Kim, Taeho Roy; Phatak, Charudatta; Petford-Long, Amanda K.; ...
2017-10-23
In order to increase the storage density of hard disk drives, a detailed understanding of the magnetic structure of the granular magnetic layer is essential. Here, we demonstrate an experimental procedure of imaging recorded bits on heat-assisted magnetic recording (HAMR) media in cross section using Lorentz transmission electron microscopy (TEM). With magnetic force microscopy and focused ion beam (FIB), we successfully targeted a single track to prepare cross-sectional TEM specimens. Then, we characterized the magnetic structure of bits with their precise location and orientation using Fresnel mode of Lorentz TEM. Here, this method can promote understanding of the correlation betweenmore » bits and their material structure in HAMR media to design better the magnetic layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taeho Roy; Phatak, Charudatta; Petford-Long, Amanda K.
In order to increase the storage density of hard disk drives, a detailed understanding of the magnetic structure of the granular magnetic layer is essential. Here, we demonstrate an experimental procedure of imaging recorded bits on heat-assisted magnetic recording (HAMR) media in cross section using Lorentz transmission electron microscopy (TEM). With magnetic force microscopy and focused ion beam (FIB), we successfully targeted a single track to prepare cross-sectional TEM specimens. Then, we characterized the magnetic structure of bits with their precise location and orientation using Fresnel mode of Lorentz TEM. Here, this method can promote understanding of the correlation betweenmore » bits and their material structure in HAMR media to design better the magnetic layer.« less
Cross-sectional TEM specimen preparation for W/B{sub 4}C multilayer sample using FIB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Puspen, E-mail: puspen@rrcat.gov.in; Pradhan, P. C.; Tiwari, Pragya
2016-05-23
A recent emergence of a cross-beam scanning electron microscopy (SEM)/focused-ion-beam (FIB) system have given choice to fabricate cross-sectional transmission electron microscopy (TEM) specimen of thin film multilayer sample. A 300 layer pair thin film multilayer sample of W/B{sub 4}C was used to demonstrate the specimen lift-out technique in very short time as compared to conventional cross-sectional sample preparation technique. To get large area electron transparent sample, sample prepared by FIB is followed by Ar{sup +} ion polishing at 2 kV with grazing incident. The prepared cross-sectional sample was characterized by transmission electron microscope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangadurai, P.; Lumelsky, Yulia; Silverstein, Michael S.
Transmission electron microscopy (TEM) cross-section specimens of PMMA in contact with gold and Si were prepared by focused ion beam (FIB) and compared with plan-view PMMA specimens prepared by a dip-coating technique. The specimens were characterized by TEM and electron energy loss spectroscopy (EELS). In the cross-section specimens, the thin films of PMMA were located in a Si-PMMA-Au multilayer. Different thicknesses of PMMA films were spin-coated on the Si substrates. The thickness of the TEM specimens prepared by FIB was estimated using EELS to be 0.65 of the plasmon mean-free-path. Along the PMMA-Au interface, Au particle diffusion into the PMMAmore » was observed, and the size of the Au particles was in the range of 2-4 nm. Dip-coating of PMMA directly on Cu TEM grids resulted in thin specimens with a granular morphology, with a thickness of 0.58 of the plasmon mean-free-path. The dip-coated specimens were free from ion milling induced artifacts, and thus serve as control specimens for comparison with the cross-sectioned specimens prepared by FIB.« less
Gignac, Lynne M; Mittal, Surbhi; Bangsaruntip, Sarunya; Cohen, Guy M; Sleight, Jeffrey W
2011-12-01
The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.
Cross Section High Resolution Imaging of Polymer-Based Materials
NASA Astrophysics Data System (ADS)
Delaportas, D.; Aden, P.; Muckle, C.; Yeates, S.; Treutlein, R.; Haq, S.; Alexandrou, I.
This paper describes a methodology for preparing cross sections of organic layers suitable for transmission electron microscopy (TEM) at high resolution. Our principal aim is to prepare samples that are tough enough to allow the slicing into sub-150 nm sections. We also need strong contrast at the organic layer area to make it identifiable during TEM. Our approach is to deposit organic layers on flexible substrates and prepare thin cross sections using ultra-microtomy. We sandwich the organic layer between two metal thin films in order to isolate it and improve contrast. Our methodology is used to study the microstructure of polymer/nanotube composites, allowing us to accurately measure the organic layer thickness, determine nanotube dispersion and assess the effect of nanotube clustering on film structural stability.
On the Locality of Transient Electromagnetic Soundings with a Single-Loop Configuration
NASA Astrophysics Data System (ADS)
Barsukov, P. O.; Fainberg, E. B.
2018-03-01
The possibilities of reconstructing two-dimensional (2D) cross sections based on the data of the profile soundings by the transient electromagnetic method (TEM) with a single ungrounded loop are illustrated on three-dimensional (3D) models. The process of reconstruction includes three main steps: transformation of the responses in the depth dependence of resistivity ρ(h) measured along the profile, with their subsequent stitching into the 2D pseudo section; point-by-point one-dimensional (1D) inversion of the responses with the starting model constructed based on the transformations; and correction of the 2D cross section with the use of 2.5-dimensional (2.5D) block inversion. It is shown that single-loop TEM soundings allow studying the geological media within a local domain the lateral dimensions of which are commensurate with the depth of the investigation. The structure of the medium beyond this domain insignificantly affects the sounding results. This locality enables the TEM to reconstruct the geoelectrical structure of the medium from the 2D cross sections with the minimal distortions caused by the lack of information beyond the profile of the transient response measurements.
Cross section TEM characterization of high-energy-Xe-irradiated U-Mo
Ye, B.; Jamison, L.; Miao, Y.; ...
2017-03-09
U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Furthermore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo.
Transmission electron microscopy of polymer blends and block copolymers
NASA Astrophysics Data System (ADS)
Gomez, Enrique Daniel
Transmission electron microscopy (TEM) of soft matter is a field that warrants further investigation. Developments in sample preparation, imaging and spectroscopic techniques could lead to novel experiments that may further our understanding of the structure and the role structure plays in the functionality of various organic materials. Unlike most hard materials, TEM of organic molecules is limited by the amount of radiation damage the material can withstand without changing its structure. Despite this limitation, TEM has been and will be a powerful tool to study polymeric materials and other soft matter. In this dissertation, an introduction of TEM for polymer scientists is presented. The fundamentals of interactions of electrons with matter are described using the Schrodinger wave equation and scattering cross-sections to fully encompass coherent and incoherent scattering. The intensity, which is the product of the wave function and its complex conjugate, shows no perceptible change due to the sample. Instead, contrast is generated through the optical system of the microscope by removing scattered electrons or by generating interference due to material-induced phase changes. Perhaps the most challenging aspect of taking TEM images, however, is sample preparation, because TEM experiments require materials with approximately 50 nm thickness. Although ultramicrotomy is a well-established powerful tool for preparing biological and polymeric sections for TEM, the development of cryogenic Focused Ion Beam may enable unprecedented cross-sectional TEM studies of polymer thin films on arbitrary substrates with nanometer precision. Two examples of TEM experiments of polymeric materials are presented. The first involves quantifying the composition profile across a lamellar phase obtained in a multicomponent blend of saturated poly(butadiene) and poly(isobutylene), stabilized by a saturated poly(butadiene) copolymer serving as a surfactant, using TEM and self-consistent field theory (SCFT). The liquid-like nature of this system at room temperature makes traditional staining methods for the enhancement of contrast ineffective. As an alternative, we take advantage of the large inelastic scattering cross-section of soft materials to generate contrast in zero-loss TEM images. Independent spatially resolved thickness measurements enable quantification of electron scattering. This enabled a comparison between the TEM data and predictions based on SCFT without any adjustable parameters. The second example involves the utilization of energy-filtered transmission electron microscopy (EFTEM) to compute elemental maps by taking advantage of ionization events. Elemental mapping of lithium is used to determine the distribution of salt in nanostructured poly(styrene-block-ethylene oxide) (SEO) copolymer/lithium salt electrolytes. Surprisingly, the concentration of lithium within a poly(ethylene oxide) (PEO) domain is found to be inhomogeneous; the salt is localized to the middle of the channels. Self-consistent field theory simulations suggest that localization of lithium is due to chain stretching at the interface, which increases with molecular weight. EFTEM and SCFT results show that the segregation of lithium salt to the middle of the PEO lamellae is greater for higher molecular weight polymers. This is correlated with the ionic conductivity of the copolymer electrolyte, which is found to show a higher conductivity for thinner lithium lamellae.
Loosely coupled coaxial TEM applicators for deep-heating.
Harrison, W H; Storm, F K
1989-01-01
The development of a coaxial TEM (transverse electromagnetic) deep-heating, non-contacting applicator employing two axially spaced concentric sleeves is described which has electrostatic characteristics and has been named the ESA. Thermal data obtained with the FDA/CDRH elliptic-shaped human torso phantom (with fat overlay) showed nearly uniform heating (+/- 10%) throughout the inner cross-section. Saline tank measurements on a torso cross-section confirmed similar SAR uniformity. Animal experiments with a pig, both with and without blood flow, verified deep-heating and suggested that some preferential central heating occurred. The absence of excessive surface heating indicated that the major portion of the E-field excitation is axially aligned. The non-contacting applicator does not require a water bolus, and experiments showed that moderate patient movement had minor effect on performance.
Shapiro, Adam J; Leigh, Margaret W
2017-01-01
Primary ciliary dyskinesia (PCD) is a genetic disorder causing chronic oto-sino-pulmonary disease. No single diagnostic test will detect all PCD cases. Transmission electron microscopy (TEM) of respiratory cilia was previously considered the gold standard diagnostic test for PCD, but 30% of all PCD cases have either normal ciliary ultrastructure or subtle changes which are non-diagnostic. These cases are identified through alternate diagnostic tests, including nasal nitric oxide measurement, high-speed videomicroscopy analysis, immunofluorescent staining of axonemal proteins, and/or mutation analysis of various PCD causing genes. Autosomal recessive mutations in DNAH11 and HYDIN produce normal TEM ciliary ultrastructure, while mutations in genes encoding for radial spoke head proteins result in some cross-sections with non-diagnostic alterations in the central apparatus interspersed with normal ciliary cross-sections. Mutations in nexin link and dynein regulatory complex genes lead to a collection of different ciliary ultrastructures; mutations in CCDC65, CCDC164, and GAS8 produce normal ciliary ultrastructure, while mutations in CCDC39 and CCDC40 cause absent inner dynein arms and microtubule disorganization in some ciliary cross-sections. Mutations in CCNO and MCIDAS cause near complete absence of respiratory cilia due to defects in generation of multiple cellular basal bodies; however, the scant cilia generated may have normal ultrastructure. Lastly, a syndromic form of PCD with retinal degeneration results in normal ciliary ultrastructure through mutations in the RPGR gene. Clinicians must be aware of these genetic causes of PCD resulting in non-diagnostic TEM ciliary ultrastructure and refrain from using TEM of respiratory cilia as a test to rule out PCD.
NASA Astrophysics Data System (ADS)
Hu, Changmin; Yu, Le; Wei, Mei
2018-06-01
A biomimetic bone-like collagen-hydroxyapatite (Col-HA) composite coating was formed on a surface-treated Ti-6Al-4V alloy substrate via simultaneous collagen self-assembly and hydroxyapatite nucleation. The coating process has been carried out by immersing sand-blasted, acid-etched and UV irradiated Ti-6Al-4V alloy in type I collagen-containing modified simulated body fluid (m-SBF). The surface morphology and phase composition of the coating were characterized using various techniques. More importantly, dual-beam FIB/SEMs with either gallium ion source (GFIB) or xenon plasma ion source (PFIB) were used to investigate the cross-sectional features of the biomimetic Col-HA composite coating in great details. As a result, the cross-sectional images and thin transmission electron microscopy (TEM) specimens were successfully obtained from the composite coating with no obvious damages or milling ion implantations. Both the cross-sectional SEM and TEM results have confirmed that the Col-HA coating demonstrates a similar microstructure to that of pure HA coating with homogeneously distributed elements across the whole cross section. Both coatings consist of a uniform, crack-free gradient structure with a dense layer adjacent to the interface between the Ti-6Al-4V substrate and the coating facilitating a strong bonding, while a porous structure at the coating surface aiding cell attachment.
Strain relaxation induced surface morphology of heterogeneous GaInNAs layers grown on GaAs substrate
NASA Astrophysics Data System (ADS)
Gelczuk, Ł.; Jóźwiak, G.; Moczała, M.; Dłużewski, P.; Dąbrowska-Szata, M.; Gotszalk, T. P.
2017-07-01
The partially-relaxed heterogeneous GaInNAs layers grown on GaAs substrate by atmospheric pressure vapor phase epitaxy (AP-MOVPE) were investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The planar-view TEM image shows a regular 2D network of misfit dislocations oriented in two orthogonal 〈1 1 0〉 crystallographic directions at the (0 0 1) layer interface. Moreover, the cross-sectional view TEM image reveals InAs-rich and V-shaped precipitates in the near surface region of the GaInNAs epitaxial layer. The resultant undulating surface morphology, known as a cross-hatch pattern, is formed as observed by AFM. The numerical analysis of the AFM image of the GaInNAs layer surface with the well-defined cross-hatch morphology enabled us to determine a lower bound of actual density of misfit dislocations. However, a close correspondence between the asymmetric distribution of interfacial misfit dislocations and undulating surface morphology is observed.
Czigány, Zs; Neidhardt, J; Brunell, I F; Hultman, L
2003-04-01
The microstructure of CN(x) thin films, deposited by reactive magnetron sputtering, was investigated by transmission electron microscopy (TEM) at 200kV in plan-view and cross-sectional samples. Imaging artefacts arise in high-resolution TEM due to overlap of nm-sized fullerene-like features for specimen thickness above 5nm. The thinnest and apparently artefact-free areas were obtained at the fracture edges of plan-view specimens floated-off from NaCl substrates. Cross-sectional samples were prepared by ion-beam milling at low energy to minimize sample preparation artefacts. The depth of the ion-bombardment-induced surface amorphization was determined by TEM cross sections of ion-milled fullerene-like CN(x) surfaces. The thickness of the damaged surface layer at 5 degrees grazing incidence was 13 and 10nm at 3 and 0.8keV, respectively, which is approximately three times larger than that observed on Si prepared under the same conditions. The shallowest damage depth, observed for 0.25keV, was less than 1nm. Chemical changes due to N loss and graphitization were also observed by X-ray photoelectron spectroscopy. As a consequence of chemical effects, sputtering rates of CN(x) films were similar to that of Si, which enables relatively fast ion-milling procedure compared to carbon compounds. No electron beam damage of fullerene-like CN(x) was observed at 200kV.
Physics of Radiation Exposure and Characterization for Future Electronic Materials
2014-12-01
TEM probe. These visits have included an invited talk at the Annual User’s Meeting at BNL in which the DTRA project was highlighted. • Columbia...at PNNL. • Columbia graduate student Luozhou Li was trained by BNL researchers Dr. Ming Lu on nanofabrication techniques related to the fabrication...Jacob Mower were trained by BNL researcher Kim Kisslinger on diamond membrane fabrication and TEM cross-section sample fabrication. • Columbia
Cladding for transverse-pumped solid-state laser
NASA Technical Reports Server (NTRS)
Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)
1989-01-01
In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.
High resolution TEM and 3D imaging of polymer-based and dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Suh, Youngjoon
Since 1950s, solar energy has been the most attractive energy source as an alternative to fossil fuels including oil and natural gas. However, these types of solar cells have high raw material and manufacturing costs. So, alternative solar cells using low cost materials and manufacturing processes have been actively studied for more than 10 years. The power conversion efficiency of some of the alternative solar cells has been recently improved so much as to be used for real life applications in the near future. However, their relatively short lifetime still remains as a bottleneck in their commercialized use. In this dissertation, we studied cross sections of three types of solar cells using TEM micrographs and TEM related analysis methods; selected area diffraction, energy dispersive spectroscopy, electron tomography, and nanobeam diffraction. A thin Ag layer used for a top metal electrode in an inverted polymer solar cell was broken down into particles. Absorption of water by the PEDOT:PSS layer followed by corrosion of the Ag layer was thought to be the main cause of this phenomenon. The structure and materials of the photoactive layer in hybrid polymer solar cells have an important influence on the performance of the solar cell devices. Three kinds of efforts were made to improve the electrical characteristics of the devices; removal of a dark TiO2 layer at the polymer/TiO2 interface, using bulk heterojunction structures, and coating a fullerene interlayer on the inorganic nanostructure. An optimum concentration of carbon nanotubes (CNTs) combined with Ru could increase the interface area of CNTs, and improve the performances of dye sensitized solar cells. In order to develop plastic solar cell, two different methods of mixing TiO2 particles with either nanoglues or PMMA were tried. Cross-sectional TEM microstructures were examined to come up with optimum processing parameters such as the sintering temperature and the amount of PMMA added into the structure. Cross-sectional TEM and electron tomography have been very useful for developing new kinds of solar cell structures as well as finding various defects in the structures.
Probing the Depths of Space Weathering: A Cross-sectional View of Lunar Rock 76015
NASA Technical Reports Server (NTRS)
Noble, Sarah K.; Keller, L. P.; Stroud, Rhonda
2007-01-01
The term "space weathering" refers to the cumulative effects of several processes operating at the surface of any solar system body not protected by a thick atmosphere. These processes include cosmic and solar ray irradiation, solar wind implantation and sputtering, as well as melting and vaporization due to micrometeorite bombardment. Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied using SEM and TEM. It is a noritic breccia with both "glazed" (smooth glassy) and "classic" (microcratered and pancake-bearing) patina coatings. Previous TEM work on 76015 relied on ultramicrotomy to prepare cross sections of the patina coating, but these sections were limited by the "chatter" and loss of material in these brittle samples. Here we have used a focused ion beam (FIB) instrument to prepare cross sections in which the delicate stratigraphy of the patina coating is beautifully preserved.
NASA Astrophysics Data System (ADS)
Bhattacharyya, D.; Mara, N. A.; Dickerson, P.; Hoagland, R. G.; Misra, A.
2010-05-01
Nanoscale multilayered Al-TiN composites were deposited using the dc magnetron sputtering technique in two different layer thickness ratios, Al : TiN = 1 : 1 and Al : TiN = 9 : 1. The Al layer thickness varied from 2 nm to 450 nm. The hardness of the samples was tested by nanoindentation using a Berkovich tip. Cross-sectional transmission electron microscopy (TEM) was carried out on samples extracted with focused ion beam from below the nanoindents. The results of the hardness tests on the Al-TiN multilayers with two different thickness ratios are presented, together with observations from the cross-sectional TEM studies of the regions underneath the indents. These studies revealed remarkable strength in the multilayers, as well as some very interesting deformation behavior in the TiN layers at extremely small length scales, where the hard TiN layers undergo co-deformation with the Al layers.
NASA Astrophysics Data System (ADS)
Ohno, Yutaka; Yoshida, Hideto; Takeda, Seiji; Liang, Jianbo; Shigekawa, Naoteru
2018-02-01
The intrinsic microstructure of Si/GaAs heterointerfaces fabricated by surface-activated bonding at room temperature is examined by plane-view transmission electron microscopy (TEM) and cross-sectional scanning TEM using damage-free TEM specimens prepared only by mechanochemical etching. The bonded heterointerfaces include an As-deficient crystalline GaAs layer with a thickness of less than 1 nm and an amorphous Si layer with a thickness of approximately 3 nm, introduced by the irradiation of an Ar atom beam for surface activation before bonding. It is speculated that the interface resistance mainly originates from the As-deficient defects in the former layer.
NASA Astrophysics Data System (ADS)
Wang, Shuangyue; Yan, Hongwei; Li, Dengji; Qiao, Liang; Han, Shaobo; Yuan, Xiaodong; Liu, Wei; Xiang, Xia; Zu, Xiaotao
2018-02-01
Dual-layer and tri-layer broadband antireflective (AR) films with excellent transmittance were successfully fabricated using base-/acid-catalyzed mixed sols and propylene oxide (PO) modified silica sols. The sols and films were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), transmission electron microscope (TEM), and scanning transmission electron microscope (STEM). FTIR and TEM results suggest that the PO molecules were covalently bonded to the silica particles and the bridge structure existing in PO modified silica sol is responsible for the low density of the top layer. The density ratio between different layers was measured by cross-sectional STEM, and the results are 1.69:1 and 2.1:1.7:1 from bottom-layer to top-layer for dual-layer and tri-layer films, respectively. The dual-layer film demonstrates good stability with 99.8% at the central wavelength of 351 nm and nearly 99.5% at the central wavelength of 1053 nm in laser system, and for the tri-layer AR film, the maximum transmittance reached nearly 100% at both the central wavelengths of 527 and 1053 nm.
Interstitial Hardening of Stainless Steel for Enhanced Corrosion Resistance for Naval Applications
2017-03-01
CASE WESTERN ]\\!:SERVE U N I V E R S I T Y EST. 1826 March 1, 2017 Defense Technical Information Center 8725 John J Kingman Road , Sute 0944...electron microscopy (TEM) ~o ·determ: t;<: the origin of the dramatic surface roughness effect just described. A cross-sectional TEM image obtained from...CASE WESTERN RESERVE UNIVERSITY REPORT NUMBER 10900 EUCLID AVE. CLEVELAND, OHIO 44106-7015 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10
Mironov, Aleksandr; Cootes, Timothy F.; Holmes, David F.; Kadler, Karl E.
2017-01-01
Collagen fibrils are the major tensile element in vertebrate tissues where they occur as ordered bundles in the extracellular matrix. Abnormal fibril assembly and organization results in scarring, fibrosis, poor wound healing and connective tissue diseases. Transmission electron microscopy (TEM) is used to assess formation of the fibrils, predominantly by measuring fibril diameter. Here we describe an enhanced protocol for measuring fibril diameter as well as fibril-volume-fraction, mean fibril length, fibril cross-sectional shape, and fibril 3D organization that are also major determinants of tissue function. Serial section TEM (ssTEM) has been used to visualize fibril 3D-organization in vivo. However, serial block face-scanning electron microscopy (SBF-SEM) has emerged as a time-efficient alternative to ssTEM. The protocol described below is suitable for preparing tissues for TEM and SBF-SEM (by 3View®). We demonstrate the power of 3View® for studying collagen fibril organization in vivo and show how to find and track individual fibrils. Time scale: ~8 days from isolating the tissue to having a 3D image stack. PMID:23807286
Scalable pumping approach for extracting the maximum TEM(00) solar laser power.
Liang, Dawei; Almeida, Joana; Vistas, Cláudia R
2014-10-20
A scalable TEM(00) solar laser pumping approach is composed of four pairs of first-stage Fresnel lens-folding mirror collectors, four fused-silica secondary concentrators with light guides of rectangular cross-section for radiation homogenization, four hollow two-dimensional compound parabolic concentrators for further concentration of uniform radiations from the light guides to a 3 mm diameter, 76 mm length Nd:YAG rod within four V-shaped pumping cavities. An asymmetric resonator ensures an efficient large-mode matching between pump light and oscillating laser light. Laser power of 59.1 W TEM(00) is calculated by ZEMAX and LASCAD numerical analysis, revealing 20 times improvement in brightness figure of merit.
The Morphology of Silver Layers on SU8 polymers prepared by Electroless Deposition
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Yuan, Biao; Heinrich, Helge; Grabill, Chris; Williams, Henry; Kuebler, Stephen; Bhattacharya, Aniket
2010-03-01
Silver was deposited onto the functionalized surface of polymeric SU-8 where gold nanoparticles (Au-NPs) act as nucleation sites using electroless metallization chemistry. Here we report on the evolution of the nanoscale morphology of deposited Ag studied by Transmission Electron Microscopy (TEM). In TEM of sample cross sections correlations between the original gold and the silver nanoparticles were obtained while plan-view TEM results showed the distribution of nanoparticles on the surface. Scanning TEM with a high-angle annular dark field detector was used to obtain atomic number contrast. The morphology of the deposited Ag was controlled through the presence and absence of gum Arabic. The thickness and height fluctuations of the Ag layer were determined as a function of time and a statistical analysis of the growth process was conducted for the initial deposition periods.
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket
2011-03-01
Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.
NASA Astrophysics Data System (ADS)
Bin, Liu; Zhengyu, Liu; Shucai, Li; Lichao, Nie; Maoxin, Su; Huaifeng, Sun; Kerui, Fan; Xinxin, Zhang; Yonghao, Pang
2017-09-01
This paper describes the application of a comprehensive surface geophysical investigation of underground karst systems ahead of the tunnel face in the Xiaoheyan section in the main line of the water supply project from Songhua River, located in Jilin, China. To make an accurate investigation, Surface Electrical Resistivity Tomography (S-ERT), Transient Electromagnetic Method (TEM), Geological Drilling (Geo-D) and Three-dimensional Cross-hole Electrical Resistivity Tomography (3D cross-hole ERT) were applied to gain a comprehensive interpretation. To begin with, S-ERT and TEM are adopted to detect and delineate the underground karst zone. Based on the detection results, surface and in-tunnel Geo-D are placed in major areas with more specific and accurate information gained. After that, survey lines of 3D cross-hole ERT are used to conduct detailed exploration towards underground karst system. In the comprehensive investigation, it is the major question to make the best of prior information so as to promote the quality of detection. The paper has put forward strategies to make the full use of effective information in data processing and the main ideas of those strategies include: (1) Take the resistivity distribution of the subsurface stratum gained by S-ERT inversion as the initial model of TEM inversion; (2) Arrange borehole positions with the results of S-ERT and TEM. After that, gain more accurate information about resistivity of subsurface stratum using those boreholes located; (3) Through the comprehensive analysis of the information about S-ERT, TEM and Geo-D, set the initial model of 3D cross-hole resistivity inversion and meanwhile, gain the variation range of stratum resistivity. At last, a 3D cross-hole resistivity inversion based on the incorporated initial model and inequality constraint is conducted. Constrained inversion and joint interpretation are realized by the effective use of prior information in comprehensive investigation, helping to suppress the non-uniqueness problem of inversion so as to raise its reliability. In this way, a 3D detailed model of underground karst system which is 30 m ahead of tunnel face is finally formed. At the end of the paper, there is a geological sketch of the revealed karst caves, which illustrates the effectiveness of the presented strategy. To sum up, in the comprehensive investigation of underground karst caves, the integrated use of prior information can help to yield more accurate and detailed results.
In-situ micro bend testing of SiC and the effects of Ga+ ion damage
NASA Astrophysics Data System (ADS)
Robertson, S.; Doak, SS; Zhou, Z.; Wu, H.
2017-09-01
The Young’s modulus of 6H single crystal silicon carbide (SiC) was tested with micro cantilevers that had a range of cross-sectional dimensions with surfaces cleaned under different accelerating voltages of Ga+ beam. A clear size effect is seen with Young’s modulus decreasing as the cross-sectional area reduces. One of the possible reasons for such size effect is the Ga+ induced damage on all surfaces of the cantilever. Transmission electron microscopy (TEM) was used to analyse the degree of damage, and the measurements of damage is compared to predictions by SRIM irradiation simulation.
Suzuki, Michio; Kameda, Jun; Sasaki, Takenori; Saruwatari, Kazuko; Nagasawa, Hiromichi; Kogure, Toshihiro
2010-08-01
The microstructure and its crystallographic aspect of the shell of a limpet, Lottiakogamogai, have been investigated, as the first step to clarify the mechanism of shell formation in limpet. The shell consists of five distinct layers stacked along the shell thickness direction. Transmission electron microscopy (TEM) with the focused ion beam (FIB) sample preparation technique was primarily adopted, as well as scanning electron microscopy (SEM) with electron back-scattered diffraction (EBSD). The five layers were termed as M+3, M+2, M+1, M, M-1 from the outside to the inside in previous works, where M means myostracum. The outmost M+3 layer consists of calcite with a "mosaic" structure; granular submicron sub-grains with small-angle grain boundaries often accompanying dislocation arrays. M+2 layer consists of flat prismatic aragonite crystals with a leaf-like cross section, stacked obliquely to the shell surface. It looks that the prismatic crystals are surrounded by organic sheets, forming a compartment structure. M+1 and M-1 layers adopt a crossed lamellar structure consisting of aragonite flat prisms with rectangular cross section. M layer has a prismatic structure of aragonite perpendicular to the shell surface and with irregular shaped cross sections. Distinct organic sheets were not observed between the crystals in M+1, M and M-1 layers. The {110} twins are common in all aragonite M+2, M+1, M and M-1 layers, with the twin boundaries parallel to the prisms. These results for the microstructure of each layer should be considered in the discussion of the formation mechanism of the limpet shell structure. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rosa, Barbara L. T.; Marçal, Lucas A. B.; Ribeiro Andrade, Rodrigo; Dornellas Pinto, Luciana; Rodrigues, Wagner N.; Lustoza Souza, Patrícia; Pamplona Pires, Mauricio; Wagner Nunes, Ricardo; Malachias, Angelo
2017-07-01
In this work we attempt to directly observe anisotropic partial relaxation of epitaxial InAs islands using transmission electron microscopy (TEM) and synchrotron x-ray diffraction on a 15 nm thick InAs:GaAs nanomembrane. We show that under such conditions TEM provides improved real-space statistics, allowing the observation of partial relaxation processes that were not previously detected by other techniques or by usual TEM cross section images. Besides the fully coherent and fully relaxed islands that are known to exist above previously established critical thickness, we prove the existence of partially relaxed islands, where incomplete 60° half-loop misfit dislocations lead to a lattice relaxation along one of the <110> directions, keeping a strained lattice in the perpendicular direction. Although individual defects cannot be directly observed, their implications to the resulting island registry are identified and discussed within the frame of half-loops propagations.
Chapter 14: Electron Microscopy on Thin Films for Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie
2016-07-22
This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less
Rosa, Barbara L T; Marçal, Lucas A B; Andrade, Rodrigo Ribeiro; Pinto, Luciana Dornellas; Rodrigues, Wagner N; Souza, Patrícia Lustoza; Pires, Mauricio Pamplona; Nunes, Ricardo Wagner; Malachias, Angelo
2017-07-28
In this work we attempt to directly observe anisotropic partial relaxation of epitaxial InAs islands using transmission electron microscopy (TEM) and synchrotron x-ray diffraction on a 15 nm thick InAs:GaAs nanomembrane. We show that under such conditions TEM provides improved real-space statistics, allowing the observation of partial relaxation processes that were not previously detected by other techniques or by usual TEM cross section images. Besides the fully coherent and fully relaxed islands that are known to exist above previously established critical thickness, we prove the existence of partially relaxed islands, where incomplete 60° half-loop misfit dislocations lead to a lattice relaxation along one of the 〈110〉 directions, keeping a strained lattice in the perpendicular direction. Although individual defects cannot be directly observed, their implications to the resulting island registry are identified and discussed within the frame of half-loops propagations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teichmann, Katharina; Marioara, Calin D.; Andersen, Sigmund J.
The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this wasmore » further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.« less
Near-ultraviolet micro-Raman study of diamond grown on GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazari, M., E-mail: m-n79@txstate.edu; Hancock, B. L.; Anderson, J.
2016-01-18
Ultraviolet (UV) micro-Raman measurements are reported of diamond grown on GaN using chemical vapor deposition. UV excitation permits simultaneous investigation of the diamond (D) and disordered carbon (DC) comprising the polycrystalline layer. From line scans of a cross-section along the diamond growth direction, the DC component of the diamond layer is found to be highest near the GaN-on-diamond interface and diminish with characteristic length scale of ∼3.5 μm. Transmission electron microscopy (TEM) of the diamond near the interface confirms the presence of DC. Combined micro-Raman and TEM are used to develop an optical method for estimating the DC volume fraction.
Three dimensional profile measurement using multi-channel detector MVM-SEM
NASA Astrophysics Data System (ADS)
Yoshikawa, Makoto; Harada, Sumito; Ito, Keisuke; Murakawa, Tsutomu; Shida, Soichi; Matsumoto, Jun; Nakamura, Takayuki
2014-07-01
In next generation lithography (NGL) for the 1x nm node and beyond, the three dimensional (3D) shape measurements such as side wall angle (SWA) and height of feature on photomask become more critical for the process control. Until today, AFM (Atomic Force Microscope), X-SEM (cross-section Scanning Electron Microscope) and TEM (Transmission Electron Microscope) tools are normally used for 3D measurements, however, these techniques require time-consuming preparation and observation. And both X-SEM and TEM are destructive measurement techniques. This paper presents a technology for quick and non-destructive 3D shape analysis using multi-channel detector MVM-SEM (Multi Vision Metrology SEM), and also reports its accuracy and precision.
Preparation and characterization of gold nanodumbbells
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; Chiu, Pin-Hsiang; Wang, Yeong-Her; Chen, Wen-Ray; Meen, Teen-Hang; Yang, Cheng-Fu
2006-11-01
Well-dispersed gold nanodumbbells (GNDs) in an aqueous phase have been successfully fabricated by an electrochemical method using a micelle template formed by two surfactants with the addition of acetone solvent during electrolysis, the primary surfactant being cetyltrimethylammonium bromide (CTABr) and the cosurfactant being tetradecyltrimethylammonium bromide (TTABr). The role of acetone solvent is found to change the gold nanoparticles' shape from a rod to a dumbbell. The shape of the GNDs is fatter at the two ends and thinner in the middle section. The GNDs have been determined to be pure gold with a single-crystalline face-centred cubic (FCC) structure from selected area electron diffraction (SAED) patterns. Morphology features of GNDs in cross-section have also been investigated by dark field (DF) transmission electron microscopy (TEM) images. These GNDs exhibit octagonal structure in cross-section and an aspect ratio of around 3.
NASA Astrophysics Data System (ADS)
Abbas, K.; Alaie, S.; Ghasemi Baboly, M.; Elahi, M. M. M.; Anjum, D. H.; Chaieb, S.; Leseman, Z. C.
2016-01-01
The mechanical behavior of polycrystalline Pt thin films is reported for thicknesses of 75 nm, 100 nm, 250 nm, and 400 nm. These thicknesses correspond to transitions between nanocrystalline grain morphology types as found in TEM studies. Thinner samples display a brittle behavior, but as thickness increases the grain morphology evolves, leading to a ductile behavior. During evolution of the morphology, dramatic differences in elastic moduli (105-160 GPa) and strengths (560-1700 MPa) are recorded and explained by the variable morphology. This work suggests that in addition to the in-plane grain size of thin films, the transitions in cross-sectional morphologies of the Pt films significantly affect their mechanical behavior.
Atomic Scale Dynamics of Contact Formation in the Cross-Section of InGaAs Nanowire Channels
Chen, Renjie; Jungjohann, Katherine L.; Mook, William M.; ...
2017-03-23
In the alloyed and compound contacts between metal and semiconductor transistor channels we see that they enable self-aligned gate processes which play a significant role in transistor scaling. At nanoscale dimensions and for nanowire channels, prior experiments focused on reactions along the channel length, but the early stage of reaction in their cross sections remains unknown. We report on the dynamics of the solid-state reaction between metal (Ni) and semiconductor (In 0.53Ga 0.47As), along the cross-section of nanowires that are 15 nm in width. Unlike planar structures where crystalline nickelide readily forms at conventional, low alloying temperatures, nanowires exhibit amore » solid-state amorphization step that can undergo a crystal regrowth step at elevated temperatures. Here, we capture the layer-by-layer reaction mechanism and growth rate anisotropy using in situ transmission electron microscopy (TEM). Our kinetic model depicts this new, in-plane contact formation which could pave the way for engineered nanoscale transistors.« less
Vibrational Spectroscopic Studies on the Formation of Ion-exchangeable Titania Nanotubes
NASA Astrophysics Data System (ADS)
Hodos, Mária; Haspel, Henrik; Horváth, Endre; Kukovecz, Ákos; Kónya, Zoltán; Kiricsi, Imre
2005-09-01
Ion-exchangeable titanium-oxide nanotubes have commanded considerable interest from the materials science community in the past five years. Synthesized under hydrothermal conditions from TiO2, typical nanotubes are 150-200 nm long and 8-20 nm wide. High resolution TEM images revealed that unlike multiwall carbon nanotubes which are made of coaxial single-wall nanotubes, the titania tubes possess a spiral cross-section. An interesting feature of the titania tubes is their considerable ion-exchange capacity which could be utilized e.g. for enhancing their photocatalytic activity by doping the titania tubes with CdS nanoparticles. In this contribution we present a comprehensive TEM, FT-Raman and FT-farIR characterization study of the formation process.
NASA Technical Reports Server (NTRS)
Rich, D. H.; George, T.; Pike, W. T.; Maserjian, J.; Grunthaner, F. J.; Larsson, A.
1992-01-01
TEM and cathodoluminescence (CL) imaging and spectroscopy have been performed on In(0.2)Ga(0.8)As/GaAs MQW structures. Cross-sectional and plan-view TEM demonstrates that misfit dislocations (MDs) are confined to the MQW-to-GaAs interfacial regions. The observed large variation in the exciton luminescence intensity is interpreted as due to the presence of nonradiative recombination centers spread homogeneously in the MQW region away from interface MDs. These nonradiative recombination centers compete with exciton and midgap radiative centers at wavelengths of 950 nm and 1000-1600 nm, respectively, resulting in spatiallty correlated dark line defects for all CL imaging wavelengths.
Microstructures and mechanical properties of Ti5553 alloy processed by high-pressure torsion
NASA Astrophysics Data System (ADS)
Jiang, B. Z.; Emura, S.; Tsuchiya, K.
2014-08-01
In the present research, the effects of high-pressure torsion (HPT) processing on the microstructure and mechanical properties of Ti-5Al-5Mo-5V-3Cr (Ti5553) alloy were studied. HPT processing produced a white etching layer (WEL) in the middle section of the cross-section and numerous shear bands in the surface region of the cross-section. And the thickness of the WEL increased with increasing the HPT revolutions. TEM observation of the WEL revealed an ultrafine-grained structure with high degree of lattice distortions. The mechanical properties measurements showed that the hardness and ultimate tensile strength increased by HPT processing, accompanied with a decrease in the elongation to failure. It is considered that the mechanical properties of HPT processed Ti5553 alloy are mostly dominated by the shear banded region and the WEL where have the finest grain size and high density of dislocations.
Nanophase Iron Globules in Lunar Soil
NASA Technical Reports Server (NTRS)
James, C. L.; Letsinger, S. L.; Wentworth, S. J.; McKay, D. S.; Basu, A.
2003-01-01
Micrometeoritic impacts on lunar soils produce melt and vapor. A patina of condensed vapor is deposited on lunar grains, the melt forms agglutinitic glass. In lunar soils, agglutinitic glass and rinds of grains host submicron-sized globules of pure Fe0 (Fe-rich globules larger than 1 micron usually contain other elements such as Ni, P, and S). Observation and measurement of such small size requires either back scattered electron (BSE) imaging with a high-resolution SEM or transmitted electron imaging with a TEM. The two techniques impose different limitations on the size-range of measurements. Resolution of BSE imaging of polished thin sections or grain mounts of lunar soils is at best around 4-5nm (JEOL 6340F field-emission (FE)-SEM at JSC). Therefore, Fe0 globules below 10nm in cross-sectional diameter are not truly measured. The upper limit of a millimeter or so is not a hindrance. In fact, it is an advantage because whole grains can be observed and mapped at varying magnifications. Angstrom-scale resolution of TEM images is more than sufficient to observe and measure the smallest of Fe0 globules that are about 1nm in cross-section. Microtoming edges of lunar grains; however, puts an upper size limitation of 50nm, at best, on the wafer, which more or less limits measuring Fe0 globules up to 30nm or so. Clearly, SEM and TEM techniques complement each other in obtaining the complete range of size distribution of Fe0 globules in lunar soils. Below we describe, in brief, our method of determining the size distribution of Fe0 globules in agglutinitic glass using BSE-SEM imaging and size measurement. Although our work is incomplete, we also include a table of results obtained so far, which understandably would be refined as we collect more data.
Atom-counting in High Resolution Electron Microscopy:TEM or STEM - That's the question.
Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S
2017-03-01
In this work, a recently developed quantitative approach based on the principles of detection theory is used in order to determine the possibilities and limitations of High Resolution Scanning Transmission Electron Microscopy (HR STEM) and HR TEM for atom-counting. So far, HR STEM has been shown to be an appropriate imaging mode to count the number of atoms in a projected atomic column. Recently, it has been demonstrated that HR TEM, when using negative spherical aberration imaging, is suitable for atom-counting as well. The capabilities of both imaging techniques are investigated and compared using the probability of error as a criterion. It is shown that for the same incoming electron dose, HR STEM outperforms HR TEM under common practice standards, i.e. when the decision is based on the probability function of the peak intensities in HR TEM and of the scattering cross-sections in HR STEM. If the atom-counting decision is based on the joint probability function of the image pixel values, the dependence of all image pixel intensities as a function of thickness should be known accurately. Under this assumption, the probability of error may decrease significantly for atom-counting in HR TEM and may, in theory, become lower as compared to HR STEM under the predicted optimal experimental settings. However, the commonly used standard for atom-counting in HR STEM leads to a high performance and has been shown to work in practice. Copyright © 2017 Elsevier B.V. All rights reserved.
Castejon, O J; Castejon, H V; Diaz, M; Castellano, A
2001-10-01
Cortical biopsies of 11 patients with traumatic brain oedema were consecutively studied by light microscopy (LM) using thick plastic sections, scanning-transmission electron microscopy ((S)TEM) using semithin plastic sections and transmission electron microscopy (TEM) using ultrathin sections. Samples were glutaraldehyde-osmium fixed and embedded in Araldite or Epon. Thick sections were stained with toluidine-blue for light microscopy. Semithin sections were examined unstained and uncoated for (S)TEM. Ultrathin sections were stained with uranyl and lead. Perivascular haemorrhages and perivascular extravasation of proteinaceous oedema fluid were observed in both moderate and severe oedema. Ischaemic pyramidal and non-pyramidal nerve cells appeared shrunken, electron dense and with enlargement of intracytoplasmic membrane compartment. Notably swollen astrocytes were observed in all samples examined. Glycogen-rich and glycogen-depleted astrocytes were identified in anoxic-ischaemic regions. Dark and hydropic satellite, interfascicular and perivascular oligodendrocytes were also found. The status spongiosus of severely oedematous brain parenchyma observed by LM and (S)TEM was correlated with the enlarged extracellular space and disrupted neuropil observed by TEM. The (S)TEM is recommended as a suitable technique for studying pathological processes in the central nervous system and as an informative adjunct to LM and TEM.
Elevated-temperature Deformation Mechanisms in Ta2C: An Experimental Study
2013-01-01
result, tan- talum carbides have found uses in a variety of wear- resis - tant applications including machine tooling, coatings for injection molding...HIP billet. In addition , the near surface of the bil- let was mechanically ground to remove any possible inter- diffusion reaction zone between the...mounted in a conductive epoxy for handling. TEM foils were prepared by ultrasonically drilling 3 mm discs from the cross-sections using a Fischione
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.
1986-01-01
Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.
An Investigation of the Electrical Short Circuit Characteristics of Tin Whiskers
NASA Technical Reports Server (NTRS)
Courey, Karim J.
2008-01-01
In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This model can be used to improve existing risk simulation models FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.
Mg2Sn heterostructures on Si(111) substrate
NASA Astrophysics Data System (ADS)
Dózsa, L.; Galkin, N. G.; Pécz, B.; Osváth, Z.; Zolnai, Zs.; Németh, A.; Galkin, K. N.; Chernev, I. M.; Dotsenko, S. A.
2017-05-01
Thin un-doped and Al doped polycrystalline Mg-stannide films consisting mainly of Mg2Sn semiconductor phase have been grown by deposition of Sn-Mg multilayers on Si(111) p-type wafers at room temperature and annealing at 150 °C. Rutherford backscattering measurement spectroscopy (RBS) were used to determine the amount of Mg and Sn in the structures. Raman spectroscopy has shown the layers contain Mg2Sn phase. Cross sectional transmission electron microscopy (XTEM) measurements have identified Mg2Sn nanocrystallites in hexagonal and cubic phases without epitaxial orientation with respect to the Si(111) substrate. Significant oxygen concentration was found in the layer both by RBS and TEM. The electrical measurements have shown laterally homogeneous conductivity in the grown layer. The undoped Mg2Sn layers show increasing resistivity with increasing temperature indicating the scattering process dominates the resistance of the layers, i.e. large concentration of point defects was generated in the layer during the growth process. The Al doped layer shows increase of the resistance at low temperature caused by freeze out of free carriers in the Al doped Mg2Sn layer. The measurements indicate the necessity of protective layer grown over the Mg2Sn layers, and a short time delay between sample preparation and cross sectionalTEM analysis, since the unprotected layer is degraded by the interaction with the ambient.
NASA Technical Reports Server (NTRS)
Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo
2012-01-01
The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.
NASA Astrophysics Data System (ADS)
Shaaban, H.; El-Qady, G.; Al-Sayed, E.; Ghazala, H.; Taha, A. I.
2016-12-01
The Nile Delta is one of the oldest known ancient delta, largest and most important depositional complex in the Mediterranean sedimentary basin. Furthermore, it is a unique site in Egypt that is suitable for accumulation and preservation of the Quaternary sediments. In this work we applied time-domain electromagnetic (TEM) method to investigate the Quaternary sediments sequence as well as detecting the groundwater aquifer in the area of study. A suite of 232 TEM sounding at 43 stations were carried out using a ;SIROTEM MK-3; time-domain electromagnetic system. A simple coincident loop configuration, in which the same loop transmits and receives signals, was employed with loop side length of 25 m. The 1-D modeling technique was applied to estimate the depth and the apparent resistivity of the interpreted geoelectrical data. Based on the interpretation of the acquired geophysical data, four geoelectric cross-sections were constructed. These sections show that the Upper Quaternary sequence consists of three geoelectric layers. The Holocene Nile mud is separated into two layers: the agricultural root zone (Layer 1) and thick water saturated mud (Layer 2). The Upper Pleistocene sandy aquifer (Layer 3) is very complicated non-linear boundary. This aquifer is the most important unit since it is considered as the main water bearing unit in the study area.
NASA Astrophysics Data System (ADS)
Garvie, Laurence A. J.; Baumgardner, Grant; Buseck, Peter R.
2008-05-01
Carbonaceous nanoglobules are ubiquitous in carbonaceous chondrite (CC) meteorites. The Tagish Lake (C2) meteorite is particularly intriguing in containing an abundance of nanoglobules, with a wider range of forms and sizes than encountered in other CC meteorites. Previous studies by transmission electron microscopy (TEM) have provided a wealth of information on chemistry and structure. In this study low voltage scanning electron microscopy (SEM) was used to characterize the globule forms and external structures. The internal structure of the globules was investigated after sectioning by focused ion beam (FIB) milling. The FIB-SEM analysis shows that the globules range from solid to hollow. Some hollow globules show a central open core, with adjoining smaller cores. The FIB with an SEM is a valuable tool for the analysis of extraterrestrial materials, even of sub-micron-sized "soft" carbonaceous particles. The rapid site-specific cross-sectioning capabilities of the FIB allow the preservation of the internal morphology of the nanoglobules, with minimal damage or alteration of the unsectioned areas.
NASA Technical Reports Server (NTRS)
Courey, Karim; Wright, Clara; Asfour, Shihab; Onar, Arzu; Bayliss, Jon; Ludwig, Larry
2009-01-01
In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This empirical model can be used to improve existing risk simulation models. FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.
NASA Astrophysics Data System (ADS)
Kinoshita, T.; Sato, K.
2016-12-01
The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.
A High-Performance Portable Transient Electro-Magnetic Sensor for Unexploded Ordnance Detection.
Wang, Haofeng; Chen, Shudong; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun
2017-11-17
Portable transient electromagnetic (TEM) systems can be well adapted to various terrains, including mountainous, woodland, and other complex terrains. They are widely used for the detection of unexploded ordnance (UXO). As the core component of the portable TEM system, the sensor is constructed with a transmitting coil and a receiving coil. Based on the primary field of the transmitting coil and internal noise of the receiving coil, the design and testing of such a sensor is described in detail. Results indicate that the primary field of the transmitting coil depends on the diameter, mass, and power of the coil. A higher mass-power product and a larger diameter causes a stronger primary field. Reducing the number of turns and increasing the clamp voltage reduces the switch-off time of the transmitting current effectively. Increasing the cross-section of the wire reduces the power consumption, but greatly increases the coil's weight. The study of the receiving coil shows that the internal noise of the sensor is dominated by the thermal noise of the damping resistor. Reducing the bandwidth of the system and increasing the size of the coil reduces the internal noise effectively. The cross-sectional area and the distance between the sections of the coil have little effect on the internal noise. A less damped state can effectively reduce signal distortion. Finally, a portable TEM sensor with both a transmitting coil (constructed with a diameter, number of turns, and transmitting current of 0.5 m, 30, and 5 A, respectively) and a receiving coil (constructed with a length and resonant frequency of 5.6 cm and 50 kHz, respectively) was built. The agreement between experimental and calculated results confirms the theory used in the sensor design. The responses of an 82 mm mortar shell at different distances were measured and inverted by the differential evolution (DE) algorithm to verify system performance. Results show that the sensor designed in this study can not only detect the 82 mm mortar shell within 1.2 m effectively but also locate the target precisely.
An Investigation of the Electrical Short Circuit Characteristics of Tin Whiskers
NASA Technical Reports Server (NTRS)
Courey, Karim J.
2008-01-01
Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. Also, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross-sectioned and studied using a focused ion beam (FIB). The rare polycrystalline structure seen in the FIB cross section was confirmed using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size to determine that the tin plating on the card guides had a bright finish.
Nanoscale insights on one- and two-dimensional material structures
NASA Astrophysics Data System (ADS)
Floresca, Herman Carlo
The race for smaller, faster and more efficient devices has led researchers to explore the possibilities of utilizing nanostructures for scaling. These one-dimensional and two-dimensional materials have properties that are attractive for this purpose but are still not well controlled. Control comes with a complete understanding of the materials' electrical, thermal, optical and structural characteristics but is difficult to obtain due to their small scale. This work is intended to help researchers overcome the difficulty in studying nanostructures by providing techniques for analysis and insights of nanostructures that have not been previously available. Two nanostructures were studied: silicon nanowires and graphene. The nanowires were prepared for cross-section transmission electron microscopy (TEM) to discover the effects that controlled oxidation has on the dimensions and shape of the nanowires. Since cross-section TEM is not able to provide information about surface structure, a method for manipulating the wires with orientation control was developed. With this ability, all three orthogonal views of the nanowire were compiled for a comprehensive study on its structure in terms of shape and surface roughness. Graphene was used for a two-dimensional analytical technique that took advantage of customized computer programs for data acquisition, measurement and display. With the information provided, distinctions between grain boundary types in polycrystalline graphene were made and supported by statistical information from the software's output. It was also applied to a growth series of graphene samples in conjunction with scanning electron microscopy (SEM) images and electron backscatter diffraction (EBSD) maps. The results help point to origins of graphene's polycrystalline nature. This dissertation concludes with a thought towards the future by highlighting a method that can help analyze nanostructures, which may become incorporated into the structures of large devices. The fold-out method is a TEM sample preparation technique utilizing a focused ion beam (FIB) for site specific thinning across a large sample area. Its process is demonstrated along with advantages over conventional methods.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Noble, S. K.; Keller, L. P.
2014-01-01
Space weathering on the Moon and other airless bodies modifies the surfaces of regolith grains as well as the space-exposed surfaces of larger rocks and boulders. As space weathering witness plates, rocks and boulders are distinguished from regolith grains based on their ability to persist as physically intact substrates over longer time scales before being disaggregated by impact processes. Because lunar surfaces, including exposed rocks, quickly develop an optically thick layer of patina, it is important to understand the compositional relationship between patinas and their underlying rock substrates, particularly to support remote-sensing of rocky lunar terrains. Based on analytical TEM techniques, supported by focused ion beam (FIB) cross-sectioning, we have begun to systematize the multi-layer microstructural complexity of patinas on rock samples with a range of space exposure histories. Our on-going work has particularly focused on lunar rock 76015, both because it has a long (approx. 22 my) exposure history, and because its surface was exposed to patina development approximately 1 m off the regolith surface on a boulder in the Apollo 17 Station 6 boulder field. Potential sources for the 76015 patina therefore include impact-melted and vaporized material derived from the local rock substrate, as well as from the mix of large boulders and regolith in the Station 6 area. While similar, there are differences in the mineralogy and chemistry of the rocks and regolith at Station 6. We were interested to see if these, or other sources, could be distinguished in the average composition, as well as the compositional nanostratigraphy of the 76015 patina. To date we have acquired a total of 9 TEM FIB cross-sections from the 76015 patina, giving us reasonable confidence of being able to arrive at an integrated average for the patina major element composition based on analytical TEM methods.
Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro
2008-02-01
Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.
NASA Technical Reports Server (NTRS)
Leroux, Hugues; Stroud, Rhonda M.; Dai, Zu Rong; Graham, Giles A.; Troadec, David; Bradley, John P.; Teslich, Nick; Borg, Janet; Kearsley, Anton T.; Horz, Friedrich
2008-01-01
We report Transmission Electron Microscopy (TEM) investigations of micro-craters that originated from hypervelocity impacts of comet 81P/Wild 2 dust particles on the aluminium foil of the Stardust collector. The craters were selected by Scanning Electron Microscopy (SEM) and then prepared by Focused Ion Beam (FIB) milling techniques in order to provide electron transparent cross-sections for TEM studies. The crater residues contain both amorphous and crystalline materials in varying proportions and compositions. The amorphous component is interpreted as resulting from shock melting during the impact and the crystalline phases as relict minerals. The latter show evidence for shock metamorphism. Based on the residue morphology and the compositional variation, the impacting particles are inferred to have been dominated by mixtures of submicron olivine, pyroxene and Fe-sulfide grains, in agreement with prior results of relatively coarse-grained mineral assemblages in the aerogel collector.
NASA Astrophysics Data System (ADS)
Tsuji, H.; Arai, N.; Ueno, K.; Matsumoto, T.; Gotoh, N.; Adachi, K.; Kotaki, H.; Gotoh, Y.; Ishikawa, J.
2006-01-01
Mono-layered gold nanoparticles just below the surface of silicon oxide film have been formed by a gold negative-ion implantation at a very low-energy, where the deviation of implanted atoms was sufficiently narrow comparing to the size of nanoparticles. Gold negative ions were implanted into SiO2 thin films on Si substrate at energies of 35, 15 and 1 keV. The samples were annealed in Ar flow for 1 h at 900 or 1000 °C. Cross-sectional TEM observation for the implantation at 1 keV showed existence of Au nanoparticles aligned in the same depth of 5 nm from the surface. The nanoparticles had almost same diameter of 7 nm. The nanoparticles were found to be gold single crystal from a high-resolution TEM image.
NASA Astrophysics Data System (ADS)
Sharp, J.; Castillo Muller, I.; Mandal, P.; Abbas, A.; West, G.; Rainforth, W. M.; Ehiasarian, A.; Hovsepian, P.
2015-10-01
A FIB lift-out sample was made from a wear-resistant carbon coating deposited by high power impulse magnetron sputtering (HIPIMS) with Mo and W. TEM analysis found columnar grains extending the whole ∼1800 nm thick film. Within the grains, the carbon was found to be organised into clusters showing some onion-like structure, with amorphous material between them; energy dispersive X-ray spectroscopy (EDS) found these clusters to be Mo- and W-rich in a later, thinner sample of the same material. Electron energy-loss spectroscopy (EELS) showed no difference in C-K edge, implying the bonding type to be the same in cluster and matrix. These clusters were arranged into stripes parallel to the film plane, of spacing 7-8 nm; there was a modulation in spacing between clusters within these stripes that produced a second, coarser set of striations of spacing ∼37 nm.
Measurement of fatigue accumulation in high-strength steels by microstructural examination
NASA Astrophysics Data System (ADS)
Nakagawa, Y. G.; Yoshizawa, H.; Lapides, M. E.
1990-07-01
Fatigue test bars fabricated from an SA508 class 3 low-carbon steel plate were cyclically deformed at 300 °C (constant low-cycle fatigue, total strain range Δɛ = 0.78 pct and 0.48 pct) to crack initiation (100 pct cumulative damage, CD) and to the factors 75, 50, and 25 pct CD. The test bars were cut perpendicular to the stress axis at the center of the gage length. The X-ray diffraction line-broadening (XRD) was performed on the cross sections created by the cuts. Thin foils (˜0.1-μm thick) were prepared from each cross section and used for the transmission electron microscope (TEM) and selected area diffraction (SAD) study. The half-value line breadth change measured by the XRD increased with the CD increase up to 50 pct, beyond which a significant reduction was observed for the 75 and 100 pct CD sample regardless of the incident X-ray beam angle. By the TEM, the undamaged material (0 pct CD) was characterized by high-angle boundaries, small carbide precipitates, and dislocation cell networks in grains. These characteristics did not show any appreciable changes in all of the samples with fatigue damage of the respective levels. Micro-orientation changes of the dislocation cells studied by the SAD of the foils and a statistical data analysis clearly demonstrated that the mean orientation difference in the cells and its standard deviation increased gradually as the CD increased.
NASA Astrophysics Data System (ADS)
Levin, Barnaby
The transmission electron microscope (TEM) is a powerful tool for characterizing the nanoscale and atomic structure of materials, offering insights into their fundamental physical properties. However, TEM characterization requires very thin samples of material to be placed in a high vacuum environment, and exposed to electron radiation. The high vacuum will induce some materials to evaporate or sublimate, preventing them from being accurately characterized, radiation may damage the sample, causing mass loss, or altering its structure, and structurally delicate samples may collapse and break apart when they are thinned for TEM imaging. This dissertation discusses three different projects in which each of these three difficulties pose challenges to TEM characterization of samples. Firstly, we outline strategies for minimizing radiation damage when characterizing materials in TEM at atomic resolution. We consider types of radiation damage, such as vacancy enhanced displacement, that are not included in some previous discussions of beam damage, and we consider how to minimize damage when using new imaging techniques such as annular bright-field scanning TEM. Our methodology emphasizes the general principle that variation of both signal strength and damage cross section must be considered when choosing an experimental electron beam voltage to minimize damage. Secondly, we consider samples containing sulfur, which is prone to sublimation in high vacuum. TEM is routinely used to attempt to characterize the sulfur distribution in lithium-sulfur battery electrodes, but sublimation artifacts can give misleading results. We demonstrate that sulfur sublimation can be suppressed by using cryogenic TEM to characterize sulfur at very low temperatures, or by using the recently developed airSEM to characterize sulfur without exposing it to vacuum. Finally, we discuss the characterization of aging cadmium yellow paint from early 20th century art masterpieces. The binding medium holding paint particles together bends and curls as sample thickness is reduced to 100 nm, making high resolution characterization challenging. We acquire lattice resolution images of the pigment particles through the binder using high voltage zero-loss energy filtered TEM, allowing us to measure the pigment particle size and determine the pigment crystal structure, providing insight into why the paint is aging and how it was synthesized.
Fornaro, Michele; Anastasia, Annalisa; Novello, Stefano; Fusco, Andrea; Solmi, Marco; Monaco, Francesco; Veronese, Nicola; De Berardis, Domenico; de Bartolomeis, Andrea
2018-05-01
Treatment-emergent mania (TEM) represents a common phenomenon inconsistently reported across primary studies, warranting further assessment. A systematic review and meta-analysis following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) and Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines were conducted. Major electronic databases were searched from inception to May 2017 to assess the incidence and prevalence rates and clinical features associated with manic switch among bipolar depressed patients receiving antidepressants, using meta-regression and subgroup analysis. Overall, 10 098 depressed patients with bipolar disorder (BD) across 51 studies/arms were included in the quantitative analysis. The cumulative incidence of cases (TEM + ) among 4767 patients with BD over 15 retrospective studies was 30.9% (95% confidence interval [CI] 19.6-45.0%, I 2 = 97.9%). The cumulative incidence of TEM + among 1929 patients with BD over 12 prospective open studies was 14.4% (95% CI 7.4-26.1%, I 2 = 93.7%). The cumulative incidence of TEM + among 1316 patients with BD over 20 randomized controlled trials (RCTs) was 11.8% (95% CI 8.4-16.34%, I 2 = 73.46%). The pooled prevalence of TEM + among 2086 patients with BD over four cross-sectional studies was 30.9% (95% CI 18.1-47.4%, I 2 = 95.6%). Overall, concurrent lithium therapy predicted the lowest TEM rates. Inconsistent operational definitions of TEM were recorded, and the lack of information about age, sex, co-occurring anxiety, and other clinically relevant moderators precluded further stratification of the results. Rates of TEM vary primarily depending on study setting, which is concordant with the high degree of heterogeneity of the included records. Forthcoming RCT studies should adopt consistent operational definitions of TEM and broaden the number of moderators, in order to contribute most effectively to the identification of clear-cut sub-phenotypes of BD and patient-tailored pharmacotherapy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yohannes, Indra; Vasiliniuc, Stefan; Hild, Sebastian
Purpose: Five tissue- and water-equivalent materials (TEMs) mimicking ICRU real tissues have been formulated using a previously established stoichiometric analysis method (SAM) to be applied in charged particle therapy. The purpose of this study was an experimental verification of the TEMs-SAM against charged particle beam measurements and for different computed tomography (CT) scanners. The potential of the TEMs-SAM to be employed in the dosimetry was also investigated. Methods: Experimental verification with three CT scanners was carried out to validate the calculated Hounsfield units (HUs) of the TEMs. Water-equivalent path lengths (WEPLs) of the TEMs for proton (106.8 MeV/u), helium (107.93more » MeV/u), and carbon (200.3 MeV/u) ions were measured to be compared with the computed relative stopping powers. HU calibration curves were also generated. Results: Differences between the measured HUs of the TEMs and the calculated HUs of the ICRU real tissues for all CT scanners were smaller than 4 HU except for the skeletal tissues which deviated up to 21 HU. The measured WEPLs verified the calculated WEPLs of the TEMs (maximum deviation was 0.17 mm) and were in good agreement with the calculated WEPLs of the ICRU real tissues (maximum deviation was 0.23 mm). Moreover, the relative stopping powers converted from the measured WEPLs differed less than 0.8% and 1.3% from the calculated values of the SAM and the ICRU, respectively. Regarding the relative nonelastic cross section per unit of volume for 200 MeV protons, the ICRU real tissues were generally well represented by the TEMs except for adipose which differed 3.8%. Further, the HU calibration curves yielded the mean and the standard deviation of the errors not larger than 0.5% and 1.9%, respectively. Conclusions: The results of this investigation implied the potential of the TEMs formulated using the SAM to be employed for both, beam dosimetry and HU calibration in charged particle therapy.« less
Microscopic observations of osteoblast growth on micro-arc oxidized β titanium
NASA Astrophysics Data System (ADS)
Chen, Hsien-Te; Chung, Chi-Jen; Yang, Tsai-Ching; Tang, Chin-Hsin; He, Ju-Liang
2013-02-01
Titanium alloys are widely used in orthopedic and dental implants, owing to their excellent physical properties and biocompatibility. By using the micro-arc oxidation (MAO), we generated anatase-rich (A-TiO2) and rutile-rich (R-TiO2) titanium dioxide coatings, individually on β-Ti alloy, in which the latter achieved an enhanced in vitro and in vivo performance. Thoroughly elucidating how the osteoblasts interact with TiO2 coatings is of worthwhile interest. This study adopts the focused ion beam (FIB) to section off the TiO2 coated samples for further scanning electron microscope (SEM) and transmission electron microscope (TEM) observation. The detailed crystal structures of the TiO2 coated specimens are also characterized. Experimental results indicate osteoblasts adhered more tenaciously and grew conformably with more lamellipodia extent on the R-TiO2 specimen than on the A-TiO2 and raw β-Ti specimens. FIB/SEM cross-sectional images of the cell/TiO2 interface revealed micro gaps between the cell membrane and contact surface of A-TiO2 specimen, while it was not found on the R-TiO2 specimen. Additionally, the number of adhered and proliferated cells on the R-TiO2 specimen was visually greater than the others. Closely examining EDS line scans and elemental mappings of the FIB/TEM cross-sectional images of the cell/TiO2 interface reveals both the cell body and interior space of the TiO2 coating contain nitrogen and sulfur (the biological elements in cell). This finding supports the assumption that osteoblast can grow into the porous structure of TiO2 coatings and demonstrating that the R-TiO2 coating formed by MAO serves the best for β-Ti alloys as orthopedic and dental implants.
