-Slater (DHS) model based ionization cross sections and those based on the Plane wave Born Approximation (PWBA). The measured M X-ray production cross sections are, in general, found to be higher than the ECPSSR and DHS model based values and lower than the PWBA model based cross sections.
Positron induced scattering cross sections for hydrocarbons relevant to plasma
NASA Astrophysics Data System (ADS)
Singh, Suvam; Antony, Bobby
2018-05-01
This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.
Electron induced inelastic and ionization cross section for plasma modeling
NASA Astrophysics Data System (ADS)
Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby
2016-09-01
The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.
NASA Technical Reports Server (NTRS)
Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.
1998-01-01
This paper reports a comparison between Geotail observations of plasmas and magnetic fields at 200 R(sub E) in the Earth's magnetotail with results from a time-dependent, global magnetohydrodynamic simulation of the interaction of the solar wind with the magnetosphere. The study focuses on observations from July 7, 1993, during which the Geotail spacecraft crossed the distant tail magnetospheric boundary several times while the interplanetary magnetic field (IMF) was predominantly northward and was marked by slow rotations of its clock angle. Simultaneous IMP 8 observations of solar wind ions and the IMF were used as driving input for the MHD simulation, and the resulting time series were compared directly with those from the Geotail spacecraft. The very good agreement found provided the basis for an investigation of the response of the distant tail associated with the clock angle of the IMF. Results from the simulation show that the stresses imposed by the draping of magnetosheath field lines and the asymmetric removal of magnetic flux tailward of the cusps altered considerably the shape of the distant tail as the solar wind discontinuities convected downstream of Earth. As a result, the cross section of the distant tail was considerably flattened along the direction perpendicular to the IMF clock angle, the direction of the neutral sheet following that of the IMF. The simulation also revealed that the combined action of magnetic reconnection and the slow rotation of the IMF clock angle led to a braiding of the distant tail's magnetic field lines along the axis of the tail, with the plane of the braid lying in the direction of the IMF.
Breakup and fusion cross sections of the 6Li nucleus with targets of mass A = 58, 144 and 208
NASA Astrophysics Data System (ADS)
Mukeru, B.; Rampho, G. J.; Lekala, M. L.
2018-04-01
We use the continuum discretized coupled channels method to investigate the effects of continuum-continuum coupling on the breakup and fusion cross sections of the weakly bound 6Li nucleus with the 58Ni, 144Sm and 208Pb nuclear targets. The cross sections were analyzed at incident energies E cm below, close to and above the Coulomb barrier V B. We found that for the medium and heavy targets, the breakup cross sections are enhanced at energies below the Coulomb barrier (E cm/V B ≤ 0.8) owing to these couplings. For the lighter target, relatively small enhancement of the breakup cross sections appear at energies well below the barrier (E cm/V B ≤ 0.6). At energies E cm/V B > 0.8 for medium and heavy targets, and E cm/V B > 0.6 for the light target, the continuum-continuum couplings substantially suppress the breakup cross sections. On the other hand, the fusion cross sections are enhanced at energies E cm/V B < 1.4, E cm/V B < 1.2 and E cm/V B < 0.8 for the light, medium and heavy target, respectively. The enhancement decreases as the target mass increases. Above the indicated respective energies, these couplings suppress the fusion cross sections. We also compared the breakup and fusion cross sections, and found that below the barrier, the breakup cross sections are more dominant regardless of whether continuum-continuum couplings are included.
Simple, empirical approach to predict neutron capture cross sections from nuclear masses
NASA Astrophysics Data System (ADS)
Couture, A.; Casten, R. F.; Cakirli, R. B.
2017-12-01
Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of neutron capture cross sections, extending far from stability, including for nuclei of the highest sensitivity to r -process nucleosynthesis.
NASA Astrophysics Data System (ADS)
Olree, E.; Robinson, D. M.; McQuarrie, N.; Ghoshal, S.; Olsen, J.
