Sample records for cross sections important

  1. A comparison of total reaction cross section models used in particle and heavy ion transport codes

    NASA Astrophysics Data System (ADS)

    Sihver, Lembit; Lantz, M.; Takechi, M.; Kohama, A.; Ferrari, A.; Cerutti, F.; Sato, T.

    To be able to calculate the nucleon-nucleus and nucleus-nucleus total reaction cross sections with precision is very important for studies of basic nuclear properties, e.g. nuclear structure. This is also of importance for particle and heavy ion transport calculations because, in all particle and heavy ion transport codes, the probability function that a projectile particle will collide within a certain distance x in the matter depends on the total reaction cross sections. Furthermore, the total reaction cross sections will also scale the calculated partial fragmentation cross sections. It is therefore crucial that accurate total reaction cross section models are used in the transport calculations. In this paper, different models for calculating nucleon-nucleus and nucleus-nucleus total reaction cross sections are compared and discussed.

  2. New cross sections for H on H2 collisional transitions

    NASA Astrophysics Data System (ADS)

    Zou, Qianxia

    2011-12-01

    The cross section for H on H2 collisions is important for astrophysics as well as our understanding of the simple chemical systems. This is the simplest atom-molecule cross section. With a new H3 potential surface by Mielke et al., we have modified the ABC code by Skouteris, Castillo and Manolopoulos to calculate new cross sections. These cross sections are compared to previous cross section calculations.

  3. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE PAGES

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  4. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerby, Leslie M.; Mashnik, Stepan G.

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  5. How to Use Benchmark and Cross-section Studies to Improve Data Libraries and Models

    NASA Astrophysics Data System (ADS)

    Wagner, V.; Suchopár, M.; Vrzalová, J.; Chudoba, P.; Svoboda, O.; Tichý, P.; Krása, A.; Majerle, M.; Kugler, A.; Adam, J.; Baldin, A.; Furman, W.; Kadykov, M.; Solnyshkin, A.; Tsoupko-Sitnikov, S.; Tyutyunikov, S.; Vladimirovna, N.; Závorka, L.

    2016-06-01

    Improvements of the Monte Carlo transport codes and cross-section libraries are very important steps towards usage of the accelerator-driven transmutation systems. We have conducted a lot of benchmark experiments with different set-ups consisting of lead, natural uranium and moderator irradiated by relativistic protons and deuterons within framework of the collaboration “Energy and Transmutation of Radioactive Waste”. Unfortunately, the knowledge of the total or partial cross-sections of important reactions is insufficient. Due to this reason we have started extensive studies of different reaction cross-sections. We measure cross-sections of important neutron reactions by means of the quasi-monoenergetic neutron sources based on the cyclotrons at Nuclear Physics Institute in Řež and at The Svedberg Laboratory in Uppsala. Measurements of partial cross-sections of relativistic deuteron reactions were the second direction of our studies. The new results obtained during last years will be shown. Possible use of these data for improvement of libraries, models and benchmark studies will be discussed.

  6. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Blanco, F.; Brunger, M. J.

    2015-12-01

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°-90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

  7. Study of BenW (n = 1-12) clusters: An electron collision perspective

    NASA Astrophysics Data System (ADS)

    Modak, Paresh; Kaur, Jaspreet; Antony, Bobby

    2017-08-01

    This article explores electron scattering cross sections by Beryllium-Tungsten clusters (BenW). Beryllium and tungsten are important elements for plasma facing wall components, especially for the deuterium/tritium phase of ITER and in the recently installed JET. The present study focuses on different electron impact interactions in terms of elastic cross section (Qel), inelastic cross section (Qinel), ionization cross section (Qion), and momentum transfer cross section (Qmtcs) for the first twelve clusters belonging to the BenW family. It also predicts the evolution of the cross section with the size of the cluster. These cross sections are used as an input to model processes in plasma. The ionization cross section presented here is compared with the available reported data. This is the first comprehensive report on cross section data for all the above-mentioned scattering channels, to the best of our knowledge. Such broad analysis of cross section data gives vital insight into the study of local chemistry of electron interactions with BenW (n = 1-12) clusters in plasma.

  8. Influence of strut cross-section of stents on local hemodynamics in stented arteries

    NASA Astrophysics Data System (ADS)

    Jiang, Yongfei; Zhang, Jun; Zhao, Wanhua

    2016-05-01

    Stenting is a very effective treatment for stenotic vascular diseases, but vascular geometries altered by stent implantation may lead to flow disturbances which play an important role in the initiation and progression of restenosis, especially in the near wall in stented arterial regions. So stent designs have become one of the indispensable factors needed to be considered for reducing the flow disturbances. In this paper, the structural designs of strut cross-section are considered as an aspect of stent designs to be studied in details. Six virtual stents with different strut cross-section are designed for deployments in the same ideal arterial model. Computational fluid dynamics (CFD) methods are performed to study how the shape and the aspect ratio (AR) of strut cross-section modified the local hemodynamics in the stented segments. The results indicate that stents with different strut cross-sections have different influence on the hemodynamics. Stents with streamlined cross-sectional struts for circular arc or elliptical arc can significantly enhance wall shear stress (WSS) in the stented segments, and reduce the flow disturbances around stent struts. The performances of stents with streamlined cross-sectional struts are better than that of stents with non-streamlined cross-sectional struts for rectangle. The results also show that stents with a larger AR cross-section are more conductive to improve the blood flow. The present study provides an understanding of the flow physics in the vicinity of stent struts and indicates that the shape and AR of strut cross-section ought to be considered as important factors to minimize flow disturbance in stent designs.

  9. New Neutron Cross-Section Measurements at ORELA for Improved Nuclear Data Calculations

    NASA Astrophysics Data System (ADS)

    Guber, K. H.; Leal, L. C.; Sayer, R. O.; Koehler, P. E.; Valentine, T. E.; Derrien, H.; Harvey, J. A.

    2005-05-01

    Many older neutron cross-section evaluations from libraries such as ENDF/B-VI or JENDL-3.2 exhibit deficiencies or do not cover energy ranges that are important for criticality safety applications. These deficiencies may occur in the resolved and unresolved-resonance regions. Consequently, these evaluated data may not be adequate for nuclear criticality calculations where effects such as self-shielding, multiple scattering, or Doppler broadening are important. To support the Nuclear Criticality Predictability Program, neutron cross-section measurements have been initiated at the Oak Ridge Electron Linear Accelerator (ORELA). ORELA is the only high-power white neutron source with excellent time resolution still operating in the United States. It is ideally suited to measure fission, neutron total, and capture cross sections in the energy range from 1 eV to ˜600 keV, which is important for many nuclear criticality safety applications.

  10. Photoabsorption and photodissociation of molecules important in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Lee, L. C.

    1985-01-01

    The photoabsorption and photodissociation cross sections of several interstellar molecules and radicals in the 105 to 210 nm region were measured. The research results accomplished are briefly described. Photoabsorption cross sections of OD and CN, and photoabsorption and photodissociation of HCl, and photoabsorption and photodissociation cross sections of CH3OH are discussed.

  11. The Study of ( n, d) Reaction Cross Sections for New Evaluated Semi-Empirical Formula Using Optical Model

    NASA Astrophysics Data System (ADS)

    Bölükdemir, M. H.; Tel, E.; Okuducu, Ş.; Aydın, A.

    2009-12-01

    Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. The neutron scattering cross sections data have a critical importance on fusion reactor (and in the fusion-fission hybrid) reactors. So, the study of the systematic of ( n, d) etc., reaction cross sections is of great importance in the definition of the excitation function character for reaction taking place on various nuclei at energies up to 20 MeV. In this study, non-elastic cross-sections have been calculated by using optical model for ( n, d) reactions at 14-15 MeV energy. The excitation function character and reaction Q-values depending on the asymmetry term effect for the ( n, d) reaction have been investigated. New coefficients have been obtained and the semi-empirical formulas including optical model non-elastic effects by fitting two parameters for the ( n, d) reaction cross-sections have been suggested. The obtained cross-section formulas with new coefficients have been compared with the available experimental data and discussed.

  12. Cross Section Sensitivity and Propagated Errors in HZE Exposures

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Wilson, John W.; Blatnig, Steve R.; Qualls, Garry D.; Badavi, Francis F.; Cucinotta, Francis A.

    2005-01-01

    It has long been recognized that galactic cosmic rays are of such high energy that they tend to pass through available shielding materials resulting in exposure of astronauts and equipment within space vehicles and habitats. Any protection provided by shielding materials result not so much from stopping such particles but by changing their physical character in interaction with shielding material nuclei forming, hopefully, less dangerous species. Clearly, the fidelity of the nuclear cross-sections is essential to correct specification of shield design and sensitivity to cross-section error is important in guiding experimental validation of cross-section models and database. We examine the Boltzmann transport equation which is used to calculate dose equivalent during solar minimum, with units (cSv/yr), associated with various depths of shielding materials. The dose equivalent is a weighted sum of contributions from neutrons, protons, light ions, medium ions and heavy ions. We investigate the sensitivity of dose equivalent calculations due to errors in nuclear fragmentation cross-sections. We do this error analysis for all possible projectile-fragment combinations (14,365 such combinations) to estimate the sensitivity of the shielding calculations to errors in the nuclear fragmentation cross-sections. Numerical differentiation with respect to the cross-sections will be evaluated in a broad class of materials including polyethylene, aluminum and copper. We will identify the most important cross-sections for further experimental study and evaluate their impact on propagated errors in shielding estimates.

  13. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  14. Using 171,173Yb(d,p) to benchmark a surrogate reaction for neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatarik, R; Bersntein, L; Burke, J

    2008-08-08

    Neutron capture cross sections on unstable nuclei are important for many applications in nuclear structure and astrophysics. Measuring these cross sections directly is a major challenge and often impossible. An indirect approach for measuring these cross sections is the surrogate reaction method, which makes it possible to relate the desired cross section to a cross section of an alternate reaction that proceeds through the same compound nucleus. To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured with the goal to reproduce the known [1] neutron capture cross section ratiosmore » of these nuclei.« less

  15. One-jet inclusive cross section at order a(s)-cubed - Gluons only

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen D.; Kunszt, Zoltan; Soper, Davison E.

    1989-01-01

    A complete calculation of the hadron jet cross-section at one order beyond the Born approximation is performed for the simplified case in which there are only gluons. The general structure of the differences from the lowest-order cross-section are described. This step allows two important improvements in the understanding of the theoretical hadron jet cross-section: first, the cross section at this order displays explicit dependence on the jet cone size, so that explicit account can be taken of the differences in jet definitions employed by different experiments; second, the magnitude of the uncertainty of the theoretical cross-section due to the arbitrary choice of the factorization scale has been reduced by a factor of two to three.

  16. Effects of Nuclear Cross Sections at Different Energies on Space Radiation Exposure from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Li, Zi-Wei; Adams, James H., Jr.

    2007-01-01

    Space radiation from galactic cosmic rays (GCR) is a major hazard to space crews, especially in long duration human space explorations. For this reason, they will be protected by radiation shielding that fragments the GCR heavy ions. Here we investigate how sensitive the crew's radiation exposure is to nuclear fragmentation cross sections at different energies. We find that in deep space cross sections between about 0.2 and 1.2 GeV/u have the strongest effect on dose equivalent behind shielding in solar minimum GCR environments, and cross sections between about 0.6 and 1.7 GeV/u are the most important at solar maximum'. On the other hand, at the location of the International Space Station, cross sections at_higher -energies, between about 0.6 and 1.7 GeV /u at solar minimum and between about 1.7 and 3.4 GeV/u'at,solar maximum, are the most important This is. due-to the average geomagnetic cutoff for the ISS orbit. We also show the effect of uncertainties in the fragmentation cross sections on the elemental energy spectra behind shielding. These results help to focus the studies of fragmentation cross sections on the proper energy range in order to improve our predictions of crew exposures.

  17. Nucleon-Nucleon Total Cross Section

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2008-01-01

    The total proton-proton and neutron-proton cross sections currently used in the transport code HZETRN show significant disagreement with experiment in the GeV and EeV energy ranges. The GeV range is near the region of maximum cosmic ray intensity. It is therefore important to correct these cross sections, so that predictions of space radiation environments will be accurate. Parameterizations of nucleon-nucleon total cross sections are developed which are accurate over the entire energy range of the cosmic ray spectrum.

  18. Rayleigh scattering cross sections of combustion species at 266, 355, and 532 nm for thermometry applications.

    PubMed

    Sutton, Jeffrey A; Driscoll, James F

    2004-11-15

    Rayleigh scattering cross sections are measured for nine combustion species (Ar, N2, O2, CO2, CO, H2, H2O, CH4, and C3H8) at wavelengths of 266, 355, and 532 nm and at temperatures ranging from 295 to 1525 K. Experimental results show that, as laser wavelengths become shorter, polarization effects become important and the depolarization ratio of the combustion species must be accounted for in the calculation of the Rayleigh scattering cross section. Temperature effects on the scattering cross section are also measured. Only a small temperature dependence is measured for cross sections at 355 nm, resulting in a 2-8% increase in cross section at temperatures of 1500 K. This temperature dependence increases slightly for measurements at 266 nm, resulting in a 5-11% increase in cross sections at temperatures of 1450 K.

  19. Electron Impact Ionization Cross Sections in Rb and Cs.

    NASA Astrophysics Data System (ADS)

    Reddish, T. J.; Lukomski, M.; Sutton, S.; Kedzierski, W.; McConkey, J. W.; Bartschat, K.; Bartlett, P. L.; Stelbovics, A. T.; Bray, I.

    2006-05-01

    We present a new atom trapping technique for determining absolute, total ionisation cross sections (TICS) out of an excited atom. The novel feature of this method is in utilizing Doppler cooling of neutral atoms to determine ionisation cross sections. This fluorescence-monitoring experiment, which is a variant of the `trap loss' technique, has enabled us to obtain the experimental electron impact ionisation cross sections out of the Cs 6^2P3/2 excited state between 7 - 400 eV. New CCC, R-Matrix with Pseudo-States (RMPS), and Born approximation single ionisation cross sections (SICS) are also presented for both the ground and excited states of Cs and Rb, and compared with the available experimental data. The comparison of the results reveals the importance of the autoionisation and multiple ionisation contributions to the TICS. The autoionisation contribution appears to be substantial for ionisation out of the Cs 6^2P and Rb 5^2P excited states; ˜ 3-4 larger than the direct ionisation contribution predicted by CCC at ˜ 30-50 eV. This surprising result shows the importance of multi-electron processes in determining the ionisation cross sections of heavy alkali atoms.

  20. New Parameterization of Neutron Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Wilson, John W.; Cucinotta, Francis A.

    1997-01-01

    Recent parameterization of absorption cross sections for any system of charged ion collisions, including proton-nucleus collisions, is extended for neutron-nucleus collisions valid from approx. 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pairs (charged or uncharged). The parameters are associated with the physics of the problem. At lower energies, optical potential at the surface is important, and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  1. Is e+e- pair emission important in the determination of the 3He+4He S factor?

    NASA Astrophysics Data System (ADS)

    Snover, K. A.; Hurd, A. E.

    2003-05-01

    We show that the cross section for direct E0 pair emission is related to the cross section for direct E2 photon emission, and is a negligible contribution to the total capture cross section for 3He+4He→7Be. E0 resonance emission, E1 pair emission, and internal conversion are also negligible. Thus there cannot be significant contributions to the 3He+4He→7Be capture cross section at low energies from electromagnetic emission processes other than single photon emission.

  2. Sensitivity Analysis of Nuclide Importance to One-Group Neutron Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekimoto, Hiroshi; Nemoto, Atsushi; Yoshimura, Yoshikane

    The importance of nuclides is useful when investigating nuclide characteristics in a given neutron spectrum. However, it is derived using one-group microscopic cross sections, which may contain large errors or uncertainties. The sensitivity coefficient shows the effect of these errors or uncertainties on the importance.The equations for calculating sensitivity coefficients of importance to one-group nuclear constants are derived using the perturbation method. Numerical values are also evaluated for some important cases for fast and thermal reactor systems.Many characteristics of the sensitivity coefficients are derived from the derived equations and numerical results. The matrix of sensitivity coefficients seems diagonally dominant. However,more » it is not always satisfied in a detailed structure. The detailed structure of the matrix and the characteristics of coefficients are given.By using the obtained sensitivity coefficients, some demonstration calculations have been performed. The effects of error and uncertainty of nuclear data and of the change of one-group cross-section input caused by fuel design changes through the neutron spectrum are investigated. These calculations show that the sensitivity coefficient is useful when evaluating error or uncertainty of nuclide importance caused by the cross-section data error or uncertainty and when checking effectiveness of fuel cell or core design change for improving neutron economy.« less

  3. FY07 LDRD Final Report Neutron Capture Cross-Section Measurements at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, W; Agvaanluvsan, U; Wilk, P

    2008-02-08

    We have measured neutron capture cross sections intended to address defense science problems including mix and the Quantification of Margins and Uncertainties (QMU), and provide details about statistical decay of excited nuclei. A major part of this project included developing the ability to produce radioactive targets. The cross-section measurements were made using the white neutron source at the Los Alamos Neutron Science Center, the detector array called DANCE (The Detector for Advanced Neutron Capture Experiments) and targets important for astrophysics and stockpile stewardship. DANCE is at the leading edge of neutron capture physics and represents a major leap forward inmore » capability. The detector array was recently built with LDRD money. Our measurements are a significant part of the early results from the new experimental DANCE facility. Neutron capture reactions are important for basic nuclear science, including astrophysics and the statistics of the {gamma}-ray cascades, and for applied science, including stockpile science and technology. We were most interested in neutron capture with neutron energies in the range between 1 eV and a few hundred keV, with targets important to basic science, and the s-process in particular. Of particular interest were neutron capture cross-section measurements of rare isotopes, especially radioactive isotopes. A strong collaboration between universities and Los Alamos due to the Academic Alliance was in place at the start of our project. Our project gave Livermore leverage in focusing on Livermore interests. The Lawrence Livermore Laboratory did not have a resident expert in cross-section measurements; this project allowed us to develop this expertise. For many radionuclides, the cross sections for destruction, especially (n,{gamma}), are not well known, and there is no adequate model that describes neutron capture. The modeling problem is significant because, at low energies where capture reactions are important, the neutron reaction cross sections show resonance behavior or follow 1/v of the incident neutrons. In the case of odd-odd nuclei, the modeling problem is particularly difficult because degenerate states (rotational bands) present in even-even nuclei have separated in energy. Our work included interpretation of the {gamma}-ray spectra to compare with the Statistical Model and provides information on level density and statistical decay. Neutron capture cross sections are of programmatic interest to defense sciences because many elements were added to nuclear devices in order to determine various details of the nuclear detonation, including fission yields, fusion yields, and mix. Both product nuclei created by (n,2n) reactions and reactant nuclei are transmuted by neutron capture during the explosion. Very few of the (n,{gamma}) cross sections for reactions that create products measured by radiochemists have ever been experimentally determined; most are calculated by radiochemical equivalences. Our new experimentally measured capture cross sections directly impact our knowledge about the uncertainties in device performances, which enhances our capability of carrying out our stockpile stewardship program. Europium and gadolinium cross sections are important for both astrophysics and defense programs. Measurements made prior to this project on stable europium targets differ by 30-40%, which was considered to be significantly disparate. Of the gadolinium isotopes, {sup 151}Gd is important for stockpile stewardship, and {sup 153}Gd is of high interest to astrophysics, and nether of these (radioactive) gadolinium (n,{gamma}) cross sections have been measured. Additional stable gadolinium isotopes, including {sup 157,160}Gd are of interest to astrophysics. Historical measurements of gadolinium isotopes, including {sup 152,154}Gd, had disagreements similar to the 30-40% disagreements found in the historical europium data. Actinide capture cross section measurements are important for both Stockpile Stewardship and for nuclear forensics. We focused on the {sup 242m}Am(n,{gamma}) measurement, as there was no existing capture measurement for this isotope. The cross-section measurements (cross section vs. E{sub n}) were made at the Detector for Advanced Neutron Capture Experiments. DANCE is comprised of a highly segmented array of barium fluoride (BaF{sub 2}) crystals specifically designed for neutron capture-gamma measurements, using small radioactive targets (less than one milligram). A picture of half the array, along with a photo of one crystal, is shown in Fig. 1. DANCE provides the world's leading capability for measurements of neutron capture cross sections with radioactive targets. The DANCE is a 4{pi} calorimeter and uses the intense spallation neutron source the Lujan Center at the Los Alamos National Laboratory. The detector array consists of 159 barium fluoride crystals arranged in a sphere around the target.« less

  4. Temperature dependence of the HNO3 UV absorption cross sections

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  5. DBCC Software as Database for Collisional Cross-Sections

    NASA Astrophysics Data System (ADS)

    Moroz, Daniel; Moroz, Paul

    2014-10-01

    Interactions of species, such as atoms, radicals, molecules, electrons, and photons, in plasmas used for materials processing could be very complex, and many of them could be described in terms of collisional cross-sections. Researchers involved in plasma simulations must select reasonable cross-sections for collisional processes for implementing them into their simulation codes to be able to correctly simulate plasmas. However, collisional cross-section data are difficult to obtain, and, for some collisional processes, the cross-sections are still not known. Data on collisional cross-sections can be obtained from numerous sources including numerical calculations, experiments, journal articles, conference proceedings, scientific reports, various universities' websites, national labs and centers specifically devoted to collecting data on cross-sections. The cross-sections data received from different sources could be partial, corresponding to limited energy ranges, or could even not be in agreement. The DBCC software package was designed to help researchers in collecting, comparing, and selecting cross-sections, some of which could be constructed from others or chosen as defaults. This is important as different researchers may place trust in different cross-sections or in different sources. We will discuss the details of DBCC and demonstrate how it works and why it is beneficial to researchers working on plasma simulations.

  6. Positron induced scattering cross sections for hydrocarbons relevant to plasma

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Antony, Bobby

    2018-05-01

    This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.

  7. Study of electron impact inelastic scattering of chlorine molecule (Cl2)

    NASA Astrophysics Data System (ADS)

    Yadav, Hitesh; Vinodkumar, Minaxi; Limbachiya, Chetan; Vinodkumar, P. C.

    2018-02-01

    A theoretical study is carried out for electron interactions with the chlorine molecule (Cl2) for incident energies ranging from 0.01 to 5000 eV. This wide range of energy has allowed us to investigate a variety of processes and report data on symmetric excitation energies, dissociative electron attachment (DEA), total excitation cross sections, and ionization cross section (Q ion) along with total inelastic cross sections (Q inel). The present study is important since Cl2 is a prominent gas for plasma etching and its anionic atoms are important in the etching of semiconductor wafers. In order to compute the total inelastic cross sections, we have employed the ab initio R-matrix method (0.01 to 15 eV) together with the spherical complex optical potential method (∼15 to 5000 eV). The R-matrix calculations are performed using a close coupling method, and we have used DEA estimator via Quantemol-N to calculate the DEA fragmentation and cross sections. The present study finds overall good agreement with the available experimental data. Total excitation and inelastic cross sections of e-{{{Cl}}}2 scattering for a wide energy range (0.01 to 5 keV) are reported for the first time, to the best of our knowledge.

  8. Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - n_TOF

    NASA Astrophysics Data System (ADS)

    Diakaki, M.; Audouin, L.; Berthoumieux, E.; Calviani, M.; Colonna, N.; Dupont, E.; Duran, I.; Gunsing, F.; Leal-Cidoncha, E.; Le Naour, C.; Leong, L. S.; Mastromarco, M.; Paradela, C.; Tarrio, D.; Tassan-Got, L.; Aerts, G.; Altstadt, S.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Badurek, G.; Barbagallo, M.; Baumann, P.; Becares, V.; Becvar, F.; Belloni, F.; Berthier, B.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortes, G.; Cortes-Giraldo, M. A.; Cosentino, L.; Couture, A.; Cox, J.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dressler, R.; Dridi, W.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Finocchiaro, P.; Fraval, K.; Fujii, K.; Furman, W.; Ganesan, S.; Garcia, A. R.; Giubrone, G.; Gomez-Hornillos, M. B.; Goncalves, I. F.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gurusamy, P.; Haight, R.; Heil, M.; Heinitz, S.; Igashira, M.; Isaev, S.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Kaeppeler, F.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Kivel, N.; Kokkoris, M.; Konovalov, V.; Krticka, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Lederer, C.; Leeb, H.; Lo Meo, S.; Losito, R.; Lozano, M.; Manousos, A.; Marganiec, J.; Martinez, T.; Marrone, S.; Massimi, C.; Mastinu, P.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Moreau, C.; Mosconi, M.; Musumarra, A.; O'Brien, S.; Pancin, J.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perkowski, J.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, L.; Poch, A.; Pretel, C.; Praena, J.; Quesada, J.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rudolf, G.; Rubbia, C.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tavora, L.; Terlizzi, R.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Wallner, A.; Walter, S.; Ware, T.; Weigand, M.; Weiß, C.; Wiesher, M.; Wisshak, K.; Wright, T.; Zugec, P.

    2016-03-01

    The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n_TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards.