Chinthaka Silva, G W; Ma, Longzhou; Hemmers, Oliver; Lindle, Dennis
2008-01-01
Fluorapatite is a naturally occurring mineral of the apatite group and it is well known for its high physical and chemical stability. There is a recent interest in this ceramic to be used as a radioactive waste form material due to its intriguing chemical and physical properties. In this study, the nano-sized fluorapatite particles were synthesized using a precipitation method and the material was characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Two well-known methods, called solution-drop and the microtome cutting, were used to prepare the sample for TEM analysis. It was found that the microtome cutting technique is advantageous for examining the particle shape and cross-sectional morphology as well as for obtaining ultra-thin samples. However, this method introduces artifacts and strong background contrast for high-resolution transmission electron microscopy (HRTEM) observation. On the other hand, phase image simulations showed that the solution-drop method is reliable and stable for HRTEM analysis. Therefore, in order to comprehensively analyze the microstructure and morphology of the nano-material, it is necessary to combine both solution-drop and microtome cutting techniques for TEM sample preparation.
Microstructural characterization of Ti-6Al-4V alloy subjected to the duplex SMAT/plasma nitriding.
Pi, Y; Faure, J; Agoda-Tandjawa, G; Andreazza, C; Potiron, S; Levesque, A; Demangel, C; Retraint, D; Benhayoune, H
2013-09-01
In this study, microstructural characterization of Ti-6Al-4V alloy, subjected to the duplex surface mechanical attrition treatment (SMAT)/nitriding treatment, leading to improve its mechanical properties, was carried out through novel and original samples preparation methods. Instead of acid etching which is limited for morphological characterization by scanning electron microscopy (SEM), an original ion polishing method was developed. Moreover, for structural characterization by transmission electron microscopy (TEM), an ion milling method based with the use of two ions guns was also carried out for cross-section preparation. To demonstrate the efficiency of the two developed methods, morphological investigations were done by traditional SEM and field emission gun SEM. This was followed by structural investigations through selected area electron diffraction (SAED) coupled with TEM and X-ray diffraction techniques. The results demonstrated that ionic polishing allowed to reveal a variation of the microstructure according to the surface treatment that could not be observed by acid etching preparation. TEM associated to SAED and X-ray diffraction provided information regarding the nanostructure compositional changes induced by the duplex SMAT/nitriding process. Copyright © 2013 Wiley Periodicals, Inc.
Narushima, Takashi; Hyono, Atsushi; Nishida, Naoki; Yonezawa, Tetsu
2012-10-01
Copper/gelatin composite particles with controlled sizes were prepared at room temperature from cupric sulfate pentahydrate in the presence of gelatin as a protective reagent by using hydrazine monohydrate as a reducing agent. The formed particles with the size between 190-940 nm were secondary aggregated particles which were composed of smaller nanosized particles ("particle-in-particle"), the presence of which was established by XRD patterns and a cross-sectional TEM image. The sintering behavior of these copper/gelatin composite particles was demonstrated by in-situ heating TEM under a high vacuum (approximately 10(-5) Pa) and separately with the oxygen partial pressure controlled at the 10(-4) Pa level. It was established that the particles began to sinter at about 330 degrees C with the oxygen and that they sublimate above 450 degrees C both in the vacuum and oxygen conditions. This result shows that the introduction of an adequate amount of oxygen was effective to remove the gelatin surrounding the particles. It can also be concluded that the sintering of the copper/gelatin composite particles occurred even in the absence of a reducing agent such as hydrogen gas.
Recombination-related properties of a-screw dislocations in GaN: A combined CL, EBIC, TEM study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, O. S., E-mail: o.s.medvedev@spbu.ru; Mikhailovskii, V. Yu.; IRC for Nanotechnology, Research Park, St.-Petersburg State University
2016-06-17
Cathodoluminescence (CL), electron beam current (EBIC) and transmission electron microscopy (TEM) techniques have been applied to investigate recombination properties and structure of freshly introduced dislocations in low-ohmic GaN crystals. It was confirmed that the only a-screw dislocations exhibited an intense characteristic dislocation-related luminescence (DRL) which persisted up to room temperature and was red-shifted by about 0.3 eV with respect to the band gap energy not only in HVPE but also in MOCVD grown samples. EBIC contrast of the dislocations was found to be temperature independent indicating that the dislocation-related recombination level is situated below 200 meV with respect of conductionmore » band minimum. With the increasing of the magnification of the dislocation TEM cross-sectional images they were found to disappear, probably, due to the recombination enhanced dislocation glide (REDG) under electron beam exposure which was immediately observed in CL investigations on a large scale. The stacking fault ribbon in the core of dissociated a-screw dislocation which form a quantum well for electrons was proposed to play an important role both in DRL spectrum formation and in REDG.« less
Gel Spun PAN/CNT Based Carbon Fibers with Honey-Comb Cross-Section
2013-11-13
samples were prepared by mounting a single filament on a copper 3-post TEM grid (Omniprobe) and curing in epoxy (Gatan). The carbon fiber was then... Kevlar ® 49 [28], Zylon® [29], T300 [2], IM10 [30], M60J [31], YS-95A [32] were obtained from the data sheets of these fibers from the respective...made contained 60 vol% fibers in epoxy matrix. Fiber compressive strength may be dependent on fiber structure as well as fiber geometry. Kumar et al
Transmission electron microscope studies of extraterrestrial materials
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.
1995-01-01
Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.
Organic Photonics: Toward a New Generation of Thin Film Photovoltaics and Lasers
2011-03-07
plane. 39 Both electron and x - ray diffraction confirm the existence of crystalline domains of CuPc and C60. Crystalline domain sizes range from 5...nanocrystalline domains indicated by white curves that locate the domain boundaries. Scale bar=5 nm. b, X - ray diffraction pattern of an OVPD grown A... ray diffraction (XRD) and atomic force microscopy (AFM), as shown in Fig. 8. A cross-sectional TEM image of [CuPc(6.1nm)/C60(6.1nm)]10 is shown in
Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...
2017-09-26
AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated for structures grown on ZrTi metallic alloy buffer layers, which provided lattice matching of the in-plane lattice parameter (“a-parameter”) to hexagonal GaN. The quality of the GaN buffer layer and HEMT structure were confirmed with X-ray 2θ and rocking scans as well as cross-section transmission electron microscopy (TEM) images. The X-ray 2θ scans showed full widths at half maximum (FWHM) of 0.06°, 0.05° and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM of the lower section of the HEMT structure containing the GaN buffer layer andmore » the AlN/ZrTi/AlN stack on the Si substrate showed that it was important to grow AlN on the top of ZrTi prior to growing the GaN buffer layer. Finally, the estimated threading dislocation (TD) density in the GaN channel layer of the HEMT structure was in the 10 8 cm -2 range.« less
NASA Astrophysics Data System (ADS)
Huang, Kai; Jia, Qi; You, Tiangui; Zhang, Shibin; Lin, Jiajie; Zhang, Runchun; Zhou, Min; Yu, Wenjie; Zhang, Bo; Ou, Xin; Wang, Xi
2017-09-01
Cross-sectional Raman spectroscopy is used to characterize the defect formation and the defect recovery in MeV H+ implanted bulk GaN and 4H-SiC in the high energy MeV ion-cut process. The Raman intensity decreases but the forbidden modes are activated at the damage region, and the intensity decrease is proportional to the damage level. The Raman spectrum is quite sensitive to detect the damage recovery after annealing. The main peak intensity increases and the forbidden mode disappears in both annealed GaN and 4H-SiC samples. The Raman spectra of GaN samples annealed at different temperatures suggest that higher annealing temperature is more efficient for damage recovery. While, the Raman spectra of SiC indicate that higher implantation temperature results in heavier lattice damage and other polytype clusters might be generated by high annealing temperature in the annealed SiC samples. The cross-sectional Raman spectroscopy is a straightforward method to characterize lattice damage and damage recovery in high energy ion-cut process. It can serve as a fast supplementary measurement technique to Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA) and transmission electron microscope (TEM) for the defect characterizations.
Liu, Hanghang; Fu, Paixian; Liu, Hongwei; Li, Dianzhong
2018-01-01
The strength-toughness combination and hardness uniformity in large cross-section 718H pre-hardened mold steel from a 20 ton ingot were investigated with three different heat treatments for industrial applications. The different microstructures, including tempered martensite, lower bainite, and retained austenite, were obtained at equivalent hardness. The microstructures were characterized by using metallographic observations, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electron back-scattered diffraction (EBSD). The mechanical properties were compared by tensile, Charpy U-notch impact and hardness uniformity tests at room temperature. The results showed that the test steels after normalizing-quenching-tempering (N-QT) possessed the best strength-toughness combination and hardness uniformity compared with the conventional quenched-tempered (QT) steel. In addition, the test steel after austempering-tempering (A-T) demonstrated the worse hardness uniformity and lower yield strength while possessing relatively higher elongation (17%) compared with the samples after N-QT (14.5%) treatments. The better ductility of A-T steel mainly depended on the amount and morphology of retained austenite and thermal/deformation-induced twined martensite. This work elucidates the mechanisms of microstructure evolution during heat treatments and will highly improve the strength-toughness-hardness trade-off in large cross-section steels. PMID:29642642
NASA Astrophysics Data System (ADS)
Christoffersen, R.; Dukes, C. A.; Keller, L. P.; Rahman, Z.; Baragiola, R. A.
2015-11-01
Analytical field-emission TEM techniques cross-correlated with surface analyses by X-ray photoelectron spectroscopy (XPS) provides a unique two-prong approach for characterizing how solar wind ion processing contributes to space weathering.
Optical second harmonic generation from Pt nanowires with boomerang-like cross-sectional shapes
NASA Astrophysics Data System (ADS)
Ogata, Yoichi; Anh Tuan, Nguyen; Miyauchi, Yoshihiro; Mizutani, Goro
2011-08-01
We have fabricated Pt nanowires with boomerang-like cross-sectional shapes on the MgO(110) faceted template and observed their optical second-harmonic generation (SHG) response. In the TEM images the Pt nanowires on the MgO substrate had macroscopic C2v symmetry, however, their structure had microscopic imperfections. In the SHG response, as a function of the sample rotation angle around the substrate normal, we found contributions from the nonlinear susceptibility elements χ113, χ223, χ311, χ322, and χ333 originating from the broken symmetry in the 3; [110] direction of the MgO substrate. The indices 1 and 2 denote the [001] and [11¯0] directions, respectively. Under C2v symmetry no SHG is expected in the s-in/s-out polarization configuration, however, a finite SHG was observed in this polarization configuration. We suggest that the SHG in the forbidden configuration might originate from the imperfections in the nanowire structure.
NASA Astrophysics Data System (ADS)
Jernsletten, J. A.
2004-05-01
INTRODUCTION: To evaluate the appropriateness of TEM in mapping deep groundwater tables (in Mars analog environmnets), a field study was carried out in the desert ~30 miles SW of Tucson, Arizona. The study was also designed to observe effects of powerline noise on TEM data. The clay-rich soil in the area is quite conductive. The study consisted of 40 in-loop TEM stations, divided into 3 lines, for 4 line-km of data. The survey was carried out by a crew of one person, with square Tx wire loops 100 m on a side, and a ferrite-core magnetic coil Rx antenna in the center of each Tx loop. Maximum useful depth of investigation achieved was ~600 m. TEM DATA: The field area is surrounded by powerlines on all 4 sides: Line 1 has the outside of the first Tx loop under the powerline to the West; Line 2 starts with the powerline to the North passing above just inside its first Tx loop, and ends with the outside of the last station's transmitter loop ~20 m shy of the powerline to the South; finally, Line 3 starts ~50 m East of the powerline to the West, and runs parallel to the powerline to the South along its entire length, at a separation distance of ~70 m. Line 3 was placed largely in an effort to obeserve powerline noise. The decay curve for the first station on Line 1(Line 1/Station 50) is raised above the other curves from Line 1. This is due to the charge (noise) from the adjacent powerline, which is at a distance of ~50 m from the Rx coil. In effect, the transient decay is recorded as being slower than it would be without the presence of the powerline. This also artficially lowers the apparent resistivity, readily observed in Line 1/Station 50 data. These effects are present to a lesser extent (lower magnitude noise) in the data from Line1/Station 150, the second station on Line 1. On the smooth-model inversion cross-section of the data from Line 1, the effects of the powerline noise appears as a pulling up of the low-resistivity water table contact towards the surface under the first two stations. Line 2/Station 50 data shows the same artificially slow decay and lowered apparent resistivity, compare to Line1/Station 50. Lower magnitude noise in Line 2/Station 150 data compares to Line 1 data. On the cross-section the effect is again a pulling up of the low-resistivity water table. The effects of the powerline noise on Line 2/Station 1550 data (last station) is mostly reflected in the fact that this data runs into noise at an earlier decay time than the data from other stations on Line 2. The last two stations do show shallower depths of investigation than the bulk of Line 2. Data from Line 3 uniformly runs into noise at earlier decay times than Line 1 and Line 2 data. Line 3 data achieves shallower depths of investigation than those possible along Line 1 and Line 2, and the water table contact is modeled at an artificially shallower than real depth along Line 3. Both of these effects are observable on the resistivity cross-section of Line 3 data. CONCLUSIONS: Line 1 and Line 2 observations are in good agreement. Effects observed in raw data include artifically slow decay and correspondingly low apparent resisitvities. The powerline noise lowers signal to noise ratios and depths of investigation. An artificial pulling up of the low-resistivity water table towards the surface is observed under affected stations in model cross-sections. There are a few ways in which to deal with this sort of noise in practical terms: remove noisy data at the end of each decay curve; throw out data from affected stations; keep data from affected stations, but be keenly aware of noise source locations and their effects on the data; and if at all possible, record data ~200+ m from any powerline noise source.
Morphological and Compositional (S)TEM Analysis of Multiple Exciton Generation Solar Cells
NASA Astrophysics Data System (ADS)
Wisnivesky-Rocca-Rivarola, F.; Davis, N. J. L. K.; Bohm, M.; Ducati, C.
2015-10-01
Quantum confinement of charge carriers in semiconductor nanocrystals produces optical and electronic properties that have the potential to enhance the power conversion efficiency of solar cells. One of these properties is the efficient formation of more than one electron-hole pair from a single absorbed photon, in a process called multiple exciton generation (MEG). In this work we studied the morphology of nanocrystal multilayers of PbSe treated with CdCl2 using complementary imaging and spectroscopy techniques to characterise the chemical composition and morphology of full MEG devices made with PbSe nanorods (NRs). IN the scanning TEM (STEM), plan view images and chemical maps were obtained of the nanocrystal layers, which allowed for the analysis of crystal structure and orientation, as well as size distribution and aspect ratio. These results were complemented by cross-sectional images of full devices, which allowed accessing the structure of each layer that composes the device, including the nanorod packing in the active nanocrystal layer.
Cluster dynamics modeling and experimental investigation of the effect of injected interstitials
NASA Astrophysics Data System (ADS)
Michaut, B.; Jourdan, T.; Malaplate, J.; Renault-Laborne, A.; Sefta, F.; Décamps, B.
2017-12-01
The effect of injected interstitials on loop and cavity microstructures is investigated experimentally and numerically for 304L austenitic stainless steel irradiated at 450 °C with 10 MeV Fe5+ ions up to about 100 dpa. A cluster dynamics model is parametrized on experimental results obtained by transmission electron microscopy (TEM) in a region where injected interstitials can be safely neglected. It is then used to model the damage profile and study the impact of self-ion injection. Results are compared to TEM observations on cross-sections of specimens. It is shown that injected interstitials have a significant effect on cavity density and mean size, even in the sink-dominated regime. To quantitatively match the experimental data in the self-ions injected area, a variation of some parameters is necessary. We propose that the fraction of freely migrating species may vary as a function of depth. Finally, we show that simple rate theory considerations do not seem to be valid for these experimental conditions.
Visible cathodoluminescence of Er ions in β-Ga(2)O(3) nanowires and microwires.
Nogales, E; Méndez, B; Piqueras, J
2008-01-23
Erbium doped β-Ga(2)O(3) nanowires and microwires have been obtained by a vapour-solid process from an initial mixture of Ga(2)O(3) and Er(2)O(3) powders. X-ray diffraction (XRD) analysis reveals the presence of erbium gallium garnet as well as β-Ga(2)O(3) phases in the microwires. Scanning electron microscopy (SEM) images show that the larger microwires have a nearly rectangular cross-section. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis show good crystal quality of the β-Ga(2)O(3) nanowires. The nanostructures have been studied by means of the cathodoluminescence technique in the scanning electron microscope. Er intraionic blue, green and red emission lines are observed in luminescence spectra even at room temperature, which confirms the optical activity of the rare earth ions in the grown structures. Mapping of the main 555 nm emission intensity shows a non-homogeneous distribution of Er ions in the microstructures.
NASA Astrophysics Data System (ADS)
Rusz, Ján; Lubk, Axel; Spiegelberg, Jakob; Tyutyunnikov, Dmitry
2017-12-01
The complex interplay of elastic and inelastic scattering amenable to different levels of approximation constitutes the major challenge for the computation and hence interpretation of TEM-based spectroscopical methods. The two major approaches to calculate inelastic scattering cross sections of fast electrons on crystals—Yoshioka-equations-based forward propagation and the reciprocal wave method—are founded in two conceptually differing schemes—a numerical forward integration of each inelastically scattered wave function, yielding the exit density matrix, and a computation of inelastic scattering matrix elements using elastically scattered initial and final states (double channeling). Here, we compare both approaches and show that the latter is computationally competitive to the former by exploiting analytical integration schemes over multiple excited states. Moreover, we show how to include full nonlocality of the inelastic scattering event, neglected in the forward propagation approaches, at no additional computing costs in the reciprocal wave method. Detailed simulations show in some cases significant errors due to the z -locality approximation and hence pitfalls in the interpretation of spectroscopical TEM results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nixon, B. Tracy; Mansouri, Katayoun; Singh, Abhishek
A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individualmore » lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In conclusion, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.« less
Nixon, B. Tracy; Mansouri, Katayoun; Singh, Abhishek; ...
2016-06-27
A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individualmore » lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In conclusion, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.« less
Molecular Beam Epitaxy of Layered Material Superlattices and Heterostructures
NASA Astrophysics Data System (ADS)
Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei; Furdyna, Jacek K.; Jena, Debdeep; Xing, Huili Grace
2014-03-01
Stacking of various layered materials is being pursued widely to realize various devices and observe novel physics. Mostly, these have been limited to exfoliation and stacking either manually or in solution, where control on rotational alignment or order of stacking is lost. We have demonstrated molecular beam epitaxy (MBE) growth of Bi2Se3/MoSe2 superlatticeand Bi2Se3/MoSe2/SnSe2 heterostructure on sapphire. We have achieved a better control on the order of stacking and number of layers as compared to the solution technique. We have characterized these structures using RHEED, Raman spectroscopy, XPS, AFM, X-ray reflectometry, cross-section (cs) and in-plane (ip) TEM. The rotational alignment is dictated by thermodynamics and is understood using ip-TEM diffraction patterns. Layered growth and long range order is evident from the streaky RHEED pattern. Abrupt change in RHEED pattern, clear demarcation of boundary between layers seen using cs-TEM and observation of Raman peaks corresponding to all the layers suggest van-der-waals epitaxy. In our knowledge this is a first demonstration of as grown superlattices and heterostuctures involving transition metal dichalcogenides and is an important step towards the goal of stacking of 2D crystals like lego blocks.
Nixon, B. Tracy; Mansouri, Katayoun; Singh, Abhishek; Du, Juan; Davis, Jonathan K.; Lee, Jung-Goo; Slabaugh, Erin; Vandavasi, Venu Gopal; O’Neill, Hugh; Roberts, Eric M.; Roberts, Alison W.; Yingling, Yaroslava G.; Haigler, Candace H.
2016-01-01
A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains. PMID:27345599
Zander, N.E.; Strawhecker, K.E.; Orlicki, J.A.; Rawlett, A.M.; Beebe, T.P.
2011-01-01
Poly(methylmethacrylate) (PMMA)- Polyacrylonitrile (PAN) fibers were prepared using a conventional single-nozzle electrospinning technique. The as-spun fibers exhibited core-shell morphology as verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM). AFM-phase and modulus mapping images of the fiber cross-section and x-ray photoelectron spectroscopy (XPS) analysis indicated PAN formed the shell and PMMA the core material. XPS, thermal gravimetric analysis (TGA), and elemental analysis were used to determine fiber compositional information. Soaking the fibers in solvent demonstrated removal of the core material, generating hollow PAN fibers. PMID:21928836
FIB-SEM imaging of carbon nanotubes in mouse lung tissue.
Købler, Carsten; Saber, Anne Thoustrup; Jacobsen, Nicklas Raun; Wallin, Håkan; Vogel, Ulla; Qvortrup, Klaus; Mølhave, Kristian
2014-06-01
Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques.
Bagchi, Sharmistha; Lalla, N P
2008-06-11
The present study reports the cross-sectional transmission electron microscopic investigations of swift heavy ion-irradiation induced nano-size recrystallization of Ni in a nearly immiscible W/Ni multilayer structure. Multilayer structures (MLS) of [W(25 Å)/Ni(25 Å)](10BL) were grown on Si-(100) substrate by the ion-beam sputtering technique. The as-synthesized MLS were subjected to 120 MeV-Au(9+) ion-irradiation to a fluence of ∼5 × 10(13) ions cm(-2). Wide-angle x-ray diffraction studies of pristine as well as irradiated W/Ni multilayers show deterioration of the superlattice structure, whereas x-ray reflectivity (XRR) measurement reveals a nearly unaffected microstructure after irradiation. Analysis of the XRR data using 'Parratt's formalism' does show a significant increase of W/Ni interface roughness. Cross-sectional transmission electron microscopy (TEM) studies carried out in diffraction and imaging modes (including bright-field and dark-field imaging), show that at high irradiation dose the intralayer microstructure of Ni becomes nano-crystalline (1-2 nm). During these irradiation induced changes of the intralayer microstructure, the interlayer definition of the W and Ni layers still remains intact. The observed nano-recrystallization of Ni has been attributed to competition between low miscibility of the W/Ni interface and the ion-beam induced mixing kinetics.
Morphometrics of cellular damage in mice testis receiving X-ray and high-energy particle irradiation
NASA Technical Reports Server (NTRS)
Sapp, Walter J.
1987-01-01
Murine tests were exposed to single, low doses of either X-ray, helium, or argon radiation. Animals were sacrificed seventy-two hours later. Testes were fixed for transmission electron microscopy (TEM) and sectioned at either 60 nm for TEM observation or at 2 micron for counting using routine light microscope methods. Counts of the total population of surviving spermatogonia, including all type A cells, intermediate, and type B cells, were taken from tubule cross sections identified as Stage 6 and Stage 1 according to spermatogonial configuration. The surviving fraction of spermatogonia as compared to control, S/S sub o, was calculated for each dose. For both ions and X-rays, there was a rapid decline in survival at dose levels of .10 to .15 Gy in Stage 6 tubules. This was followed by a more gradual decrease in population. At higher doses, 0.30 Gy for argon and 0.80 Gy for helium and X-rays, the cell survival rates declined rapidly. Pre-leptotene spermatocytes in Stage 1 tubules exhibited a different survival curve indicating the extreme radio-sensitivity of type B spermatogonia. Data verify that the seminiferous tubules are composed of a heterogeneous population of cells with different radio-sensitivities and that these differences are manifested even at very low doses.
Versatile technique for assessing thickness of 2D layered materials by XPS
NASA Astrophysics Data System (ADS)
Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C.; Fisher, Timothy S.; Voevodin, Andrey A.
2018-03-01
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.
Versatile technique for assessing thickness of 2D layered materials by XPS
Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; ...
2018-02-07
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) andmore » the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Furthermore, after XPS analysis, exactly the same sample can undergo further processing or utilization.« less
Versatile technique for assessing thickness of 2D layered materials by XPS.
Zemlyanov, Dmitry Y; Jespersen, Michael; Zakharov, Dmitry N; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C; Fisher, Timothy S; Voevodin, Andrey A
2018-03-16
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.
Versatile technique for assessing thickness of 2D layered materials by XPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) andmore » the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Furthermore, after XPS analysis, exactly the same sample can undergo further processing or utilization.« less
FIB-NanoSIMS-TEM Coordinated Study of a Wark-Lovering Rim in a Vigarano Type A CAI
NASA Technical Reports Server (NTRS)
Cai, A.; Ito, M.; Keller, L. P.; Ross, D. K.; Nakamura-Messenger, K.
2010-01-01
Wark-Lovering (WL) rims are thin multi layered mineral sequences that surround most Ca, Al-rich inclusions (CAIs). Unaltered WL rims are composed of the same primary high temperature minerals as CAIs, such as melilite, spinel, pyroxene, hibonite, perovskite, anorthite and olivine. It is still unclear whether the rim minerals represent a different generation formed by a separate event from their associated CAIs or are a byproduct of CAI formation. Several models have been proposed for the origins of WL rims including condensation, flashheating, reaction of a CAI with a Mg-Si-rich reservoir (nebular gas or solid); on the basis of mineralogy, abundances of trace elements, O and Mg isotopic studies. Detailed mineralogical characterizations of WL rims at micrometer to nanometer scales have been obtained by TEM observations, but so far no coordinated isotopic - mineralogical studies have been performed. Thus, we have applied an O isotopic imaging technique by NanoSIMS 50L to investigate heterogeneous distributions of O isotopic ratios in minerals within a cross section of a WL rim prepared using a focused ion beam (FIB) instrument. After the isotopic measurements, we determine the detailed mineralogy and microstructure of the same WL FIB section to gain insight into its petrogenesis. Here we present preliminary results from O isotopic and elemental maps by NanoSIMS and mineralogical analysis by FE-SEM of a FIB section of a WL rim in the Vigarano reduced CV3 chondrite.
An Examination of the Space Weathering Patina of Lunar Rock 76015
NASA Technical Reports Server (NTRS)
Noble, S.; Chrisoffersen, R.; Rahman, Z.
2011-01-01
Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied under SEM and also by TEM using ultramicrotome sample preparation methods. However, to really understand the products involved in creating these coatings, it is helpful to examine the patina in cross section, something which is now possible though the use of Focused Ion Beam (FIB) sample prep techniques, which allows us to preserve intact the delicate stratigraphy of the patina coating and provides a unique cross-sectional view of the space weathering process. Several samples have been prepared from the rock and the coatings are found to be quite variable in thickness and composition from one sample to the next.
Okazaki, Masayuki; Hirata, Isao; Matsumoto, Takuya; Takahashi, Junzo
2005-12-01
The chemical analysis of hydroxyapatite and fluorapatite was carried out using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Hydroxyapatite and fluorapatite were synthesized at 80 +/- 1 degrees C and pH 7.4 +/- 0.2. Fluorapatite was better crystallized, with its (300) reflection shifted to a slightly higher angle. High-resolution transmission electron microscopy clearly revealed a typical, regular hexagonal cross section perpendicular to the c-axis for fluorapatite and a flattened hexagonal cross section for hydroxyapatite. FT-IR spectra of fluorapatite confirmed the absence of OH absorption peak--which was seen in hydroxyapatite at about 3570 cm(-1). TOF-SIMS mass spectra showed a peak at 40 amu due to calcium. In addition, a peak at 19 amu due to fluorine could be clearly seen, although the intensities of PO, PO2, and PO3 were very low. It was confirmed that TOF-SIMS clearly showed the differences between positive and negative mass spectra of hydroxyapatite and fluorapatite, especially for F-. We concluded that TOF-SIMS exhibited distinct advantages compared with other methods of analysis.
Spectroscopic properties of Nd3+ doped transparent oxyfluoride glass ceramics.
Yu, Yunlong; Chen, Daqin; Ma, En; Wang, Yuansheng; Hu, Zhongjian
2007-07-01
In this paper, the spectroscopic properties of Nd(3+) doped transparent oxyfluoride glass ceramics containing LaF(3) nano-crystals were systematically studied. The formation and distribution of LaF(3) nano-crystals in the glass matrix were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Based on Judd-Ofelt theory, the intensity parameters Omega(t) (t=2, 4, 6), spontaneous emission probability, radiative lifetime, radiative quantum efficiency, width of the emission line and stimulated emission cross-section of Nd(3+) were evaluated. Particularly, the effect of Nd(3+) doping level on them was discussed. With the increase of Nd(3+) concentration in the glass ceramic, the experimental luminescence lifetime, radiative quantum efficiency and stimulated emission cross-section vary from 353.4 micros, 78.3% and 1.86 x 10(-20)cm(2) to 214.7 micros, 39.9% and 1.52 x 10(-20)cm(2), respectively. The comparative study of Nd(3+) spectroscopic parameters in different hosts suggests that the investigated glass ceramic system is potentially applicable as laser materials for 1.06 microm emission.
Growth, spectroscopy and continuous-wave laser performance of Nd3+:LiLu0.65Y0.35F4 crystal
NASA Astrophysics Data System (ADS)
Demesh, M. P.; Kurilchik, S. V.; Gusakova, N. V.; Yasukevich, A. S.; Kisel, V. E.; Nizamutdinov, A. S.; Marisov, M. M.; Aglyamov, R. D.; Korableva, S. L.; Naumov, A. K.; Semashko, V. V.; Kuleshov, N. V.
2018-04-01
A mixed fluoride crystal of LiLu0.65Y0.35F4 doped with Nd3+ ions was grown by the Bridgman-Stockbarger method. Polarized absorption and luminescence spectra as well as luminescence lifetime were measured at room temperature. Emission probabilities, branching ratios and radiative lifetime were studied within the Judd-Ofelt theory and the emission cross section spectra were calculated. Efficient continuous wave laser operation was demonstrated with the crystal. A maximum output power of 7.7 W and slope efficiency of 60% were achieved at 1047 nm for the TEM00 mode.
3D-profile measurement of advanced semiconductor features by using FIB as reference metrology
NASA Astrophysics Data System (ADS)
Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami
2017-03-01
A novel method of sub-nanometer uncertainty for the 3D-profile measurement and LWR (Line Width Roughness) measurement by using FIB (Focused Ion Beam) processing, and TEM (Transmission Electron Microscope) and CD-SEM (Critical Dimension Scanning Electron Microscope) images measurement is proposed to standardize 3D-profile measurement through reference metrology. In this article, we apply the methodology to line profile measurements and roughness measurement of advanced FinFET (Fin-shaped Field-Effect Transistor) features. The FinFET features are horizontally sliced as a thin specimen by FIB micro sampling system. Horizontally images of the specimens are obtained then by a planar TEM. LWR is calculated from the edges positions on TEM images. Moreover, we already have demonstrated the novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB slope cut and CD-SEM measuring. Using the method, a few micrometers wide on a wafer is coated and cut by 45-degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We applied FIB-to-CDSEM method to a CMOS image sensor feature. The 45-degree slope cut surface is observed using AFM. The surface profile of slope cut surface and line profiles are analyzed for improving the accuracy of FIB-to-CDSEM method.
Paper-based transparent flexible thin film supercapacitors
NASA Astrophysics Data System (ADS)
Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun
2013-05-01
Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm).Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm). Electronic supplementary information (ESI) available: Experimental, TEM image, IR spectra, and XRD spectra of cellulose nanofibers, TEM image, and XRD spectra of RGO, graphite, GO nanosheets, CNF paper, and CNF-[RGO]20 hybrid paper, high-resolution C1s spectra of GO, Raman spectra of GO nanosheets, cross-sectional FESEM image of CNF-[RGO]20 hybrid paper and stress-strain curve of T-SC-20. See DOI: 10.1039/c3nr00674c
NASA Astrophysics Data System (ADS)
Shieh, C. Y.; Li, Z. Y.; Kuo, H. C.; Chang, J. Y.; Chi, G. C.
2014-03-01
We reported the defects and optical characterizations of the ultraviolet light-emitting diodes grown on free-standing GaN substrate (FS-GaN) and sapphire. Cross-sectional transmission electron microscopy (TEM) images showed that the total defect densities of grown UV LEDs on FS-GaN and sapphire including edge, screw and mixed type were 3.6×106 cm-2 and 5.5×108 cm-2. When substrate of UV LEDs was changed from sapphire to FS-GaN, it can be clearly found that the crystallography of GaN epilayers was drastically different from that GaN epilayers on sapphire. Besides, the microstructures or indium clustering can be not observed at UV LEDs on FS-GaN from TEM measurement. The internal quantum efficiency of UVLEDs on FS-GaN and sapphire were 34.8 % and 39.4 % respectively, which attributed to indium clustering in multi-layers quantum wells (MQWs) of UV LEDs on sapphire. The relationship between indiumclustering and efficiency droop were investigated by temperature-dependent electroluminescence (TDEL) measurements.
Unidirectional endotaxial cobalt di-silicide nanowires on Si(110) substrates
NASA Astrophysics Data System (ADS)
Mahato, J. C.; Das, Debolina; Banu, Nasrin; Satpati, Biswarup; Dev, B. N.
2017-10-01
Self-organized growth of well-ordered endotaxial silicide nanowires (NWs) on clean Si(110) surfaces has been investigated by in situ scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). Co deposition on clean Si(110) reconstructed surfaces at ∼600 °C produces unidirectional CoSi2 NWs by reaction of cobalt with the hot silicon substrate. STM investigations reveal four major types of distinct NWs, all growing along the [-110] in-plane direction except one type growing along the in-plane [-113] direction. There are also some nanodots. The cross-sectional TEM measurements show that the unidirectional NWs are of two types—flat-top and ridged. The NWs grow not only on the substrate but also into the substrate. CoSi2 in flat top NWs are in the same crystallographic orientation as the substrate Si and the buried interfaces between CoSi2 and Si are A-type. In the ridged NWs CoSi2 and Si are in different crystallographic orientations and the interfaces are B-type. The ridged NWs are in general wider and grow deeper into the substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judge, Colin D.; Gauquelin, Nicolas; Walters, Lori
2015-02-01
In recent years, it has been determined that Inconel X-750 CANDU spacers have lost strength and material ductility following irradiation in reactor. The irradiated fracture behaviour of ex-service material was also found to be entirely intergranular. The heavily thermalized flux spectrum in a CANDU reactor results in transmutation of 58Ni to 59Ni. The 59Ni itself has unusually high thermal neutron reaction cross-sections of the type: (n, γ), (n, p), and (n,α). The latter two reactions, in particular, contribute to a significant enhancement of the atomic displacements in addition to creating high concentrations of hydrogen and helium within the material. Metallographicmore » examinations by transmission electron microscopy (TEM) have confirmed the presence of helium bubbles in the matrix and aligned along grain boundaries and matrix-precipitate interfaces. He bubble size and density are found to be highly dependent on the irradiation temperature and material microstructure; the bubbles are larger within grain boundary precipitates. TEM specimens extracted from fracture surfaces and crack tips give direct evidence linking crack propagation with grain boundary He bubbles.« less
Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon
NASA Astrophysics Data System (ADS)
Nagarajappa, Kiran; Guha, Puspendu; Thirumurugan, Arun; Satyam, Parlapalli V.; Bhatta, Umananda M.
2018-06-01
Coherently, embedded metal nanostructures (endotaxial) are known to have potential applications concerning the areas of plasmonics, optoelectronics and thermoelectronics. Incorporating appropriate concentrations of metal atoms into crystalline silicon is critical for these applications. Therefore, choosing proper dose of low-energy ions, instead of depositing thin film as a source of metal atoms, helps in avoiding surplus concentration of metal atoms that diffuses into the silicon crystal. In this work, 30 keV silver negative ions are implanted into a SiO x /Si(100) at two different fluences: 1 × 1015 and 2.5 × 1015 Ag- ions/cm2. Later, the samples are annealed at 700 °C for 1 h in Ar atmosphere. Embedded silver nanostructures have been characterized using planar and cross-sectional TEM (XTEM) analysis. Planar TEM analysis shows the formation of mostly rectangular silver nanostructures following the fourfold symmetry of the substrate. XTEM analysis confirms the formation of prism-shaped silver nanostructures embedded inside crystalline silicon. Endotaxial nature of the embedded crystals has been discussed using selected area electron diffraction analysis.
Kuwan; Tsukamoto; Taki; Horibuchi; Oki; Kawaguchi; Shibata; Sawaki; Hiramatsu
2000-01-01
Cross-sectional transmission electron microscope (TEM) observation was performed for selectively grown gallium nitride (GaN) in order to examine the dependence of GaN microstructure on the growth conditions. The GaN films were grown by hydride vapour phase epitaxy (HVPE) or metalorganic vapour phase epitaxy (MOVPE) on GaN covered with a patterned mask. Thin foil specimens for TEM observation were prepared with focused ion beam (FIB) machining apparatus. It was demonstrated that the c-axis of GaN grown over the terrace of the mask tilts towards the centre of the terrace when the GaN is grown in a carrier gas of N2. The wider terrace results in a larger tilting angle if other growth conditions are identical. The tilting is attributed to 'horizontal dislocations' (HDs) generated during the overgrowth of GaN on the mask terrace. The HDs in HVPE-GaN have a semi-loop shape and are tangled with one another, while those in MOVPE-GaN are straight and lined up to form low-angle grain boundaries.
NASA Astrophysics Data System (ADS)
Kal, S.; Kasko, I.; Ryssel, H.
1995-10-01
The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (<50 nm) CoSi2 preparation. A comparison of the plan-view and cross-section TEM micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.
High-resolution x-ray diffraction and transmission electron microscopy of multiferroic BiFeO3 films
NASA Astrophysics Data System (ADS)
Qi, Xiaoding; Wei, Ming; Lin, Yuan; Jia, Quanxi; Zhi, Dan; Dho, Joonghoe; Blamire, Mark G.; MacManus-Driscoll, Judith L.
2005-02-01
High-resolution x-ray diffraction and transmission electron microscopy (TEM) have been used to study BiFeO3 thin films grown on the bare and SrRuO3 buffered (001) SrTiO3 substrates. Reciprocal space mapping (RSM) around (002) and (103) reflections revealed that BFO films with a thickness of about 200 nm were almost fully relaxed and had a rhombohedral structure. Cross-sectional, high-resolution TEM showed that the films started to relax at a very early stage of growth, which was consistent with the RSM results. A thin intermediate layer of about 2 nm was observed at the interface, which had a smaller lattice than the overgrown film. Twist distortions about the c axis to release the shear strain introduced by the growth of rhombic (001) BiFeO3 on cubic (001) SrTiO3 were also observed. The results indicate that a strained, coherent BiFeO3 film on (001) SrTiO3 is very difficult to maintain and (111) STO substrates are preferable.
Microstructure study of ZnO thin films on Si substrate grown by MOCVD
NASA Astrophysics Data System (ADS)
Huang, Jingyun; Ye, Zhizhen; Lu, Huanming; Wang, Lei; Zhao, Binghui; Li, Xianhang
2007-08-01
The microstructure of zinc oxide thin films on silicon substrates grown by metalorganic chemical vapour deposition (MOCVD) was characterized. The cross-sectional bright-field transmission electron microscopy (TEM) image showed that small ZnO columnar grains were embedded into large columnar grains, and the selected-area electron diffraction pattern showed that the ZnO/Si thin films were nearly c-axis oriented. The deviation angle along the ZnO (0 0 0 1) direction with respect to the growth direction of Si (1 0 0) was no more than 5°. The [0 0 0 1]-tilt grain boundaries in ZnO/Si thin films were investigated symmetrically by plan-view high resolution TEM. The boundaries can be classified into three types: low-angle boundaries described as an irregular array of edge dislocations, boundaries of near 30° angle with (1\\,0\\,\\bar{1}\\,0) facet structures and large-angle boundaries with symmetric structure which could be explained by a low Σ coincident site lattice structure mode. The research was useful to us for finding optimized growth conditions to improve ZnO/Si thin film quality.
NASA Astrophysics Data System (ADS)
Hong, R. J.; Jiang, X.
2006-07-01
Aluminium-doped zinc oxide (ZnO:Al or AZO) thin films were deposited on glass substrates by reactive mid-frequency (MF) magnetron sputtering from Zn/Al metallic targets. Strong (002) preferred orientation was detected by X-ray diffraction (XRD). It was observed by plan-view transmission electron microscopy (TEM) that an AZO film deposited at low substrate temperature was composed of irregular large grains; but the film prepared at high temperature was composed of moderate sized grains with a regular shape. A secondary phase of ZnO2 was also observed for the film deposited at low substrate temperature. The cross-sectional TEM study of the AZO film showed that prior to the well-aligned columnar growth an initial interfacial zone with nano crystallites were formed. The nano crystallites formed initially with a large tilt angle normal to the substrate surface and during the growth of the transition zone, the tilt angle decreased until it vanished. The evolution of the film structure is discussed in terms of evolutionary selection model and the dynamic deposition process.
Biodesulfurization of Dibenzothiophene by Microbial Cells Coated with Magnetite Nanoparticles
Shan, GuoBin; Xing, JianMin; Zhang, HuaiYing; Liu, HuiZhou
2005-01-01
Microbial cells of Pseudomonas delafieldii were coated with magnetic Fe3O4 nanoparticles and then immobilized by external application of a magnetic field. Magnetic Fe3O4 nanoparticles were synthesized by a coprecipitation method followed by modification with ammonium oleate. The surface-modified Fe3O4 nanoparticles were monodispersed in an aqueous solution and did not precipitate in over 18 months. Using transmission electron microscopy (TEM), the average size of the magnetic particles was found to be in the range from 10 to 15 nm. TEM cross section analysis of the cells showed further that the Fe3O4 nanoparticles were for the most part strongly absorbed by the surfaces of the cells and coated the cells. The coated cells had distinct superparamagnetic properties. The magnetization (δs) was 8.39 emu · g−1. The coated cells not only had the same desulfurizing activity as free cells but could also be reused more than five times. Compared to cells immobilized on Celite, the cells coated with Fe3O4 nanoparticles had greater desulfurizing activity and operational stability. PMID:16085841
Bhaskaran, M; Sriram, S; Mitchell, D R G; Short, K T; Holland, A S; Mitchell, A
2009-01-01
This article discusses the results of transmission electron microscopy (TEM)-based investigation of nickel silicide (NiSi) thin films grown on silicon. Nickel silicide is currently used as the CMOS technology standard for local interconnects and in electrical contacts. Films were characterized with a range of TEM-based techniques along with glancing angle X-ray diffraction. The nickel silicide thin films were formed by vacuum annealing thin films of nickel (50 nm) deposited on (100) silicon. The cross-sectional samples indicated a final silicide thickness of about 110 nm. This investigation studied and reports on three aspects of the thermally formed thin films: the uniformity in composition of the film using jump ratio maps; the nature of the interface using high resolution imaging; and the crystalline orientation of the thin films using selected-area electron diffraction (SAED). The analysis highlighted uniform composition in the thin films, which was also substantiated by spectroscopy techniques; an interface exhibiting the desired abrupt transition from silicide to silicon; and desired and preferential crystalline orientation corresponding to stoichiometric NiSi, supported by glancing angle X-ray diffraction results.
Unidirectional endotaxial cobalt di-silicide nanowires on Si(110) substrates.
Mahato, J C; Das, Debolina; Banu, Nasrin; Satpati, Biswarup; Dev, B N
2017-10-20
Self-organized growth of well-ordered endotaxial silicide nanowires (NWs) on clean Si(110) surfaces has been investigated by in situ scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). Co deposition on clean Si(110) reconstructed surfaces at ∼600 °C produces unidirectional CoSi 2 NWs by reaction of cobalt with the hot silicon substrate. STM investigations reveal four major types of distinct NWs, all growing along the [-110] in-plane direction except one type growing along the in-plane [-113] direction. There are also some nanodots. The cross-sectional TEM measurements show that the unidirectional NWs are of two types-flat-top and ridged. The NWs grow not only on the substrate but also into the substrate. CoSi 2 in flat top NWs are in the same crystallographic orientation as the substrate Si and the buried interfaces between CoSi 2 and Si are A-type. In the ridged NWs CoSi 2 and Si are in different crystallographic orientations and the interfaces are B-type. The ridged NWs are in general wider and grow deeper into the substrate.
NASA Astrophysics Data System (ADS)
Surmeneva, Maria A.; Surmenev, Roman A.; Nikonova, Yulia A.; Selezneva, Irina I.; Ivanova, Anna A.; Putlyaev, Valery I.; Prymak, Oleg; Epple, Matthias
2014-10-01
A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.
Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles.
Killingsworth, Murray C; Bobryshev, Yuri V
2016-08-07
A method is described whereby quantum dot (QD) nanoparticles can be used for correlative immunocytochemical studies of human pathology tissue using widefield fluorescence light microscopy and transmission electron microscopy (TEM). To demonstrate the protocol we have immunolabeled ultrathin epoxy sections of human somatostatinoma tumor using a primary antibody to somatostatin, followed by a biotinylated secondary antibody and visualization with streptavidin conjugated 585 nm cadmium-selenium (CdSe) quantum dots (QDs). The sections are mounted on a TEM specimen grid then placed on a glass slide for observation by widefield fluorescence light microscopy. Light microscopy reveals 585 nm QD labeling as bright orange fluorescence forming a granular pattern within the tumor cell cytoplasm. At low to mid-range magnification by light microscopy the labeling pattern can be easily recognized and the level of non-specific or background labeling assessed. This is a critical step for subsequent interpretation of the immunolabeling pattern by TEM and evaluation of the morphological context. The same section is then blotted dry and viewed by TEM. QD probes are seen to be attached to amorphous material contained in individual secretory granules. Images are acquired from the same region of interest (ROI) seen by light microscopy for correlative analysis. Corresponding images from each modality may then be blended to overlay fluorescence data on TEM ultrastructure of the corresponding region.
NASA Astrophysics Data System (ADS)
Krämer, Florian; Gratz, Micha; Tschöpe, Andreas
2016-07-01
The magnetic field-dependent optical transmission of dilute Ni nanorod aqueous suspensions was investigated. A series of four samples of nanorods were synthesized using the AAO template method and processed to stable colloids. The distributions of their length and diameter were characterized by analysis of TEM images and revealed average diameters of ˜25 nm and different lengths in the range of 60 nm-1100 nm. The collinear magnetic and optical anisotropy was studied by static field-dependent transmission measurements of linearly polarized light parallel and perpendicular to the magnetic field direction. The experimental results were modelled assuming the field-dependent orientation distribution function of a superparamagnetic ensemble for the uniaxial ferromagnetic nanorods in liquid dispersion and extinction cross sections for longitudinal and transversal optical polarization derived from different approaches, including the electrostatic approximation and the separation of variables method, both applied to spheroidal particles, as well as finite element method simulations of spheroids and capped cylindrical particles. The extinction cross sections were compared to reveal the differences associated with the approximations of homogeneous polarization and/or particle shape. The consequences of these approximations for the quantitative analysis of magnetic field-dependent optical transmission measurements were investigated and a reliable protocol derived. Furthermore, the changes in optical cross sections induced by electromagnetic interaction between two nanorods in parallel end-to-end and side-by-side configuration as a function of their separation were studied.
Use of traditional eye medicine and self-medication in rural India: A population-based study.
Gupta, Noopur; Vashist, Praveen; Tandon, Radhika; Gupta, Sanjeev K; Kalaivani, Mani; Dwivedi, S N
2017-01-01
To determine the type and nature of traditional eye medicine (TEM), their sources and use and practices related to self-medication for ophthalmic diseases in a rural Indian population. A population-based, cross-sectional study was conducted in 25 randomly selected clusters of Rural Gurgaon, Haryana, India as part of CORE (Cornea Opacity Rural Epidemiological) study. In addition to comprehensive ophthalmic examination, health-seeking behavior and use of self-medication and TEM was assessed in the adult population using a semi-structured questionnaire. Physical verification of available ophthalmic medications in the enumerated households was conducted by the study team. Descriptive statistics were computed along with multivariable logistic regression analysis to determine associated factors for use of self-medication and TEM. Of the 2160 participants interviewed, 396 (18.2%) reported using ophthalmic medications without consulting an ophthalmologist, mainly for symptoms like watering (37.1%), redness (27.7%), itching (19.2%) and infection (13.6%). On physical verification of available eye drops that were being used without prescription, 26.4% participants were practicing self-medication. Steroid, expired/unlabeled and indigenous eye drops were being used by 151(26.5%), 120(21.1%) and 75 (13.2%) participants respectively. Additionally, 25.7% (529) participants resorted to home remedies like 'kajal'(61.4%), honey (31.4%), ghee (11.7%) and rose water (9.1%). Use of TEM is prevalent in this population. The rampant use of steroid eye drops without prescription along with use of expired or unlabelled eye drops warrants greater emphasis on safe eye care practices in this population. Public awareness and regulatory legislations must be implemented to decrease harmful effects arising due to such practices.
Use of traditional eye medicine and self-medication in rural India: A population-based study
Gupta, Noopur; Tandon, Radhika; Gupta, Sanjeev K.; Kalaivani, Mani; Dwivedi, S. N.
2017-01-01
Objective To determine the type and nature of traditional eye medicine (TEM), their sources and use and practices related to self-medication for ophthalmic diseases in a rural Indian population. Methods A population-based, cross-sectional study was conducted in 25 randomly selected clusters of Rural Gurgaon, Haryana, India as part of CORE (Cornea Opacity Rural Epidemiological) study. In addition to comprehensive ophthalmic examination, health-seeking behavior and use of self-medication and TEM was assessed in the adult population using a semi-structured questionnaire. Physical verification of available ophthalmic medications in the enumerated households was conducted by the study team. Descriptive statistics were computed along with multivariable logistic regression analysis to determine associated factors for use of self-medication and TEM. Results Of the 2160 participants interviewed, 396 (18.2%) reported using ophthalmic medications without consulting an ophthalmologist, mainly for symptoms like watering (37.1%), redness (27.7%), itching (19.2%) and infection (13.6%). On physical verification of available eye drops that were being used without prescription, 26.4% participants were practicing self-medication. Steroid, expired/unlabeled and indigenous eye drops were being used by 151(26.5%), 120(21.1%) and 75 (13.2%) participants respectively. Additionally, 25.7% (529) participants resorted to home remedies like ‘kajal’(61.4%), honey (31.4%), ghee (11.7%) and rose water (9.1%). Conclusion Use of TEM is prevalent in this population. The rampant use of steroid eye drops without prescription along with use of expired or unlabelled eye drops warrants greater emphasis on safe eye care practices in this population. Public awareness and regulatory legislations must be implemented to decrease harmful effects arising due to such practices. PMID:28829812
NASA Astrophysics Data System (ADS)
Li, Yue; Cherkezyan, Lusik; Zhang, Di; Almassalha, Luay; Roth, Eric; Chandler, John; Bleher, Reiner; Subramanian, Hariharan; Dravid, Vinayak P.; Backman, Vadim
2017-02-01
Structural and biological origins of light scattering in cells and tissue are still poorly understood. We demonstrate how this problem might be addressed through the use of transmission electron microscopy (TEM). For biological samples, TEM image intensity is proportional to mass-density, and thus proportional to refractive index (RI). By calculating the autocorrelation function (ACF) of TEM image intensity of a thin-section of cells, we essentially maintain the nanoscale ACF of the 3D cellular RI distribution, given that the RI distribution is statistically isotropic. Using this nanoscale 3D RI ACF, we can simulate light scattering through biological samples, and thus guiding many optical techniques to quantify specific structures. In this work, we chose to use Partial Wave Spectroscopy (PWS) microscopy as a one of the nanoscale-sensitive optical techniques. Hela cells were prepared using standard protocol to preserve nanoscale ultrastructure, and a 50-nm slice was sectioned for TEM imaging at 6 nm resolution. The ACF was calculated for chromatin, and the PWS mean sigma was calculated by summing over the power spectral density in the visible light frequency of a random medium generated to match the ACF. A 1-µm slice adjacent to the 50-nm slice was sectioned for PWS measurement to guarantee identical chromatin structure. For 33 cells, we compared the calculated PWS mean sigma from TEM and the value measured directly, and obtained a strong correlation of 0.69. This example indicates the great potential of using TEM measured RI distribution to better understand the quantification of cellular nanostructure by optical methods.
Kersten, F A M; Hermens, R P G M; Braat, D D M; Tepe, E; Sluijmer, A; Kuchenbecker, W K; Van den Boogaard, N; Mol, B W J; Goddijn, M; Nelen, W L D M
2016-01-01
Do couples who were eligible for tailored expectant management (TEM) and did not start treatment within 6 months after the fertility work-up, have different experiences with the quality of care than couples that were also eligible for TEM but started treatment right after the fertility work-up? Tailored expectant management of at least 6 months in couples with unexplained infertility is not associated with the experiences with quality of care or trust in their physician. In couples with unexplained infertility and a good prognosis of natural conception within 1 year, expectant management for 6-12 months does not compromise ongoing birth rates and is equally as effective as starting medically assisted reproduction immediately. Therefore, TEM is recommended by various international clinical guidelines. Implementation of TEM is still not optimal because of existing barriers on both patient and professional level. An important barrier is the hesitance of professionals to counsel their patients for TEM because they fear that patients will be dissatisfied with care. However, if and how adherence to TEM actually affects the couples' experience with care is unknown. Experiences with the quality care can be measured by evaluating the patient-centredness of care and the patients' trust in their physician. This is a retrospective cross-sectional study. A survey with written questionnaires was performed among all couples who participated in the retrospective audit of guideline adherence on TEM in 25 Dutch clinics. Couples were eligible to participate if they were diagnosed with unexplained infertility and had a good prognosis (>30%) of natural conception within 1 year based on the Hunault prediction model. We used patient's questionnaires to collect data on the couples' experience with the quality of care and possible confounders for their experiences other than having undergone TEM or not. Multilevel regression analyses were performed to investigate case-mix adjusted association of TEM with the patient-centredness of care (PCQ-Infertility) and the patients' trust in their physician (Wake Forest Trust Scale). Couples who adhered to TEM experienced the quality of care on the same level as couples who were exposed to early treatment, i.e. started fertility treatment within 6 months after fertility work-up. There were no associations between adherence to TEM and the patient-centredness of care or the patients' trust in their physician. Because this study is retrospective, recall bias might occur. Furthermore, we were unable to measure the difference in experience with care over time. Therefore, our results have to be interpreted carefully. Prospective research on couples undergoing TEM have to be performed to provide more detailed insight in the patients' experiences with the decision making process and subsequently the expectant period. Tackling the barriers surrounding TEM, i.e. better counselling and more patient information material, could further improve patient experiences with the quality of care for couples who are advised TEM. Supported by Netherlands Organisation for Health Research and Development (ZonMW). ZonMW had no role in designing the study, data collection, analysis and interpretation of data or writing of the report. Competing interests: none. www.trialregister.nl NTR3405. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Appendix B: Summary of TEM Particle Size Distribution Datasets
As discussed in the main text (see Section 5.3.2), calculation of the concentration of asbestos fibers in each of the bins of potential interest requires particle size distribution data derived using transmission electron microscopy (TEM).
NASA Astrophysics Data System (ADS)
Pankov, A. M.; Bredikhina, A. S.; Kulnitskiy, B. A.; Perezhogin, I. A.; Skryleva, E. A.; Parkhomenko, Yu. N.; Popov, M. Yu.; Blank, V. D.
2017-08-01
A pressure-induced phase transition of multiwall carbon nanotubes (MWNT) to a new structure at room temperature is studied using a shear diamond anvil cell, X-ray photoelectron spectra (XPS), transmission electron microscope (TEM) and Raman procedures. We observe a cardinal pressure-induced change in the nanoparticles shape from multi-shell tubes to multi-shell spheres. MWNT transforms to onions with layers cross-linked by sp3 bonds under the 45-65 GPa compressive stress combined with shear deformation at room temperature. TEM and XPS results show that about 40% of the carbon atoms in the new phase are sp3-bounded.
Tin Whisker Electrical Short Circuit Characteristics. Part 2
NASA Technical Reports Server (NTRS)
Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Lawrence L.; Wright, Maria C.
2009-01-01
Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.
De Backer, A; van den Bos, K H W; Van den Broek, W; Sijbers, J; Van Aert, S
2016-12-01
An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, has been investigated. The highest attainable precision is reached even for low dose images. Furthermore, the advantages of the model-based approach taking into account overlap between neighbouring columns are highlighted. This is done for the estimation of the distance between two neighbouring columns as a function of their distance and for the estimation of the scattering cross-section which is compared to the integrated intensity from a Voronoi cell. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license. Copyright © 2016 Elsevier B.V. All rights reserved.
Transmission Electron Microscopy of Bombyx Mori Silk Fibers
NASA Astrophysics Data System (ADS)
Shen, Y.; Martin, D. C.
1997-03-01
The microstructure of B. Mori silk fibers before and after degumming was examined by TEM, selected area electron diffraction (SAED), WAXS and low voltage SEM. SEM micrographs of the neat cocoon revealed a network of pairs of twisting filaments. After degumming, there were only individual filaments showing a surface texture consistent with an oriented fibrillar structure in the fiber interior. WAXS patterns confirmed the oriented beta-sheet crystal structure common to silkworm and spider silks. Low dose SAED results were fully consistent with the WAXS data, and revealed that the crystallographic texture did not vary significantly across the fiber diameter. TEM observations of microtomed fiber cross sections indicated a somewhat irregular shape, and also revealed a 0.5-2 micron sericin coating which was removed by the degumming process. TEM observations of the degummed silk fiber showed banded features with a characteristic spacing of nominally 600 nm along the fiber axis. These bands were oriented in a roughly parabolic or V-shape pointing along one axis within a given fiber. We hypothesize that this orientation is induced by the extrusion during the spinning process. Equatorial DF images revealed that axial and lateral sizes of the β-sheet crystallites in silk fibroin ranged from 20 to 170 nm and from 1 to 24 nm, respectively. Crazes developed in the degummed silk fiber parallel to the fiber direction. The formation of these crazes suggests that there are significant lateral interactions between fibrils in silk fibers.
Yoshimoto, Marcelo; Watanabe, Il-sei; Martins, Marília T; Salles, Marcos B; Ten Eyck, Gary R; Coelho, Paulo G
2009-01-01
The present study assessed damage to the inferior alveolar nerve (IAN) following nerve lateralization and implant placement surgery through optical and transmission electron microscopy (TEM). IAN lateralization was performed in 16 adult female rabbits (Oryctolagus cuniculus). During the nerve lateralization procedure, one implant was placed through the mandibular canal, and the IAN was replaced in direct contact with the implant. The implant was placed in the right mandible, and the left side was used as a control (no surgical procedure). After 8 weeks, the animals were sacrificed and samples were prepared for optical and TEM analysis of IAN structural damage. Histomorphometric analysis was performed to determine the number and cross-sectional dimensions of nerve fascicles and myelin sheath thickness between experimental and control groups. The different parameters were compared by one-way analysis of variance at the 95% significance level. Alterations in the perineural and endoneural regions of the IAN, with higher degrees of vascularization, were observed in the experimental group. TEM showed that the majority of the myelinated nerve fibers were not affected in the experimental samples. No significant variation in the number of fascicles was observed, significantly larger fascicle height and width were observed in the control group, and significantly thicker myelin sheaths were observed in the experimental samples. IAN lateralization resulted in substantial degrees of tissue disorganization at the microstructural level because of the presence of edema. However, at the ultrastructural level, small amounts of fiber degeneration were observed.