2016-12-01
Using balanced cross sections, one can visualize a valid and admissible interpretation of the surface and subsurface data. Khanal (2014) and Cross (2014) produced two valid and admissible cross sections along the Marsyandi River in central Nepal. However, thermochronologic data adds another dimension that must be adhered to when producing valid and admissible balanced cross sections. Since the previous cross sections were produced, additional zircon-helium (ZHe) cooling ages along the Marsyandi River show ages of 1 Ma near the Main Central thrust in the hinterland to 4 Ma near the Main Boundary thrust closer to the foreland. This distribution of cooling ages requires recent uplift in the hinterland, which is not present in the cross sections. Although a restored version of the Khanal (2014) cross section is sequentially deformed using 2D Move, the kinematic sequence implied in the cross section is inconsistent with the ZHe age distribution. The hinterland dipping duplex proposed by Khanal would require cooling ages that are oldest near the Main Central thrust and young southwards toward the active ramp located 80 km north of the Main Frontal thrust. Instead, the 4 Ma age near the Main Boundary thrust and the increasingly younger ages to the north could be produced by either a foreland-dipping Lesser Himalayan duplex, which would keep active uplift in the north, or by translation of the hinterland dipping duplex southward over the ramp, moving the active thrust ramp northward. To address this problem, a new balanced cross section was produced using both new mapping through the region and the ZHe age distribution as additional constraints. The section was then restored and sequentially deformed in 2D Move. This study illustrates that multiple cross sections can be viable and admissible; however, they can still be incorrect. Thermochronology places additional constraints on the permissible geometries, and thus increases our ability to predict subsurface geometries. The next step of this project is to link the uplift and erosion implied by the kinematic sequence of the new cross section to the measured cooling history by importing the cross section kinematics into advection diffusion modeling software that predicts cooling ages.
ERIC Educational Resources Information Center
Stanford Univ., CA. School Mathematics Study Group.
The first chapter of the seventh unit in this SMSG series discusses perpendiculars and parallels; topics covered include the relationship between parallelism and perpendicularity, rectangles, transversals, parallelograms, general triangles, and measurement of the circumference of the earth. The second chapter, on similarity, discusses scale…
Fragmentation of Ar-40 at 100 GeV/c
NASA Technical Reports Server (NTRS)
Lindstrom, P. J.; Greiner, D. E.; Heckman, H. H.; Cork, B.; Bieser, F. S.
1975-01-01
The delta Z is greater than or equal to 1 reaction cross section for 1.8 GeV/n Ar-40 have been measured on targets ranging from H to Pb. Comparing these cross sections with H-1, C-12, and O-16 reaction cross sections at relativistic energies yields a formula for nucleus-nucleus reaction cross sections.
Temperature-dependent absorption cross sections for hydrogen peroxide vapor
NASA Technical Reports Server (NTRS)
Nicovich, J. M.; Wine, P. H.
1988-01-01
Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.
NASA Technical Reports Server (NTRS)
Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.
1993-01-01
Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.
Fragmentation cross sections of O-16 between 0.9 and 200 GeV/nucleon
NASA Technical Reports Server (NTRS)
Hirzebruch, S. E.; Heinrich, W.; Tolstov, K. D.; Kovalenko, A. D.; Benton, E. V.
1995-01-01
Inclusive cross sections for high energy interactions at 0.9, 2.3, 3.6, and 13.5 GeV/nucleon of O-16 with C, CR-39 (C12H18O7), CH2, Al, Cu, Ag, and Pb targets were measured. The total charge-changing cross sections and partial charge-changing cross sections for the production of fragments with charge Z = 6 and Z = 7 are compared to previous experiments at 60 and 200 GeV/nucleon. The contributions of Coulomb dissociation to the total cross sections are calculated. Using factorization rules the partial electromagnetic cross sections are separated from the nuclear components. Energy dependence of both components are investigated and discussed.