  9. Calculation of effective plutonium cross sections and check against the oscillation experiment CESAR-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaal, H.; Bernnat, W.

    1987-10-01

    For calculations of high-temperature gas-cooled reactors with low-enrichment fuel, it is important to know the plutonium cross sections accurately. Therefore, a calculational method was developed, by which the plutonium cross-section data of the ENDF/B-IV library can be examined. This method uses zero- and one-dimensional neutron transport calculations to collapse the basic data into one-group cross sections, which then can be compared with experimental values obtained from integral tests. For comparison the data from the critical experiment CESAR-II of the Centre d'Etudes Nucleaires, Cadarache, France, were utilized.

  10. Neutron capture cross sections of Kr

    NASA Astrophysics Data System (ADS)

    Fiebiger, Stefan; Baramsai, Bayarbadrakh; Couture, Aaron; Krtička, Milan; Mosby, Shea; Reifarth, René; O'Donnell, John; Rusev, Gencho; Ullmann, John; Weigand, Mario; Wolf, Clemens

    2018-01-01

    Neutron capture and β- -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL) using the Detector for Advanced Neutron Capture Experiments (DANCE). 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casperson, R. J.; Burke, J. T.; Hughes, R. O.

    Directly measuring (n,2n) cross sections on short-lived actinides presents a number of experimental challenges. The surrogate reaction technique is an experimental method for measuring cross sections on short-­lived isotopes, and it provides a unique solution for measuring (n,2n) cross sections. This technique involves measuring a charged-­particle reaction cross section, where the reaction populates the same compound nucleus as the reaction of interest. To perform these surrogate (n,2n) cross section measurements, a silicon telescope array has been placed along a beam line at the Texas A&M University Cyclotron Institute, which is surrounded by a large tank of gadolinium-doped liquid scintillator, whichmore » acts as a neutron detector. The combination of the charge-particle and neutron-detector arrays is referred to as NeutronSTARS. In the analysis procedure for calculating the (n,2n) cross section, the neutron detection efficiency and time structure plays an important role. Due to the lack of availability of isotropic, mono-energetic neutron sources, modeling is an important component in establishing this efficiency and time structure. This report describes the NeutronSTARS array, which was designed and commissioned during this project. It also describes the surrogate reaction technique, specifically referencing a 235U(n,2n) commissioning measurement that was fielded during the past year. Advanced multiplicity analysis techniques have been developed for this work, which should allow for efficient analysis of 241Pu(n,2n) and 239Pu(n,2n) cross section measurements« less

  12. [Design of cross-sectional anatomical model focused on drainage pathways of paranasal sinuses].

    PubMed

    Zha, Y; Lv, W; Gao, Y L; Zhu, Z Z; Gao, Z Q

    2018-05-01

    Objective: To design and produce cross-sectional anatomical models of paranasal sinuses for the purpose of demonstrating drainage pathways of each nasal sinus for the young doctors. Method: We reconstructed the three-dimensional model of sinuses area based on CT scan data, and divided it into 5 thick cross-sectional anatomy models by 4 coronal plane,which cross middle points of agger nasi cell, ethmoid bulla, posterior ethmoid sinuses and sphenoid sinus respectively. Then a 3D printerwas used to make anatomical cross-sectional anatomical models. Result: Successfully produced a digital 3D printing cross-sectional models of paranasal sinuses. Sinus drainage pathways were observed on the models. Conclusion: The cross-sectional anatomical models made by us can exactly and intuitively demonstrate the ostia of each sinus cell and they can help the young doctors to understand and master the key anatomies and relationships which are important to the endoscopic sinus surgery. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  13. Cross section and γ-ray spectra for U238(n,γ) measured with the DANCE detector array at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.

    2014-03-01

    Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.

  14. Fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems

    NASA Astrophysics Data System (ADS)

    Atta, Debasis; Basu, D. N.

    2014-12-01

    Existing data on near-barrier fusion excitation functions of medium and heavy nucleus-nucleus systems have been analyzed by using a simple diffused-barrier formula derived assuming the Gaussian shape of the barrier-height distributions. The fusion cross section is obtained by folding the Gaussian barrier distribution with the classical expression for the fusion cross section for a fixed barrier. The energy dependence of the fusion cross section, thus obtained, provides good description to the existing data on near-barrier fusion and capture excitation functions for medium and heavy nucleus-nucleus systems. The theoretical values for the parameters of the barrier distribution are estimated which can be used for fusion or capture cross-section predictions that are especially important for planning experiments for synthesizing new superheavy elements.

  15. Scaling Cross Sections for Ion-atom Impact Ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson

    2003-06-06

    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation,more » and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.« less

  16. Absolute Single Photoionization Cross Sections of Se^3+ For the Determination of Elemental Abundances in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Esteves, David; Sterling, Nicholas; Aguilar, Alex; Kilcoyne, A. L. David; Phaneuf, Ronald; Bilodeau, Rene; Red, Eddie; McLaughlin, Brendan; Norrington, Patrick; Balance, Connor

    2009-05-01

    Numerical simulations show that derived elemental abundances in astrophysical nebulae can be uncertain by factors of two or more due to atomic data uncertainties alone, and of these uncertainties, absolute photoionization cross sections are the most important. Absolute single photoionization cross sections for Se^3+ ions have been measured from 42 eV to 56 eV at the ALS using the merged beams photo-ion technique. Theoretical photoionization cross section calculations were also performed for these ions using the state-of-the-art fully relativistic Dirac R-matrix code (DARC). The calculations show encouraging agreement with the experimental measurements.

  17. Measurement of 208Pb(n ,γ )209Pb Maxwellian averaged neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Weissman, L.; Tessler, M.; Arenshtam, A.; Eliyahu, I.; Halfon, S.; Guerrero, C.; Kaizer, B.; Kijel, D.; Kreisel, A.; Palchan, T.; Paul, M.; Perry, A.; Schimel, G.; Silverman, I.; Shor, A.; Tamim, N.; Vaintraub, S.

    2017-07-01

    The doubly magic 208Pb nucleus is a bottleneck at the termination of the s -process path due to its very low neutron capture cross section. This cross section is also important for the decomposition of s , r processes and U/Th radiogenic decay contributions to the Pb-Bi solar abundances. The 208Pb(n ,γ )209Pb cross section was measured at the Soreq Applied Research Accelerator Facility Phase I using an intense quasi-Maxwellian neutron source produced by irradiation of the liquid-lithium target with a 1.5-mA continuous-wave proton beam at 1.94 MeV. The cross section was measured by counting the β activity from the irradiated lead target. The measurement allowed us to evaluate the Maxwellian averaged cross section (MACS) at 30 keV obtaining a value of 0.33(2) mb. This has been compared with the earlier activation and time-of-flight measurements found in the literature. The MACS cross-sectional value of the 63Cu(n ,γ )64Cu reaction was determined in the same experiment and is compared to a recent published value.

  18. Optical Model and Cross Section Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MIchael A. Pope

    Six early cores of the MASURCA R-Z program were modeled using ERANOS 2.1. These cores were designed such that their neutron spectra would be similar to that of an oxide-fueled sodium-cooled fast reactor, some containing enriched uranium and others containing depleted uranium and plutonium. Effects of modeling assumptions and solution methods both in ECCO lattice calculations and in BISTRO Sn flux solutions were evaluated using JEFF-3.1 cross-section libraries. Reactivity effects of differences between JEFF-3.1 and ENDF/B-VI.8 were also quantified using perturbation theory analysis. The most important nuclide with respect to reactivity differences between cross-section libraries was 23Na, primarily a resultmore » of differences in the angular dependence of elastic scattering which is more forward-peaked in ENDF/B-VI.8 than in JEFF-3.1. Differences in 23Na inelastic scattering cross-sections between libraries also generated significant differences in reactivity, more due to the differences in magnitude of the cross-sections than the angular dependence. The nuclide 238U was also found to be important with regard to reactivity differences between the two libraries mostly due to a large effect of inelastic scattering differences and two smaller effects of elastic scattering and fission cross-sections. In the cores which contained plutonium, 239Pu fission cross-section differences contributed significantly to the reactivity differences between libraries.« less

  20. Time-of-flight electron scattering from molecular hydrogen: Benchmark cross sections for excitation of the X 1Σg+→b 3Σu+ transition

    NASA Astrophysics Data System (ADS)

    Zawadzki, M.; Wright, R.; Dolmat, G.; Martin, M. F.; Hargreaves, L.; Fursa, D. V.; Zammit, M. C.; Scarlett, L. H.; Tapley, J. K.; Savage, J. S.; Bray, I.; Khakoo, M. A.

    2018-05-01

    The electron impact X 1Σg+→b 3Σu+ transition in molecular hydrogen is one of the most important dissociation pathways to forming atomic hydrogen atoms, and is of great importance in modeling astrophysical and industrial plasmas where molecular hydrogen is a substantial constituent. Recently, it has been found that the convergent close-coupling (CCC) cross sections of Zammit et al. [Phys. Rev. A 95, 022708 (2017), 10.1103/PhysRevA.95.022708] are up to a factor of 2 smaller than the currently recommended data. We have determined normalized differential cross sections for excitation of this transition from our experimental ratios of the inelastic to elastic scattering of electrons by molecular hydrogen using a transmission-free time-of-flight electron spectrometer, and find excellent agreement with the CCC calculations. Since there is already excellent agreement for the absolute elastic differential cross sections, we establish benchmark differential and integrated cross sections for the X 1Σg+→b 3Σu+ transition, with theory and experiment being essentially in complete agreement.

  1. Photoelectric absorption cross sections with variable abundances

    NASA Technical Reports Server (NTRS)

    Balucinska-Church, Monika; Mccammon, Dan

    1992-01-01

    Polynomial fit coefficients have been obtained for the energy dependences of the photoelectric absorption cross sections of 17 astrophysically important elements. These results allow the calculation of X-ray absorption in the energy range 0.03-10 keV in material with noncosmic abundances.

  2. Upper-limit charge exchange cross sections for mercury (plus) on molybdenum and cesium (plus) on aluminum

    NASA Technical Reports Server (NTRS)

    Dugan, J. V., Jr.

    1972-01-01

    Upper-limit charge exchange cross sections are calculated for Hg(+) on Mo and Cs(+) on Al. The cross sections are calculated from the polarization interaction at low ion energies (1 to 500 eV) and by assuming favorable curve crossings with a hard-core reaction radius at higher energies (500 eV to 10 keV). The cross sections for Hg(+) on Mo becomes greater than corresponding Hg Hg(+) resonance values at ion energies below 2 eV, whereas the Cs(+) Al values remain considerably lower than the Cs(+)Cs resonance value at all ion energies. It is also shown that charge exchange of slow Hg(+) with Mo may be important for spacecraft with electron bombardment thrusters.

  3. Measurement of the 33S(n,α) cross-section at n_TOF(CERN): Applications to BNCT

    PubMed Central

    Sabaté-Gilarte, Marta; Praena, Javier; Porras, Ignacio; Quesada, José Manuel; Mastinu, Pierfrancesco

    2016-01-01

    Aim The main purpose of this work is to present a new (n,α) cross-section measurement for a stable isotope of sulfur, 33S, in order to solve existing discrepancies. Background 33S has been studied as a cooperating target for Boron Neutron Capture Therapy (BNCT) because of its large (n,α) cross-section in the epithermal neutron energy range, the most suitable one for BNCT. Although the most important evaluated databases, such as ENDF, do not show any resonances in the cross-section, experimental measurements which provided data from 10 keV to 1 MeV showed that the lowest-lying and strongest resonance of 33S(n,α) cross-section occurs at 13.5 keV. Nevertheless, the set of resonance parameters that describe such resonance shows important discrepancies (more than a factor of 2) between them. Materials and methods A new measurement of the 33S(n,α)30Si reaction cross-section was proposed to the ISOLDE and Neutron Time-of-Flight Experiments Committee of CERN. It was performed at n_TOF(CERN) in 2012 using MicroMegas detectors. Results In this work, we will present a brief overview of the experiment as well as preliminary results of the data analysis in the neutron energy range from thermal to 100 keV. These results will be taken into account to calculate the kerma-fluence factors corresponding to 33S in addition to 10B and those of a standard four-component ICRU tissue. Conclusions MCNP simulations of the deposited dose, including our experimental data, shows an important kerma rate enhancement at the surface of the tissue, mainly due to the presence of 33S. PMID:26933393

  4. Measurement of the (33)S(n,α) cross-section at n_TOF(CERN): Applications to BNCT.

    PubMed

    Sabaté-Gilarte, Marta; Praena, Javier; Porras, Ignacio; Quesada, José Manuel; Mastinu, Pierfrancesco

    2016-01-01

    The main purpose of this work is to present a new (n,α) cross-section measurement for a stable isotope of sulfur, (33)S, in order to solve existing discrepancies. (33)S has been studied as a cooperating target for Boron Neutron Capture Therapy (BNCT) because of its large (n,α) cross-section in the epithermal neutron energy range, the most suitable one for BNCT. Although the most important evaluated databases, such as ENDF, do not show any resonances in the cross-section, experimental measurements which provided data from 10 keV to 1 MeV showed that the lowest-lying and strongest resonance of (33)S(n,α) cross-section occurs at 13.5 keV. Nevertheless, the set of resonance parameters that describe such resonance shows important discrepancies (more than a factor of 2) between them. A new measurement of the (33)S(n,α)(30)Si reaction cross-section was proposed to the ISOLDE and Neutron Time-of-Flight Experiments Committee of CERN. It was performed at n_TOF(CERN) in 2012 using MicroMegas detectors. In this work, we will present a brief overview of the experiment as well as preliminary results of the data analysis in the neutron energy range from thermal to 100 keV. These results will be taken into account to calculate the kerma-fluence factors corresponding to (33)S in addition to (10)B and those of a standard four-component ICRU tissue. MCNP simulations of the deposited dose, including our experimental data, shows an important kerma rate enhancement at the surface of the tissue, mainly due to the presence of (33)S.

  5. Proton Magnetic Form Factor from Existing Elastic e-p Cross Section Data

    NASA Astrophysics Data System (ADS)

    Ou, Longwu; Christy, Eric; Gilad, Shalev; Keppel, Cynthia; Schmookler, Barak; Wojtsekhowski, Bogdan

    2015-04-01

    The proton magnetic form factor GMp, in addition to being an important benchmark for all cross section measurements in hadron physics, provides critical information on proton structure. Extraction of GMp from e-p cross section data is complicated by two-photon exchange (TPE) effects, where available calculations still have large theoretical uncertainties. Studies of TPE contributions to e-p scattering have observed no nonlinear effects in Rosenbluth separations. Recent theoretical investigations show that the TPE correction goes to 0 when ɛ approaches 1, where ɛ is the virtual photon polarization parameter. In this talk, existing e-p elastic cross section data are reanalyzed by extrapolating the reduced cross section for ɛ approaching 1. Existing polarization transfer data, which is supposed to be relatively immune to TPE effects, are used to produce a ratio of electric and magnetic form factors. The extrapolated reduced cross section and polarization transfer ratio are then used to calculate GEp and GMp at different Q2 values.

  6. NASA-Lewis experiences with multigroup cross sections and shielding calculations

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    The nuclear reactor shield analysis procedures employed at NASA-Lewis are described. Emphasis is placed on the generation, use, and testing of multigroup cross section data. Although coupled neutron and gamma ray cross section sets are useful in two dimensional Sn transport calculations, much insight has been gained from examination of uncoupled calculations. These have led to experimental and analytic studies of areas deemed to be of first order importance to reactor shield calculations. A discussion is given of problems encountered in using multigroup cross sections in the resolved resonance energy range. The addition to ENDF files of calculated and/or measured neutron-energy-dependent capture gamma ray spectra for shielding calculations is questioned for the resonance region. Anomalies inherent in two dimensional Sn transport calculations which may overwhelm any cross section discrepancies are illustrated.

  7. Effects of target shape and reflection on laser radar cross sections.

    PubMed

    Steinvall, O

    2000-08-20

    Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.

  8. Improving nuclear data accuracy of 241Am and 237Np capture cross sections

    NASA Astrophysics Data System (ADS)

    Žerovnik, Gašper; Schillebeeckx, Peter; Cano-Ott, Daniel; Jandel, Marian; Hori, Jun-ichi; Kimura, Atsushi; Rossbach, Matthias; Letourneau, Alain; Noguere, Gilles; Leconte, Pierre; Sano, Tadafumi; Kellett, Mark A.; Iwamoto, Osamu; Ignatyuk, Anatoly V.; Cabellos, Oscar; Genreith, Christoph; Harada, Hideo

    2017-09-01

    In the framework of the OECD/NEA WPEC subgroup 41, ways to improve neutron induced capture cross sections for 241Am and 237Np are being sought. Decay data, energy dependent cross section data and neutron spectrum averaged data are important for that purpose and were investigated. New time-of-flight measurements were performed and analyzed, and considerable effort was put into development of methods for analysis of spectrum averaged data and re-analysis of existing experimental data.

  9. Differential Cross Sections for Proton-Proton Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.

    2009-01-01

    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.

  10. Thresholds and the rising pion inclusive cross section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.T.

    In the context of the hypothesis of the Pomeron-f identity, it is shown that the rising pion inclusive cross section can be explained over a wide range of energies as a series of threshold effects. Low-mass thresholds are seen to be important. In order to understand the contributions of high-mass thresholds (flavoring), a simple two-channel multiperipheral model is examined. The analysis sheds light on the relation between thresholds and Mueller-Regge couplings. In particular, it is seen that inclusive-, and total-cross-section threshold mechanisms may differ. A quantitative model based on this idea and utilizing previous total-cross-section fits is seen to agreemore » well with experiment.« less

  11. Compound-nuclear Reactions with Unstable Isotopes: Constraining Capture Cross Sections with Indirect Data and Theory

    NASA Astrophysics Data System (ADS)

    Escher, Jutta

    2016-09-01

    Cross sections for compound-nuclear reactions involving unstable targets are important for many applications, but can often not be measured directly. Several indirect methods have recently been proposed to determine neutron capture cross sections for unstable isotopes. These methods aim at constraining statistical calculations of capture cross sections with data obtained from the decay of the compound nucleus relevant to the desired reaction. Each method produces this compound nucleus in a different manner (via a light-ion reaction, a photon-induced reaction, or β decay) and requires additional ingredients to yield the sought-after cross section. This contribution focuses on the process of determining capture cross sections from inelastic scattering and transfer experiments. Specifically, theoretical descriptions of the (p,d) transfer reaction have been developed to complement recent measurements in the Zr-Y region. The procedure for obtaining constraints for unknown capture cross sections is illustrated. The main advantages and challenges of this approach are compared to those of the proposed alternatives. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Electroproduction of hyperons at low momentum transfer

    NASA Astrophysics Data System (ADS)

    Acha, Armando R.

    A high resolution study of the H(e,e'K+)Λ,Sigma 0 reaction was performed at Hall A, TJNAF as part of the hypernuclear experiment E94-107. One important ingredient to the measurement of the hypernuclear cross section is the elementary cross section for production of hyperons, Λ and Sigma0. This reaction was studied using a hydrogen (i.e. a proton) target. Data were taken at very low Q2 (˜0.07 (GeV/c) 2) and W˜2.2 GeV. Kaons were detected along the direction of q, the momentum transferred by the incident electron (thetaCM˜6°). In addition, there are few data available regarding electroproduction of hyperons at low Q2 and thetaCM and the available theoretical models differ significantly in this kinematical region of W. The measurement of the elementary cross section was performed by scaling the Monte Carlo cross section (MCEEP) with the experimental-to-simulated yield ratio. The Monte Carlo cross section includes an experimental fit and extrapolation from the existing data for electroproduction of hyperons. Moreover, the estimated transverse component of the electroproduction cross section of H(e,e'K+)Λ was compared to the different predictions of the theoretical models and exisiting data curves for photoproductions of hyperons. None of the models fully describe the cross-section results over the entire angular range. Furthermore, measurements of the Sigma 0/Λ production ratio were performed at theta CM˜6°, where data are not available. Finally, data for the measurements of the differential cross sections and the Sigma 0/Λ production were binned in Q2, W and thetaCM to understand the dependence on these variables. These results are not only a fundamental contribution to the hypernuclear spectroscopy studies but also an important experimental measurement to constrain existing theoretical models for the elementary reaction.

  13. A new compilation of experimental nuclear data for total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Lantz, Mattias; Sihver, L.

    The nucleon-nucleus and nucleus-nucleus total reaction cross sections are of importance in many different fields, both for a better theoretical understanding as well as for a number of applications, including space radiation dosimetry. We have performed a comprehensive literature study in order to find all available experimental data on total reaction cross sections, σR , and interaction cross sections, σI , for neutrons, protons, and all stable and exotic heavy ions. Excluded from the data base are measurements where the cross sections have been derived through model-dependent calculations from other kinds of measurements. The objective of the study is to identify where more measurements are needed in view of different applications, and to make the data easily available for model developers and experimentalists. We will present some examples from the study, which is in the stage of quality control of all the gathered data.

  14. Assessment of the MPACT Resonance Data Generation Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Williams, Mark L.

    Currently, heterogeneous models are being used to generate resonance self-shielded cross-section tables as a function of background cross sections for important nuclides such as 235U and 238U by performing the CENTRM (Continuous Energy Transport Model) slowing down calculation with the MOC (Method of Characteristics) spatial discretization and ESSM (Embedded Self-Shielding Method) calculations to obtain background cross sections. And then the resonance self-shielded cross section tables are converted into subgroup data which are to be used in estimating problem-dependent self-shielded cross sections in MPACT (Michigan Parallel Characteristics Transport Code). Although this procedure has been developed and thus resonance data have beenmore » generated and validated by benchmark calculations, assessment has never been performed to review if the resonance data are properly generated by the procedure and utilized in MPACT. This study focuses on assessing the procedure and a proper use in MPACT.« less

  15. Electron-impact Multiple-ionization Cross Sections for Atoms and Ions of Helium through Zinc

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Müller, A.; Savin, D. W.

    2017-12-01

    We compiled a set of electron-impact multiple-ionization (EIMI) cross section for astrophysically relevant ions. EIMIs can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there is a rapid change in the electron temperature or if there is a non-thermal electron energy distribution, such as a kappa distribution. Cross section for EIMI are needed in order to account for these processes in plasma modeling and for spectroscopic interpretation. Here, we describe our comparison of proposed semiempirical formulae to available experimental EIMI cross-section data. Based on this comparison, we interpolated and extrapolated fitting parameters to systems that have not yet been measured. A tabulation of the fit parameters is provided for 3466 EIMI cross sections and the associated Maxwellian plasma rate coefficients. We also highlight some outstanding issues that remain to be resolved.

  16. Total cross sections for ultracold neutrons scattered from gases

    DOE PAGES

    Seestrom, Susan Joyce; Adamek, Evan R.; Barlow, Dave; ...

    2017-01-30

    Here, we have followed up on our previous measurements of upscattering of ultracold neutrons (UCNs) from a series of gases by making measurements of total cross sections on the following gases hydrogen, ethane, methane, isobutene, n-butane, ethylene, water vapor, propane, neopentane, isopropyl alcohol, and 3He. The values of these cross sections are important for estimating the loss rate of trapped neutrons due to residual gas and are relevant to neutron lifetime measurements using UCNs. The effects of the UCN velocity and path-length distributions were accounted for in the analysis using a Monte Carlo transport code. Results are compared to ourmore » previous measurements and with the known absorption cross section for 3He scaled to our UCN energy. We find that the total cross sections for the hydrocarbon gases are reasonably described by a function linear in the number of hydrogen atoms in the molecule.« less

  17. Correlation between ultrasound imaging, cross-sectional anatomy, and histology of the brachial plexus: a review.

    PubMed

    van Geffen, Geert J; Moayeri, Nizar; Bruhn, Jörgen; Scheffer, Gert J; Chan, Vincent W; Groen, Gerbrand J

    2009-01-01

    The anatomy of the brachial plexus is complex. To facilitate the understanding of the ultrasound appearance of the brachial plexus, we present a review of important anatomic considerations. A detailed correlation of reconstructed, cross-sectional gross anatomy and histology with ultrasound sonoanatomy is provided.

  18. Commentary: Mediation Analysis, Causal Process, and Cross-Sectional Data

    ERIC Educational Resources Information Center

    Shrout, Patrick E.

    2011-01-01

    Maxwell, Cole, and Mitchell (2011) extended the work of Maxwell and Cole (2007), which raised important questions about whether mediation analyses based on cross-sectional data can shed light on longitudinal mediation process. The latest article considers longitudinal processes that can only be partially explained by an intervening variable, and…

  19. DOPPLER CALCULATIONS FOR LARGE FAST CERAMIC REACTORS--EFFECTS OF IMPROVED METHODS AND RECENT CROSS SECTION INFORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greebler, P.; Goldman, E.