NASA Astrophysics Data System (ADS)
Adachi, Kouji; Zaizen, Yuji; Kajino, Mizuo; Igarashi, Yasuhito
2014-05-01
Soot particles influence the global climate through interactions with sunlight. A coating on soot particles increases their light absorption by increasing their absorption cross section and cloud condensation nuclei activity when mixed with other hygroscopic aerosol components. Therefore, it is important to understand how soot internally mixes with other materials to accurately simulate its effects in climate models. In this study, we used a transmission electron microscope (TEM) with an auto particle analysis system, which enables more particles to be analyzed than a conventional TEM. Using the TEM, soot particle size and shape (shape factor) were determined with and without coating from samples collected at a remote mountain site in Japan. The results indicate that ~10% of aerosol particles between 60 and 350 nm in aerodynamic diameters contain or consist of soot particles and ~75% of soot particles were internally mixed with nonvolatile ammonium sulfate or other materials. In contrast to an assumption that coatings change soot shape, both internally and externally mixed soot particles had similar shape and size distributions. Larger aerosol particles had higher soot mixing ratios, i.e., more than 40% of aerosol particles with diameters >1 µm had soot inclusions, whereas <20% of aerosol particles with diameters <1 µm included soot. Our results suggest that climate models may use the same size distributions and shapes for both internally and externally mixed soot; however, changing the soot mixing ratios in the different aerosol size bins is necessary.
NASA Astrophysics Data System (ADS)
Sone, Yuko; Kishida, Haruo; Kobayashi, Makoto; Watanabe, Takao
Carbon deposited on SUS304 stainless steel (18Cr 8Ni) has been observed by two different methods. One method was Field Emission Transmission Electron Microscopy (FE-TEM), with developed preparation for in situ observation of a cross-section of the deposited carbon from the base (SUS) to the top. The other method was X-ray Photoelectron Spectroscopy (XPS), obtaining composition-depth profiles by argon ion sputtering. Carbon was deposited on SUS304, 550°C, 1 atm, H 2/CO/CO 2=75/15/10, after drained the steam-reformed natural gas composition. One result from FE-TEM identified the major form of deposited carbon was tubular in shape with a variety of diameters, ranging from approximately 7 to 100 nm. Some tubes contained metallic particles which were about 20 nm in size at their tips. Therefore, it can be established that the carbon deposition mechanism is similar to that reported for metals such as Fe, Ni, and that the deposited carbon can grow after the SUS surface is covered with deposits under the above conditions. Observations from EDX attached to FE-TEM also determined that most of the particles consisted of Fe and from XPS, that the content of Fe on the surface of the reaction plate was lower than on the unreacted sample. This indicates that carbon deposition on stainless steel was influenced by Fe rather than Ni and Cr.
Back-gated Nb-doped MoS2 junctionless field-effect-transistors
NASA Astrophysics Data System (ADS)
Mirabelli, Gioele; Schmidt, Michael; Sheehan, Brendan; Cherkaoui, Karim; Monaghan, Scott; Povey, Ian; McCarthy, Melissa; Bell, Alan P.; Nagle, Roger; Crupi, Felice; Hurley, Paul K.; Duffy, Ray
2016-02-01
Electrical measurements were carried out to measure the performance and evaluate the characteristics of MoS2 flakes doped with Niobium (Nb). The flakes were obtained by mechanical exfoliation and transferred onto 85 nm thick SiO2 oxide and a highly doped Si handle wafer. Ti/Au (5/45 nm) deposited on top of the flake allowed the realization of a back-gate structure, which was analyzed structurally through Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To best of our knowledge this is the first cross-sectional TEM study of exfoliated Nb-doped MoS2 flakes. In fact to date TEM of transition-metal-dichalcogenide flakes is extremely rare in the literature, considering the recent body of work. The devices were then electrically characterized by temperature dependent Ids versus Vds and Ids versus Vbg curves. The temperature dependency of the device shows a semiconductor behavior and, the doping effect by Nb atoms introduces acceptors in the structure, with a p-type concentration 4.3 × 1019 cm-3 measured by Hall effect. The p-type doping is confirmed by all the electrical measurements, making the structure a junctionless transistor. In addition, other parameters regarding the contact resistance between the top metal and MoS2 are extracted thanks to a simple Transfer Length Method (TLM) structure, showing a promising contact resistivity of 1.05 × 10-7 Ω/cm2 and a sheet resistance of 2.36 × 102 Ω/sq.
Cardona, Albert; Saalfeld, Stephan; Preibisch, Stephan; Schmid, Benjamin; Cheng, Anchi; Pulokas, Jim; Tomancak, Pavel; Hartenstein, Volker
2010-01-01
The analysis of microcircuitry (the connectivity at the level of individual neuronal processes and synapses), which is indispensable for our understanding of brain function, is based on serial transmission electron microscopy (TEM) or one of its modern variants. Due to technical limitations, most previous studies that used serial TEM recorded relatively small stacks of individual neurons. As a result, our knowledge of microcircuitry in any nervous system is very limited. We applied the software package TrakEM2 to reconstruct neuronal microcircuitry from TEM sections of a small brain, the early larval brain of Drosophila melanogaster. TrakEM2 enables us to embed the analysis of the TEM image volumes at the microcircuit level into a light microscopically derived neuro-anatomical framework, by registering confocal stacks containing sparsely labeled neural structures with the TEM image volume. We imaged two sets of serial TEM sections of the Drosophila first instar larval brain neuropile and one ventral nerve cord segment, and here report our first results pertaining to Drosophila brain microcircuitry. Terminal neurites fall into a small number of generic classes termed globular, varicose, axiform, and dendritiform. Globular and varicose neurites have large diameter segments that carry almost exclusively presynaptic sites. Dendritiform neurites are thin, highly branched processes that are almost exclusively postsynaptic. Due to the high branching density of dendritiform fibers and the fact that synapses are polyadic, neurites are highly interconnected even within small neuropile volumes. We describe the network motifs most frequently encountered in the Drosophila neuropile. Our study introduces an approach towards a comprehensive anatomical reconstruction of neuronal microcircuitry and delivers microcircuitry comparisons between vertebrate and insect neuropile. PMID:20957184
NASA Astrophysics Data System (ADS)
Desbois, G.; Urai, J. L.; Kukla, P. A.
2009-12-01
Mudrocks and clay-rich fault gouges are important mechanical elements in the Earth’s crust and form seals for crustal fluids such as groundwater and hydrocarbons. Other fields of interest are the storage of anthropogenic carbon dioxide and radioactive waste in geologic formations. In addition, coupled flows, capillary processes, and associated deformation are of importance in many applied fields. A key factor to understanding these processes is a detailed understanding of the morphology of the pore space. Classic studies of porosity in fine grained materials are performed on dried or freeze dried samples and include metal injection methods, magnetic susceptibility measurement, SEM and TEM imaging, neutron scattering, NMR spectroscopy, and ESEM. Confocal microscopy and X-ray tomography are used to image porosity in coarse grained sediments but the resolution of these techniques is not sufficient at present for applications to mudrocks or clay-rich fault gouges. Therefore, observations and interpretations remain difficult because none of these approaches is able to directly describe the in-situ porosity at the pore scale. In addition, some methods require dried samples in which the natural structure of pores may have been damaged to some extent due to desiccation and dehydration of the clay minerals. A recently developed alternative is to study wet samples using a cryo-SEM, which allows stabilization of wet media at cryo-temperature, in-situ sample preparation by ion beam cross-sectioning (BIB, FIB) and observations of the stabilized microstructure at high resolution. We report on a study of Boom clay from a proposed disposal site of radioactive waste (Mol site, Belgium) using cryo-SEM at cryogenic temperature, with ion beam cross-sectioning to prepare smooth, damage free surfaces. Pores commonly have crack-like tips, preferred orientation parallel to bedding and power law size distribution. We define a number of pore types depending on shape and location in the microstructure. 3-D reconstruction by serial cross-sectioning shows 3-D connectivity of the pore space. These findings offer a new insight into the morphology of pores down to nano-scale and provide the basis for microstructure-based models of transport in clays. SEM image (SE) of a Broad Ion Beam polished cross-section performed on dry Boom clay (Mol site, Belgium) showing the 2D apparent porosity (26.3%). The cross-section is perpendicular to the bedding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Jiangdong
The effects of laser shock processing on microstructure, the residual stress, and hot corrosion behavior of the Ni-based superalloy GH202 were investigated. The microstructures of GH202 before and after laser shock processing (LSP) were characterized by electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). A large number of crystal defects (twins, dislocation arrays, and high dense tangles) were generated on the surface of GH202 treated with LSP. The cross-sectional compressive residual stress and micro-hardness of specimens treated by LSP were improved significantly. The corrosion kinetics of GH202 with or without LSP treatment at 800 °C and 900 °C weremore » investigated. Analysis by X-ray diffraction (XRD) revealed that the corrosion products mainly consist of Cr{sub 2}O{sub 3}, TiO{sub 2}, Al{sub 2}O{sub 3}, NiO, CrS, Ni{sub 3}S{sub 2}, and Na{sub 2}CrO{sub 4}. The surface and cross-section morphologies were observed by scanning electron microscope (SEM) combined with energy dispersive spectroscopy (EDS). The results confirmed that the crystal defects induced by LSP promotes the creation of diffusion paths for elements (Cr, Al, and Ti), allowing the formation of tiny homogeneous oxidation films in a very short time. Additionally, the spallation of oxidation film on the treated specimens was alleviated significantly. Overall, the hot corrosion resistance of Ni-based GH202 induced by LSP was improved in Na{sub 2}SO{sub 4} and NaCl molten salt from 800 °C to 900 °C. - Highlights: • Microstructure changes of GH202 before and after LSP were observed by EBSD and TEM. • The hardness and residual compressive stress after LSP were significantly increased. • The increased diffusion paths for elements helped to form oxidation films quickly. • Hot corrosion resistance of GH202 after LSP was significantly improved.« less
ToTem: a tool for variant calling pipeline optimization.
Tom, Nikola; Tom, Ondrej; Malcikova, Jitka; Pavlova, Sarka; Kubesova, Blanka; Rausch, Tobias; Kolarik, Miroslav; Benes, Vladimir; Bystry, Vojtech; Pospisilova, Sarka
2018-06-26
High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user's priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. ToTem is a tool for automated pipeline optimization which is freely available as a web application at https://totem.software .
Resistive switching mechanism of Ag/ZrO2:Cu/Pt memory cell
NASA Astrophysics Data System (ADS)
Long, Shibing; Liu, Qi; Lv, Hangbing; Li, Yingtao; Wang, Yan; Zhang, Sen; Lian, Wentai; Zhang, Kangwei; Wang, Ming; Xie, Hongwei; Liu, Ming
2011-03-01
Resistive switching mechanism of zirconium oxide-based resistive random access memory (RRAM) devices composed of Cu-doped ZrO2 film sandwiched between an oxidizable electrode and an inert electrode was investigated. The Ag/ZrO2:Cu/Pt RRAM devices with crosspoint structure fabricated by e-beam evaporation and e-beam lithography show reproducible bipolar resistive switching. The linear I- V relationship of low resistance state (LRS) and the dependence of LRS resistance ( R ON) and reset current ( I reset) on the set current compliance ( I comp) indicate that the observed resistive switching characteristics of the Ag/ZrO2:Cu/Pt device should be ascribed to the formation and annihilation of localized conductive filaments (CFs). The physical origin of CF was further analyzed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). CFs were directly observed by cross-sectional TEM. According to EDS and elemental mapping analysis, the main chemical composition of CF is determined by Ag atoms, coming from the Ag top electrode. On the basis of these experiments, we propose that the set and reset process of the device stem from the electrochemical reactions in the zirconium oxide under different external electrical stimuli.
Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer
NASA Astrophysics Data System (ADS)
Simões, Sónia; Viana, Filomena; Koçak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.
2012-05-01
In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 °C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Xun; Han, Lizhan; Zhang, Weimin
2015-12-15
Quenching (AQ) and cryogenic treatments (QC) were conducted on the high-carbon SAE 52100 steel to investigate the mechanical stability of individual retained austenite (RA) by nano-indentation. The cross-sections of indented RA region prepared by focused ion beam (FIB) were examined by using transmission electron microscopy (TEM). For the first time, it was directly observed that some parts of RA grain, closest to the indent, in AQ specimen had transformed into strain-induced martensite (SIM). However, not any pop-in or transformation was detected in the indented QC specimen. This clearly indicates that the mechanical stability of RA in QC seems significantly enhanced,more » which is mainly attributed to the cryogenic treatment resulting in a higher carbon enrichment of RA compared to that in AQ. Furthermore, a higher load of external stress may need to trigger its martensitic transformation in QC specimen. - Highlights: • Mechanical stability of retained austenite was studied by nano-indentation and TEM. • The strain-induced martensite transformation in RA was observed under applied load. • Cryogenic treatment enhances mechanical stability of RA due to carbon enrichment.« less
Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo
2015-12-01
In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, E.C.; Dietz, N.L.; Bates, J.K.
Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.
NASA Astrophysics Data System (ADS)
Grogan, Joseph M.
There are many scientifically interesting and technologically relevant nanoscale phenomena that take place in liquid media. Examples include aggregation and assembly of nanoparticles; colloidal crystal formation; liquid phase growth of structures such as nanowires; electrochemical deposition and etching for fabrication processes and battery applications; interfacial phenomena; boiling and cavitation; and biological interactions. Understanding of these fields would benefit greatly from real-time, in situ transmission electron microscope (TEM) imaging with nanoscale resolution. Most liquids cannot be imaged by traditional TEM due to evaporation in the high vacuum environment and the requirement that samples be very thin. Liquid-cell in situ TEM has emerged as an exciting new experimental technique that hermetically seals a thin slice of liquid between two electron transparent membranes to enable TEM imaging of liquid-based processes. This work presents details of the fabrication of a custom-made liquid-cell in situ TEM device, dubbed the nanoaquarium. The nanoaquarium's highlights include an exceptionally thin sample cross section (10s to 100s of nm); wafer scale processing that enables high-yield mass production; robust hermetic sealing that provides leak-free operation without use of glue, epoxy, or any polymers; compatibility with lab-on-chip technology; and on-chip integrated electrodes for sensing and actuation. The fabrication process is described, with an emphasis on direct wafer bonding. Experimental results involving direct observation of colloid aggregation using an aqueous solution of gold nanoparticles are presented. Quantitative analysis of the growth process agrees with prior results and theory, indicating that the experimental technique does not radically alter the observed phenomenon. For the first time, in situ observations of nanoparticles at a contact line and in an evaporating thin film of liquid are reported, with applications for techniques such as dip-coating and drop-casting, commonly used for depositing nanoparticles on a surface via convective-capillary assembly. Theoretical analysis suggests that the observed particle motion and aggregation are caused by gradients in surface tension and disjoining pressure in the thin liquid film.
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Yuan, Biao; Clukay, Christopher J.; Grabill, Christopher N.; Heinrich, Helge; Bhattacharya, Aniket; Kuebler, Stephen M.
2012-02-01
We report on the quantitative analysis of electrolessly deposited Au and Ag nanoparticles (NPs) on SU8 polymer with the help of High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) in tilt series. Au NPs act as nucleating agents for the electroless deposition of silver. Au NPs were prepared by attachingAu^3+cations to amine functionalized SU8 polymeric surfaces and then reducing it with aqueous NaBH4. The nanoscale morphology of the deposited NPs on the surface of polymer has been studied from the dark field TEM cross sectional images. Ag NPs were deposited on the cross-linked polymeric surface from a silver citrate solution reduced by hydroquinone. HAADF-STEM enables us to determine the distances between the NPs and their exact locations at and near the surface. The particle distribution, sizes and densities provide us with the data necessary to control the parameters for the development of the electroless deposition technique for emerging nanoscale technologies.
Ordering and bandgap reduction in InAs{sub 1{minus}x}Sb{sub x} alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follstaedt, D.M.; Biefeld, R.M.; Kurtz, S.R.
1995-02-01
InAs{sub 1{minus}x}Sb{sub x} alloys grown by MBE and MOCVD are found to have reduced emission energies due to CuPt-type order, even for Sb concentrations as low as x = 0.07 ({Delta}E = 25--65 meV). Cross-section TEM examination of such alloys shows the two {l_brace}111{r_brace}{sub B} variants are separated into regions 1--2 {mu}m across with platelet domains 10--40 nm thick on habit planes tilted {approximately}30{center_dot} from the (001) growth surface. Nomarski optical images show a cross-hatched surface pattern expected for lattice-mismatched layers. The local tilt of the surface correlates with the dominant variant in each region. InAs{sub 1{minus}x}Sb{sub x}/In{sub 1{minus}y}Ga{sub y}Asmore » strained-layer superlattices with low Sb content and flat surfaces also show CuPt ordering.« less
Eita, Mohamed; El Sayed, Ramy; Muhammed, Mamoun
2012-12-01
Thin films of polydimethylsiloxane (PDMS) and ZnO quantum dots (QDs) were built up as multilayers by spin-coating. The films are characterized by a UV-blocking ability that increases with increasing number of bilayers. Photoluminescence (PL) emission spectra of the thin films occur at 522 nm, which is the PL wavelength of the ZnO QDs dispersion, but with a lower intensity and a quantum yield (QY) less than 1% that of the dispersion. Cross-linking has introduced new features to the absorption spectra in that the absorption peak was absent. These changes were attributed to the morphological and structural changes revealed by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR), respectively. TEM showed that the ZnO particle size in the film increased from 7 (±2.7) nm to 16 (±7.8) upon cross-linking. The FTIR spectra suggest that ZnO QDs are involved in the cross-linking of PDMS and that the surface of the ZnO QDs has been chemically modified. Copyright © 2012 Elsevier Inc. All rights reserved.
Antifouling activities of β-cyclodextrin stabilized peg based silver nanocomposites
NASA Astrophysics Data System (ADS)
Punitha, N.; Saravanan, P.; Mohan, R.; Ramesh, P. S.
2017-01-01
Self-polishing polymer composites which release metal biocide in a controlled rate have been widely used in the design of antimicrobial agents and antifouling coatings. The present work focuses on the environmental friendly green synthesis of PEG based SNCs and their application to biocidal activity including marine biofouling. Biocompatible polymer β-CD and adhesive resistance polymer PEG were used to functionalize the SNPs and the as synthesized SNCs exhibit excellent micro fouling activities. The structural and optical properties were confirmed by XRD and UV-visible techniques respectively. The particle surface and cross sectional characteristics were examined by SEM-EDS, HR-TEM, AFM and FTIR. The surface potential was evaluated using ZP analysis and assessment of antibiofouling property was investigated using static immersion method.
Magnetically induced orientation of mesochannels in mesoporous silica films at 30 tesla.
Yamauchi, Yusuke; Sawada, Makoto; Komatsu, Masaki; Sugiyama, Atsushi; Osaka, Tetsuya; Hirota, Noriyuki; Sakka, Yoshio; Kuroda, Kazuyuki
2007-12-03
We demonstrate the magnetically induced orientation of mesochannels in mesoporous silica films prepared with low-molecular-weight surfactants under an extremely high magnetic field of 30 T. This process is principally applicable to any type of surfactant that has magnetic anisotropy because such a high magnetic field provides sufficient magnetic energy for smooth magnetic orientation. Hexadecyltrimethylammonium bromide (CTAB) and polyoxyethylene-10-cetyl ether (Brij 56) were used as cationic and nonionic surfactants, respectively. According to XRD and cross-sectional TEM, mesochannels aligned perpendicular to the substrates were observed in films prepared with low-molecular-weight surfactants, although the effect was incomplete. The evolution of these types of films should lead to future applications such as highly sensitive chemical sensors and selective separation.
Fretting wear behavior of zirconium alloy in B-Li water at 300 °C
NASA Astrophysics Data System (ADS)
Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong
2018-02-01
The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.
Characterization of the groundwater aquifers at El Sadat City by joint inversion of VES and TEM data
NASA Astrophysics Data System (ADS)
Massoud, Usama; Kenawy, Abeer A.; Ragab, El-Said A.; Abbas, Abbas M.; El-Kosery, Heba M.
2014-12-01
Vertical Electrical Sounding (VES) and Transient ElectroMagnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo-Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along 3 profiles trending NE-SW with the elongation of the study area. The measuring points were arranged in a grid-like pattern with both inter-station spacing and line-line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geoelectrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water-bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Loeffler, M. J.; Dukes, C. A.; Baragiola, R. A.
2015-01-01
Introduction: The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation. Experimental Methods: We irradiated pressed-powder pellets of San Carlos olivine (Fo(sub 90)) with up to 99 rastered pulses of a GAM ArF excimer laser. The irradiated surface of the sample were characterized by SEM imaging and areas were selected for FIB cross sectioning for TEM study using an FEI Quanta dual-beam electron/focused ion beam instrument. FIB sections were characterized using a JEOL2500SE analytical field-emission scanning transmission electron microscope (FE-STEM) optimized for quantitative element mapping at less than 10 nm spatial resolutions. Results: In the SEM the 99 pulse pressed pellet sample shows a complex, inhomogeneous, distribution of laser-generated material, largely concentrated in narrow gaps and larger depressions between grains. Local concentrations of npFe0 spherules 0.1 to 1 micrometers in size are visible within these deposits in SEM back-scatter images. Fig. 1 shows bright-field STEM images of a FIB cross-section of a one of these deposits that continuously covers the top and sloping side of an olivine grain. The deposit has 3 microstructurally distinct sub-layers composed of silicate glass with varying modal fractions and size distributions of npFe( sup 0) spherules, along with nanocrystalline silicate material. A relatively thin (50-300 nm) topmost surface layer has a high-concentration of npFe0 spherules 5-20 nm in size. Element mapping shows the layer to be enriched in Fe by a factor of 2.5 relative to the olivine substrate, with Mg and Si depleted by 20% and 10% respectively. This is compositionally complementary to the underlying, middle layer of the deposit that is depleted in Fe, enriched in Mg and has a much lower npFe0 concentration. A third layer of nanocrystalline olivine occurs at the substrate interface. Discussion: The FE-STEM results suggest the topmost layer is a vapor deposit, underlain by a thicker microstructurally complex melt-generated layer. The compositional relations suggest the melt layer was partially vaporized, preferentially losing more volatile elements (e.g., Fe). The vaporized material re-condensed to form the thin, npFe(sup 0)-rich surface deposit during or immediately after the scan cycle. Nanocrystalline olivine that grew within the melt layer as it formed and cooled is similar in volume and microstructure to what we have observed in the impact melt lining of a micrometeorite impact crater in olivine. This suggest the time-temperature relations attained in the laser sample may not be too different from a micrometeorite impact. Our TEM observations, however, do not show evidence for the same level of mechanical dam-age (e.g., fracturing) seen around the natural micrometeorite crater.
Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal
NASA Technical Reports Server (NTRS)
Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric
2016-01-01
Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuipers, Jeroen; Boer, Pascal de; Giepmans, Ben N.G., E-mail: b.n.g.giepmans@umcg.nl
Scanning electron microscopy (SEM) is increasing its application in life sciences for electron density measurements of ultrathin sections. These are traditionally analyzed with transmission electron microscopy (TEM); by most labs, SEM analysis still is associated with surface imaging only. Here we report several advantages of SEM for thin sections over TEM, both for structural inspection, as well as analyzing immuno-targeted labels such as quantum dots (QDs) and gold, where we find that QD-labeling is ten times more efficient than gold-labeling. Furthermore, we find that omitting post-staining with uranyl and lead leads to QDs readily detectable over the ultrastructure, but undermore » these conditions ultrastructural contrast was even almost invisible in TEM examination. Importantly, imaging in SEM with STEM detection leads to both outstanding QDs and ultrastructural contrast. STEM imaging is superior over back-scattered electron imaging of these non-contrasted samples, whereas secondary electron detection cannot be used at all. We conclude that examination of ultrathin sections by SEM, which may be immunolabeled with QDs, will allow rapid and straightforward analysis of large fields with more efficient labeling than can be achieved with immunogold. The large fields of view routinely achieved with SEM, but not with TEM, allows straightforward raw data sharing using virtual microscopy, also known as nanotomy when this concerns EM data in the life sciences. - Highlights: • High resolution and large fields of view via nanotomy or virtual microscopy. • Highly relevant for EM‐datasets where information density is high. • Sample preparation with low contrast good for STEM, not TEM. • Quantum dots now stand out in STEM‐based detection. • 10 Times more efficient labeling with quantum dots compared to gold.« less
Magnetization reversal and coercivity of Fe3Se4 nanowire arrays
NASA Astrophysics Data System (ADS)
Li, D.; Li, S. J.; Zhou, Y. T.; Bai, Y.; Zhu, Y. L.; Ren, W. J.; Long, G.; Zeng, H.; Zhang, Z. D.
2015-05-01
The microstructure and magnetic properties of Fe3Se4 nanowire (NW) arrays in anodic aluminum oxide (AAO) porous membrane are studied. Cross-sectional SEM and plane-view TEM images show that the mean wire diameter (dw) and the center-to-center spacing (D) of Fe3Se4 nanowires are about 220 nm and 330 nm, respectively. The field-cooled magnetization dependent on the temperature indicates a Curie temperature around 334 K for the Fe3Se4 nanowires. The coercivities of Fe3Se4 nanowires at 10 K, obtained from the in-plane and out-of-plane hysteresis loops, are as high as 22.4 kOe and 23.3 kOe, which can be understood from the magnetocrystalline anisotropy and the magnetization reversal process.
Surface Selective Oxide Reduction During the Intercritical Annealing of Medium Mn Steel
NASA Astrophysics Data System (ADS)
Jo, Kyoung Rae; Cho, Lawrence; Oh, Jong Han; Kim, Myoung Soo; Kang, Ki Cheol; De Cooman, Bruno C.
2017-08-01
Third generation advanced high-strength steels achieve an excellent strength-ductility balance using a cost-effective alloy composition. During the continuous annealing of medium Mn steel, the formation of an external selective oxide layer of MnO has a negative impact on the coating quality after galvanizing. A procedure to reduce the selective oxide was therefore developed. It involves annealing in the temperature range of 1073 K to 1323 K (800 °C to 1050 °C) in a HNx gas atmosphere. Annealing at higher temperatures and the use of larger H2 volume fractions are shown to make the gas atmosphere reducing with respect to MnO. The reduction of the surface MnO layer was observed by SEM, GDOES, and cross-sectional TEM analysis.
Imaging plasmodesmata with high-resolution scanning electron microscopy.
Barton, Deborah A; Overall, Robyn L
2015-01-01
High-resolution scanning electron microscopy (HRSEM) is an effective tool to investigate the distribution of plasmodesmata within plant cell walls as well as to probe their complex, three-dimensional architecture. It is a useful alternative to traditional transmission electron microscopy (TEM) in which plasmodesmata are sectioned to reveal their internal substructures. Benefits of adopting an HRSEM approach to studies of plasmodesmata are that the specimen preparation methods are less complex and time consuming than for TEM, many plasmodesmata within a large region of tissue can be imaged in a single session, and three-dimensional information is readily available without the need for reconstructing TEM serial sections or employing transmission electron tomography, both of which are lengthy processes. Here we describe methods to prepare plant samples for HRSEM using pre- or postfixation extraction of cellular material in order to visualize plasmodesmata embedded within plant cell walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adikimenakis, A.; Aretouli, K. E.; Tsagaraki, K.
2015-06-28
The spontaneous growth of GaN nanopillars (NPs) by direct plasma-assisted molecular beam epitaxy on nitridated r-plane sapphire substrates has been studied. The emanation of metal-polarity NPs from inside an a-plane nonpolar GaN film was found to depend on both the substrate nitridation and the growth conditions. The density of NPs increased with increasing the duration of the nitridation process and the power applied on the radio-frequency plasma source, as well as the III/V flux ratio, while variation of the first two parameters enhanced the roughness of the substrate's surface. Transmission electron microscopy (TEM) techniques were employed to reveal the structuralmore » characteristics of the NPs and their nucleation mechanism from steps on the sapphire surface and/or interfacial semipolar GaN nanocrystals. Lattice strain measurements showed a possible Al enrichment of the first 5–6 monolayers of the NPs. By combining cross-sectional and plan-view TEM observations, the three-dimensional model of the NPs was constructed. The orientation relationship and interfacial accommodation between the NPs and the nonpolar a-plane GaN film were also elucidated. The NPs exhibited strong and narrow excitonic emission, suggesting an excellent structural quality.« less
NASA Astrophysics Data System (ADS)
Metwaly, Mohamed; El-Qady, Gad; Massoud, Usama; El-Kenawy, Abeer; Matsushima, Jun; Al-Arifi, Nasser
2010-09-01
Siliyin spring is one of the many natural fresh water springs in the Western Desert of Egypt. It is located at the central part of El-Fayoum Delta, which is a potential place for urban developments and touristic activities. Integrated geoelectrical survey was conducted to facilitate mapping the groundwater resources and the shallow subsurface structures in the area. Twenty-eight transient electromagnetic (TEM) soundings, three vertical electrical soundings (VES) and three electrical resistivity tomography (ERT) profiles were carried out around the Siliyin spring location. The dense cultivation, the rugged topography and the existence of infra structure in the area hindered acquiring more data. The TEM data were inverted jointly with the VES and ERT, and constrained by available geological information. Based on the inversion results, a set of geoelectrical cross-sections have been constructed. The shallow sand to sandy clay layer that forms the shallow aquifer has been completely mapped underneath and around the spring area. Flowing of water from the Siliyin spring is interconnected with the lateral lithological changes from clay to sand soil. Exploration of the extension of Siliyin spring zone is recommended. The interpretation emphasizes the importance of integrating the geoelectrical survey with the available geological information to obtain useful, cheap and fast lithological and structural subsurface information.
Atomic structures of B20 FeGe thin films grown on the Si(111) surface
NASA Astrophysics Data System (ADS)
Kim, Wondong; Noh, Seungkyun; Yoon, Jisoo; Kim, Young Heon; Lee, Inho; Kim, Jae-Sung; Hwang, Chanyong
We investigated the growth and atomic structures of FeGe thin films on the Si (111) surface by using scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). The 2 5nm- thick FeGe thin films were prepared on the clean Si(111) 7x7 surface by co-deposition of Fe and Ge from separated electron-beam evaporators. With direct deposition on the substrate at the temperature above 550 K, the surface of FeGe films was not smooth and consisted of coarse grains. By the combination of room-temperature annealing and post-annealing process around 800 K, the structure of FeGe thin films evolved into the well crystalized structures. Atom-resolved STM images revealed that there are at least four different surface terminations. We constructed atomic models for each surface terminations based on the bulk atomic arrangement of a B20 chiral structure and confirmed that the observed STM images are successfully reproduced by using computational simulations employing Vienna Ab Initio Simulation package (VASP) with a B20 chiral structure model. TEM cross-sectional images also support our atomic models by revealing clearly the characteristic zigzag features of B20 structures of FeGe(111) thin films.
Characterisation of melt spun Ni-Ti shape memory Ribbons' microstructure
NASA Astrophysics Data System (ADS)
Mehrabi, Kambiz; Brunčko, Mihael; Kneissl, Albert C.; Čolič, Miodrag; Stamenković, Dragoslav; Ferčec, Janko; Anžel, Ivan; Rudolf, Rebeka
2012-06-01
NiTi alloys are the most technologically important medical Shape Memory Alloys in a wide range of applications used in Orthopaedics, Neurology, Cardiology and interventional Radiology as guide-wires, self-expandable stents, stent grafts, inferior vena cava filters and clinical instruments. This paper discusses the use of rapid solidification by the melt spinning method for the preparation of thin NiTi ribbons for medical uses. Generally, the application of rapid solidification via melt-spinning can change the microstructure drastically, which improves ductility and shape memory characteristics and leads to samples with small dimensions. As the increase in the wheel speed led to a reduced ribbon thickness, the cooling rate increased and, therefore, the martensitic substructure became finer. Furthermore, no transition from the crystalline phase to the amorphous phase was obtained by increasing the cooling rate, even at a wheel speed of 30 m/s. Specimens for our metallographic investigation were cut from the longitudinal cross sections of melt-spun ribbons. Conventional TEM studies were carried out with an acceleration voltage of 120 kV. Additionally, the chemical composition of the samples was examined with a TEM equipped with an EDX analyser. The crystallographic structure was determined using Bragg-Brentano x-ray diffraction with Cu-Kα radiation at room temperature.
Green, Bradley; Yao, Xiaomei; Ganguly, Arindam; Xu, Changqi; Dusevich, Vladimir; Walker, Mary P; Wang, Yong
2010-11-01
Contemporary methods of dentin bonding could create hybrid layers (HLs) containing voids and exposed, demineralised collagen fibres. Proanthocyanidins (PA) have been shown to cross-link and strengthen demineralised dentin collagen, but their effects on collagen degradation within the HL have not been widely studied. The purpose of this study was to compare the morphological differences of HLs created by BisGMA/HEMA model adhesives with and without the addition of grape seed extract PA under conditions of enzymatic collagen degradation. Model adhesives formulated with and without 5% PA were bonded to the acid etched dentin. 5-μm-thick sections cut from the bonded specimens were stained with Goldner's trichrome. The specimens were then exposed to 0.1% collagenase solution for 0, 1, or 6 days. Following collagenase treatment, the specimens were analysed with SEM/TEM. Staining did not reveal a difference in the HLs created with the two adhesives. SEM showed the presence of intact collagen fibrils in all collagenase treatment conditions for specimens bonded with adhesive containing PA. These integral collagen fibrils were not observed in the specimens bonded with adhesive without PA after the same collagenase treatment. TEM confirmed that the specimens containing PA still showed normal collagen fibril organisation and dimensions after treatment with collagenase solution. In contrast, disorganised collagen fibrils in the interfacial zone lacked the typical cross-banding of normal collagen after collagenase treatment for specimens without PA. The presence of grape seed extract PA in dental adhesives may inhibit the biodegradation of unprotected collagen fibrils within the HL. Copyright © 2010 Elsevier Ltd. All rights reserved.
Investigations of stacking fault density in perpendicular recording media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piramanayagam, S. N., E-mail: prem-SN@dsi.a-star.edu.sg; Varghese, Binni; Yang, Yi
In magnetic recording media, the grains or clusters reverse their magnetization over a range of reversal field, resulting in a switching field distribution. In order to achieve high areal densities, it is desirable to understand and minimize such a distribution. Clusters of grains which contain stacking faults (SF) or fcc phase have lower anisotropy, an order lower than those without them. It is believed that such low anisotropy regions reverse their magnetization at a much lower reversal field than the rest of the material with a larger anisotropy. Such clusters/grains cause recording performance deterioration, such as adjacent track erasure andmore » dc noise. Therefore, the observation of clusters that reverse at very low reversal fields (nucleation sites, NS) could give information on the noise and the adjacent track erasure. Potentially, the observed clusters could also provide information on the SF. In this paper, we study the reversal of nucleation sites in granular perpendicular media based on a magnetic force microscope (MFM) methodology and validate the observations with high resolution cross-section transmission electron microscopy (HRTEM) measurements. Samples, wherein a high anisotropy CoPt layer was introduced to control the NS or SF in a systematic way, were evaluated by MFM, TEM, and magnetometry. The magnetic properties indicated that the thickness of the CoPt layer results in an increase of nucleation sites. TEM measurements indicated a correlation between the thickness of CoPt layer and the stacking fault density. A clear correlation was also observed between the MFM results, TEM observations, and the coercivity and nucleation field of the samples, validating the effectiveness of the proposed method in evaluating the nucleation sites which potentially arise from stacking faults.« less
Matsuda, Junko; Kawasaki, Tatsuya; Futamura, Shotaro; Kawabata, Tsutomu; Taniguchi, Shunsuke; Sasaki, Kazunari
2018-05-19
In situ transmission electron microscopy (TEM) observations of a Ni(O)-Sc2O3-stabilized ZrO2 (ScSZ; 10 mol% Sc2O3, 1 mol% CeO2, 89 mol% ZrO2) anode in a solid oxide fuel cell (SOFC) have been performed at high temperatures under a hydrogen/oxygen gas atmosphere using an environmental transmission electron microscope (ETEM); the specimens were removed from cross-sections of the real SOFC by focused ion beam milling and lifting. When heating the NiO-ScSZ anode under a hydrogen atmosphere of 3 mbar in ETEM, nano-pores were formed at the grain boundaries and on the surface of NiO particles at around 400°C due to the volume shrinkage accompanying the reduction of NiO to Ni. Moreover, densification of Ni occurred when increasing the temperature from 600 to 700°C. High-magnification TEM images obtained in the early stages of NiO reduction revealed that the (111) planes of Ni grew almost parallel to the (111) planes of NiO. In the case of heating Ni-ScSZ under an oxygen atmosphere of 3 mbar in ETEM, oxidation of Ni starting from the surface of the particles occurred above 300°C. All Ni particles became polycrystalline NiO after the temperature was increased to 800°C. Volume expansion/contraction by mass transfer to the outside/inside of the Ni particles in the anode during repeated oxidation/reduction seems to result in the agglomeration of Ni catalysts during long-term SOFC operation. We emphasize that our in situ TEM observations will be applied to observe electrochemical reactions in SOFCs under applied electric fields.
A novel approach to TEM preparation with a (7-axis stage) triple-beam FIB-SEM system
NASA Astrophysics Data System (ADS)
Clarke, Jamil J.
2015-10-01
Preparation of lamellae from bulk to grid for Cs-corrected Transmission Electron Microscope (TEM) observation has mostly become routine work on the latest FIB-SEM systems, with standardized techniques that often are left to automation for the initial steps. The finalization of lamellae however, has mostly become, non-routine, non-repeatable and often driven by user experience level in most cases to produce high quality damage-less cross section. Materials processing of the latest technologies, with ever-shrinking Nano-sized structures pose challenges to modern FIB-SEM systems. This can often lead to specialized techniques and hyper-specific functions for producing ultra-thin high quality lamellae that often are lab specific, preventing practical use of such techniques across multiple materials and applications. Several factors that should be incorporated in processing fine structured materials successfully include how the use of electron and ion scan conditions can affect a thin section during ion milling, the type of ion species applied for material processing during the finalization of lamellae with gallium ions or of a smaller ion species type such as Ar/Xe, sample orientation of the lamella during the thinning process which is linked to ion beam incident angle as a direct relationship in the creation of waterfall effects or curtain effects, and how software can be employed to aid in the reduction of these artifacts with reproducible results regardless of FIB-SEM experience for site-specific lift outs. A traditional TEM preparation was performed of a fine structure specimen in pursuit of a process technique to produce a high quality TEM lamella which would address all of the factors mentioned. These new capabilities have been refined and improved upon during the FIB-SEM design and development stages with an end result of a new approach that yields an improvement in quality by the reduction of common ion milling artifacts such as curtain effects, amorphous material, and better pin pointing of the area of interest while reducing overall processing time for the TEM sample preparation process and enhancing repeatability through ease of use via software controls. The development of these new technologies, incorporating a third Ar/Xe ion beam column in conjunction with the electron and gallium ion beam column, a 7-axis stage for enhanced sample orientation with tilt functions in two axes and automated swing control along with a host of additional functions which address the factors aforementioned such as electron and ion scan techniques and curtain effect removal by the use of hardware and software components that are key to reduce typical FIB related artifacts, all of which are called "ACE [Anti Curtaining Effect] Technologies" are explained. The overall developments of these technologies are to address a significant point that productivity, throughput and repeatability are comprised by synergy between the user, application, software and hardware within a FIB-SEM system. The latest Hitachi FIB-SEM platform offers these innovations for reliability, repeatability and high quality lamella preparation for Cs-corrected (S)TEMs.
Trancik, J E; Czernuszka, J T; Merriman, C; Viney, C
2001-09-01
When microstructures are characterized by transmission electron microscopy (TEM), the interpretation of results is facilitated if the material can be sectioned in defined orientations. In the case of fibres, it is especially useful if transverse and longitudinal sections can be obtained reliably. Here we describe a procedure for orienting spider silk and other flexible fibres for TEM investigation. Prior to embedding in epoxy resin, the silk is wound around a notched support made from polyester film. No glue is required. After the silk and its supporting film have been embedded and the resin has been cured the film can be peeled away to reveal nearly perfectly orientated silk threads. Both transverse and longitudinal sections can then be cut with a microtome. The method can be extended to obtain sections at any intermediate orientation.
Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas
2012-01-01
High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S3EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm3 volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S3EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S3EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation. PMID:22523574
Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas
2012-01-01
High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3)EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3) volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3)EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3)EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.
Bareiro, O; Santos, L A
2014-03-01
Nanometric hydroxyapatite (HAp) particles were modified with 5 or 10 wt.% tetraethylorthosilicate (TEOS) solutions in order to prepare polydimethylsiloxane/hydroxyapatite (PDMS/HAp) composites. The surface modification of the HAp particles was studied by transmission electron spectroscopy (TEM) and by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) equipment. The dispersion state of the modified particles in the PDMS matrix was also assessed by SEM. The composite phase composition was characterized by X-ray diffraction (XRD). The composite thermodynamic parameters of cross-linking were analyzed by differential scanning calorimetry (DSC). TEM micrographs and EDS spectra indicated evidence of silica-coating formation on the surface of modified HAp particles. SEM results showed that the HAp particles formed agglomerates in the PDMS matrix. It was found that the introduction of HAp particles into the PDMS changed the enthalpy of cross-linking and the temperature of the beginning of the cross-linking reaction. EDS results indicated that the surface modification of HAp produced composites showing thermodynamic parameters that were more similar to those of unfilled PDMS. Copyright © 2013 Elsevier B.V. All rights reserved.
TEM prospection on quaternary faults: the case of San Ramón Fault (SRF), Central Chile
NASA Astrophysics Data System (ADS)
Estay, N. P.; Yanez, G. A.; Maringue, J. I.
2016-12-01
Quaternary faults are relevant study objects in geosciences to better estimation of seismic risk. Nowadays main efforts are focused on the improvement of paleoseismology and geophysics techniques. At this regard, we present here a TEM prospection of the San Ramón quaternary fault in the southern Andes. This fault has no record of historic activation, however, given its proximity to the Chilean capital, hazardous estimate is mandatory. Evidences of the SRF are restricted to geomorphologic features, and associated secondary faults on the hanging wall block, but any outcrop of the main fault have been identified. To observe the main fault in the basement rock, cover by a 30-100 m sedimentary basin, we carried out a TEM experiment. The best advantage of the TEM methodology compared to other near-surface electrical methods is it capacity to reach greater penetration depth compared to its spatial sampling rate. Taking this advantage, we define a 25x25 m transmitter loop (Tx) and 5x5 m receiver loop (Rx), allowing the suitable resolution to observe the fault core. To reach a deeper penetration depth but keeping high resolution of the shallow parts, we made two complementary measurements, the first with one-turn transmitter loop, and the second with 4-turn transmitter loops, to resolve the early and late times properly. As result we define vertical profiles of 100-150m depth, and including 48 measures (24 of one-turn transmitter loop, and 24 of four-turn transmitter loop), the resulting pseudo 2D image is a 500m profile with depth extent of 150m. In this section we can observe different resistivity domain, with a horizontal continuity in many measures. The experiment allows to cross the sedimentary cover, and observe the top of the basement rock. In the rock domain, it can be observed a high resistivity body, interpreted as a pristine rock, and some extremely low resistivity bodies, that are interpreted as a fractured rock saturated with water, and eventually mapping a fossil/actual hydrothermal flow. These fractured zone is interpreted as the main trace of the fault. Finally, this TEM experiment allow to estimate the associated cumulative slip, as well as the fault geometry of the first 150m, useful for BEM or FEM seismic modeling.
2013-01-01
Background In biomedical research, a huge variety of different techniques is currently available for the structural examination of small specimens, including conventional light microscopy (LM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), microscopic X-ray computed tomography (microCT), and many others. Since every imaging method is physically limited by certain parameters, a correlative use of complementary methods often yields a significant broader range of information. Here we demonstrate the advantages of the correlative use of microCT, light microscopy, and transmission electron microscopy for the analysis of small biological samples. Results We used a small juvenile bivalve mollusc (Mytilus galloprovincialis, approximately 0.8 mm length) to demonstrate the workflow of a correlative examination by microCT, LM serial section analysis, and TEM-re-sectioning. Initially these three datasets were analyzed separately, and subsequently they were fused in one 3D scene. This workflow is very straightforward. The specimen was processed as usual for transmission electron microscopy including post-fixation in osmium tetroxide and embedding in epoxy resin. Subsequently it was imaged with microCT. Post-fixation in osmium tetroxide yielded sufficient X-ray contrast for microCT imaging, since the X-ray absorption of epoxy resin is low. Thereafter, the same specimen was serially sectioned for LM investigation. The serial section images were aligned and specific organ systems were reconstructed based on manual segmentation and surface rendering. According to the region of interest (ROI), specific LM sections were detached from the slides, re-mounted on resin blocks and re-sectioned (ultrathin) for TEM. For analysis, image data from the three different modalities was co-registered into a single 3D scene using the software AMIRA®. We were able to register both the LM section series volume and TEM slices neatly to the microCT dataset, with small geometric deviations occurring only in the peripheral areas of the specimen. Based on co-registered datasets the excretory organs, which were chosen as ROI for this study, could be investigated regarding both their ultrastructure as well as their position in the organism and their spatial relationship to adjacent tissues. We found structures typical for mollusc excretory systems, including ultrafiltration sites at the pericardial wall, and ducts leading from the pericardium towards the kidneys, which exhibit a typical basal infolding system. Conclusions The presented approach allows a comprehensive analysis and presentation of small objects regarding both the overall organization as well as cellular and subcellular details. Although our protocol involves a variety of different equipment and procedures, we maintain that it offers savings in both effort and cost. Co-registration of datasets from different imaging modalities can be accomplished with high-end desktop computers and offers new opportunities for understanding and communicating structural relationships within organisms and tissues. In general, the correlative use of different microscopic imaging techniques will continue to become more widespread in morphological and structural research in zoology. Classical TEM serial section investigations are extremely time consuming, and modern methods for 3D analysis of ultrastructure such as SBF-SEM and FIB-SEM are limited to very small volumes for examination. Thus the re-sectioning of LM sections is suitable for speeding up TEM examination substantially, while microCT could become a key-method for complementing ultrastructural examinations. PMID:23915384
Complete Tem-Tomography: 3D Structure of Gems Cluster
NASA Technical Reports Server (NTRS)
Matsuno, J.; Miyake, A.; Tsuchiyama, A.; Messenger, S.; Nakamura-Messenger, K.
2015-01-01
GEMS (glass with embedded metal and sulfide) grains in interplanetary dust particles (IDPs) are considered to be one of the ubiquitous and fundamental building blocks of solids in the Solar System. They have been considered to be interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk but the elemental and isotopic composition measurements suggest that most of them have been formed in the protoplanetary disk as condensates from high temperature gas. This formation model is also supported by the formation of GEMS-like grains with respect to the size, mineral assemblage, texture and infrared spectrum by condensation experiments from mean GEMS composition materials. Previous GEMS studies were performed only with 2D observation by transmission electron microscopy (TEM) or scanning TEM (STEM). However, the 3D shape and structure of GEMS grains and the spatial distribution of Fe/FeS's has critical information about their formation and origin. Recently, the 3D structure of GEMS grains in ultrathin sections of cluster IDPs was revealed by electron tomography using a TEM/STEM (JEM-2100F, JEOL). However, CT images of thin sections mounted on Cu grids acquired by conventional TEM-tomography are limited to low tilt angles (e. g., less than absolute value of 75 deg. In fact, previous 3D TEM observations of GEMS were affected by some artifacts related to the limited tilt range in the TEM used. Complete tomographic images should be acquired by rotating the sample tilt angle over a range of more than absolute value of 80 deg otherwise the CT images lose their correct structures. In order to constrain the origin and formation process of GEMS grains more clearly, we performed complete electron tomography for GEMS grains. Here we report the sample preparation method we have developed for this study, and the preliminary results.
Automated SEM and TEM sample preparation applied to copper/low k materials
NASA Astrophysics Data System (ADS)
Reyes, R.; Shaapur, F.; Griffiths, D.; Diebold, A. C.; Foran, B.; Raz, E.
2001-01-01
We describe the use of automated microcleaving for preparation of both SEM and TEM samples as done by SELA's new MC500 and TEMstation tools. The MC500 is an automated microcleaving tool that is capable of producing cleaves with 0.25 μm accuracy resulting in SEM-ready samples. The TEMstation is capable of taking a sample output from the MC500 (or from SELA's earlier MC200 tool) and producing a FIB ready slice of 25±5 μm, mounted on a TEM-washer and ready for FIB thinning to electron transparency for TEM analysis. The materials selected for the tool set evaluation mainly included the Cu/TaN/HOSP low-k system. The paper is divided into three sections, experimental approach, SEM preparation and analysis of HOSP low-k, and TEM preparation and analysis of Cu/TaN/HOSP low-k samples. For the samples discussed, data is presented to show the quality of preparation provided by these new automated tools.
New constraints on deformation processes in serpentinite from sub-micron Raman Spectroscopy and TEM
NASA Astrophysics Data System (ADS)
Smith, S. A. F.; Tarling, M.; Rooney, J. S.; Gordon, K. C.; Viti, C.
2017-12-01
Extensive work has been performed to characterize the mineralogical and mechanical properties of the various serpentine minerals (i.e. antigorite, lizardite, chrysotile, polyhedral and polygonal serpentine). However, correct identification of serpentine minerals is often difficult or impossible using conventional analytical techniques such as optical- and SEM-based microscopy, X-ray diffraction and infrared spectroscopy. Transmission Electron Microscopy (TEM) is the best analytical technique to identify the serpentine minerals, but TEM requires complex sample preparation and typically results in very small analysis areas. Sub-micron confocal Raman spectroscopy mapping of polished thin sections provides a quick and relatively inexpensive way of unambiguously distinguishing the main serpentine minerals within their in-situ microstructural context. The combination of high spatial resolution (with a diffraction-limited system, 366 nm), large-area coverage (up to hundreds of microns in each dimension) and ability to map directly on thin sections allows intricate fault rock textures to be imaged at a sample-scale, which can then form the target of more focused TEM work. The potential of sub-micron Raman Spectroscopy + TEM is illustrated by examining sub-micron-scale mineral intergrowths and deformation textures in scaly serpentinites (e.g. dissolution seams, mineral growth in pressure shadows), serpentinite crack-seal veins and polished fault slip surfaces from a serpentinite-bearing mélange in New Zealand. The microstructural information provided by these techniques has yielded new insights into coseismic dehydration and amorphization processes and the interplay between creep and localised rupture in serpentinite shear zones.
Microstructural investigations of the trimmed edge of DP980 steel sheets
NASA Astrophysics Data System (ADS)
Bhattacharya, S.; Green, D. E.; Sohmshetty, R.; Alpas, A. T.
2017-10-01
In order to reduce vehicle weight while maintaining crashworthiness, advanced high strength steels (AHSSs), such as DP980, are extensively used for manufacturing automotive body components. During trimming operations, the high tensile strength of DP980 sheets tends to cause damage of the trim edge of D2 die inserts, which result in deterioration of the edge quality. The objective of this work is to study the damage microstructures at the trimmed edge of DP980 steel sheets as a function of the number of trimming cycles. A mechanical press equipped with AISI D2 tool steel inserts was used to continuously trim 1.4 mm thick sheets of DP980 at a rate of 30 strokes/min. Cross-sectional SEM images of the trimmed edges revealed that the sheared edge quality of the DP980 sheets decreased, indicated by an increase in the burr width, with an increase in the number of trims from 40,000 to 70,000. Plastic strains were estimated using the displacements of the martensite plates within plastic flow fields of ferrite. Site-specific cross-sectional TEM samples, excised from the trimmed edge using the in-situ `lift-out' technique by focused ion-beam (FIB)-milling, revealed cracking at the ferrite/martensite interfaces after 70,000 cycles indicating an increase in the depth of deformation zone possibly due to trimming with a chipped and blunted die edge.
Kuwajima, Masaaki; Mendenhall, John M.; Lindsey, Laurence F.; Harris, Kristen M.
2013-01-01
Transmission-mode scanning electron microscopy (tSEM) on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm2 (65.54 µm per side) at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM) system, which were only 66.59 µm2 (8.160 µm per side) at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm). Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems. PMID:23555711
Characterization of BOR-60 Irradiated 14YWT-NFA1 Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, Tarik A.; Maloy, Stuart Andrew; Aydogan, Eda
2017-02-15
Tubes of FCRD 14YWT-NFA1 Alloy were placed in the BOR-60 reactor and irradiated under a fast flux neutron environment to two conditions: 7 dpa at 360-370 °C and 6 dpa at 385-430 °C. Small sections of the tube were cut and sent to UC Berkeley for nanohardness testing and focused ion beam (FIB) milling of TEM specimens. FIB specimens were sent back to LANL for final FIB milling and TEM imaging. Hardness data and TEM images are presented in this report. This is the first fast reactor neutron irradiated information on the 14YWT-NFA1 alloy.
FIB-tomographic studies on chemical vapor deposition grown SnO2 nanowire arrays on TiO2 (001)
NASA Astrophysics Data System (ADS)
Chen, Haoyun; Liu, Yi; Wu, Hong; Xiong, Xiang; Pan, Jun
2016-12-01
Tin oxide nanowire arrays on titania (001) have been successfully fabricated by chemical vapor deposition of Sn(O t Bu)4 precursor. The morphologies and structures of ordered SnO2 nanowires (NWs) were analyzed by cross-sectional SEM, HR-TEM and AFM. An FIB-tomography technique was applied in order to reconstruct a 3D presentation of ordered SnO2 nanowires. The achieved 3D analysis showed the spatial orientation and angles of ordered SnO2 NWs can be obtained in a one-shot experiment, and the distribution of Au catalysts showed the competition between 1D and 2D growth. The SnO2 nanowire arrays can be potentially used as a diameter- and surface-dependent sensing unit for the detection of gas- and bio-molecules.
Development and characterization analysis of a radar polarimeter
NASA Technical Reports Server (NTRS)
Bong, S.; Blanchard, A. J.
1983-01-01
The interaction of electromagnetic waves with natural earth surface was of interest for many years. A particular area of interest in controlled remote sensing experiments is the phenomena of depolarization. The development stages of the radar system are documented. Also included are the laboratory procedures which provides some information about the specifications of the system. The radar system developed is termed the Radar Polarimeter System. A better insight of the operation of the RPS in terms of the newly developed technique--synthetic aperture radar system is provided. System performance in tems of radar cross section, in terms of power, and in terms of signal to noise ratio are also provided. In summary, an overview of the RPS in terms of its operation and design as well as how it will perform in the field is provided.
A novel self-aligned oxygen (SALOX) implanted SOI MOSFET device structure
NASA Astrophysics Data System (ADS)
Tzeng, J. C.; Baerg, W.; Ting, C.; Siu, B.
The morphology of the novel self-aligned oxygen implanted SOI (SALOX SOI) [1] MOSFET was studied. The channel silicon of SALOX SOI was confirmed to be undamaged single crystal silicon and was connected with the substrate. Buried oxide formed by oxygen implantation in this SALOX SOI structure was shown by a cross section transmission electron micrograph (X-TEM) to be amorphous. The source/drain silicon on top of the buried oxide was single crystal, as shown by the transmission electron diffraction (TED) pattern. The source/drain regions were elevated due to the buried oxide volume expansion. A sharp silicon—silicon dioxide interface between the source/drain silicon and buried oxide was observed by Auger electron spectroscopy (AES). Well behaved n-MOS transistor current voltage characteristics were obtained and showed no I-V kink.
Growth of ZnMgTe/ZnTe waveguide structures on ZnTe (0 0 1) substrates by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Kumagai, Y.; Imada, S.; Baba, T.; Kobayashi, M.
2011-05-01
ZnMgTe/ZnTe/ZnMgTe layered structures were grown on (0 0 1) ZnTe substrates by molecular beam epitaxy. This structure was designed to apply to waveguides in various optoelectronic devices to reduce light loss. Since the lattice mismatch between ZnTe and ZnMgTe was not negligible, the critical layer thickness (CLT) was theoretically derived. Structures with varying Mg composition and layer thickness of ZnMgTe cladding layer were grown and examined for crystal quality with respect to theoretical data. The crystal quality was investigated by means of cross sectional transmission electron microscopy (TEM) and reciprocal space mapping (RSM). Optical confinements were observed by irradiating a laser beam from one end of the sample and monitoring the transmitted light from the other end.
Dual-Beam Sample Preparation | Materials Science | NREL
images showing cutting of trenches to remove a wafer section and transferring that section to a grid post section and transferring that section to a grid post. Here the wafer section is lifted out and seen from , extracted from the wafer then transferred and welded to a TEM grid post. Final thinning down to a thickness
Airborne geophysical surveys conducted in western Nebraska, 2010: contractor reports and data
,
2014-01-01
This report contains three contractor reports and data files for an airborne electromagnetic survey flown from June 28 to July 7, 2010. The first report; “SkyTEM Survey: Nebraska, USA, Data” describes data aquisition and processing from a time-domain electromagnetic and magnetic survey performed by SkyTEM Canada, Inc. (the North American SkyTEM subsidiary), in western Nebraska, USA. Digital data for this report are given in Appendix 1. The airborne geophysical data from the SkyTEM survey subsequently were processed and inverted by Aarhus Geophysics ApS, Aarhus, Denmark, to produce resistivity depth sections along each flight line. The result of that processing is described in two reports presented in Appendix 2, “Processing and inversion of SkyTEM data from USGS Area UTM–13” and “Processing and inversion of SkyTEM data from USGS Area UTM–14.” Funding for these surveys was provided by the North Platte Natural Resources District, the South Platte Natural Resources District, and the Twin Platte Natural Resources District, in Scottsbluff, Sidney, and North Platte, Nebraska, respectively. Any additional information concerning the geophysical data may be obtained from the U.S. Geological Survey Crustal Geophysics and Geochemistry Science Center, Denver Colorado.
Immunogold Staining of Ultrathin Thawed Cryosections for Transmission Electron Microscopy (TEM).
Skepper, Jeremy N; Powell, Janet M
2008-06-01
INTRODUCTIONA pre-embedding method of immunochemical staining is used if antigens are damaged by resin embedding, or if the best preservation of membranes is required. Applying immunogold reagents to sections of lightly fixed tissue, free of embedding medium, can be a very sensitive method of immunochemical staining. Cells or tissues are fixed as strongly as possible and then treated with a cryoprotectant, which is usually a mixture of sucrose and polyvinylpyrrolidone (PVP). They are frozen onto pins in liquid nitrogen and sectioned at approximately -100°C. The frozen sections are thaw-mounted on to Formvar/nickel film grids and the cryoprotectant is removed by floating the grids on drops of phosphate-buffered saline (PBS). The immunogold staining is performed on the unembedded sections, which are subsequently contrast counterstained and infiltrated with a mixture of methylcellulose and uranyl acetate. In this protocol, samples are sectioned at low temperature, thaw-mounted onto film grids, immunochemically stained, contrast counterstained, and embedded/encapsulated in situ on the grid before viewing by transmission electron microscopy (TEM).
Bobik, Krzysztof; Dunlap, John R.; Burch-Smith, Tessa M.
2014-01-01
Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but this protocol is reliable and produces samples of the highest quality. PMID:25350384
TEM-induced gene mutations at enzyme loci in the mouse.
Soares, E R
1979-01-01
Strain DBA/2J male mice were treated with triethylenemelamine (TEM) and subsequently mated to strain C57BL/6J females. Tissues from F1 progeny produced in these crosses were then examined using starch gel electrophoresis for the presence of presumed induced mutations at a series of 11 specific enzyme loci. In the course of this study, four heritable mutations were identified at the following loci: Es-1, Ldh-1, Pgm-1, and Gpi-1. Of these four, the first two were apparently segregating in parental males and were not TEM-induced. Both of these are viable and fertile in the heterozygous and homozygous condition, and neither confers any readily apparent deleterious effect to the animal. The latter mutations (Pgm-1 and Gpi-1) are presumably induced. Although viable and fertile in the heterozygous state, we have not recovered any offsping homozygous for either of these two mutations.
NASA Astrophysics Data System (ADS)
Chevalier, A.; Rejiba, F.; Schamper, C.; Thiesson, J.; Hovhannissian, G.
2016-12-01
From airborne applications to field scale measurements of Transient Electromagnetic Methods(TEM), an accurate knowledge of the sensitivity of the inductive coil sensors (system response) is aprerequisite to interpret the measured transient magnetic flux density into a subsurface distributionof conductivity. The system response is a term that refers to the cumulative effect of inductive andcapacitive couplings (cross-talks) between each component constituting a TEM apparatus and thenearby conductive structures. As a result, the frequency sensitivity of the voltage coil sensor (Rx)along with the emitted current waveform in the current emitting coil (Tx) are controlled by thegeometry and electronic characteristic of the set-up as well as the near surface electromagneticproperties. During the early development of an innovative airborne TEM solutions (French nationalTEMas project), determining the coil geometries and the impedance matching between all parts ofthe transmission link (electronic parts and coils) for various environmental set-ups, has been a majorissue. In this study, we review the required theoretical framework and propose a versatile numericalmethodology to ease the coil design and impedance matching process while extending ourunderstanding of short-time transient that operates from DC to moderately high frequencies (0 to 20Mhz). We used a full Maxwell equations FDTD model along with a semi-analytical 1D modeler to infercoils emitting and receiving properties, for various coil geometries and site-dependent conditions.Results highlight the influence of the environment on the emitting and sensing properties. Theincreasing effects of cross-talks between the Tx and the Rx coils depending on their size is shown.Strategies regarding the impedance adaptation between the electronical components and the coilsensors are then discussed for different geophysical specifications.
NASA Astrophysics Data System (ADS)
Bishop, S. M.; Reynolds, C. L.; Liliental-Weber, Z.; Uprety, Y.; Zhu, J.; Wang, D.; Park, M.; Molstad, J. C.; Barnhardt, D. E.; Shrivastava, A.; Sudarshan, T. S.; Davis, R. F.