Nuclear annihilation by antinucleons
Lee, Teck-Ghee; Wong, Cheuk-Yin
2016-01-25
We examine the momentum dependence ofmore » $$\\bar{p}$$p and $$\\bar{n}$$p annihilation cross sections by considering the transmission through a nuclear potential and the $$\\bar {p}$$p Coulomb interaction. Compared to the $$\\bar{n}$$p annihilation cross section, the $$\\bar{p}$$p annihilation cross section is significantly enhanced by the Coulomb interaction for projectile momenta below p lab < 500 MeV/c, and the two annihilation cross sections approach the Pomeranchuk's equality limit [JETP 30, 423 (1956)] at p lab ~500 MeV/c. Using these elementary cross sections as the basic input data, the extended Glauber model is employed to evaluate the annihilation cross sections for $$\\bar{n}$$ and $$\\bar{p}$$ interaction with nuclei and the results compare well with experimental data.« less
Using 171,173Yb(d,p) to benchmark a surrogate reaction for neutron capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatarik, R; Bersntein, L; Burke, J
2008-08-08
Neutron capture cross sections on unstable nuclei are important for many applications in nuclear structure and astrophysics. Measuring these cross sections directly is a major challenge and often impossible. An indirect approach for measuring these cross sections is the surrogate reaction method, which makes it possible to relate the desired cross section to a cross section of an alternate reaction that proceeds through the same compound nucleus. To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured with the goal to reproduce the known [1] neutron capture cross section ratiosmore » of these nuclei.« less
Photoeffect cross sections of several rare-earth elements for 323-keV photons
NASA Astrophysics Data System (ADS)
Umesh, T. K.; Anasuya, S. J.; Shylaja Kumari, J.; Gowda, Channe; Gopinathan Nair, K. P.; Gowda, Ramakrishna
1992-02-01
Total-attenuation cross sections of the oxides of rare-earth elements such as La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er, and also NaNO3 and NaNO2 have been measured in a narrow-beam geometry setup at 323 keV. The total-attenuation cross section for oxygen was obtained as the difference in NaNO3 and NaNO2 cross sections. Using this, the total-attenuation cross sections of the individual lanthanides have been obtained with the aid of the mixture rule. From these, the photoeffect cross sections were derived by subtracting the scattering contribution. These values are found to agree well with Scofield's theoretical data [University of California Report No. UCRL 51326, 1973 (unpublished)].
One-jet inclusive cross section at order a(s)-cubed - Gluons only
NASA Technical Reports Server (NTRS)
Ellis, Stephen D.; Kunszt, Zoltan; Soper, Davison E.
1989-01-01
A complete calculation of the hadron jet cross-section at one order beyond the Born approximation is performed for the simplified case in which there are only gluons. The general structure of the differences from the lowest-order cross-section are described. This step allows two important improvements in the understanding of the theoretical hadron jet cross-section: first, the cross section at this order displays explicit dependence on the jet cone size, so that explicit account can be taken of the differences in jet definitions employed by different experiments; second, the magnitude of the uncertainty of the theoretical cross-section due to the arbitrary choice of the factorization scale has been reduced by a factor of two to three.
Zafred, Paolo R [Murrysville, PA; Draper, Robert [Pittsburgh, PA
2012-01-17
A solid oxide fuel cell (400) is made having a tubular, elongated, hollow, active section (445) which has a cross-section containing an air electrode (452) a fuel electrode (454) and solid oxide electrolyte (456) between them, where the fuel cell transitions into at least one inactive section (460) with a flattened parallel sided cross-section (462, 468) each cross-section having channels (472, 474, 476) in them which smoothly communicate with each other at an interface section (458).
Nuclear reactor control column
Bachovchin, Dennis M.
1982-01-01
The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.
NASA Technical Reports Server (NTRS)
Carter, J. E.
1977-01-01
A computer program called STAYLAM is presented for the computation of the compressible laminar boundary-layer flow over a yawed infinite wing including distributed suction. This program is restricted to the transonic speed range or less due to the approximate treatment of the compressibility effects. The prescribed suction distribution is permitted to change discontinuously along the chord measured perpendicular to the wing leading edge. Estimates of transition are made by considering leading edge contamination, cross flow instability, and instability of the Tollmien-Schlichting type. A program listing is given in addition to user instructions and a sample case.
Subcritical collisionless shock waves. [in earth space plasma
NASA Technical Reports Server (NTRS)
Mellott, M. M.
1985-01-01
The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.
Plasma sweeper to control the coupling of RF power to a magnetically confined plasma
Motley, Robert W.; Glanz, James
1985-01-01
A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.