    1962-12-19

    Doppler calculations for large fast ceramic reactors (FCR), using recent cross section information and improved methods, are described. Cross sections of U/sup 238/, Pu/sup 239/, and Pu/sup 210/ with fuel temperature variations needed for perturbation calculations of Doppler reactivity changes are tabulated as a function of potential scattering cross section per absorber isotope at energies below 400 kev. These may be used in Doppler calculations for anv fast reactor. Results of Doppler calculations on a large fast ceramic reactor are given to show the effects of the improved calculation methods and of recent cross secrion data on the calculated Dopplermore » coefficient. The updated methods and cross sections used yield a somewhat harder spectrum and accordingly a somewhat smaller Doppler coefficient for a given FCR core size and composition than calculated in earlier work, but they support the essential conclusion derived earlier that the Doppler effect provides an important safety advantage in a large FCR. 28 references. (auth)« less

  20. Transport calculations and sensitivity analyses for air-over-ground and air-over-seawater weapons environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, J.V. III; Bartine, D.E.; Mynatt, F.R.

    1976-01-01

    Two-dimensional neutron and secondary gamma-ray transport calculations and cross-section sensitivity analyses have been performed to determine the effects of varying source heights and cross sections on calculated doses. The air-over-ground calculations demonstrate the existence of an optimal height of burst for a specific ground range and indicate under what conditions they are conservative with respect to infinite air calculations. The air-over-seawater calculations showed the importance of hydrogen and chlorine in gamma production. Additional sensitivity analyses indicated the importance of water in the ground, the amount of reduction in ground thickness for calculational purposes, and the effect of the degree ofmore » Legendre angular expansion of the scattering cross-sections (P/sub l/) on the calculated dose.« less

  1. Electron-neutrino charged-current quasi-elastic scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Wolcott, Jeremy

    2014-03-01

    The electron-neutrino charged-current quasi-elastic (CCQE) cross-section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino CCQE cross-section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino CCQE cross-section, but to date there has been no precise experimental verification of these estimates at an energy scale appropriate to such experiments. We present the current status of a direct measurement of the electron neutrino CCQE differential cross-section as a function of the squared four-momentum transfer to the nucleus, Q2, in MINERvA. This talk will discuss event selection, background constraints, and the flux prediction used in the calculation.

  2. Differential collision cross-sections for atomic oxygen: Analysis of space flight instruments for solar terrestrial physics

    NASA Technical Reports Server (NTRS)

    Torr, Douglas G.

    1991-01-01

    A summary of the status of the Cross-section Facility at MSFC is presented. A facility was designed, fabricated, assembled, tested, and operated for measurement of differential scattering cross sections important to understand the induced environment for a vehicle (e.g., Space Station) in low earth orbit. A user's manual for the facility is also presented. The performance of the facility was evaluated and found to be satisfactory in all the essential areas. Differential scattering cross sections were measured and results for the scattering measurements are included. Input to the development of the Ultraviolet Imager Optical System is also discussed. Design, fabrication, and evaluation of UV filters using a four-layer aluminum base are reported.

  3. Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Foram M., E-mail: foram29@gmail.com; Joshipura, K. N., E-mail: knjoshipura22@gmail.com; Chaudhari, Asha S., E-mail: ashaschaudhari@gmail.com

    2016-05-06

    Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Q{sub ion} and the summed-electronic excitation cross section ΣQ{sub exc} in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incidentmore » electron energy along with available comparisons.« less

  4. Neutron capture cross section measurement of 151Sm at the CERN neutron time of flight facility (n_TOF).

    PubMed

    Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Becvár, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Cortina, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Duran, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Furman, W; Goncalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, A; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stephan, C; Tagliente, G; Tain, J; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wisshak, K

    2004-10-15

    The151Sm(n,gamma)152Sm cross section has been measured at the spallation neutron facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The new facility combines excellent resolution in neutron time-of-flight, low repetition rates, and an unsurpassed instantaneous luminosity, resulting in rather favorable signal/background ratios. The 151Sm cross section is of importance for characterizing neutron capture nucleosynthesis in asymptotic giant branch stars. At a thermal energy of kT=30 keV the Maxwellian averaged cross section of this unstable isotope (t(1/2)=93 yr) was determined to be 3100+/-160 mb, significantly larger than theoretical predictions.

  5. Measurement of excitation function of {sup nat}B(p,x){sup 7}Be nuclear reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditroi, F.; Fenyvesi, A.; Takacs, S.

    1994-12-31

    Boron of natural composition was irradiated to measure the cross section function of the {sup nat}B(p,x){sup 7}Be nuclear reaction. The reaction is very important from the point of view of Thin Layer Activation (TLA) technique to monitor the wear of boron containing superhard materials (e.g. BN). The aim was to determine the cross section of above reaction in the energy region used in wear measurements because practically there is no cross section data available below 10 MeV.

  6. Integral cross sections for electron impact excitation of the 1Σ+u and 1Πu electronic states in CO2

    NASA Astrophysics Data System (ADS)

    Kawahara, H.; Kato, H.; Hoshino, M.; Tanaka, H.; Campbell, L.; Brunger, M. J.

    2008-04-01

    We apply the method of Kim (2007 J. Chem. Phys. 126 064305) in order to derive integral cross sections for the 1Σ+u and 1Πu states of CO2, from our corresponding earlier differential cross section measurements (Green et al 2002 J. Phys. B: At. Mol. Opt. Phys. 35 567). The energy range of this work is 20 200 eV. In addition, the BEf-scaling approach is used to calculate integral cross sections for these same states, from their respective thresholds to 5000 eV. In general, good agreement is found between the experimental integral cross sections and those calculated within the BEf-scaling paradigm, over the entire common energy range. Finally, we employ our calculated integral cross sections to determine the electron energy transfer rates for these states, for a thermal electron energy distribution. Such transfer rates are in principle important for understanding the phenomena in atmospheres where CO2 is a dominant constituent, such as on Mars and Venus.

  7. Total Cross Sections as a Surrogate for Neutron Capture: An Opportunity to Accurately Constrain (n,γ) Cross Sections for Nuclides Beyond the Reach of Direct Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehler, Paul E.

    2014-03-05

    There are many (n,γ) cross sections of great interest to radiochemical diagnostics and to nuclear astrophysics which are beyond the reach of current measurement techniques, and likely to remain so for the foreseeable future. In contrast, total neutron cross sections currently are feasible for many of these nuclides and provide almost all the information needed to accurately calculate the (n,γ) cross sections via the nuclear statistical model (NSM). I demonstrate this for the case of 151Sm; NSM calculations constrained using average resonance parameters obtained from total cross section measurements made in 1975, are in excellent agreement with recent 151Sm (n,γ)more » measurements across a wide range of energy. Furthermore, I demonstrate through simulations that total cross section measurements can be made at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center for samples as small as 10μg. Samples of this size should be attainable for many nuclides of interest. Finally, I estimate that over half of the radionuclides identified ~20 years ago as having (n,γ) cross sections of importance to s-process nucleosynthesis studies (24/43) and radiochemical diagnostics (11/19), almost none of which have been measured, can be constrained using this technique.« less

  8. Supplier-induced demand: re-examining identification and misspecification in cross-sectional analysis.

    PubMed

    Peacock, Stuart J; Richardson, Jeffrey R J

    2007-09-01

    This paper re-examines criticisms of cross-sectional methods used to test for supplier-induced demand (SID) and re-evaluates the empirical evidence using data from Australian medical services. Cross-sectional studies of SID have been criticised on two grounds. First, and most important, the inclusion of the doctor supply in the demand equation leads to an identification problem. This criticism is shown to be invalid, as the doctor supply variable is stochastic and depends upon a variety of other variables including the desirability of the location. Second, cross-sectional studies of SID fail diagnostic tests and produce artefactual findings due to model misspecification. Contrary to this, the re-evaluation of cross-sectional Australian data indicate that demand equations that do not include the doctor supply are misspecified. Empirical evidence from the re-evaluation of Australian medical services data supports the notion of SID. Demand and supply equations are well specified and have very good explanatory power. The demand equation is identified and the desirability of a location is an important predictor of the doctor supply. Results show an average price elasticity of demand of 0.22 and an average elasticity of demand with respect to the doctor supply of 0.46, with the impact of SID becoming stronger as the doctor supply rises. The conclusion we draw from this paper is that two of the main criticisms of the empirical evidence supporting the SID hypothesis have been inappropriately levelled at the methods used. More importantly, SID provides a satisfactory, and robust, explanation of the empirical data on the demand for medical services in Australia.

  9. The Importance of Physical Fitness versus Physical Activity for Coronary Artery Disease Risk Factors: A Cross-Sectional Analysis.

    ERIC Educational Resources Information Center

    Young, Deborah Rohm; Steinhardt, Mary A.

    1993-01-01

    This cross-sectional study examined relationships among physical fitness, physical activity, and risk factors for coronary artery disease (CAD) in male police officers. Data from screenings and physical fitness assessments indicated physical activity must be sufficient to influence fitness before obtaining statistically significant risk-reducing…

  10. Ab initio study of charge transfer in B2+ low-energy collisions with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Turner, A. R.; Cooper, D. L.; Wang, J. G.; Stancil, P. C.

    2003-07-01

    Charge transfer processes due to collisions of ground state B2+(2s 2S) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with the existing experiments shows our results to be in good agreement. When E<80 eV/u, the differences between the current total MOCC cross sections with and without rotational coupling are small (<3%). Rotational coupling becomes more important with increasing energy: for collision energies E>400 eV/u, inclusion of rotational coupling increases the total cross section by 50% 80%, improving the agreement between the current calculations and experiments. For state-selective cross sections, rotational coupling induces mixing between different symmetries; however, its effect, especially at low collision energies, is not as important as had been suggested in previous work.

  11. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Chakraborty, A.; Combs, B.; Crider, B. P.; Downes, L.; Girgis, J.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-01

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  12. Calculated differential and double differential cross section of DT neutron induced reactions on natural chromium (Cr)

    NASA Astrophysics Data System (ADS)

    Rajput, Mayank; Vala, Sudhirsinh; Srinivasan, R.; Abhangi, M.; Subhash, P. V.; Pandey, B.; Rao, C. V. S.; Bora, D.

    2018-01-01

    Chromium is an important alloying element of stainless steel (SS) and SS is the main constituent of structural material proposed for fusion reactors. Energy and double differential cross section data will be required to estimate nuclear responses in the materials used in fusion reactors. There are no experimental data of energy and double differential cross section, available for neutron induced reactions on natural chromium at 14 MeV neutron energy. In this study, energy and double differential cross section data of (n,p) and (n,α) reactions for all the stable isotopes of chromium have been estimated, using appropriate nuclear models in TALYS code. The cross section data of stable isotopes are later converted into the energy and double differential cross section data of natural Cr using the isotopic abundance. The contribution from compound, pre-equilibrium and direct nuclear reaction to total reaction have also been calculated for 52,50Cr(n,p) and 52Cr(n,α). The calculation of energy differential cross section shows that most of emitted protons and alpha particles are of 3 and 8 MeV respectively. The calculated data is compared with the data from EXFOR data library and is found to be in good agreement.

  13. Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses.

    PubMed

    Lublinsky, S; Friedman, A; Kesler, A; Zur, D; Anconina, R; Shelef, I

    2016-03-01

    MRV is an important blood vessel imaging and diagnostic tool for the evaluation of stenosis, occlusions, or aneurysms. However, an accurate image-processing tool for vessel comparison is unavailable. The purpose of this study was to develop and test an automated technique for vessel cross-sectional analysis. An algorithm for vessel cross-sectional analysis was developed that included 7 main steps: 1) image registration, 2) masking, 3) segmentation, 4) skeletonization, 5) cross-sectional planes, 6) clustering, and 7) cross-sectional analysis. Phantom models were used to validate the technique. The method was also tested on a control subject and a patient with idiopathic intracranial hypertension (4 large sinuses tested: right and left transverse sinuses, superior sagittal sinus, and straight sinus). The cross-sectional area and shape measurements were evaluated before and after lumbar puncture in patients with idiopathic intracranial hypertension. The vessel-analysis algorithm had a high degree of stability with <3% of cross-sections manually corrected. All investigated principal cranial blood sinuses had a significant cross-sectional area increase after lumbar puncture (P ≤ .05). The average triangularity of the transverse sinuses was increased, and the mean circularity of the sinuses was decreased by 6% ± 12% after lumbar puncture. Comparison of phantom and real data showed that all computed errors were <1 voxel unit, which confirmed that the method provided a very accurate solution. In this article, we present a novel automated imaging method for cross-sectional vessels analysis. The method can provide an efficient quantitative detection of abnormalities in the dural sinuses. © 2016 by American Journal of Neuroradiology.

  14. Kinematic Modeling of Central Nepal: Thermochronometer Cooling Ages as a Constraint for Balanced Cross Sections

    NASA Astrophysics Data System (ADS)

    Olree, E.; Robinson, D. M.; McQuarrie, N.; Ghoshal, S.; Olsen, J.

    2016-12-01

    Using balanced cross sections, one can visualize a valid and admissible interpretation of the surface and subsurface data. Khanal (2014) and Cross (2014) produced two valid and admissible cross sections along the Marsyandi River in central Nepal. However, thermochronologic data adds another dimension that must be adhered to when producing valid and admissible balanced cross sections. Since the previous cross sections were produced, additional zircon-helium (ZHe) cooling ages along the Marsyandi River show ages of 1 Ma near the Main Central thrust in the hinterland to 4 Ma near the Main Boundary thrust closer to the foreland. This distribution of cooling ages requires recent uplift in the hinterland, which is not present in the cross sections. Although a restored version of the Khanal (2014) cross section is sequentially deformed using 2D Move, the kinematic sequence implied in the cross section is inconsistent with the ZHe age distribution. The hinterland dipping duplex proposed by Khanal would require cooling ages that are oldest near the Main Central thrust and young southwards toward the active ramp located 80 km north of the Main Frontal thrust. Instead, the 4 Ma age near the Main Boundary thrust and the increasingly younger ages to the north could be produced by either a foreland-dipping Lesser Himalayan duplex, which would keep active uplift in the north, or by translation of the hinterland dipping duplex southward over the ramp, moving the active thrust ramp northward. To address this problem, a new balanced cross section was produced using both new mapping through the region and the ZHe age distribution as additional constraints. The section was then restored and sequentially deformed in 2D Move. This study illustrates that multiple cross sections can be viable and admissible; however, they can still be incorrect. Thermochronology places additional constraints on the permissible geometries, and thus increases our ability to predict subsurface geometries. The next step of this project is to link the uplift and erosion implied by the kinematic sequence of the new cross section to the measured cooling history by importing the cross section kinematics into advection diffusion modeling software that predicts cooling ages.

  15. Generalization of the optical theorem for an arbitrary multipole in the presence of a transparent half-space

    NASA Astrophysics Data System (ADS)

    Eremin, Yu. A.; Sveshnikov, A. G.

    2017-07-01

    The optical theorem is generalized to the case of excitation of a local inhomogeneity introduced in a transparent substrate by a multipole of arbitrary order. It is shown that, to calculate the generalized extinction cross section, it is sufficient to calculate the derivatives of the scattered field at a single point by adding a constant and a definite integral. Apart from general scientific interest, the proposed generalization makes it possible to calculate the absorption cross section by subtracting the scattering cross section from the extinction cross section. The latter fact is important, because the scattered field in the far zone contains no Sommerfeld integrals. In addition, the proposed generalization allows one to test computer modules for the case where a lossless inhomogeneity is considered.

  16. Computer codes for checking, plotting and processing of neutron cross-section covariance data and their application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartori, E.; Roussin, R.W.

    This paper presents a brief review of computer codes concerned with checking, plotting, processing and using of covariances of neutron cross-section data. It concentrates on those available from the computer code information centers of the United States and the OECD/Nuclear Energy Agency. Emphasis will be placed also on codes using covariances for specific applications such as uncertainty analysis, data adjustment and data consistency analysis. Recent evaluations contain neutron cross section covariance information for all isotopes of major importance for technological applications of nuclear energy. It is therefore important that the available software tools needed for taking advantage of this informationmore » are widely known as hey permit the determination of better safety margins and allow the optimization of more economic, I designs of nuclear energy systems.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, John Leonard; Couture, Aaron Joseph; Koehler, Paul E.

    An accurate knowledge of the neutron capture cross section is important for many applications. Experimental measurements are important since theoretical calculations of capture have been notoriously difficult, with the ratio of measured to calculated cross sections often a factor of 2 or more in the 10 keV to 1 MeV region. However, a direct measurement of capture cannot be made on many interesting radioactive nuclides because of their short half-life or backgrounds caused by their nuclear decay. On the other hand, neutron transmission measurements of the total cross section are feasible for a wide range of radioactive nuclides since themore » detectors are far from the sample, and often are less sensitive to decay radiation. The parameters extracted from a total cross section measurement, which include the average resonance spacing, the neutron strength function, and the average total radiation width, (Γ γ), provide tight constraints on the calculation of the capture cross section, and when applied produce much more accurate results. These measurements can be made using the intense epithermal neutron flux at the Lujan Center on relatively small quantities of target material. It was the purpose of this project to investigate and develop the capability to make these measurements. A great deal of progress was made towards establishing this capability during 2016, including setting up the flight path and obtaining preliminary results, but more work remains to be done.« less

  18. Electron Impact Multiple Ionization Cross Sections for Solar Physics

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Savin, D. W.; Mueller, A.

    2017-12-01

    We have compiled a set of electron-impact multiple ionization (EIMI) cross sections for astrophysically relevant ions. EIMI can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there is a rapid change in the electron temperature, as in solar flares or in nanoflare coronal heating. EIMI is also likely to be significant when the electron energy distribution is non-thermal, such as if the electrons follow a kappa distribution. Cross sections for EIMI are needed in order to account for these processes in plasma modeling and for spectroscopic interpretation. Here, we describe our comparison of proposed semiempirical formulae to the available experimental EIMI cross section data. Based on this comparison, we have interpolated and extrapolated fitting parameters to systems that have not yet been measured. A tabulation of the fit parameters is provided for thousands of EIMI cross sections. We also highlight some outstanding issues that remain to be resolved.

  19. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less

  20. Measurements of the inclusive neutrino and antineutrino charged current cross sections in MINERvA using the low-ν flux method

    NASA Astrophysics Data System (ADS)

    Devan, J.; Ren, L.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tice, B. G.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Minerva Collaboration

    2016-12-01

    The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an in situ prediction of the shape of the flux as a function of neutrino energy from 2-50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy (ν ) have a nearly constant cross section as a function of incident neutrino energy. This measurement is the lowest energy application of the low-ν flux technique, the first time it has been used in the NuMI antineutrino beam configuration, and demonstrates that the technique is applicable to future neutrino beams operating at multi-GeV energies. The cross section measurements presented are the most precise measurements to date below 5 GeV.

  1. Measurements of the inclusive neutrino and antineutrino charged current cross sections in MINERvA using the low- ν flux method

    DOE PAGES

    Devan, J.

    2016-12-20

    The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an in situ prediction of the shape of the flux as a function of neutrino energy from 2–50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy (ν) have a nearly constant cross section as a function of incident neutrino energy. This measurement is the lowest energy application of the low-ν flux technique, the first timemore » it has been used in the NuMI antineutrino beam configuration, and demonstrates that the technique is applicable to future neutrino beams operating at multi-GeV energies. Lastly, the cross section measurements presented are the most precise measurements to date below 5 GeV.« less

  2. A new self-shielding method based on a detailed cross-section representation in the resolved energy domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saygin, H.; Hebert, A.

    The calculation of a dilution cross section {bar {sigma}}{sub e} is the most important step in the self-shielding formalism based on the equivalence principle. If a dilution cross section that accurately characterizes the physical situation can be calculated, it can then be used for calculating the effective resonance integrals and obtaining accurate self-shielded cross sections. A new technique for the calculation of equivalent cross sections based on the formalism of Riemann integration in the resolved energy domain is proposed. This new method is compared to the generalized Stamm`ler method, which is also based on an equivalence principle, for a two-regionmore » cylindrical cell and for a small pressurized water reactor assembly in two dimensions. The accuracy of each computing approach is obtained using reference results obtained from a fine-group slowing-down code named CESCOL. It is shown that the proposed method leads to slightly better performance than the generalized Stamm`ler approach.« less

  3. Description of alpha-nucleus interaction cross sections for cosmic ray shielding studies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1993-01-01

    Nuclear interactions of high-energy alpha particles with target nuclei important for cosmic ray studies are discussed. Models for elastic, quasi-elastic, and breakup reactions are presented and compared with experimental data. Energy-dependent interaction cross sections and secondary spectra are presented based on theoretical models and the limited experimental data base.

  4. Only Time Will Tell: Cross-Sectional Studies Offer No Solution to the Age-Brain-Cognition Triangle--Comment on Salthouse (2011)

    ERIC Educational Resources Information Center

    Raz, Naftali; Lindenberger, Ulman

    2011-01-01

    Salthouse (2011) critically reviewed cross-sectional and longitudinal relations among adult age, brain structure, and cognition (ABC) and identified problems in interpretation of the extant literature. His review, however, missed several important points. First, there is enough disparity among the measures of brain structure and cognitive…

  5. Total electron scattering cross sections of some important biomolecules at 0.2-6.0 keV energies

    NASA Astrophysics Data System (ADS)

    Gurung, Meera Devi; Ariyasinghe, W. M.

    2017-12-01

    The total electron scattering cross sections (TCS) of five nucleic bases (adenine, cytosine, guanine, thymine and uracil), phosphoric acid, three amino acids (glycine, lysine, and L-histidine), D-glucose, alpha-D-glucose, tetrahydropyran (THP), 3-hydroxytetrahydrofuran and furan have been determined in the energy range 0.2-6.0 keV using a simple model based on the effective atomic total electron scattering cross sections (EATCS). The reliability of the model is confirmed by comparing the determined TCS with the predictions of those by existing theoretical models.

  6. Target characterizations for a 14N(p,γ)15O cross section measurement

    NASA Astrophysics Data System (ADS)

    Gyürky, Gy.; Csik, A.; Mátyus, Zs.; Fülöp, Zs.; Halász, Z.; Kiss, G. G.; Szücs, T.; Wagner, L.

    2018-01-01

    The 14N(p,γ)15O reaction controls the rate of CNO cycle hydrogen burning in various astrophysical sites and it is therefore one of the most important reactions in nuclear astrophysics. An experimental program is in progress to measure the 14N(p,γ)15O cross section in a wide energy range using a novel approach. A crucial quantity for the cross section determination is the number of N atoms in the target. In this paper the results of different experiments used for N target characterization are presented.

  7. Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data.

  8. Electron Collisions in our Atmosphere — How the Microscopic Drives the Macroscopic

    NASA Astrophysics Data System (ADS)

    Buckman, S. J.; Brunger, M. J.; Campbell, L.; Jelisavcic, M.; Petrovic, Z. Lj.

    2005-05-01

    Recent measurements of low energy, absolute electron scattering cross sections for vibrational excitation of NO have been used to update the cross set used for modeling atmospheric auroral processes. These new cross sections, which highlight the role that intermediate negative ions (resonances) play at energies below 5 eV in mediating vibrational excitation, also indicate that electron-driven processes play an important role in the infrared (˜5 um) auroral emissions from the NO molecule.

  9. Measurement of the 242Pu neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration

    2015-10-01

    Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

  10. Molecular Structures and Momentum Transfer Cross Sections: The Influence of the Analyte Charge Distribution.

    PubMed

    Young, Meggie N; Bleiholder, Christian

    2017-04-01

    Structure elucidation by ion mobility spectrometry-mass spectrometry methods is based on the comparison of an experimentally measured momentum transfer cross-section to cross-sections calculated for model structures. Thus, it is imperative that the calculated cross-section must be accurate. However, it is not fully understood how important it is to accurately model the charge distribution of an analyte ion when calculating momentum transfer cross-sections. Here, we calculate and compare momentum transfer cross-sections for carbon clusters that differ in mass, charge state, and mode of charge distribution, and vary temperature and polarizability of the buffer gas. Our data indicate that the detailed distribution of the ion charge density is intimately linked to the contribution of glancing collisions to the momentum transfer cross-section. The data suggest that analyte ions with molecular mass ~3 kDa or momentum transfer cross-section 400-500 Å 2 would be significantly influenced by the charge distribution in nitrogen buffer gas. Our data further suggest that accurate structure elucidation on the basis of IMS-MS data measured in nitrogen buffer gas must account for the molecular charge distribution even for systems as large as C 960 (~12 kDa) when localized charges are present and/or measurements are conducted under cryogenic temperatures. Finally, our data underscore that accurate structure elucidation is unlikely if ion mobility data recorded in one buffer gas is converted into other buffer gases when electronic properties of the buffer gases differ. Graphical Abstract ᅟ.