2007-04-01
The polytype and surface and defect microstructure of epitaxial layers grown on 4H( {11}overline{{2}} {0} ), 4H(0001) on-axis, 4H(0001) 8° off-axis, and 6H(0001) on-axis substrates have been investigated. High-resolution x-ray diffraction (XRD) revealed the epitaxial layers on 4H( {11}overline{{2}} {0} ) and 4H(0001) 8° off-axis to have the 4H-SiC (silicon carbide) polytype, while the 3C-SiC polytype was identified for epitaxial layers on 4H(0001) and 6H(0001) on-axis substrates. Cathodoluminescence (CL), Raman spectroscopy, and transmission electron microscopy (TEM) confirmed these results. The epitaxial surface of 4H( {11}overline{{2}} {0} ) films was specular with a roughness of 0.16-nm root-mean-square (RMS), in contrast to the surfaces of the other epitaxial layer-substrate orientations, which contained curvilinear boundaries, growth pits (˜3 × 104 cm-2), triangular defects >100 μm, and significant step bunching. Molten KOH etching revealed large defect densities within 4H( {11}overline{{2}} {0} ) films that decreased with film thickness to ˜106 cm-2 at 2.5 μm, while cross-sectional TEM studies showed areas free of defects and an indistinguishable film-substrate interface for 4H( {11}overline{{2}} {0} ) epitaxial layers.
Safari, Marzieh; Mozaffari Nejad, Amir Sasan; Bahador, Abas; Jafari, Rasool; Alikhani, Mohammad Yousef
2015-01-01
The aim of this study was to investigate the prevalence of ESBL and MBL encoding genes among A. baumannii isolates. In this cross sectional study, 100 A. baumannii strains were isolated from ICU wards of 3 educational hospitals of Hamadan City, Iran in 2011. Phenotypic identification of the production of ESBLs and MBLs has been carried out by using E-test and DDST methods, respectively. PCR technique was used for amplification of the ESBL and MBL encoding genes, namely: CTX-M, SHV, TEM, OXA-51, VIM-Family, IMP-Family, SPM-1, SIM-1, and GIM-1. Eighty seven (87%), 95 (95%), 98 (98%) and 95 (95%) out of 100 A. baumannii isolates were resistant to imipenem, meropenem, ceftazidime and cefotaxime, respectively. Also, 99% and 7% of the isolates were MBLs and ESBLs produced phenotypically. Thirty (30%), 20 (20%) and 58 (58%) out of 100 A. baumannii isolates have been confirmed to harbor the blaVIM-family, TEM and SHV genes, respectively. Our results show no significant relationship between the detected gens with production of MBLs and ESBLs in spite of high prevalence of MBL encoding and drug resistant A. baumannii. Probably some other genes rather than what we studied are involved in phenotypic production of MBLs and ESBLs and subsequent drug resistance in Hamadan area, Iran. PMID:26150748
NASA Astrophysics Data System (ADS)
Xie, Qiu-Rong; Zhang, Jian; Yin, Dong-Min; Guo, Qi-Xun; Li, Ning
2015-12-01
Polycrystalline pyrochlore Lu2Ti2O7 pellets are irradiated with 600-keV Kr3+ ions up to a fluence of 1.45 × 1016 Kr3+/cm2. Irradiation induced structural modifications are examined by using grazing incidence x-ray diffraction (GIXRD) and cross-sectional transmission electron microscopy (TEM). The GIXRD reveals that amorphous fraction increases with the increase of fluences up to 2 × 1015 Kr3+/cm2, and the results are explained with a direct-impact model. However, when the irradiation fluence is higher than 2 × 1015 Kr3+/cm2, the amorphous fraction reaches a saturation of ∼80%. Further TEM observations imply that nano-crystal is formed with a diameter of ∼10 nm within the irradiation layer at a fluence of 4 × 1015 Kr3+/cm2. No full amorphization is achieved even at the highest fluence of 1.45 × 1016 Kr3+/cm2 (∼36 displacement per atom). The high irradiation resistance of pyrochlore Lu2Ti2O7 at higher fluence is explained on the basis of enhanced radiation tolerance of nano-crystal structure. Project sponsored by the National Natural Science Foundation of China (Grant No. 11205128) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2012121034).
NASA Astrophysics Data System (ADS)
Yin, Cun-hong; Liang, Yi-long; Jiang, Yun; Yang, Ming; Long, Shao-lei
2017-11-01
The microstructures of 20CrNi2Mo steel underneath the contact surface were examined after dry sliding. Scanning Electronic Microscopy (SEM), Transmission Electron Microscopy (TEM), Electron Backscattered Diffraction (EBSD) and an ultra-micro-hardness tester were used to characterize the worn surface and dry sliding wear-induced layer. Martensite laths were ultra-refined due to cumulative strains and a large strain gradient that occurred during cyclic loading in wear near the surface. The microstructure evolution in dominant abrasive wear differs from that in adhesive wear. In dominant abrasive wear, only bent martensite laths with high-density deformation dislocations were observed. In contrast, in dominant adhesive wear, gradient structures were formed along the depth from the wear surface. Cross-sectional TEM foils were prepared in a focused ion beam (FIB) to observe the gradient structures in a dry sliding wear-induced layer at depths of approximately 1-5 μm and 5-20 μm. The gradient structures contained nano-laminated structures with an average thickness of 30-50 nm and bent martensite laths. We found that the original martensite laths coordinated with the strain energy and provided origin boundaries for the formation of gradient structures. Geometrically necessary boundaries (GNBs) and isolated dislocation boundaries (IDBs) play important roles in forming the nano-laminated structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun
Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffermore » layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 10 8 cm –2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (f T) of 8.9 GHz and a maximum frequency of oscillation (f max) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.« less
Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...
2016-09-21
Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffermore » layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 10 8 cm –2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (f T) of 8.9 GHz and a maximum frequency of oscillation (f max) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.« less
Preparation of herpes simplex virus-infected primary neurons for transmission electron microscopy.
Miranda-Saksena, Monica; Boadle, Ross; Cunningham, Anthony L
2014-01-01
Transmission electron microscopy (TEM) provides the resolution necessary to identify both viruses and subcellular components of cells infected with many types of viruses, including herpes simplex virus. Recognized as a powerful tool in both diagnostic and research-based virology laboratories, TEM has made possible the identification of new viruses and has contributed to the elucidation of virus life cycle and virus-host cell interaction. Whilst there are many sample preparation techniques for TEM, conventional processing using chemical fixation and resin embedding remains a useful technique, available in virtually all EM laboratories, for studying virus/cell ultrastructure. In this chapter, we describe the preparation of herpes simplex virus-infected primary neurons, grown on plastic cover slips, to allow sectioning of neurons and axons in their growth plane. This technique allows TEM examination of cell bodies, axons, growth cones, and varicosities, providing powerful insights into virus-cell interaction.
A joint TEM-HLEM geophysical approach to borehole sitting in deeply weathered granitic terrains.
Meju, M A; Fontes, S L; Ulugergerli, E U; La Terra, E F; Germano, C R; Carvalho, R M
2001-01-01
The accurate location of aquiferous fracture zones in granite beneath a > 50 m thick weathered mantle in semi-arid regions is a major hydrogeological problem. It is expected that the zone of intensive fracturing will be more susceptible to weathering and thus be characterized by the thickest development of saprolite, a good electrically conductive target for deep-probing electromagnetic systems. The single-loop transient electromagnetic (TEM) technique is well known to have the capability for detecting concealed steep mineralized targets in mining environments and can be adapted to this hydrogeological problem. We propose that combining the conventional frequency-domain horizontal-loop electromagnetic (HLEM) and single-loop TEM is an effective practical approach to locating concealed aquiferous fracture zones. In the supporting case studies presented here, we deployed multifrequency HLEM profiling (with 50 m transmitter-receiver separation) and TEM soundings with contiguous 10 or 20 m sided loops along the survey lines in a granitic terrain affected by deep (> 50 m) weathering in northeast Brazil. A somewhat layered structure consisting of resistive hardpan/leached zone, conductive saprolite, and resistive basement is identifiable in the typical TEM depth sounding data. We obtained coincident HLEM and TEM anomalies at all the sites, enabling a relatively straightforward selection of potential drilling positions. Simple resistivity-depth transformation of the TEM data was done for each site, yielding an approximate section from which drilling depths were estimated. All of the boreholes located were successful. Although our results appear to indicate that the single-loop TEM method could be used independently for borehole sitting in deeply weathered granitic terrains and that the weathering profile over granite can be mapped using TEM depth soundings of appropriate observational bandwidth, we recommend a joint electromagnetic approach for optimal well sitting.
Valentin, Lars; Sharp, Hannah; Hille, Katja; Seibt, Uwe; Fischer, Jennie; Pfeifer, Yvonne; Michael, Geovana Brenner; Nickel, Silke; Schmiedel, Judith; Falgenhauer, Linda; Friese, Anika; Bauerfeind, Rolf; Roesler, Uwe; Imirzalioglu, Can; Chakraborty, Trinad; Helmuth, Reiner; Valenza, Giuseppe; Werner, Guido; Schwarz, Stefan; Guerra, Beatriz; Appel, Bernd; Kreienbrock, Lothar; Käsbohrer, Annemarie
2014-10-01
Escherichia (E.) coli producing extended-spectrum beta-lactamases (ESBLs) are an increasing problem for public health. The success of ESBLs may be due to spread of ESBL-producing bacterial clones, transfer of ESBL gene-carrying plasmids or exchange of ESBL encoding genes on mobile elements. This makes it difficult to identify transmission routes and sources for ESBL-producing bacteria. The objectives of this study were to compare the distribution of genotypic and phenotypic properties of E. coli isolates from different animal and human sources collected in studies in the scope of the national research project RESET. ESBL-producing E. coli from two longitudinal and four cross-sectional studies in broiler, swine and cattle farms, a cross-sectional and a case-control study in humans and diagnostic isolates from humans and animals were used. In the RESET consortium, all laboratories followed harmonized methodologies for antimicrobial susceptibility testing, confirmation of the ESBL phenotype, specific PCR assays for the detection of bla(TEM), bla(CTX), and bla(SHV) genes and sequence analysis of the complete ESBL gene as well as a multiplex PCR for the detection of the four major phylogenetic groups of E. coli. Most ESBL genes were found in both, human and non-human populations but quantitative differences for distinct ESBL-types were detectable. The enzymes CTX-M-1 (63.3% of all animal isolates, 29.3% of all human isolates), CTX-M-15 (17.7% vs. 48.0%) and CTX-M-14 (5.3% vs. 8.7%) were the most common ones. More than 70% of the animal isolates and more than 50% of the human isolates contained the broadly distributed ESBL genes bla(CTX-M-1), bla(CTX-M-15), or the combinations bla(SHV-12)+bla(TEM) or bla(CTX-M-1)+bla(TEM). While the majority of animal isolates carried bla(CTX-M-1) (37.5%) or the combination bla(CTX-M-1)+bla(TEM) (25.8%), this was the case for only 16.7% and 12.6%, respectively, of the human isolates. In contrast, 28.2% of the human isolates carried bla(CTX-M-15) compared to 10.8% of the animal isolates. When grouping data by ESBL types and phylogroups bla(CTX-M-1) genes, mostly combined with phylogroup A or B1, were detected frequently in all settings. In contrast, bla(CTX-M-15) genes common in human and animal populations were mainly combined with phylogroup A, but not with the more virulent phylogroup B2 with the exception of companion animals, where a few isolates were detectable. When E. coli subtype definition included ESBL types, phylogenetic grouping and antimicrobial susceptibility data, the proportion of isolates allocated to common clusters was markedly reduced. Nevertheless, relevant proportions of same subtypes were detected in isolates from the human and livestock and companion animal populations included in this study, suggesting exchange of bacteria or bacterial genes between these populations or a common reservoir. In addition, these results clearly showed that there is some similarity between ESBL genes, and bacterial properties in isolates from the different populations. Finally, our current approach provides good insight into common and population-specific clusters, which can be used as a basis for the selection of ESBL-producing isolates from interesting clusters for further detailed characterizations, e.g. by whole genome sequencing. Copyright © 2014 The Authors. Published by Elsevier GmbH.. All rights reserved.
Platinum blue as an alternative to uranyl acetate for staining in transmission electron microscopy.
Inaga, Sumire; Katsumoto, Tetsuo; Tanaka, Keiichi; Kameie, Toshio; Nakane, Hironobu; Naguro, Tomonori
2007-04-01
This paper introduces an aqueous solution of platinum blue (Pt-blue) as an alternative to uranyl acetate (UA) for staining in transmission electron microscopy (TEM). Pt-blue was prepared from a reaction of cis-dichlorodiamine-platinum (II) (cis-platin) with thymidine. When Pt-blue was dried on a microgrid and observed by TEM it showed a uniform appearance with tiny particles less than 1 nm in diameter. The effect of Pt-blue as an electron stain was then examined not only for positive staining of conventional ultrathin resin sections and counterstaining of post-embedding immuno-electron microscopy but also for negative staining. In ultrathin sections of the rat liver and renal glomerulus, Pt-blue provided good contrast images, especially in double staining combined with a lead stain (Pb). Almost all cell organelles were clearly observed with high contrast in these sections. Glycogen granules in the hepatic parenchymal cells were particularly electron dense in Pt-blue stained sections compared with those treated with UA. In longitudinal and transverse sections of budding influenza A viruses, a specific arrangement of rod-like structures, which correspond to the ribonucleoprotein complexes, was clearly shown in each virion stained with Pt-blue and Pb. When post-embedding immunoelectron microscopy was performed in ultrathin sections of HeLa cells embedded in Lowicryl K4M, the localization of Ki-67 protein was sufficiently detected even after Pt-blue and Pb staining. The present study also revealed that Pt-blue could be used for the negative staining of E. coli, allowing the visualization of a flagellum. These findings indicate that Pt-blue is a useful, safe, and easily obtainable electron stain that is an alternative to UA for TEM preparations.
Kim, Jin-wook; Furukawa, Yoko; Daulton, Tyrone L.; Lavoie, Dawn L.; Newell, Steven W.
2003-01-01
Microstructural changes induced by the microbial reduction of Fe(III) in nontronite by Shewanella oneidensis were studied using environmental cell (EC)-transmission electron microscopy (TEM), conventional TEM, and X-ray powder diffraction (XRD). Direct observations of clays by EC-TEM in their hydrated state allowed for the first time an accurate and unambiguous TEM measurement of basal layer spacings and the contraction of layer spacing caused by microbial effects, most likely those of Fe(III) reduction. Non-reduced and Fe(III)-reduced nontronite, observed by EC-TEM, exhibited fringes with mean d001 spacings of 1.50 nm (standard deviation, σ = 0.08 nm) and 1.26 nm (σ = 0.10 nm), respectively. In comparison, the same samples embedded with Nanoplast resin, sectioned by microtome, and observed using conventional TEM, displayed layer spacings of 1.0–1.1 nm (non-reduced) and 1.0 nm (reduced). The results from Nanoplast-embedded samples are typical of conventional TEM studies, which have measured nearly identical layer spacings regardless of Fe oxidation state. Following Fe(III) reduction, both EC- and conventional TEM showed an increase in the order of nontronite selected area electron diffraction patterns while the images exhibited fewer wavy fringes and fewer layer terminations. An increase in stacking order in reduced nontronite was also suggested by XRD measurements. In particular, the ratio of the valley to peak intensity (v/p) of the 1.7 nm basal 001 peak of ethylene glycolated nontronite was measured at 0.65 (non-reduced) and 0.85 (microbially reduced).
Electron tomography of whole cultured cells using novel transmission electron imaging technique.
Okumura, Taiga; Shoji, Minami; Hisada, Akiko; Ominami, Yusuke; Ito, Sukehiro; Ushiki, Tatsuo; Nakajima, Masato; Ohshima, Takashi
2018-01-01
Since a three-dimensional (3D) cellular ultrastructure is significant for biological functions, it has been investigated using various electron microscopic techniques. Although transmission electron microscopy (TEM)-based techniques are traditionally used, cells must be embedded in resin and sliced into ultrathin sections in sample preparation processes. Block-face observation using a scanning electron microscope (SEM) has also been recently applied to 3D observation of cellular components, but this is a destructive inspection and does not allow re-examination. Therefore, we developed electron tomography using a transmission electron imaging technique called Plate-TEM. With Plate-TEM, the cells cultured directly on a scintillator plate are inserted into a conventional SEM equipped with a Plate-TEM observation system, and their internal structures are observed by detecting scintillation light produced by electrons passing through the cells. This technology has the following four advantages. First, the cells cultured on the plate can be observed at electron-microscopic resolution since they remain on the plate. Second, both surface and internal information can be obtained simultaneously by using electron- and photo-detectors, respectively, because a Plate-TEM detector is installed in an SEM. Third, the cells on the scintillator plate can also be inspected using light microscopy because the plate has transparent features. Finally, correlative observation with other techniques, such as conventional TEM, is possible after Plate-TEM observation because Plate-TEM is a non-destructive analysis technique. We also designed a sample stage to tilt the samples for tomography with Plate-TEM, by which 3D organization of cellular structures can be visualized as a whole cell. In the present study, Mm2T cells were investigated using our tomography system, resulting in 3D visualization of cell organelles such as mitochondria, lipid droplets, and microvilli. Correlative observations with various imaging techniques were also conducted by successive observations with light microscopy, SEM, Plate-TEM, and conventional TEM. Consequently, the Plate-TEM tomography technique encourages understanding of cellular structures at high resolution, which can contribute to cellular biological research. Copyright © 2017 Elsevier Ltd. All rights reserved.
2011-01-01
Present work reports the elongation of spherical Ni nanoparticles (NPs) parallel to each other, due to bombardment with 120 MeV Au+9 ions at a fluence of 5 × 1013 ions/cm2. The Ni NPs embedded in silica matrix have been prepared by atom beam sputtering technique and subsequent annealing. The elongation of Ni NPs due to interaction with Au+9 ions as investigated by cross-sectional transmission electron microscopy (TEM) shows a strong dependence on initial Ni particle size and is explained on the basis of thermal spike model. Irradiation induces a change from single crystalline nature of spherical particles to polycrystalline nature of elongated particles. Magnetization measurements indicate that changes in coercivity (Hc) and remanence ratio (Mr/Ms) are stronger in the ion beam direction due to the preferential easy axis of elongated particles in the beam direction. PMID:21711659
RIE-based Pattern Transfer Using Nanoparticle Arrays as Etch Masks
NASA Astrophysics Data System (ADS)
Hogg, Chip; Majetich, Sara A.; Bain, James A.
2009-03-01
Nanomasking is used to transfer the pattern of a self-assembled array of nanoparticles into an underlying thin film, for potential use as bit-patterned media. We have used this process to investigate the limits of pattern transfer, as a function of gap size in the pattern. Reactive Ion Etching (RIE) is our chosen process, since the gaseous reaction products and high chemical selectivity are ideal features for etching very small gaps. Interstitial surfactant is removed with an O2 plasma, allowing the etchants to penetrate between the particles. Their pattern is transferred into an intermediate SiO2 mask using a CH4-based RIE. This patterned SiO2 layer is finally used as a mask for the MeOH-based RIE which patterns the magnetic film. We present cross-sectional TEM characterization of the etch profiles, as well as magnetic characterization of the film before and after patterning.
Nitridation of silicon by nitrogen neutral beam
NASA Astrophysics Data System (ADS)
Hara, Yasuhiro; Shimizu, Tomohiro; Shingubara, Shoso
2016-02-01
Silicon nitridation was investigated at room temperature using a nitrogen neutral beam (NB) extracted at acceleration voltages of less than 100 V. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of a Si3N4 layer on a Si (1 0 0) substrate when the acceleration voltage was higher than 20 V. The XPS depth profile indicated that nitrogen diffused to a depth of 36 nm for acceleration voltages of 60 V and higher. The thickness of the silicon nitrided layer increased with the acceleration voltages from 20 V to 60 V. Cross-sectional transmission electron microscopy (TEM) analysis indicated a Si3N4 layer thickness of 3.1 nm was obtained at an acceleration voltage of 100 V. Moreover, it was proved that the nitrided silicon layer formed by the nitrogen NB at room temperature was effective as the passivation film in the wet etching process.
NASA Astrophysics Data System (ADS)
Jany, B. R.; Janas, A.; Krok, F.
2017-11-01
The quantitative composition of metal alloy nanowires on InSb(001) semiconductor surface and gold nanostructures on germanium surface is determined by blind source separation (BSS) machine learning (ML) method using non negative matrix factorization (NMF) from energy dispersive X-ray spectroscopy (EDX) spectrum image maps measured in a scanning electron microscope (SEM). The BSS method blindly decomposes the collected EDX spectrum image into three source components, which correspond directly to the X-ray signals coming from the supported metal nanostructures, bulk semiconductor signal and carbon background. The recovered quantitative composition is validated by detailed Monte Carlo simulations and is confirmed by separate cross-sectional TEM EDX measurements of the nanostructures. This shows that SEM EDX measurements together with machine learning blind source separation processing could be successfully used for the nanostructures quantitative chemical composition determination.
NASA Astrophysics Data System (ADS)
Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan
2018-05-01
In this study, we carried out the transition experiments of graphite-like (GL) to fullerene-like (FL) structures by placing high temperature steel substrates in the depositing environment which can form FL hydrogenated carbon films. We investigated the changes of bond mixtures, H content, aromatic clusters and internal stress at the transition process, and proposed the transformation mechanism inferred from Raman, TEM cross-section, FTIR and XPS results. It was found that the size of aromatic clusters and accordingly graphene planes and the formation of edge dangling bonds were the key steps. H+ bombardment leaded to the splitting of large graphene planes (at GL stage) into more and smaller planes (at FL stage) and the formation of edge dangling bonds; Some of these dangling bonds were reduced by the formation of pentagons and subsequent curving of the smaller planes, which were an indicator of FL structures.
The Microstructure of Lunar Micrometeorite Impact Craters
NASA Technical Reports Server (NTRS)
Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.
2016-01-01
The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.
CAEDS--Computer-Aided Engineering and Architectural Design System.
1982-08-01
elements " Annotation " Points " Lines " Polygons " Polyhedron " Group of elements Modification of above (changes or deletions) Line-weighting, cross...Research Laboratory, Champaign, IL, CERL-TR-E-153, June 1979. (4) "ARCH:MODEL, Version 1-2, Geometric Modeling Relational Database Sys- tem
TEM studies of plasma nitrided austenitic stainless steel.
Stróz, D; Psoda, M
2010-03-01
Cross-sectional transmission electron microscopy and X-ray phase analysis were used to study the structure of a layer formed during nitriding the AISI 316L stainless steel at temperature 440 degrees C. It was found that the applied treatment led to the formation of 6-microm-thick layer of the S-phase. There is no evidence of CrN precipitation. The X-ray diffraction experiments proved that the occurred austenite lattice expansion - due to nitrogen atoms - depended on the crystallographic direction. The cross-sectional transmission electron microscopy studies showed that the layer consisted of a single cubic phase that contained a lot of defects such as dislocations, stacking faults, slip bands and twins. The high-resolution electron microscopy observations were applied to study the defect formation due to the nitriding process. It was shown that the presence of great number of stacking faults leads to formation of nanotwins. Weak, forbidden {100} reflections were still another characteristic feature of the S-phase. These were not detected in the X-ray spectra of the phase. Basing on the high-resolution electron microscopy studies it can be suggested that the short-range ordering of the nitrogen atoms in the octahedral sites inside the f.c.c. matrix lattice takes place and gives rise to appearance of these spots. It is suggested that the cubic lattice undergoes not only expansion but also slight rombohedral distortion that explains differences in the lattice expansion for different crystallographic directions.
Space Weathering of Intermediate-Size Soil Grains in Immature Apollo 17 Soil 71061
NASA Technical Reports Server (NTRS)
Wentworth, S. J.; Robinson, G. A.; McKay, D. S.
2005-01-01
Understanding space weathering, which is caused by micrometeorite impacts, implantation of solar wind gases, radiation damage, chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputter erosion and deposition, continues to be a primary objective of lunar sample research. Electron beam studies of space weathering have focused on space weathering effects on individual glasses and minerals from the finest size fractions of lunar soils [1] and patinas on lunar rocks [2]. We are beginning a new study of space weathering of intermediate-size individual mineral grains from lunar soils. For this initial work, we chose an immature soil (see below) in order to maximize the probability that some individual grains are relatively unweathered. The likelihood of identifying a range of relatively unweathered grains in a mature soil is low, and we plan to study grains ranging from pristine to highly weathered in order to determine the progression of space weathering. Future studies will include grains from mature soils. We are currently in the process of documenting splash glass, glass pancakes, craters, and accretionary particles (glass and mineral grains) on plagioclase from our chosen soil using high-resolution field emission scanning electron microscopy (FESEM). These studies are being done concurrently with our studies of patinas on larger lunar rocks [e.g., 3]. One of our major goals is to correlate the evidence for space weathering observed in studies of the surfaces of samples with the evidence demonstrated at higher resolution (TEM) using cross-sections of samples. For example, TEM studies verified the existence of vapor deposits on soil grains [1]; we do not yet know if they can be readily distinguished by surfaces studies of samples. A wide range of textures of rims on soil grains is also clear in TEM [1]; might it be possible to correlate them with specific characteristics of weathering features seen in SEM?
III-nitride nanopyramid light emitting diodes grown by organometallic vapor phase epitaxy
NASA Astrophysics Data System (ADS)
Wildeson, Isaac H.; Colby, Robert; Ewoldt, David A.; Liang, Zhiwen; Zakharov, Dmitri N.; Zaluzec, Nestor J.; García, R. Edwin; Stach, Eric A.; Sands, Timothy D.
2010-08-01
Nanopyramid light emitting diodes (LEDs) have been synthesized by selective area organometallic vapor phase epitaxy. Self-organized porous anodic alumina is used to pattern the dielectric growth templates via reactive ion etching, eliminating the need for lithographic processes. (In,Ga)N quantum well growth occurs primarily on the six {11¯01} semipolar facets of each of the nanopyramids, while coherent (In,Ga)N quantum dots with heights of up to ˜20 nm are incorporated at the apex by controlling growth conditions. Transmission electron microscopy (TEM) indicates that the (In,Ga)N active regions of the nanopyramid heterostructures are completely dislocation-free. Temperature-dependent continuous-wave photoluminescence of nanopyramid heterostructures yields a peak emission wavelength of 617 nm and 605 nm at 300 K and 4 K, respectively. The peak emission energy varies with increasing temperature with a double S-shaped profile, which is attributed to either the presence of two types of InN-rich features within the nanopyramids or a contribution from the commonly observed yellow defect luminescence close to 300 K. TEM cross-sections reveal continuous planar defects in the (In,Ga)N quantum wells and GaN cladding layers grown at 650-780 °C, present in 38% of the nanopyramid heterostructures. Plan-view TEM of the planar defects confirms that these defects do not terminate within the nanopyramids. During the growth of p-GaN, the structure of the nanopyramid LEDs changed from pyramidal to a partially coalesced film as the thickness requirements for an undepleted p-GaN layer result in nanopyramid impingement. Continuous-wave electroluminescence of nanopyramid LEDs reveals a 45 nm redshift in comparison to a thin-film LED, suggesting higher InN incorporation in the nanopyramid LEDs. These results strongly encourage future investigations of III-nitride nanoheteroepitaxy as an approach for creating efficient long wavelength LEDs.
NASA Astrophysics Data System (ADS)
Bai, Xiao
Hydroxyapatite [Ca10(PO4)6(OH) 2, HA] has been widely applied as a coating on various biomedical bone/dental implants to improve biocompatibility and bioactivity. It has been observed that primary reasons leading to implantation failure of commercial HA coated implants processed by plasma spraying are the poor mechanical properties of coatings and infections accompanied by implantation. It has been also reported an ideal coating should be able to stimulate new bone growth at the initial stage of implantation and stay stable both mechanically and chemically thereafter. This research has investigated a functionally graded hydroxyapatite (FGHA) coating that is capable of improving the stability of implants, facilitating recovery, and preventing infections after implantation. A series of FGHA coatings with incorporated Ag 0 ˜ 13.53 wt. % has been deposited onto Ti substrate using ion beam assisted deposition (IBAD) with in-situ heat treatment. The compositional, microstructural, mechanical, and biological properties of coatings have been analyzed via various tests. The relationship among processing parameters, coating properties and biological behaviors has been established and the processing parameters for processing FGHA coatings with/without incorporated Ag have been optimized. Microstructure observations of coating cross section via transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) for set temperature coatings deposited at 450°C ˜ 750°C reveals that in-situ substrate temperature is the primary factor controlling the crystallinity of the coatings. The microstructure observation of cross section via TEM/STEM for both FGHA coatings with/without incorporated Ag has shown that coatings are dense and have a gradually decreased crystallinity from substrate/coating interface to top surface. In particular, the interface has an atomically intermixed structure; the region near the interface has a columnar grain structure whereas the region near coating top surface is mostly amorphous. TEM/STEM observation of FGHA coating with incorporated Ag has also demonstrated that the metallic silver particles in size of 10 ˜ 50 nm distribute at the coating cross section throughout the coating thickness. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis have shown that coatings consist of HA and various calcium phosphate compounds. The pull off tests have shown that the average adhesion strength of FGHA coatings (both with and without Ag) to substrate are in the range of 83.44 +/- 5.71 ˜ 89.36 +/- 5.13 MPa. Further optical observation of pull off area of coating shows that no coating delamination is observed and epoxy failure is dominant, indicating a well-boned interface and a strong coating itself. It has been concluded that the high adhesion strength of coating to substrate is attributed to the atomic intermixed interface and dense structure of coating, which is resulted from the increased mobility of coating atoms at high substrate temperature under bombardment of assisted ion beam. Culture tests have shown a distinct increase in osteoblast cell attachment to FGHA surface after 24 hours culture test when compared to blank Ti controls. Both calcium and silver release tests of Ag-doped FGHA coatings have shown the release rate is high at the initial stage and it steadily decreases, which is the expected performance of FGHA coatings. Antibacterial test using S. aureus has revealed that Ag doped FGHA coatings show an inhibitory effect when compared to coating without Ag and blank Ti. In particular, with higher amounts of Ag in coatings, the inhibition of S. aureus is stronger. Cytotoxicity test indicates that the FGHA coating with the highest amounts of Ag shows a negative effect on the osteoblast response.
Micro-CT scouting for transmission electron microscopy of human tissue specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, A. G.; Stempinski, E. S.; XIAO, X.
Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. Here, we describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 m resolution was used to determine the location of patches of themore » mucous membrane in osmium-stained human nasal scraping samples. Furthermore, once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. Lay description Electron microscopy provides very high levels of detail in a small area, and thus the question of where to look in an opaque sample, such as a stained tissue specimen, needs to be answered by sectioning the sample in small steps and examining the sections under a light microscope, until the region of interest is found. The search process can be lengthy and labor intensive, especially for a study involving a large number of samples. Small areas of interest can be missed in the process if not enough regions are examined. We also describe a method to directly locate the region of interest within a whole sample using micro-CT imaging, bypassing the need of blindly sectioning. Micro-CT enables locating the region within 3D space; this information provides a guide for sectioning the sample to expose that precise location for high resolution electron microscopy imaging. In a human tissue specimen study, this method considerably reduced the time and labor of the search process.« less
Micro-CT scouting for transmission electron microscopy of human tissue specimens
Morales, A. G.; Stempinski, E. S.; XIAO, X.; ...
2016-02-08
Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. Here, we describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 m resolution was used to determine the location of patches of themore » mucous membrane in osmium-stained human nasal scraping samples. Furthermore, once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. Lay description Electron microscopy provides very high levels of detail in a small area, and thus the question of where to look in an opaque sample, such as a stained tissue specimen, needs to be answered by sectioning the sample in small steps and examining the sections under a light microscope, until the region of interest is found. The search process can be lengthy and labor intensive, especially for a study involving a large number of samples. Small areas of interest can be missed in the process if not enough regions are examined. We also describe a method to directly locate the region of interest within a whole sample using micro-CT imaging, bypassing the need of blindly sectioning. Micro-CT enables locating the region within 3D space; this information provides a guide for sectioning the sample to expose that precise location for high resolution electron microscopy imaging. In a human tissue specimen study, this method considerably reduced the time and labor of the search process.« less
NASA Astrophysics Data System (ADS)
Gallheber, B.-C.; Klein, O.; Fischer, M.; Schreck, M.
2017-06-01
In the present study, systematic correlations were revealed between the propagation direction of threading dislocations, the off-axis growth conditions, and the stress state of heteroepitaxial diamond on Ir/YSZ/Si(111). Measurements of the strain tensor ɛ ⃡ by X-ray diffraction and the subsequent calculation of the tensor of intrinsic stress σ ⃡ showed stress-free samples as well as symmetric biaxial stress states for on-axis samples. Transmission electron microscopy (TEM) lamellas were prepared for plan-view studies along the [ 1 ¯ 1 ¯ 1 ¯ ] direction and for cross-section investigations along the [11 2 ¯ ] and [1 1 ¯ 0] zone axes. For samples grown on-axis with parameters which avoid the formation of intrinsic stress, the majority of dislocations have line vectors clearly aligned along [111]. A sudden change to conditions that promote stress formation is correlated with an abrupt bending of the dislocations away from [111]. This behaviour is in nice agreement with the predictions of a model that attributes formation of intrinsic stress to an effective climb of dislocations. Further growth experiments under off-axis conditions revealed the generation of stress states with pronounced in-plane anisotropy of several Gigapascal. Their formation is attributed to the combined action of two basic processes, i.e., the step flow driven dislocation tilting and the temperature dependent effective climb of dislocations. Again, our interpretation is supported by the dislocation propagation derived from TEM observations.
Electronic properties and morphology of copper oxide/n-type silicon heterostructures
NASA Astrophysics Data System (ADS)
Lindberg, P. F.; Gorantla, S. M.; Gunnæs, A. E.; Svensson, B. G.; Monakhov, E. V.
2017-08-01
Silicon-based tandem heterojunction solar cells utilizing cuprous oxide (Cu2O) as the top absorber layer show promise for high-efficiency conversion and low production cost. In the present study, single phase Cu2O films have been realized on n-type Si substrates by reactive magnetron sputtering at 400 °C. The obtained Cu2O/Si heterostructures have subsequently been heat treated at temperatures in the 400-700 °C range in Ar flow and extensively characterized by x-ray diffraction (XRD) measurements, transmission electron microscopy (TEM) imaging and electrical techniques. The Cu2O/Si heterojunction exhibits a current rectification of ~5 orders of magnitude between forward and reverse bias voltages. High resolution cross-sectional TEM-images show the presence of a ~2 nm thick interfacial SiO2 layer between Cu2O and the Si substrate. Heat treatments below 550 °C result in gradual improvement of crystallinity, indicated by XRD. At and above 550 °C, partial phase transition to cupric oxide (CuO) occurs followed by a complete transition at 700 °C. No increase or decrease of the SiO2 layer is observed after the heat treatment at 550 °C. Finally, a thin Cu-silicide layer (Cu3Si) emerges below the SiO2 layer upon annealing at 550 °C. This silicide layer influences the lateral current and voltage distributions, as evidenced by an increasing effective area of the heterojunction diodes.
Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent
NASA Astrophysics Data System (ADS)
Park, H.; Kim, J. W.; Lee, J. W.
2017-12-01
Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.
Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction
NASA Technical Reports Server (NTRS)
Daulton, Tyrone L.; Little, Brenda J.; Lowe, Kristine; Jones-Meehan, Joanne
2002-01-01
Electron energy loss spectroscopy (EELS) techniques were used to determine oxidation state, at high spatial resolution, of chromium associated with the metal-reducing bacteria, Shewanella oneidensis, in anaerobic cultures containing Cr(VI)O4(2-). These techniques were applied to fixed cells examined in thin section by conventional transmission electron microscopy (TEM) as well as unfixed, hydrated bacteria examined by environmental cell (EC)-TEM. Two distinct populations of bacteria were observed by TEM: bacteria exhibiting low image contrast and bacteria exhibiting high contrast in their cell membrane (or boundary) structure which was often encrusted with high-contrast precipitates. Measurements by EELS demonstrated that cell boundaries became saturated with low concentrations of Cr and the precipitates encrusting bacterial cells contained a reduced form of Cr in oxidation state + 3 or lower.
Characterization of some biological specimens using TEM and SEM
NASA Astrophysics Data System (ADS)
Ghosh, Nabarun; Smith, Don W.
2009-05-01
The advent of novel techniques using the Transmission and Scanning Electron Microscopes improved observation on various biological specimens to characterize them. We studied some biological specimens using Transmission and Scanning Electron Microscopes. We followed negative staining technique with Phosphotungstic acid using bacterial culture of Bacillus subtilis. Negative staining is very convenient technique to view the structural morphology of different samples including bacteria, phage viruses and filaments in a cell. We could observe the bacterial cell wall and flagellum very well when trapped the negative stained biofilm from bacterial culture on a TEM grid. We cut ultra thin sections from the fixed root tips of Pisum sativum (Garden pea). Root tips were pre fixed with osmium tetroxide and post fixed with uranium acetate and placed in the BEEM capsule for block making. The ultrathin sections on the grid under TEM showed the granular chromatin in the nucleus. The protein bodies and large vacuoles with the storage materials were conspicuous. We followed fixation, critical point drying and sputter coating with gold to view the tissues with SEM after placing on stubs. SEM view of the leaf surface of a dangerous weed Tragia hispida showed the surface trichomes. These trichomes when break on touching releases poisonous content causing skin irritation. The cultured tissue from in vitro culture of Albizia lebbeck, a tree revealed the regenerative structures including leaf buds and stomata on the tissue surface. SEM and TEM allow investigating the minute details characteristic morphological features that can be used for classroom teaching.
An ultrastructural analysis of the epithelial-fiber interface (EFI) in primate lenses.
Kuszak, J R; Novak, L A; Brown, H G
1995-11-01
The purpose of this study was to conduct a comprehensive ultrastructural analysis of the epithelial-fiber interface (EFI) in normal adult primate (Macaque nemestrina and fascicularis; 6-9 years old, n = 10) lenses. Scanning electron microscopy (SEM) was used to initially characterize the gross size, shape and three-dimensional organization of central zone (cz) epithelial cells and the anterior ends of elongating fibers beneath these cells. This fiducial information was essential to properly orient lens pieces in freeze fracture specimen carriers for the production of replicas with unambiguously identifiable EFI. Transmission electron microscopy (TEM) of replicas and thin-sectioned material were used to ultrastructurally analyse the cz EFI. TEM thin-sectioned material was also used to ultrastructurally analyse the pregerminative (pgz), germinative (gz) and transitional zone (tz) EFI. Correlative SEM and TEM of cz EFI components revealed that the apical membrane of both epithelial and elongating fiber cells were irregularly polygonal in shape, and aligned in parallel as smooth, concave-convex surfaces. However, whereas epithelial cell apical surfaces had minimal size variation, elongating fibers were larger and considerably variable in size. Quantitative analysis of > 10000 micron2 cz elongating fiber apical surfaces failed to detect any gap junctions defined in freeze fracture replicas as complementary aggregates of transmembrane proteins (connexons) conjoined across a narrowed extracellular space. However, a comparable frequency of vesicular events was noted in this region as quantified previously in adult and embryonic chick lens. Correlative TEM analysis > 1500 linear micrometers of thin-sectioned EFI from this region confirmed the presence of epithelial-epithelial gap junctions, elongating fiber-elongating fiber gap junctions, and an extreme paucity of epithelial-elongating fiber gap junctions. In contrast, TEM analysis of > 1000 linear micrometers of thin-sectioned pgz, gz and tz EFI, confirmed the presence of epithelial-epithelial gap junctions, elongating fiber-elongating fiber gap junctions, numerous epithelial-elongating fiber adherens junctions and a few epithelial-elongating fiber gap junctions. Thus, the results of this and previous quantitative morphological and physiological studies (electronic and dye coupling) demonstrate that there is limited coupling between cz epithelial cells and underlying elongating fibers. Furthermore, the absence of gap junctional plaques in cz EFI freeze-fracture replicas and either pentalaminar or septalaminar profiles in correlative thin-sections, suggests that this limited coupling could be mediated via isolated gap junction channels. However, the results of this and previous quantitative studies further show that a greater degree of coupling exists across the pgz, gz and tz regions of the EFI and that this coupling is likely to be mediated by gap junction plaques. Finally, this and other studies continue to demonstrate that transcytotic processes play a role in lens physiology at the EFI.
STEM Tomography Imaging of Hypertrophied Golgi Stacks in Mucilage-Secreting Cells.
Kang, Byung-Ho
2016-01-01
Because of the weak penetrating power of electrons, the signal-to-noise ratio of a transmission electron micrograph (TEM) worsens as section thickness increases. This problem is alleviated by the use of the scanning transmission electron microscopy (STEM). Tomography analyses using STEM of thick sections from yeast and mammalian cells are of higher quality than are bright-field (BF) images. In this study, we compared regular BF tomograms and STEM tomograms from 500-nm thick sections from hypertrophied Golgi stacks of alfalfa root cap cells. Due to their thickness and intense heavy metal staining, BF tomograms of the thick sections suffer from poor contrast and high noise levels. We were able to mitigate these drawbacks by using STEM tomography. When we performed STEM tomography of densely stained chloroplasts of Arabidopsis cotyledon, we observed similar improvements relative to BF tomograms. A longer time is required to collect a STEM tilt series than similar BF TEM images, and dynamic autofocusing required for STEM imaging often fails at high tilt angles. Despite these limitations, STEM tomography is a powerful method for analyzing structures of large or dense organelles of plant cells.
Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2
NASA Technical Reports Server (NTRS)
Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.
2010-01-01
To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish .
NASA Technical Reports Server (NTRS)
Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.
2009-01-01
To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settens, Charles M.
2015-01-01
Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron criticalmore » dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.« less
Dopant mapping in thin FIB prepared silicon samples by Off-Axis Electron Holography.
Pantzer, Adi; Vakahy, Atsmon; Eliyahou, Zohar; Levi, George; Horvitz, Dror; Kohn, Amit
2014-03-01
Modern semiconductor devices function due to accurate dopant distribution. Off-Axis Electron Holography (OAEH) in the transmission electron microscope (TEM) can map quantitatively the electrostatic potential in semiconductors with high spatial resolution. For the microelectronics industry, ongoing reduction of device dimensions, 3D device geometry, and failure analysis of specific devices require preparation of thin TEM samples, under 70 nm thick, by focused ion beam (FIB). Such thicknesses, which are considerably thinner than the values reported to date in the literature, are challenging due to FIB induced damage and surface depletion effects. Here, we report on preparation of TEM samples of silicon PN junctions in the FIB completed by low-energy (5 keV) ion milling, which reduced amorphization of the silicon to 10nm thick. Additional perpendicular FIB sectioning enabled a direct measurement of the TEM sample thickness in order to determine accurately the crystalline thickness of the sample. Consequently, we find that the low-energy milling also resulted in a negligible thickness of electrically inactive regions, approximately 4nm thick. The influence of TEM sample thickness, FIB induced damage and doping concentrations on the accuracy of the OAEH measurements were examined by comparison to secondary ion mass spectrometry measurements as well as to 1D and 3D simulations of the electrostatic potentials. We conclude that for TEM samples down to 100 nm thick, OAEH measurements of Si-based PN junctions, for the doping levels examined here, resulted in quantitative mapping of potential variations, within ~0.1 V. For thinner TEM samples, down to 20 nm thick, mapping of potential variations is qualitative, due to a reduced accuracy of ~0.3 V. This article is dedicated to the memory of Zohar Eliyahou. Copyright © 2014 Elsevier B.V. All rights reserved.
Processing grounded-wire TEM signal in time-frequency-pseudo-seismic domain: A new paradigm
NASA Astrophysics Data System (ADS)
Khan, M. Y.; Xue, G. Q.; Chen, W.; Huasen, Z.
2017-12-01
Grounded-wire TEM has received great attention in mineral, hydrocarbon and hydrogeological investigations for the last several years. Conventionally, TEM soundings have been presented as apparent resistivity curves as function of time. With development of sophisticated computational algorithms, it became possible to extract more realistic geoelectric information by applying inversion programs to 1-D & 3-D problems. Here, we analyze grounded-wire TEM data by carrying out analysis in time, frequency and pseudo-seismic domain supported by borehole information. At first, H, K, A & Q type geoelectric models are processed using a proven inversion program (1-D Occam inversion). Second, time-to-frequency transformation is conducted from TEM ρa(t) curves to magneto telluric MT ρa(f) curves for the same models based on all-time apparent resistivity curves. Third, 1-D Bostick's algorithm was applied to the transformed resistivity. Finally, EM diffusion field is transformed into propagating wave field obeying the standard wave equation using wavelet transformation technique and constructed pseudo-seismic section. The transformed seismic-like wave indicates that some reflection and refraction phenomena appear when the EM wave field interacts with geoelectric interface at different depth intervals due to contrast in resistivity. The resolution of the transformed TEM data is significantly improved in comparison to apparent resistivity plots. A case study illustrates the successful hydrogeophysical application of proposed approach in recovering water-filled mined-out area in a coal field located in Ye county, Henan province, China. The results support the introduction of pseudo-seismic imaging technology in short-offset version of TEM which can also be an useful aid if integrated with seismic reflection technique to explore possibilities for high resolution EM imaging in future.
Oviedo-Rondón, E O; Small, J; Wineland, M J; Christensen, V L; Mozdziak, P S; Koci, M D; Funderburk, S V L; Ort, D T; Mann, K M
2008-11-01
1. Four experiments were conducted to evaluate the effects of temperature (TEM) and oxygen (O(2)) concentrations during the last 4 d of incubation on bone development. Fertile eggs from two strains were obtained that either exhibited Low or High eggshell conductance (G). 2. Four experimental cabinets provided either four TEM (36, 37, 38 or 39 degrees C) or four O(2) concentrations (17, 19, 21 or 23% O(2)). Data were analysed as a 2 x 2 factorial design. In the fourth experiment, two temperatures (36 and 39 degrees C), two O(2) concentrations (17 and 23%) and the same Low and High G strains were evaluated in a 2 x 2 x 2 factorial design. 3. Body weights (BW) and residual yolks were obtained, both legs were dissected. Femur, tibia and shank weights, length and thickness were recorded. Relative asymmetry (RA) of each leg section was calculated. 4. The results indicated that elevated TEM during incubation increased RA between the two legs, mainly in the Low G strain. Chickens at the lowest O(2) concentrations had lighter and shorter tibias, lighter shanks, and increased RA of femur length compared to chickens in the 23% O(2). In the fourth experiment no interactions were observed between O(2) and TEM. High TEM depressed BW of Low G broilers, but no significant effect of treatments was observed on BW of High G broilers. Nevertheless, the high TEM or low O(2) independently caused reduced femur and tibia weights and length, shank length and thickness, and both low O(2) and high TEM together increased RA in shank weight. 5. These results suggest that late incubation conditions affect long bone development in broilers.
A Flow-Channel Analysis for the Mars Hopper
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Spencer Cooley
The Mars Hopper is an exploratory vehicle designed to fly on Mars using carbon dioxide from the Martian atmosphere as a rocket propellant. The propellent gasses are thermally heated while traversing a radioisotope ther- mal rocket (RTR) engine’s core. This core is comprised of a radioisotope surrounded by a heat capacitive material interspersed with tubes for the propellant to travel through. These tubes, or flow channels, can be manu- factured in various cross-sectional shapes such as a special four-point star or the traditional circle. Analytical heat transfer and computational fluid dynamics (CFD) anal- yses were performed using flow channels withmore » either a circle or a star cross- sectional shape. The nominal total inlet pressure was specified at 2,805,000 Pa; and the outlet pressure was set to 2,785,000 Pa. The CO2 inlet tem- perature was 300 K; and the channel wall was 1200 K. The steady-state CFD simulations computed the smooth-walled star shape’s outlet temper- ature to be 959 K on the finest mesh. The smooth-walled circle’s outlet temperature was 902 K. A circle with a surface roughness specification at 0.01 mm gave 946 K and at 0.1 mm yielded 989 K. The The effects of a slightly varied inlet pressure were also examined. The analytical calculations were based on the mass flow rates computed in the CFD simulations and provided significantly higher outlet temperature results while displaying the same comparison trends. Research relating to the flow channel heat transfer studies was also done. Mathematical methods to geometrically match the cross-sectional areas of the circle and star, along with a square and equilateral triangle, were derived. A Wolfram Mathematica 8 module was programmed to analyze CFD results using Richardson Extrapolation and calculate the grid convergence index (GCI). A Mathematica notebook, also composed, computes and graphs the bulk mean temperature along a flow channel’s length while the user dynam- ically provides the input variables, allowing their effects on the temperature to be more easily observed.« less
Cellulose-silica/gold nanomaterials for electronic applications.
Kim, Gwang-Hoon; Ramesh, Sivalingam; Kim, Joo-Hyung; Jung, Dongsoo; Kim, Heung Soo
2014-10-01
Cellulose and one dimensional nano-material composite has been investigated for various industrial applications due to their optical, mechanical and electrical properties. In present investigation, cellulose/silica and silica-gold hybrid biomaterials were prepared by sol-gel covalent cross-linking process. The tetraethoxysiliane (TEOS) and gold precursors and γ-aminopropyltriethoxysilane (γ-APTES) as coupling agent were used for sol-gel cross-linking process. The chemical and morphological properties of cellulose/silica and cellulose/silica-gold nano-materials via covalent cross-linking hybrids were confirmed by FTIR, XRD, SEM, and TEM analysis. In the sol-gel process, the inorganic particles were dispersed in the cellulose host matrix at the nanometer scale, bonding to the cellulose through the covalent bonds.
Two-photon absorption and efficient encapsulation of near-infrared-emitting CdSexTe1-x quantum dots
NASA Astrophysics Data System (ADS)
Szeremeta, Janusz; Lamch, Lukasz; Wawrzynczyk, Dominika; Wilk, Kazimiera A.; Samoc, Marek; Nyk, Marcin
2015-07-01
Hydrophobic CdSexTe1-x quantum dots with near infrared emission in the 700-750 nm range were synthesized by a wet chemistry technique. Their nonlinear optical properties were studied using Z-scan technique with a tunable femtosecond laser system. The peak value of the two-photon absorption cross section was found to be ∼2400 GM at 1400 nm. To demonstrate a possible way of utilizing the CdSexTe1-x quantum dots in aqueous environment we describe here a convenient method of preparation of Brij 58® micellar systems loaded with the quantum dots. The obtained nanoconstructs were characterized using optical spectroscopy, TEM and DLS. The micelles colloidal stability, and the influence of the encapsulation process on the spectroscopic properties of the quantum dots are discussed. In particular, we have observed a 60 nm blue-shift of the emission maxima upon loading quantum dots inside the micelles.
Cao, Jing; Fu, Wuyou; Yang, Haibin; Yu, Qingjiang; Zhang, Yanyan; Liu, Shikai; Sun, Peng; Zhou, Xiaoming; Leng, Yan; Wang, Shuangming; Liu, Bingbing; Zou, Guangtian
2009-04-09
Actinomorphic tubular ZnO/CoFe(2)O(4) nanocomposites were fabricated in large scale via a simple solution method at low temperature. The phase structures, morphologies, particle size, shell thickness, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The as-synthesized nanocomposites were uniformly dispersed into the phenolic resin then the mixture was pasted on metal plate with the area of 200 mm x 200 mm as the microwave absorption test plate. The test of microwave absorption was carried out by the radar-absorbing materials (RAM) reflectivity far field radar cross-section (RCS) method. The range of microwave absorption is from 2 to 18 Hz and the best microwave absorption reach to 28.2 dB at 8.5 Hz. The results indicate that the composites are of excellence with respect to microwave absorption.
Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings
NASA Astrophysics Data System (ADS)
Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine
2010-03-01
Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.
Effects of fluoride residue on thermal stability in Cu/porous low-k interconnects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Y.; Ozaki, S.; Nakamura, T.
2014-06-19
We have investigated the effects of fluoride residue on the thermal stability of a Cu/barrier metal (BM)/porous low-k film (k < 2.3) structure. We confirmed that the Cu agglomerated more on a BM/inter layer dielectric (ILD) with a fluoride residue. To consider the effect of fluoride residue on Cu agglomeration, the structural state at the Cu/BM interface was evaluated with a cross-section transmission electron microscope (TEM) and atomic force microscope (AFM). In addition, the chemical bonding state at the Cu/BM interface was evaluated with the interface peeling-off method and X-ray photoelectron spectroscopy (XPS). Moreover, we confirmed the ionization of fluoridemore » residue and oxidation of Cu with fluoride and moisture to clarify the effect of fluoride residue on Cu. Our experimental results indicated that the thermal stability in Cu/porous low-k interconnects was degraded by enhancement of Cu oxidation with fluoride ions diffusion as an oxidizing catalyst.« less
Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping
2017-03-07
Transparent Er 3+ -doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH - ) content. Enhanced 2.7 μm emission was achieved from Er 3+ -doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO 2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er 3+ -doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10 -20 cm 2 ). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers.
High-Yield Synthesis of Stoichiometric Boron Nitride Nanostructures
Nocua, José E.; Piazza, Fabrice; Weiner, Brad R.; ...
2009-01-01
Boron nimore » tride (BN) nanostructures are structural analogues of carbon nanostructures but have completely different bonding character and structural defects. They are chemically inert, electrically insulating, and potentially important in mechanical applications that include the strengthening of light structural materials. These applications require the reliable production of bulk amounts of pure BN nanostructures in order to be able to reinforce large quantities of structural materials, hence the need for the development of high-yield synthesis methods of pure BN nanostructures. Using borazine ( B 3 N 3 H 6 ) as chemical precursor and the hot-filament chemical vapor deposition (HFCVD) technique, pure BN nanostructures with cross-sectional sizes ranging between 20 and 50 nm were obtained, including nanoparticles and nanofibers. Their crystalline structure was characterized by (XRD), their morphology and nanostructure was examined by (SEM) and (TEM), while their chemical composition was studied by (EDS), (FTIR), (EELS), and (XPS). Taken altogether, the results indicate that all the material obtained is stoichiometric nanostructured BN with hexagonal and rhombohedral crystalline structure.« less
Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping
2017-01-01
Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH−) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10−20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers. PMID:28266570
NASA Astrophysics Data System (ADS)
Chiu, Ching-Hsueh; Lin, Chien-Chung; Deng, Dongmei; Kuo, Hao-Chung; Lau, Kei-May
2011-10-01
We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) grown on Micro and Nano-scale Patterned silicon substrate (MPLEDs and NPLEDs). The transmission electron microscopy (TEM) images reveal the suppression of threading dislocation density in InGaN/GaN structure on nano-pattern substrate due to nanoscale epitaxial lateral overgrowth (NELOG). The plan-view and cross-section cathodoluminescence (CL) mappings show less defective and more homogeneous active quantum well region growth on nano-porous substrates. From temperature dependent photoluminescence (PL) and low temperature time-resolved photoluminescence (TRPL) measurement, NPLEDs has better carrier confinement and higher radiative recombination rate than MPLEDs. In terms of device performance, NPLEDs exhibits smaller electroluminescence (EL) peak wavelength blue shift, lower reverse leakage current and decreases efficiency droop compared with the MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power LEDs on Si substrates.
Characterization of konjac glucomannan-ethyl cellulose film formation via microscopy.
Xiao, Man; Wan, Li; Corke, Harold; Yan, Wenli; Ni, Xuewen; Fang, Yapeng; Jiang, Fatang
2016-04-01
Konjac glucomannan-ethyl cellulose (KGM-EC, 7:3, w/w) blended film shows good mechanical and moisture resistance properties. To better understand the basis for the KGM-EC film formation, optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to observe the formation of the film from emulsion. Optical microscopy images showed that EC oil droplets were homogeneously dispersed in KGM water phase without obviously coalescence throughout the entire drying process. SEM images showed the surface and cross-sectional structures of samples maintained continuous and homogeneous appearance from the emulsion to dried film. AFM images indicated that KGM molecules entangled EC molecules in the emulsion. Interactions between KGM and EC improved the stability of KGM-EC emulsion, and contributed to uniformed structures of film formation. Based on these output information, a schematic model was built to elucidate KGM-EC film-forming process. Copyright © 2015 Elsevier B.V. All rights reserved.
Carbon analyses of IDP's sectioned in sulfur and supported on beryllium films
NASA Technical Reports Server (NTRS)
Bradley, J. P.; Keller, L.; Thomas, K. L.; Vanderwood, T. B.; Brownlee, D. E.
1993-01-01
Carbon is the only major element in interplanetary dust whose abundance, distribution and chemical state are not well understood. Information about carbon could clarify the relationship between the various classes of IDP's, conventional meteorites, and sources (e.g., comets vs. asteroids). To date, the most reliable estimates of C abundance in Interplanetary Dust Particles (IDP's) have been obtained by analyzing particles on thick-flat Be substrates using thin-window energy-dispersive spectroscopy in the SEM. These estimates of C abundance are valid only if C is homogeneously distributed, because detected C x-rays originate from the outer 0.1 micrometers of the particle. An alternative and potentially more accurate method of measuring C abundances is to analyze multiple thin sections (each less than 0.1 less than 0.1 micrometers thick) of IDP's. These efforts however, have been stymied because of a lack of a suitable non-carbonaceous embedding medium and the availability of C-free conductive substrates. We have embedded and thin-sectioned IDP's in glassy sulfur, and transferred the thin sections to Be support films approximately 25 nm thick. The sections were then analyzed in a 200 KeV analytical TEM. S sublimes rapidly under vacuum in the TEM, leaving non-embedded sections supported on Be. Apart from quantitative C (and O) analyses, S sectioning dramatically expands the range of analytical measurements that can be performed on a single IDP.
Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case.
Halova, Ivana; Draber, Petr
2016-01-01
The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.
Initial stage corrosion of nanocrystalline copper particles and thin films
NASA Astrophysics Data System (ADS)
Tao, Weimin
1997-12-01
Corrosion behavior is an important issue in nanocrystalline materials research and development. A very fine grain size is expected to have significant effects on the corrosion resistance of these novel materials. However, both the macroscopic corrosion properties and the corresponding structure evolution during corrosion have not been fully studied. Under such circumstances, conducting fundamental research in this area is important and necessary. In this study, high purity nanocrystalline and coarse-grained copper were selected as our sample material, sodium nitrite aqueous solution at room temperature and air at a high temperature were employed as corrosive environments. The weight loss testing and electrochemical methods were used to obtain the macroscopic corrosion properties, whereas the high resolution transmission electron microscope was employed for the structure analysis. The weight loss tests indicate that the corrosion rate of nanocrystalline copper is about 5 times higher than that of coarse-grained copper at the initial stage of corrosion. The electrochemical measurements show that the corrosion potential of the nanocrystalline copper has a 230 mV negative shift in comparison with that of the coarse-grained copper. The nanocrystalline copper also exhibits a significantly higher exchange current density than the coarse-grained copper. High resolution TEM revealed that the surface structure changes at the initial stage of corrosion. It was found that the first copper oxide layer formed on the surface of nanocrystalline copper thin film contains a large density of high angle grain boundaries, whereas that formed on the surface of coarse-grained copper shows highly oriented oxide nuclei and appears to show a strong tendency for forming low angle grain boundaries. A correlation between the macroscopic corrosion properties and the structure characteristics is proposed for the nanocrystalline copper based on the concept of the "apparent" exchange current density associated with mass transport of ions in the oxide layer. A hypothesis is developed that the high corrosion rate of the nanocrystalline copper is closely associated with the structure of the copper oxide layer. Therefore, a high "apparent" exchange current density for the nanocrystalline copper is associated with the high angle grain boundary structure in the initial oxide layer. Additional structure analysis was also carried out: (a) High resolution TEM imaging has provided a cross sectional view of the epitaxial interface between nanocrystalline copper and copper (I) oxide and explicitly discloses the presence of interface defects such as misfit dislocations. Based on this observation, a mechanism was proposed to explain the Cu/Cusb2O interface misfit accommodation. This appears to be the first time this interface has been directly examined. (b) A nanocrystalline analogue to a cross-section of Gwathmey's copper single crystal sphere was revealed by high resolution TEM imaging. A partially oxidized nanocrystalline copper particle is used to examine the variation of the Cu/Cusb2O orientation relationship with respect to changes in surface orientation. A new orientation relationship, Cu (011) //Cusb2O (11), ˜ Cu(011)//Cusb2O(111), was found for the oxidation of nanocrystalline copper.
Development and Application of Operando TEM to a Ruthenium Catalyst for CO Oxidation
NASA Astrophysics Data System (ADS)
Miller, Benjamin Kyle
Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS of gases were developed. A new sample preparation method was also established to increase catalytic conversion inside a differentially-pumped environmental TEM, and the maximum CO conversion observed was about 80%. A system for mixing gases and delivering them to the environmental TEM was designed and built, and a method for locating and imaging nanoparticles in zone axis orientations while minimizing electron dose rate was determined. After atomic resolution images of Ru nanoparticles observed during CO oxidation were obtained, the shape and surface structures of these particles was investigated. A Wulff model structure for Ru particles was compared to experimental images both by manually rotating the model, and by automatically determining a matching orientation using cross-correlation of shape signatures. From this analysis, it was determined that most Ru particles are close to Wulff-shaped during CO oxidation. While thick oxide layers were not observed to form on Ru during CO oxidation, thin RuO2 layers on the surface of Ru nanoparticles were imaged with atomic resolution for the first time. The activity of these layers is discussed in the context of the literature on the subject, which has thus far been inconclusive. We conclude that disordered oxidized ruthenium, rather than crystalline RuO2 is the most active species.
NASA Technical Reports Server (NTRS)
Stadermann, F. J.; Croat, T. K.; Bernatowicz, T.
2004-01-01
Graphite from the Murchison density separate KFC1 (2.15 - 2.20 g/cu cm) has previously been studied by combined SEM/EDX and ion microprobe analysis. These studies found several distinct morphological types of graphites and C isotopic compositions that vary over more than 3 orders of magnitude, clearly establishing their presolar origin. Subsequent TEM measurements of a subset of these particles found abundant embedded crystals of metal (Zr, Mo, Ti, Ru) carbides which were incorporated during the growth of the graphites. A new TEM study of a large set of KFC1 graphites led to the discovery of another type of presolar material, Ru-Fe metal. Here we report results of the C and O isotopic measurements in the same graphite sections, which makes it possible for the first time to directly correlate isotopic and TEM data of KFC1 grains.