Patra, Goutam Kumar; Mukherjee, Anindita; Ng, Seik Weng
2009-01-01
The title compound (systematic name: 1,1′,2,2′-tetraphenyl-2,2′-azinodiethanone), C28H20N2O2, was obtained by the reaction of benzil monohydrazone with chromium(III) nitrate. The dibenzylidene hydrazine unit is nearly planar (r.m.s. deviation = 0.073 Å) and the two benzoyl units are oriented almost perpendicular to it [dihedral angle = 87.81 (2), 87.81 (2)°]. The molecules are linked into chains along the c axis by C—H⋯O hydrogen bonds and the chains are cross-linked via C—H⋯π interactions involving the benzoyl phenyl rings. PMID:21583456
On the effect of the neutral Hydrogen density on the 26 day variations of galactic cosmic rays
NASA Astrophysics Data System (ADS)
Engelbrecht, Nicholas; Burger, Renier; Ferreira, Stefan; Hitge, Mariette
Preliminary results of a 3D, steady-state ab-initio cosmic ray modulation code are presented. This modulation code utilizes analytical expressions for the parallel and perpendicular mean free paths based on the work of Teufel and Schlickeiser (2003) and Shalchi et al. (2004), incorporating Breech et al. (2008)'s model for the 2D variance, correlation scale, and normalized cross helicity. The effects of such a model for basic turbulence quantities, coupled with a 3D model for the neutral Hydrogen density on the 26-day variations of cosmic rays, is investigated, utilizing a Schwadron-Parker hybrid heliospheric magnetic field.
Second Stage Turbine Bucket Airfoil.
Xu, Liming; Ahmadi, Majid; Humanchuk, David John; Moretto, Nicholas; Delehanty, Richard Edward
2003-05-06
The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.
Third-stage turbine bucket airfoil
Pirolla, Peter Paul; Siden, Gunnar Leif; Humanchuk, David John; Brassfield, Steven Robert; Wilson, Paul Stuart
2002-01-01
The third-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.
First-stage high pressure turbine bucket airfoil
Brown, Theresa A.; Ahmadi, Majid; Clemens, Eugene; Perry, II, Jacob C.; Holiday, Allyn K.; Delehanty, Richard A.; Jacala, Ariel Caesar
2004-05-25
The first-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitlin, C.; Guetersloh, S.; Heilbronn, L.
Charge-changing and fragment production cross sections at 0 deg. have been obtained for interactions of 290, 400, and 650 MeV/nucleon {sup 40}Ar beams, 650 and 1000 MeV/nucleon {sup 35}Cl beams, and a 1000 MeV/nucleon {sup 48}Ti beam. Targets of C, CH{sub 2}, Al, Cu, Sn, and Pb were used. Using standard analysis methods, we obtained fragment cross sections for charges as low as 8 for Cl and Ar beams and as low as 10 for the Ti beam. Using data obtained with small-acceptance detectors, we report fragment production cross sections for charges as low as 5, corrected for acceptance usingmore » a simple model of fragment angular distributions. With the lower-charged fragment cross sections, we can compare the data to predictions from several models (including NUCFRG2, EPAX2, and PHITS) in a region largely unexplored in earlier work. As found in earlier work with other beams, NUCFRG2 and PHITS predictions agree reasonably well with the data for charge-changing cross sections, but these models do not accurately predict the fragment production cross sections. The cross sections for the lightest fragments demonstrate the inadequacy of several models in which the cross sections fall monotonically with the charge of the fragment. PHITS, despite its not agreeing particularly well with the fragment production cross sections on average, nonetheless qualitatively reproduces some significant features of the data that are missing from the other models.« less
Influence of strut cross-section of stents on local hemodynamics in stented arteries
NASA Astrophysics Data System (ADS)
Jiang, Yongfei; Zhang, Jun; Zhao, Wanhua
2016-05-01
Stenting is a very effective treatment for stenotic vascular diseases, but vascular geometries altered by stent implantation may lead to flow disturbances which play an important role in the initiation and progression of restenosis, especially in the near wall in stented arterial regions. So stent designs have become one of the indispensable factors needed to be considered for reducing the flow disturbances. In this paper, the structural designs of strut cross-section are considered as an aspect of stent designs to be studied in details. Six virtual stents with different strut cross-section are designed for deployments in the same ideal arterial model. Computational fluid dynamics (CFD) methods are performed to study how the shape and the aspect ratio (AR) of strut cross-section modified the local hemodynamics in the stented segments. The results indicate that stents with different strut cross-sections have different influence on the hemodynamics. Stents with streamlined cross-sectional struts for circular arc or elliptical arc can significantly enhance wall shear stress (WSS) in the stented segments, and reduce the flow disturbances around stent struts. The performances of stents with streamlined cross-sectional struts are better than that of stents with non-streamlined cross-sectional struts for rectangle. The results also show that stents with a larger AR cross-section are more conductive to improve the blood flow. The present study provides an understanding of the flow physics in the vicinity of stent struts and indicates that the shape and AR of strut cross-section ought to be considered as important factors to minimize flow disturbance in stent designs.