  11. Natural Gas Imports and Exports. Third Quarter Report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none

    1999-10-01

    The second quarter 1997 Quarterly Report of Natural Gas Imports and Exports featured a Quarterly Focus report on cross-border natural gas trade between the United States and Mexico. This Quarterly Focus article is a follow-up to the 1997 report. This report revisits and updates the status of some of the pipeline projects discussed in 1997, and examines a number of other planned cross-border pipeline facilities which were proposed subsequent to our 1997 report. A few of the existing and proposed pipelines are bidirectional and thus have the capability of serving either Mexico, or the United States, depending on market conditionsmore » and gas supply availability. These new projects, if completed, would greatly enhance the pipeline infrastructure on the U.S.-Mexico border and would increase gas pipeline throughput capacity for cross-border trade by more than 1 billion cubic feet (Bcf) per day. The Quarterly Focus is comprised of five sections. Section I includes the introduction as well as a brief historic overview of U.S./Mexican natural gas trade; a discussion of Mexico's energy regulatory structure; and a review of trade agreements and a 1992 legislative change which allows for her cross-border gas trade in North America. Section II looks at initiatives that have been taken by the Mexican Government since 1995to open its energy markets to greater competition and privatization. Section III reviews Mexican gas demand forecasts and looks at future opportunities for U.S. gas producers to supplement Mexico's indigenous supplies in order to meet the anticipated rapid growth in demand. Section IV examines the U.S.-Mexico natural gas trade in recent years. It also looks specifically at monthly import and export volumes and prices and identifies short-term trends in this trade. Finally, Section V reviews the existing and planned cross-border gas pipeline infrastructure. The section also specifically describes six planned pipelines intended to expand this pipeline network and their planned in-service dates.« less

  12. A Protocol for Aging Anurans Using Skeletochronology

    USGS Publications Warehouse

    McCreary, Brome; Pearl, Christopher A.; Adams, Michael J.

    2008-01-01

    Age distribution information can be an important part of understanding the biology of any population. Age estimates collected from the annual growth rings found in tooth and bone cross sections, often referred to as Lines of Arrested Growth (LAGs), have been used in the study of various animals. In this manual, we describe in detail all necessary steps required to obtain estimates of age from anuran bone cross sections via skeletochronological assessment. We include comprehensive descriptions of how to fix and decalcify toe specimens (phalanges), process a phalange prior to embedding, embed the phalange in paraffin, section the phalange using a microtome, stain and mount the cross sections of the phalange and read the LAGs to obtain age estimates.

  13. Noble-gas-induced collisional broadening of the 3P12-3P32 transition of sodium measured by the trilevel-echo technique

    NASA Astrophysics Data System (ADS)

    Mossberg, T. W.; Whittaker, E.; Kachru, R.; Hartmann, S. R.

    1980-11-01

    A variant of the trilevel-echo effect is observed and utilized to measure the effective cross section for broadening of the 3P12-3P32 transition of sodium by the noble gases. The cross section measured here should be the same as the broadening cross section obtained from a direct measurement of the collisionally broadened 3P12-3P32 transition linewidth (if such a measurement were possible). The new echo, the "inverted-difference-frequency" (IDF) trilevel echo, is well suited to the study of transitions between excited states of the same parity. At 400 K the measured broadening cross sections are He 115(12) Å2, Ne 120(12) Å2, Ar 234(23) Å2, Kr 266(27) Å2, and Xe 311(31) Å2. With He as the perturber, the cross section for broadening of the 3P12-3P32 transition can be calculated from measured depolarization and fine-structure-changing collision cross sections. With the other perturbers, however, collisional phase changes appear to be important. An intuitive diagrammatic technique for the analysis of echoes is applied to the IDF trilevel echo.

  14. Recent Advances in Resonance Region Nuclear Data Measurements and Analyses for Supporting Nuclear Energy Applications

    NASA Astrophysics Data System (ADS)

    Dunn, Michael

    2008-10-01

    For over 30 years, the Oak Ridge National Laboratory (ORNL) has performed research and development to provide more accurate nuclear cross-section data in the resonance region. The ORNL Nuclear Data (ND) Program consists of four complementary areas of research: (1) cross-section measurements at the Oak Ridge Electron Linear Accelerator; (2) resonance analysis methods development with the SAMMY R-matrix analysis software; (3) cross-section evaluation development; and (4) cross-section processing methods development with the AMPX software system. The ND Program is tightly coupled with nuclear fuel cycle analyses and radiation transport methods development efforts at ORNL. Thus, nuclear data work is performed in concert with nuclear science and technology needs and requirements. Recent advances in each component of the ORNL ND Program have led to improvements in resonance region measurements, R-matrix analyses, cross-section evaluations, and processing capabilities that directly support radiation transport research and development. Of particular importance are the improvements in cross-section covariance data evaluation and processing capabilities. The benefit of these advances to nuclear science and technology research and development will be discussed during the symposium on Nuclear Physics Research Connections to Nuclear Energy.

  15. L2 Milestone: Neutron Capture Cross Sections from Surrogate (p, d) Measurements: Determination of the Unknown 87Y(n, g) Cross Section and Assessment of the Method Via the 90Zr(n, g) Benchmark Case: Theory Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escher, J. E.

    Cross sections for compound-nuclear reactions involving unstable targets are important for many applications, but can often not be measured directly. Here we describe a method for extracting cross sections for neutron-capture on unstable isotopes from indirect (surrogate) measurements. The surrogate reaction, which produces the compound nucleus of interest, has to be described and the decay of the nucleus has to be modeled. We outline the approach for one-neutron pickup and report on the determination of the 90Zr(n, γ ) reaction from surrogate 92Zr(p,d) data, which is compared to the directly-measured capture cross section and thus provides a benchmark for themore » method. We then apply the method to determine the 87Y(n, γ ) cross section, which has not been measured directly. The work was carried out in the context of an LLNL L2 Milestone. This report addresses the theory aspects of the milestone. A complementary document summarizes the experimental efforts [1].« less

  16. Interactions in hydrogen of relativistic neon to nickel projectiles: Total charge-changing cross sections

    NASA Astrophysics Data System (ADS)

    Chen, C.-X.; Albergo, S.; Caccia, Z.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Ferrando, P.; Fonte, R.; Greiner, L.; Guzik, T. G.; Insolia, A.; Jones, F. C.; Knott, C. N.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Tuvé, C.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.; Zhang, X.

    1994-06-01

    A liquid hydrogen target was used to study the nuclear fragmentation of beams of relativistic heavy ions, 22Ne to 58Ni, over an energy range 400 to 900 MeV/nucleon. The experiments were carried out at the Lawrence Berkeley Laboratory Bevalac HISS facility, using the charge-velocity-rigidity method to identify the charged fragments. Here we describe the general concept of the experiment and present total charge-changing cross sections obtained from 17 separate runs. These new measured cross sections display an energy dependence which follows semiempirical model predictions. The mass dependence of the cross sections behaves as predicted by optical models, but within the experimental energy range, the optical model parameters display a clear energy dependence. The isospin of the projectile nuclei also appears to be an important factor in the interaction process.

  17. Elastic electron scattering from the DNA bases cytosine and thymine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colyer, C. J.; Bellm, S. M.; Lohmann, B.

    2011-10-15

    Cross-section data for electron scattering from biologically relevant molecules are important for the modeling of energy deposition in living tissue. Relative elastic differential cross sections have been measured for cytosine and thymine using the crossed-beam method. These measurements have been performed for six discrete electron energies between 60 and 500 eV and for detection angles between 15 deg. and 130 deg. Calculations have been performed via the screen-corrected additivity rule method and are in good agreement with the present experiment.

  18. Statistical Model Analysis of (n,p) Cross Sections and Average Energy For Fission Neutron Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odsuren, M.; Khuukhenkhuu, G.

    2011-06-28

    Investigation of charged particle emission reaction cross sections for fast neutrons is important to both nuclear reactor technology and the understanding of nuclear reaction mechanisms. In particular, the study of (n,p) cross sections is necessary to estimate radiation damage due to hydrogen production, nuclear heating and transmutations in the structural materials of fission and fusion reactors. On the other hand, it is often necessary in practice to evaluate the neutron cross sections of the nuclides for which no experimental data are available.Because of this, we carried out the systematical analysis of known experimental (n,p) and (n,a) cross sections for fastmore » neutrons and observed a systematical regularity in the wide energy interval of 6-20 MeV and for broad mass range of target nuclei. To explain this effect using the compound, pre-equilibrium and direct reaction mechanisms some formulae were deduced. In this paper, in the framework of the statistical model known experimental (n,p) cross sections averaged over the thermal fission neutron spectrum of U-235 are analyzed. It was shown that the experimental data are satisfactorily described by the statistical model. Also, in the case of (n,p) cross sections the effective average neutron energy for fission spectrum of U-235 was found to be around 3 MeV.« less

  19. Determination of Important Nuclear Fragmentation Processes for Human Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2007-01-01

    We present a semi-analytical method to determine which partial cross sections of nuclear fragmentations most affect the shielded dose equivalent due to exposure to galactic cosmic rays. The cross sections thus determined will require more theoretical and/or experimental studies in order for us to better predict, reduce and mitigate the radiation exposure in human space explorations.

  20. Universal Parameterization of Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.

    1997-01-01

    This paper presents a simple universal parameterization of total reaction cross sections for any system of colliding nuclei that is valid for the entire energy range from a few AMeV to a few AGeV. The universal picture presented here treats proton-nucleus collision as a special case of nucleus-nucleus collision, where the projectile has charge and mass number of one. The parameters are associated with the physics of the collision system. In general terms, Coulomb interaction modifies cross sections at lower energies, and the effects of Pauli blocking are important at higher energies. The agreement between the calculated and experimental data is better than all earlier published results.

  1. Scaled plane-wave Born cross sections for atoms and molecules

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Brunger, M. J.; Campbell, L.; Kato, H.; Hoshino, M.; Rau, A. R. P.

    2016-04-01

    Integral cross sections for optically allowed electronic-state excitations of atoms and molecules by electron impact, by applying scaled plane-wave Born models, are reviewed. Over 40 years ago, Inokuti presented an influential review of charged-particle scattering, based on the theory pioneered by Bethe forty years earlier, which emphasized the importance of reliable cross-section data from low eV energies to high keV energies that are needed in many areas of radiation science with applications to astronomy, plasmas, and medicine. Yet, with a couple of possible exceptions, most computational methods in electron-atom scattering do not, in general, overlap each other's validity range in the region from threshold up to 300 eV and, in particular, in the intermediate region from 30 to 300 eV. This is even more so for electron-molecule scattering. In fact this entire energy range is of great importance and, to bridge the gap between the two regions of low and high energy, scaled plane-wave Born models were developed to provide reliable, comprehensive, and absolute integral cross sections, first for ionization by Kim and Rudd and then extended to optically allowed electronic-state excitation by Kim. These and other scaling models in a broad, general application to electron scattering from atoms and molecules, their theoretical basis, and their results for cross sections along with comparison to experimental measurements are reviewed. Where possible, these data are also compared to results from other computational approaches.

  2. Cross-Section Measurements of the Kr86(γ,n) Reaction to Probe the s-Process Branching at Kr85

    NASA Astrophysics Data System (ADS)

    Raut, R.; Tonchev, A. P.; Rusev, G.; Tornow, W.; Iliadis, C.; Lugaro, M.; Buntain, J.; Goriely, S.; Kelley, J. H.; Schwengner, R.; Banu, A.; Tsoneva, N.

    2013-09-01

    We have carried out photodisintegration cross-section measurements on Kr86 using monoenergetic photon beams ranging from the neutron separation energy, Sn=9.86MeV, to 13 MeV. We combine our experimental Kr86(γ,n)Kr85 cross section with results from our recent Kr86(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of Kr86. The new experimental information is used to predict the neutron capture cross section of Kr85, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise Kr85(n,γ)Kr86 cross section allows us to produce more precise predictions of the Kr86 abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the C13 neutron source burns convectively rather than radiatively, represent a possible solution for the highest Kr86∶Kr82 ratios observed in meteoritic stardust SiC grains.

  3. Cross-section measurements of the 86Kr(γ,n) reaction to probe the s-process branching at 85Kr.

    PubMed

    Raut, R; Tonchev, A P; Rusev, G; Tornow, W; Iliadis, C; Lugaro, M; Buntain, J; Goriely, S; Kelley, J H; Schwengner, R; Banu, A; Tsoneva, N

    2013-09-13

    We have carried out photodisintegration cross-section measurements on 86Kr using monoenergetic photon beams ranging from the neutron separation energy, S(n) = 9.86  MeV, to 13 MeV. We combine our experimental 86Kr(γ,n)85Kr cross section with results from our recent 86Kr(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of 86Kr. The new experimental information is used to predict the neutron capture cross section of 85Kr, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise 85Kr(n,γ)86Kr cross section allows us to produce more precise predictions of the 86Kr abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the 13C neutron source burns convectively rather than radiatively, represent a possible solution for the highest 86Kr:82Kr ratios observed in meteoritic stardust SiC grains.

  4. Neutron capture cross section of {sup 14}C of astrophysical interest studied by Coulomb breakup of {sup 15}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T.; Fukuda, N.; Aoi, N.

    2009-03-15

    The neutron capture reaction on {sup 14}C leading to the {sup 15}C ground state, which plays an important role in various nucleosynthesis processes, has been studied using the Coulomb breakup of {sup 15}C on a Pb target at 68 MeV/nucleon. The breakup cross section has been converted into the energy-dependent neutron capture cross section using the principle of detailed balance. The energy spectrum shows typical p-wave neutron capture characteristics, which is explained by the fact that the ground state of {sup 15}C possesses a strong single-particle s-wave component and a moderate-sized neutron halo structure. The capture cross section for themore » {sup 14}C(n,{gamma}){sup 15}C reaction derived from the present experiment has been found to be consistent with the most recent data, directly measured using a {sup 14}C target. This result assures the validity of the Coulomb breakup method in deriving the neutron capture cross section for neutron-rich nuclei.« less

  5. Measurement of the normalized 238U(n ,f )/235U(n ,f ) cross section ratio from threshold to 30 MeV with the NIFFTE fission Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Casperson, R. J.; Asner, D. M.; Baker, J.; Baker, R. G.; Barrett, J. S.; Bowden, N. S.; Brune, C.; Bundgaard, J.; Burgett, E.; Cebra, D. A.; Classen, T.; Cunningham, M.; Deaven, J.; Duke, D. L.; Ferguson, I.; Gearhart, J.; Geppert-Kleinrath, V.; Greife, U.; Grimes, S.; Guardincerri, E.; Hager, U.; Hagmann, C.; Heffner, M.; Hensle, D.; Hertel, N.; Higgins, D.; Hill, T.; Isenhower, L. D.; King, J.; Klay, J. L.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Loveland, W.; Lynch, M.; Lynn, W. S.; Magee, J. A.; Manning, B.; Massey, T. N.; McGrath, C.; Meharchand, R.; Mendenhall, M. P.; Montoya, L.; Pickle, N. T.; Qu, H.; Ruz, J.; Sangiorgio, S.; Schmitt, K. T.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tate, A. C.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D. E.; Towell, R. S.; Walsh, N.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.; Younes, W.; Niffte Collaboration

    2018-03-01

    The normalized 238U(n ,f )/235U(n ,f ) cross section ratio has been measured using the NIFFTE fission Time Projection Chamber (fissionTPC) from the reaction threshold to 30 MeV . The fissionTPC is a two-volume MICROMEGAS time projection chamber that allows for full three-dimensional reconstruction of fission-fragment ionization profiles from neutron-induced fission. The measurement was performed at the Los Alamos Neutron Science Center, where the neutron energy is determined from neutron time of-flight. The 238U(n ,f )/235U(n ,f ) ratio reported here is the first cross section measurement made with the fissionTPC, and will provide new experimental data for evaluation of the 238U(n ,f ) cross section, an important standard used in neutron-flux measurements. Use of a development target in this work prevented the determination of an absolute normalization, to be addressed in future measurements. Instead, the measured cross section ratio has been normalized to ENDF/B-VIII.β 5 at 14.5 MeV.

  6. Measurement of the 241Am neutron capture cross section at the n_TOF facility at CERN

    NASA Astrophysics Data System (ADS)

    Mendoza, E.; Cano-Ott, D.; Altstadt, S.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Balibrea, J.; Bécares, V.; Barbagallo, M.; Bečvář, F.; Belloni, F.; Berthier, B.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviño, F.; Calviani, M.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Dillmann, I.; Domingo-Pardo, C.; Durán, I.; Dzysiuk, N.; Eleftheriadis, C.; Fernández-Ordóñez, M.; Ferrari, A.; Fraval, K.; Furman, V.; Gómez-Hornillos, M. B.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Katabuchi, T.; Ketlerov, V.; Khryachkov, V.; Koehler, P.; Kokkoris, M.; Kroll, J.; Krtička, M.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Lerendegui-Marco, J.; Licata, M.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A. J. M.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Roman, F.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Versaci, R.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiss, C.; Wright, T.; Žugec, P.

    2017-09-01

    New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241Am(n,γ) cross section at the n_TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental and evaluated data published before. Our results also indicate that the 241Am(n,γ) cross section is underestimated in the present evaluated libraries between 20 eV and 2 keV by 25%, on average, and up to 35% for certain evaluations and energy ranges.

  7. Recent cross-section measurements of neutron-induced reactions of importance for background estimates in 0νββ searches

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Bhike, M.; Finch, S. W.; Krishichayan

    2017-09-01

    We report on cross-section measurements for the reactions 76Ge(n,2n)75Ge, 76Ge(n,n'γ)76Ge, 126,127,128Te(n,γ)127,129,131Te, and 136Xe(n,n'γ)136Xe in the neutron energy range between 0.5 MeV and 15 MeV.

  8. Correlation effects in elastic e-N2 scattering

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Lima, Marco A. P.; Gibson, Thomas L.; Mckoy, Vincent

    1987-01-01

    The Schwinger multichannel formulation has been applied to study the role of electron correlation in low-energy e-N2 scattering. For the five nonresonant partial-wave channels studied here, angular correlation is found to be much more important than radial correlation. The calculated total and differential cross sections agree well with experiment except for the differential cross sections at 1.5 eV.

  9. Effect of core polarizability on photoionization cross-section calculations.

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, R. C.

    1972-01-01

    Demonstration of the importance of core polarizability in a case where cancellation is only moderate, with suggestion of an improvement to the scaled Thomas-Fermi (STF) wave functions of Stewart and Rotenberg (1965). The inclusion of dipole polarizability of the core for argon is shown to substantially improve the agreement between the theoretical and experimental photoionization cross sections for the ground-state configuration.

  10. Proton-Proton Scattering at 105 Mev and 75 Mev

    DOE R&D Accomplishments Database

    Birge, R. W.; Kruse, U. E.; Ramsey, N. F.

    1951-01-31

    The scattering of protons by protons provides an important method for studying the nature of nuclear forces. Recent proton-proton scattering experiments at energies as high as thirty Mev{sup 1} have failed to show any appreciable contribution to the cross section from higher angular momentum states, but it is necessary to bring in tensor forces to explain the magnitude of the observed cross section.

  11. Charge transfer of O3+ ions with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-01-01

    Charge transfer processes due to collisions of ground state O3+(2s22p 2P) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with existing experimental and theoretical data shows our results to be in better agreement with the measurements than the previous calculations, although problems with some of the state-selective measurements are noted. Our calculations demonstrate that rotational coupling is not important for the total cross section, but for state-selective cross sections, its relevance increases with energy. For the ratios of triplet to singlet cross sections, significant departures from a statistical value are found, generally in harmony with experiment.

  12. Measurement of the 169Tm(n,3n) 167Tm cross section and the associated branching ratios in the decay of 167Tm [Measurement of the 169Tm(n,3n) 167Tm cross section and the branching ratios in the decay of 167Tm

    DOE PAGES

    Champine, B.; Gooden, M. E.; Krishichayan, .; ...

    2016-01-14

    The cross section for the 169Tm(n,3n) 167Tm reaction was measured from 17 to 22 MeV using quasimonoenergetic neutrons produced by the 2H(d,n) 3He reaction. This energy range was studied to resolve the discrepancy between previous (n,3n) cross-section measurements. In addition, the absolute γ-ray branching ratios following the electron-capture decay of 167Tm were measured. Furthermore, these results provide more reliable nuclear data for an important diagnostic that is used at the National Ignition Facility to estimate the yield of reaction-in-flight neutrons produced via the inertial-confinement-fusion plasma in deuterium-tritium capsules.

  13. Estimating Single-Event Logic Cross Sections in Advanced Technologies

    NASA Astrophysics Data System (ADS)

    Harrington, R. C.; Kauppila, J. S.; Warren, K. M.; Chen, Y. P.; Maharrey, J. A.; Haeffner, T. D.; Loveless, T. D.; Bhuva, B. L.; Bounasser, M.; Lilja, K.; Massengill, L. W.

    2017-08-01

    Reliable estimation of logic single-event upset (SEU) cross section is becoming increasingly important for predicting the overall soft error rate. As technology scales and single-event transient (SET) pulse widths shrink to widths on the order of the setup-and-hold time of flip-flops, the probability of latching an SET as an SEU must be reevaluated. In this paper, previous assumptions about the relationship of SET pulsewidth to the probability of latching an SET are reconsidered and a model for transient latching probability has been developed for advanced technologies. A method using the improved transient latching probability and SET data is used to predict logic SEU cross section. The presented model has been used to estimate combinational logic SEU cross sections in 32-nm partially depleted silicon-on-insulator (SOI) technology given experimental heavy-ion SET data. Experimental SEU data show good agreement with the model presented in this paper.

  14. Evaluation of Production Cross Sections of Li, Be, B in CR

    NASA Technical Reports Server (NTRS)

    Moskalenko, I. V.; Mashnik, S. G.

    2003-01-01

    Accurate evaluation of the production cross section of light elements is important for models of cosmic ray (CR) propagation, galactic chemical evolution, and cosmological studies. However, the experimental spallation cross section data are scarce and often unavailable to CR community while semi-empirical systematics are frequently wrong by a significant factor. Running sophisticated nuclear codes is not an option of choice for everyone either. We use the Los Alamos versions of the Quark-Gluon String Model code LAQGSM and the improved Cascade-Exciton Model code CEM2k together with all available data from Los Alamos Nuclear Laboratory (LANL) nuclear database to produce evaluated production cross sections of isotopes of Li, Be, and B suitable for astrophysical applications. The LAQGSM and CEM2k models have been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seestrom, Susan Joyce; Adamek, Evan R.; Barlow, Dave

    Here, we have followed up on our previous measurements of upscattering of ultracold neutrons (UCNs) from a series of gases by making measurements of total cross sections on the following gases hydrogen, ethane, methane, isobutene, n-butane, ethylene, water vapor, propane, neopentane, isopropyl alcohol, and 3He. The values of these cross sections are important for estimating the loss rate of trapped neutrons due to residual gas and are relevant to neutron lifetime measurements using UCNs. The effects of the UCN velocity and path-length distributions were accounted for in the analysis using a Monte Carlo transport code. Results are compared to ourmore » previous measurements and with the known absorption cross section for 3He scaled to our UCN energy. We find that the total cross sections for the hydrocarbon gases are reasonably described by a function linear in the number of hydrogen atoms in the molecule.« less

  16. Cosmic ray antiprotons at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Martin Wolfgang, E-mail: martin.winkler@su.se

    2017-02-01

    Cosmic ray antiprotons provide a powerful tool to probe dark matter annihilations in our galaxy. The sensitivity of this important channel is, however, diluted by sizable uncertainties in the secondary antiproton background. In this work, we improve the calculation of secondary antiproton production with a particular focus on the high energy regime. We employ the most recent collider data and identify a substantial increase of antiproton cross sections with energy. This increase is driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production. The updated antiproton production cross sections are made publicly available formore » independent use in cosmic ray studies. In addition, we provide the correlation matrix of cross section uncertainties for the AMS-02 experiment. At high energies, the new cross sections improve the compatibility of the AMS-02 data with a pure secondary origin of antiprotons in cosmic rays.« less

  17. Stellar neutron capture cross sections of 41K and 45Sc

    NASA Astrophysics Data System (ADS)

    Heil, M.; Plag, R.; Uberseder, E.; Bisterzo, S.; Käppeler, F.; Mengoni, A.; Pignatari, M.

    2016-05-01

    The neutron capture cross sections of light nuclei (A <56 ) are important for s -process scenarios since they act as neutron poisons. We report on measurements of the neutron capture cross sections of 41K and 45Sc, which were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator via the activation method in a quasistellar neutron spectrum corresponding to a thermal energy of k T =25 keV. Systematic effects were controlled by repeated irradiations, resulting in overall uncertainties of less than 3%. The measured spectrum-averaged data have been used to normalize the energy-dependent (n ,γ ) cross sections from the main data libraries JEFF-3.2, JENDL-4.0, and ENDF/B-VII.1, and a set of Maxwellian averaged cross sections was calculated for improving the s -process nucleosynthesis yields in AGB stars and in massive stars. At k T =30 keV, the new Maxwellian averaged cross sections of 41K and 45Sc are 19.2 ±0.6 mb and 61.3 ±1.8 mb, respectively. Both values are 20% lower than previously recommended. The effect of neutron poisons is discussed for nuclei with A <56 in general and for the investigated isotopes in particular.

  18. Growth and resilience of pioneering nonprofit human service organizations: a cross-case analysis of organizational histories.