Magnetic mapping of iron in rodent spleen
Blissett, Angela R.; Ollander, Brooke; Penn, Brittany; McTigue, Dana M.; Agarwal, Gunjan
2016-01-01
Evaluation of iron distribution and density in biological tissues is important to understand the pathogenesis of a variety of diseases and the fate of exogenously administered iron-based carriers and contrast agents. Iron distribution in tissues is typically characterized via histochemical (Perl’s) stains or immunohistochemistry for ferritin, the major iron storage protein. A more accurate mapping of iron can be achieved via ultrastructural transmission electron microscopy (TEM) based techniques, which involve stringent sample preparation conditions. In this study, we elucidate the capability of magnetic force microscopy (MFM) as a label-free technique to map iron at the nanoscale level in rodent spleen tissue. We complemented and compared our MFM results with those obtained using Perl’s staining and TEM. Our results show how MFM mapping corresponded to sizes of iron-rich lysosomes at a resolution comparable to that of TEM. In addition MFM is compatible with tissue sections commonly prepared for routine histology. PMID:27890658
La Rosa, Daniela; Monforte, Giuseppe; D'Urso, Claudia; Baglio, Vincenzo; Antonucci, Vincenzo; Aricò, Antonino S
2010-12-17
Solid Na-β"-Al₂O₃ electrolyte is prepared by a simple chemical route involving a pseudo-boehmite precursor and thermal treatment. Boehmite powder is used for manufacturing the planar electrolyte with appropriate bulk density after firing at 1500 °C. The structure, morphology, and surface properties of precursor powders and sintered electrolytes are investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). As shown by XRD and TEM analyses, nanometer-sized particles are obtained for the boehmite precursor and a pure crystallographic phase is achieved for the sintered electrolyte. SEM analysis of the cross-section indicates good sintering characteristics. XPS shows a higher Na/Al atomic ratio on the surface for the planar electrolyte compared to a commercial tubular electrolyte (0.57 vs. 0.46). Energy-dispersive X-ray microanalysis (EDX) shows an Na/Al ratio in the bulk of 0.16, similar in the two samples. The ionic conductivity of the planar electrolyte is larger than that measured on a commercial tube of sodium-β"-alumina in a wide temperature range. At 350 °C, conductivity values of 0.5 S cm⁻¹ and 0.26 S cm⁻¹ are obtained for the planar electrolyte and the commercial tube, respectively. AC-impedance spectra show smaller grain boundary effects in the planar electrolyte than in the tubular electrolyte. These favorable properties may increase the perspectives for applying planar Na-β"-Al₂O₃ electrolytes in high-temperature batteries.
NASA Astrophysics Data System (ADS)
Hirano, Soichiro; Kohma, Masashi; Sato, Kaoru
2016-07-01
Stratospheric final warming (SFW) in the Southern Hemisphere is examined in terms of their interannual variability and climatology using reanalysis data from January 1979 to March 2014. First, it is shown from a two-dimensional transformed Eulerian mean (TEM) analysis that a time-integrated vertical component of Eliassen-Palm flux during the spring is significantly related with SFW date. To clarify the role of residual mean flow in the interannual variability of the SFW date, SFWs are categorized into early and late groups according to the SFW date and their differences are examined. Significant difference in potential temperature tendency is observed in the middle and lower stratosphere in early October. Their structure in the meridional cross section accords well with that of vertical potential temperature advection by the residual mean flow. Difference in heating rate by shortwave radiation is minor. These results suggest that the adiabatic heating associated with the residual mean flow largely affects polar stratospheric temperature during austral spring and SFW date. The analysis is extended to investigate the longitudinal structure by using a three-dimensional (3-D) TEM theory. The significant difference in potential temperature tendency is mainly observed around the Weddell Sea at 10 hPa. Next, climatological 3-D structure of a vertical component of the residual mean flow in association with SFW is examined in terms of the effect on the troposphere. The results suggest that a downward residual mean flow from the stratosphere penetrates into underlying troposphere over East Antarctica and partly influences tropospheric temperature there.
NASA Astrophysics Data System (ADS)
Jiang, Nian
III-V semiconductor nanowires have been investigated as key components for future electronic and optoelectronic devices and systems due to their direct band gap and high electron mobility. Amongst the III-V semiconductors, the planar GaAs material system has been extensively studied and used in industries. Accordingly, GaAs nanowires are the prime candidates for nano-scale devices. However, the electronic performance of GaAs nanowires has yet to match that of state-of-the-art planar GaAs devices. The present deficiency of GaAs nanowires is typically attributed to the large surface-to- volume ratio and the tendency for non-radiative recombination centres to form at the surface. The favoured solution of this problem is by coating GaAs nanowires with AlGaAs shells, which replaces the GaAs surface with GaAs/AlGaAs interface. This thesis presents a systematic study of GaAs/AlGaAs core-shell nanowires grown by metal organic chemical vapour deposition (MOCVD), including understanding the growth, and characterisation of their structural and optical properties. The structures of the nanowires were mainly studied by scanning electron microscopy and transmis- sion electron microscopy (TEM). A procedure of microtomy was developed to prepare the cross-sectional samples for the TEM studies. The optical properties were charac- terised by photoluminescence (PL) spectroscopy. Carrier lifetimes were measured by time-resolved PL. The growth of AlGaAs shell was optimised to obtain the best optical properties, e.g. the strongest PL emission and the longest minority carrier lifetimes. (Abstract shortened by ProQuest.).
Age related optic nerve axonal loss in adult Brown Norway rats.
Cepurna, William O; Kayton, Robert J; Johnson, Elaine C; Morrison, John C
2005-06-01
The effect of age on the number and morphology of optic nerve axons in adult Brown Norway rats (5-31 months old) (n=29) was examined using transmission electron microscopy (TEM). By manually counting every axon in areas representing 60% of the optic nerve cross-section, we found a significant negative correlation between age and axon count (R(2)=0.18, P<0.05). However, when the oldest animals were omitted, the relationship was no longer statistically significant. Simultaneously, the proportion of spontaneously degenerating axons increased at an exponential rate (R(2)=0.79, P<0.05), with significantly more degeneration in the 31-month group than in 5-month-old animals (ANOVA, P<0.05). This study demonstrates, using quantitative TEM methods, that optic nerve axonal numbers are relatively constant throughout the majority of the adult life of the Brown Norway rat, an increasingly popular strain for glaucoma research. Total axonal loss with aging is substantially less than that reported for other strains. The reduction in axonal numbers and the rate of axonal degeneration do not appear significantly altered until the last few months of life, failing to support some studies that have concluded that optic nerve axon loss in adult rats is linear. However, they do agree with other studies in the rat, and a similar study performed in non-human primate eyes, that concluded that aging changes in the optic nerve and retina follow a complex pattern. Therefore, the impact of animal age must be considered when modeling the course and pathophysiology of experimental glaucomatous optic nerve damage in rats.
Huchin-Mian, Juan Pablo; Rodríguez-Canul, Rossanna; Arias-Bañuelos, Efrain; Simá-Alvarez, Raúl; Pérez-Vega, Juan A; Briones-Fourzán, Patricia; Lozano-Alvarez, Enrique
2008-04-01
Macroscopic evidence, histological sections, transmission electron microscopy (TEM) evaluation, and PCR analyses of 25 apparently diseased juvenile spiny lobsters Panulirus argus from the reef lagoon of Puerto Morelos, Mexico, showed the presence of Panulirus argus Virus 1 (PaV1). Cowdry Type A intranuclear viral inclusions were observed in histological analyses, icosahedral viral particles were observed by TEM, and PCR using specific primers for PaV1 amplified a fragment of 499 bp. This is the first report of PaV1 infecting P. argus outside the Florida Keys, USA.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Dukes, C. A.; Keller, L. P.; Rahman, Z.; Baragiola, R. A.
2015-01-01
Both transmission electron micros-copy (TEM) and surface analysis techniques such as X-ray photoelectron spectroscopy (XPS) were instrumen-tal in making the first characterizations of material generated by space weathering in lunar samples [1,2]. Without them, the nature of nanophase metallic Fe (npFe0) correlated with the surface of lunar regolith grains would have taken much longer to become rec-ognized and understood. Our groups at JSC and UVa have been using both techniques in a cross-correlated way to investigate how the solar wind contributes to space weathering [e.g., 3]. These efforts have identified a number of ongoing problems and knowledge gaps. Key insights made by UVa group leader Raul Barag-iola during this work are gratefully remembered.
Nanobelt formation of magnesium hydroxide sulfate hydrate via a soft chemistry process.
Zhou, Zhengzhi; Sun, Qunhui; Hu, Zeshan; Deng, Yulin
2006-07-13
The nanobelt formation of magnesium hydroxide sulfate hydrate (MHSH) via a soft chemistry approach using carbonate salt and magnesium sulfate as reactants was successfully demonstrated. X-ray diffraction (XRD), energy dispersion X-ray spectra (EDS), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis revealed that the MHSH nanobelts possessed a thin belt structure (approximately 50 nm in thickness) and a rectangular cross profile (approximately 200 nm in width). The MHSH nanobelts suffered decomposition under electron beam irradiation during TEM observation and formed MgO with the pristine nanobelt morphology preserved. The formation process of the MHSH nanobelts was studied by tracking the morphology of the MHSH nanobelts during the reaction. A possible chemical reaction mechanism is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, H.
1986-11-01
This report provides a detailed, section-by-section analysis of the Low-Level Radioactive Waste Policy Amendments Act of 1985. Appendices include lists of relevant law and legislation, relevant Congressional committees, members of Congress mentioned in the report, and exact copies of the 1980 and 1985 Acts. (TEM)
Multi-class segmentation of neuronal electron microscopy images using deep learning
NASA Astrophysics Data System (ADS)
Khobragade, Nivedita; Agarwal, Chirag
2018-03-01
Study of connectivity of neural circuits is an essential step towards a better understanding of functioning of the nervous system. With the recent improvement in imaging techniques, high-resolution and high-volume images are being generated requiring automated segmentation techniques. We present a pixel-wise classification method based on Bayesian SegNet architecture. We carried out multi-class segmentation on serial section Transmission Electron Microscopy (ssTEM) images of Drosophila third instar larva ventral nerve cord, labeling the four classes of neuron membranes, neuron intracellular space, mitochondria and glia / extracellular space. Bayesian SegNet was trained using 256 ssTEM images of 256 x 256 pixels and tested on 64 different ssTEM images of the same size, from the same serial stack. Due to high class imbalance, we used a class-balanced version of Bayesian SegNet by re-weighting each class based on their relative frequency. We achieved an overall accuracy of 93% and a mean class accuracy of 88% for pixel-wise segmentation using this encoder-decoder approach. On evaluating the segmentation results using similarity metrics like SSIM and Dice Coefficient, we obtained scores of 0.994 and 0.886 respectively. Additionally, we used the network trained using the 256 ssTEM images of Drosophila third instar larva for multi-class labeling of ISBI 2012 challenge ssTEM dataset.
NASA Astrophysics Data System (ADS)
Hamers, M. F.; Pennock, G. M.; Drury, M. R.
2017-04-01
The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.
Nanoscale welding of multi-walled carbon nanotubes by 1064 nm fiber laser
NASA Astrophysics Data System (ADS)
Yuan, Yanping; Liu, Zhi; Zhang, Kaihu; Han, Weina; Chen, Jimin
2018-07-01
This study proposes an efficient approach which uses 1064 nm continuous fiber laser to achieve nanoscale welding of crossed multi-walled carbon nanotubes (MWCNTs). By changing the irradiation time, different quality of nanoscale welding is obtained. The morphology changes are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The experiments demonstrate that better quality of MWCNTs nanoscale welding after 3 s irradiation can be obtained. It is found that new graphene layers between crossed nanotubes induced by laser make the nanoscale welding achieved due to the absorption of laser energy.
Connecting quantum dots and bionanoparticles in hybrid nanoscale ultra-thin films
NASA Astrophysics Data System (ADS)
Tangirala, Ravisubhash; Hu, Yunxia; Zhang, Qingling; He, Jinbo; Russell, Thomas; Emrick, Todd
2008-03-01
Aldehyde-functionalized CdSe quantum dots and nanorods, and horse spleen ferritin bionanoparticles, were co-assembled at an oil-water interface. Reaction of the aldehydes with the surface-available amines on the ferritin particles enabled cross-linking at the interface, converting the assembled nanoparticles into robust ultra-thin films. The cross-linked capsules and sheets thus made by aldehyde-amine conjugation could be disrupted by addition of acid. Reductive amination chemistry could be performed to convert these degradable capsules and sheets into structures with irreversible cross-linking. Fluorescence confocal microscopy, scanning force microscopy and pendant drop tensiometry were used to characterize these hybrid nanoparticle-based materials, and transmission electron microscopy (TEM) confirmed the presence of both the synthetic and naturally derived nanoparticles.
NASA Astrophysics Data System (ADS)
Heller, Nicholas Walter Medicus
Powder coatings are becoming ubiquitous in the coating marketplace due to the absence of solvents in their formulation, but they have yet to see implementation in low-reflectance outdoor applications. This demand could be met by utilizing polymer blends formulated with low loadings of matting agents and pigments. The goal of this research is a thorough characterization of prototype low-reflectance coatings through several analytical techniques. Prototypical thermoset blends consist of functionalized polyurethanes rendered immiscible by differences in polar and hydrogen bonding characteristics, resulting in a surface roughened by droplet domains. Analysis of both pigmented and control clear films was performed. This research project had three primary aims: (1) determine the composition of the resin components of the polymer blend; (2) to monitor the evolution of domains before and during curing of clear polymer blends; (3) to monitor the evolution of these domains when pigments are added to these blends. The clear films enabled unhindered analysis by Fourier transform infrared (FTIR) and Raman spectroscopy on the binder. However, these domains provided no spectroscopic signatures despite their observation by optical microscopy. This necessitated the development of a new procedure for cross-section preparation that leaves no contamination from polishing media, which enabled Raman mapping of the morphology via an introduced marker peak from styrene monomer. The clears were analyzed as a powder and as films that were quenched at various cure-times using FTIR, Raman, transmission electron microscopy (TEM), and thermomechanical methods to construct a model of coating evolution based on cure parameters and polymer dynamics. Domains were observed in the powder, and underwent varying rates of coarsening as the cure progressed. TEM, scanning electron microscopy and thermomechanical methods were also used on pigmented systems at different states of the cure, including in powder form. TEM analysis additionally revealed the encapsulation of pigment particles by the domains, which helped explain the interaction between phase separation and pigment materials. The knowledge gained from fundamental characterization could be used to enable future generations of durable powder coatings with dead matte finishes.
Ali, Sam; Byanyima, Rosemary Kusaba; Ononge, Sam; Ictho, Jerry; Nyamwiza, Jean; Loro, Emmanuel Lako Ernesto; Mukisa, John; Musewa, Angella; Nalutaaya, Annet; Ssenyonga, Ronald; Kawooya, Ismael; Temper, Benjamin; Katamba, Achilles; Kalyango, Joan; Karamagi, Charles
2018-05-04
Ultrasonography is essential in the prenatal diagnosis and care for the pregnant mothers. However, the measurements obtained often contain a small percentage of unavoidable error that may have serious clinical implications if substantial. We therefore evaluated the level of intra and inter-observer error in measuring mean sac diameter (MSD) and crown-rump length (CRL) in women between 6 and 10 weeks' gestation at Mulago hospital. This was a cross-sectional study conducted from January to March 2016. We enrolled 56 women with an intrauterine single viable embryo. The women were scanned using a transvaginal (TVS) technique by two observers who were blinded of each other's measurements. Each observer measured the CRL twice and the MSD once for each woman. Intra-class correlation coefficients (ICCs), 95% limits of agreement (LOA) and technical error of measurement (TEM) were used for analysis. Intra-observer ICCs for CRL measurements were 0.995 and 0.993 while inter-observer ICCs were 0.988 for CRL and 0.955 for MSD measurements. Intra-observer 95% LOA for CRL were ± 2.04 mm and ± 1.66 mm. Inter-observer LOA were ± 2.35 mm for CRL and ± 4.87 mm for MSD. The intra-observer relative TEM for CRL were 4.62% and 3.70% whereas inter-observer relative TEM were 5.88% and 5.93% for CRL and MSD respectively. Intra- and inter-observer error of CRL and MSD measurements among pregnant women at Mulago hospital were acceptable. This implies that at Mulago hospital, the error in pregnancy dating is within acceptable margins of ±3 days in first trimester, and the CRL and MSD cut offs of ≥7 mm and ≥ 25 mm respectively are fit for diagnosis of miscarriage on TVS. These findings should be extrapolated to the whole country with caution. Sonographers can achieve acceptable and comparable diagnostic accuracy levels of MSD and CLR measurements with proper training and adherence to practice guidelines.
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Lingley, Zachary; Ayvazian, Talin; Brodie, Miles; Ives, Neil
2018-02-01
High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both terrestrial and space satellite communications systems. Since these lasers predominantly fail by catastrophic and sudden degradation due to COD, it is especially crucial for space satellite applications to investigate reliability, failure modes, and degradation mechanisms of these lasers. Our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group also reported in 2017 that bulk failure due to catastrophic optical bulk damage (COBD) is the dominant failure mode of both SM and MM lasers that were subject to long-term life-tests. For the present study, we report root causes investigation of COBD by performing long-term lifetests followed by failure mode analysis (FMA) using various micro-analytical techniques including electron beam induced current (EBIC), time-resolved electroluminescence (EL), focused ion beam (FIB), high-resolution transmission electron microscopy (TEM), and deep level transient spectroscopy (DLTS). Our life-tests with accumulated test hours of over 25,000 hours for SM lasers and over 35,000 hours for MM lasers generated a number of COBD failures with various failure times. EBIC techniques were employed to study dark line defects (DLDs) generated in SM COBD failures stressed under different test conditions. FIB and high-resolution TEM were employed to prepare cross sectional and plan view TEM specimens to study DLD areas (dislocations) in post-aged SM lasers. Time-resolved EL techniques were employed to study initiation and progressions of dark spots and dark lines in real time as MM lasers were aged. Lastly, to investigate precursor signatures of failure and degradation mechanisms responsible for COBD in both SM and MM lasers, we employed DLTS techniques to study a role that electron traps (non-radiative recombination centers) play in degradation of these lasers. Our in-depth root causes investigation results are reported.
NASA Astrophysics Data System (ADS)
Kishino, Katsumi; Ishizawa, Shunsuke
2015-06-01
The growth of highly uniform arrays of GaN nanocolumns with diameters from 122 to 430 nm on Si (111) substrates was demonstrated. The employment of GaN film templates with flat surfaces (root mean square surface roughness of 0.84 nm), which were obtained using an AlN/GaN superlattice (SL) buffer on Si, contributed to the high-quality selective-area growth of nanocolumns using a thin Ti mask of 5 nm thickness by rf-plasma-assisted molecular beam epitaxy. Although the GaN template included a large number of dislocations (dislocation density ˜1011 cm-2), the dislocation filtering effect of nanocolumns was enhanced with decreasing nanocolumn diameters (D). Systematic transmission electron microscopy (TEM) observation enabled us to explain the dependence of the dislocation propagation behavior in nanocolumns on the nanocolumn diameter for the first time. Plan-view TEM analysis was performed for nanocolumns with D = 120-324 nm by slicing the nanocolumns horizontally at a height of ˜300 nm above their bottoms and dislocation propagation through the nanocolumns was analyzed by the cross-sectional TEM observation of nanocolumns with D ˜ 200 nm. It was clarified that dislocations were effectively filtered in the bottom 300 nm region of the nanocolumns, the dislocation density of the nanocolumns decreased with decreasing D, and for narrow nanocolumns with D < 200 nm, dislocation-free crystals were obtained in the upper part of the nanocolumns. The dramatic improvement in the emission properties of GaN nanocolumns observed with decreasing diameter is discussed in relation to the decreased dislocation density. The laser action of InGaN/GaN-based nanocolumn arrays with a nanocolumn diameter of 170 nm and a period of 200 nm on Si under optical excitation was obtained with an emission wavelength of 407 nm. We also fabricated red-emitting InGaN-based nanocolumn light-emitting diodes on Si that operated at a wavelength of 652 nm, demonstrating vertical conduction through the AlN/GaN SL buffer to the Si substrate.
Dutch population specific sex estimation formulae using the proximal femur.
Colman, K L; Janssen, M C L; Stull, K E; van Rijn, R R; Oostra, R J; de Boer, H H; van der Merwe, A E
2018-05-01
Sex estimation techniques are frequently applied in forensic anthropological analyses of unidentified human skeletal remains. While morphological sex estimation methods are able to endure population differences, the classification accuracy of metric sex estimation methods are population-specific. No metric sex estimation method currently exists for the Dutch population. The purpose of this study is to create Dutch population specific sex estimation formulae by means of osteometric analyses of the proximal femur. Since the Netherlands lacks a representative contemporary skeletal reference population, 2D plane reconstructions, derived from clinical computed tomography (CT) data, were used as an alternative source for a representative reference sample. The first part of this study assesses the intra- and inter-observer error, or reliability, of twelve measurements of the proximal femur. The technical error of measurement (TEM) and relative TEM (%TEM) were calculated using 26 dry adult femora. In addition, the agreement, or accuracy, between the dry bone and CT-based measurements was determined by percent agreement. Only reliable and accurate measurements were retained for the logistic regression sex estimation formulae; a training set (n=86) was used to create the models while an independent testing set (n=28) was used to validate the models. Due to high levels of multicollinearity, only single variable models were created. Cross-validated classification accuracies ranged from 86% to 92%. The high cross-validated classification accuracies indicate that the developed formulae can contribute to the biological profile and specifically in sex estimation of unidentified human skeletal remains in the Netherlands. Furthermore, the results indicate that clinical CT data can be a valuable alternative source of data when representative skeletal collections are unavailable. Copyright © 2017 Elsevier B.V. All rights reserved.
You, Yun-Wen; Chang, Hsun-Yun; Liao, Hua-Yang; Kao, Wei-Lun; Yen, Guo-Ji; Chang, Chi-Jen; Tsai, Meng-Hung; Shyue, Jing-Jong
2012-10-01
Based on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged.
Extinction cross section measurements for a single optically trapped particle
NASA Astrophysics Data System (ADS)
Cotterell, Michael I.; Preston, Thomas C.; Mason, Bernard J.; Orr-Ewing, Andrew J.; Reid, Jonathan P.
2015-08-01
Bessel beam (BB) optical traps have become widely used to confine single and multiple aerosol particles across a broad range of sizes, from a few microns to < 200 nm in radius. The radiation pressure force exerted by the core of a single, zeroth-order BB incident on a particle can be balanced by a counter-propagating gas flow, allowing a single particle to be trapped indefinitely. The pseudo non-diffracting nature of BBs enables particles to be confined over macroscopic distances along the BB core propagation length; the position of the particle along this length can be finely controlled by variation of the BB laser power. This latter property is exploited to optimize the particle position at the center of the TEM00 mode of a high finesse optical cavity, allowing cavity ring-down spectroscopy (CRDS) to be performed on single aerosol particles and their optical extinction cross section, σext, measured. Further, the variation in the light from the illuminating BB elastically scattered by the particle is recorded as a function of scattering angle. Such intensity distributions are fitted to Lorenz-Mie theory to determine the particle radius. The trends in σext with particle radius are modelled using cavity standing wave Mie simulations and a particle's varying refractive index with changing relative humidity is determined. We demonstrate σext measurements on individual sub-micrometer aerosol particles and determine the lowest limit in particle size that can be probed by this technique. The BB-CRDS method will play a key role in reducing the uncertainty associated with atmospheric aerosol radiative forcing, which remains among the largest uncertainties in climate modelling.
Mechanism of morphology transformation during annealing of nanostructured gold films on glass.
Karakouz, Tanya; Tesler, Alexander B; Sannomiya, Takumi; Feldman, Yishay; Vaskevich, Alexander; Rubinstein, Israel
2013-04-07
Nanostructured, just-percolated gold films were prepared by evaporation on bare glass. Annealing of the films at temperatures close to or higher than the softening temperature of the glass substrate induces morphological transformation to discrete Au islands and gradual embedding of the formed islands in the glass. The mechanism and kinetics of these processes are studied here using a combination of in situ high-temperature optical spectroscopy; ex situ characterization of the island shape by high-resolution scanning electron microscopy (HRSEM), atomic force microcopy (AFM) and cross-sectional transmission electron microscopy (TEM); and numerical simulations of transmission spectra using the Multiple Multipole Program (MMP) approach. It is shown that the morphological transformation of just-percolated, 10 nm (nominal thickness) Au films evaporated on glass and annealed at 600 °C, i.e., in the vicinity of the substrate glass transition temperature (Tg = 557 °C), proceeds via three processes exhibiting different time scales: (i) fast recrystallization and dewetting, leading to formation of single-crystalline islands (minutes); the initial spectrum characteristic of a continuous Au film is transformed to that of an island film, displaying a surface plasmon (SP) absorption band. (ii) Reshaping and faceting of the single-crystalline islands accompanied by formation of circumferential glass rims around them (first few hours); the overall optical response shows a blue shift of the SP band. (iii) Gradual island embedding in the glass substrate (tens of hours), seen as a characteristic red shift of the SP band. The influence of the annealing atmosphere (air, vacuum) on the embedding process is found to be minor. Numerical modeling of the extinction cross-section corresponding to the morphological transformations during island recrystallization and embedding is in qualitative agreement with the experimental data.
Photoeffect cross sections of some rare-earth elements at 145.4 keV
NASA Astrophysics Data System (ADS)
Umesh, T. K.; Ranganathaiah, C.; Sanjeevaiah, B.
1985-08-01
Total attenuation cross sections in the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er were derived from the measured total cross sections of their simple oxide compounds, by employing the mixture rule at 145.4-keV photon energy. The compound cross sections have been measured by performing transmission experiments in a good geometry setup. From the derived total cross sections of elements, photoeffect cross sections have been obtained by subtracting the theoretical scattering cross sections. A good agreement is observed between the present data of photoeffect cross sections and Scofield's theoretical data.
Electron-Impact Ionization Cross Section Database
National Institute of Standards and Technology Data Gateway
SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access) This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.
Berenbrock, Charles E.
2015-01-01
The effects of reduced cross-sectional data points on steady-flow profiles were also determined. Thirty-five cross sections of the original steady-flow model of the Kootenai River were used. These two methods were tested for all cross sections with each cross section resolution reduced to 10, 20 and 30 data points, that is, six tests were completed for each of the thirty-five cross sections. Generally, differences from the original water-surface elevation were smaller as the number of data points in reduced cross sections increased, but this was not always the case, especially in the braided reach. Differences were smaller for reduced cross sections developed by the genetic algorithm method than the standard algorithm method.
Three-dimensional imaging of adherent cells using FIB/SEM and STEM.
Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul
2014-01-01
In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.
MR 201424 Final Report Addendum
2016-09-01
FINAL REPORT ADDENDUM Munitions Classification Library ESTCP Project MR-201424 SEPTEMBER 2016 Mr. Craig Murray Dr. Nagi Khadr Parsons Dr...solver and multi-solver library databases, and only the TEMTADS 2X2 and the MetalMapper advanced TEM systems are supported by UX-Analyze, data on...other steps (section 3.4) before getting into the data collection activities (sections 3.5-3.7). All inversions of library quality data collected over
Experiments on Antiprotons: Antiproton-Nucleon Cross Sections
DOE R&D Accomplishments Database
Chamberlain, Owen; Keller, Donald V.; Mermond, Ronald; Segre, Emilio; Steiner, Herbert M.; Ypsilantis, Tom
1957-07-22
In this paper experiments are reported on annihilation and scattering of antiprotons in H{sub 2}O , D{sub 2}O, and O{sub 2}. From the data measured it is possible to obtain an antiproton-proton and an antiproton-deuteron cross section at 457 Mev (lab). Further analysis gives the p-p and p-n cross sections as 104 mb for the p-p reaction cross section and 113 mb for the p-n reaction cross section. The respective annihilation cross sections are 89 and 74 mb. The Glauber correction necessary in order to pass from the p-d to the p-n cross section by subtraction of the p-p cross section is unfortunately large and somewhat uncertain. The data are compared with the p-p and p-n cross sections and with other results on p-p collisions.
Study of BenW (n = 1-12) clusters: An electron collision perspective
NASA Astrophysics Data System (ADS)
Modak, Paresh; Kaur, Jaspreet; Antony, Bobby
2017-08-01
This article explores electron scattering cross sections by Beryllium-Tungsten clusters (BenW). Beryllium and tungsten are important elements for plasma facing wall components, especially for the deuterium/tritium phase of ITER and in the recently installed JET. The present study focuses on different electron impact interactions in terms of elastic cross section (Qel), inelastic cross section (Qinel), ionization cross section (Qion), and momentum transfer cross section (Qmtcs) for the first twelve clusters belonging to the BenW family. It also predicts the evolution of the cross section with the size of the cluster. These cross sections are used as an input to model processes in plasma. The ionization cross section presented here is compared with the available reported data. This is the first comprehensive report on cross section data for all the above-mentioned scattering channels, to the best of our knowledge. Such broad analysis of cross section data gives vital insight into the study of local chemistry of electron interactions with BenW (n = 1-12) clusters in plasma.
Coutinho, E; Jarmar, T; Svahn, F; Neves, A A; Verlinden, B; Van Meerbeek, B; Engqvist, H
2009-11-01
Current available techniques for transmission electron microscopy (TEM) of tooth-biomaterial interfaces are mostly ineffective for brittle phases and impair integrated chemical and morphological characterization. The aims of this study were (1) to determine the applicability of new focused ion beam (FIB) and broad ion beam (BIB) techniques for TEM preparation of tooth-biomaterial interfaces; (2) to characterize the interfacial interaction with enamel and dentin of a conventional glass-ionomer (Chemfil Superior, DeTrey Dentsply, Germany), a 2-step self-etch (Clearfil SE, Kuraray, Japan) and a 3-step etch-and-rinse (OptiBond FL, Kerr, USA) adhesives; and (3) to characterize clinically relevant interfaces obtained from actual Class-I cavities. After bonding to freshly extracted human third molars, non-demineralized and non-stained sections were obtained using the FIB/BIB techniques and examined under TEM. The main structures generally disclosed in conventional ultramicrotomy samples were recognized in FIB/BIB-based ones. There were not any major differences between FIB and BIB concerning the resulting ultrastructural morphology. FIB/BIB-sections enabled to clearly resolve sub-micron hydroxyapatite crystals on top of hard tissues and the interface between matrix and filler in all materials, even at nano-scale. Some investigated interfaces disclosed areas with a distinct "fog" or "melted look", which is probably an artifact due to surface damage caused by the high-energy beam. Interfaces with enamel clearly disclosed the distinct "keyhole" shape of enamel rods sectioned at 90 degrees , delimited by a thin electron-lucent layer of inter-rod enamel. At regions where enamel crystals ran parallel with the interface, we observed a lack of interaction and some de-bonding along with interfacial void formation. The FIB/BIB methods are viable and reliable alternatives to conventional ultramicrotomy for preparation of thin sections of brittle and thus difficult to cut biomaterial-hard tissue interfaces. They disclose additional ultrastructural information about both substrates and are more suitable for advanced analytic procedures.
Averaging cross section data so we can fit it
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.
2014-10-23
The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).
New cross sections for H on H2 collisional transitions
NASA Astrophysics Data System (ADS)
Zou, Qianxia
2011-12-01
The cross section for H on H2 collisions is important for astrophysics as well as our understanding of the simple chemical systems. This is the simplest atom-molecule cross section. With a new H3 potential surface by Mielke et al., we have modified the ABC code by Skouteris, Castillo and Manolopoulos to calculate new cross sections. These cross sections are compared to previous cross section calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amusan, Akinwumi A., E-mail: akinwumi.amusan@ovgu.de; Kalkofen, Bodo; Burte, Edmund P.
Silver (Ag) layers were deposited by remote plasma enhanced atomic layer deposition (PALD) using Ag(fod)(PEt{sub 3}) (fod = 2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato) as precursor and hydrogen plasma on silicon substrate covered with thin films of SiO{sub 2}, TiN, Ti/TiN, Co, Ni, and W at different deposition temperatures from 70 to 200 °C. The deposited silver films were analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with energy dispersive x-ray spectroscopy, four point probe measurement, ellipsometric measurement, x-ray fluorescence (XRF), and x-ray diffraction (XRD). XPS revealed pure Ag with carbon and oxygen contamination close to the detectionmore » limit after 30 s argon sputtering for depositions made at 120 and 200 °C substrate temperatures. However, an oxygen contamination was detected in the Ag film deposited at 70 °C after 12 s argon sputtering. A resistivity of 5.7 × 10{sup −6} Ω cm was obtained for approximately 97 nm Ag film on SiO{sub 2}/Si substrate. The thickness was determined from the SEM cross section on the SiO{sub 2}/Si substrate and also compared with XRF measurements. Polycrystalline cubic Ag reflections were identified from XRD for PALD Ag films deposited at 120 and 200 °C. Compared to W surface, where poor adhesion of the films was found, Co, Ni, TiN, Ti/TiN and SiO{sub 2} surfaces had better adhesion for silver films as revealed by SEM, TEM, and AFM images.« less
Hynninen, Ville; Hietala, Sami; McKee, Jason Robert; Murtomäki, Lasse; Rojas, Orlando J; Ikkala, Olli; Nonappa, Nonappa
2018-05-07
We show that composite hydrogels comprising methyl cellulose (MC) and cellulose nanocrystal (CNC) colloidal rods display a reversible and enhanced rheological storage modulus and optical birefringence upon heating, i.e., inverse thermoreversibility. Dynamic rheology, quantitative polarized optical microscopy (POM), isothermal titration calorimetry (ITC), circular dichroism (CD), and scanning and transmission electron microscopy (SEM and TEM) were used for characterization. The concentration of CNC in aqueous media was varied up to 3.5 wt % (i.e, keeping the concentration below the critical aq. concentration) while maintaining the MC aq. concentration at 1.0 wt %. At 20 °C, MC/CNC underwent gelation upon passing the CNC concentration of 1.5 wt %. At this point the storage modulus (G´) reached a plateau, and the birefringence underwent a stepwise increase, thus suggesting a percolative phenomenon. The storage modulus (G´) of the composite gels was an order of magnitude higher at 60 °C compared to that at 20 °C. ITC results suggested that at 60 °C, the CNC rods were entropically driven to interact with MC chains, which according to recent studies, collapse at this temperature into ring-like, colloidal-scale persistent fibrils with hollow cross-section. Consequently, the increased requirement for space and mutual alignment of components results in enhanced birefringence. At room temperature, ITC shows enthalpic binding between CNCs and MC with the latter comprising an aqueous, molecularly dispersed polymer chains that lead to looser and less birefringent material. TEM, SEM, and CD indicated CNC chiral fragments within MC/CNC composite gel. Thus, their space-filling, thermoreversible assembly within the MC network can be used to tune the rheological properties and to access liquid crystalline properties at low CNC concentrations.
Influence of temperature on oxidation mechanisms of fiber-textured AlTiTaN coatings.
Khetan, Vishal; Valle, Nathalie; Duday, David; Michotte, Claude; Delplancke-Ogletree, Marie-Paule; Choquet, Patrick
2014-03-26
The oxidation kinetics of AlTiTaN hard coatings deposited at 265 °C by DC magnetron sputtering were investigated between 700 and 950 °C for various durations. By combining dynamic secondary ion mass spectrometry (D-SIMS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations of the different oxidized coatings, we were able to highlight the oxidation mechanisms involved. The TEM cross-section observations combined with XRD analysis show that a single amorphous oxide layer comprising Ti, Al, and Ta formed at 700 °C. Above 750 °C, the oxide scale transforms into a bilayer oxide comprising an Al-rich upper oxide layer and a Ti/Ta-rich oxide layer at the interface with the coated nitride layer. From the D-SIMS analysis, it could be proposed that the oxidation mechanism was governed primarily by inward diffusion of O for temperatures of ≤700 °C, while at ≥750 °C, it is controlled by outward diffusion of Al and inward diffusion of O. Via a combination of structural and chemical analysis, it is possible to propose that crystallization of rutile lattice favors the outward diffusion of Al within the AlTiTa mixed oxide layer with an increase in the temperature of oxidation. The difference in the mechanisms of oxidation at 700 and 900 °C also influences the oxidation kinetics with respect to oxidation time. Formation of a protective alumina layer decreases the rate of oxidation at 900 °C for long durations of oxidation compared to 700 °C. Along with the oxidation behavior, the enhanced thermal stability of AlTiTaN compared to that of the TiAlN coating is illustrated.
Electron Microscope Studies of Cadmium Mercury Telluride
NASA Astrophysics Data System (ADS)
Lyster, Martin
Available from UMI in association with The British Library. Requires signed TDF. Epitaxial layers of Cd_{x }Hg_{(1-x)}Te grown on various substrates by liquid phase epitaxy and metallo-organic vapour phase epitaxy have been studied using transmission and scanning electron microscopy, in a variety of contrast modes. Wavelength-dispersive X-ray microanalysis has been used to study interfaces in epitaxial specimens, and the results are used to derive diffusion coefficients for a range of values of x in Cd_ {x}Hg_{(1-x)} Te. Extensive use has been made of back-scattered electron contrast in the SEM as a means of compositional mapping, and defect structures are imaged by this technique. The back-scattered electron contrast at interfaces has been studied in detail and is modelled using the Monte Carlo approach. The modelling is combined with calculations and practical measurements of the probe size in the SEM instrument used in the work, to arrive at a quantitative explanation of this contrast. The SEM and scintillator detector used allow a spatial resolution of better than 1000A, but it is shown that improvements in this are possible with present technology. Scanning infra-red microscopy (SIRM) and high -resolution transmission electron microscopy (HREM) have been applied to the study of CdTe. SIRM images reveal information about Te precipitation, including particle size and density. HREM images provide results concerning dislocation structures in CdTe. Selected-area diffraction contrast TEM results are presented which illustrate the microstructure of LPE and MOVPE material; and TEM foil preparation techniques are discussed, including the choice of ion species for milling cross-sectional specimens. In view of the results obtained, suggestions are made for future work in this field.
NASA Astrophysics Data System (ADS)
Kim, Jung Han; Kim, Jong Gu; Song, Junghyun; Bae, Tae-Sung; Kim, Kyou-Hyun; Lee, Young-Seak; Pang, Yoonsoo; Oh, Kyu Hwan; Chung, Hee-Suk
2018-04-01
We investigated the semiconductor-catalyzed formation of semiconductor nanowires (NWs) - silver sulfide (Ag2S)-catalyzed zinc sulfide (ZnS) NWs - based on a vapor-liquid-solid (VLS) growth mechanism through metal-organic chemical vapor deposition (MOCVD) with a Ag thin film. The Ag2S-catalyzed ZnS NWs were confirmed to have a wurtzite structure with a width and length in the range of ∼30 nm to ∼80 nm and ∼1 μm, respectively. Using extensive transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) analyses from plane and cross-sectional viewpoints, the ZnS NWs were determined to have a c-axis, [0001] growth direction. In addition, the catalyst at the top of the ZnS NWs was determined to consist of a Ag2S phase. To support the Ag2S-catalyzed growth of the ZnS NWs by a VLS reaction, an in situ heating TEM experiment was conducted from room temperature to 840 °C. During the experiment, the melting of the Ag2S catalyst in the direction of the ZnS NWs was first observed at approximately 480 °C along with the formation of a carbon (C) shell. Subsequently, the Ag2S catalyst melted completely into the ZnS NWs at approximately 825 °C. As the temperature further increased, the Ag2S and ZnS NWs continuously melted and vaporized up to 840 °C, leaving only the C shell behind. Finally, a possible growth mechanism was proposed based on the structural and chemical investigations.
Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong
2018-01-01
Background Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. Methods With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)–DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP–DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. Results SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. Conclusion A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings. PMID:29713169
Yang, Yao-Yao; Liu, Zhe-Peng; Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong
2018-01-01
Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)-DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP-DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings.
Domínguez-Pérez, Rubén Abraham; De la Torre-Luna, Rocio; Ahumada-Cantillano, Mariana; Vázquez-Garcidueñas, Ma Soledad; Pérez-Serrano, Rosa Martha; Martínez-Martínez, Rita Elizabeth; Guillén-Nepita, Ana Laura
2018-05-22
To identify the prevalence of genes encoding resistance to three groups of antibiotics in root canals with primary infection or post-treatment disease. Sixty four subjects who needed root canal treatment because of primary infection or post-treatment disease were enrolled in the present cross-sectional analytic study. Root canal samples were obtained, and DNA isolated. Specific primers for six antibiotic resistance genes and seven bacterial taxa (five genera and two species) were used. Student t test, chi-square test, and the Fisher's exact test were applied when appropriate to detect statistical differences. blaTEM-1, ermC, and tetM were more frequently found in the post-treatment disease group. While tetQ and cfxA were not found in any case. The occurrence of assessed bacteria were similar in both groups, except for Enterococcus spp. and P. endodontalis, which were found with a significant higher frequency in the post-treatment disease group. It was evident that the post-treatment disease group harboured more antibiotic resistance genes. The most frequent was tetW whereas tetQ and cfxA were not detected. With respect to bacterial taxa, Fusobacterium spp. was present in the 100% while the species Porphyromonas gingivalis was not in any of the samples. In all cases, at least one antibiotic resistance gene was detected, 32.8% were positive to four resistance genes, 54.6% to three, 9.3% to two and only 3.1% to one resistance gene. This indicates a high prevalence and diversity of antibiotic resistance genes in the sample. Copyright © 2018. Published by Elsevier Ltd.
A computer program for analyzing channel geometry
Regan, R.S.; Schaffranek, R.W.
1985-01-01
The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)
Multistrand superconductor cable
Borden, A.R.
1984-03-08
Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easil
Electron Microscopy Characterization of Vanadium Dioxide Thin Films and Nanoparticles
NASA Astrophysics Data System (ADS)
Rivera, Felipe
Vanadium dioxide (VO_2) is a material of particular interest due to its exhibited metal to insulator phase transition at 68°C that is accompanied by an abrupt and significant change in its electronic and optical properties. Since this material can exhibit a reversible drop in resistivity of up to five orders of magnitude and a reversible drop in infrared optical transmission of up to 80%, this material holds promise in several technological applications. Solid phase crystallization of VO_2 thin films was obtained by a post-deposition annealing process of a VO_{x,x approx 2} amorphous film sputtered on an amorphous silicon dioxide (SiO_2) layer. Scanning electron microscopy (SEM) and electron-backscattered diffraction (EBSD) were utilized to study the morphology of the solid phase crystallization that resulted from this post-deposition annealing process. The annealing parameters ranged in temperature from 300°C up to 1000°C and in time from 5 minutes up to 12 hours. Depending on the annealing parameters, EBSD showed that this process yielded polycrystalline vanadium dioxide thin films, semi-continuous thin films, and films of isolated single-crystal particles. In addition to these films on SiO_2, other VO_2 thin films were deposited onto a-, c-, and r-cuts of sapphire and on TiO_2(001) heated single-crystal substrates by pulsed-laser deposition (PLD). The temperature of the substrates was kept at ˜500°C during deposition. EBSD maps and orientation imaging microscopy were used to study the epitaxy and orientation of the VO_2 grains deposited on the single crystal substrates, as well as on the amorphous SiO_2 layer. The EBSD/OIM results showed that: 1) For all the sapphire substrates analyzed, there is a predominant family of crystallographic relationships wherein the rutile VO_2{001} planes tend to lie parallel to the sapphire's {10-10} and the rutile VO_2{100} planes lie parallel to the sapphire's {1-210} and {0001}. Furthermore, while this family of relationships accounts for the majority of the VO_2 grains observed, due to the sapphire substrate's geometry there were variations within these rules that changed the orientation of VO_2 grains with respect to the substrate's normal direction. 2) For the TiO_2, a substrate with a lower lattice mismatch, we observe the expected relationship where the rutile VO_2 [100], [110], and [001] crystal directions lie parallel to the TiO_2 substrate's [100], [110], and [001] crystal directions respectively. 3) For the amorphous SiO_2 layer, all VO_2 crystals that were measurable (those that grew to the thickness of the deposited film) had a preferred orientation with the the rutile VO_2[001] crystal direction tending to lie parallel to the plane of the specimen. The use of transmission electron microscopy (TEM) is presented as a tool for further characterization studies of this material and its applications. In this work TEM diffraction patterns taken from cross-sections of particles of the a- and r-cut sapphire substrates not only solidified the predominant family mentioned, but also helped lift the ambiguity present in the rutile VO_2{100} axes. Finally, a focused-ion beam technique for preparation of cross-sectional TEM samples of metallic thin films deposited on polymer substrates is demonstrated.
CrossTalk: The Journal of Defense Software Engineering. Volume 23, Number 2, March/April 2010
2010-04-01
SDLC phase. 4. Developing secure software depends on understanding the operational con- text in which it will be used. This con- text includes... its development . BSI leverages the Common Weakness Enumeration (CWE) and the Common Attack Pattern Enumeration and Classification (CAPEC) efforts. To...system integrators providing sys- tems (both IT and warfighting) to the Concept Refinement Technology Development System Development and
Mastrorilli, Piero; Dell'Anna, Maria M; Rizzuti, Antonino; Mali, Matilda; Zapparoli, Mauro; Leonelli, Cristina
2015-10-14
An insight into the nano- and micro-structural morphology of a polymer supported Pd catalyst employed in different catalytic reactions under green conditions is reported. The pre-catalyst was obtained by copolymerization of the metal-containing monomer Pd(AAEMA)₂ [AAEMA-=deprotonated form of 2-(acetoacetoxy) ethyl methacrylate] with ethyl methacrylate as co-monomer, and ethylene glycol dimethacrylate as cross-linker. This material was used in water for the Suzuki-Miyaura cross-coupling of aryl bromides, and for the reduction of nitroarenes and quinolines using NaBH₄ or H₂, as reductants. TEM analyses showed that in all cases the pristine Pd(II) species were reduced in situ to Pd(0), which formed metal nanoparticles (NPs, the real active species). The dependence of their average size (2-10 nm) and morphology on different parameters (temperature, reducing agent, presence of a phase transfer agent) is discussed. TEM and micro-IR analyses showed that the polymeric support retained its porosity and stability for several catalytic cycles in all reactions and Pd NPs did not aggregate after reuse. The metal nanoparticle distribution throughout the polymer matrix after several recycles provided precious information about the catalytic mechanism, which was truly heterogeneous in the hydrogenation reactions and of the so-called "release and catch" type in the Suzuki coupling.
Quantitative XRD analysis of {110} twin density in biotic aragonites.
Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Nagasawa, Hiromichi; Kogure, Toshihiro
2012-12-01
{110} Twin densities in biotic aragonite have been estimated quantitatively from the peak widths of specific reflections in powder X-ray diffraction (XRD) patterns, as well as direct confirmation of the twins using transmission electron microscopy (TEM). Influence of the twin density on the peak widths in the XRD pattern was simulated using DIFFaX program, regarding (110) twin as interstratification of two types of aragonite unit layers with mirrored relationship. The simulation suggested that the twin density can be estimated from the difference of the peak widths between 111 and 021, or between 221 and 211 reflections. Biotic aragonite in the crossed-lamellar microstructure (three species) and nacreous microstructure (four species) of molluscan shells, fish otoliths (two species), and a coral were investigated. The XRD analyses indicated that aragonite crystals in the crossed-lamellar microstructure of the three species contain high density of the twins, which is consistent with the TEM examination. On the other hand, aragonite in the nacre of the four species showed almost no difference of the peak widths between the paired reflections, indicating low twin densities. The results for the fish otoliths were varied between the species. Such variation of the twin density in biotic aragonites may reflect different schemes of crystal growth in biomineralization. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesche, A.; Stoecker, H.; Levin, A. A.
2010-01-15
A series of Co{sub x}Cu{sub 100-x} (x=0, 40-75, 100) layers with thicknesses between 13 and 55 nm were prepared on silicon substrates using cross-beam pulsed laser deposition. Wide-angle x-ray diffraction (WAXRD), transmission electron microscopy (TEM), and electrical transport measurements revealed a structure consisting of decomposed cobalt and copper grains with grain sizes of about 10 nm. The influence of cobalt content and layer thickness on the grain size is discussed. Electron diffraction indicates the presence of an intermetallic Co-Cu phase of Cu{sub 3}Au structure type. Thermal treatment at temperatures between 525 and 750 K results in the progressive decomposition ofmore » Co and Cu, with an increase of the grain sizes up to about 100 nm. This is tunable by controlling the temperature and duration of the anneal, and is directly observable in WAXRD patterns and TEM images. A careful analysis of grain size and the coherence length of the radiation used allows for an accurate interpretation of the x-ray diffraction patterns, by taking into account coherent and noncoherent scattering. The alloy films show a giant magnetoresistance of 1%-2.3% with the maximum obtained after annealing at around 725 K.« less
NASA Technical Reports Server (NTRS)
Dugan, J. V., Jr.; Canright, R. B., Jr.
1972-01-01
The numerical capture cross section is calculated from the capture ratio, defined as the fraction of trajectories reaching a prescribed minimum separation of 3 A. The calculated capture cross sections for a rotational temperature of 77 K suggest large reaction cross sections in 80 K experiments for the large dipole-moment target, methyl cyanide.
The K 2S 2O 8-KOH photoetching system for GaN
NASA Astrophysics Data System (ADS)
Weyher, J. L.; Tichelaar, F. D.; van Dorp, D. H.; Kelly, J. J.; Khachapuridze, A.
2010-09-01
A recently developed photoetching system for n-type GaN, a KOH solution containing the strong oxidizing agent potassium peroxydisulphate (K 2S 2O 8), was studied in detail. By careful selection of the etching parameters, such as the ratio of components and the hydrodynamics, two distinct modes were defined: defect-selective etching (denoted by KSO-D) and polishing (KSO-P). Both photoetching methods can be used under open-circuit (electroless) conditions. Well-defined dislocation-related etch whiskers are formed during KSO-D etching. All types of dislocations are revealed, and this was confirmed by cross-sectional TEM examination of the etched samples. Extended electrically active defects are also clearly revealed. The known relationship between etch rate and carrier concentration for photoetching of GaN in KOH solutions was confirmed for KSO-D etch using Raman measurements. It is shown that during KSO-P etching diffusion is the rate-limiting step, i.e. this etch is suitable for polishing of GaN. Some constraints of the KSO etching system for GaN are discussed and peculiar etch features, so far not understood, are described.
Microstructure analysis in the coupling region of fiber coupler with a novel electrical micro-heater
NASA Astrophysics Data System (ADS)
Shuai, Cijun; Gao, Chengde; Nie, Yi; Hu, Huanlong; Peng, Shuping
2011-12-01
Fused-tapered fiber coupler is widely used in optical-fiber communication, optical-fiber sensor and optical signal processing. Its optical performance is mainly determined by the glass properties in the coupling region. In this study, the effect of fused biconical taper (FBT) process on glass microstructure of fiber coupler was investigated by testing the microstructure of the cross-section of coupling region. The fiber coupler is fabricated with a novel home-designed electrical heater. Our experimental results show that the boundary between fiber core and fiber cladding become vague or indistinct after FBT under transmission electron microscopy (TEM) and Ge 2+ in fiber core diffuses into fiber cladding. Crystallizations are observed in coupling region under scanning electron microscope (SEM) and microscopic infrared (IR), and the micro crystallizations become smaller with the drawing speed increasing. The wave number of fiberglass increases after FBT and it is in proportion to the drawing speed. The analysis of the microstructure in the coupling region explored the mechanism of the improvement in the performance of fiber couplers which can be used for the guidance of fabrication process.
NASA Astrophysics Data System (ADS)
Yang, Zhenhua; Li, Hongfei; Nam, Chang-Yong; Kisslinger, Kim; Satija, Sushil; Rafailovich, Miriam
Bulk heterojunction (BHJ) polymer solar cells are an area of intense interest due to their advantages such as mechanical flexibility. The active layer is typically spin coated from the solution of polythiophene derivatives (donor) and fullerenes (acceptor) and interconnected domains are formed because of phase separation. However, the power conversion efficiency (PCE) of BHJ solar cell is restricted by the disordered inner structures in the active layer, donor or acceptor domains isolated from electrodes. Here we report a self-assembled columnar structure formed by phase separation between (PCDTBT) and polystyrene (PS) for the active layer morphology optimization. The BHJ solar cell device based on this structure is promising for exhibiting higher performance due to the shorter carrier transportation pathway and larger interfacial area between donor and acceptor. The surface morphology is investigated with atomic force microscopy (AFM) and the columnar structure is studied by investigation of cross-section of the blend thin film of PCDTBT and PS under the transmission electron microscopy (TEM). The different morphological structures formed via phase segregation are correlated with the performance of the BHJ solar cells.
Karimi, Zahra; Sadeghi, Mahdi; Mataji-Kojouri, Naimeddin
2018-07-01
64 Cu is one of the most beneficial radionuclide that can be used as a theranostic agent in Positron Emission Tomography (PET) imaging. In this current work, 64 Cu was produced with zinc oxide nanoparticles ( nat ZnONPs) and zinc oxide powder ( nat ZnO) via the 64 Zn(n,p) 64 Cu reaction in Tehran Research Reactor (TRR) and the activity values were compared with each other. The theoretical activity of 64 Cu also was calculated with MCNPX-2.6 and the cross sections of this reaction were calculated by using TALYS-1.8, EMPIRE-3.2.2 and ALICE/ASH nuclear codes and were compared with experimental values. Transmission Electronic Microscopy (TEM), Scanning Electronic Microscopy (SEM) and X-Ray Diffraction (XRD) analysis were used for samples characterizations. From these results, it's concluded that 64 Cu activity value with nanoscale target was achieved more than the bulk state target and had a good adaptation with the MCNPX result. Copyright © 2018 Elsevier Ltd. All rights reserved.
Alteration of submarine basaltic glass from the Ontong Java Plateau: A STXM and TEM study
NASA Astrophysics Data System (ADS)
Benzerara, K.; Menguy, N.; Banerjee, N. R.; Tyliszczak, Tolek; Brown, G. E.; Guyot, F.
2007-08-01
Frequent observations of tubular to vermicular microchannels in altered basalt glass have led to increasing appreciation of a possible significant role of microbes in the low-temperature alteration of seafloor basalt. We have examined such microchannel alteration features at the nanoscale in basalt glass shards from the Ontong Java Plateau using a combination of focused ion beam milling, transmission electron microscopy and scanning transmission X-ray microscopy. Three types of materials were found in ultrathin cross-sections cut through the microchannels by FIB milling: fresh basalt glass, amorphous Si-rich rims surrounding the microchannels, and palagonite within the microchannels. X-ray absorption spectroscopy at the C K-edge and Fe L 2,3-edges showed the presence of organic carbon in association with carbonates within the microchannels and partial oxidation of iron in palagonite compared with basalt glass. Although these observations alone cannot discriminate between a biotic or abiotic origin for the microchannels, they provide new information on their mineralogical and chemical composition and thus better constrain the physical and chemical conditions prevailing during the alteration process.
Direct synthesis of ultrathin SOI structure by extremely low-energy oxygen implantation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp; Yachida, Gosuke; Inoue, Kodai
2016-06-15
We performed extremely low-energy {sup 16}O{sup +} implantation at 10 keV (R{sub p} ∼ 25 nm) followed by annealing aiming at directly synthesizing an ultrathin Si layer separated by a buried SiO{sub 2} layer in Si(001) substrates, and then investigated feasible condition of recrystallization and stabilization of the superficial Si and the buried oxide layer by significantly low temperature annealing. The elemental compositions were analyzed by Rutherford backscattering (RBS) and secondary ion mass spectroscopy (SIMS). The crystallinity of the superficial Si layer was quantitatively confirmed by ananlyzing RBS-channeling spectra. Cross-sectional morphologies and atomic configurations were observed by transmission electron microscopemore » (TEM). As a result, we succeeded in directly synthesizing an ultrathin single-crystalline silicon layer with ≤20 nm thick separated by a thin buried stoichiometric SiO{sub 2} layer with ≤20 nm thick formed by extremely low-energy {sup 16}O{sup +} implantation followed by surprisingly low temperature annealing at 1050{sup ∘} C.« less
NASA Astrophysics Data System (ADS)
Chandrashekar, Anand; Chen, Feng; Lin, Jasmine; Humayun, Raashina; Wongsenakhum, Panya; Chang, Sean; Danek, Michal; Itou, Takamasa; Nakayama, Tomoo; Kariya, Atsushi; Kawaguchi, Masazumi; Hizume, Shunichi
2010-09-01
This paper describes electrical testing results of new tungsten chemical vapor deposition (CVD-W) process concepts that were developed to address the W contact and bitline scaling issues on 55 nm node devices. Contact resistance (Rc) measurements in complementary metal oxide semiconductor (CMOS) devices indicate that the new CVD-W process for sub-32 nm and beyond - consisting of an advanced pulsed nucleation layer (PNL) combined with low resistivity tungsten (LRW) initiation - produces a 20-30% drop in Rc for diffused NiSi contacts. From cross-sectional bright field and dark field transmission electron microscopy (TEM) analysis, such Rc improvement can be attributed to improved plugfill and larger in-feature W grain size with the advanced PNL+LRW process. More experiments that measured contact resistance for different feature sizes point to favorable Rc scaling with the advanced PNL+LRW process. Finally, 40% improvement in line resistance was observed with this process as tested on 55 nm embedded dynamic random access memory (DRAM) devices, confirming that the advanced PNL+LRW process can be an effective metallization solution for sub-32 nm devices.
NASA Astrophysics Data System (ADS)
Chen, Shumin; Gao, Ming; Wan, Yazhou; Du, Huiwei; Li, Yong; Ma, Zhongquan
2016-12-01
A silicon based ternary compound was supposed to be solid synthesized with In, Si and O elements by magnetron sputtering of indium tin oxide target (ITO) onto crystal silicon substrate at 250 °C. To make clear the configuration of the intermediate region, a potential method to obtain the chemical bonding of Si with other existing elements was exploited by X-ray photoelectron spectroscopy (XPS) instrument combined with other assisted techniques. The phase composition and solid structure of the interfacial region between ITO and Si substrate were investigated by X-ray diffraction (XRD) and high resolution cross sectional transmission electron microscope (HR-TEM). A photovoltaic device with structure of Al/Ag/ITO/SiOx/p-Si/Al was assembled by depositing ITO films onto the p-Si substrate by using magnetron sputtering. The new matter has been assumed to be a buffer layer for semiconductor-insulator-semiconductor (SIS) photovoltaic device and plays critical role for the promotion of optoelectronic conversion performance from the view point of device physics.
Vasylenko, Andrij; Marks, Samuel; Wynn, Jamie M; Medeiros, Paulo V C; Ramasse, Quentin M; Morris, Andrew J; Sloan, Jeremy; Quigley, David
2018-05-25
Nanostructuring, e. g., reduction of dimensionality in materials, offers a viable route toward regulation of materials electronic and hence functional properties. Here, we present the extreme case of nanostructuring, exploiting the capillarity of single-walled carbon nanotubes (SWCNTs) for the synthesis of the smallest possible SnTe nanowires with cross sections as thin as a single atom column. We demonstrate that by choosing the appropriate diameter of a template SWCNT, we can manipulate the structure of the quasi-one-dimensional (1D) SnTe to design electronic behavior. From first principles, we predict the structural re-formations that SnTe undergoes in varying encapsulations and confront the prediction with TEM imagery. To further illustrate the control of physical properties by nanostructuring, we study the evolution of transport properties in a homologous series of models of synthesized and isolated SnTe nanowires varying only in morphology and atomic layer thickness. This extreme scaling is predicted to significantly enhance thermoelectric performance of SnTe, offering a prospect for further experimental studies and future applications.
NASA Astrophysics Data System (ADS)
Hosseini, Farnaz; Safaei, Elham; Mohebbi, Sajjad
2017-07-01
This study has focused on catalytic and photocatalytic oxidation of aromatic alcohols using WO3 nanorod and a series of Pt/WO3 nanocomposite Pt nanoparticles was loaded on WO3 nanorod with several mass ratios 0.1, 0.2, and 0.3 via a photoreduction process (PRP) and characterized by TEM, FE-SEM imaging, EDAX, XRD, DRS, ICP, and XPS. WO3 nanorods were obtained monodispersed with average 40-nm diameter and square cross section without significant size change by the loading of platinum nanoparticles on it. Progress of oxidation reaction was monitored by GC and the yield of aerobic photocatalytic oxidation of alcohols reached up to 98% for Pt/WO3 and 69% for WO3 while, no oxidation was detected in the absence of light. The highest photocatalytic performance was obtained for mass ratio 0.2 with the selectivity >99%. So, this nanocomposite has potentials to be used as high-performance heterogeneous catalyst and photocatalyst under visible light irradiation with advantages of high activity, high selectivity, and reusability.
The Effect of Interface Texture on Exchange Biasing in Ni(80)Fe(20)/Ir(20)Mn(80) System.