The Production of FRW Universe and Decay to Particles in Multiverse
NASA Astrophysics Data System (ADS)
Ghaffary, Tooraj
2017-09-01
In this study, first, it will be shown that as the Hubble parameter, " H", increases the production cross section for closed and flat Universes increases rapidly at smaller values of " H" and becomes constant for higher values of " H". However in the case of open Universe, the production cross section has been encountered a singularity. Before this singularity, as the H parameter increases, the cross section increases, for smaller H, ( H < 2.5), exhibits a turn-over at moderate values of H, (2.5 < H < 3.5), decreases for larger amount of H After that and for a special value of H, the cross section has been encountered with a singularity. Although the cross section cannot be defined at this singularity but before and after this point, it is certainly equal to zero. After this singularity, the cross section increases rapidly, when H increases. It is shown that if the production cross section of Universe happens before this singularity, it can't achieve to higher values of Hubble parameter after singularity. More over if the production cross section of Universe situates after the singularity, it won't get access to values of Hubble parameter less than the singularity. After that the thermal distribution for particles inside the FRW Universes are obtained. It is found that a large amount of particles are produced near apparent horizon due to their variety in their energy and their probabilities. Finally, comparing the particle production cross sections for flat, closed and open Universes, it is concluded that as the value of k increases, the cross section decreases.
Poster - 18: New features in EGSnrc for photon cross sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Elsayed; Mainegra-Hing, Ernesto; Rogers, Davi
2016-08-15
Purpose: To implement two new features in the EGSnrc Monte Carlo system. The first is an option to account for photonuclear attenuation, which can contribute a few percent to the total cross section at the higher end of the energy range of interest to medical physics. The second is an option to use exact NIST XCOM photon cross sections. Methods: For the first feature, the photonuclear total cross sections are generated from the IAEA evaluated data. In the current, first-order implementation, after a photonuclear event, there is no energy deposition or secondary particle generation. The implementation is validated against deterministicmore » calculations and experimental measurements of transmission signals. For the second feature, before this work, if the user explicitly requested XCOM photon cross sections, EGSnrc still used its own internal incoherent scattering cross sections. These differ by up to 2% from XCOM data between 30 keV and 40 MeV. After this work, exact XCOM incoherent scattering cross sections are an available option. Minor interpolation artifacts in pair and triplet XCOM cross sections are also addressed. The default for photon cross section in EGSnrc is XCOM except for the new incoherent scattering cross sections, which have to be explicitly requested. The photonuclear, incoherent, pair and triplet data from this work are available for elements and compounds for photon energies from 1 keV to 100 GeV. Results: Both features are implemented and validated in EGSnrc.Conclusions: The two features are part of the standard EGSnrc distribution as of version 4.2.3.2.« less
Cross sections for H(-) and Cl(-) production from HCl by dissociative electron attachment
NASA Technical Reports Server (NTRS)
Orient, O. J.; Srivastava, S. K.
1985-01-01
A crossed target beam-electron beam collision geometry and a quadrupole mass spectrometer have been used to conduct dissociative electron attachment cross section measurements for the case of H(-) and Cl(-) production from HCl. The relative flow technique is used to determine the absolute values of cross sections. A tabulation is given of the attachment energies corresponding to various cross section maxima. Error sources contributing to total errors are also estimated.
Measurements of neutron capture cross sections on 70Zn at 0.96 and 1.69 MeV
NASA Astrophysics Data System (ADS)
Punte, L. R. M.; Lalremruata, B.; Otuka, N.; Suryanarayana, S. V.; Iwamoto, Y.; Pachuau, Rebecca; Satheesh, B.; Thanga, H. H.; Danu, L. S.; Desai, V. V.; Hlondo, L. R.; Kailas, S.; Ganesan, S.; Nayak, B. K.; Saxena, A.