    PubMed

    Kimberlin, Sara E; Schwartz, Sara L; Austin, Michael J

    2011-01-01

    Knowledge of organizational history is important for recognizing patterns in effective management and understanding how organizations respond to internal and external challenges. This cross-case analysis of 12 histories of pioneering nonprofit human service organizations contributes an important longitudinal perspective on organizational history, complementing the cross-sectional case studies that dominate the existing research on nonprofit organizations. The literature on organizational growth, including lifecycle models and growth management, is reviewed, along with the literature on organizational resilience. Based on analysis of the 12 organizational histories, a conceptual model is presented that synthesizes key factors in the areas of leadership, internal operations, and external relations that influence organizational growth and resilience to enable nonprofit organizations to survive and thrive over time. Both cross-sectional and longitudinal examples from the organizational histories illustrate the conceptual map. The paper concludes with a discussion of directions for future research on nonprofit organizational history.

  19. State-resolved differential and integral cross sections for the Ne + H{sub 2}{sup +} (v = 0–2, j = 0) → NeH{sup +} + H reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hui; Yao, Cui-Xia; He, Xiao-Hu

    State-to-state quantum dynamic calculations for the proton transfer reaction Ne + H{sub 2}{sup +} (v = 0–2, j = 0) are performed on the most accurate LZHH potential energy surface, with the product Jacobi coordinate based time-dependent wave packet method including the Coriolis coupling. The J = 0 reaction probabilities for the title reaction agree well with previous results in a wide range of collision energy of 0.2-1.2 eV. Total integral cross sections are in reasonable agreement with the available experiment data. Vibrational excitation of the reactant is much more efficient in enhancing the reaction cross sections than translational andmore » rotational excitation. Total differential cross sections are found to be forward-backward peaked with strong oscillations, which is the indication of the complex-forming mechanism. As the collision energy increases, state-resolved differential cross section changes from forward-backward symmetric peaked to forward scattering biased. This forward bias can be attributed to the larger J partial waves, which makes the reaction like an abstraction process. Differential cross sections summed over two different sets of J partial waves for the v = 0 reaction at the collision energy of 1.2 eV are plotted to illustrate the importance of large J partial waves in the forward bias of the differential cross sections.« less

  20. Defining SNAP by cross-sectional and longitudinal definitions of neurodegeneration.

    PubMed

    Wisse, L E M; Das, S R; Davatzikos, C; Dickerson, B C; Xie, S X; Yushkevich, P A; Wolk, D A

    2018-01-01

    Suspected non-Alzheimer's pathophysiology (SNAP) is a biomarker driven designation that represents a heterogeneous group in terms of etiology and prognosis. SNAP has only been identified by cross-sectional neurodegeneration measures, whereas longitudinal measures might better reflect "active" neurodegeneration and might be more tightly linked to prognosis. We compare neurodegeneration defined by cross-sectional 'hippocampal volume' only (SNAP/L-) versus both cross-sectional and longitudinal 'hippocampal atrophy rate' (SNAP/L+) and investigate how these definitions impact prevalence and the clinical and biomarker profile of SNAP in Mild Cognitive Impairment (MCI). 276 MCI patients from ADNI-GO/2 were designated amyloid "positive" (A+) or "negative" (A-) based on their florbetapir scan and neurodegeneration 'positive' or 'negative' based on cross-sectional hippocampal volume and longitudinal hippocampal atrophy rate. 74.1% of all SNAP participants defined by the cross-sectional definition of neurodegeneration also met the longitudinal definition of neurodegeneration, whereas 25.9% did not. SNAP/L+ displayed larger white matter hyperintensity volume, a higher conversion rate to dementia over 5 years and a steeper decline on cognitive tasks compared to SNAP/L- and the A- CN group. SNAP/L- had more abnormal values on neuroimaging markers and worse performance on cognitive tasks than the A- CN group, but did not show a difference in dementia conversion rate or longitudinal cognition. Using a longitudinal definition of neurodegeneration in addition to a cross-sectional one identifies SNAP participants with significant cognitive decline and a worse clinical prognosis for which cerebrovascular disease may be an important driver.

  1. Forward and inverse functional variations in rotationally inelastic scattering

    NASA Astrophysics Data System (ADS)

    Guzman, Robert; Rabitz, Herschel

    1986-09-01

    This paper considers the response of various rotational energy transfer processes to functional variations about an assumed model intermolecular potential. Attention is focused on the scattering of an atom and a linear rigid rotor. The collision dynamics are approximated by employing both the infinite order sudden (IOS) and exponential distorted wave (EDW) methods to describe Ar-N2 and He-H2, respectively. The following cross sections are considered: state-to-state differential and integral, final state summed differential and integral, and effective diffusion and viscosity cross sections. Attention is first given to the forward sensitivity densities δ0/δV(R,r) where 0 denotes any of the aforementioned cross sections, R is the intermolecular distance, and r is the internal coordinates. These forward sensitivity densities (functional derivatives) offer a quantitative measure of the importance of different regions of the potential surface to a chosen cross section. Via knowledge of the forward sensitivities and a particular variation δV(R,r) the concomitant response δ0 is generated. It was found that locally a variation in the potential can give rise to a large response in the cross sections as measured by these forward densities. In contrast, a unit percent change in the overall potential produced a 1%-10% change in the cross sections studied indicating that the large + and - responses to local variations tend to cancel. In addition, inverse sensitivity densities δV(R,r)/δ0 are obtained. These inverse densities are of interest since they are the exact solution to the infinitesimal inverse scattering problem. Although the inverse sensitivity densities do not in themselves form an inversion algorithm, they do offer a quantitative measure of the importance of performing particular measurements for the ultimate purpose of inversion. Using a set of state-to-state integral cross sections we found that the resultant responses from the infinitesimal inversion were typically small such that ‖δV(R,r)‖≪‖V(R,r)‖. From the viewpoint of an actual inversion, these results indicate that only through an extensive effort will significant knowledge of the potential be gained from the cross sections. All of these calculations serve to illustrate the methodology, and other observables as well as dynamical schemes could be explored as desired.

  2. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air

    NASA Technical Reports Server (NTRS)

    Porter, H. S.; Jackman, C. H.; Green, A. E. S.

    1976-01-01

    Relativistic electron and proton impact cross sections are obtained and represented by analytic forms which span the energy range from threshold to 1 GeV. For ionization processes, the Massey-Mohr continuum generalized oscillator strength surface is parameterized. Parameters are determined by simultaneous fitting to (1) empirical data, (2) the Bethe sum rule, and (3) doubly differential cross sections for ionization. Branching ratios for dissociation and predissociation from important states of N2 and O2 are determined. The efficiency for the production of atomic nitrogen and oxygen by protons with kinetic energy less than 1 GeV is determined using these branching ratio and cross section assignments.

  3. Application of PIXE in the determination of the production cross section of a radionuclide decaying by electron capture

    NASA Astrophysics Data System (ADS)

    Morales, J. R.; Chesta, M. A.; Cancino, S. A.; Miranda, P. A.; Dinator, M. I.; Avila, M. J.

    2005-01-01

    Proton induced X-ray emission (PIXE) has been applied to the measurement of the production cross section of a radionuclide decaying by electron capture. By performing a PIXE type experiment on the daughter nuclide important advantages are obtained. The determination of some factors with usually large uncertainties, like solid angle and detector efficiency were avoided. The method was applied to the determination of cross section of the reaction 63Cu(d, p)64Cu at 2.4 MeV for 64Cu production. This result is in full agreement with that obtained through the decay of the 1346 keV gamma ray of 64Cu.

  4. General consequences of the violated Feynman scaling

    NASA Technical Reports Server (NTRS)

    Kamberov, G.; Popova, L.

    1985-01-01

    The problem of scaling of the hadronic production cross sections represents an outstanding question in high energy physics especially for interpretation of cosmic ray data. A comprehensive analysis of the accelerator data leads to the conclusion of the existence of breaked Feynman scaling. It was proposed that the Lorentz invariant inclusive cross sections for secondaries of a given type approaches constant in respect to a breaked scaling variable x sub s. Thus, the differential cross sections measured in accelerator energy can be extrapolated to higher cosmic ray energies. This assumption leads to some important consequences. The distribution of secondary multiplicity that follows from the violated Feynman scaling using a similar method of Koba et al is discussed.

  5. Mechanisms of SN2 reactions: insights from a nearside/farside analysis.

    PubMed

    Hennig, Carsten; Schmatz, Stefan

    2015-10-28

    A nearside/farside analysis of differential cross sections has been performed for the complex-forming SN2 reaction Cl(-) + CH3Br → ClCH3 + Br(-). It is shown that for low rotational quantum numbers a direct "nearside" reaction mechanism plays an important role and leads to anisotropic differential cross sections. For high rotational quantum numbers, indirect mechanisms via a long-lived intermediate complex are prevalent (independent of a nearside/farside configuration), leading to isotropic cross sections. Quantum mechanical interference can be significant at specific energies or angles. Averaging over energies and angles reveals that the nearside/farside decomposition in a semiclassical interpretation can reasonably account for the analysis of the reaction mechanism.

  6. CCC calculated differential cross sections of electron-H2 scattering

    NASA Astrophysics Data System (ADS)

    Fursa, Dmitry; Zammit, Mark; Savage, Jeremy; Bray, Igor

    2016-09-01

    Recently we applied the molecular convergent close-coupling (CCC) method to electron scattering from molecular hydrogen H2. Convergence of the major differential cross sections has been explicitly demonstrated in the fixed-nuclei approximation. A large close-coupling expansion that coupled highly excited states and ionization channels proved to be important to obtain convergent results. Here we present benchmark elastic and electronic excitation differential cross sections for b3Σu+ , a3Σg+ , c3Πu , B1Σu+ , EF1Σg+ , C1Πu , and e3Σu+ states and compare with available experiment and previous calculations. Work supported by Los Alamos National Laboratory and Curtin University.

  7. Channel-specific dielectronic recombination of Ge(XXXII), Se(XXXIV), and Kr(XXXVI)

    NASA Astrophysics Data System (ADS)

    El Machtoub, G.

    2004-04-01

    We present explicit calculations of channel-specific dielectronic recombination cross sections for hydrogen-like germanium, Ge(XXXII); selenium, Se(XXXIV); and krypton, Kr(XXXVI). The convoluted cross sections characterize K-shell emission spectra over a wide energy range where contributions from high-n (n = 2-10), satellite lines are included. The high-n contributions presented are important for better diagnostics in the domain of high-temperature plasmas.

  8. Closing Report for NASA Cooperative Agreement NASA-1-242

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung

    1999-01-01

    Reliable estimates of exposures due to ionizing radiations are of paramount importance in achieving human exploration and development of space, and in several technologically important and scientifically significant areas impacting on industrial and public health. For proper assessment of radiation exposures reliable transport codes are needed. An essential input to the transport codes is the information about the interaction of ions and neutrons with the matter. Most of the information about this interaction is put in by nuclear cross section data. In order to obtain an accurate parameterization of cross sections data, theoretical input is indispensable especially for the processes where there is little or no experimental data available. In the grant period reliable data base was developed and a phenomenological model was developed for the total absorption cross sections valid for any charged/uncharged light, medium and heavy collision pairs valid for the entire energy range. It is gratifying to note the success of the model. The cross sections model has been adopted and is in use in NASA cosmic ray detector development projects, the radiation protection and shielding programs and several DoE laboratories and institutions. A list of the publications based on the work done during the grant period is given below and a sample copy of one of the papers is enclosed with this report.

  9. Cross-sectional imaging in cancers of the head and neck: how we review and report.

    PubMed

    Tshering Vogel, Dechen Wangmo; Thoeny, Harriet C

    2016-08-03

    Cancer of the head and neck is the sixth most frequent cancer worldwide and associated with significant morbidity. The head and neck area is complex and divided into various anatomical and functional subunits. Imaging is performed by cross-sectional modalities like computed tomography, magnetic resonance imaging, ultrasound and positron emission tomography-computed tomography, usually with fluorine-18-deoxy-D-glucose. Therefore, knowledge of the cross-sectional anatomy is very important. This article seeks to give an overview of the various cross-sectional imaging modalities used in the evaluation of head and neck cancers. It briefly describes the anatomy of the extracranial head and neck and the role of imaging as well as the imaging appearance of tumours and their extension to lymph nodes, bone and surrounding tissue. The advantages and disadvantages as well as basic requirements of the various modalities are described along with ways of optimizing imaging quality. A general guideline for prescription of the various modalities is given. Pitfalls are many and varied and can be due to anatomical variation, due to pathology which can be misinterpreted and technical due to peculiarities of the various imaging modalities. Knowledge of these pitfalls can help to avoid misinterpretation. The important points to be mentioned while reporting are also enumerated.

  10. High-energy pp and pp-bar forward elastic scattering and total cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, M.M.; Cahn, R.N.

    1985-04-01

    The present status of elastic pp and pp-bar scattering in the high-energy domain is reviewed, with emphasis on the forward and near-forward regions. The experimental techniques for measuring sigma/sub tot/, rho, and B are discussed, emphasizing the importance of the region in which the nuclear and Coulomb scattering interfere. The impact-parameter representation is exploited to give simple didactic demonstrations of important rigorous theorems based on analyticity, and to illuminate the significance of the slope parameter B and the curvature parameter C. Models of elastic scattering are discussed, and a criterion for the onset of ''asymptopia'' is given. A critique ofmore » dispersion relations is presented. Simple analytic functions are used to fit simultaneously the real and imaginary parts of forward scattering amplitudes for both pp and pp-bar, obtained from experimental data for sigma/sub tot/ and rho. It is found that a good fit can be obtained using only five parameters (with a cross section rising as ln/sup 2/s), over the energy range 5 < ..sqrt..s < 62 GeV. The possibilities that (a) the cross section rises only as lns, (b) the cross section rises only locally as ln/sup 2/s, and eventually goes to a constant value, and (c) the cross-section difference between pp and pp-bar does not vanish as s..-->..infinity are examined critically. The nuclear slope parameters B are also fitted in a model-independent fashion. Examination of the fits reveals a new regularity of the pp-bar and the pp systems.« less

  11. Vastus medialis cross-sectional area is positively associated with patella cartilage and bone volumes in a pain-free community-based population

    PubMed Central

    Berry, Patricia A; Teichtahl, Andrew J; Galevska-Dimitrovska, Ana; Hanna, Fahad S; Wluka, Anita E; Wang, Yuanyuan; Urquhart, Donna M; English, Dallas R; Giles, Graham G; Cicuttini, Flavia M

    2008-01-01

    Introduction Although vastus medialis and lateralis are important determinants of patellofemoral joint function, their relationship with patellofemoral joint structure is unknown. The aim of this study was to examine potential determinants of vastus medialis and lateralis cross-sectional areas and the relationship between the cross-sectional area and patella cartilage and bone volumes. Methods Two hundred ninety-seven healthy adult subjects had magnetic resonance imaging of their dominant knee. Vastus medialis and lateralis cross-sectional areas were measured 37.5 mm superior to the quadriceps tendon insertion at the proximal pole of the patella. Patella cartilage and bone volumes were measured from these images. Demographic data and participation in vigorous physical activity were assessed by questionnaire. Results The determinants of increased vastus medialis and lateralis cross-sectional areas were older age (P ≤ 0.002), male gender (P < 0.001), and greater body mass index (P ≤ 0.07). Participation in vigorous physical activity was positively associated with vastus medialis cross-sectional area (regression coefficient [beta] 90.0; 95% confidence interval [CI] 38.2, 141.7) (P < 0.001) but not with vastus lateralis cross-sectional area (beta 10.1; 95% CI -18.1, 38.3) (P = 0.48). The cross-sectional area of vastus medialis only was positively associated with patella cartilage volume (beta 0.6; 95% CI 0.23, 0.94) (P = 0.001) and bone volume (beta 3.0; 95% CI 1.40, 4.68) (P < 0.001) after adjustment for potential confounders. Conclusions Our results in a pain-free community-based population suggest that increased cross-sectional area of vastus medialis, which is associated with vigorous physical activity, and increased patella cartilage and bone volumes may benefit patellofemoral joint health and reduce the long-term risk of patellofemoral pathology. PMID:19077298

  12. Brachytherapy dosimetry of 125I and 103Pd sources using an updated cross section library for the MCNP Monte Carlo transport code.

    PubMed

    Bohm, Tim D; DeLuca, Paul M; DeWerd, Larry A

    2003-04-01

    Permanent implantation of low energy (20-40 keV) photon emitting radioactive seeds to treat prostate cancer is an important treatment option for patients. In order to produce accurate implant brachytherapy treatment plans, the dosimetry of a single source must be well characterized. Monte Carlo based transport calculations can be used for source characterization, but must have up to date cross section libraries to produce accurate dosimetry results. This work benchmarks the MCNP code and its photon cross section library for low energy photon brachytherapy applications. In particular, we calculate the emitted photon spectrum, air kerma, depth dose in water, and radial dose function for both 125I and 103Pd based seeds and compare to other published results. Our results show that MCNP's cross section library differs from recent data primarily in the photoelectric cross section for low energies and low atomic number materials. In water, differences as large as 10% in the photoelectric cross section and 6% in the total cross section occur at 125I and 103Pd photon energies. This leads to differences in the dose rate constant of 3% and 5%, and differences as large as 18% and 20% in the radial dose function for the 125I and 103Pd based seeds, respectively. Using a partially updated photon library, calculations of the dose rate constant and radial dose function agree with other published results. Further, the use of the updated photon library allows us to verify air kerma and depth dose in water calculations performed using MCNP's perturbation feature to simulate updated cross sections. We conclude that in order to most effectively use MCNP for low energy photon brachytherapy applications, we must update its cross section library. Following this update, the MCNP code system will be a very effective tool for low energy photon brachytherapy dosimetry applications.

  13. Electron scattering on molecules: search for semi-empirical indications

    NASA Astrophysics Data System (ADS)

    Fedus, Kamil; Karwasz, Grzegorz P.

    2017-06-01

    Reliable cross-sections for electron-molecule collisions are urgently needed for numerical modeling of various processes important from technological point of view. Unfortunately, a significant progress in theory and experiment over the last decade is not usually accompanied by the convergence of cross-sections measured at different laboratories and calculated with different methods. Moreover the most advanced contemporary theories involve such large basis sets and complicated equations that they are not easily applied to each specific molecule for which data are needed. For these reasons the search for semi-empirical indications in angular and energy dependencies of scattering cross-section becomes important. In this paper we make a brief review of the applicability of the Born-dipole approximation for elastic, rotational, vibrational and ionization processes that can occur during electron-molecule collisions. We take into account the most recent experimental findings as the reference points. Contribution to the Topical Issue "Atomic and Molecular Data and Their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.

  14. Calculation of fast neutron removal cross sections for different lunar soils

    NASA Astrophysics Data System (ADS)

    Tellili, B.; Elmahroug, Y.; Souga, C.

    2014-01-01

    The interaction of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) with the lunar surface produces secondary radiations as neutrons. The study of the production and attenuation of these neutrons in the lunar soil is very important to estimate the annual ambient dose equivalent on the lunar surface and for lunar nuclear spectroscopy. Also, understanding the attenuation of fast neutrons in lunar soils can help in measuring of the lunar neutron density profile and to measure the neutron flux on the lunar surface. In this paper, the attenuation of fast neutrons in different lunar soils is investigated. The macroscopic effective removal cross section (ΣR) of fast neutrons was theoretically calculated from the mass removal cross-section values (ΣR/ρ) for various elements in soils. The obtained values of (ΣR) were discussed according to the density. The results show that the attenuation of fast neutrons is more important in the landing sites of Apollo 12 and Luna 16 than the other landing sites of Apollo and Luna missions.

  15. Meson Production and Space Radiation

    NASA Astrophysics Data System (ADS)

    Norbury, John; Blattnig, Steve; Norman, Ryan; Aghara, Sukesh

    Protecting astronauts from the harmful effects of space radiation is an important priority for long duration space flight. The National Council on Radiation Protection (NCRP) has recently recommended that pion and other mesons should be included in space radiation transport codes, especially in connection with the Martian atmosphere. In an interesting accident of nature, the galactic cosmic ray spectrum has its peak intensity near the pion production threshold. The Boltzmann transport equation is structured in such a way that particle production cross sec-tions are multiplied by particle flux. Therefore, the peak of the incident flux of the galactic cosmic ray spectrum is more important than other regions of the spectrum and cross sections near the peak are enhanced. This happens with pion cross sections. The MCNPX Monte-Carlo transport code now has the capability of transporting heavy ions, and by using a galactic cosmic ray spectrum as input, recent work has shown that pions contribute about twenty percent of the dose from galactic cosmic rays behind a shield of 20 g/cm2 aluminum and 30 g/cm2 water. It is therefore important to include pion and other hadron production in transport codes designed for space radiation studies, such as HZETRN. The status of experimental hadron production data for energies relevant to space radiation will be reviewed, as well as the predictive capa-bilities of current theoretical hadron production cross section and space radiation transport models. Charged pions decay into muons and neutrinos, and neutral pions decay into photons. An electromagnetic cascade is produced as these particles build up in a material. The cascade and transport of pions, muons, electrons and photons will be discussed as they relate to space radiation. The importance of other hadrons, such as kaons, eta mesons and antiprotons will be considered as well. Efficient methods for calculating cross sections for meson production in nucleon-nucleon and nucleus-nucleus reactions will be presented. The NCRP has also recom-mended that more attention should be paid to neutron and light ion transport. The coupling of neutrons, light ions, mesons and other hadrons will be discussed.

  16. From cutting-edge pointwise cross-section to groupwise reaction rate: A primer

    NASA Astrophysics Data System (ADS)

    Sublet, Jean-Christophe; Fleming, Michael; Gilbert, Mark R.

    2017-09-01

    The nuclear research and development community has a history of using both integral and differential experiments to support accurate lattice-reactor, nuclear reactor criticality and shielding simulations, as well as verification and validation efforts of cross sections and emitted particle spectra. An important aspect to this type of analysis is the proper consideration of the contribution of the neutron spectrum in its entirety, with correct propagation of uncertainties and standard deviations derived from Monte Carlo simulations, to the local and total uncertainty in the simulated reactions rates (RRs), which usually only apply to one application at a time. This paper identifies deficiencies in the traditional treatment, and discusses correct handling of the RR uncertainty quantification and propagation, including details of the cross section components in the RR uncertainty estimates, which are verified for relevant applications. The methodology that rigorously captures the spectral shift and cross section contributions to the uncertainty in the RR are discussed with quantified examples that demonstrate the importance of the proper treatment of the spectrum profile and cross section contributions to the uncertainty in the RR and subsequent response functions. The recently developed inventory code FISPACT-II, when connected to the processed nuclear data libraries TENDL-2015, ENDF/B-VII.1, JENDL-4.0u or JEFF-3.2, forms an enhanced multi-physics platform providing a wide variety of advanced simulation methods for modelling activation, transmutation, burnup protocols and simulating radiation damage sources terms. The system has extended cutting-edge nuclear data forms, uncertainty quantification and propagation methods, which have been the subject of recent integral and differential, fission, fusion and accelerators validation efforts. The simulation system is used to accurately and predictively probe, understand and underpin a modern and sustainable understanding of the nuclear physics that is so important for many areas of science and technology; advanced fission and fuel systems, magnetic and inertial confinement fusion, high energy, accelerator physics, medical application, isotope production, earth exploration, astrophysics and homeland security.

  17. Cross sections for electron collision with difluoroacetylene

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Choi, Heechol; Kwon, Deuk-Chul; Yoon, Jung-Sik; Antony, Bobby; Song, Mi-Young

    2017-04-01

    We report a detailed calculation of total elastic, differential elastic, momentum transfer and electronic excitation for electron impact on difluoroacetylene (C2F2) molecules using the R-matrix method at low energies. After testing many target models, the final results are reported for the target model that gave the best target properties and predicted the lowest value of the shape resonance. The shape resonance is detected at 5.86 eV and 6.49 eV with the close-coupling and static exchange models due to 2Πg (2B2g, 2B3g) states. We observed that the effect of polarization becomes prominent at low energies below 4 eV, decreasing the magnitude of the elastic cross section systematically as it increases for C2F2. We have also computed elastic cross sections for C2H2, C2F4 and C2H4 with a similar model and compared with the experimental data for these molecules along with C2F2. General agreement is found in terms of the shape and nature of the cross section. Such a comparison shows the reliability of the present method for obtaining the cross section for C2F2. The calculation of elastic scattering cross section is extended to higher energies up to 5 keV using the spherical complex optical potential method. The two methods are found to be consistent, merging at around 12 eV for the elastic scattering cross section. Finally we report the total ionization cross section using the binary encounter Bethe method for C2F2. The perfluorination effect in the shape and magnitude of the elastic, momentum transfer and ionization cross sections when compared with C2H2 showed a similar trend to that in the C2H4-C2F4 and C6H6-C6F6 systems. The cross-section data reported in this article could be an important input for the development of a C2F2 plasma model for selective etching of Si/SiO2 in the semiconductor industry.

  18. Nuclear data measurements at the new NFS facility at GANIL

    NASA Astrophysics Data System (ADS)

    Gustavsson, C.; Pomp, S.; Scian, G.; Lecolley, F.-R.; Tippawan, U.; Watanabe, Y.