Chen, Yuan-Tsung
2009-01-01
Exchange-biasing phenomenon can induce an evident unidirectional hysteresis loop shift by spin coupling effect in the ferromagnetic (FM)/antiferromagnetic (AFM) interface which can be applied in magnetoresistance random access memory (MRAM) and recording-head applications. However, magnetic properties are the most important to AFM texturing. In this work, top-configuration exchange-biasing NiFe/IrMn(x A) systems have been investigated with three different conditions. From the high-resolution cross-sectional transmission electron microscopy (HR X-TEM) and X-ray diffraction results, we conclude that the IrMn (111) texture plays an important role in exchange-biasing field (H(ex)) and interfacial exchange energy (J(k)). H(ex) and J(k) tend to saturate when the IrMn thickness increases. Moreover, the coercivity (H(c)) dependence on IrMn thickness is explained based on the coupling or decoupling effect between the spins of the NiFe and IrMn layers near the NiFe/IrMn interface. In this work, the optimal values for H(ex) and J(k) are 115 Oe and 0.062 erg/cm(2), respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Yuan, Chengwei; Li, Yangmei
2015-12-15
An integrative high power microwave device is proposed, which consists of a high-efficiency L-band Magnetically Insulated Transmission Line Oscillator (MILO) and a discal TEM–TE{sub 11} mode converter. The MILO with a shrunken load composed of a step-like cathode and a ladder-like beam collector can generate a 1.58 GHz, 5.7 GW microwave with the efficiency of 20.8% at the diode voltage of 560 kV in simulation. The discal converter utilizes a pair of sectorial two-double radial waveguides and a pair of sectorial cross section waveguides to adjust the phase-difference and realizes the mode conversion in a length of less than halfmore » wavelength at 1.58 GHz. In the preliminary experiment, the proposed device generates over 2 GW, 1.575 GHz microwave with the pulse duration of over 50 ns in a 420 kV diode voltage; the corresponding efficiency is 14.9%; the radiation pattern is the ideal TE{sub 11} mode.« less
Self-Assembly of Magnetic Nanoparticles at the Surface and Within Block Copolymer Films
NASA Astrophysics Data System (ADS)
Xu, Chen; Ohno, Kohji; Composto, Russell
2007-03-01
We investigate the self-assembly of magnetic Fe3O4 nanoparticles in thin films of a symmetric block copolymer of poly(styrene-b-methyl methacrylate), PS-b-PMMA (75 kg/mol). The Fe3O4 nanoparticles (4nm) are grafted by poly(methyl methacrylate) (PMMA) (2.7 kg/mol) brushes to improve their compatibility. The weight percent of Fe3O4 in PS-b-PMMA is 1, 4 and 10. The Fe3O4 reside at the intermaterial dividing surface and also form small disk-like aggregates within the PMMA phase. The addition of Fe3O4 slows down the transition from perpendicular to parallel lamellae morphology at the surface and slowing down increases as weight percent Fe3O4 increases. Using cross-sectional TEM, nanoparticles are found to be rejected from the parallel lamellae and gather preferentially within the perpendicular lamellae. These studies demonstrate that the Fe3O4 particles influence thin film morphology and visa versa. Because of widespread interest in nanodevices, this study shows that arrays of functional nanoparticles can be formed using block copolymer templates.
Microstructural Evolution of Secondary Phases in the Cast Duplex Stainless Steels CD3MN and CD3MWCuN
NASA Astrophysics Data System (ADS)
Kim, Yoon-Jun; Ugurlu, Ozan; Jiang, Chao; Gleeson, Brian; Chumbley, L. Scott
2007-02-01
The isothermal formation behavior of secondary phases in two types of duplex stainless steels (DSS), CD3MN and CD3MWCuN, was characterized. Samples were heat treated from 1 minute to 30 days at temperatures from 700°C to 900°C. Small carbide (M23C6) and nitride (Cr2N) precipitates, together with the intermetallic phases sigma and chi, were observed using scanning electron microscopy (SEM) and confirmed by transmission electron microscopy (TEM) analyses. Based on SEM analysis, time-temperature-transformation (TTT) curves for the sigma and chi phases were determined by measuring their volume fractions from backscattered electron micrographs of heat-treated and quenched sample cross sections. Resulting TTT curves showed that the maximum formation temperature for chi is lower than that for sigma, while the time to reach 1 vol pct formation is much less for sigma than it is for chi. The thermodynamic driving forces associated with the sigma and chi formation were assessed using Thermo-Calc.
Kasai, Takehiro; Ishiguro, Naoki; Matsui, Yasumoto; Harada, Atsushi; Takemura, Marie; Yuki, Atsumu; Kato, Yuki; Otsuka, Rei; Ando, Fujiko; Shimokata, Hiroshi
2015-06-01
Sex- and age-related differences in mid-thigh composition and muscle quality remain unclear. The present study aimed to clarify these differences using computed tomography in middle-aged and elderly Japanese. A total of 2310 participants (age 40-89 years), who were randomly selected from the local residents, underwent computed tomography examination of the right mid-thigh. Thigh circumference and cross-sectional areas of the thigh, muscle, quadriceps, non-quadriceps, fat, and bone were measured. Knee extension strength and muscle quality index (knee extension strength/quadriceps cross-sectional area) were also assessed. Sex- and age-related differences in these indices were analyzed. The thigh cross-sectional area in men and women decreased by 0.6% and 0.5%/year, respectively, because of a decrease in muscle cross-sectional area (men 75.2%, women 40.6%), fat cross-sectional area (men 24.4%, women 59.6%) and bone cross-sectional area (men 0.5%, women -0.2%). Muscle cross-sectional area in men and women decreased by 0.6% and 0.4%/year, respectively, because of a decrease in quadriceps cross-sectional area (men 65.6%, women 81.6%) and non-quadriceps cross-sectional area (men 34.4%, women 18.4%). Muscle quality in men and women decreased by 0.4% and 0.3%/year, respectively. Thigh cross-sectional area decreased with age mainly because of a decrease in muscle cross-sectional area in men and fat cross-sectional area in women. The rate of decrease in muscle cross-sectional area was 1.5-fold higher in men than in women. Muscle cross-sectional area decreased with age mainly because of a decrease in quadriceps cross-sectional area, especially in women. Decrease in muscle quality with age was similar in both sexes. © 2014 Japan Geriatrics Society.
NASA Astrophysics Data System (ADS)
Ardali, Ayça Sultan; Tezkan, Bülent; Gürer, Aysan
2018-02-01
Durusu Lake is the biggest and most important freshwater source supplying drinking water to the European side of Istanbul. In this study, electrical resistivity tomography (ERT) and transient electromagnetic (TEM) measurements were applied to detect a possible salt water intrusion into the lake and to delineate the subsurface structure in the north of Durusu Lake. The ERT and TEM measurements were carried out along six parallel profiles extending from the sea coast to the lake shore on the dune barrier. TEM data were interpreted using different 1-D inversion methods such as Occam, Marquardt, and laterally constrained inversion (LCI). ERT data were interpreted using 2-D inversion techniques. The inversion results of ERT and TEM data were shown as resistivity depth sections including topography. The sand layer spreading over the basin has a resistivity of 150-400 Ωm with a thickness of 5-10 m. The sandy layer with clay, silt, and gravel has a resistivity of 15-100 Ωm and a thickness of 10-40 m followed by a clay layer of a resistivity below 10 Ωm. When the inversion of these data is interpreted along with the hydrogeology of the area, it is concluded that the salt water intrusion along the dune barrier is not common and occurs at a particular area where the distance between lake and sea is very close. Using information from boreholes around the lake, it was verified that the common conductive region at depths of 30 m or more consists of clay layers and clay lenses.
NASA Technical Reports Server (NTRS)
Diana, L. M.; Chaplin, R. L.; Brooks, D. L.; Adams, J. T.; Reyna, L. K.
1990-01-01
An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease.
Nano-fabricated plasmonic optical transformer
Choo, Hyuck; Cabrini, Stefano; Schuck, P. James; Liang, Xiaogan; Yablonovitch, Eli
2015-06-09
The present invention provides a plasmonic optical transformer to produce a highly focuses optical beam spot, where the transformer includes a first metal layer, a dielectric layer formed on the first metal layer, and a second metal layer formed on the dielectric layer, where the first metal layer, the dielectric layer, and the second layer are patterned to a shape including a first section having a first cross section, a second section following the first section having a cross-section tapering from the first section to a smaller cross-section, and a third section following the second section having a cross-section matching the tapered smaller cross-section of the second section.
Ryder, Robert T.; Trippi, Michael H.; Swezey, Christopher S.; Crangle, Robert D.; Hope, Rebecca S.; Rowan, Elisabeth L.; Lentz, Erika E.
2012-01-01
Geologic cross section C-C' is the third in a series of cross sections constructed by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section C-C' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from north-central Ohio to the Valley and Ridge province in south-central Pennsylvania, a distance of approximately 260 miles (mi). This cross section is a companion to cross sections E-E' and D-D' that are located about 50 to 125 mi and 25 to 50 mi, respectively, to the southwest. Cross section C-C' contains much information that is useful for evaluating energy resources in the Appalachian basin. Although specific petroleum systems are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on what is shown on the cross section. Cross section C-C' also provides a general framework (stratigraphic units and general rock types) for the coal-bearing section, although the cross section lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank). In addition, cross section C-C' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.
Multistrand superconductor cable
Borden, Albert R.
1985-01-01
Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.
Electron microscopy investigations of nanoparticles for cancer diagnostic applications
NASA Astrophysics Data System (ADS)
Koh, Ai Leen
This dissertation concerns electron microscopy characterization of magnetic (MNP) and surface enhanced Raman scattering (SERS) nanoparticles for in-vitro cancer diagnostic applications. Electron microscopy is an essential characterization tool owing to its (sub) nanometer spatial resolution. Structural information about the nanoparticles can be obtained using transmission electron microscopy (TEM), which can in turn be correlated to their physical characteristics. The scanning electron microscope (SEM) has excellent depth of field and can be effectively utilized to obtain high resolution information about nanoparticles binding onto cell surfaces. Part One of this thesis focuses on MNPs for bio-sensing and detection applications. As a preliminary study, chemically-synthesized, commercially-available iron oxide nanoparticles were compared against their laboratory-synthesized counterparts to assess their suitability for this application. The motivation for this initial study came about due to the lack of published data on commercially available iron oxide nanoparticles. TEM studies show that the latter are "beads" composed of multiple iron oxide cores encapsulated by a polymer shell, with large standard deviations in core diameter. Laboratory-synthesized iron oxide nanoparticles, on the other hand, are single core particles with small variations in diameter and therefore are expected to be better candidates for the required application. A key limitation in iron oxide nanoparticles is their relatively weak magnetic signals. The development of high moment Synthetic Anti-Ferromagnetic (SAF) nanoparticles aims to overcome this issue. SAFs are a novel class of MNPs fabricated using nanoimprint lithography, direct deposition of multilayer structure and final suspension into liquid medium (water). TEM analyses of cross-section specimens reveal that the SAFs possess characteristics similar to those of sputtered magnetic multilayer thin films. Their layered structure is preserved after a chemical etch. Magnetic measurements show a slight decrease in magnetic moment after ion milling. From TEM characterization, the introduction of oxygen into the copper release layer, prior the film deposition process, can effectively control the topography of the oxidized-copper grains and, consequently, lead to the production of SAF nanoparticles with flatter layers. Size distribution studies performed on SAFs fabricated using self-assembled stamps show that it is possible to produce monodisperse nanoparticles with diameters from 70 nm up. Part Two of the dissertation describes structural characterization experiments performed on Composite Organic-Inorganic Nanoparticles (COINs), which are a novel type of SERS nanoclusters formed by aggregating silver nanoparticles with Raman molecules, and then encapsulating them with an organic coating that stabilizes the aggregates and promotes subsequent functionalization with antibodies. Part Three of this dissertation focuses on the development and application of electron microscopy-based techniques to characterize the nanomaterial-biology interactions, to assess how, or indeed whether, nanoparticles are attaching to the cancer cells. The technique of negative staining was applied to simultaneously visualize inorganic nanoparticles and their biofunctionalized entities under the TEM and to verify the successful functionalization of nanoparticles with antibodies. The interpretation of the negatively-stained COINs was consistent with the EFTEM data. Next, the localization and characterization of CD54-functionalized COINs on the apicolateral portions of U937 leukemia cell lines was determined using TEM, SEM and Scanning Auger Microscopy. The analyses show that CD54 antigens are localized at a specific region on U937 leukemia cell surfaces. SEM imaging and SER spectroscopy correlation studies of different antibody-conjugated COINs attached onto different cancer cell lines show a direct correlation between the number of COINs binding to cells and the corresponding SER intensity. Finally, TEM was used to locate intra-cellularly labeled COINs and to trace the phospho-stat6 signaling pathway in U937 leukemia cells, demonstrating that COINs can be used to detect intracellular phosphorylation signaling events. These experiments demonstrate the importance of electron microscopy for analyzing the material-biology interface and for validating the attachment of nanoparticles on and in cells. Thus, electron microscope provides complementary imaging and spectroscopic information to current magnetic and SERS bio-detection technologies. (Abstract shortened by UMI.)
Klatt, Stephan; Hartl, Daniela; Fauler, Beatrix; Gagoski, Dejan; Castro-Obregón, Susana; Konthur, Zoltán
2013-12-06
Leishmania tarentolae is a non-human-pathogenic Leishmania species of growing interest in biotechnology, as it is well-suited for the expression of human recombinant proteins. For many applications it is desirable to express recombinant proteins with a tag allowing easy purification and detection. Hence, we adopted a scheme to express recombinant proteins with a His6-tag and, additionally, to site-specifically in vivo biotinylate them for detection. Biotinylation is a relatively rare modification of endogenous proteins that allows easy detection with negligible cross-reactivity. Here, we established a genetically engineered L. tarentolae strain constitutively expressing the codon-optimized biotin-protein ligase from Escherichia coli (BirA). We thoroughly analyzed the strain for functionality using 2-D polyacrylamide-gel electrophoresis (PAGE), mass spectrometry, and transmission electron microscopy (TEM). We could demonstrate that neither metabolic changes (growth rate) nor structural abnormalities (TEM) occurred. To our knowledge, we show the first 2-D PAGE analyses of L. tarentolae. Our results demonstrate the great benefit of the established L. tarentolae in vivo biotinylation strain for production of dual-tagged recombinant proteins. Additionally, 2-D PAGE and TEM results give insights into the biology of L. tarentolae, helping to better understand Leishmania species. Finally, we envisage that the system is transferable to human-pathogenic species.
Oviedo-Rondón, E O; Small, J; Wineland, M J; Christensen, V L; Grimes, J L; Funderburk, S V L; Ort, D T; Mann, K M
2008-08-01
Temperature (TEM) and O(2) concentrations during the plateau stage of oxygen consumption are known to affect yolk utilization, tissue development, and thyroid metabolism in turkey embryos. Three experiments were conducted to evaluate these incubation effects on long bone development. Fertile eggs of Nicholas turkeys were used. In each trial, standard incubation conditions were used to 24 d, when the eggs containing viable embryos were randomly divided into 4 groups. Four experimental cabinets provided 4 TEM (36, 37, 38, or 39 degrees C) or 4 O(2) concentrations (17, 19, 21, or 23% O(2)). In the third experiment, 2 temperatures (36 and 39 degrees C) and 2 O(2) concentrations (17 and 23%) were evaluated in a 2 x 2 factorial design. Body and residual yolk weights were obtained. Both legs were dissected, and shanks, femur, and tibia weights, length, and thickness were recorded. Relative asymmetry of each leg section was calculated. Chondrocyte density was evaluated in slides stained with hematoxylin and eosin. Immunofluorescence was used to evaluate the presence of collagen type X and transforming growth factor beta. Hot TEM caused reduction of tibia weights and increase of shank weight when compared with cool TEM. The lengths of femur, tibia, and shanks were reduced by 39 degrees C. The relative asymmetry of leg weights were increased at 38 and 39 degrees C. Poult body and part weights were not affected by O(2) concentrations, but poults on 23% O(2) had bigger shanks and heavier tibias than the ones on 17% O(2). High TEM depressed the fluorescence of collagen type X and transforming growth factor beta. The O(2) concentrations did not consistently affect the immunofluorescence of these proteins. The chondrocyte density was affected by TEM and O(2) in resting and hypertrophic zones. In the third experiment, high TEM depressed BW, leg muscle weights, and shank length. Low O(2) reduced tibia and shanks as a proportion of the whole body. We concluded that incubation conditions affect long bone development in turkeys.
Vehicle Mobility or Firing Stability. A Delicate Balance,
1980-06-01
parameters with respect to a vehicle’s cross country ride performance and to the firing stability of an initially stationary ve- hicle. It is...model described in the previous sec- tion, with the addition of the necessary roll related parameters , trunnion position data, and the firing reaction...mode of operation to a vehicle weapon sys- tem. Obviously the horizontal acceleration at the gunner’s eyepiece 268 * HOOG (TERP &BECK also has an
Microchemical and Structural Evidence for Space Weathering in Soils from Asteroid Itokawa
NASA Technical Reports Server (NTRS)
Thompson, M. S.; Christoffersen, R.; Zega, T. J.
2013-01-01
The chemistry, microstructure and optical properties of grains on the surfaces of airless bodies are continu-ously modified due to their interactions predominantly with solar energetic ions and micrometeorite impacts. Collectively known as space weathering, this phenomenon results in a discrepancy between remotely sensed spectra from asteroids and those ac-quired directly from meteorites. The return of pristine samples from the asteroid Itokawa provides insight into surface processes on airless bodies and will help in correlating remote sensing data with laboratory analysis of meteorites. Samples and Methods: We examined Itokawa samples RA-QD02-0042-01 and RA-QD-02-0042-02, ultramicrotomed sec-tions of a singular grain prepared by the Hayabusa sample cura-tion team. We analyzed these slices using a 200 keV JEOL 2010F transmission electron microscope (TEM) at Arizona State Uni-versity and a 200 keV JEOL 2500SE TEM at NASA JSC. Both field emission TEMs are equipped with energy-dispersive X-ray spectrometers (EDS) and scanning TEM (STEM) detectors. Results and Discussion: TEM observations reveal that the sectioned grain predominantly consists of a single crystal of low-Ca orthopyroxene, with subsidiary smaller regions of olivine, Fe-Ni sulfide, and Fe-Ni metal. EDS-spectrum imaging and high-resolution TEM (HRTEM) show local, nanocrystalline regions of the outermost 2 to 5 nm of the pyroxene are composed of an Fe-Mg-S-rich and Si- and O-depleted layer that is underlain by a 2- to 5-nm thick amorphous zone enriched in Si. These layers occur in multiple microtome slices and have uniform thicknesses. We also observe localized 'islands' of material on the surface of the pyroxene which HRTEM imaging indicates are amorphous and EDS measurements show are compositionally heterogeneous. A 10- to 60-nm thick partially amorphous zone occurs below the compositionally distinct rim. While this this zone is associated with the compositionally heterogeneous outer layer, it also occurs as a local stand-alone feature on the exterior rim of the grain. Ar-eas of the pyroxene grain rim also exhibit a vesicular texture. The TEM data indicate a complex history of space weather-ing for samples RA-QD02-0042-01 and -02. The outermost layer of nanocrystalline material with varied composition is consistent with previously suggested [3-4] chemical and structural pro-cessing by solar wind ions, with a possible additional role for im-pact vapor deposition [3-4]. The amorphous and compositionally distinct islands on the surface of this grain, similar to lunar glasses, suggest formation through vapor deposition via micrometeor-ite impact events. In comparison, the amorphization and vesicula-tion textures are likely a product of radiation damage from the solar wind. The depth and degree of amorphization, in conjunction with model calculations, will help provide an upper limit on exposure time for these particles.
AMPX: a modular code system for generating coupled multigroup neutron-gamma libraries from ENDF/B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, N.M.; Lucius, J.L.; Petrie, L.M.
1976-03-01
AMPX is a modular system for producing coupled multigroup neutron-gamma cross section sets. Basic neutron and gamma cross-section data for AMPX are obtained from ENDF/B libraries. Most commonly used operations required to generate and collapse multigroup cross-section sets are provided in the system. AMPX is flexibly dimensioned; neutron group structures, and gamma group structures, and expansion orders to represent anisotropic processes are all arbitrary and limited only by available computer core and budget. The basic processes provided will (1) generate multigroup neutron cross sections; (2) generate multigroup gamma cross sections; (3) generate gamma yields for gamma-producing neutron interactions; (4) combinemore » neutron cross sections, gamma cross sections, and gamma yields into final ''coupled sets''; (5) perform one-dimensional discrete ordinates transport or diffusion theory calculations for neutrons and gammas and, on option, collapse the cross sections to a broad-group structure, using the one-dimensional results as weighting functions; (6) plot cross sections, on option, to facilitate the ''evaluation'' of a particular multigroup set of data; (7) update and maintain multigroup cross section libraries in such a manner as to make it not only easy to combine new data with previously processed data but also to do it in a single pass on the computer; and (8) output multigroup cross sections in convenient formats for other codes. (auth)« less
Titanium and Oxygen Isotopic Compositions of Sub-Micrometer TiC Crystals Within Presolar Graphite
NASA Astrophysics Data System (ADS)
Stadermann, F. J.; Bernatowicz, T.; Croat, T. K.; Zinner, E.; Messenger, S.; Amari, S.
2003-03-01
We have used the NanoSIMS to study Ti isotopes of individual TiC crystals inside a presolar graphite spherule. These measurements were made directly in TEM sections and the results can be compared to previous O measurements in the same subgrains.
Sions, Jaclyn Megan; Smith, Andrew Craig; Hicks, Gregory Evan; Elliott, James Matthew
2016-08-01
To evaluate intra- and inter-examiner reliability for the assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area, i.e., total cross-sectional area minus intramuscular fat, from T1-weighted magnetic resonance images obtained in older adults with chronic low back pain. Reliability study. n = 13 (69.3 ± 8.2 years old) After lumbar magnetic resonance imaging, two examiners produced relative cross-sectional area measurements of multifidi, erector spinae, psoas, and quadratus lumborum by tracing regions of interest just inside fascial borders. Pixel-intensity summaries were used to determine muscle-to-fat infiltration indices; relative muscle cross-sectional area was calculated. Intraclass correlation coefficients were used to estimate intra- and inter-examiner reliability; standard error of measurement was calculated. Intra-examiner intraclass correlation coefficient point estimates for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area were excellent for multifidi and erector spinae across levels L2-L5 (ICC = 0.77-0.99). At L3, intra-examiner reliability was excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area for both psoas and quadratus lumborum (ICC = 0.81-0.99). Inter-examiner intraclass correlation coefficients ranged from poor to excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area. Assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area in older adults with chronic low back pain can be reliably determined by one examiner from T1-weighted images. Such assessments provide valuable information, as muscle-to-fat infiltration indices and relative muscle cross-sectional area indicate that a substantial amount of relative cross-sectional area may be magnetic resonance-visible intramuscular fat in older adults with chronic low back pain. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Advanced Technology Multiple Criteria Decision Model.
1981-11-01
ratings of the sys- tem parameters; and (3), HEADER which contains information on the structure of the problem and titles. Two supporting programs develop...in these files are given in Section V.2. 2. DATA STRUCTURE TABLES This section describes the data files used in the system selection model program ...the supporting program PPP and an input file to UPPP and SSMP. Figure 13 shows the structure of this file. b. User’s preference package (UPP) UPP is
NASA Astrophysics Data System (ADS)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby
2016-07-01
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.
Parameterized Cross Sections for Pion Production in Proton-Proton Collisions
NASA Technical Reports Server (NTRS)
Blattnig, Steve R.; Swaminathan, Sudha R.; Kruger, Adam T.; Ngom, Moussa; Norbury, John W.; Tripathi, R. K.
2000-01-01
An accurate knowledge of cross sections for pion production in proton-proton collisions finds wide application in particle physics, astrophysics, cosmic ray physics, and space radiation problems, especially in situations where an incident proton is transported through some medium and knowledge of the output particle spectrum is required when given the input spectrum. In these cases, accurate parameterizations of the cross sections are desired. In this paper much of the experimental data are reviewed and compared with a wide variety of different cross section parameterizations. Therefore, parameterizations of neutral and charged pion cross sections are provided that give a very accurate description of the experimental data. Lorentz invariant differential cross sections, spectral distributions, and total cross section parameterizations are presented.
An investigation of MCNP6.1 beryllium oxide S(α, β) cross sections
Sartor, Raymond F.; Glazener, Natasha N.
2016-03-08
In MCNP6.1, materials are constructed by identifying the constituent isotopes (or elements in a few cases) individually. This list selects the corresponding microscopic cross sections calculated from the free-gas model to create the material macroscopic cross sections. Furthermore, the free-gas model and the corresponding material macroscopic cross sections assume that the interactions of atoms do not affect the nuclear cross sections.
DBCC Software as Database for Collisional Cross-Sections
NASA Astrophysics Data System (ADS)
Moroz, Daniel; Moroz, Paul
2014-10-01
Interactions of species, such as atoms, radicals, molecules, electrons, and photons, in plasmas used for materials processing could be very complex, and many of them could be described in terms of collisional cross-sections. Researchers involved in plasma simulations must select reasonable cross-sections for collisional processes for implementing them into their simulation codes to be able to correctly simulate plasmas. However, collisional cross-section data are difficult to obtain, and, for some collisional processes, the cross-sections are still not known. Data on collisional cross-sections can be obtained from numerous sources including numerical calculations, experiments, journal articles, conference proceedings, scientific reports, various universities' websites, national labs and centers specifically devoted to collecting data on cross-sections. The cross-sections data received from different sources could be partial, corresponding to limited energy ranges, or could even not be in agreement. The DBCC software package was designed to help researchers in collecting, comparing, and selecting cross-sections, some of which could be constructed from others or chosen as defaults. This is important as different researchers may place trust in different cross-sections or in different sources. We will discuss the details of DBCC and demonstrate how it works and why it is beneficial to researchers working on plasma simulations.
Ryder, Robert T.; Swezey, Christopher S.; Crangle, Robert D.; Trippi, Michael H.
2008-01-01
Geologic cross section E-E' is the first in a series of cross sections planned by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section E-E' provides a regional view of the structural and stratigraphic framework of the basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 380 miles (mi) (fig. 1, on sheet 1). Cross section E-E' updates earlier geologic cross sections through the central Appalachian basin by Renfro and Feray (1970), Bennison (1978), and Bally and Snelson (1980) and a stratigraphic cross section by Colton (1970). Although other published cross sections through parts of the basin show more structural detail (for example, Shumaker, 1985; Kulander and Dean, 1986) and stratigraphic detail (for example, Ryder, 1992; de Witt and others, 1993; Hettinger, 2001), these other cross sections are of more limited extent geographically and stratigraphically. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section E-E' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section E-E' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste (for example, Colton, 1961; Lloyd and Reid, 1990) or for the sequestration of carbon dioxide (for example, Smith and others, 2002; Lucier and others, 2006).
Impact of x-Linkable Polymer Blends on Phase Morphology and Adhesion
NASA Astrophysics Data System (ADS)
Liu, Chun; Wan, Grace; Keene, Ellen; Harris, Joseph; Zhang, Sipei; Anderson, Stephanie; Li Pi Shan, Colin
Adhesion to dissimilar substrate is highly important to multiple industrial applications such as automotive adhesives, food packaging, transportation etc. Adhesive design has to include components that are affinity to both substrates, e.g. high surface energy polar and low surface non-polar substrates. Typically, these adhesive components are thermodynamically incompatible with each other, leading to macrophase separation and thus adhesive failure. By using functional adhesive components plus some additives, the adhesive can be in-situ cross-linked to prevent the macrophase separation with controlled phase morphology. Herein, we present the study on a cross-linkable adhesive formulation consisting of acrylic emulsion and polyolefin aqueous dispersion with additives for enhancing cross-linking and controlled phase morphologies. Contact angle measurement and ATR-IR spectroscopy are used to characterize the properties of adhesive surface. DMA is used to study the mechanical property of adhesive before and after cross-linking. The detailed phase morphologies are revealed by AFM, SEM and TEM. The resulting adhesive morphologies are correlated with the adhesive performance to establish structure-property relationship.
A comparison of total reaction cross section models used in particle and heavy ion transport codes
NASA Astrophysics Data System (ADS)
Sihver, Lembit; Lantz, M.; Takechi, M.; Kohama, A.; Ferrari, A.; Cerutti, F.; Sato, T.
To be able to calculate the nucleon-nucleus and nucleus-nucleus total reaction cross sections with precision is very important for studies of basic nuclear properties, e.g. nuclear structure. This is also of importance for particle and heavy ion transport calculations because, in all particle and heavy ion transport codes, the probability function that a projectile particle will collide within a certain distance x in the matter depends on the total reaction cross sections. Furthermore, the total reaction cross sections will also scale the calculated partial fragmentation cross sections. It is therefore crucial that accurate total reaction cross section models are used in the transport calculations. In this paper, different models for calculating nucleon-nucleus and nucleus-nucleus total reaction cross sections are compared and discussed.
Vertically stabilized elongated cross-section tokamak
Sheffield, George V.
1977-01-01
This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.
Microdefects and self-interstitial diffusion in crystalline silicon
NASA Astrophysics Data System (ADS)
Knowlton, William Barthelemy
In this thesis, a study is presented of D-defects and self-interstitial diffusion in silicon using Li ion (Lisp+) drifting in an electric field and transmission electron microscopy (TEM). Obstruction of Lisp+ drifting has been found in wafers from certain but not all FZ p-type Si. Incomplete Lisp+ drifting always occurs in the central region of the wafers. This work established that interstitial oxygen is not responsible for hindering Lisp+ drifting. The Osb i concentration was measured ({˜}2× 10sp{15}\\ cmsp{-3}) by local vibrational mode Fourier transform infrared spectroscopy and did not vary radially across the wafer. TEM was performed on a samples from the partially Lisp+ drifted area and compared to regions without D-defects. Precipitates were found only in the region containing D-defects that had partially Lisp+ drifted. This result indicates D-defects are responsible for the precipitation that halts the Lisp+ drift process. The precipitates were characterized using selected area diffraction (SAD) and image contrast analysis. The results suggested that the precipitates may cause stacking faults and their identity may be lithium silicides such as Lisb{21}Sisb5\\ and\\ Lisb{13}Sisb4. TEM revealed a decreasing distribution of Li precipitates as a function of Lisp+ drift depth along the growth direction. A preliminary model is presented that simulates Lisp+ drifting. The objective of the model is to incorporate the Li precipitate density distribution and Lisp+ drift depth to extract the size and capture cross-section of the D-defects. Nitrogen (N) doping has been shown to eliminate D-defects as measured by conventional techniques. However, Lisp+ drifting has shown that D-defects are indeed still present. Lisp+ drifting is able to detect D-defects at concentrations lower than conventional techniques. Lisp+ drifting and D-defects provide a useful means to study Si self-interstitial diffusion. The process modeling program SUPREM-IV was used to simulate the results of Si self-interstitial diffusion obtained from Lisp+ drifting experiments. Anomalous results from the Si self-interstitial diffusion experiments forced a re-examination of the possibility of thermal dissociation of D-defects. Thermal annealing experiments that were performed support this possibility. A review of the current literature illustrates the need for more research on the effects of thermal processing on FZ Si to understand the dissolution kinetics of D-defects.
BACKSCAT Lidar Simulation Version 3.0: Technical Documentation and Users Guide
1992-12-03
Raman Cross Section of Some Simple Gases, J. Opt. Soc. Am., 63:73. 20 Penny, C.M., St. Peters, R.L., and Lapp, M., (1974) Absolute Rotational Raman...of the molecule, and the remaining columns list the relative normalized cross sections for the respective excitation wavelength. The absolute Raman...cross section is obtained by simply multiplying the relative normalized cross section for a molecular species of interest by the absolute cross section
NASA Astrophysics Data System (ADS)
Sankaran, Kamatchi Jothiramalingam; Hoang, Duc Quang; Kunuku, Srinivasu; Korneychuk, Svetlana; Turner, Stuart; Pobedinskas, Paulius; Drijkoningen, Sien; van Bael, Marlies K.; D' Haen, Jan; Verbeeck, Johan; Leou, Keh-Chyang; Lin, I.-Nan; Haenen, Ken
2016-07-01
Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm2 and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm2 FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.
NASA Astrophysics Data System (ADS)
Kang, Na Rae; Lee, So Young; Shin, Dong Won; Hwang, Doo Sung; Lee, Kang Hyuck; Cho, Doo Hee; Kim, Ji Hoon; Lee, Young Moo
2016-03-01
A series of end-group cross-linked membranes (Az-XESPSN) were prepared by click reaction to investigate the effects of cross-linking on the morphology and proton transport properties of proton exchange membranes. The morphological transformations resulting from thermal annealing and cross-linking were observed by means of atomic force microscopy (AFM) and transmission electron microscopy (TEM). Compared to the non-cross-linked ESPSN membranes, the Az-XESPSN membranes exhibited lower water uptake and improved mechanical and chemical stabilities. In addition, the Az-XESPSN membranes exhibited higher proton conductivities (0.018-0.028 S cm-1) compared to those of the ESPSN membranes (0.0044-0.0053 S cm-1) and Nafion 212 (0.0061 S cm-1), particularly in conditions of elevated temperature (120 °C) and low relative humidity (35%). Such enhancements can be attributed to a synergistic effect of well-defined hydrophilic ionic clusters and triazole groups that function as proton carriers under anhydrous conditions. Furthermore, the Az-XESPSN membranes exhibited significantly enhanced single cell performance and long-term stability compared to those of ESPSN membranes.
Energy and Mass-Number Dependence of Hadron-Nucleus Total Reaction Cross Sections
NASA Astrophysics Data System (ADS)
Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro
2016-09-01
We thoroughly investigate how proton-nucleus total reaction cross sections depend on the target mass number A and the proton incident energy. In doing so, we systematically analyze nuclear reaction data that are sensitive to nuclear size, namely, proton-nucleus total reaction cross sections and differential elastic cross sections, using a phenomenological black-sphere approximation of nuclei that we are developing. In this framework, the radius of the black sphere is found to be a useful length scale that simultaneously accounts for the observed proton-nucleus total reaction cross section and first diffraction peak in the proton elastic differential cross section. This framework, which is shown here to be applicable to antiprotons, is expected to be applicable to any kind of projectile that is strongly attenuated in the nucleus. On the basis of a cross-section formula constructed within this framework, we find that a less familiar A1/6 dependence plays a crucial role in describing the energy dependence of proton-nucleus total reaction cross sections.
Activation cross section and isomeric cross-section ratio for the 151Eu(n,2n)150m,gEu process
NASA Astrophysics Data System (ADS)
Luo, Junhua; Li, Suyuan; Jiang, Li
2018-07-01
The cross sections of 151Eu(n,2n)150m,gEu reactions and their isomeric cross section ratios σm/σt have been measured experimentally. Cross sections are measured, relative to a reference 93Nb(n,2n)92mNb reaction cross section, by means of the activation technique at three neutron energies 13.5, 14.1, and 14.8 MeV. Monoenergetic neutron beams were formed via the 3H(d,n)4He reaction and both Eu2O3 samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The activities induced in the reaction products were measured using high-resolution gamma ray spectroscopy. Cross sections were also evaluated theoretically using the numerical nuclear model code, TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.
Total reaction cross sections in CEM and MCNP6 at intermediate energies
Kerby, Leslie M.; Mashnik, Stepan G.
2015-05-14
Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less
Total reaction cross sections in CEM and MCNP6 at intermediate energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerby, Leslie M.; Mashnik, Stepan G.
Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less
NASA Astrophysics Data System (ADS)
Kogure, Toshihiro; Raimbourg, Hugues; Kumamoto, Akihito; Fujii, Eiko; Ikuhara, Yuichi
2014-12-01
High-resolution structure analyses using electron beam techniques have been performed for the investigation of subgrain boundaries (SGBs) in deformed orthopyroxene (Opx) in mylonite from Hidaka Metamorphic Belt, Hokkaido, Japan, to understand ductile deformation mechanism of silicate minerals in shear zones. Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) analysis of Opx porphyroclasts in the mylonitic rock indicated that the crystal orientation inside the Opx crystals gradually changes by rotation about the b-axis by SGBs and crystal folding. In order to observe the SGBs along the b-axis by transmission electron microscopy (TEM) or scanning TEM (STEM), the following sample preparation protocol was adopted. First, petrographic thin sections were slightly etched with hydrofluoric acid to identify SGBs in SEM. The Opx crystals whose b-axes were oriented close to the normal of the surface were identified by EBSD, and the areas containing SGBs were picked and thinned for (S) TEM analysis with a focused ion beam instrument with micro-sampling system. High-resolution TEM imaging of the SGBs in Opx revealed various boundary structures from a periodic array of dissociated (100) [001] edge dislocations to partially or completely incoherent crystals, depending on the misorientation angle. Atomic-resolution STEM imaging clearly confirmed the formation of clinopyroxene (Cpx) structure between the dissociated partial dislocations. Moreover, X-ray microanalysis in STEM revealed that the Cpx contains a considerable amount of calcium replacing iron. Such chemical inhomogeneity may limit glide motion of the dislocation and eventually the plastic deformation of the Opx porphyroclasts at a low temperature. Chemical profiles across the high-angle incoherent SGB also showed an enrichment of the latter in calcium at the boundary, suggesting that SGBs are an efficient diffusion pathway of calcium out of host Opx grain during cooling.
Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.
2001-01-01
Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observationsmore » for all the targets reported here, especially for the total cross section.« less
Temperature dependence of the HNO3 UV absorption cross sections
NASA Technical Reports Server (NTRS)
Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan
1993-01-01
The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.
Liquid crystal-based glucose biosensor functionalized with mixed PAA and QP4VP brushes.
Khan, Mashooq; Park, Soo-Young
2015-06-15
4-Cyano-4'-pentylbiphenyl (5CB) in a transmission electron microscopy (TEM) grid was developed for glucose detection by coating with a monolayer of mixed polymer brushes using poly(acrylicacid-b-4-cynobiphenyl-4'-oxyundecylacrylate) (PAA-b-LCP) and quaternized poly(4-vinylpyridine-b-4-cynobiphenyl-4'-oxyundecylacrylate) (QP4VP-b-LCP) (LCP stands for liquid crystal polymer) at the 5CB/aqueous interface. The resultant 5CB in TEM grid was functionalized with the PAA and QP4VP brushes, which were strongly anchored by the LCP block. The PAA brush rendered the 5CB/aqueous interface pH-responsive and the QP4VP brush immobilized glucose oxidase (GOx) through electrostatic interactions without the aid of coupling agents. The glucose was detected through a homeotropic-to-planar orientational transition of the 5CB observed through a polarized optical microscope (POM) under crossed polarizers. The optimum immobilization with a 0.78 µM GOx solution on the dual-brush-coated TEM grid enabled glucose detection at concentrations higher than 0.5 mM with response times shorter than 180 s. This TEM grid glucose sensor provided a linear response of birefringence of the 5CB to glucose concentrations ranging from 0.5 to 11 mM with a Michaelis-Menten constant (Km) of 1.67 mM. This new and sensitive glucose biosensor has the advantages of low production cost, simple enzyme immobilization, high enzyme sensitivity and stability, and easy detection with POM, and may be useful for prescreening the glucose level in the human body. Copyright © 2015 Elsevier B.V. All rights reserved.
Control of Growth Within Drosophila Peripheral Nerves by Ras and Protein Kinase A
2007-02-01
Grant W81XWH-04- 1-0272 (M.S.). We are grateful to Angela Lynn, Vanathi Sundaresan, and Gia Fazio for technical assistance and Kei Ito, Vanessa Auld, Marc...by Van - essa Auld (University of British Columbia, Vancouver, British Columbia, Canada) and Kei Ito (National Institute for Basic Biology, Okazaki, Ja...and an outer, meso- dermally derived perineurial glia ( Edwards et al., 1993). A trans- mission electron micrograph (TEM) of a peripheral nerve cross
NASA Astrophysics Data System (ADS)
Culp, Tyler; Paul, Mou; Roy, Abhishek; Rosenberg, Steve; Behr, Michael; Kumar, Manish; Gomez, Enrique; Penn State Team; Dow Team
Polyamide-based thin-film composite (TFC) membranes used for reverse osmosis (RO) and nanofiltration (NF) separation processes are at the forefront of water desalination and purification technologies due to their high salt rejection, high energy efficiency, and ease of operation. Nevertheless, in spite of the benefits of RO and NF membranes, many open questions about the internal nanostructure of the membrane active layer remain, such as the dispersion and distribution of acid functional groups. We demonstrate that resonant soft X-ray scattering (RSOXS), where the X-ray energy is tuned to absorption edges of the constituent materials, is a powerful tool to examine the microstructure of the polyamide layer. In conjunction with complementary techniques such as transmission electron microscopy (TEM), where tomography is used to obtain a 3D reconstruction of the polyamide active layer, the effect of cross-linking can be quantified in 3D for a systematic series of membranes. This relationship can then be applied to a series of commercially available RO and NF membranes where the effect of polyamide cross-linking on their respective structure and water transport properties can be evaluated. The combination of RSOXS with traditional characterization tools provides a strategy for linking the chemical structure to the morphology and water transport properties of RO and NF membranes.
Cross sections for direct and dissociative ionization of NH3 and CS2 by electron impact
NASA Technical Reports Server (NTRS)
Rao, M. V. V. S.; Srivastava, S. K.
1991-01-01
A crossed electron beam-molecular beam collision geometry is used to measure cross sections for the production of positive ions by electron impact on NH3 and CS2. Ionization cross-section data for NH3 and the values of various cross sections are presented, as well as ionization efficiency curves for CS2. Considerable differences are found between the various results on NH3. The present values are close to the data of Djuric et al. (1981). The semiempirical calculations of Hare and Meath (1987) differ considerably in the absolute values of cross sections. Discrepancies were observed in comparisons of cross sections of other fragment ions resulting from the ionization and dissociate ionization of NH3.
Nuclear Forensics and Radiochemistry: Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.
Fragmentation Cross Sections of Medium-Energy 35Cl, 40Ar, and 48TiBeams on Elemental Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitlin, C.; Guetersloh, S.; Heilbronn, L.
Charge-changing and fragment production cross sections at 0degrees have been obtained for interactions of 290, 400, and 650MeV/nucleon 40Ar beams, 650 and 1000 MeV/nucleon 35Cl beams, and a 1000MeV/nucleon 48Ti beam. Targets of C, CH2, Al, Cu, Sn, and Pb were used.Using standard analysis methods, we obtain fragment cross sections forcharges as low as 8 for Cl and Ar beams, and as low as 10 for the Tibeam. Using data obtained with small-acceptance detectors, we reportfragment production cross sections for charges as low as 5, corrected foracceptance using a simple model of fragment angular distributions. Withthe lower-charged fragment cross sections,more » we cancompare the data topredictions from several models (including NUCFRG2, EPAX2, and PHITS) ina region largely unexplored in earlier work. As found in earlier workwith other beams, NUCFRG2 and PHITS predictions agree reasonably wellwith the data for charge-changing cross sections, but do not accuratelypredict the fragment production cross sections. The cross sections forthe lightest fragments demonstrate the inadequacy of several models inwhich the cross sections fall monotonically with the charge of thefragment. PHITS, despite not agreeing particularly well with the fragmentproduction cross sections on average, nonetheless qualitativelyreproduces somesignificant features of the data that are missing from theother models.« less
NASA Astrophysics Data System (ADS)
Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.
2014-03-01
Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.
NASA Technical Reports Server (NTRS)
Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.
1992-01-01
Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-19
CEPXS is a multigroup-Legendre cross-section generating code. The cross sections produced by CEPXS enable coupled electron-photon transport calculations to be performed with multigroup radiation transport codes, e.g. MITS and SCEPTRE. CEPXS generates multigroup-Legendre cross sections for photons, electrons and positrons over the energy range from 100 MeV to 1.0 keV. The continuous slowing-down approximation is used for those electron interactions that result in small-energy losses. The extended transport correction is applied to the forward-peaked elastic scattering cross section for electrons. A standard multigroup-Legendre treatment is used for the other coupled electron-photon cross sections. CEPXS extracts electron cross-section information from themore » DATAPAC data set and photon cross-section information from Biggs-Lighthill data. The model that is used for ionization/relaxation in CEPXS is essentially the same as that employed in ITS.« less
Partial Photoneutron Cross Sections for 207,208Pb
NASA Astrophysics Data System (ADS)
Kondo, T.; Utsunomiya, H.; Goriely, S.; Iwamoto, C.; Akimune, H.; Yamagata, T.; Toyokawa, H.; Harada, H.; Kitatani, F.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.
2014-05-01
Using linearly-polarized laser-Compton scattering γ-rays, partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near neutron threshold by measuring anisotropies in photoneutron emission. Separately, total photoneutron cross sections were measured for 207,208Pb with a high-efficiency 4π neutron detector. The partial cross section measurement provides direct evidence for the presence of pygmy dipole resonance (PDR) in 207,208Pb in the vicinity of neutron threshold. The strength of PDR amounts to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to M1 cross sections less than 10% of the total photoneutron cross sections.
NASA Astrophysics Data System (ADS)
Bershtein, Vladimir; Fainleib, Alexander; Egorova, Larisa; Gusakova, Kristina; Grigoryeva, Olga; Kirilenko, Demid; Konnikov, Semen; Ryzhov, Valery; Yakushev, Pavel; Lavrenyuk, Natalia
2015-04-01
Thermostable nanocomposites based on densely cross-linked cyanate ester resins (CER), derived from bisphenol E and doped by 0.01 to 5 wt. % amino-functionalized 2D montmorillonite (MMT) nanoparticles, were synthesized and characterized using Fourier transform infrared (FTIR), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), wide-angle X-ray diffraction (WAXD), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), far-infrared (Far-IR), and creep rate spectroscopy (CRS) techniques. It was revealed that ultra-low additives, e.g., 0.025 to 0.1 wt. %, of amino-MMT nanolayers covalently embedded into CER network exerted an anomalously large impact on its dynamics and properties resulting, in particular, in some suppression of dynamics, increasing the onset of glass transition temperature by 30° to 40° and twofold rise of modulus in temperature range from 20°C to 200°C. Contrarily, the effects became negligibly small or even negative at increased amino-MMT contents, especially at 2 and 5 wt. %. That could be explained by TEM/EDXS data displaying predominance of individual amino-MMT nanolayers and their thin (2 to 3 nanolayers) stacks over more thick tactoids (5 to 10 nanolayers) and the large amino-MMT aggregates (100 to 500 nm in thickness) reversing the composite structure produced with increasing of amino-MMT content within CER matrix. The revealed effect of ultra-low amino-MMT content testifies in favor of the idea about the extraordinarily enhanced long-range action of the `constrained dynamics' effect in the case of densely cross-linked polymer networks.
Pit membranes of Ephedra resemble gymnosperms more than angiosperms
Roland Dute; Lauren Bowen; Sarah Schier; Alexa Vevon; Troy Best; Maria Auad; Thomas Elder; Pauline Bouche; Steven Jansen
2014-01-01
Bordered pit pairs of Ephedra species were characterized using different types of microscopy. Pit membranes contained tori that did not stain for lignin. SEM and AFM views of the torus surface showed no plasmodesmatal openings, but branched, secondary plasmodesmata were occasionally noted using TEM in conjunction with ultrathin sections. The margo consisted of radial...
Integration of wireless sensor networks into automatic irrigation scheduling of a center pivot
USDA-ARS?s Scientific Manuscript database
A six-span center pivot system was used as a platform for testing two wireless sensor networks (WSN) of infrared thermometers. The cropped field was a semi-circle, divided into six pie shaped sections of which three were irrigated manually and three were irrigated automatically based on the time tem...
Transmission Electron Microscopy of an In Situ Presolar Silicon Carbide Grain
NASA Technical Reports Server (NTRS)
Stroud, Rhonda M.; OGrady, Megan; Nittler, Larry R.; Alexander, Conel M. OD.
2002-01-01
We used a focused ion beam workstation to prepare ultra-thin sections of a presolar SiC grain. Our TEM studies indicate that the SiC formed by rapid vapor-phase condensation, trapping pre-existing graphite grains in random orientations. Additional information is contained in the original extended abstract.
Dubey, J P
2018-04-25
Water buffalo (Bubalus bubalis) is important for the economy of Asia, South America and parts of Europe. Coccidiosis is an important cause of neonatal mortality in livestock, including buffalo. Of more than 12 species of Eimeria in buffalo, Eimeria bareillyi is the most pathogenic. There are uncertainties concerning its asexual and sexual development. During a previously reported outbreak of fatal enteritis associated with E. bareillyi in buffaloes in the Netherlands, sections of small intestine were re-evaluated histologically and by transmission electron microscopy (TEM) to seek details of endogenous development. Profuse asexual multiplication occurred in the jejunum and ileum. Light microscopic examination revealed that parasites divided in two (probably endodyogeny) or more organisms. There were two or more generations of morphologically different merozoites; some of these observations were confirmed by TEM. Details of gametogonic development, including oocyst wall formation are provided. Schizogonic and gametogonic development described in the present study can serve as a guide for differential diagnosis of Eimeria species in histological sections of intestines of buffaloes.
Ryder, Robert T.; Crangle, Robert D.; Trippi, Michael H.; Swezey, Christopher S.; Lentz, Erika E.; Rowan, Elisabeth L.; Hope, Rebecca S.
2009-01-01
Geologic cross section D-D' is the second in a series of cross sections constructed by the U.S. Geological Survey to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section D-D' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 290 miles. The information shown on the cross section is based on geological and geophysical data from 13 deep drill holes, several of which penetrate the Paleozoic sedimentary rocks of the basin and bottom in Mesoproterozoic (Grenville-age) crystalline basement rocks. This cross section is a companion to cross section E-E' (Ryder and others, 2008) that is located about 25 to 50 mi to the southwest. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section D-D' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general geologic framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section D-D' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.
Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Trajmar, S.
1982-01-01
Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.
TEM Derivative-Producing Enterobacter aerogenes Strains: Dissemination of a Prevalent Clone
Dumarche, P.; De Champs, C.; Sirot, D.; Chanal, C.; Bonnet, R.; Sirot, J.
2002-01-01
TEM-24 (CAZ-6) extended-spectrum β-lactamase (ESBL) was detected in 1988 in Clermont-Ferrand, France, in Klebsiella pneumoniae (blaTEM-24) and Enterobacter aerogenes (blaTEM-24b), and since 1994, a TEM-24-producing E. aerogenes clonal strain has been observed elsewhere in the country. To determine if the spread of this clonal strain was restricted to TEM-24-producing E. aerogenes strains, 84 E. aerogenes strains (non-TEM/SHV-producing strains, TEM-1- or -2-producing strains, and different ESBL-producing strains), isolated from 1988 to 1999 in Clermont-Ferrand (n = 59) and in 11 other French hospitals in 1998 (n = 25), were studied. A clonal strain was found for TEM-24- but also for TEM-3- and TEM-1- or 2-producing isolates. This study shows that there is a clonal strain dependent on acquisition of the TEM-type enzyme (TEM-24 and other TEM types). PMID:11897606
Proton-Nucleus Total Cross Sections in Coupled-Channel Approach
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.
2000-01-01
Recently, nucleon-nucleon (N-N) cross sections in the medium have been extracted directly from experiment. The in-medium N-N cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. In the present study the ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium N-N cross sections to calculate total proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.
NASA Technical Reports Server (NTRS)
Green, T. J.
1973-01-01
Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.
Electron impact scattering study of hypohalous acids HOX (X = F, Cl, Br, I)
NASA Astrophysics Data System (ADS)
Yadav, Hitesh; Bhutadia, Harshad; Prajapati, Dinesh; Desai, Hardik; Vinodkumar, Minaxi; Vinodkumar, P. C.
2018-05-01
In this article we aim to report total cross sections (TCS) QT, total elastic cross sections (Qel), total inelastic cross sections (Qinel) i.e. (total ionizations cross sections (Qion)+total electronic excitation cross sections (Qexc)) from threshold of the target to 5000 eV energy range. We have used a well-defined theoretical methodology Spherical Complex Optical Potential (SCOP) to compute QT, Qel and Qinel and Complex Scattering Potential - ionization contribution (CSP - ic) method to report the (Qion). The cross-sectional data reported here for the Hypohalous Acids is for the first time and the present data can become a guideline for the experimentalist to study these targets.
Sutton, Jeffrey A; Driscoll, James F
2004-11-15
Rayleigh scattering cross sections are measured for nine combustion species (Ar, N2, O2, CO2, CO, H2, H2O, CH4, and C3H8) at wavelengths of 266, 355, and 532 nm and at temperatures ranging from 295 to 1525 K. Experimental results show that, as laser wavelengths become shorter, polarization effects become important and the depolarization ratio of the combustion species must be accounted for in the calculation of the Rayleigh scattering cross section. Temperature effects on the scattering cross section are also measured. Only a small temperature dependence is measured for cross sections at 355 nm, resulting in a 2-8% increase in cross section at temperatures of 1500 K. This temperature dependence increases slightly for measurements at 266 nm, resulting in a 5-11% increase in cross sections at temperatures of 1450 K.
Cross sections for n+{sup 14}N from an R-matrix analysis of the {sup 15}N system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, G.M.; Young, P.G.; Chadwick, M.B.
1994-06-01
As part of the Hiroshima-Nagasaki Dose Reevaluation Program, a new evaluation of the neutron cross sections for {sup 14}N was made for ENDF/B-VI, based at energies below 2.5 MeV on a multichannel R-matrix analysis of reactions in the {sup 15}N system. The types of data used in the analysis, and the resulting cross sections and resonance structure for {sup 15}N are briefly described. The resonant features of the neutron cross sections were especially well determined by including precise, high-resolution neutron total cross section measurements from ORNL. While the new evaluated cross section appear to be significant improvements over the earliermore » ones, they still need to be tested more extensively against recent measurements of the differential elastic cross section from Oak Ridge.« less
Electron impact cross sections for the 2,2P state excitation of lithium
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Trajmar, S.; Register, D. F.
1982-01-01
Electron impact excitation of the 2p 2P state of Li was studied at 10, 20, 60, 100, 150 and 200 eV. Relative differential cross sections in the angular range 3-120 deg were measured and then normalized to the absolute scale by using the optical f value. Integral and momentum transfer cross sections were obtained by extrapolating the differential cross sections to 0 deg and to 180 deg. The question of normalizing electron-metal-atom collision cross sections in general was examined and the method of normalization to optical f values in particular was investigated in detail. It has been concluded that the extrapolation of the apparent generalized oscillator strength (obtained from the measured differential cross sections) to the zero momentum transfer limit with an expression using even powers of the momentum transfer and normalization of the limit to the optical f value yields reliable absolute cross sections.
The 75As(n,2n) Cross Sections into the 74As Isomer and Ground State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, W; Garrett, P E; Becker, J A
2003-06-30
The {sup 75}As(n, 2n) cross section for the population of the T{sub 1/2} = 26.8-ns isomer at E{sub x} = 259.3 keV in {sup 74}As has been measured as a function of incident neutron energy, from threshold to E{sub n} = 20 MeV. The cross section was measured using the GEANIE spectrometer at LANSCE/WNR. For convenience, the {sup 75}As(n, 2n) population cross section for the {sup 74}As ground state has been deduced as the difference between the previously-known (n, 2n) reaction cross section and the newly measured {sup 75}As(n, 2n){sup 74}As{sup m} cross section. The (n, 2n) reaction, ground-state, andmore » isomer population cross sections are tabulated in this paper.« less
Total and partial photoneutron cross sections for Pb isotopes
NASA Astrophysics Data System (ADS)
Kondo, T.; Utsunomiya, H.; Goriely, S.; Daoutidis, I.; Iwamoto, C.; Akimune, H.; Okamoto, A.; Yamagata, T.; Kamata, M.; Itoh, O.; Toyokawa, H.; Lui, Y.-W.; Harada, H.; Kitatani, F.; Hilaire, S.; Koning, A. J.
2012-07-01
Using quasimonochromatic laser-Compton scattering γ rays, total photoneutron cross sections were measured for 206,207,208Pb near neutron threshold with a high-efficiency 4π neutron detector. Partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near threshold by measuring anisotropies in photoneutron emission with linearly polarized γ rays. The E1 strength dominates over the M1 strength in the neutron channel where E1 photoneutron cross sections show extra strength of the pygmy dipole resonance in 207,208Pb near the neutron threshold corresponding to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to an M1 cross section less than 10% of the total photoneutron cross section.
Mental Visualization of Objects from Cross-Sectional Images
ERIC Educational Resources Information Center
Wu, Bing; Klatzky, Roberta L.; Stetten, George D.
2012-01-01
We extended the classic anorthoscopic viewing procedure to test a model of visualization of 3D structures from 2D cross-sections. Four experiments were conducted to examine key processes described in the model, localizing cross-sections within a common frame of reference and spatiotemporal integration of cross sections into a hierarchical object…
Viscous Flow through Pipes of Various Cross-Sections
ERIC Educational Resources Information Center
Lekner, John
2007-01-01
An interesting variety of pipe cross-sectional shapes can be generated, for which the Navier-Stokes equations can be solved exactly. The simplest cases include the known solutions for elliptical and equilateral triangle cross-sections. Students can find pipe cross-sections from solutions of Laplace's equation in two dimensions, and then plot the…
Activation cross section and isomeric cross section ratio for the 76Ge(n,2n)75m,gGe process
NASA Astrophysics Data System (ADS)
Luo, Junhua; Jiang, Li; Wang, Xinxing
2018-04-01
We measured neutron-induced reaction cross sections for the 76Ge(n,2n)75m,gGe reactions and their isomeric cross section ratios σm/σg at three neutron energies between 13 and 15MeV by an activation and off-line γ-ray spectrometric technique using the K-400 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). Ge samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The monoenergetic neutron beams were formed via the 3H( d, n)4He reaction. The pure cross section of the ground state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. The cross sections were also calculated using the nuclear model code TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20MeV. Results are discussed and compared with the corresponding literature data.
O2 absorption cross sections /187-225 nm/ from stratospheric solar flux measurements
NASA Technical Reports Server (NTRS)
Herman, J. R.; Mentall, J. E.
1982-01-01
The absorption cross sections of molecular oxygen are calculated in the wavelength range from 187 to 230 nm from solar flux measurements obtained within the stratosphere. Within the Herzberg continuum wavelength region the molecular oxygen cross sections are found to be about 30% smaller than the laboratory results of Shardanand and Rao (1977) from 200 to 210 nm and about 50% smaller than those of Hasson and Nicholls (1971). At wavelengths longer than 210 nm the cross sections agree with those of Shardanand and Rao. The effective absorption cross sections of O2 in the Schumann-Runge band region from 187 to 200 nm are calculated and compared to the empirical fit given by Allen and Frederick (1982). The calculated cross sections indicate that the transmissivity of the atmosphere may be underestimated by the use of the Allen and Frederic cross sections between 195 and 200 nm. The ozone column content between 30 and 40 km and the relative ozone cross sections are determined from the same solar flux data set.
NASA Astrophysics Data System (ADS)
Battistella, C.; Robinson, D.; McQuarrie, N.; Ghoshal, S.
2017-12-01
Multiple valid balanced cross sections can be produced from mapped surface and subsurface data. By integrating low temperature thermochronologic data, we are better able to predict subsurface geometries. Existing valid balanced cross section for far western Nepal are few (Robinson et al., 2006) and do not incorporate thermochronologic data because the data did not exist. The data published along the Simikot cross section along the Karnali River since then include muscovite Ar, zircon U-Th/He and apatite fission track. We present new mapping and a new valid balanced cross section that takes into account the new field data as well as the limitations that thermochronologic data places on the kinematics of the cross section. Additional constrains include some new geomorphology data acquired since 2006 that indicate areas of increased vertical uplift, which indicate locations of buried ramps in the Main Himalayan thrust and guide the locations of Lesser Himalayan ramps in the balanced cross section. Future work will include flexural modeling, new low temperature thermochronometic data, and 2-D thermokinematic models from a sequentially forward modeled balanced cross sections in far western Nepal.
NASA Technical Reports Server (NTRS)
Fahr, A.; Braun, W.; Kurylo, M. J.
1993-01-01
Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.
Low-energy proton induced M X-ray production cross sections for 70Yb, 81Tl and 82Pb
NASA Astrophysics Data System (ADS)
Shehla; Mandal, A.; Kumar, Ajay; Roy Chowdhury, M.; Puri, Sanjiv; Tribedi, L. C.
2018-07-01
The cross sections for production of Mk (k = Mξ, Mαβ, Mγ, Mm1) X-rays of 70Yb, 81Tl and 82Pb induced by 50-250 keV protons have been measured in the present work. The experimental cross sections have been compared with the earlier reported values and those calculated using the ionization cross sections based on the ECPSSR (Perturbed (P) stationary(S) state(S), incident ion energy (E) loss, Coulomb (C) deflection and relativistic (R) correction) model, the X-ray emission rates based on the Dirac-Fock model, the fluorescence and Coster-Kronig yields based on the Dirac-Hartree-Slater (DHS) model. In addition, the present measured proton induced X-ray production cross sections have also been compared with those calculated using the Dirac-Hartree-Slater (DHS) model based ionization cross sections and those based on the Plane wave Born Approximation (PWBA). The measured M X-ray production cross sections are, in general, found to be higher than the ECPSSR and DHS model based values and lower than the PWBA model based cross sections.
Positron induced scattering cross sections for hydrocarbons relevant to plasma
NASA Astrophysics Data System (ADS)
Singh, Suvam; Antony, Bobby
2018-05-01
This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.
Hirabayashi, Ai; Fukunaga, Yuko; Miyazawa, Atsuo
2014-06-01
Postsynaptic density-95 (PSD-95) accumulates at excitatory postsynapses and plays important roles in the clustering and anchoring of numerous proteins at the PSD. However, a detailed ultrastructural analysis of clusters exclusively consisting of PSD-95 has never been performed. Here, we employed a genetically encoded tag, three tandem repeats of metallothionein (3MT), to study the structure of PSD-95 clusters in cells by electron tomography and cryo-electron microscopy of vitreous sections. We also performed conventional transmission electron microscopy (TEM). Cultured hippocampal neurons expressing a fusion protein of PSD-95 coupled to 3MT (PDS-95-3MT) were incubated with CdCl2 to result in the formation of Cd-bound PSD-95-3MT. Two types of electron-dense deposits composed of Cd-bound PSD-95-3MT were observed in these cells by TEM, as reported previously. Electron tomography revealed the presence of membrane-shaped structures representing PSD-95 clusters at the PSD and an ellipsoidal structure located in the non-synaptic cytoplasm. By TEM, the PSD-95 clusters appeared to be composed of a number of dense cores. In frozen hydrated sections, these dense cores were also found beneath the postsynaptic membrane. Taken together, our findings suggest that dense cores of PSD-95 aggregate to form the larger clusters present in the PSD and the non-synaptic cytoplasm. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cianciolo, R E; Mohr, F C; Aresu, L; Brown, C A; James, C; Jansen, J H; Spangler, W L; van der Lugt, J J; Kass, P H; Brovida, C; Cowgill, L D; Heiene, R; Polzin, D J; Syme, H; Vaden, S L; van Dongen, A M; Lees, G E
2016-01-01
Evaluation of canine renal biopsy tissue has generally relied on light microscopic (LM) evaluation of hematoxylin and eosin-stained sections ranging in thickness from 3 to 5 µm. Advanced modalities, such as transmission electron microscopy (TEM) and immunofluorescence (IF), have been used sporadically or retrospectively. Diagnostic algorithms of glomerular diseases have been extrapolated from the World Health Organization classification scheme for human glomerular disease. With the recent establishment of 2 veterinary nephropathology services that evaluate 3-µm sections with a panel of histochemical stains and routinely perform TEM and IF, a standardized objective species-specific approach for the diagnosis of canine glomerular disease was needed. Eight veterinary pathologists evaluated 114 parameters (lesions) in renal biopsy specimens from 89 dogs. Hierarchical cluster analysis of the data revealed 2 large categories of glomerular disease based on the presence or absence of immune complex deposition: The immune complex-mediated glomerulonephritis (ICGN) category included cases with histologic lesions of membranoproliferative or membranous patterns. The second category included control dogs and dogs with non-ICGN (glomerular amyloidosis or focal segmental glomerulosclerosis). Cluster analysis performed on only the LM parameters led to misdiagnosis of 22 of the 89 cases-that is, ICGN cases moved to the non-ICGN branch of the dendrogram or vice versa, thereby emphasizing the importance of advanced diagnostic modalities in the evaluation of canine glomerular disease. Salient LM, TEM, and IF features for each pattern of disease were identified, and a preliminary investigation of related clinicopathologic data was performed. © The Author(s) 2015.