2017-02-01
The cross sections of the 70Zn(n ,γ )Zn71m (T1 /2=3.96 ±0.05 -h ) reaction have been measured relative to the 197Au(n ,γ )198Au cross sections at 0.96 and 1.69 MeV using a 7Li(p ,n )7Be neutron source and activation technique. The cross section of this reaction has been measured for the first time in the MeV region. The new experimental cross sections have been compared with the theoretical prediction by talys-1.6 with various level-density models and γ -ray strength functions as well as the tendl-2015 library. The talys-1.6 calculation with the generalized superfluid level-density model and Kopecky-Uhl generalized Lorentzian γ -ray strength function predicted the new experimental cross sections at both incident energies. The 70Zn(n ,γ ) g+m 71Zn total capture cross sections have also been derived by applying the evaluated isomeric ratios in the tendl-2015 library to the measured partial capture cross sections. The spectrum averaged total capture cross sections derived in the present paper agree well with the jendl-4.0 library at 0.96 MeV, whereas it lies between the tendl-2015 and the jendl-4.0 libraries at 1.69 MeV.
NASA Astrophysics Data System (ADS)
Friedman, B.; DuCharme, G.
2017-06-01
We present a semi-empirical scaling law for non-resonant ion-atom single charge exchange cross sections for collisions with velocities from {10}7 {{t}}{{o}} {10}9 {cm} {{{s}}}-1 and ions with positive charge q< 8. Non-resonant cross sections tend to have a velocity peak at collision velocities v≲ 1 {{a}}{{u}} with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, {{Δ }}E, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters {v}{{m}},{I}{{T}},{Z}{{T}},{and} {Z}{{P}}, where the {Z}{{T},{{P}}} are the target and projectile atomic numbers. For the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.
Sonographic evaluation of the greater occipital nerve in unilateral occipital neuralgia.
Cho, John Chin-Suk; Haun, Daniel W; Kettner, Norman W
2012-01-01
Occipital neuralgia is a headache that may result from greater occipital nerve entrapment. Entrapped peripheral nerves typically have an increase in cross-sectional area. The purpose of this study was to measure the cross-sectional area and circumference of symptomatic and asymptomatic greater occipital nerves in patients with unilateral occipital neuralgia and to correlate the greater occipital nerve cross-sectional area with headache severity, sex, and body mass index. Both symptomatic and contralateral asymptomatic greater occipital nerve cross-sectional areas and circumferences were measured by a single examiner using sonography in 17 patients. The Wilcoxon signed rank test and Spearman rank order correlation coefficient were used to analyze the data. Significant differences between the cross-sectional areas and circumferences of the symptomatic and asymptomatic greater occipital nerves were noted (P < .001). No difference existed in cross-sectional area (P = .40) or circumference (P = .10) measurements of the nerves between male and female patients. A significant correlation existed between the body mass index and symptomatic (r = 0.424; P = .045) and asymptomatic (r = 0.443; P = .037) cross-sectional areas. There was no correlation shown between the cross-sectional area of the symptomatic nerve and the severity of Headache Impact Test 6 scores (r = -0.342; P = .179). We report sonographic evidence showing an increased cross-sectional area and circumference of the symptomatic greater occipital nerve in patients with unilateral occipital neuralgia.
Annular-Cross-Section CFE Chamber
NASA Technical Reports Server (NTRS)
Sharnez, Rizwan; Sammons, David W.
1994-01-01
Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.
NASA Astrophysics Data System (ADS)
Nekab, M.; Kahoul, A.
2006-04-01
We present in this contribution, semi-empirical production cross sections of the main X-ray lines Lα, Lβ and Lγ for elements from Sn to U and for protons with energies varying from 0.5 to 3.0 MeV. The theoretical X-ray production cross sections are firstly calculated from the theoretical ionization cross sections of the L i ( i = 1, 2, 3) subshell within the ECPSSR theory. The semi-empirical Lα, Lβ and Lγ cross sections are then deduced by fitting the available experimental data normalized to their corresponding theoretical values and give the better representation of the experimental data in some cases. On the other hand, the experimental data are directly fitted to deduce the empirical L X-ray production cross sections. A comparison is made between the semi-empirical cross sections, the empirical cross sections reported in this work and the empirical ones reported by Reis and Jesus [M.A. Reis, A.P. Jesus, Atom. Data Nucl. Data Tables 63 (1996) 1] and those of Strivay and Weber [Strivay, G. Weber, Nucl. Instr. and Meth. B 190 (2002) 112].