    2012-10-01

    The NFS (Neutrons For Science) facility is part of the SPRIAL 2 project at GANIL, Caen, France. The facility is currently under construction and the first beam is expected in early 2013. NFS will have a white neutron source covering the 1-40 MeV energy range with a neutron flux higher than comparable facilities. A quasi-mono-energetic neutron beam will also be available. In these energy ranges, especially above 14 MeV, there is a large demand for neutron-induced data for a wide range of applications involving dosimetry, medical therapy, single-event upsets in electronics and nuclear energy. Today, there are a few or no cross section data on reactions such as (n, fission), (n, xn), (n, p), (n, d) and (n, α). We propose to install experimental equipment for measuring neutron-induced light-charged particle production and fission relative to the H(n, p) cross section. Both the H(n, p) cross section and the fission cross section for 238U are important reference cross sections used as standards for many other experiments. Nuclear data for certain key elements, such as closed shell nuclei, are also of relevance for the development of nuclear reaction models. Our primary intention is to measure charged particle production (protons, deuterons and alphas) from 12C, 16O, 28Si and 56Fe and neutron-induced fission cross sections from 238U and 232Th.

  19. Molecular Data for a Biochemical Model of DNA Radiation Damage: Electron Impact Ionization and Dissociative Ionization of DNA Bases and Sugar-Phosphate Backbone

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.

  20. Electromagnetic Dissociation Cross Sections using Weisskopf-Ewing Theory

    NASA Technical Reports Server (NTRS)

    Adamczyk, Anne M.; Norbury, John W.

    2011-01-01

    It is important that accurate estimates of crew exposure to radiation are obtained for future long-term space missions. Presently, several space radiation transport codes exist to predict the radiation environment, all of which take as input particle interaction cross sections that describe the nuclear interactions between the particles and the shielding material. The space radiation transport code HZETRN uses the nuclear fragmentation model NUCFRG2 to calculate Electromagnetic Dissociation (EMD) cross sections. Currently, NUCFRG2 employs energy independent branching ratios to calculate these cross sections. Using Weisskopf-Ewing (WE) theory to calculate branching ratios, however, is more advantageous than the method currently employed in NUCFRG2. The WE theory can calculate not only neutron and proton emission, as in the energy independent branching ratio formalism used in NUCFRG2, but also deuteron, triton, helion, and alpha particle emission. These particles can contribute significantly to total exposure estimates. In this work, photonuclear cross sections are calculated using WE theory and the energy independent branching ratios used in NUCFRG2 and then compared to experimental data. It is found that the WE theory gives comparable, but mainly better agreement with data than the energy independent branching ratio. Furthermore, EMD cross sections for single neutron, proton, and alpha particle removal are calculated using WE theory and an energy independent branching ratio used in NUCFRG2 and compared to experimental data.

  1. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hui; Chou, Dean-Yi, E-mail: chou@phys.nthu.edu.tw

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ {sub ab} and the scattering cross section σ {sub sc} for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. Inmore » the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ {sub ab} and σ {sub sc}, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ {sub ab} of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ {sub sc} of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ {sub ab} is approximately proportional to the sunspot radius, while the dependence of σ {sub sc} on radius is faster than the linear increase.« less

  2. Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1-3 GeV with the T2K INGRID detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berkman, S.; Bhadra, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Calland, R. G.; Cao, S.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J. D.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-04-01

    We report a measurement of the νμ-nucleus inclusive charged-current cross section (=σc c ) on iron using data from the INGRID detector exposed to the J-PARC neutrino beam. The detector consists of 14 modules in total, which are spread over a range of off-axis angles from 0° to 1.1°. The variation in the neutrino energy spectrum as a function of the off-axis angle, combined with event topology information, is used to calculate this cross section as a function of neutrino energy. The cross section is measured to be σc c(1.1 GeV )=1.10 ±0.15 (1 0-38 cm2/nucleon) , σc c(2.0 GeV )=2.07 ±0.27 (1 0-38 cm2/nucleon) , and σc c(3.3 GeV )=2.29 ±0.45 (1 0-38 cm2/nucleon), at energies of 1.1, 2.0, and 3.3 GeV, respectively. These results are consistent with the cross section calculated by the neutrino interaction generators currently used by T2K. More importantly, the method described here opens up a new way to determine the energy dependence of neutrino-nucleus cross sections.

  3. Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu

    NASA Astrophysics Data System (ADS)

    Nyman, Markus; Belloni, Francesca; Ichinkhorloo, Dagvadorj; Pirovano, Elisa; Plompen, Arjan; Rouki, Chariklia

    2017-09-01

    The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA) pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS) spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC) method. Experiments for studying neutrinoless double-β decay (2β0ν) or other very rare processes require greatly reducing the background radiation level (both intrinsic and external). Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.

  4. A Thermoelastic Damping Model for the Cone Microcantilever Resonator with Circular Cross-section

    NASA Astrophysics Data System (ADS)

    Li, Pu; Zhou, Hongyue

    2017-07-01

    Microbeams with variable cross-section have been applied in Microelectromechanical Systems (MEMS) resonators. Quality factor (Q-factor) is an important factor evaluating the performance of MEMS resonators, and high Q-factor stands for the excellent performance. Thermoelastic damping (TED), which has been verified as a fundamental energy lost mechanism for microresonators, determines the upper limit of Q-factor. TED can be calculated by the Zener’s model and Lifshits and Roukes (LR) model. However, for microbeam resonators with variable cross-sections, these two models become invalid in some cases. In this work, we derived the TED model for cone microcantilever with circular cross-section that is a representative non-uniform microbeam. The comparison of results obtained by the present model and Finite Element Method (FEM) model proves that the present model is valid for predicting TED value for cone microcantilever with circular cross-section. The results suggest that the first-order natural frequencies and TED values of cone microcantilever are larger than those of uniform microbeam for large aspect ratios (l/r 0). In addition, the Debye peak value of a uniform microcantilever is equal to 0.5ΔE, while that of cone microcantilever is about 0.438ΔE.

  5. Comparison of gimbal approaches to decrease drag force and radar cross sectional area in missile application

    NASA Astrophysics Data System (ADS)

    Sakarya, Doǧan Uǧur

    2017-05-01

    Drag force effect is an important aspect of range performance in missile applications especially for long flight time. However, old fashioned gimbal approaches force to increase missile diameter. This increase has negative aspect of rising in both drag force and radar cross sectional area. A new gimbal approach was proposed recently. It uses a beam steering optical arrangement. Therefore, it needs less volume envelope for same field of regard and same optomechanical assembly than the old fashioned gimbal approaches. In addition to longer range performance achieved with same fuel in the new gimbal approach, this method provides smaller cross sectional area which can be more invisible in enemies' radar. In this paper, the two gimbal approaches - the old fashioned one and the new one- are compared in order to decrease drag force and radar cross sectional area in missile application. In this study; missile parameters are assumed to generate gimbal and optical design parameters. Optical design is performed according to these missile criteria. Two gimbal configurations are designed with respect to modeled missile parameters. Also analyzes are performed to show decreased drag force and radar cross sectional area in the new approach for comparison.

  6. Investigation of 14-15 MeV ( n, t) Reaction Cross-sections by Using New Evaluated Empirical and Semi-empirical Systematic Formulas

    NASA Astrophysics Data System (ADS)

    Tel, E.; Aydın, A.; Kaplan, A.; Şarer, B.

    2008-09-01

    In the hybrid reactor, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. Working out the systematics of ( n, t) reaction cross-sections are of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at energies up to 20 MeV. In this study we have investigated asymmetry term effect for the ( n, t) reaction cross-sections at 14-15 neutron incident energy. It has been discussed the odd-even effect and the pairing effect considering binding energy systematic of the nuclear shell model for the new experimental data and new cross-sections formulas ( n, t) reactions developed by Tel et al. We have determined a different parameter groups by the classification of nuclei into even-even, even-odd and odd-even for ( n, t) reactions cross-sections. The obtained empirical and semi-empirical formulas by fitting two parameter for ( n, t) reactions were given. All calculated results have been compared with the experimental data and the other semi-empirical formulas.

  7. Visualizing Cross-sectional Data in a Real-World Context

    NASA Astrophysics Data System (ADS)

    Van Noten, K.; Lecocq, T.

    2016-12-01

    If you could fly around your research results in three dimensions, wouldn't you like to do it? Visualizing research results properly during scientific presentations already does half the job of informing the public on the geographic framework of your research. Many scientists use the Google Earth™ mapping service (V7.1.2.2041) because it's a great interactive mapping tool for assigning geographic coordinates to individual data points, localizing a research area, and draping maps of results over Earth's surface for 3D visualization. However, visualizations of research results in vertical cross-sections are often not shown simultaneously with the maps in Google Earth. A few tutorials and programs to display cross-sectional data in Google Earth do exist, and the workflow is rather simple. By importing a cross-sectional figure into in the open software SketchUp Make [Trimble Navigation Limited, 2016], any spatial model can be exported to a vertical figure in Google Earth. In this presentation a clear workflow/tutorial is presented how to image cross-sections manually in Google Earth. No software skills, nor any programming codes are required. It is very easy to use, offers great possibilities for teaching and allows fast figure manipulation in Google Earth. The full workflow can be found in "Van Noten, K. 2016. Visualizing Cross-Sectional Data in a Real-World Context. EOS, Transactions AGU, 97, 16-19".The video tutorial can be found here: https://www.youtube.com/watch?v=Tr8LwFJ4RYU&Figure: Cross-sectional Research Examples Illustrated in Google Earth

  8. Photo-neutron reaction cross-sections for natMo in the bremsstrahlung end-point energies of 12-16 and 45-70 MeV

    NASA Astrophysics Data System (ADS)

    Naik, H.; Kim, G. N.; Kapote Noy, R.; Schwengner, R.; Kim, K.; Zaman, M.; Shin, S. G.; Gey, Y.; Massarczyk, R.; John, R.; Junghans, A.; Wagner, A.; Cho, M.-H.

    2016-07-01

    The natMo( γ, xn)90, 91, 99Mo reaction cross-sections were experimentally determined for the bremsstrahlung end-point energies of 12, 14, 16, 45, 50, 55, 60 and 70MeV by activation and off-line γ -ray spectrometric technique and using the 20MeV electron linac (ELBE) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and the 100MeV electron linac at the Pohang Accelerator Laboratory (PAL), Pohang, Korea. The natMo( γ, xn)88, 89, 90, 91, 99Mo reaction cross-sections as a function of photon energy were also calculated using the computer code TALYS 1.6. The flux-weighted average cross-sections were obtained from the literature data and the calculated values of TALYS based on mono-energetic photons and are found to be in general agreement with the present results. The flux-weighted average experimental and theoretical cross-sections for the natMo( γ, xn)88, 89, 90, 91, 99Mo reactions increase with the bremsstrahlung end-point energy, which indicates the role of excitation energy. After a certain energy, the individual natMo( γ, xn) reaction cross-sections decrease with the increase of bremsstrahlung energy due to opening of other reactions, which indicates sharing of energy in different reaction channels. The 100Mo( γ, n) reaction cross-section is important for the production of 99Mo , which is a probable alternative to the 98Mo(n, γ) and 235U(n, f ) reactions.

  9. Charge Exchange of Highly Charged Ne and Mg Ions with H and He

    NASA Astrophysics Data System (ADS)

    Lyons, D.; Cumbee, R. S.; Stancil, P. C.

    2017-10-01

    Cross sections for single electron capture (SEC), or charge exchange (CX), in collisions of Ne(8-10)+ and Mg(8-12)+ with H and He, are computed using an approximate multichannel Landau-Zener (MCLZ) formalism. Final-state-resolved cross sections for the principal (n), orbital angular momentum (ℓ), and where appropriate, total spin angular momentum (S) quantum numbers are explicitly computed, except for the incident bare ions Ne10+ and Mg12+. In the latter two cases, n{\\ell }-resolution is obtained from analytical ℓ-distribution functions applied to n-resolved MCLZ cross sections. In all cases, the cross sections are computed over the collision energy range 1 meV/u to 50 keV/u with LZ parameters estimated from atomic energies obtained from experiment, theory, or, in the case of high-lying Rydberg levels, estimated with a quantum defect approach. Errors in the energy differences in the adiabatic potentials at the avoided crossing distances give the largest contribution to the uncertainties in the cross sections, which are expected to increase with decreasing cross section magnitude. The energy differences are deduced here with the Olson-Salop-Tauljberg radial coupling model. Proper selection of an ℓ-distribution function for bare ion collisions introduces another level of uncertainty into the results. Comparison is made to existing experimental or theoretical results when available, but such data are absent for most considered collision systems. The n{\\ell }S-resolved SEC cross sections are used in an optically thin cascade simulation to predict X-ray spectra and line ratios that will aid in modeling the X-ray emission in environments where CX is an important mechanism. Details on a MCLZ computational package, Stueckelberg, are also provided.

  10. Investigation of Activation Cross Sections of the Proton Induced Nuclear Reactions on Natural Iron at Medium Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditroi, F.; Tarkanyi, F.; Csikai, J.

    2005-05-24

    Iron is one of the most important structural materials in every field of science, technology, industry, etc. Its application in a radiating environment requires the knowledge of accurate excitation functions for the possible reactions in question. By using the Thin Layer Activation technique (TLA) the knowledge of such data is also extremely important even in the case of relative measurements to design the irradiation (irradiation energy, beam intensity, duration) and also for radioactive safety estimations. The cross sections are frequently measured at low energies but there are unsatisfactory and unreliable data in the energy range above 40 MeV.

  11. Investigation of Activation Cross Sections of the Proton Induced Nuclear Reactions on Natural Iron at Medium Energies

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Csikai, J.; Uddin, M. S.; Hagiwara, M.; Baba, M.

    2005-05-01

    Iron is one of the most important structural materials in every field of science, technology, industry, etc. Its application in a radiating environment requires the knowledge of accurate excitation functions for the possible reactions in question. By using the Thin Layer Activation technique (TLA) the knowledge of such data is also extremely important even in the case of relative measurements to design the irradiation (irradiation energy, beam intensity, duration) and also for radioactive safety estimations. The cross sections are frequently measured at low energies but there are unsatisfactory and unreliable data in the energy range above 40 MeV.

  12. Photoneutron reactions in astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varlamov, V. V., E-mail: Varlamov@depni.sinp.msu.ru; Ishkhanov, B. S.; Orlin, V. N.

    Among key problems in nuclear astrophysics, that of obtaining deeper insight into the mechanism of synthesis of chemical elements is of paramount importance. The majority of heavy elements existing in nature are produced in stars via radiative neutron capture in so-called s- and r processes, which are, respectively, slow and fast, in relation to competing β{sup −}-decay processes. At the same time, we know 35 neutron-deficient so-called bypassed p-nuclei that lie between {sup 74}Se and {sup 196}Hg and which cannot originate from the aforementioned s- and r-processes. Their production is possible in (γ, n), (γ, p), or (γ, α) photonuclearmore » reactions. In view of this, data on photoneutron reactions play an important role in predicting and describing processes leading to the production of p-nuclei. Interest in determining cross sections for photoneutron reactions in the threshold energy region, which is of particular importance for astrophysics, has grown substantially in recent years. The use of modern sources of quasimonoenergetic photons obtained in processes of inverse Compton laser-radiation scattering on relativistic electronsmakes it possible to reveal rather interesting special features of respective cross sections, manifestations of pygmy E1 and M1 resonances, or the production of nuclei in isomeric states, on one hand, and to revisit the problem of systematic discrepancies between data on reaction cross sections from experiments of different types, on the other hand. Data obtained on the basis of our new experimental-theoretical approach to evaluating cross sections for partial photoneutron reactions are invoked in considering these problems.« less

  13. Combined High Spectral Resolution Lidar and Millimeter Wavelength Radar Measurement of Ice Crystal Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eloranta, Edwin

    The goal of this research has been to improve measurements of snowfall using a combination of millimeter-wavelength radar and High Spectral Resolution Lidar (HSRL) Observations. Snowflakes are large compared to the 532nm HSRL wavelength and small compared to the 3.2 and 8.6 mm wavelength radars used in this study. This places the particles in the optical scattering regime of the HSRL, where extinction cross-section is proportional to the projected area of the particles, and in the Rayleigh regime for the radar, where the backscatter cross-section is proportional to the mass-squared of the particles. Forming a ratio of the radar measuredmore » cross-section to the HSRL measured cross section eliminates any dependence on the number of scattering particles, yielding a quantity proportional to the average mass-squared of the snowflakes over the average area of the flakes. Using simultaneous radar measurements of particle fall velocities, which are dependent particle mass and cross-sectional area it is possible to derive the average mass of the snow flakes, and with the radar measured fall velocities compute the snowfall rate. Since this retrieval requires the optical extinction cross-section we began by considering errors this quantity. The HSRL is particularly good at measuring the backscatter cross-section. In previous studies of snowfall in the high Arctic were able to estimate the extinction cross-section directly as a fixed ratio to the backscatter cross-section. Measurements acquired in the STORMVEX experiment in Colorado showed that this approach was not valid in mid-latitude snowfalls and that direct measurement of the extinction cross-section is required. Attempts to measure the extinction directly uncovered shortcomings in thermal regulation and mechanical stability of the newly deployed DOE HSRL systems. These problems were largely mitigated by modifications installed in both of the DOE systems. We also investigated other sources of error in the HSRL direct measurement of extinction (see appendix II of this report). We also developed improved algorithms to extract extinction from the HSRL data. These have been installed in the standard HSRL data processing software and are now available to all users of HSRL data. Validation of snowfall measurements has proven difficult due to the unreliability of conventional snowfall measurements coupled with the complexity of considering the vast variety of snowflake geometries. It was difficult to tell how well the algorithm’s approach to accommodating differences in snowflakes was working without good measurements for comparison. As a result, we decided to apply this approach to the somewhat simpler, but scientifically important, problem of drizzle measurement. Here the particle shape is known and the conventional measurement are more reliable. These algorithms where successfully applied to drizzle data acquired during the ARM MAGIC study of marine stratus clouds between California and Hawaii (see Appendix I). This technique is likely to become a powerful tool for studying lifetime of the climatically important marine stratus clouds.« less

  14. Measuring excitation functions needed to interpret cosmogenic nuclide production in lunar rocks

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K.; Beverding, A.; Englert, P. A. J.; Caffee, M. W.; Vincent, J.; Castaneda, C.; Reedy, R. C.

    1997-01-01

    Radionuclides produced in lunar rocks by cosmic ray interactions are measured using Accelerator Mass Spectrometry or gamma-ray spectroscopy. From these measurements, estimates of the solar proton flux over time periods characterized by the half-life of the isotope under study can be made, if all the cross sections for all the reactions of all cosmic ray particles with all elements found in lunar rocks are known. Proton production cross sections are very important because (approximately) 98% of solar cosmic rays and (approximately) 87% of galactic cosmic rays are protons in the lunar environment. Many of the needed cross sections have never been measured. Targets of C, Al, Si, SiO2, mg, K, Ca, Fe and Ni have been irradiated using three accelerators to cover a proton energy range of 25-500 MeV. Excitation functions for Be-7, Be-10, Na-22, and Al-26 production from Mg and Al will be reported, and the consequences of using these new cross section values to estimate solar proton fluxes discussed.

  15. Relativistic R-matrix calculations for photoionization cross-sections of C IV: implications for photorecombination of C V

    NASA Astrophysics Data System (ADS)

    Sardar, Shahid; Xu, Xin; Xu, Long-Quan; Zhu, Lin-Fan

    2018-02-01

    In this paper we present photoionization cross-sections of the ground and excited states of Li-like carbon (C IV) in the framework of fully relativistic R-matrix formalism as implemented in Dirac atomic R-matrix code. For target wavefunctions expansion, Multiconfiguration Dirac Hartree Fock calculations are performed for the lowest 17 target states of He-like carbon (C V) arising from 1s2 and 1snl, with n = 2, 3 and l = s, p, d configurations. Our target energy levels and transition parameters belonging to these levels are ascertained to be in excellent agreement with the experimental and the well-established theoretical results. We use the principle of detailed balance to get the photorecombination (PR) cross-sections of the ground state of C V. Both photoionization and PR cross-sections manifest important KLL and KLM resonance structures which are in very good agreement with the accurate measurements at Advanced Light Source (ion photon end beam station) and CRYRING (synchrotron storage ring).

  16. Revealing proton shape fluctuations with incoherent diffraction at high energy

    DOE PAGES

    Mantysaari, H.; Schenke, B.

    2016-08-30

    The di erential cross section of exclusive di ractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More speci cally, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to uctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of J= mesons are very well reproduced within the color glass condensate framework when strongmore » geometric uctuations of the gluon distribution in the proton are included. For meson production we also nd reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the e ect of saturation scale and color charge uctuations and constrain the degree of geometric uctuations.« less

  17. Dipole strength in 80Se below the neutron-separation energy for the nuclear transmutation of 79Se

    NASA Astrophysics Data System (ADS)

    Makinaga, Ayano; Massarczyk, Ralph; Beard, Mary; Schwengner, Ronald; Otsu, Hideaki; Müller, Stefan; Röder, Marko; Schmidt, Konrad; Wagner, Andreas

    2017-09-01

    The γ-ray strength function (γSF) in 80Se is an important parameter to estimate the neutron-capture cross section of 79Se which is one of the long-lived fission products (LLFPs). Until now, the γSF method was applied for 80Se only above the neutron-separation energy (Sn) and the evaluated 79Se(n,γ) cross section has an instability caused by the GSF below Sn. We studied the dipole-strength distribution of 80Se in a photon-scattering experiment using bremsstrahlung produced by an electron beam of an energy of 11.5 MeV at the linear accelerator ELBE at HZDR. The present photoabsorption cross section of 80Se was combined with results of (γ,n) experiments and are compared with predictions usinmg the TALYS code. We also estimated the 79Se(n,γ) cross sections and compare them with TALYS predictionms and earlier work by other groups.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza

    A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of themore » differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.« less

  19. Theoretical study on production cross sections of exotic actinide nuclei in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long

    2017-12-01

    Within the dinuclear system (DNS) model, the multinucleon transfer reactions 129,136Xe + 248Cm, 112Sn + 238U, and 144Xe + 248Cm are investigated. The production cross sections of primary fragments are calculated with the DNS model. By using a statistical model, we investigate the influence of charged particle evaporation channels on production cross sections of exotic nuclei. It is found that for excited neutron-deficient nuclei the charged particle evaporation competes with neutron emission and plays an important role in the cooling process. The production cross sections of several exotic actinide nuclei are predicted in the reactions 112Sn + 238U and 136,144Xe + 248Cm. Considering the beam intensities, the collisions of 136,144Xe projectiles with a 248Cm target for producing neutron-rich nuclei with Z=92-96 are investigated. Supported by National Natural Science Foundation of China (11605296) and Natural Science Foundation of Guangdong Province, China (2016A030310208)

  20. Measurements of the 40Ar(n, γ)41Ar radiative-capture cross section between 0.4 and 14.8 MeV

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Fallin, B.; Tornow, W.

    2014-09-01

    The 40Ar(n, γ)41Ar neutron capture cross section has been measured between 0.4 and 14.8 MeV neutron energy using the activation technique. The data are important for estimating backgrounds in argon-based neutrino and dark-matter detectors and in the neutrino-less double-beta decay search GERDA, which uses liquid argon as cooling and shielding medium. For the first time the 40Ar(n, γ)41Ar cross section has been measured for neutron energies above 1 MeV. Our results are compared to the evaluation ENDF/B-VII.1 and the calculated prediction TENDL-2013. The latter agrees very well with the present results.

  1. Measurement of the 169Tm (n ,3 n ) 167Tm cross section and the associated branching ratios in the decay of 167Tm

    NASA Astrophysics Data System (ADS)

    Champine, B.; Gooden, M. E.; Krishichayan, Norman, E. B.; Scielzo, N. D.; Stoyer, M. A.; Thomas, K. J.; Tonchev, A. P.; Tornow, W.; Wang, B. S.

    2016-01-01

    The cross section for the 169Tm(n ,3 n ) 167Tm reaction was measured from 17 to 22 MeV using quasimonoenergetic neutrons produced by the 2H(d ,n ) 3He reaction. This energy range was studied to resolve the discrepancy between previous (n ,3 n ) cross-section measurements. In addition, the absolute γ -ray branching ratios following the electron-capture decay of 167Tm were measured. These results provide more reliable nuclear data for an important diagnostic that is used at the National Ignition Facility to estimate the yield of reaction-in-flight neutrons produced via the inertial-confinement-fusion plasma in deuterium-tritium capsules.