Hasegawa, Kimiko; Watanabe, Toshihiro; Suzuki, Tomonori; Yamano, Akihito; Oikawa, Tetsuo; Sato, Yasuhiko; Kouguchi, Hirokazu; Yoneyama, Tohru; Niwa, Koichi; Ikeda, Toshihiko; Ohyama, Tohru
2007-08-24
The botulinum neurotoxins (BoNTs) are the most potent toxins known in nature, causing the lethal disease known as botulism in humans and animals. The BoNTs act by inhibiting neurotransmitter release from cholinergic synapses. Clostridium botulinum strains produce large BoNTs toxin complexes, which include auxiliary non-toxic proteins that appear not only to protect BoNTs from the hostile environment of the digestive tract but also to assist BoNT translocation across the intestinal mucosal layer. In this study, we visualize for the first time a series of botulinum serotype D toxin complexes using negative stain transmission electron microscopy (TEM). The complexes consist of the 150-kDa BoNT, 130-kDa non-toxic non-hemagglutinin (NTNHA), and three kinds of hemagglutinin (HA) subcomponents: 70-kDa HA-70, 33-kDa HA-33, and 17-kDa HA-17. These components assemble sequentially to form the complex. A novel TEM image of the mature L-TC revealed an ellipsoidal-shaped structure with "three arms" attached. The "body" section was comprised of a single BoNT, a single NTNHA and three HA-70 molecules. The arm section consisted of a complex of HA-33 and HA-17 molecules. We determined the x-ray crystal structure of the complex formed by two HA-33 plus one HA-17. On the basis of the TEM image and biochemical results, we propose a novel 14-mer subunit model for the botulinum toxin complex. This unique model suggests how non-toxic components make up a "delivery vehicle" for BoNT.
Electron induced inelastic and ionization cross section for plasma modeling
NASA Astrophysics Data System (ADS)
Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby
2016-09-01
The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.
Breakup and fusion cross sections of the 6Li nucleus with targets of mass A = 58, 144 and 208
NASA Astrophysics Data System (ADS)
Mukeru, B.; Rampho, G. J.; Lekala, M. L.
2018-04-01
We use the continuum discretized coupled channels method to investigate the effects of continuum-continuum coupling on the breakup and fusion cross sections of the weakly bound 6Li nucleus with the 58Ni, 144Sm and 208Pb nuclear targets. The cross sections were analyzed at incident energies E cm below, close to and above the Coulomb barrier V B. We found that for the medium and heavy targets, the breakup cross sections are enhanced at energies below the Coulomb barrier (E cm/V B ≤ 0.8) owing to these couplings. For the lighter target, relatively small enhancement of the breakup cross sections appear at energies well below the barrier (E cm/V B ≤ 0.6). At energies E cm/V B > 0.8 for medium and heavy targets, and E cm/V B > 0.6 for the light target, the continuum-continuum couplings substantially suppress the breakup cross sections. On the other hand, the fusion cross sections are enhanced at energies E cm/V B < 1.4, E cm/V B < 1.2 and E cm/V B < 0.8 for the light, medium and heavy target, respectively. The enhancement decreases as the target mass increases. Above the indicated respective energies, these couplings suppress the fusion cross sections. We also compared the breakup and fusion cross sections, and found that below the barrier, the breakup cross sections are more dominant regardless of whether continuum-continuum couplings are included.
Simple, empirical approach to predict neutron capture cross sections from nuclear masses
NASA Astrophysics Data System (ADS)
Couture, A.; Casten, R. F.; Cakirli, R. B.
2017-12-01
Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of neutron capture cross sections, extending far from stability, including for nuclei of the highest sensitivity to r -process nucleosynthesis.
NASA Astrophysics Data System (ADS)
Olree, E.; Robinson, D. M.; McQuarrie, N.; Ghoshal, S.; Olsen, J.
2016-12-01
Using balanced cross sections, one can visualize a valid and admissible interpretation of the surface and subsurface data. Khanal (2014) and Cross (2014) produced two valid and admissible cross sections along the Marsyandi River in central Nepal. However, thermochronologic data adds another dimension that must be adhered to when producing valid and admissible balanced cross sections. Since the previous cross sections were produced, additional zircon-helium (ZHe) cooling ages along the Marsyandi River show ages of 1 Ma near the Main Central thrust in the hinterland to 4 Ma near the Main Boundary thrust closer to the foreland. This distribution of cooling ages requires recent uplift in the hinterland, which is not present in the cross sections. Although a restored version of the Khanal (2014) cross section is sequentially deformed using 2D Move, the kinematic sequence implied in the cross section is inconsistent with the ZHe age distribution. The hinterland dipping duplex proposed by Khanal would require cooling ages that are oldest near the Main Central thrust and young southwards toward the active ramp located 80 km north of the Main Frontal thrust. Instead, the 4 Ma age near the Main Boundary thrust and the increasingly younger ages to the north could be produced by either a foreland-dipping Lesser Himalayan duplex, which would keep active uplift in the north, or by translation of the hinterland dipping duplex southward over the ramp, moving the active thrust ramp northward. To address this problem, a new balanced cross section was produced using both new mapping through the region and the ZHe age distribution as additional constraints. The section was then restored and sequentially deformed in 2D Move. This study illustrates that multiple cross sections can be viable and admissible; however, they can still be incorrect. Thermochronology places additional constraints on the permissible geometries, and thus increases our ability to predict subsurface geometries. The next step of this project is to link the uplift and erosion implied by the kinematic sequence of the new cross section to the measured cooling history by importing the cross section kinematics into advection diffusion modeling software that predicts cooling ages.
Contrast sensitivity and its determinants in people with diabetes: SN-DREAMS-II, Report No 6
Gella, L; Raman, R; Pal, S S; Ganesan, S; Sharma, T
2017-01-01
Purpose To assess contrast sensitivity (CS) and to elucidate the factors associated with CS among subjects with type 2 diabetes in a cross-sectional population-based study. Patients and methods Subjects were recruited from a follow-up cohort, Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular genetics Study (SN-DREAMS II). Of 958 subjects who were followed up in SN-DREAMS II, a subset of 653 subjects was included in the analysis. All subjects underwent a comprehensive eye examination, which included CS assessment using the Pelli–Robson chart. The cross-sectional association between CS and independent variables was assessed using stepwise linear regression analysis. A P-value of <0.05 was considered statistically significant. Results The mean age of the study sample was 58.7±9.41 (44–87) years. Mean CS of the study sample was 1.32±0.20 (range: 0–1.65) log units. CS was negatively and significantly correlated with age, duration of diabetes, hemoglobin level, vibration perception threshold (VPT) value, albuminuria, best corrected visual acuity (BCVA), refractive error, total error score (TEM) of FM 100 hue test, and mean retinal sensitivity. In multiple regression analysis, after adjusting for all the related factors, CS was significantly associated with BCVA (β=−0.575; P<0.001), VPT (β=−0.003; P=0.010), severity of cataract (β=−0.018; P=0.032), diabetic retinopathy (β=−0.016; P=0.019), and age (β=−0.002; P=0.029). These factors explained about 29.3% of the variation in CS. Conclusion Among the factors evaluated, differences in BCVA were associated with the largest predicted differences in CS. This association of CS with visual acuity highlights the important role of visual assessment in type 2 diabetes. PMID:27858934
Solid state synthesis of Mn{sub 5}Ge{sub 3} in Ge/Ag/Mn trilayers: Structural and magnetic studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myagkov, V.G.; Bykova, L.E.; Matsynin, A.A.
The thin-film solid-state reaction between elemental Ge and Mn across chemically inert Ag layers with thicknesses of (0, 0.3, 1 and 2.2 µm) in Ge/Ag/Mn trilayers was studied for the first time. The initial samples were annealed at temperatures between 50 and 500 °C at 50 °C intervals for 1 h. The initiation temperature of the reaction for Ge/Mn (without a Ag barrier layer) was ~ 120 °C and increased slightly up to ~ 250 °C when the Ag barrier layer thickness increased up to 2.2 µm. In spite of the Ag layer, only the ferromagnetic Mn{sub 5}Ge{sub 3} compoundmore » and the Nowotny phase were observed in the initial stage of the reaction after annealing at 500 °C. The cross-sectional studies show that during Mn{sub 5}Ge{sub 3} formation the Ge is the sole diffusing species. The magnetic and cross-sectional transmission electron microscopy (TEM) studies show an almost complete transfer of Ge atoms from the Ge film, via a 2.2 µm Ag barrier layer, into the Mn layer. We attribute the driving force of the long-range transfer to the long-range chemical interactions between reacting Mn and Ge atoms. - Graphical abstract: The direct visualization of the solid state reaction between Mn and Ge across a Ag buffer layer at 500 °C. - Highlights: • The migration of Ge, via an inert 2.2 µm Ag barrier, into a Mn layer. • The first Mn{sub 5}Ge{sub 3} phase was observed in reactions with different Ag layers. • The Ge is the sole diffusing species during Mn{sub 5}Ge{sub 3} formation • The long-range chemical interactions control the Ge atomic transfer.« less
Fragmentation of Ar-40 at 100 GeV/c
NASA Technical Reports Server (NTRS)
Lindstrom, P. J.; Greiner, D. E.; Heckman, H. H.; Cork, B.; Bieser, F. S.
1975-01-01
The delta Z is greater than or equal to 1 reaction cross section for 1.8 GeV/n Ar-40 have been measured on targets ranging from H to Pb. Comparing these cross sections with H-1, C-12, and O-16 reaction cross sections at relativistic energies yields a formula for nucleus-nucleus reaction cross sections.
Temperature-dependent absorption cross sections for hydrogen peroxide vapor
NASA Technical Reports Server (NTRS)
Nicovich, J. M.; Wine, P. H.
1988-01-01
Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.
NASA Technical Reports Server (NTRS)
Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.
1993-01-01
Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.
Fragmentation cross sections of O-16 between 0.9 and 200 GeV/nucleon
NASA Technical Reports Server (NTRS)
Hirzebruch, S. E.; Heinrich, W.; Tolstov, K. D.; Kovalenko, A. D.; Benton, E. V.
1995-01-01
Inclusive cross sections for high energy interactions at 0.9, 2.3, 3.6, and 13.5 GeV/nucleon of O-16 with C, CR-39 (C12H18O7), CH2, Al, Cu, Ag, and Pb targets were measured. The total charge-changing cross sections and partial charge-changing cross sections for the production of fragments with charge Z = 6 and Z = 7 are compared to previous experiments at 60 and 200 GeV/nucleon. The contributions of Coulomb dissociation to the total cross sections are calculated. Using factorization rules the partial electromagnetic cross sections are separated from the nuclear components. Energy dependence of both components are investigated and discussed.
Nuclear annihilation by antinucleons
Lee, Teck-Ghee; Wong, Cheuk-Yin
2016-01-25
We examine the momentum dependence ofmore » $$\\bar{p}$$p and $$\\bar{n}$$p annihilation cross sections by considering the transmission through a nuclear potential and the $$\\bar {p}$$p Coulomb interaction. Compared to the $$\\bar{n}$$p annihilation cross section, the $$\\bar{p}$$p annihilation cross section is significantly enhanced by the Coulomb interaction for projectile momenta below p lab < 500 MeV/c, and the two annihilation cross sections approach the Pomeranchuk's equality limit [JETP 30, 423 (1956)] at p lab ~500 MeV/c. Using these elementary cross sections as the basic input data, the extended Glauber model is employed to evaluate the annihilation cross sections for $$\\bar{n}$$ and $$\\bar{p}$$ interaction with nuclei and the results compare well with experimental data.« less
Using 171,173Yb(d,p) to benchmark a surrogate reaction for neutron capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatarik, R; Bersntein, L; Burke, J
2008-08-08
Neutron capture cross sections on unstable nuclei are important for many applications in nuclear structure and astrophysics. Measuring these cross sections directly is a major challenge and often impossible. An indirect approach for measuring these cross sections is the surrogate reaction method, which makes it possible to relate the desired cross section to a cross section of an alternate reaction that proceeds through the same compound nucleus. To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured with the goal to reproduce the known [1] neutron capture cross section ratiosmore » of these nuclei.« less
Photoeffect cross sections of several rare-earth elements for 323-keV photons
NASA Astrophysics Data System (ADS)
Umesh, T. K.; Anasuya, S. J.; Shylaja Kumari, J.; Gowda, Channe; Gopinathan Nair, K. P.; Gowda, Ramakrishna
1992-02-01
Total-attenuation cross sections of the oxides of rare-earth elements such as La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er, and also NaNO3 and NaNO2 have been measured in a narrow-beam geometry setup at 323 keV. The total-attenuation cross section for oxygen was obtained as the difference in NaNO3 and NaNO2 cross sections. Using this, the total-attenuation cross sections of the individual lanthanides have been obtained with the aid of the mixture rule. From these, the photoeffect cross sections were derived by subtracting the scattering contribution. These values are found to agree well with Scofield's theoretical data [University of California Report No. UCRL 51326, 1973 (unpublished)].
One-jet inclusive cross section at order a(s)-cubed - Gluons only
NASA Technical Reports Server (NTRS)
Ellis, Stephen D.; Kunszt, Zoltan; Soper, Davison E.
1989-01-01
A complete calculation of the hadron jet cross-section at one order beyond the Born approximation is performed for the simplified case in which there are only gluons. The general structure of the differences from the lowest-order cross-section are described. This step allows two important improvements in the understanding of the theoretical hadron jet cross-section: first, the cross section at this order displays explicit dependence on the jet cone size, so that explicit account can be taken of the differences in jet definitions employed by different experiments; second, the magnitude of the uncertainty of the theoretical cross-section due to the arbitrary choice of the factorization scale has been reduced by a factor of two to three.
Zafred, Paolo R [Murrysville, PA; Draper, Robert [Pittsburgh, PA
2012-01-17
A solid oxide fuel cell (400) is made having a tubular, elongated, hollow, active section (445) which has a cross-section containing an air electrode (452) a fuel electrode (454) and solid oxide electrolyte (456) between them, where the fuel cell transitions into at least one inactive section (460) with a flattened parallel sided cross-section (462, 468) each cross-section having channels (472, 474, 476) in them which smoothly communicate with each other at an interface section (458).
CrossTalk, The Journal of Defense Software Engineering. Volume 27, Number 4. July/August 2014
2014-07-01
hires him for the work.” To do this with a development project, isolate parts of the sys- tem the development of which is not obvious and develop...class. Coupling makes it more difficult to isolate units of code for testing. The interdependence also makes code comprehension more difficult and...coupled, it is more difficult or impossible to isolate the module under test to ensure the test is focusing only on the desired code and producing
Nuclear reactor control column
Bachovchin, Dennis M.
1982-01-01
The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitlin, C.; Guetersloh, S.; Heilbronn, L.
Charge-changing and fragment production cross sections at 0 deg. have been obtained for interactions of 290, 400, and 650 MeV/nucleon {sup 40}Ar beams, 650 and 1000 MeV/nucleon {sup 35}Cl beams, and a 1000 MeV/nucleon {sup 48}Ti beam. Targets of C, CH{sub 2}, Al, Cu, Sn, and Pb were used. Using standard analysis methods, we obtained fragment cross sections for charges as low as 8 for Cl and Ar beams and as low as 10 for the Ti beam. Using data obtained with small-acceptance detectors, we report fragment production cross sections for charges as low as 5, corrected for acceptance usingmore » a simple model of fragment angular distributions. With the lower-charged fragment cross sections, we can compare the data to predictions from several models (including NUCFRG2, EPAX2, and PHITS) in a region largely unexplored in earlier work. As found in earlier work with other beams, NUCFRG2 and PHITS predictions agree reasonably well with the data for charge-changing cross sections, but these models do not accurately predict the fragment production cross sections. The cross sections for the lightest fragments demonstrate the inadequacy of several models in which the cross sections fall monotonically with the charge of the fragment. PHITS, despite its not agreeing particularly well with the fragment production cross sections on average, nonetheless qualitatively reproduces some significant features of the data that are missing from the other models.« less
Influence of strut cross-section of stents on local hemodynamics in stented arteries
NASA Astrophysics Data System (ADS)
Jiang, Yongfei; Zhang, Jun; Zhao, Wanhua
2016-05-01
Stenting is a very effective treatment for stenotic vascular diseases, but vascular geometries altered by stent implantation may lead to flow disturbances which play an important role in the initiation and progression of restenosis, especially in the near wall in stented arterial regions. So stent designs have become one of the indispensable factors needed to be considered for reducing the flow disturbances. In this paper, the structural designs of strut cross-section are considered as an aspect of stent designs to be studied in details. Six virtual stents with different strut cross-section are designed for deployments in the same ideal arterial model. Computational fluid dynamics (CFD) methods are performed to study how the shape and the aspect ratio (AR) of strut cross-section modified the local hemodynamics in the stented segments. The results indicate that stents with different strut cross-sections have different influence on the hemodynamics. Stents with streamlined cross-sectional struts for circular arc or elliptical arc can significantly enhance wall shear stress (WSS) in the stented segments, and reduce the flow disturbances around stent struts. The performances of stents with streamlined cross-sectional struts are better than that of stents with non-streamlined cross-sectional struts for rectangle. The results also show that stents with a larger AR cross-section are more conductive to improve the blood flow. The present study provides an understanding of the flow physics in the vicinity of stent struts and indicates that the shape and AR of strut cross-section ought to be considered as important factors to minimize flow disturbance in stent designs.
The Production of FRW Universe and Decay to Particles in Multiverse
NASA Astrophysics Data System (ADS)
Ghaffary, Tooraj
2017-09-01
In this study, first, it will be shown that as the Hubble parameter, " H", increases the production cross section for closed and flat Universes increases rapidly at smaller values of " H" and becomes constant for higher values of " H". However in the case of open Universe, the production cross section has been encountered a singularity. Before this singularity, as the H parameter increases, the cross section increases, for smaller H, ( H < 2.5), exhibits a turn-over at moderate values of H, (2.5 < H < 3.5), decreases for larger amount of H After that and for a special value of H, the cross section has been encountered with a singularity. Although the cross section cannot be defined at this singularity but before and after this point, it is certainly equal to zero. After this singularity, the cross section increases rapidly, when H increases. It is shown that if the production cross section of Universe happens before this singularity, it can't achieve to higher values of Hubble parameter after singularity. More over if the production cross section of Universe situates after the singularity, it won't get access to values of Hubble parameter less than the singularity. After that the thermal distribution for particles inside the FRW Universes are obtained. It is found that a large amount of particles are produced near apparent horizon due to their variety in their energy and their probabilities. Finally, comparing the particle production cross sections for flat, closed and open Universes, it is concluded that as the value of k increases, the cross section decreases.
Poster - 18: New features in EGSnrc for photon cross sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Elsayed; Mainegra-Hing, Ernesto; Rogers, Davi
2016-08-15
Purpose: To implement two new features in the EGSnrc Monte Carlo system. The first is an option to account for photonuclear attenuation, which can contribute a few percent to the total cross section at the higher end of the energy range of interest to medical physics. The second is an option to use exact NIST XCOM photon cross sections. Methods: For the first feature, the photonuclear total cross sections are generated from the IAEA evaluated data. In the current, first-order implementation, after a photonuclear event, there is no energy deposition or secondary particle generation. The implementation is validated against deterministicmore » calculations and experimental measurements of transmission signals. For the second feature, before this work, if the user explicitly requested XCOM photon cross sections, EGSnrc still used its own internal incoherent scattering cross sections. These differ by up to 2% from XCOM data between 30 keV and 40 MeV. After this work, exact XCOM incoherent scattering cross sections are an available option. Minor interpolation artifacts in pair and triplet XCOM cross sections are also addressed. The default for photon cross section in EGSnrc is XCOM except for the new incoherent scattering cross sections, which have to be explicitly requested. The photonuclear, incoherent, pair and triplet data from this work are available for elements and compounds for photon energies from 1 keV to 100 GeV. Results: Both features are implemented and validated in EGSnrc.Conclusions: The two features are part of the standard EGSnrc distribution as of version 4.2.3.2.« less
Cross sections for H(-) and Cl(-) production from HCl by dissociative electron attachment
NASA Technical Reports Server (NTRS)
Orient, O. J.; Srivastava, S. K.
1985-01-01
A crossed target beam-electron beam collision geometry and a quadrupole mass spectrometer have been used to conduct dissociative electron attachment cross section measurements for the case of H(-) and Cl(-) production from HCl. The relative flow technique is used to determine the absolute values of cross sections. A tabulation is given of the attachment energies corresponding to various cross section maxima. Error sources contributing to total errors are also estimated.
Measurements of neutron capture cross sections on 70Zn at 0.96 and 1.69 MeV
NASA Astrophysics Data System (ADS)
Punte, L. R. M.; Lalremruata, B.; Otuka, N.; Suryanarayana, S. V.; Iwamoto, Y.; Pachuau, Rebecca; Satheesh, B.; Thanga, H. H.; Danu, L. S.; Desai, V. V.; Hlondo, L. R.; Kailas, S.; Ganesan, S.; Nayak, B. K.; Saxena, A.
2017-02-01
The cross sections of the 70Zn(n ,γ )Zn71m (T1 /2=3.96 ±0.05 -h ) reaction have been measured relative to the 197Au(n ,γ )198Au cross sections at 0.96 and 1.69 MeV using a 7Li(p ,n )7Be neutron source and activation technique. The cross section of this reaction has been measured for the first time in the MeV region. The new experimental cross sections have been compared with the theoretical prediction by talys-1.6 with various level-density models and γ -ray strength functions as well as the tendl-2015 library. The talys-1.6 calculation with the generalized superfluid level-density model and Kopecky-Uhl generalized Lorentzian γ -ray strength function predicted the new experimental cross sections at both incident energies. The 70Zn(n ,γ ) g+m 71Zn total capture cross sections have also been derived by applying the evaluated isomeric ratios in the tendl-2015 library to the measured partial capture cross sections. The spectrum averaged total capture cross sections derived in the present paper agree well with the jendl-4.0 library at 0.96 MeV, whereas it lies between the tendl-2015 and the jendl-4.0 libraries at 1.69 MeV.
NASA Astrophysics Data System (ADS)
Friedman, B.; DuCharme, G.
2017-06-01
We present a semi-empirical scaling law for non-resonant ion-atom single charge exchange cross sections for collisions with velocities from {10}7 {{t}}{{o}} {10}9 {cm} {{{s}}}-1 and ions with positive charge q< 8. Non-resonant cross sections tend to have a velocity peak at collision velocities v≲ 1 {{a}}{{u}} with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, {{Δ }}E, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters {v}{{m}},{I}{{T}},{Z}{{T}},{and} {Z}{{P}}, where the {Z}{{T},{{P}}} are the target and projectile atomic numbers. For the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.
Sonographic evaluation of the greater occipital nerve in unilateral occipital neuralgia.
Cho, John Chin-Suk; Haun, Daniel W; Kettner, Norman W
2012-01-01
Occipital neuralgia is a headache that may result from greater occipital nerve entrapment. Entrapped peripheral nerves typically have an increase in cross-sectional area. The purpose of this study was to measure the cross-sectional area and circumference of symptomatic and asymptomatic greater occipital nerves in patients with unilateral occipital neuralgia and to correlate the greater occipital nerve cross-sectional area with headache severity, sex, and body mass index. Both symptomatic and contralateral asymptomatic greater occipital nerve cross-sectional areas and circumferences were measured by a single examiner using sonography in 17 patients. The Wilcoxon signed rank test and Spearman rank order correlation coefficient were used to analyze the data. Significant differences between the cross-sectional areas and circumferences of the symptomatic and asymptomatic greater occipital nerves were noted (P < .001). No difference existed in cross-sectional area (P = .40) or circumference (P = .10) measurements of the nerves between male and female patients. A significant correlation existed between the body mass index and symptomatic (r = 0.424; P = .045) and asymptomatic (r = 0.443; P = .037) cross-sectional areas. There was no correlation shown between the cross-sectional area of the symptomatic nerve and the severity of Headache Impact Test 6 scores (r = -0.342; P = .179). We report sonographic evidence showing an increased cross-sectional area and circumference of the symptomatic greater occipital nerve in patients with unilateral occipital neuralgia.
The federal standard for the presence of asbestos in drinking water mandates the use of transmission electron microscopy (TEM) as the only acceptable testing method. The July 17, 1992 Federal Register (57 FR 31839, Section 141.23(k)(4)) specifies that the analysis for as...
Annular-Cross-Section CFE Chamber
NASA Technical Reports Server (NTRS)
Sharnez, Rizwan; Sammons, David W.
1994-01-01
Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.
NASA Astrophysics Data System (ADS)
Nekab, M.; Kahoul, A.
2006-04-01
We present in this contribution, semi-empirical production cross sections of the main X-ray lines Lα, Lβ and Lγ for elements from Sn to U and for protons with energies varying from 0.5 to 3.0 MeV. The theoretical X-ray production cross sections are firstly calculated from the theoretical ionization cross sections of the L i ( i = 1, 2, 3) subshell within the ECPSSR theory. The semi-empirical Lα, Lβ and Lγ cross sections are then deduced by fitting the available experimental data normalized to their corresponding theoretical values and give the better representation of the experimental data in some cases. On the other hand, the experimental data are directly fitted to deduce the empirical L X-ray production cross sections. A comparison is made between the semi-empirical cross sections, the empirical cross sections reported in this work and the empirical ones reported by Reis and Jesus [M.A. Reis, A.P. Jesus, Atom. Data Nucl. Data Tables 63 (1996) 1] and those of Strivay and Weber [Strivay, G. Weber, Nucl. Instr. and Meth. B 190 (2002) 112].
Measurement of electron impact collisional excitation cross sections of Ni to Ge-like gold
May, M. J.; Beiersdorfer, P.; Jordan, N.; ...
2017-03-01
We have measured the collisional excitation cross sections for the 3d→4f and 3d→5f excitations in Au ions near the Ni-like charge state by using beam plasmas created in the Livermore electron beam ion trap EBIT-I. The cross sections have been experimentally determined at approximately 1, 2 and 3 keV above the threshold energy, ET, for the 3d→4f excitations (ET ~2.5 keV) and at approximately 0.1, 1 and 2 keV above the threshold energy for the 3d→5f excitations (ET ~3.3 keV). The cross section measurements were made possible by using the GSFC x-ray microcalorimeter at the Livermore EBIT facility. The absolutemore » cross sections are determined from the ratio of the intensity of the collisionally excited bound-bound transitions to the intensity of the radiative recombination lines produced in EBIT-I plasmas. The effects of polarization and Auger decay channels are accounted for in the cross section determination. Measured cross sections are compared with those from HULLAC, DWS and FAC calculations. Finally, the measurements demonstrate that some errors exist in the calculated excitation cross sections.« less
Measurement of electron impact collisional excitation cross sections of Ni to Ge-like gold
NASA Astrophysics Data System (ADS)
May, M. J.; Beiersdorfer, P.; Jordan, N.; Scofield, J. H.; Reed, K. J.; Brown, G. V.; Hansen, S. B.; Porter, F. S.; Kelley, R.; Kilbourne, C. A.; Boyce, K. R.
2017-03-01
We have measured the collisional excitation cross sections for the 3d→4f and 3d→5f excitations in Au ions near the Ni-like charge state by using beam plasmas created in the Livermore electron beam ion trap EBIT-I. The cross sections have been experimentally determined at approximately 1, 2 and 3 keV above the threshold energy, ET, for the 3d→4f excitations (ET ˜ 2.5 keV) and at approximately 0.1, 1 and 2 keV above the threshold energy for the 3d→5f excitations (ET ˜ 3.3 keV). The cross section measurements were made possible by using the GSFC x-ray microcalorimeter at the Livermore EBIT facility. The absolute cross sections are determined from the ratio of the intensity of the collisionally excited bound-bound transitions to the intensity of the radiative recombination lines produced in EBIT-I plasmas. The effects of polarization and Auger decay channels are accounted for in the cross section determination. Measured cross sections are compared with those from HULLAC, DWS and FAC calculations. The measurements demonstrate that some errors exist in the calculated excitation cross sections.
NASA Astrophysics Data System (ADS)
Pritychenko, B.; Mughabghab, S. F.
2012-12-01
We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.
A method for calculating proton-nucleus elastic cross-sections
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.
2002-01-01
Recently [Nucl. Instr. and Meth. B 145 (1998) 277; Extraction of in-medium nucleon-nucleon amplitude from experiment, NASA-TP, 1998], we developed a method of extracting nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. We investigated [Proton-nucleus total cross-sections in coupled-channel approach, NASA/TP, 2000; Nucl. Instr. and Meth. B 173-174 (2001) 391] the ratio of real to imaginary part of the two body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate proton-nucleus elastic cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.
2017-11-01
Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.
NASA Technical Reports Server (NTRS)
Nieman, R. A.
1971-01-01
The charge exchange cross sections for protons and various alkali atoms are calculated using the classical approximation of Gryzinski. It is assumed that the hydrogen atoms resulting from charge exchange exist in all possible excited states. Charge transfer collisions between protons and potassium as well as protons and sodium atoms are studied. The energy range investigated is between 4 and 30 keV. The theoretical calculations of the capture cross section and the cross section for the creation of metastable 2S hydrogen are compared to experimental values. Good quantitative agreement is found for the capture cross section but only qualitative agreement for the metastable cross section. Analysis of the Lyman alpha window in molecular oxygen suggests that measured values of the metastable cross section may be in error. Thick alkali target data are also presented. This allows the determination of the total electron loss cross section. Finally, some work was done with H2(+).
Angular distributions for H- formation in single collisions of H+ on Mg
NASA Astrophysics Data System (ADS)
Alvarez, I.; Cisneros, C.; Russek, A.
1982-07-01
Absolute differential cross sections have been measured for H- formation in single collisions of H+ on Mg in the energy range from 0.5 to 5.0 keV. Total cross sections, obtained by direct integration of these differential cross sections, are in good agreement with earlier total-cross-section measurements of Morgan and Eriksen in the energy range common to the two experiments and are in good agreement with the calculated total cross sections of Olson and Liu. The differential cross sections are strongly peaked in the forward direction. The functional form and scaling properties of this forward peak strongly indicate that it is a glory maximum, which occurs when the classical deflection function changes over from attractive to repulsive at some finite impact parameter. The differential cross sections from 1.0 to 5.0 keV show no other structure, but below 1.0 keV a τ-dependent structure is observed which becomes more pronounced as the collision energy decreases. 1982 The American Physical Society.
TEM study of a silicate-carbonate-microbe interface prepared by focused ion beam milling
NASA Astrophysics Data System (ADS)
Benzerara, Karim; Menguy, Nicolas; Guyot, François; Vanni, Christian; Gillet, Philippe
2005-03-01
The biogeochemical alteration of an Mg-Fe orthopyroxene, reacted for 70 yr under arid conditions in a desert environment, was studied by transmission electron microscopy. For this purpose, an electron transparent cross-section of the interface between a single microorganism, an orthopyroxene and nanometer-sized calcite crystals, was prepared with a focused ion beam system. X-ray energy dispersive spectrometry and electron energy loss spectroscopy allowed one to clearly distinguish the microorganism en route to fossilization from the nanometer-sized calcite crystals, showing the usefulness of such a protocol for identifying unambiguously traces of life in rocks. A 100-nm-deep depression was observed in the orthopyroxene close to the microorganism, suggesting an enhanced dissolution mediated by the microbe. However, an Al- and Si-rich amorphous altered layer restricted to the area just below the microorganism could be associated with decreased silicate dissolution rates at this location, suggesting complex effects of the microorganism on the silicate dissolution process. The close association observed between silicate dissolution and carbonate formation at the micrometer scale suggests that Urey-type CO 2 sequestration reactions could be mediated by microorganisms under arid conditions.
Self-assembly Columnar Structure in Active Layer of Bulk Heterojunction Solar Cell
NASA Astrophysics Data System (ADS)
Pan, Cheng; Segui, Jennifer; Yu, Yingjie; Li, Hongfei; Akgun, Bulent; Satijia, Sushil. K.; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam
2012-02-01
Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. However, due to the disordered inner structure in active layer, the power conversion efficiency of BHJ solar cell is relatively low. Our research provides the method to produce ordered self-assembly columnar structure within active layer of bulk heterojunction (BHJ) solar cell by introducing polystyrene (PS) into the active layer. The blend thin film of polystyrene, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) at different ratio are spin coated on substrate and annealed in vacuum oven for certain time. Atomic force microscopy (AFM) images show uniform phase segregation on the surface of polymer blend thin film and highly ordered columnar structure is then proven by etching the film with ion sputtering. TEM cross-section technology is also used to investigate the column structure. Neutron reflectometry was taken to establish the confinement of PCBM at the interface of PS and P3HT. The different morphological structures formed via phase segregation will be correlated with the performance of the PEV cells to be fabricated at the BNL-CFN.
Ultra-Fast Degradation of Chemical Warfare Agents Using MOF-Nanofiber Kebabs.
Zhao, Junjie; Lee, Dennis T; Yaga, Robert W; Hall, Morgan G; Barton, Heather F; Woodward, Ian R; Oldham, Christopher J; Walls, Howard J; Peterson, Gregory W; Parsons, Gregory N
2016-10-10
The threat associated with chemical warfare agents (CWAs) motivates the development of new materials to provide enhanced protection with a reduced burden. Metal-organic frame-works (MOFs) have recently been shown as highly effective catalysts for detoxifying CWAs, but challenges still remain for integrating MOFs into functional filter media and/or protective garments. Herein, we report a series of MOF-nanofiber kebab structures for fast degradation of CWAs. We found TiO 2 coatings deposited via atomic layer deposition (ALD) onto polyamide-6 nanofibers enable the formation of conformal Zr-based MOF thin films including UiO-66, UiO-66-NH 2 , and UiO-67. Cross-sectional TEM images show that these MOF crystals nucleate and grow directly on and around the nanofibers, with strong attachment to the substrates. These MOF-functionalized nanofibers exhibit excellent reactivity for detoxifying CWAs. The half-lives of a CWA simulant compound and nerve agent soman (GD) are as short as 7.3 min and 2.3 min, respectively. These results therefore provide the earliest report of MOF-nanofiber textile composites capable of ultra-fast degradation of CWAs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of Nb 3Sn surface layers for superconducting radio frequency cavity applications
Becker, Chaoyue; Posen, Sam; Groll, Nickolas; ...
2015-02-23
Here, we present an analysis of Nb 3Sn surface layers grown on a bulk Nb coupon prepared at the same time and by the same vapor diffusion process used to make Nb 3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveal a well developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperature's (T c) up to 16.3K. Transmission electron microscopy (TEM) performed on cross sections of the sample's surface shows a ~ 2 microns thick Nb 3Sn surface layer. The elemental composition map exhibitsmore » a Nb:Sn ratio of 3:1 with buried substoichiometric regions with a ratio of 5:1. Synchrotron diffraction experiments indicate a polycrystalline Nb 3Sn film and confirm the presence of Nb rich regions that occupies about a third of the coating volume. These low T c regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb 3Sn -coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.« less
Hoffmann, Ramona; Wochnik, Angela S; Betzler, Sophia B; Matich, Sonja; Griesshaber, Erika; Schmahl, Wolfgang W; Scheu, Christina
2014-07-01
The ultrastructure of biologically formed calcium carbonate crystals like the shell of Emiliania huxleyi depends on the environmental conditions such as pH value, temperature and salinity. Therefore, they can be used as indicator for climate changes. However, for this a detailed understanding of their crystal structure and chemical composition is required. High resolution methods like transmission electron microscopy can provide those information on the nanoscale, given that sufficiently thin samples can be prepared. In our study, we developed sample preparation techniques for cross-section and plan-view investigations and studied the sample stability under electron bombardment. In addition to the biological material (Emiliania huxleyi) we also prepared mineralogical samples (Iceland spar) for comparison. High resolution transmission electron microscopy imaging, electron diffraction and electron energy-loss spectroscopy studies revealed that all prepared samples are relatively stable under electron bombardment at an acceleration voltage of 300 kV when using a parallel illumination. Above an accumulated dose of ∼10(5) e/nm2 the material--independent whether its origin is biological or geological--transformed to poly-crystalline calcium oxide. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, W; Britt, H C
In a recent paper submitted to Phys. Rev. C they have presented estimates for (n,f) cross sections on a series of Thorium, Uranium and Plutonium isotopes over the range E{sub n} = 0.1-2.5 MeV. The (n,f) cross sections for many of these isotopes are difficult or impossible to measure in the laboratory. The cross sections were obtained from previous (t,pf) reaction data invoking a model which takes into account the differences between (t,pf) and (n,f) reaction processes, and which includes improved estimates for the neutron compound formation process. The purpose of this note is: (1) to compare the estimated crossmore » sections to current data files in both ENDF and ENDL databases; (2) to estimate ratios of cross sections relatively to {sup 235}U integrated over the ''tamped flattop'' critical assembly spectrum that was used in the earlier {sup 237}U report; and (3) to show the effect on the integral cross sections when the neutron capturing state is an excited rotational state or an isomer. The isomer and excited state results are shown for {sup 235}U and {sup 237}U.« less
NASA Astrophysics Data System (ADS)
Zhang, Wei; Liu, Yufang; He, Xiaohu
2010-04-01
A quasi-classical trajectory (QCT) method has been used to calculate integral reaction cross-section for H - + HD and D - + HD. The influence of rotation of the reagent on the integral reaction cross-section and the product branching ratios of the title reactions are discussed. The results indicate that the reactive cross-section of H(D) - + HD → HH(D) + D - decreases with an increase of the j for E tran ⩽ 1.5 eV. The results also show that the reactive cross-section of D(H) - + HD → DD(H) + H - decreases with an increase of the j for E tran ⩽ 1.0 eV and that the integral cross-sections of title reactions are sensitive to the reagent rotation.
Evaluation of cross sections for neutron-induced reactions in sodium. [10/sup -5/ eV to 20 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, D.C.
1980-09-01
An evaluation of the neutron-induced cross sections of /sup 23/Na has been done for the energy range from 10/sup -5/ eV to 20 MeV. All significant cross sections are given, including differential cross sections for production of gamma rays. The recommended values are based on experimental data where available, and use results of a consistent model code analysis of available data to predict cross sections where there are no experimental data. This report describes the evaluation that was submitted to the Cross Section Evaluation Working Group (CSEWG) for consideration as a part of the Evaluated Nuclear Data File, Version V,more » and subsequently issued as MAT 1311. 126 references, 130 figures, 14 tables.« less
Three-dimensional object surface identification
NASA Astrophysics Data System (ADS)
Celenk, Mehmet
1995-03-01
This paper describes a computationally efficient matching method for inspecting 3D objects using their serial cross sections. Object regions of interest in cross-sectional binary images of successive slices are aligned with those of the models. Cross-sectional differences between the object and the models are measured in the direction of the gradient of the cross section boundary. This is repeated in all the cross-sectional images. The model with minimum average cross-sectional difference is selected as the best match to the given object (i.e., no defect). The method is tested using various computer generated surfaces and matching results are presented. It is also demonstrated using Symult S-2010 16-node system that the method is suitable for parallel implementation in massage passing processors with the maximum attainable speedup (close to 16 for S-2010).
Polynomial coefficients for calculating O2 Schumann-Runge cross sections at 0.5/cm resolution
NASA Technical Reports Server (NTRS)
Minschwaner, K.; Anderson, G. P.; Hall, L. A.; Yoshino, K.
1992-01-01
O2 cross sections from 49,000 to 57,000/cm have been fitted with temperature dependent polynomial expressions, providing an accurate and efficient means of determining Schumann-Runge band cross sections for temperatures between 130 and 500 K. The least squares fits were carried out on a 0.5/cm spectral grid, using cross sections obtained from a Schumann-Runge line-by-line model that incorporates the most recent spectroscopic data. The O2 cross sections do not include the underlying Herzberg continuum, but they do contain contributions from the temperature dependent Schumann-Runge continuum. The cross sections are suitable for use in UV transmission calculations at high spectral resolution. They should also prove useful for updating existing parameterizations of ultraviolet transmission and O2 photolysis.
NASA Astrophysics Data System (ADS)
Khan, Urooj; Tuteja, Narendra; Ajami, Hoori; Sharma, Ashish
2014-05-01
While the potential uses and benefits of distributed catchment simulation models is undeniable, their practical usage is often hindered by the computational resources they demand. To reduce the computational time/effort in distributed hydrological modelling, a new approach of modelling over an equivalent cross-section is investigated where topographical and physiographic properties of first-order sub-basins are aggregated to constitute modelling elements. To formulate an equivalent cross-section, a homogenization test is conducted to assess the loss in accuracy when averaging topographic and physiographic variables, i.e. length, slope, soil depth and soil type. The homogenization test indicates that the accuracy lost in weighting the soil type is greatest, therefore it needs to be weighted in a systematic manner to formulate equivalent cross-sections. If the soil type remains the same within the sub-basin, a single equivalent cross-section is formulated for the entire sub-basin. If the soil type follows a specific pattern, i.e. different soil types near the centre of the river, middle of hillslope and ridge line, three equivalent cross-sections (left bank, right bank and head water) are required. If the soil types are complex and do not follow any specific pattern, multiple equivalent cross-sections are required based on the number of soil types. The equivalent cross-sections are formulated for a series of first order sub-basins by implementing different weighting methods of topographic and physiographic variables of landforms within the entire or part of a hillslope. The formulated equivalent cross-sections are then simulated using a 2-dimensional, Richards' equation based distributed hydrological model. The simulated fluxes are multiplied by the weighted area of each equivalent cross-section to calculate the total fluxes from the sub-basins. The simulated fluxes include horizontal flow, transpiration, soil evaporation, deep drainage and soil moisture. To assess the accuracy of equivalent cross-section approach, the sub-basins are also divided into equally spaced multiple hillslope cross-sections. These cross-sections are simulated in a fully distributed settings using the 2-dimensional, Richards' equation based distributed hydrological model. The simulated fluxes are multiplied by the contributing area of each cross-section to get total fluxes from each sub-basin referred as reference fluxes. The equivalent cross-section approach is investigated for seven first order sub-basins of the McLaughlin catchment of the Snowy River, NSW, Australia, and evaluated in Wagga-Wagga experimental catchment. Our results show that the simulated fluxes using an equivalent cross-section approach are very close to the reference fluxes whereas computational time is reduced of the order of ~4 to ~22 times in comparison to the fully distributed settings. The transpiration and soil evaporation are the dominant fluxes and constitute ~85% of actual rainfall. Overall, the accuracy achieved in dominant fluxes is higher than the other fluxes. The simulated soil moistures from equivalent cross-section approach are compared with the in-situ soil moisture observations in the Wagga-Wagga experimental catchment in NSW, and results found to be consistent. Our results illustrate that the equivalent cross-section approach reduces the computational time significantly while maintaining the same order of accuracy in predicting the hydrological fluxes. As a result, this approach provides a great potential for implementation of distributed hydrological models at regional scales.
NASA Astrophysics Data System (ADS)
Csedreki, L.; Halász, Z.; Kiss, Á. Z.
2016-08-01
Measured differential cross sections for deuteron induced γ-ray emission from the reactions 12C(d,pγ)13C, (Eγ = 3089 keV), 14N(d,pγ)15N (Eγ = 8310 keV) and 16O(d,pγ)17O (Eγ = 871 keV) available in the literature were assessed. In order to cross check the assessed γ-ray production cross section data, thick target γ-yields calculated from the differential cross sections were compared with available measured thick target yields. Recommended differential cross section data for each reaction were deduced for particle induced γ-ray emission (PIGE) applications.
Electron-impact excitation cross sections for the b /sup 3/. sigma. /sub u//sup +/ state of H/sub 2/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M.A.; Trajmar, S.; McAdams, R.
1987-04-01
Differential and integral cross sections for electron-impact excitation of the b /sup 3/..sigma../sub u//sup +/ state of H/sub 2/ have been determined in the 20--100-eV impact energy region. The calibration of the cross sections was achieved through the H/sub 2/ elastic scattering cross sections, which in turn were normalized to absolute He elastic scattering cross sections. Comparison is made with available experimental data and with theoretical results applying Born-Ochkur-Rudge, distorted-wave, and close-coupling approximations.
New Tools to Prepare ACE Cross-section Files for MCNP Analytic Test Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
Monte Carlo calculations using one-group cross sections, multigroup cross sections, or simple continuous energy cross sections are often used to: (1) verify production codes against known analytical solutions, (2) verify new methods and algorithms that do not involve detailed collision physics, (3) compare Monte Carlo calculation methods with deterministic methods, and (4) teach fundamentals to students. In this work we describe 2 new tools for preparing the ACE cross-section files to be used by MCNP ® for these analytic test problems, simple_ace.pl and simple_ace_mg.pl.
Measurement of Charged and Neutral Current e-p Deep Inelastic Scattering Cross Sections at High Q2
NASA Astrophysics Data System (ADS)
Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Haas, T.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J.; Norman, D. J.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; ZajaÇ, J.; Kotański, A.; Przybycień, M.; Bauerdick, L. A.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Grosse-Knetter, J.; Gutjahr, B.; Hain, W.; Hasell, D.; Hessling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mańczak, O.; Ng, J. S.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voss, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, J. I.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Mainusch, J.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y.; Long, K. R.; Miller, D. B.; Morawitz, P. P.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Schwarzer, O.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.
1995-08-01
Deep inelastic e-p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared Q2 above 400 GeV2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections dσ/dQ2 are presented. From the Q2 dependence of the CC cross section, the mass term in the CC propagator is determined to be MW = 76+/-16+/-13 GeV.
Kim, Haksung; Ho Pyeon, Cheol; Lim, Jae-Yong; Misawa, Tsuyoshi
2012-01-01
The effects of silicon cross section and neutron spectrum on the radial uniformity of a Si-ingot are examined experimentally with various neutron spectrum conditions. For the cross section effect, the numerical results using silicon single crystal cross section reveal good agreements with experiments within relative difference of 6%, whereas the discrepancy is approximately 20% in free-gas cross section. For the neutron spectrum effect, the radial uniformity in hard neutron spectrum is found to be more flattening than that in soft spectrum. Copyright © 2011 Elsevier Ltd. All rights reserved.
Electron-Impact Total Ionization Cross Sections of CH and C2H2
Kim, Yong-Ki; Ali, M. Asgar; Rudd, M. Eugene
1997-01-01
Electron-impact total ionization cross sections for the CH radical and C2H2 (acetylene) have been calculated using the Binary-Encounter-Bethe (BEB) model. The BEB model combines the Mott cross section and the asymptotic form of the Bethe theory, and has been shown to generate reliable ionization cross sections for a large variety of molecules. The BEB cross sections for CH and C2H2 are in good agreement with the available experimental data from ionization thresholds to hundreds of eV in incident energies. PMID:27805116
Biologically inspired EM image alignment and neural reconstruction.
Knowles-Barley, Seymour; Butcher, Nancy J; Meinertzhagen, Ian A; Armstrong, J Douglas
2011-08-15
Three-dimensional reconstruction of consecutive serial-section transmission electron microscopy (ssTEM) images of neural tissue currently requires many hours of manual tracing and annotation. Several computational techniques have already been applied to ssTEM images to facilitate 3D reconstruction and ease this burden. Here, we present an alternative computational approach for ssTEM image analysis. We have used biologically inspired receptive fields as a basis for a ridge detection algorithm to identify cell membranes, synaptic contacts and mitochondria. Detected line segments are used to improve alignment between consecutive images and we have joined small segments of membrane into cell surfaces using a dynamic programming algorithm similar to the Needleman-Wunsch and Smith-Waterman DNA sequence alignment procedures. A shortest path-based approach has been used to close edges and achieve image segmentation. Partial reconstructions were automatically generated and used as a basis for semi-automatic reconstruction of neural tissue. The accuracy of partial reconstructions was evaluated and 96% of membrane could be identified at the cost of 13% false positive detections. An open-source reference implementation is available in the Supplementary information. seymour.kb@ed.ac.uk; douglas.armstrong@ed.ac.uk Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.
2017-12-01
Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.
Bodies with noncircular cross sections and bank-to-turn missiles
NASA Technical Reports Server (NTRS)
Jackson, C. M., Jr.; Sawyer, W. C.
1986-01-01
An evaluation is made of prospective missile applications for noncircular cross section bodies, and of recent developments in bank-to-turn missile configuration aerodynamics. The discussion encompasses cross-flow analysis techniques, as well as study results obtained for bodies with elliptical and square cross sections and with variable cross sections. Attention is given to both the performance advantages and the stability and control problems of bank-to-turn missile configurations; the aerodynamic data presented for monoplanar configurations extend to those incorporating airbreathing propulsion systems.
Cross sections for the dissociative attachment of electrons to NO
NASA Technical Reports Server (NTRS)
Krishnakumar, E.; Srivastava, S. K.
1988-01-01
Cross sections for the production of O(-) by electron attachment to NO are reported. It is found that the maximum value of the cross section is about 52 percent higher than the measurement of Rapp and Briglia (1965). Cross sections for the process of polar dissociation, e + NO yields N(+) + O(_), have also been measured, and the threshold energy for this process has been obtained.
Bednarska, Agnieszka J; Wyżga, Bartłomiej; Mikuś, Paweł; Kędzior, Renata
2018-01-01
Effects of passive restoration of mountain rivers on the organisms inhabiting exposed riverine sediments are considerably less understood than those concerning aquatic biota. Thus, the effects of a recovery of the Raba River after abandonment of maintenance of its channelization scheme on ground beetle (Coleoptera: Carabidae) communities were investigated by comparing 6 unmanaged cross-sections and 6 cross-sections from adjacent channelized reaches. In each cross-section, ground beetles were collected from 12 sampling sites in spring, summer, and autumn, and 8 habitat parameters characterizing the cross-sections and sampling sites were determined. Within a few years after abandonment of the Raba River channelization scheme, the width of this gravel-bed river increased up to three times and its multi-thread pattern became re-established. Consequently, unmanaged river cross-sections had significantly larger channel width and more low-flow channels and eroding cutbanks than channelized cross-sections. Moreover, sampling sites in the unmanaged cross-sections were typified by significantly steeper average surface slope and larger average distance from low-flow channels than the sites in channelized cross-sections. In total, 3992 individuals from 78 taxa were collected during the study. The ground beetle assemblages were significantly more abundant and richer in species in the unmanaged than in the channelized cross-sections but no significant differences in carabid diversity indices between the two cross-section types were recorded. Redundancy Analysis indicated active river zone width as the only variable explaining differences in abundance and species richness among the cross-sections. Multiple regression analysis indicated species diversity to predominantly depend on the degree of plant cover and substrate grain size. The study showed that increased availability of exposed sediments in the widened river reaches allowed ground beetles to increase their abundance and species richness within a few years after the onset of river restoration, but more time may be needed for development of more diverse carabid communities. Copyright © 2017 Elsevier B.V. All rights reserved.
Aggressiveness of contemporary self-etching adhesives. Part II: etching effects on unground enamel.
Pashley, D H; Tay, F R
2001-09-01
The aggressiveness of three self-etching adhesives on unground enamel was investigated. Ultrastructural features and microtensile bond strength were examined, first using these adhesives as both the etching and resin-infiltration components, and then examining their etching efficacy alone through substitution of the proprietary resins with the same control resins. For SEM examination, buccal, mid-coronal, unground enamel from human extracted bicuspids were etched with either Clearfil Mega Bond (Kuraray), Non-Rinse Conditioner (NRC; Dentsply DeTrey) or Prompt L-Pop (ESPE). Those in the control group were etched with 32% phosphoric acid (Bisco) for 15s. They were all rinsed off prior to examination of the etching efficacy. For TEM examination, the self-etching adhesives were used as recommended. Unground enamel treated with NRC were further bonded using Prime&Bond NT (Dentsply), while those in the etched, control group were bonded using All-Bond 2 (Bisco). Completely demineralized, resin replicas were embedded in epoxy resin for examination of the extent of resin infiltration. For microtensile bond strength evaluation, specimens were first etched and bonded using the self-etching adhesives. A second group of specimens were etched with the self-etching adhesives, rinsed but bonded using a control adhesive. Following restoration with Z100 (3M Dental Products), they were sectioned into beams of uniform cross-sectional areas and stressed to failure. Etching patterns of aprismatic enamel, as revealed by SEM, and the subsurface hybrid layer morphology, as revealed by TEM, varied according to the aggressiveness of the self-etching adhesives. Clearfil Mega Bond exhibited the mildest etching patterns, while Prompt L-Pop produced an etching effect that approached that of the total-etch control group. Microtensile bond strength of the three experimental groups were all significantly lower than the control group, but not different from one another. When the self-etching adhesives were replaced with the control adhesive after etching, bond strengths of NRC/Prime&Bond NT and Prompt L-Pop were not significantly different from that of the control group, but were significantly higher than that of Clearfil Mega Bond. Both etching efficacy and strength of the resins are important contributing factors in bonding of self-etching adhesives to unground enamel.
Focused Ion Beam Microscopy of ALH84001 Carbonate Disks
NASA Technical Reports Server (NTRS)
Thomas-Keprta, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.; McKay, David S.; Vali, Hojatollah; Gibson, Everett K., Jr.; Romanek, Christopher S.
2005-01-01
Our aim is to understand the mechanism(s) of formation of carbonate assemblages in ALH84001. A prerequisite is that a detailed characterization of the chemical and physical properties of the carbonate be established. We present here analyses by transmission electron microscopy (TEM) of carbonate thin sections produced by both focused ion beam (FIB) sectioning and ultramicrotomy. Our results suggest that the formation of ALH84001 carbonate assemblages were produced by considerably more complex process(es) than simple aqueous precipitation followed by partial thermal decomposition as proposed by other investigators [e.g., 1-3].
Watts, Kristen; Lagalante, Anthony
2018-06-06
Art conservation science is in need of a relatively nondestructive way of rapidly identifying the binding media within a painting cross-section and isolating binding media to specific layers within the cross-section. Knowledge of the stratigraphy of cross-sections can be helpful for removing possible unoriginal paint layers on the artistic work. Desorption electrospray ionization-mass spectrometry (DESI-MS) was used in ambient mode to study cross-sections from mock-up layered paint samples and samples from a 17th century baroque painting. The DESI spray was raster scanned perpendicular to the cross-section layers to maximize lateral resolution then analyzed with a triple quadrupole mass analyzer in linear ion trap mode. From these scans, isobaric mass maps were created to map the locations of masses indicative of particular binding media onto the cross-sections. Line paint-outs of pigments in different binding media showed specific and unique ions to distinguish between the modern acrylic media and the lipid containing binding media. This included: OP (EO) 9 surfactant in positive ESI for acrylic (m/z 621), and oleic (m/z 281), stearic (m/z 283), and azelaic (m/z 187) acids in negative ESI for oil and egg tempera. DESI-MS maps of mock-up cross-sections of layered pigmented binding media showed correlation between these ions and the layers with a spatial resolution of 100 μm. DESI-MS is effective in monitoring binding media within an intact painting cross-section via mass spectrometric methods. This includes distinguishing between lipid-containing and modern binding materials present in a known mockup cross section matrix as well as identifying lipid binding media in a 17th century baroque era painting. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Korsmeier, Michael; Donato, Fiorenza; Di Mauro, Mattia
2018-05-01
The cosmic-ray flux of antiprotons is measured with high precision by the space-borne particle spectrometers AMS-02. Its interpretation requires a correct description of the dominant production process for antiprotons in our Galaxy, namely, the interaction of cosmic-ray proton and helium with the interstellar medium. In light of new cross section measurements by the NA61 experiment of p +p →p ¯+X and the first ever measurement of p +He →p ¯+X by the LHCb experiment, we update the parametrization of proton-proton and proton-nucleon cross sections. We find that the LHCb p He data constrain a shape for the cross section at high energies and show for the first time how well the rescaling from the p p channel applies to a helium target. By using p p , p He and p C data we estimate the uncertainty on the Lorentz invariant cross section for p +He →p ¯+X . We use these new cross sections to compute the source term for all the production channels, considering also nuclei heavier than He both in cosmic rays and the interstellar medium. The uncertainties on the total source term are up to ±20 % and slightly increase below antiproton energies of 5 GeV. This uncertainty is dominated by the p +p →p ¯+X cross section, which translates into all channels since we derive them using the p p cross sections. The cross sections to calculate the source spectra from all relevant cosmic-ray isotopes are provided in Supplemental Material. We finally quantify the necessity of new data on antiproton production cross sections, and pin down the kinematic parameter space which should be covered by future data.
Electron impact ionization cross sections of beryllium-tungsten clusters*
NASA Astrophysics Data System (ADS)
Sukuba, Ivan; Kaiser, Alexander; Huber, Stefan E.; Urban, Jan; Probst, Michael
2016-01-01
We report calculated electron impact ionization cross sections (EICSs) of beryllium-tungsten clusters, BenW with n = 1,...,12, from the ionization threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The positions of the maxima of DM and BEB cross sections are mostly close to each other. The DM cross sections are more sensitive with respect to the cluster size. For the clusters smaller than Be4W they yield smaller cross sections than BEB and vice versa larger cross sections than BEB for clusters larger than Be6W. The maximum cross section values for the singlet-spin groundstate clusters range from 7.0 × 10-16 cm2 at 28 eV (BeW) to 54.2 × 10-16 cm2 at 43 eV (Be12W) for the DM cross sections and from 13.5 × 10-16 cm2 at 43 eV (BeW) to 38.9 × 10-16 cm2 at 43 eV (Be12W) for the BEB cross sections. Differences of the EICSs in different isomers and between singlet and triplet states are also explored. Both the DM and BEB cross sections could be fitted perfectly to a simple expression used in modeling and simulation codes in the framework of nuclear fusion research. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60583-7
Automatic arteriovenous crossing phenomenon detection on retinal fundus images
NASA Astrophysics Data System (ADS)
Hatanaka, Yuji; Muramatsu, Chisako; Hara, Takeshi; Fujita, Hiroshi
2011-03-01
Arteriolosclerosis is one cause of acquired blindness. Retinal fundus image examination is useful for early detection of arteriolosclerosis. In order to diagnose the presence of arteriolosclerosis, the physicians find the silver-wire arteries, the copper-wire arteries and arteriovenous crossing phenomenon on retinal fundus images. The focus of this study was to develop the automated detection method of the arteriovenous crossing phenomenon on the retinal images. The blood vessel regions were detected by using a double ring filter, and the crossing sections of artery and vein were detected by using a ring filter. The center of that ring was an interest point, and that point was determined as a crossing section when there were over four blood vessel segments on that ring. And two blood vessels gone through on the ring were classified into artery and vein by using the pixel values on red and blue component image. Finally, V2-to-V1 ratio was measured for recognition of abnormalities. V1 was the venous diameter far from the blood vessel crossing section, and V2 was the venous diameter near from the blood vessel crossing section. The crossing section with V2-to-V1 ratio over 0.8 was experimentally determined as abnormality. Twenty four images, including 27 abnormalities and 54 normal crossing sections, were used for preliminary evaluation of the proposed method. The proposed method was detected 73% of crossing sections when the 2.8 sections per image were mis-detected. And, 59% of abnormalities were detected by measurement of V1-to-V2 ratio when the 1.7 sections per image were mis-detected.
NASA Technical Reports Server (NTRS)
Shemansky, D. E.; Hall, D. T.; Ajello, J. M.
1985-01-01
The cross sections sigma R 1 (2p) for excitation of H Ly-alpha emission produced by electron impact on H2 is reexamined. A more accurate estimate for sigma R 1 (2p) is obtained based on Born approximation estimates of the H2 Rydberg system cross sections using measured relative excitation functions. The obtained value is (8.18 + or -1.2) x 10 to the -18th sq cm at 100 eV, a factor of 0.69 below the value universally applied to cross section measurements over the past decade. Cross sections for the H2 Rydberg systems fixed in magnitude by the Born approximation have also been obtained using experimentally determined excitation functions. Accurate analytic expressions for these cross sections allow the direct calculation of rate coefficients.
Creation of problem-dependent Doppler-broadened cross sections in the KENO Monte Carlo code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, Shane W. D.; Celik, Cihangir; Maldonado, G. Ivan
2015-11-06
In this paper, we introduce a quick method for improving the accuracy of Monte Carlo simulations by generating one- and two-dimensional cross sections at a user-defined temperature before performing transport calculations. A finite difference method is used to Doppler-broaden cross sections to the desired temperature, and unit-base interpolation is done to generate the probability distributions for double differential two-dimensional thermal moderator cross sections at any arbitrarily user-defined temperature. The accuracy of these methods is tested using a variety of contrived problems. In addition, various benchmarks at elevated temperatures are modeled, and results are compared with benchmark results. Lastly, the problem-dependentmore » cross sections are observed to produce eigenvalue estimates that are closer to the benchmark results than those without the problem-dependent cross sections.« less
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.
2011-03-01
Using a high-statistics, high-purity sample of νμ-induced charged current, charged pion events in mineral oil (CH2), MiniBooNE reports a collection of interaction cross sections for this process. This includes measurements of the CCπ+ cross section as a function of neutrino energy, as well as flux-averaged single- and double-differential cross sections of the energy and direction of both the final-state muon and pion. In addition, each of the single-differential cross sections are extracted as a function of neutrino energy to decouple the shape of the MiniBooNE energy spectrum from the results. In many cases, these cross sections are the first time such quantities have been measured on a nuclear target and in the 1 GeV energy range.
Communication: Electron ionization of DNA bases.
Rahman, M A; Krishnakumar, E
2016-04-28
No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.
Photon scattering cross sections of H2 and He measured with synchrotron radiation
NASA Technical Reports Server (NTRS)
Ice, G. E.
1977-01-01
Total (elastic + inelastic) differential photon scattering cross sections have been measured for H2 gas and He, using an X-ray beam. Absolute measured cross sections agree with theory within the probable errors. Relative cross sections (normalized to theory at large S) agree to better than one percent with theoretical values calculated from wave functions that include the effect of electron-electron Coulomb correlation, but the data deviate significantly from theoretical independent-particle (e.g., Hartree-Fock) results. The ratios of measured absolute He cross sections to those of H2, at any given S, also agree to better than one percent with theoretical He-to-H2 cross-section ratios computed from correlated wave functions. It appears that photon scattering constitutes a very promising tool for probing electron correlation in light atoms and molecules.
Electron impact ionisation cross section for organoplatinum compounds
NASA Astrophysics Data System (ADS)
Mahato, Dibyendu; Naghma, Rahla; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby
2016-11-01
This article reports electron impact ionisation cross sections for platinum-based drugs viz., cisplatin (H6N2Cl2Pt), carboplatin (C6H12N2O4Pt), oxaliplatin (C8H14N2O4Pt), nedaplatin (C2H8N2O3Pt) and satraplatin (C10H22ClN2O4Pt) complexes used in the cancer chemotherapy. The multi-scattering centre spherical complex optical potential formalism is used to obtain the inelastic cross section for these large molecules upon electron impact. The ionisation cross section is derived from the inelastic cross section employing complex scattering potential-ionisation contribution method. Comparison is made with previous results, where ever available and overall a reasonable agreement is observed. This is the first attempt to report total ionisation cross sections for nedaplatin and satraplatin complexes.
Effect of wave function on the proton induced L XRP cross sections for 62Sm and 74W
NASA Astrophysics Data System (ADS)
Shehla, Kaur, Rajnish; Kumar, Anil; Puri, Sanjiv
2015-08-01
The Lk(k= 1, α, β, γ) X-ray production cross sections have been calculated for 74W and 62Sm at different incident proton energies ranging 1-5 MeV using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell X-ray emission rates based on the Dirac-Fork (DF) model, the fluorescence and Coster Kronig yields based on the Dirac- Hartree-Slater (DHS) model and two sets the proton ionization cross sections based on the DHS model and the ECPSSR in order to assess the influence of the wave function on the XRP cross sections. The calculated cross sections have been compared with the measured cross sections reported in the recent compilation to check the reliability of the calculated values.
NASA Astrophysics Data System (ADS)
Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.
2016-05-01
The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.
NASA Astrophysics Data System (ADS)
Aumann, T.; Bertulani, C. A.; Schindler, F.; Typel, S.
2017-12-01
An experimentally constrained equation of state of neutron-rich matter is fundamental for the physics of nuclei and the astrophysics of neutron stars, mergers, core-collapse supernova explosions, and the synthesis of heavy elements. To this end, we investigate the potential of constraining the density dependence of the symmetry energy close to saturation density through measurements of neutron-removal cross sections in high-energy nuclear collisions of 0.4 to 1 GeV /nucleon . We show that the sensitivity of the total neutron-removal cross section is high enough so that the required accuracy can be reached experimentally with the recent developments of new detection techniques. We quantify two crucial points to minimize the model dependence of the approach and to reach the required accuracy: the contribution to the cross section from inelastic scattering has to be measured separately in order to allow a direct comparison of experimental cross sections to theoretical cross sections based on density functional theory and eikonal theory. The accuracy of the reaction model should be investigated and quantified by the energy and target dependence of various nucleon-removal cross sections. Our calculations explore the dependence of neutron-removal cross sections on the neutron skin of medium-heavy neutron-rich nuclei, and we demonstrate that the slope parameter L of the symmetry energy could be constrained down to ±10 MeV by such a measurement, with a 2% accuracy of the measured and calculated cross sections.
Friedman, B.; DuCharme, G.
2017-05-11
We present a semi-empirical scaling law for non-resonant ion–atom single charge exchange cross sections for collisions with velocities frommore » $${10}^{7}\\,{\\rm{t}}{\\rm{o}}\\,{10}^{9}\\,\\mathrm{cm}\\,{{\\rm{s}}}^{-1}$$ and ions with positive charge $$q\\lt 8$$. Non-resonant cross sections tend to have a velocity peak at collision velocities $$v\\lesssim 1\\ {\\rm{a}}{\\rm{u}}$$ with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, $${\\rm{\\Delta }}E$$, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters $${v}_{{\\rm{m}}},{I}_{{\\rm{T}}},{Z}_{{\\rm{T}}},\\mathrm{and}\\ {Z}_{{\\rm{P}}}$$, where the $${Z}_{{\\rm{T}},{\\rm{P}}}$$ are the target and projectile atomic numbers. In conclusion, for the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.« less
Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun
2015-06-01
Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.
Wu, Zhongzhen; Ji, Shunping; Liu, Tongchao; Duan, Yandong; Xiao, Shu; Lin, Yuan; Xu, Kang; Pan, Feng
2016-10-12
Layered transition-metal oxides (Li[Ni x Mn y Co z ]O 2 , NMC, or NMCxyz) due to their poor stability when cycled at a high operating voltage (>4.5 V) have limited their practical applications in industry. Earlier researches have identified Mn(II)-dissolution and some parasitic reactions between NMC surface and electrolyte, especially when NMC is charged to a high potential, as primarily factors responsible for the fading. In our previous work, we have achieved a capacity of NMC active material close to theoretical value and optimized its cycling performance by a depolarized carbon nanotubes (CNTs) network and an unique "pre-lithiation process" that generates an in situ organic coating (∼40 nm) to prevent Mn(II) dissolution and minimize the parasitic reactions. Unfortunately, this organic coating is not durable enough during a long-term cycling when the cathode operates at a high potential (>4.5 V). This work attempts to improve the surface protection of the NMC532 particles by applying an active inorganic coating consisting of nanosized- and crystal-orientated LiFePO 4 (LFP) (about 50 nm, exposed (010) face) to generate a core-shell nanostructure of Li(Ni x Mn y Co z )O 2 @LiFePO 4 . Transmission electron microscopy (TEM) and etching X-ray photoelectron spectroscopy have confirmed an intimate contact coating (about 50 nm) between the original structure of NMC and LFP single-particle with atomic interdiffusion at the core-shell interface, and an array of interconnected aligned Li + tunnels are observed at the interface by cross-sectional high-resolution TEM, which were formed by ball-milling and then strictly controlling the temperature below 100 °C. Batteries based on this modified NMC cathode material show a high reversible capacity when cycled between 3.0 and 4.6 V during a long-term cycling.
Maloubier, Melody; Shuh, David K.; Minasian, Stefan G.; ...
2016-09-15
In the ocean, complex interactions between natural and anthropogenic radionuclides, seawater, and diverse marine biota provide a unique window through which to examine ecosystem and trophic transfer mechanisms in cases of accidental dissemination. The nature of interaction between radionuclides, the marine environment, and marine species is therefore essential for better understanding transfer mechanisms from the hydrosphere to the biosphere. Although data pertaining to the rate of global transfer are often available, little is known regarding the mechanism of environmental transport and uptake of heavy radionuclides by marine species. Among marine species, sponges are immobile active filter feeders and have beenmore » identified as hyperaccumulators of several heavy metals. We have selected the Mediterranean sponge Aplysina cavernicola as a model species for this study. Actinide elements are not the only source of radioactive release in cases of civilian nuclear events; however, their physicochemical transfer mechanisms to marine species remain largely unknown. We have targeted europium(III) as a representative of the trivalent actinides such as americium or curium. To unravel biological uptake mechanisms of europium in A. cavernicola, we have combined radiometric (γ) measurements with spectroscopic (time-resolved laser-induced fluorescence spectroscopy, TRLIFS, and X-ray absorption near-edge structure, XANES) and imaging (transmission electron microscopy, TEM, and scanning transmission X-ray microscopy, STXM) techniques. Here, we have observed that the colloids of NaEu(CO 3) 2 ·nH 2O formed in seawater are taken up by A. cavernicola with no evidence that lethal dose has been reached in our working conditions. Spectroscopic results suggest that there is no change of speciation during uptake. Finally, TEM and STXM images recorded at different locations across a sponge cross section, together with differential cell separation, indicate the presence of europium particles (around 200 nm) mainly located in the skeleton and toward the outer surface of the sponge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloubier, Melody; Shuh, David K.; Minasian, Stefan G.
In the ocean, complex interactions between natural and anthropogenic radionuclides, seawater, and diverse marine biota provide a unique window through which to examine ecosystem and trophic transfer mechanisms in cases of accidental dissemination. The nature of interaction between radionuclides, the marine environment, and marine species is therefore essential for better understanding transfer mechanisms from the hydrosphere to the biosphere. Although data pertaining to the rate of global transfer are often available, little is known regarding the mechanism of environmental transport and uptake of heavy radionuclides by marine species. Among marine species, sponges are immobile active filter feeders and have beenmore » identified as hyperaccumulators of several heavy metals. We have selected the Mediterranean sponge Aplysina cavernicola as a model species for this study. Actinide elements are not the only source of radioactive release in cases of civilian nuclear events; however, their physicochemical transfer mechanisms to marine species remain largely unknown. We have targeted europium(III) as a representative of the trivalent actinides such as americium or curium. To unravel biological uptake mechanisms of europium in A. cavernicola, we have combined radiometric (γ) measurements with spectroscopic (time-resolved laser-induced fluorescence spectroscopy, TRLIFS, and X-ray absorption near-edge structure, XANES) and imaging (transmission electron microscopy, TEM, and scanning transmission X-ray microscopy, STXM) techniques. Here, we have observed that the colloids of NaEu(CO 3) 2 ·nH 2O formed in seawater are taken up by A. cavernicola with no evidence that lethal dose has been reached in our working conditions. Spectroscopic results suggest that there is no change of speciation during uptake. Finally, TEM and STXM images recorded at different locations across a sponge cross section, together with differential cell separation, indicate the presence of europium particles (around 200 nm) mainly located in the skeleton and toward the outer surface of the sponge.« less
Nanostructural evolution during emission of CsI-coated carbon fiber cathodes
NASA Astrophysics Data System (ADS)
Drummy, Lawrence F.; Apt, Scott; Shiffler, Don; Golby, Ken; LaCour, Matt; Maruyama, Benji; Vaia, Richard A.
2010-06-01
Carbon-based nanofiber and microfiber cathodes exhibit very low voltages for the onset of electron emission, and thus provide exciting opportunities for applications ranging from high power microwave sources to field emission displays. CsI coatings have been experimentally shown to lower the work function for emission from the fiber tips, although little is known about the microstructure of the fibers themselves in their as-received state, after coating with CsI, or after being subjected to high voltage cycling. Longitudinal cross sections of the original, unused CsI-coated fibers produced by focused ion beam lift-out revealed a nanostructured graphitic core surrounded by an amorphous carbon shell with submicron sized islands of crystalline CsI on the outer surface. Aberration-corrected high resolution electron microscopy (HREM) of the fiber core achieved 0.10 nm resolution, with the graphite (200) clearly visible in digital fast Fourier transformations of the 2-4 nm highly ordered graphitic domains. As the cathode fibers are cycled at high voltage, HREM demonstrates that the graphitic ordering of the core increases with the number of cycles, however the structure and thickness of the amorphous carbon layer remains unchanged. These results are consistent with micro-Raman measurements of the fiber disordered/graphitic (D/G) band ratios. After high voltage cycling, a uniform ˜100 nm film at the fiber tip was evident in both bright field transmission electron microscopy (TEM) and high angle annular dark field scanning TEM (STEM). Low-dose electron diffraction techniques confirmed the amorphous nature of this film, and STEM with elemental mapping via x-ray energy dispersive spectroscopy indicates this layer is composed of CsIO. The oxidative evolution of tip composition and morphology due to impurities in the chamber, along with increased graphitization of the fiber core, contributes to changes in emission behavior with cycling.
NASA Astrophysics Data System (ADS)
Driessen, F. A. J. M.; Bauhuis, G. J.; Hageman, P. R.; van Geelen, A.; Giling, L. J.
1994-12-01
The modulation-doped ordered-GaInP2/disordered-GaInP2 homojunction is presented. Capacitance-voltage (CV) profiling techniques, temperature-dependent Hall and resistivity measurements, cross-sectional transverse electron micrographs (TEM), and high-field magnetotransport have been used to characterize this structure grown by metal-organic vapor-phase epitaxy. The CV measurements showed a narrow profile at the homointerface with an order of magnitude reduction in carrier density within 3 nm. Typical two-dimensional behavior was observed from Hall data showing sheet carrier densities as high as 3.6×1013 cm-2 without carrier freeze-out, and constant mobilities around 900 cm2 V-1 s-1 below T=100 K. The 300-K channel conductivity of this junction is 3.2×10-3 Ω-1, which is higher than reported for other two-dimensional electron gases. By proper choice of the substrate orientation, domains of only the (111¯) ordering variant were present. TEM showed elongated shapes of average thickness 3.5-6 nm and length 75 nm in the (011) plane. By using Hall bars with different current directions, an asymmetry is observed for the contributions to the scattering mechanisms which determine the mobility: ``mesoscopic'' interface-roughness scattering for T<100 K and cluster scattering for 100
Marcano, Daniel; De Jesús, Andreína; Hernández, Luis; Torres, Luis
2011-12-01
To determine the frequency of enzymatic mechanisms associated with reduced sensitivity to broad-spectrum beta-lactam antibiotics in enterobacteria isolates obtained at hospital centers in Caracas, Venezuela. A cross-sectional study was conducted on enterobacteria isolated from patients at eight hospital centers in Caracas, Venezuela, from 15 October 2009 to 15 January 2010. The species were identified using conventional biochemical tests, and their susceptibility to antimicrobial drugs was assessed by antibiogram (Kirby-Bauer method), using the 2010 performance standards published by the Clinical and Laboratory Standards Institute. Beta-lactam-resistant genes were detected using an enhanced polymerase chain reaction assay. Of 1 235 isolates, 207 (16.8%) exhibited resistance to third- and fourth-generation cephalosporins, carbapenems, or both. They presented the following phenotypes: extended-spectrum beta-lactamase (ESBL), 93.8%; depressed AmpC, 4.3%; and carbapenemase, 1.9%. Further characterization of the first two phenotypes yielded the following breakdown of types: SHV, 36.7%; CTX-M-1 group, 22.3%; TEM, 21.7%; CTX-M-1 group with impermeability, 5.2%; two-enzyme combinations, 4.5%; CTX-M-2 group, 4.3%; PER, 3.4%; and KPC, 1.9%. The SHV type was predominant in the public hospital strains, whereas the CTX-M-1 group was most common in the strains from the private hospitals. Of the enzymatic mechanisms investigated, the SHV type was the most frequent, followed by the CTX-M-1 group and the TEM type. Also, a high percentage of type KPC was found. The research reported here is one of only a few multicenter studies that have been conducted in Venezuela to evaluate the frequency of this type of antimicrobial resistance mechanism, including phenotypical and molecular characterization. It was shown that the detection methods require proper interpretation of sensitivity profiles and molecular confirmation of the mechanism present.
Measured microwave scattering cross sections of three meteorite specimens
NASA Technical Reports Server (NTRS)
Hughes, W. E.
1972-01-01
Three meteorite specimens were used in a microwave scattering experiment to determine the scattering cross sections of stony meteorites and iron meteorites in the frequency range from 10 to 14 GHz. The results indicate that the stony meteorites have a microwave scattering cross section that is 30 to 50 percent of their projected optical cross section. Measurements of the iron meteorite scattering were inconclusive because of specimen surface irregularities.
Asymptotic form for the cross section for the Coulomb interacting rearrangement collisions.
NASA Technical Reports Server (NTRS)
Omidvar, K.
1973-01-01
It is shown that in a rearrangement collision leading to the formation of highly excited hydrogenlike states the cross section at high energies behaves as 1/n-squared, with n the principal quantum number, thus invalidating the Brinkman-Kramers approximation for large n. Similarly, in high-energy inelastic electron-hydrogenlike-atom collisions the exchange cross section for sufficiently large n dominates the direct excitation cross section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strologas, John; Errede, Steven; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
We present the standard model prediction for the eight angular coefficients of the W boson, which completely describes its differential cross section in hadron collisions. These coefficients are ratios of the W helicity cross sections and the total unpolarized cross section. We also suggest a technique to experimentally extract the coefficients, which we demonstrate in the Collins-Soper azimuthal-angle analysis.
Fragmentation Cross Sections of 290 and 400 MeV/nucleon 12C Beamson Elemental Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitlin, C.; Guetersloh, S.; Heilbronn, L.
Charge-changing and fragment production cross sections at 0circ have been obtained for interactions of 290 MeV/nucleon and 400MeV/nucleon carbon beams with C, CH2, Al, Cu, Sn, and Pb targets. Thesebeams are relevant to cancer therapy, space radiation, and the productionof radioactive beams. We compare to previously published results using Cand CH2 targets at similar beam energies. Due to ambiguities arising fromthe presence of multiple fragments on many events, previous publicationshave reported only cross sections for B and Be fragments. In this work wehave extracted cross sections for all fragment species, using dataobtained at three distinct values of angular acceptance, supplementedmore » bydata taken with the detector stack placed off the beam axis. A simulationof the experiment with the PHITS Monte Carlo code shows fair agreementwith the data obtained with the large acceptance detectors, but agreementis poor at small acceptance. The measured cross sections are alsocompared to the predictions of the one-dimensional cross section modelsEPAX2 and NUCFRG2; the latter is presently used in NASA's space radiationtransport calculations. Though PHITS and NUCFRG2 reproduce thecharge-changing cross sections with reasonable accuracy, none of themodels is able to accurately predict the fragment cross sections for allfragment species and target materials.« less
Extracting Cross-Sectional Clinical Images Based on Their Principal Axes of Inertia
Fan, Yuzhou; Djuric, Marija; Li, Zhiyu; Antonijevic, Djordje; Milenkovic, Petar; Sun, Yueyang; Li, Ruining
2017-01-01
Cross-sectional imaging is considered the gold standard in diagnosing a range of diseases. However, despite its widespread use in clinical practice and research, no widely accepted method is available to reliably match cross-sectional planes in several consecutive scans. This deficiency can impede comparison between cross-sectional images and ultimately lead to misdiagnosis. Here, we propose and demonstrate a method for finding the same imaging plane in images obtained during separate scanning sessions. Our method is based on the reconstruction of a “virtual organ” from which arbitrary cross-sectional images can be extracted, independent of the axis orientation in the original scan or cut; the key is to establish unique body coordinates of the organ from its principal axes of inertia. To verify our method a series of tests were performed, and the same cross-sectional plane was successfully extracted. This new approach offers clinicians access, after just a single scanning session, to the morphology and structure of a lesion through cross-sectional images reconstructed along arbitrary axes. It also aids comparable detection of morphological and structural changes in the same imaging plane from scans of the same patient taken at different times—thus potentially reducing the misdiagnosis rate when cross-sectional images are interpreted. PMID:29410714
Extracting Cross-Sectional Clinical Images Based on Their Principal Axes of Inertia.
Fan, Yuzhou; Luo, Liangping; Djuric, Marija; Li, Zhiyu; Antonijevic, Djordje; Milenkovic, Petar; Sun, Yueyang; Li, Ruining; Fan, Yifang
2017-01-01
Cross-sectional imaging is considered the gold standard in diagnosing a range of diseases. However, despite its widespread use in clinical practice and research, no widely accepted method is available to reliably match cross-sectional planes in several consecutive scans. This deficiency can impede comparison between cross-sectional images and ultimately lead to misdiagnosis. Here, we propose and demonstrate a method for finding the same imaging plane in images obtained during separate scanning sessions. Our method is based on the reconstruction of a "virtual organ" from which arbitrary cross-sectional images can be extracted, independent of the axis orientation in the original scan or cut; the key is to establish unique body coordinates of the organ from its principal axes of inertia. To verify our method a series of tests were performed, and the same cross-sectional plane was successfully extracted. This new approach offers clinicians access, after just a single scanning session, to the morphology and structure of a lesion through cross-sectional images reconstructed along arbitrary axes. It also aids comparable detection of morphological and structural changes in the same imaging plane from scans of the same patient taken at different times-thus potentially reducing the misdiagnosis rate when cross-sectional images are interpreted.
Use of the Bethe equation for inner-shell ionization by electron impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc
2016-05-14
We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, L{sub 3}-subshell ionization cross sections for Xe, and M-shell ionization cross sections for three elements. The validity (or otherwise) of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections andmore » available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti [in Electron Impact Ionization, edited by T. D. Märk and G. H. Dunn, (Springer-Verlag, Vienna, 1985), Chap. 7, pp. 232–276]. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used.« less
Xiang, Xinran; Suo, Hongbo; Xu, Chao; Hu, Yi
2018-05-01
Chitosan-mesoporous silica SBA-15 hybrid nanomaterials (CTS-SBA-15) were synthesized by means of carboxyl functionalized ionic liquids as the coupling agent. The as-prepared CTS-SBA-15 support was characterized by TEM, FTIR, TG and nitrogen adsorption-desorption techniques. Porcine pancreas lipase (PPL) was then bound to the hybrid nanomaterials by using the cross-linking reagent glutaraldehyde (GA). Further, the parameters like cross-linking concentration, time and ratio of supports to enzyme were optimized. The property of immobilized lipase were tested in detail by enzyme activity assays. The results indicated that the hybrid nanomaterials could form three-dimensional (3D) structure with homogeneous mesoporous structures and immobilized PPL revealed excellent enzymatic performance. Copyright © 2018 Elsevier B.V. All rights reserved.
Cross-Sectional Analysis of Longitudinal Mediation Processes.
O'Laughlin, Kristine D; Martin, Monica J; Ferrer, Emilio
2018-01-01
Statistical mediation analysis can help to identify and explain the mechanisms behind psychological processes. Examining a set of variables for mediation effects is a ubiquitous process in the social sciences literature; however, despite evidence suggesting that cross-sectional data can misrepresent the mediation of longitudinal processes, cross-sectional analyses continue to be used in this manner. Alternative longitudinal mediation models, including those rooted in a structural equation modeling framework (cross-lagged panel, latent growth curve, and latent difference score models) are currently available and may provide a better representation of mediation processes for longitudinal data. The purpose of this paper is twofold: first, we provide a comparison of cross-sectional and longitudinal mediation models; second, we advocate using models to evaluate mediation effects that capture the temporal sequence of the process under study. Two separate empirical examples are presented to illustrate differences in the conclusions drawn from cross-sectional and longitudinal mediation analyses. Findings from these examples yielded substantial differences in interpretations between the cross-sectional and longitudinal mediation models considered here. Based on these observations, researchers should use caution when attempting to use cross-sectional data in place of longitudinal data for mediation analyses.
Gianecini, Ricardo; Oviedo, Claudia; Guantay, Cristina; Piccoli, Laura; Stafforini, Graciela; Galarza, Patricia
2015-12-16
Penicillinase-producing Neisseria gonorroheae (PPNG) was first isolated in 1976. PPNG strains carrying bla TEM-1 and bla TEM-135 gene have been described in different countries. Recently, a novel bla TEM-220 allele was detected in PPNG isolates carrying Toronto/Rio plasmid. The prevalence and characteristics of TEM-220 strains worldwide are unknown, and therefore, it needs to be studied. The purpose of this study was to detect bla TEM-220 gene in PPNG strains possessing Toronto/Rio plasmid over a period of ten years in Argentina, and to evaluate the proportion of isolates producing non-TEM-220 containing the T539C substitution in the bla TEM allele. One hundred and fifty one PPNG isolates carrying Toronto/Rio plasmid were studied between 2002 and 2011. A mismatch amplification mutation assay (MAMA) PCR was used to identify the T539C substitution in the bla TEM allele and a MAMA-PCR protocol was developed to detect the G547A substitution in the bla TEM-220. The reference agar dilution method of the Clinical and Laboratory Standard Institute (CLSI) was used for susceptibility testing to five β-lactams antibiotics, ciprofloxacin, tetracycline and azithromycin. In all TEM-220-producing isolates, the whole bla TEM gene was sequenced and the isolates were typed using N. gonorroheae multiantigen sequence typing (NG-MAST). MAMA PCR successfully identified the G547A substitution in the bla TEM-220 allele. The proportion of isolates that possessed the bla TEM-220 allele was 2.6 %, and 93.2 % MAMA TEM-220 PCR-negative isolates showed the T539C substitution in the bla TEM gene. No differences in the susceptibility to five beta-lactam antibiotics tested were observed in PPNG isolates TEM-220-producing and PPNG isolates carrying the T539C substitution in the bla TEM gene. All TEM-220 isolates were indistinguishable by NG-MAST. This is the first study which shows the prevalence of bla TEM-220 in N. gonorrhoeae isolates carrying Toronto/Rio plasmid in Argentina. Although the bla TEM-220 allele does not appear to be associated with an extended spectrum beta-lactamase (ESBL) phenotype of resistance, a single nucleotide polymorphism added to the bla TEM-220 or bla TEM containing the T539C substitution could lead to the emergence of ESBL. Thus, it is imperative to investigate in surveillance programs, not only the plasmid type in PPNG isolates and the bla TEM allele associated, but phenotypical characteristics and geographical distribution of isolates.
Single- and double-photoionization cross sections of atomic nitrogen from threshold to 31 A
NASA Technical Reports Server (NTRS)
Samson, James A. R.; Angel, G. C.
1990-01-01
The relative photoionization cross section of atomic nitrogen for the production of singly and doubly charged ions has been measured from 44.3 to 275 A and from 520 to 852 A. The results have been made absolute by normalization to one-half of the molecular nitrogen cross section at short wavelengths. The smoothed atomic nitrogen cross sections sigma can be accurately represented, at short wavelengths, by the equation sigma(Mb) = 36,700 x (E exp-2.3) as a function of the photon energy E (eV), thereby allowing the cross sections to be extrapolated to the nitrogen K edge at 31 A.
Analysis of the effectiveness of various cross-sections in large-span post-tensioned ceilings
NASA Astrophysics Data System (ADS)
Bednarz, K.
2018-03-01
The correct construction of large span, slim post-tensioned concrete slabs is conditioned by an appropriate cross-section selection. It is generally accepted that the thinnest slab can be constructed using the full cross-section as the largest compression stress storage. However, completely different cross-sections may help to overcome large spans. The paper presents the results of the computational analysis of several types of cross-sections (full, with internal relieving inserts and ribbed) in the application to a post-tensioned slab with a span of 15.0m. Based on the results presented, appropriate conclusions were drawn.
Calculation of the Coulomb Fission Cross Sections for Pb-Pb and Bi-Pb Interactions at 158 A GeV
NASA Technical Reports Server (NTRS)
Poyser, William J.; Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.
2002-01-01
The Weizsacker-Williams (WW) method of virtual quanta is used to make approximate cross section calculations for peripheral relativistic heavy-ion collisions. We calculated the Coulomb fission cross sections for projectile ions of Pb-208 and Bi-209 with energies of 158 A GeV interacting with a Pb-208 target. We also calculated the electromagnetic absorption cross section for Pb-208 ion interacting as described. For comparison we use both the full WW method and a standard approximate WW method. The approximate WW method in larger cross sections compared to the more accurate full WW method.
Lidar cross-sections of soot fractal aggregates: Assessment of equivalent-sphere models
NASA Astrophysics Data System (ADS)
Ceolato, Romain; Gaudfrin, Florian; Pujol, Olivier; Riviere, Nicolas; Berg, Matthew J.; Sorensen, Christopher M.
2018-06-01
This work assesses the ability of equivalent-sphere models to reproduce the optical properties of soot aggregates relevant for lidar remote sensing, i.e. the backscattering and extinction cross sections. Lidar cross-sections are computed with a spectral discrete dipole approximation model over the visible-to-infrared (400-5000 nm) spectrum and compared with equivalent-sphere approximations. It is shown that the equivalent-sphere approximation, applied to fractal aggregates, has a limited ability to calculate such cross-sections well. The approximation should thus be used with caution for the computation of broadband lidar cross-sections, especially backscattering, at small and intermediate wavelengths (e.g. UV to visible).
Gniadkowski, Marek; Schneider, Ines; Jungwirth, Renate; Hryniewicz, Waleria; Bauernfeind, Adolf
1998-01-01
Twelve ceftazidime-resistant isolates of the family Enterobacteriaceae (11 Klebsiella pneumoniae isolates and 1 Escherichia coli isolate) were collected in 1995 from three Polish hospitals located in different cities. All were identified as producers of extended-spectrum β-lactamases (ESBLs). Detailed analysis of their β-lactamase contents revealed that six of them expressed SHV-5-like ESBLs. The remaining six were found to produce three different TEM enzymes, each characterized by a pI value of 6.0 and specified by new combinations of amino acid substitutions. The amino acid substitutions compared to the TEM-1 β-lactamase sequence were Gly238Ser, Glu240Lys, and Thr265Met for TEM-47; Leu21Phe, Gly238Ser, Glu240Lys, and Thr265Met for TEM-48; and Leu21Phe, Gly238Ser, Glu240Lys, Thr265Met, and Ser268Gly for TEM-49. The new TEM β-lactamases, TEM-47, TEM-48, and TEM-49, belong to a subfamily of TEM-2-related enzymes. Genes coding for TEM-47 and TEM-49 could have originated from the TEM-48-encoding sequence by various single genetic events. The new TEM derivatives probably document the already advanced microevolution of ESBLs ongoing in Polish hospitals, in a majority of which no monitoring of ESBL producers was performed before 1996. PMID:9517925
Electron capture cross sections by O+ from atomic He
NASA Astrophysics Data System (ADS)
Joseph, Dwayne C.; Saha, Bidhan C.
2009-11-01
The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections
Single-level resonance parameters fit nuclear cross-sections
NASA Technical Reports Server (NTRS)
Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.
1970-01-01
Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.
Size determination of Acipenser ruthenus spermatozoa in different types of electron microscopy.
Psenicka, Martin; Tesarová, Martina; Tesitel, Jakub; Nebesárová, Jana
2010-07-01
In this study three types of scanning electron microscopes were used for the size determination of spermatozoa of sterlet Acipenser ruthenus - high vacuum scanning electron microscope (SEM, JEOL 6300), environmental scanning electron microscope (ESEM, Quanta 200 FEG), field emission scanning electron microscope (FESEM, JEOL 7401F) with cryoattachment Alto 2500 (Gatan) and transmission electron microscope (TEM, JEOL 1010). The use of particular microscopes was tied with different specimen preparation techniques. The aim of this study was to evaluate to what degree the type of used electron microscope can influence the size of different parts of spermatozoa. For high vacuum SEM the specimen was prepared using two slightly different procedures. After chemical fixation with 2.5% glutaraldehyde in 0.1M phosphate buffer and post-fixation by 1% osmium tetroxide, the specimen was dehydrated by acetone series and dried either by critical point method or by means of t-butylalcohol. For ESEM fresh, unfixed material was used, which was dropped on microscopic copper grids. In FESEM working in cryo-mode the specimen was observed in a frozen state. Ultrathin sections from chemically fixed and Epon embedded specimens were prepared for TEM observation. Distinct parts of sterlet spermatozoa were measured in each microscope and the data obtained was statistically processed. Results confirmed that the classical chemical procedure of specimen preparation for SEM including critical point drying method led to a significant contraction of all measured values, which could deviate up to 30% in comparison with values measured on the fresh chemically untreated specimen in ESEM. Surprisingly sperm dimensions determinated on ultrathin sections by TEM are comparable with values obtained in ESEM or FESEM. Copyright 2010 Elsevier Ltd. All rights reserved.
[Effect of resin infiltration on microhardness of artificial caries lesions].
Liu, Yonghong; Deng, Hui; Tang, Longmei; Zhang, Zhiyong
2015-12-01
To compare the changes of enamel surface and cross-sectional microhardness of artificial caries immediately and after the twice demineralization through coating resin infiltration, fluoride varnish and fissure sealant. A total of forty bovine lower incisors enamel samples with artificial caries lesions by the demineralization liquid were used in the experiment. The specimens were then randomly divided into four groups as group A(resin infiltration), B(fluoride varnish), C (fissure sealant), D(control), 10 specimens in each group. The samples were sectioned vertically into two halves through the centre. One half of each sample the surface and cross-sectional microhardness was measured. The other half was put into demineralization liquid for 14 days, then the surface and cross-sectional microhardness was measured again. The cross section morphology of the samples was observed by scanning electron microscope. The surface of enamel had the highest microhardness value, and with the increase of cross- sectional depth, the microhardness value declined gradually. Variance analysis showed that the difference was statistically significant in the cross-section of different depth among the four groups(P<0.05). The microhardness values of the surface and the cross- section at 40 µm of each group in immediate measure showed the values were significantly higher in group A, B and C than in group D. There was no significant difference in the microhardness value of cross-section at 80 µm between group A[(324 ± 17) kg/mm(2)] and group C[(316 ± 20) kg/mm(2)], but they were significantly higher than group D. There was no significant difference between group B[(303 ± 13) kg/mm(2)] and group D[(294 ± 23) kg/mm(2)]. At 120 µm level, the microhardness value of group A was significantly higher than those of the other three groups. After the twice demineralization, the enamel surface microhardness value of the specimens was the same as the first measurement. In the cross-section at 40 µm level, the microhardness value was equal to the value of cross-section at 80 µm level of the first measurement. In the cross- section at 80 µm and 120 µm level, the microhardness value of group A was significantly higher than those of the other three groups. Resin infiltration can effectively strengthen microhardness of enamel surface and cross-section of different depth of artificial caries.
Examination of the 22C radius determination with interaction cross sections
NASA Astrophysics Data System (ADS)
Nagahisa, T.; Horiuchi, W.
2018-05-01
A nuclear radius of 22C is investigated with the total reaction cross sections at medium- to high-incident energies in order to resolve the radius puzzle in which two recent interaction cross-section measurements using 1H and 12C targets show the quite different radii. The cross sections of 22C are calculated consistently for these target nuclei within a reliable microscopic framework, the Glauber theory. To describe appropriately such a reaction involving a spatially extended nucleus, the multiple scattering processes within the Glauber theory are fully taken into account, that is, the multidimensional integration in the Glauber amplitude is evaluated using a Monte Carlo technique without recourse to the optical-limit approximation. We discuss the sensitivity of the spatially extended halo tail to the total reaction cross sections. The root-mean-square matter radius obtained in this study is consistent with that extracted from the recent cross-section measurement on 12C target. We show that the simultaneous reproduction of the two recent measured cross sections is not feasible within this framework.
Measurement of the Am 242 m neutron-induced reaction cross sections
Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...
2017-02-17
The neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known 242mAm(n,f) cross section. The (n,γ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 tomore » set the absolute scale, and it agreed well with the (n,f) cross section from thermal energy to 1 keV. Lastly, the average absolute capture-to-fission ratio was determined from thermal energy to E n = 0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19% from the ENDF/B-VII.1 evaluation.« less
Mixed Legendre moments and discrete scattering cross sections for anisotropy representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calloo, A.; Vidal, J. F.; Le Tellier, R.
2012-07-01
This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, whichmore » better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)« less
Thermoelastic damping in microrings with circular cross-section
NASA Astrophysics Data System (ADS)
Li, Pu; Fang, Yuming; Zhang, Jianrun
2016-01-01
Predicting thermoelastic damping (TED) is crucial in the design of high Q micro-resonators. Microrings are often critical components in many micro-resonators. Some analytical models for TED in microrings have already been developed in the past. However, the previous works are limited to the microrings with rectangular cross-section. The temperature field in the rectangular cross-section is one-dimensional. This paper deals with TED in the microrings with circular cross-section. The temperature field in the circular cross-section is two-dimensional. This paper first presents a 2-D analytical model for TED in the microrings with circular cross-section. Only the two-dimensional heat conduction in the circular cross-section is considered. The heat conduction along the circumferential direction of the microring is neglected in the 2-D model. Then the 2-D model has been extended to cover the circumferential heat conduction, and a 3-D analytical model for TED has been developed. The analytical results from the present 2-D and 3-D models show good agreement with the numerical results of FEM model. The limitations of the present 2-D analytical model are assessed.
Measurement of 208Pb(n ,γ )209Pb Maxwellian averaged neutron capture cross section
NASA Astrophysics Data System (ADS)
Weissman, L.; Tessler, M.; Arenshtam, A.; Eliyahu, I.; Halfon, S.; Guerrero, C.; Kaizer, B.; Kijel, D.; Kreisel, A.; Palchan, T.; Paul, M.; Perry, A.; Schimel, G.; Silverman, I.; Shor, A.; Tamim, N.; Vaintraub, S.
2017-07-01
The doubly magic 208Pb nucleus is a bottleneck at the termination of the s -process path due to its very low neutron capture cross section. This cross section is also important for the decomposition of s , r processes and U/Th radiogenic decay contributions to the Pb-Bi solar abundances. The 208Pb(n ,γ )209Pb cross section was measured at the Soreq Applied Research Accelerator Facility Phase I using an intense quasi-Maxwellian neutron source produced by irradiation of the liquid-lithium target with a 1.5-mA continuous-wave proton beam at 1.94 MeV. The cross section was measured by counting the β activity from the irradiated lead target. The measurement allowed us to evaluate the Maxwellian averaged cross section (MACS) at 30 keV obtaining a value of 0.33(2) mb. This has been compared with the earlier activation and time-of-flight measurements found in the literature. The MACS cross-sectional value of the 63Cu(n ,γ )64Cu reaction was determined in the same experiment and is compared to a recent published value.
NASA Technical Reports Server (NTRS)
Klann, P. G.; Lantz, E.; Mayo, W. T.
1973-01-01
A series of central core and core-reflector interface sample replacement experiments for 16 materials performed in the NASA heavy-metal-reflected, fast spectrum critical assembly (NCA) were analyzed in four and 13 groups using the GAM 2 cross-section set. The individual worths obtained by TDSN and DOT multidimensional transport theory calculations showed significant differences from the experimental results. These were attributed to cross-section uncertainties in the GAM 2 cross sections. Simultaneous analysis of the measured and calculated sample worths permitted separation of the worths into capture and scattering components which systematically provided fast spectrum averaged correction factors to the magnitudes of the GAM 2 absorption and scattering cross sections. Several Los Alamos clean critical assemblies containing Oy, Ta, and Mo as well as one of the NCA compositions were reanalyzed using the corrected cross sections. In all cases the eigenvalues were significantly improved and were recomputed to within 1 percent of the experimental eigenvalue. A comparable procedure may be used for ENDF cross sections when these are available.
NASA Astrophysics Data System (ADS)
La Mantia, David; Kumara, Nuwan; Kayani, Asghar; Simon, Anna; Tanis, John
2016-05-01
Total cross sections for single and double capture, as well as the corresponding cross sections for capture resulting in the emission of an Ar K x ray, were measured. This work was performed at Western Michigan University with the use of the tandem Van de Graaff accelerator. A 45 MeV beam of fully-stripped fluorine ions was collided with argon gas molecules in a differentially pumped cell. Surface barrier detectors were used to observe the charge changed projectiles and a Si(Li) x-ray detector, placed at 90o to the incident beam, were used to measure coincidences with Ar K x rays. The total capture cross sections are compared to previously measured cross sections in the existing literature. The coincidence cross sections, considerably smaller than the total cross sections, are found to be nearly equal for single and double capture in contrast to the total cross sections, which vary by about an order of magnitude. Possible reasons for this behavior are discussed. Supported in part by the NSF.
On the correlation of absorption cross-section with plasmonic color generation.
Rezaei, Soroosh Daqiqeh; Ho, Jinfa; Ng, Ray Jia Hong; Ramakrishna, Seeram; Yang, Joel K W
2017-10-30
Through numerical simulations, we investigate the correlation between the absorption cross-section and the color saturation of plasmonic nanostructures of varying density. Understanding this correlation, enables the prediction of an optimal nanostructure separation, or combinations of different nanostructure sizes for plasmonic color printing applications. Here, we use metal-insulator-metal (MIM) aluminum nanostructures that support gap-plasmons. Large absorption cross-sections were observed that exceed twelve times the physical cross-section of the nanostructure disks. We derive a set of equations to determine the optimal separation for a periodic array using the absorption cross-section of an individual structure to realize saturated colors. Using the optimum pitch and enabled by the large absorption cross-sections of our structures, we employ color mixing strategies to realize a wider color gamut. The simulated color gamut exceeds the sRGB gamut for some colors, and includes dark tones. Color mixing using structures with large absorption cross-sections is a practical approach to generate a broad range of colors, in comparison to fabricating structures with continuously varying sizes.
NASA Astrophysics Data System (ADS)
Kostensalo, Joel; Suhonen, Jouni; Zuber, K.
2018-03-01
Charged-current (anti)neutrino-40Ar cross sections for astrophysical neutrinos have been calculated. The initial and final nuclear states were calculated using the nuclear shell model. The folded solar-neutrino scattering cross section was found to be 1.78 (23 ) ×10-42cm2 , which is higher than what the previous papers have reported. The contributions from the 1- and 2- multipoles were found to be significant at supernova-neutrino energies, confirming the random-phase approximation (RPA) result of a previous study. The effects of neutrino flavor conversions in dense stellar matter (matter oscillations) were found to enhance the neutrino-scattering cross sections significantly for both the normal and inverted mass hierarchies. For the antineutrino scattering, only a small difference between the nonoscillating and inverted-hierarchy cross sections was found, while the normal-hierarchy cross section was 2-3 times larger than that of the nonoscillating cross section, depending on the adopted parametrization of the Fermi-Dirac distribution. This property of the supernova-antineutrino signal could probably be used to distinguish between the two hierarchies in megaton LAr detectors.
Electric current distribution of a multiwall carbon nanotube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li-Ying; Chang, Chia-Seng, E-mail: jasonc@phys.sinica.edu.tw; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
2016-07-15
The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by in situ measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT’s diameter is, the easier the electronic carriersmore » can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.« less
Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy.
Jaros, Josef; Petrov, Michal; Tesarova, Marketa; Hampl, Ales
2017-01-01
Cell culture methods have been developed in efforts to produce biologically relevant systems for developmental and disease modeling, and appropriate analytical tools are essential. Knowledge of ultrastructural characteristics represents the basis to reveal in situ the cellular morphology, cell-cell interactions, organelle distribution, niches in which cells reside, and many more. The traditional method for 3D visualization of ultrastructural components, serial sectioning using transmission electron microscopy (TEM), is very labor-intensive due to contentious TEM slice preparation and subsequent image processing of the whole collection. In this chapter, we present serial block-face scanning electron microscopy, together with complex methodology for spheroid formation, contrasting of cellular compartments, image processing, and 3D visualization. The described technique is effective for detailed morphological analysis of stem cell spheroids, organoids, as well as organotypic cell cultures.
[Design of cross-sectional anatomical model focused on drainage pathways of paranasal sinuses].
Zha, Y; Lv, W; Gao, Y L; Zhu, Z Z; Gao, Z Q
2018-05-01
Objective: To design and produce cross-sectional anatomical models of paranasal sinuses for the purpose of demonstrating drainage pathways of each nasal sinus for the young doctors. Method: We reconstructed the three-dimensional model of sinuses area based on CT scan data, and divided it into 5 thick cross-sectional anatomy models by 4 coronal plane,which cross middle points of agger nasi cell, ethmoid bulla, posterior ethmoid sinuses and sphenoid sinus respectively. Then a 3D printerwas used to make anatomical cross-sectional anatomical models. Result: Successfully produced a digital 3D printing cross-sectional models of paranasal sinuses. Sinus drainage pathways were observed on the models. Conclusion: The cross-sectional anatomical models made by us can exactly and intuitively demonstrate the ostia of each sinus cell and they can help the young doctors to understand and master the key anatomies and relationships which are important to the endoscopic sinus surgery. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.
Determining the partial photoionization cross-sections of ethyl radicals.
FitzPatrick, B L; Maienschein-Cline, M; Butler, L J; Lee, S-H; Lin, J J
2007-12-13
Using a crossed laser-molecular beam scattering apparatus, these experiments photodissociate ethyl chloride at 193 nm and detect the Cl and ethyl products, resolved by their center-of-mass recoil velocities, with vacuum ultraviolet photoionization. The data determine the relative partial cross-sections for the photoionization of ethyl radicals to form C2H5+, C2H4+, and C2H3+ at 12.1 and 13.8 eV. The data also determine the internal energy distribution of the ethyl radical prior to photoionization, so we can assess the internal energy dependence of the photoionization cross-sections. The results show that the C2H4++H and C2H3++H2 dissociative photoionization cross-sections strongly depend on the photoionization energy. Calibrating the ethyl radical partial photoionization cross-sections relative to the bandwidth-averaged photoionization cross-section of Cl atoms near 13.8 eV allows us to use these data in conjunction with literature estimates of the Cl atom photoionization cross-sections to put the present bandwidth-averaged cross-sections on an absolute scale. The resulting bandwidth-averaged cross-section for the photoionization of ethyl radicals to C2H5+ near 13.8 eV is 8+/-2 Mb. Comparison of our 12.1 eV data with high-resolution ethyl radical photoionization spectra allows us to roughly put the high-resolution spectrum on the same absolute scale. Thus, one obtains the photoionization cross-section of ethyl radicals to C2H5+ from threshold to 12.1 eV. The data show that the onset of the C2H4++H dissociative photoionization channel is above 12.1 eV; this result offers a simple way to determine whether the signal observed in photoionization experiments on complex mixtures is due to ethyl radicals. We discuss an application of the results for resolving the product branching in the O+allyl bimolecular reaction.
NASA Astrophysics Data System (ADS)
Yang, Hongliang; Zhao, Hao; Xing, Zhongwen
2017-11-01
For the demand of energy conservation and security improvement, high-strength steel (HSS) is increasingly being used to produce safety related automotive components. However, cross-section distortion occurs easily in bending of HSS tube with rectangular section (RS), affecting the forming precision. HSS BR1500HS tube by rotary draw bending is taken as the study object and a description method of cross-section distortion is proposed in this paper. The influence on cross-section precision of geometric parameters including cross-section position, thickness of tube, bend radius etc. are studied by experiment. Besides, simulation of the rotary draw bending of HSS tube with rectangular section by ABAQUS are carried out and compared to the experiment. The results by simulation agree well with the experiment and show that the cross-section is approximately trapezoidal after distortion; the maximum of distortion exists at 45 ∼ 60° of the bending direction; and the absolute and relative distortion values increase with the decreasing of tube thickness or bending radius. Therefore, the results can provide a reference for the design of geometric parameters of HSS tube with rectangular section in rotary draw bending.
Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, Paul
2001-01-01
This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be incorporated in a complex numerical model of ground-water flow in the Death Valley region.
Lyra, Carina Maria; Delai, Débora; Pereira, Keila Cristina Rausch; Pereira, Guy Martins; Pasternak Júnior, Bráulio; Oliveira, César Augusto Pereira
2015-10-01
The aim of this study was to evaluate the mesiobuccal root of maxillary first molars, according to the root canal configuration, prevalence and location of isthmuses at 3 and 6 mm from the apex, comparing cone-beam computed tomography (CBCT) analysis and cross sectioning of roots by thirds. Images of the mesiobuccal root of 100 maxillary first molars were acquired by CBCT and then roots were cross-sectioned into two parts, starting at 3 mm from the apex. Data were recorded and analyzed according to Weine's classification for root canal configuration, and Hsu and Kim's classification for isthmuses. In the analysis of CBCT images, 8 root canals were classified as type I, 57 as type II, 35 as type III. In the cross-sectioning technique, 19 root canals were classified as type I, 60 as type II, 20 as type III and 1 as type IV. The classification of isthmuses was predominantly type I in both CBCT and cross-sectioning evaluations for sections at 3 mm from the apex, while for sections at 6 mm from the apex, the classification of isthmuses was predominantly types V and II in CBCT and cross-sectioning evaluations, respectively. The cross-sectioning technique showed better results in detection of the internal morphology of root canals than CBCT scanning.
Generation of Collapsed Cross Sections for Hatch 1 Cycles 1-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian J
2012-11-01
Under NRC JCN V6361, Oak Ridge National Laboratory (ORNL) was tasked to develop and run SCALE/TRITON models for generation of collapsed few-group cross sections and to convert the cross sections to PMAXS format using the GENPMAXS conversion utility for use in PARCS/PATHS simulations of Hatch Unit 1, cycles 1-3. This letter report documents the final models used to produce the Hatch collapsed cross sections.
Bodies with noncircular cross sections and bank-to-turn missiles
NASA Technical Reports Server (NTRS)
Jackson, C. M., Jr.; Sawyer, W. C.
1992-01-01
A development status evaluation is presented for the aerodynamics of missile configurations with noncircular cross-sections and bank-to-turn maneuvering systems, giving attention to cases with elliptical and square cross-sections, as well as bodies with variable cross-sections. The assessment of bank-to-turn missile performance notes inherent stability/control problems. A summary and index are provided for aerodynamic data on monoplanar configurations, including those which incorporate airbreathing propulsion systems.
Measurement of the inclusive jet cross section at the CERN pp collider
NASA Astrophysics Data System (ADS)
Arnison, G.; Albrow, M. G.; Allkofer, O. C.; Astbury, A.; Aubert, B.; Bacci, C.; Batley, J. R.; Bauer, G.; Bettini, A.; Bézaguet, A.; Bock, R. K.; Bos, K.; Buckley, E.; Bunn, J.; Busetto, G.; Catz, P.; Cennini, P.; Centro, S.; Ceradini, F.; Ciapetti, G.; Cittolin, S.; Clarke, D.; Cline, D.; Cochet, C.; Colas, J.; Colas, P.; Corden, M.; Cox, G.; Dallman, D.; Dau, D.; Debeer, M.; Debrion, J. P.; Degiorgi, M.; della Negra, M.; Demoulin, M.; Denby, B.; Denegri, D.; Diciaccio, A.; Dobrzynski, L.; Dorenbosch, J.; Dowell, J. D.; Duchovni, E.; Edgecock, R.; Eggert, K.; Eisenhandler, E.; Ellis, N.; Erhard, P.; Faissner, H.; Fince Keeler, M.; Flynn, P.; Fontaine, G.; Frey, R.; Frühwirth, R.; Garvey, J.; Gee, D.; Geer, S.; Ghesquière, C.; Ghez, P.; Ghio, F.; Giacomelli, P.; Gibson, W. R.; Giraud-Héraud, Y.; Givernaud, A.; Gonidec, A.; Goodman, M.; Grassmann, H.; Grayer, G.; Guryn, W.; Hansl-Kozanecka, T.; Haynes, W.; Haywood, S. J.; Hoffmann, H.; Holthuizen, D. J.; Homer, R. J.; Homer, R. J.; Honma, A.; Jank, W.; Jimack, M.; Jorat, G.; Kalmus, P. I. P.; Karimäri, V.; Keeler, R.; Kenyon, I.; Kernan, A.; Kienzle, W.; Kinnunen, R.; Kozanecki, W.; Kroll, J.; Kryn, D.; Kyberd, P.; Lacava, F.; Laugier, J. P.; Lees, J. P.; Leuchs, R.; Levegrun, S.; Lévêque, A.; Levi, M.; Linglin, D.; Locci, E.; Long, K.; Markiewicz, T.; Markytan, M.; Martin, T.; Maurin, F.; McMahon, T.; Mendiburu, J.-P.; Meneguzzo, A.; Meyer, O.; Meyer, T.; Minard, M.-N.; Mohammadi, M.; Morgan, K.; Moricca, M.; Moser, H.; Mours, B.; Muller, Th.; Nandi, A.; Naumann, L.; Norton, A.; Paoluzi, L.; Pascoli, D.; Pauss, F.; Perault, C.; Piano Mortari, G.; Pietarinen, E.; Pigot, C.; Pimiä, M.; Pitman, D.; Placci, A.; Porte, J.-P.; Radermacher, E.; Ransdell, J.; Redelberger, T.; Reithler, H.; Revol, J. P.; Richman, J.; Rijssenbeek, M.; Rohlf, J.; Rossi, P.; Roberts, C.; Ruhm, W.; Rubbia, C.; Sajot, G.; Salvini, G.; Sass, J.; Sadoulet, B.; Samyn, D.; Savoy-Navarro, A.; Schinzel, D.; Schwartz, A.; Scott, W.; Scott, W.; Shah, T. P.; Sheer, I.; Siotis, I.; Smith, D.; Sobie, R.; Sphicas, P.; Strauss, J.; Streets, J.; Stubenrauch, C.; Summers, D.; Sumorok, K.; Szonczo, F.; Tao, C.; Ten Have, I.; Thompson, G.; Tscheslog, E.; Tuominiemi, J.; van Eijk, B.; Verecchia, P.; Vialle, J. P.; Virdee, T. S.; von der Schmitt, H.; von Schlippe, W.; Vrana, J.; Vuillemin, V.; Wahl, H. D.; Watkins, P.; Wilke, R.; Wilson, J.; Wingerter, I.; Wimpenny, S. J.; Wulz, C.-E.; Wyatt, T.; Yvert, M.; Zacharov, I.; Zaganidis, N.; Zanello, L.; Zotto, P.
1986-05-01
The inclusive jet cross section has been measured in the UA1 experiment at the CERN pp Collider at centre-of-mass energies √s = 546 GeV and √s = 630 eV. The cross sections are found to be consistent with QCD predictions, The observed change in the cross section with the centre-of-mass energy √s is accounted for in terms of xT scaling.
Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation
NASA Technical Reports Server (NTRS)
Norbury, John W.; Adamczyk, Anne; Dick, Frank
2008-01-01
Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.
Asymptotic form for the cross section for the Coulomb interacting rearrangement collisions
NASA Technical Reports Server (NTRS)
Omidvar, K.
1973-01-01
It is shown that in a rearrangement collision leading to the formation of the highly excited hydrogenlike states the cross section in all orders of the Born approximation behaves as 1/n sq, with n the principal quantum number, thus invalidating the Brinkman-Kramers approximation for large n. Similarly, in high energy inelastic electron-hydrogenlike atom collisions the exchange cross section for sufficiently large n dominates the direct excitation cross section.
Fe L-shell Excitation Cross Section Measurements on EBIT-I
NASA Astrophysics Data System (ADS)
Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.
2006-09-01
We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.
Higgs boson production at hadron colliders at N3LO in QCD
NASA Astrophysics Data System (ADS)
Mistlberger, Bernhard
2018-05-01
We present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all other quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross section at N3LO in perturbative QCD. Furthermore, our result is an analytic computation of a hadron collider cross section involving elliptic integrals. We derive numerical predictions for the Higgs boson cross section at the LHC. Previously this result was approximated by an expansion of the cross section around the production threshold of the Higgs boson and we compare our findings. Finally, we study the impact of our new result on the state of the art prediction for the Higgs boson cross section at the LHC.
Studies of electron-molecule collisions - Applications to e-H2O
NASA Technical Reports Server (NTRS)
Brescansin, L. M.; Lima, M. A. P.; Gibson, T. L.; Mckoy, V.; Huo, W. M.
1986-01-01
Elastic differential and momentum transfer cross sections for the elastic scattering of electrons by H2O are reported for collision energies from 2 to 20 eV. These fixed-nuclei static-exchange cross sections were obtained using the Schwinger variational approach. In these studies the exchange potential is directly evaluated and not approximated by local models. The calculated differential cross sections, obtained with a basis set expansion of the scattering wave function, agree well with available experimental data at intermediate and larger angles. As used here, the results cannot adequately describe the divergent cross sections at small angles. An interesting feature of the calculated cross sections, particularly at 15 and 20 eV, is their significant backward peaking. This peaking occurs in the experimentally inaccessible region beyond a scattering angle of 120 deg. The implication of this feature for the determination of momentum transfer cross sections is described.
Cross section data sets for electron collisions with H2, O2, CO, CO2, N2O and H2O
NASA Astrophysics Data System (ADS)
Anzai, K.; Kato, H.; Hoshino, M.; Tanaka, H.; Itikawa, Y.; Campbell, L.; Brunger, M. J.; Buckman, S. J.; Cho, H.; Blanco, F.; Garcia, G.; Limão-Vieira, P.; Ingólfsson, O.
2012-02-01
We review earlier cross section data sets for electron-collisions with H2, O2, CO, CO2, H2O and N2O, updated here by experimental results for their electronic states. Based on our recent measurements of differential cross sections for the electronic states of those molecules, integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis and then assessed against theory (BE f-scaling [Y.-K. Kim, J. Chem. Phys. 126, 064305 (2007)]). As they now represent benchmark electronic state cross sections, those ICSs for the above molecules are added into the original cross section sets taken from the data reviews for H2, O2, CO2 and H2O (the Itikawa group), and for CO and N2O (the Zecca group).
NASA Technical Reports Server (NTRS)
Zeitlin, C.; Heilbronn, L.; Miller, J.; Rademacher, S. E.; Borak, T.; Carter, T. R.; Frankel, K. A.; Schimmerling, W.; Stronach, C. E.; Chatterjee, A. (Principal Investigator)
1997-01-01
We have obtained charge-changing cross sections and partial cross sections for fragmentation of 1.05 GeV/nucleon Fe projectiles incident on H, C, Al, Cu, and Pb nuclei. The energy region covered by this experiment is critical for an understanding of galactic cosmic ray propagation and space radiation biophysics. Surviving primary beam particles and fragments with charges from 12 to 25 produced within a forward cone of half-angle 61 mrad were detected using a silicon detector telescope to identify their charge and the cross sections were calculated after correction of the measured yields for finite target thickness effects. The cross sections are compared to model calculations and to previous measurements. Cross sections for the production of fragments with even-numbered nuclear charges are seen to be enhanced in almost all cases.
Activation cross section and isomeric cross section ratios for the (n ,2 n ) reaction on 153Eu
NASA Astrophysics Data System (ADS)
Luo, Junhua; Jiang, Li; Li, Suyuan
2017-10-01
The 153Eu(n ,2 n ) m1,m2,g152Eu cross section was measured by means of the activation technique at three neutron energies in the range 13-15 MeV. The quasimonoenergetic neutron beam was formed via the 3H(d ,n ) 4He reaction, in the Pd-300 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The cross section of the population of the second high-spin (8-) isomeric state was measured along with the reaction cross section populating both the ground (3-) and the first isomeric state (0-). Cross sections were also evaluated theoretically using the numerical code TALYS-1.8, with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.
Progress on China nuclear data processing code system
NASA Astrophysics Data System (ADS)
Liu, Ping; Wu, Xiaofei; Ge, Zhigang; Li, Songyang; Wu, Haicheng; Wen, Lili; Wang, Wenming; Zhang, Huanyu
2017-09-01
China is developing the nuclear data processing code Ruler, which can be used for producing multi-group cross sections and related quantities from evaluated nuclear data in the ENDF format [1]. The Ruler includes modules for reconstructing cross sections in all energy range, generating Doppler-broadened cross sections for given temperature, producing effective self-shielded cross sections in unresolved energy range, calculating scattering cross sections in thermal energy range, generating group cross sections and matrices, preparing WIMS-D format data files for the reactor physics code WIMS-D [2]. Programming language of the Ruler is Fortran-90. The Ruler is tested for 32-bit computers with Windows-XP and Linux operating systems. The verification of Ruler has been performed by comparison with calculation results obtained by the NJOY99 [3] processing code. The validation of Ruler has been performed by using WIMSD5B code.
NASA Astrophysics Data System (ADS)
Verma, Pankaj; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby
2018-05-01
This article is focused on the calculation of electron-induced ionisation and total scattering cross sections by Boron, Aluminium and Gallium trihalide molecules in the intermediate energy domain. The computational formalism, spherical complex optical potential has been employed for the study of these two scattering cross sections. The ionisation cross section has been derived from the inelastic cross section using a semi-empirical method called complex scattering potential-ionisation contribution (CSP-ic) method. We have also calculated the ionisation cross section using the BEB theory with Hartree-Fock and density functional theory (DFT- ωB97XD) orbitals so that a comparison can be made with the cross sections predicted by CSP-ic method. For this theoretical study, we have also calculated polarisability and bond length of some targets which were not found in literature using DFT/B3LYP in Gaussian 09 software.
Medium modified two-body scattering amplitude from proton-nucleus total cross-sections
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.
2001-01-01
Recently (R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 145 (1998) 277; R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, NASA-TP-1998-208438), we have extracted nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. Here, we investigate the ratio of real to imaginary part of the two-body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate total proton-nucleus cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Knott, C. N.; Albergo, S.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Ferrando, P.; Fonte, R.; Greiner, L.; Guzik, T. G.; Insolia, A.; Jones, F. C.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Tuvé, C.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.
1996-01-01
This paper reports the elemental production cross sections for 17 projectile-energy combinations with energies between 338 and 894 MeV/nucleon interacting in a liquid hydrogen target. These results were obtained from two runs at the LBL Bevalac using projectiles ranging from 22Ne to 58Ni. Cross sections were measured for all fragment elements with charges greater than or equal to half the charge of the projectile. The results show that, over the energy and ion range investigated, the general decrease in cross section with decreasing fragment charge is strongly modified by the isospin of the projectile ion. Significant additional modifications of the cross sections due to the internal structure of the nucleus have also been seen. These include both pairing and shell effects. Differences in the cross sections due to the differing energies of the projectile are also considerable.