  2. Absolute photoionization cross sections of furanic fuels: 2-ethylfuran, 2-acetylfuran and furfural.

    PubMed

    Smith, Audrey R; Meloni, Giovanni

    2015-11-01

    Absolute photoionization cross sections of the molecules 2-ethylfuran, 2-acetylfuran and furfural, including partial ionization cross sections for the dissociative ionized fragments, are measured for the first time. These measurements are important because they allow fuel quantification via photoionization mass spectrometry and the development of quantitative kinetic modeling for the complex combustion of potential fuels. The experiments are carried out using synchrotron photoionization mass spectrometry with an orthogonal time-of-flight spectrometer used for mass analysis at the Advanced Light Source of Lawrence Berkeley National Laboratory. The CBS-QB3 calculations of adiabatic ionization energies and appearance energies agree well with the experimental results. Several bond dissociation energies are also derived and presented. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Recent Results from MINERvA

    NASA Astrophysics Data System (ADS)

    Dytman, Steven

    2016-03-01

    Neutrino cross sections are important both as a key component of neutrino oscillation experiments and as a way to study the axial and vector response in nuclear systems. MINERvA is a neutrino cross section experiment that has been taking data at Fermilab since 2009. The beam energy is well-matched to existing oscillation experiments such as MINOS/MINOS + and NOvA and planned experiments such as DUNE. The experiment has the unique capability to measure cross sections simultaneously with hydrocarbon, iron, and lead targets. Numerous publications have provided new data for neutrino and antineutrino interactions in these targets including quasielastic, pion production, and inclusive processes. This talk will present a series of recent measurements, their relationship to oscillation experiments and to nuclear physics.

  4. LETTER TO THE EDITOR: Cross sections of 6Li(t,d1)7Li*[0.478] and 6Li(t,p1)8Li*[0.981] nuclear reactions in the 0-2 MeV energy range

    NASA Astrophysics Data System (ADS)

    Voronchev, V. T.; Kukulin, V. I.

    2000-12-01

    An original extrapolation technique developed previously is modified and applied to study nuclear reactions in the 6Li + T system at energies E = 0-2 MeV. Cross sections of gamma-ray-producing reactions 6Li(t,d1)7Li*[0.478] and 6Li(t,p1)8Li*[0.981] with important diagnostic implications are calculated. The (t,d1) nuclear data found exceed those accepted elsewhere by 2.5-3.5 times at sub-barrier energies. The cross sections of the (t,p1) reaction are calculated for the first time.

  5. Novel Method for Vessel Cross-Sectional Shear Wave Imaging.

    PubMed

    He, Qiong; Li, Guo-Yang; Lee, Fu-Feng; Zhang, Qihao; Cao, Yanping; Luo, Jianwen

    2017-07-01

    Many studies have investigated the applications of shear wave imaging (SWI) to vascular elastography, mainly on the longitudinal section of vessels. It is important to investigate SWI in the arterial cross section when evaluating anisotropy of the vessel wall or complete plaque composition. Here, we proposed a novel method based on the coordinate transformation and directional filter in the polar coordinate system to achieve vessel cross-sectional shear wave imaging. In particular, ultrasound radiofrequency data were transformed from the Cartesian to the polar coordinate system; the radial displacements were then estimated directly. Directional filtering was performed along the circumferential direction to filter out the reflected waves. The feasibility of the proposed vessel cross-sectional shear wave imaging method was investigated through phantom experiments and ex vivo and in vivo studies. Our results indicated that the dispersion relation of the shear wave (i.e., the guided circumferential wave) within the vessel can be measured via the present method, and the elastic modulus of the vessel can be determined. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Microsatellite marker development in Peony using next generation sequencing

    Treesearch

    Barbara Gilmore; Nahla Bassil; April Nyberg; Brian Knaus; Don Smith; Danny L. Barney; Kim Hummer

    2013-01-01

    Peonies (Paeonia), the grand garden perennial of spring and early summer, are economically important to the international cut flower market. Herbaceous peonies (Paeonia section Paeonia), tree peonies (Paeonia section Moutan), and intersectional crosses between the two types (...

  7. Investigation of the reaction 74Ge(p,γ)75As using the in-beam method to improve reaction network predictions for p nuclei

    NASA Astrophysics Data System (ADS)

    Sauerwein, A.; Endres, J.; Netterdon, L.; Zilges, A.; Foteinou, V.; Provatas, G.; Konstantinopoulos, T.; Axiotis, M.; Ashley, S. F.; Harissopulos, S.; Rauscher, T.

    2012-09-01

    Background: Astrophysical models studying the origin of the neutron-deficient p nuclides require knowledge of proton capture cross sections at low energy. The production site of the p nuclei is still under discussion but a firm basis of nuclear reaction rates is required to address the astrophysical uncertainties. Data at astrophysically relevant interaction energies are scarce. Problems with the prediction of charged particle capture cross sections at low energy were found in the comparisons between previous data and calculations in the Hauser-Feshbach statistical model of compound reactions.Purpose: A measurement of 74Ge(p,γ)75As at low proton energies, inside the astrophysically relevant energy region, is important in several respects. The reaction is directly important because it is a bottleneck in the reaction flow which produces the lightest p nucleus 74Se. It is also an important addition to the data set required to test reaction-rate predictions and to allow an improvement in the global p+nucleus optical potential required in such calculations.Method: An in-beam experiment was performed, making it possible to measure in the range 2.1≤Ep≤3.7MeV, which is for the most part inside the astrophysically relevant energy window. Angular distributions of the γ-ray transitions were measured with high-purity germanium detectors at eight angles relative to the beam axis. In addition to the total cross sections, partial cross sections for the direct population of 12 levels were determined.Results: The resulting cross sections were compared to Hauser-Feshbach calculations using the code smaragd. Only a constant renormalization factor of the calculated proton widths allowed a good reproduction of both total and partial cross sections. The accuracy of the calculation made it possible to check the spin assignment of some states in 75As. In the case of the 1075-keV state, a double state with spins and parities of 3/2- and 5/2- is needed to explain the experimental partial cross sections. A change in parity from 5/2+ to 5/2- is required for the state at 401 keV. Furthermore, in the case of 74Ge, studying the combination of total and partial cross sections made it possible to test the γ width, which is essential in the calculation of the astrophysical 74As(n,γ)75As rate.Conclusions: Between data and statistical model prediction a factor of about two was found. Nevertheless, the improved astrophysical reaction rate of 74Ge(p,γ) (and its reverse reaction) is only 28% larger than the previous standard rate. The prediction of the 74As(n,γ)75As rate (and its reverse) was confirmed, the newly calculated rate differs only by a few percent from the previous prediction. The in-beam method with high-efficiency detectors proved to be a powerful tool for studies in nuclear astrophysics and nuclear structure.

  8. Charge exchange cross sections in slow collisions of Si3+ with Hydrogen atom

    NASA Astrophysics Data System (ADS)

    Joseph, Dwayne; Quashie, Edwin; Saha, Bidhan

    2011-05-01

    In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. Work supported by NSF CREST project (grant #0630370).

  9. Total γ ⋆ }γ {⋆ cross section and the QCD dipole picture

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Florkowski, W.

    1998-05-01

    In the framework of the dipole picture of the BFKL pomeron we discuss two possibilities of calculating the total γ^{star}γ^{star} cross section of the virtual photons. It is shown that the dipole model reproduces the results obtained earlier from k_T-factorization up to the selection of the scale determining the length of the QCD cascade. The choice of scale turns out to be important for the numerical outcome of the calculations.

  10. Investigation of proton induced reactions on niobium at low and medium energies

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Hermanne, A.; Corniani, E.; Takács, S.; Tárkányi, F.; Csikai, J.; Shubin, Yu. N.

    2009-10-01

    Niobium is a metal with important technological applications: use as alloying element to increase strength of super alloys, as thin layer for tribological applications, as superconductive material, in high temperature engineering systems, etc. In the frame of a systematic study of activation cross-sections of charged particle induced reactions on structural materials proton induced excitation functions on Nb targets were determined with the aim of applications in accelerator and reactor technology and for thin layer activation (TLA). The charged particle activation cross-sections on this element are also important for yield calculation of medical isotope production ( 88,89Zr, 86,87,88Y) and for dose estimation in PET targetry. As niobium is a monoisotopic element it is an ideal target material to test nuclear reaction theories. We present here the experimental excitation functions of 93Nb(p,x) 90,93mMo, 92m,91m,90Nb, 88,89Zr and 88Y in the energy range 0-37 MeV. The results were compared with the theoretical cross-sections calculated by means of the code ALICE-IPPE, EMPIRE-3, TALYS and with the literature data. The theory reproduces the shape of the measured results well and magnitude is also acceptable. Thick target yields calculated from our fitted cross-section give reliable estimations for production of medically relevant radioisotopes and for dose estimation in accelerator technology.

  11. Microsatellite marker development in peony using next generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Peonies (Paeonia), the grand garden perennial of spring and early summer, are economically important to the international cut flower market. Herbaceous peonies (Paeonia section Paeonia), tree peonies (Paeonia section Moutan), and intersectional crosses between the two types (Itoh Paeonia hybrids) ...

  12. A probabilistic methodology for radar cross section prediction in conceptual aircraft design

    NASA Astrophysics Data System (ADS)

    Hines, Nathan Robert

    System effectiveness has increasingly become the prime metric for the evaluation of military aircraft. As such, it is the decision maker's/designer's goal to maximize system effectiveness. Industry and government research documents indicate that all future military aircraft will incorporate signature reduction as an attempt to improve system effectiveness and reduce the cost of attrition. Today's operating environments demand low observable aircraft which are able to reliably take out valuable, time critical targets. Thus it is desirable to be able to design vehicles that are balanced for increased effectiveness. Previous studies have shown that shaping of the vehicle is one of the most important contributors to radar cross section, a measure of radar signature, and must be considered from the very beginning of the design process. Radar cross section estimation should be incorporated into conceptual design to develop more capable systems. This research strives to meet these needs by developing a conceptual design tool that predicts radar cross section for parametric geometries. This tool predicts the absolute radar cross section of the vehicle as well as the impact of geometry changes, allowing for the simultaneous tradeoff of the aerodynamic, performance, and cost characteristics of the vehicle with the radar cross section. Furthermore, this tool can be linked to a campaign theater analysis code to demonstrate the changes in system and system of system effectiveness due to changes in aircraft geometry. A general methodology was developed and implemented and sample computer codes applied to prototype the proposed process. Studies utilizing this radar cross section tool were subsequently performed to demonstrate the capabilities of this method and show the impact that various inputs have on the outputs of these models. The F/A-18 aircraft configuration was chosen as a case study vehicle to perform a design space exercise and to investigate the relative impact of shaping parameters on radar cross section. Finally, two unique low observable configurations were analyzed to examine the impact of shaping for stealthiness.

  13. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.

    PubMed

    Yang, Xiaoxi; Forouzan, Omid; Burns, Jennie M; Shevkoplyas, Sergey S

    2011-10-07

    Traffic of leukocytes in microvascular networks (particularly through arteriolar bifurcations and venular convergences) affects the dynamics of capillary blood flow, initiation of leukocyte adhesion during inflammation, and localization and development of atherosclerotic plaques in vivo. Recently, a growing research effort has been focused on fabricating microvascular networks comprising artificial vessels with more realistic, rounded cross-sections. This paper investigated the impact of the cross-sectional geometry of microchannels on the traffic of leukocytes flowing with human whole blood through a non-symmetrical bifurcation that consisted of a 50 μm mother channel bifurcating into 30 μm and 50 μm daughter branches. Two versions of the same bifurcation comprising microchannels with rectangular and rounded cross-sections were fabricated using conventional multi-layer photolithography to produce rectangular microchannles that were then rounded in situ using a recently developed method of liquid PDMS/air bubble injection. For microchannels with rounded cross-sections, about two-thirds of marginated leukocytes traveling along a path in the top plane of the bifurcation entered the smallest 30 μm daughter branch. This distribution was reversed in microchannels with rectangular cross-sections--the majority of leukocytes traveling along a similar path continued to follow the 50 μm microchannels after the bifurcation. This dramatic difference in the distribution of leukocyte traffic among the branches of the bifurcation can be explained by preferential margination of leukocytes towards the corners of the 50 μm mother microchannels with rectangular cross-sections, and by the additional hindrance to leukocyte entry created by the sharp transition from the 50 μm mother microchannel to the 30 μm daughter branch at the intersection. The results of this study suggest that the trajectories of marginated leukocytes passing through non-symmetrical bifurcations are significantly affected by the cross-sectional geometry of microchannels and emphasize the importance of using microfludic systems with geometrical configurations closely matching physiological configurations when modeling the dynamics of whole blood flow in the microcirculation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meadows, J.; Smith, D.; Greenwood, L.

    Four sample packets containing elemental Ti, Fe, Ni, Cu, Nb, Ag, Eu, Tb and Hf have been irradiated in three distinct accelerator neutron fields, at Argonne National Laboratory and Los Alamos National Laboratory, USA, and Japan Atomic Energy Research Institute, Tokai, Japan. The acquired experimental data include differential cross sections and integral cross sections for the continuum neutron spectrum produced by 7-MeV deuterons incident on thick Be-metal target. The U-238(n,f) cross section was also measured at 10.3 MeV as a consistency check on the experimental technique. This the third progress report on a project which has been carried out undermore » the auspices of an IAEA Coordinated Research Program entitled ``Activation Cross Sections for the Generation Of Long-lived Radionuclides of Importance in Fusion Reactor Technology``. The present report provides the latest results from this work. Comparison is made between the 14.7-MeV cross-section values obtained from the separate investigations at Argonne and JAERI. Generally, good agreement observed within the experimental errors when consistent sample parameters, radioactivity decay data and reference cross values are employed. A comparison is also made between the experimental results and those derived from calculations using a nuclear model. Experimental neutron information on the Be(d,n) neutron spectrum was incorporated in the comparisons for the integral results. The agreement is satisfactory considering the various uncertainties that are involved.« less

  15. α -induced reactions on 115In: Cross section measurements and statistical model analysis

    NASA Astrophysics Data System (ADS)

    Kiss, G. G.; Szücs, T.; Mohr, P.; Török, Zs.; Huszánk, R.; Gyürky, Gy.; Fülöp, Zs.

    2018-05-01

    Background: α -nucleus optical potentials are basic ingredients of statistical model calculations used in nucleosynthesis simulations. While the nucleon+nucleus optical potential is fairly well known, for the α +nucleus optical potential several different parameter sets exist and large deviations, reaching sometimes even an order of magnitude, are found between the cross section predictions calculated using different parameter sets. Purpose: A measurement of the radiative α -capture and the α -induced reaction cross sections on the nucleus 115In at low energies allows a stringent test of statistical model predictions. Since experimental data are scarce in this mass region, this measurement can be an important input to test the global applicability of α +nucleus optical model potentials and further ingredients of the statistical model. Methods: The reaction cross sections were measured by means of the activation method. The produced activities were determined by off-line detection of the γ rays and characteristic x rays emitted during the electron capture decay of the produced Sb isotopes. The 115In(α ,γ )119Sb and 115In(α ,n )Sb118m reaction cross sections were measured between Ec .m .=8.83 and 15.58 MeV, and the 115In(α ,n )Sb118g reaction was studied between Ec .m .=11.10 and 15.58 MeV. The theoretical analysis was performed within the statistical model. Results: The simultaneous measurement of the (α ,γ ) and (α ,n ) cross sections allowed us to determine a best-fit combination of all parameters for the statistical model. The α +nucleus optical potential is identified as the most important input for the statistical model. The best fit is obtained for the new Atomki-V1 potential, and good reproduction of the experimental data is also achieved for the first version of the Demetriou potentials and the simple McFadden-Satchler potential. The nucleon optical potential, the γ -ray strength function, and the level density parametrization are also constrained by the data although there is no unique best-fit combination. Conclusions: The best-fit calculations allow us to extrapolate the low-energy (α ,γ ) cross section of 115In to the astrophysical Gamow window with reasonable uncertainties. However, still further improvements of the α -nucleus potential are required for a global description of elastic (α ,α ) scattering and α -induced reactions in a wide range of masses and energies.

  16. New Evaluated Semi-Empirical Formula Using Optical Model for 14-15 MeV ( n, t) Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Tel, E.; Durgu, C.; Aydın, A.; Bölükdemir, M. H.; Kaplan, A.; Okuducu, Ş.

    2009-12-01

    In the next century the world will face the need for new energy sources. Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Achieving acceptable performance for a fusion power system in the areas of economics, safety and environmental acceptability, is critically dependent on performance of the blanket and diverter systems which are the primary heat recovery, plasma purification, and tritium breeding systems. Tritium self-sufficiency must be maintained for a commercial power plant. The hybrid reactor is a combination of the fusion and fission processes. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So working out the systematics of ( n, t) reaction cross-sections are of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at energies up to 20 MeV. In this study, we have calculated non-elastic cross-sections by using optical model for ( n, t) reactions at 14-15 MeV energy. We have investigated the excitation function character and reaction Q-values depending on the asymmetry term effect for the ( n, t) reaction cross-sections. We have obtained new coefficients for the ( n, t) reaction cross-sections. We have suggested semi-empirical formulas including optical model nonelastic effects by fitting two parameters for the ( n, t) reaction cross-sections at 14-15 MeV. We have discussed the odd-even effect and the pairing effect considering binding energy systematic of the nuclear shell model for the new experimental data and new cross-sections formulas ( n, t) reactions developed by Tel et al. We have determined a different parameter groups by the classification of nuclei into even-even, even-odd and odd-even for ( n, t) reactions cross-sections. The obtained cross-section formulas with new coefficients have been discussed and compared with the available experimental data.

  17. SU-E-I-43: Photoelectric Cross Section Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, A; Nakagawa, K; Kotoku, J

    2015-06-15

    Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (boundmore » electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock potential for K-shell electrons, the difference from XCOM database was limited: 1% to 8% for low-Z elements in 10keV-1MeV energy ranges. This work was partly supported by the JSPS Core-to-Core Program (No. 23003)« less

  18. Digital database of channel cross-section surveys, Mount St. Helens, Washington

    USGS Publications Warehouse

    Mosbrucker, Adam R.; Spicer, Kurt R.; Major, Jon J.; Saunders, Dennis R.; Christianson, Tami S.; Kingsbury, Cole G.

    2015-08-06

    Stream-channel cross-section survey data are a fundamental component to studies of fluvial geomorphology. Such data provide important parameters required by many open-channel flow models, sediment-transport equations, sediment-budget computations, and flood-hazard assessments. At Mount St. Helens, Washington, the long-term response of channels to the May 18, 1980, eruption, which dramatically altered the hydrogeomorphic regime of several drainages, is documented by an exceptional time series of repeat stream-channel cross-section surveys. More than 300 cross sections, most established shortly following the eruption, represent more than 100 kilometers of surveyed topography. Although selected cross sections have been published previously in print form, we present a comprehensive digital database that includes geospatial and tabular data. Furthermore, survey data are referenced to a common geographic projection and to common datums. Database design, maintenance, and data dissemination are accomplished through a geographic information system (GIS) platform, which integrates survey data acquired with theodolite, total station, and global navigation satellite system (GNSS) instrumentation. Users can interactively perform advanced queries and geospatial time-series analysis. An accuracy assessment provides users the ability to quantify uncertainty within these data. At the time of publication, this project is ongoing. Regular database updates are expected; users are advised to confirm they are using the latest version.

  19. New measurement of the 242Pu(n,γ) cross section at n_TOF

    NASA Astrophysics Data System (ADS)

    Lerendegui-Marco, J.; Guerrero, C.; Cortés-Giraldo, M. A.; Quesada, J. M.; Mendoza, E.; Cano-Ott, D.; Eberhardt, K.; Junghans, A.

    2016-03-01

    The use of MOX fuel (mixed-oxide fuel made of UO2 and PuO2) in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. With the use of such new fuel composition rich in Pu, a better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF) and United States (ENDF) nuclear data agencies. For the case of 242Pu, the two only neutron capture time-of-flight measurements available, from 1973 and 1976, are not consistent with each other, which calls for a new time-of flight capture cross section measurement. In order to contribute to a new evaluation, we have perfomed a neutron capture cross section measurement at the n_TOF-EAR1 facility at CERN using four C6D6 detectors, using a high purity target of 95 mg. The preliminary results assessing the quality and limitations (background, statistics and γ-flash effects) of this new experimental data are presented and discussed, taking into account that the aimed accuracy of the measurement ranges between 7% and 12% depending on the neutron energy region.

  20. A broad-group cross-section library based on ENDF/B-VII.0 for fast neutron dosimetry Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpan, F.A.

    2011-07-01

    A new ENDF/B-VII.0-based coupled 44-neutron, 20-gamma-ray-group cross-section library was developed to investigate the latest evaluated nuclear data file (ENDF) ,in comparison to ENDF/B-VI.3 used in BUGLE-96, as well as to generate an objective-specific library. The objectives selected for this work consisted of dosimetry calculations for in-vessel and ex-vessel reactor locations, iron atom displacement calculations for reactor internals and pressure vessel, and {sup 58}Ni(n,{gamma}) calculation that is important for gas generation in the baffle plate. The new library was generated based on the contribution and point-wise cross-section-driven (CPXSD) methodology and was applied to one of the most widely used benchmarks, themore » Oak Ridge National Laboratory Pool Critical Assembly benchmark problem. In addition to the new library, BUGLE-96 and an ENDF/B-VII.0-based coupled 47-neutron, 20-gamma-ray-group cross-section library was generated and used with both SNLRML and IRDF dosimetry cross sections to compute reaction rates. All reaction rates computed by the multigroup libraries are within {+-} 20 % of measurement data and meet the U. S. Nuclear Regulatory Commission acceptance criterion for reactor vessel neutron exposure evaluations specified in Regulatory Guide 1.190. (authors)« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.; Albergo, S.; Caccia, Z.

    A liquid hydrogen target was used to study the nuclear fragmentation of beams of relativistic heavy ions, [sup 22]Ne to [sup 58]Ni, over an energy range 400 to 900 MeV/nucleon. The experiments were carried out at the Lawrence Berkeley Laboratory Bevalac HISS facility, using the charge-velocity-rigidity method to identify the charged fragments. Here we describe the general concept of the experiment and present total charge-changing cross sections obtained from 17 separate runs. These new measured cross sections display an energy dependence which follows semiempirical model predictions. The mass dependence of the cross sections behaves as predicted by optical models, butmore » within the experimental energy range, the optical model parameters display a clear energy dependence. The isospin of the projectile nuclei also appears to be an important factor in the interaction process.« less

  2. Sensitivity analysis of TRX-2 lattice parameters with emphasis on epithermal /sup 238/U capture. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomlinson, E.T.; deSaussure, G.; Weisbin, C.R.

    1977-03-01

    The main purpose of the study is the determination of the sensitivity of TRX-2 thermal lattice performance parameters to nuclear cross section data, particularly the epithermal resonance capture cross section of /sup 238/U. An energy-dependent sensitivity profile was generated for each of the performance parameters, to the most important cross sections of the various isotopes in the lattice. Uncertainties in the calculated values of the performance parameters due to estimated uncertainties in the basic nuclear data, deduced in this study, were shown to be small compared to the uncertainties in the measured values of the performance parameter and compared tomore » differences among calculations based upon the same data but with different methodologies.« less

  3. Characterizing the astrophysical S factor for 12C+12C fusion with wave-packet dynamics

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, Alexis; Wiescher, Michael

    2018-05-01

    A quantitative study of the astrophysically important subbarrier fusion of 12C+12C is presented. Low-energy collisions are described in the body-fixed reference frame using wave-packet dynamics within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave packet through the collective potential-energy landscape. The fusion imaginary potential for specific dinuclear configurations is crucial for understanding the appearance of resonances in the fusion cross section. The theoretical subbarrier fusion cross sections explain some observed resonant structures in the astrophysical S factor. These cross sections monotonically decline towards stellar energies. The structures in the data that are not explained are possibly due to cluster effects in the nuclear molecule, which need to be included in the present approach.

  4. Activation cross-section measurement of proton induced reactions on cerium

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Spahn, I.; Spellerberg, S.

    2017-12-01

    In the framework of a systematic study of proton induced nuclear reactions on lanthanides we have measured the excitation functions on natural cerium for the production of 142,139,138m,137Pr, 141,139,137m,137g,135Ce and 133La up to 65 MeV proton energy using the activation method with stacked-foil irradiation technique and high-resolution γ-ray spectrometry. The cross-sections of the investigated reactions were compared with the data retrieved from the TENDL-2014 and TENDL-2015 libraries, based on the latest version of the TALYS code system. No earlier experimental data were found in the literature. The measured cross-section data are important for further improvement of nuclear reaction models and for practical applications in nuclear medicine, other labeling and activation studies.

  5. Evaluation of neutron total and capture cross sections on 99Tc in the unresolved resonance region

    NASA Astrophysics Data System (ADS)

    Iwamoto, Nobuyuki; Katabuchi, Tatsuya

    2017-09-01

    Long-lived fission product Technetium-99 is one of the most important radioisotopes for nuclear transmutation. The reliable nuclear data are indispensable for a wide energy range up to a few MeV, in order to develop environmental load reducing technology. The statistical analyses of resolved resonances were performed by using the truncated Porter-Thomas distribution, coupled-channels optical model, nuclear level density model and Bayes' theorem on conditional probability. The total and capture cross sections were calculated by a nuclear reaction model code CCONE. The resulting cross sections have statistical consistency between the resolved and unresolved resonance regions. The evaluated capture data reproduce those recently measured at ANNRI of J-PARC/MLF above resolved resonance region up to 800 keV.

  6. Atomic Processes and Diagnostics of Low Pressure Krypton Plasma

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh; Goyal, Dipti; Gangwar, Reetesh; Stafford, Luc

    2015-03-01

    Optical emission spectroscopy along with suitable collisional-radiative (CR) model is used in plasma diagnostics. Importance of reliable cross-sections for various atomic processes is shown for low pressure argon plasma. In the present work, radially-averaged Kr emission lines from the 2pi --> 1sj were recorded as a function of pressure from 1 to 50mTorr. We have developed a CR model using our fine-structure relativistic-distorted wave cross sections. The various processes considered are electron-impact excitation, ionization and their reverse processes. The required rate coefficients have been calculated from these cross-sections assuming Maxwellian energy distribution. Electron temperature obtained from the CR model is found to be in good agreement with the probe measurements. Work is supported by IAEA Vienna, DAE-BRNS Mumbai and CSIR, New Delhi.

  7. Computed tomographic and cross-sectional anatomy of the normal pacu (Colossoma macroponum).

    PubMed

    Carr, Alaina; Weber, E P Scott; Murphy, Chris J; Zwingenberger, Alison

    2014-03-01

    The purpose of this study was to compare and define the normal cross-sectional gross and computed tomographic (CT) anatomy for a species of boney fish to better gain insight into the use of advanced diagnostic imaging for future clinical cases. The pacu (Colossoma macropomum) was used because of its widespread presence in the aquarium trade, its relatively large body size, and its importance in the research and aquaculture settings. Transverse 0.6-mm CT images of three cadaver fish were obtained and compared to corresponding frozen cross sections of the fish. Relevant anatomic structures were identified and labeled at each level; the Hounsfield unit density of major organs was established. The images presented good anatomic detail and provide a reference for future research and clinical investigation.

  8. An analytical solution for Dean flow in curved ducts with rectangular cross section

    NASA Astrophysics Data System (ADS)

    Norouzi, M.; Biglari, N.

    2013-05-01

    In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.

  9. [Values of generation Y nurses compared to generation X and baby boomers - A cross-sectional study].

    PubMed

    Huber, Peter; Schubert, Hans-Joachim

    2018-06-01

    Values of generation Y nurses compared to generation X and baby boomers - A cross-sectional study Abstract. Several studies point to special behaviours of generation Y employees. Starting from the assumption that there is an effect on the attitudes and behaviour of values, the study deals with the question of differences in the values between generation Y (1981 - 1995) and generations X (1966 - 1980) and the baby boomers (1956 - 1965). Values are identified by nurses (n = 421) in the self-assessment as well as by stranger estimations of station leads (n = 259) and nursing directors (n = 312) in a quantitative cross-sectional study based on the PVQ-21 questionnaire was laid. While the values of self-centredness, stimulation, and hedonism are of high importance to generation Y in both self-assessment and outside consideration, tradition, conformity, and safety are considered less important. Likewise, for some values of generation Y, differences in self and other views can be determined. In the sense of a transformational understanding of leadership, operative and strategic nursing management must consider generation-specific differences in dealing with nursing staff.

  10. 12 CFR 400.101 - Cross-reference to employee financial disclosure and ethical conduct standards regulations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... disclosure and ethical conduct standards regulations. 400.101 Section 400.101 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES EMPLOYEE FINANCIAL DISCLOSURE AND ETHICAL CONDUCT STANDARDS REGULATIONS § 400.101 Cross-reference to employee financial disclosure and ethical conduct standards regulations...

  11. 12 CFR 400.101 - Cross-reference to employee financial disclosure and ethical conduct standards regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... disclosure and ethical conduct standards regulations. 400.101 Section 400.101 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES EMPLOYEE FINANCIAL DISCLOSURE AND ETHICAL CONDUCT STANDARDS REGULATIONS § 400.101 Cross-reference to employee financial disclosure and ethical conduct standards regulations...

  12. 12 CFR 400.101 - Cross-reference to employee financial disclosure and ethical conduct standards regulations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... disclosure and ethical conduct standards regulations. 400.101 Section 400.101 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES EMPLOYEE FINANCIAL DISCLOSURE AND ETHICAL CONDUCT STANDARDS REGULATIONS § 400.101 Cross-reference to employee financial disclosure and ethical conduct standards regulations...

  13. 12 CFR 400.101 - Cross-reference to employee financial disclosure and ethical conduct standards regulations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... disclosure and ethical conduct standards regulations. 400.101 Section 400.101 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES EMPLOYEE FINANCIAL DISCLOSURE AND ETHICAL CONDUCT STANDARDS REGULATIONS § 400.101 Cross-reference to employee financial disclosure and ethical conduct standards regulations...

  14. 12 CFR 400.101 - Cross-reference to employee financial disclosure and ethical conduct standards regulations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... disclosure and ethical conduct standards regulations. 400.101 Section 400.101 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES EMPLOYEE FINANCIAL DISCLOSURE AND ETHICAL CONDUCT STANDARDS REGULATIONS § 400.101 Cross-reference to employee financial disclosure and ethical conduct standards regulations...

  15. New electron-energy transfer rates for vibrational excitation of O2

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Campbell, L.; Bottema, M. J.; Brunger, M. J.

    2003-09-01

    We report on our computation of electron-energy transfer rates for vibrational excitation of O2. This work was necessitated by inadequacies in the electron-impact cross section databases employed in previous studies and, in one case, an inaccurate approximate formulation to the rate equation. Both these inadequacies led to incorrect energy transfer rates being published in the literature. We also demonstrate the importance of using cross sections that encompass an energy range that is extended enough to appropriately describe the environment under investigation.

  16. A coupled-cluster study of photodetachment cross sections of closed-shell anions

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Decleva, Piero; Coriani, Sonia

    2014-11-01

    We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H-, Li-, Na-, F-, Cl-, and OH-. The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.

  17. A coupled-cluster study of photodetachment cross sections of closed-shell anions.

    PubMed

    Cukras, Janusz; Decleva, Piero; Coriani, Sonia

    2014-11-07

    We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H(-), Li(-), Na(-), F(-), Cl(-), and OH(-). The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.

  18. Neutron cross sections. Volume I. Resonance parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mughabghab, S.F.; Garber, D.I.

    1973-06-01

    In contrast to earlier editions, which presented in compact form a summary of the complete store of the neutron data files, this edition aims to provide those portions of neutron data considered to be of prime importance and best suited for inclusion in ready reference form. This volume contains thermal cross sections, resonance properties, resonance parameters, and bibliography for nuclides from H to /sup 257/Fm. Notation and nomenclature, considerations involved in the recommendations, and a table of energyordered resonances are also included. (RWR)

  19. High-resolution vacuum-ultraviolet photoabsorption spectra of 1-butyne and 2-butyne

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.

    2015-07-21

    The absolute photoabsorption cross sections of 1- and 2-butyne have been recorded at high resolution by using the vacuum-ultraviolet Fourier-Transform spectrometer at the SOLEIL Synchrotron. Both spectra show more resolved structure than previously observed, especially in the case of 2-butyne. In this work, we assess the potential importance of Rydberg states with higher values of orbital angular momentum, l, than are typically observed in photoabsorption experiments from ground state molecules. We show how the character of the highest occupied molecular orbitals in 1- and 2-butyne suggests the potential importance of transitions to such high-l (l = 3 and 4) Rydbergmore » states. Furthermore, we use theoretical calculations of the partial wave composition of the absorption cross section just above the ionization threshold and the principle of continuity of oscillator strength through an ionization threshold to support this conclusion. The new absolute photoabsorption cross sections are discussed in light of these arguments, and the results are consistent with the expectations. This type of argument should be valuable for assessing the potential importance of different Rydberg series when sufficiently accurate direct quantum chemical calculations are difficult, for example, in the n ≥ 5 manifolds of excited states of larger molecules.« less

  20. Measurement of the normalized U 238 ( n , f ) / U 235 ( n , f ) cross section ratio from threshold to 30 MeV with the NIFFTE fission Time Projection Chamber

    DOE PAGES

    Casperson, R. J.; Asner, D. M.; Baker, J.; ...

    2018-03-23

    We present that the normalized 238U(n,f)/ 235U(n,f) cross section ratio has been measured using the NIFFTE fission Time Projection Chamber (fissionTPC) from the reaction threshold to 30 MeV . The fissionTPC is a two-volume MICROMEGAS time projection chamber that allows for full three-dimensional reconstruction of fission-fragment ionization profiles from neutron-induced fission. The measurement was performed at the Los Alamos Neutron Science Center, where the neutron energy is determined from neutron time of-flight. The 238U(n,f)/ 235U(n,f) ratio reported here is the first cross section measurement made with the fissionTPC, and will provide new experimental data for evaluation of the 238U(n,f) crossmore » section, an important standard used in neutron-flux measurements. Use of a development target in this work prevented the determination of an absolute normalization, to be addressed in future measurements. Instead, the measured cross section ratio has been normalized to ENDF/B-VIII.β5 at 14.5 MeV.« less

  1. Measurement of the normalized U 238 ( n , f ) / U 235 ( n , f ) cross section ratio from threshold to 30 MeV with the NIFFTE fission Time Projection Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casperson, R. J.; Asner, D. M.; Baker, J.

    We present that the normalized 238U(n,f)/ 235U(n,f) cross section ratio has been measured using the NIFFTE fission Time Projection Chamber (fissionTPC) from the reaction threshold to 30 MeV . The fissionTPC is a two-volume MICROMEGAS time projection chamber that allows for full three-dimensional reconstruction of fission-fragment ionization profiles from neutron-induced fission. The measurement was performed at the Los Alamos Neutron Science Center, where the neutron energy is determined from neutron time of-flight. The 238U(n,f)/ 235U(n,f) ratio reported here is the first cross section measurement made with the fissionTPC, and will provide new experimental data for evaluation of the 238U(n,f) crossmore » section, an important standard used in neutron-flux measurements. Use of a development target in this work prevented the determination of an absolute normalization, to be addressed in future measurements. Instead, the measured cross section ratio has been normalized to ENDF/B-VIII.β5 at 14.5 MeV.« less

  2. Neutron-capture cross-section measurements of 74Ge and 76Ge in the energy region 0.4-14.8 MeV for neutrinoless double β decay applications

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, Werner

    2013-10-01

    Fast neutron capture cross sections for the reactions 74Ge(n, γ)75Ge and 76Ge(n, γ)77Ge have been measured in the neutron energy region 0.4-14.8 MeV with the activation method. The results are important to identify backgrounds in the neutrinoless double- β decay experiments GERDA and MAJORANA, which use germanium as both source and detector. Isotopically enriched targets which consisted of 86% of 76Ge and 14% of 74Ge were irradiated with mono-energetic neutrons produced via 3H(p,n)3He, 2H(d,n)3He and 3H(d,n)4He reactions. The cross sections were determined relative to 197Au(n, γ)198Au, 115In(n,n')115mIn and 197Au(n,2n)196Au standard cross sections. The activities of the products were measured using high-resolution γ-ray spctroscopy. The present results are compared with the evaluated data from ENDF/B-VII.1 and TALYS.

  3. High temperature infrared absorption cross sections of methane near 3.4 µm in Ar and CO 2 mixtures

    DOE PAGES

    Koroglu, Batikan; Neupane, Sneha; Pryor, Owen; ...

    2017-11-04

    In this study, the absorption cross-sections of CH 4 at two wavelengths in the mid-IR region: λ peak = 3403.4 nm and λ valley = 3403.7 nm were measured. Data were taken using three different compositions of non-reactive gas mixtures comprising CH 4/Ar/CO 2 between 700 < T < 2000 K and 0.1 < P < 1.5 atm in a shock tube utilizing a continuous-wave distributed-feedback quantum cascade laser. Also, broadband room temperature methane cross section measurements were performed using a Fourier transform infrared spectrometer and the cascade laser to gain a better insight into the changes of the linemore » shapes in various bath gasses (Ar, CO 2, and N 2). An application of the high-temperature cross-section data was demonstrated to determine the concentration of methane during oxy-methane combustion in a mixture of CO 2, O 2, and Ar. Lastly, current measurements will be valuable addition to the spectroscopy database for methane- an important fuel used for power generation and heating around the world.« less

  4. 16O(n,α) cross section investigation using LENZ instrument at LANSCE

    NASA Astrophysics Data System (ADS)

    Lee, H. Y.; Mosby, S.; Haight, R. C.; White, M. C.

    2016-06-01

    Importance of studying the 16O(n,α) reaction is motivated by multiple nuclear applications. The Los Alamos Neutron Science Center (LANSCE) produces a white neutron spectrum ranging from thermal to several hundreds of MeV energies. We have recently developed the LENZ (Low Energy NZ-neutron induced charged particle detection) capability to measure high-precision (n,α) cross sections. In order to provide more reliable data, we have enhanced solid angle coverage, and improved signal-to-noise ratios and time-of-flight resolution by implementing digitizer waveform analysis. The LENZ was commissioned by studying the 59Co(n,α) reaction with neutron beams in early 2015. For the 16O(n,α) reaction, we investigate solid oxygen targets and make a relative measurement to a better known cross section, such as the 6Li(n,α) reaction in order to further reduce systematic uncertainty. We will discuss the progress of the 16O(n,α) study at LANSCE and the outlook for improving Hauser-Feshbah prediction on (n,p) reaction cross sections.

  5. Fission cross section uncertainties with the NIFFTE TPC

    NASA Astrophysics Data System (ADS)

    Sangiorgio, Samuele; Niffte Collaboration

    2014-09-01

    Nuclear data such as neutron-induced fission cross sections play a fundamental role in nuclear energy and defense applications. In recent years, understanding of these systems has become increasingly dependent upon advanced simulation and modeling, where uncertainties in nuclear data propagate in the expected performances of existing and future systems. It is important therefore that uncertainties in nuclear data are minimized and fully understood. For this reason, the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) uses a Time Projection Chamber (TPC) to measure energy-differential (n,f) cross sections with unprecedented precision. The presentation will discuss how the capabilities of the NIFFTE TPC allow to directly measures systematic uncertainties in fission cross sections, in particular for what concerns fission-fragment identification, and target and beam uniformity. Preliminary results from recent analysis of 238U/235U and 239Pu/235U data collected with the TPC will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Electron-ion continuum-continuum mixing in dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1993-01-01

    In recent calculations on the dissociative recombination (DR) of the v=1 vibrational level of the ground state of N2(+), N2(+)(v=1) + e(-) yields N + N, we have observed an important continuun-continuum mixing process involving the open channels on both sides of N2(+)(v=1) + e(-) yields N2(+)(v=0) + e(-). In vibrational relaxation by electron impact (immediately above) the magnitude of the cross section depends upon the strength of the interaction between these continua. In DR of the v=1 ion level, these continua can also interact in the entrance channel, and the mixing can have a profound effect upon the DR cross section from v=1, as we illustrate in this paper. In our theoretical calculations of N2(+) DR using multichannel quantum defect theory (MQDT), the reactants and products in the two above equations are described simultaneously. This allows us to calculate vibrational relaxation and excitation cross sections as well as DR cross sections. In order to understand the mixing described above, we first present a brief review of the prior results for DR of the v=0 level of N2(+).

  7. Measurements of e p → e ' π + π - p ' cross sections with CLAS at 1.40 GeV < W < 2.0 GeV and 2.0 GeV 2 < Q 2 < 5.0 GeV 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isupov, E. L.; Burkert, V. D.; Carman, D. S.

    This paper reports new exclusive cross sections formore » $$e p \\to e' \\pi^+ \\pi^- p'$$ using the CLAS detector at Jefferson Laboratory. These results are presented for the first time at photon virtualities 2.0 GeV 2 < Q 2 < 5.0 GeV 2 in the center-of-mass energy range 1.4 GeV < W < 2.0 GeV, which covers a large part of the nucleon resonance region. Using a model developed for the phenomenological analysis of electroproduction data, we see strong indications that the relative contributions from the resonant cross sections at W < 1.74 GeV increase with $Q^2$. These data considerably extend the kinematic reach of previous measurements. Exclusive $$e p \\to e' \\pi^+ \\pi^- p'$$ cross section measurements are of particular importance for the extraction of resonance electrocouplings in the mass range above 1.6 GeV.« less

  8. Measurements of {ital ep} {rightarrow} {ital e}'{pi}{sup +}{pi}{sup -}{ital p}' Cross Sections with CLAS at 1.40 GeV < {ital W} < 2.0 GeV and 2.0 GeV{sup 2} < {ital Q}{sup 2} < 5.0 GeV{sup 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isupov, E. L.; Burkert, V.; Carman, D. S.

    This paper reports new exclusive cross sections for ep -> e' pi(+) pi(-) p' using the CLAS detector at Jefferson Laboratory. These results are presented for the first time at photon virtualities 2.0 GeV2 < Q(2) < 5.0 GeV2 in the center-of-mass energy range 1.4 GeV < W < 2.0 GeV, which covers a large part of the nucleon resonance region. Using a model developed for the phenomenological analysis of electroproduction data, we see strong indications that the relative contributions from the resonant cross sections at W < 1.74 GeV increase with Q(2). These data considerably extend the kinematic reachmore » of previous measurements. Exclusive ep -> e' pi(+) pi(-) p' cross section measurements are of particular importance for the extraction of resonance electrocouplings in the mass range above 1.6 GeV« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukyanov, V. K., E-mail: lukyanov@theor.jinr.ru; Zemlyanaya, E. V.; Lukyanov, K. V.

    The folding-model optical potential is generalized in such a way as to apply it to calculating the cross sections for inelastic scattering of π{sup ±}-mesons on {sup 28}Si, {sup 40}Ca, {sup 58}Ni, and {sup 208}Pb nuclei at the energies of 162, 180, 226, and 291 MeV leading to the excitation of the 2{sup +} and 3{sup −} collective states. In doing this, use is made of known nucleon-density distributions in nuclei and the pion–nucleon scattering amplitude whose parameters were obtained previously by fitting the elastic scattering cross sections for the same nuclei. Thus, the values of quadrupole (β{sub 2}) andmore » octupole (β{sub 3}) deformations of nuclei appear here as the only adjustable parameters. The scattering cross section is calculated by solving the relativistic wave equation, whereby effects of relativization and distortion in the entrance and exit scattering channels are taken exactly into account. The cross sections calculated in this way for inelastic scattering are in good agreement with respective experimental data. The importance of the inclusion of in-medium effects in choosing parameters of the pion–nucleon amplitude is emphasized.« less

  10. Comparative study of elastic electron collisions on the isoelectronic SiN{sub 2}, SiCO, and CSiO radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimoto, M. M.; Michelin, S. E.; Mazon, K. T.

    2007-07-15

    We report a theoretical study of elastic electron collisions on three isoelectronic free radicals, namely, SiNN, SiCO, and CSiO. More specifically, differential, integral, and momentum-transfer cross sections are calculated and reported in the (1-100) eV energy range. Calculations are performed at the static-exchange-polarization-absorption level of approximation. A combination of the iterative Schwinger variational method and the distorted-wave approximation is used to solve the scattering equations. Our study reveals that the calculated cross sections for the e{sup -}-SiNN and e{sup -}-SiCO collisions are very similar even at incident energies as low as 3 eV. Strong isomeric effects are also observed inmore » the calculated cross sections for e{sup -}-CSiO and e{sup -}-SiCO collisions, particularly at incident energies below 20 eV. It is believed that the position of the silicon atom being at the center or extremity of the molecules may exert important influence on the calculated cross sections.« less

  11. High temperature infrared absorption cross sections of methane near 3.4 µm in Ar and CO 2 mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koroglu, Batikan; Neupane, Sneha; Pryor, Owen

    In this study, the absorption cross-sections of CH 4 at two wavelengths in the mid-IR region: λ peak = 3403.4 nm and λ valley = 3403.7 nm were measured. Data were taken using three different compositions of non-reactive gas mixtures comprising CH 4/Ar/CO 2 between 700 < T < 2000 K and 0.1 < P < 1.5 atm in a shock tube utilizing a continuous-wave distributed-feedback quantum cascade laser. Also, broadband room temperature methane cross section measurements were performed using a Fourier transform infrared spectrometer and the cascade laser to gain a better insight into the changes of the linemore » shapes in various bath gasses (Ar, CO 2, and N 2). An application of the high-temperature cross-section data was demonstrated to determine the concentration of methane during oxy-methane combustion in a mixture of CO 2, O 2, and Ar. Lastly, current measurements will be valuable addition to the spectroscopy database for methane- an important fuel used for power generation and heating around the world.« less

  12. The 13C(n,α0)10Be cross section at 14.3 MeV and 17 MeV neutron energy

    NASA Astrophysics Data System (ADS)

    Kavrigin, P.; Belloni, F.; Frais-Koelbl, H.; Griesmayer, E.; Plompen, A. J. M.; Schillebeeckx, P.; Weiss, C.

    2017-09-01

    At nuclear fusion reactors, CVD diamond detectors are considered an advantageous solution for neutron flux monitoring. For such applications the knowledge of the cross section of neutron-induced nuclear reactions on natural carbon are of high importance. Especially the (n,α0) reactions, yielding the highest energy reaction products, are of relevance as they can be clearly distinguished in the spectrum. The 13C(n,α0)10Be cross section was measured relative to 12C(n,α0)9Be at the Van de Graaff facility of EC-JRC Geel, Belgium, at 14.3 MeV and 17.0 MeV neutron energies. The measurement was performed with an sCVD (single-crystal Chemical Vapor Deposition) diamond detector, where the detector material acted simultaneously as sample and as sensor. A novel data analysis technique, based on pulse-shape discrimination, allowed an efficient reduction of background events. The results of the measurement are presented and compared to previously published values for this cross-section.

  13. Improved surface-roughness scattering and mobility models for multi-gate FETs with arbitrary cross-section and biasing scheme

    NASA Astrophysics Data System (ADS)

    Lizzit, D.; Badami, O.; Specogna, R.; Esseni, D.

    2017-06-01

    We present a new model for surface roughness (SR) scattering in n-type multi-gate FETs (MuGFETs) and gate-all-around nanowire FETs with fairly arbitrary cross-sections, its implementation in a complete device simulator, and the validation against experimental electron mobility data. The model describes the SR scattering matrix elements as non-linear transformations of interface fluctuations, which strongly influences the root mean square value of the roughness required to reproduce experimental mobility data. Mobility simulations are performed via the deterministic solution of the Boltzmann transport equation for a 1D-electron gas and including the most relevant scattering mechanisms for electronic transport, such as acoustic, polar, and non-polar optical phonon scattering, Coulomb scattering, and SR scattering. Simulation results show the importance of accounting for arbitrary cross-sections and biasing conditions when compared to experimental data. We also discuss how mobility is affected by the shape of the cross-section as well as by its area in gate-all-around and tri-gate MuGFETs.

  14. Towards the measurement of the13C(d, p)14C cross section using AMS

    NASA Astrophysics Data System (ADS)

    Murillo-Morales, S.; Barrón-Palos, L.; Chávez, E.; Araujo-Escalona, V.

    2017-07-01

    A plan to study the total cross section for the13C(d, p)14C nuclear reaction has been developed for energies in the center-of-mass frame between 133 and 400 keV. The proposed experiment will use a deuterium beam (1-3 MeV of energy) from the Instituto de Física-UNAM 5.5 MV Van de Graaff accelerator and the produced14C will be afterwards measured by AMS technique in the LEMA-UNAM (HVEE 1 MV Tandetron). One of the main goals is to study the performance of the LEMA-UNAM facility in the cross section measurement in comparison with other data reported in the literature, measured by other techniques. In this work we present the current status of these studies. The relevance of the13C(d, p)14C reaction in the study of compound nucleus formation as well as in some astrophysics scenarios, and the importance of the development of the AMS technique to measure cross sections of nuclear reactions of astrophysical interest in Mixico are also discussed.

  15. Nuclear medium effects in muonic neutrino interactions with energies from 0.2 to 1.5 GeV

    NASA Astrophysics Data System (ADS)

    Vargas, D.; Samana, A. R.; Velasco, F. G.; Hoyos, O. R.; Guzmán, F.; Bernal-Castillo, J. L.; Andrade-II, E.; Perez, R.; Deppman, A.; Barbero, C. A.; Mariano, A. E.

    2017-11-01

    Nuclear reactions induced by muon neutrinos with energies from 0.2 to 1.5 GeV in the Monte Carlo calculation framework in the intranuclear cascade model are studied. This study was done by comparing the available experimental data and theoretical values of total cross section, and the energy distribution of emitted lepton energy in the reaction muon neutrino nucleus, using the targets 12C, 16O, 27Al, 40Ar, 56Fe, and 208Pb. A phenomenological model of primary neutrino-nucleon interaction gives good agreement between our theoretical inclusive neutrino nucleus cross section and the available experimental data. Some interesting results on the behavior of the cross section as function of 1 p -1 n and higher contributions are also sketched. The previous results on the fraction of fake events in available experiments in 12C were expanded for the set of studied nuclei. With the increase of mass targets, the nuclear effects in the cross sections were observed and the importance of taking into account fake events in the reactions was noted.

  16. A parameterization scheme for the x-ray linear attenuation coefficient and energy absorption coefficient.

    PubMed

    Midgley, S M

    2004-01-21

    A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements 1 < or = Z < or = 20, and the energy range 30-150 keV, the parameterization utilizes four coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies.

  17. High temperature infrared absorption cross sections of methane near 3.4 μm in Ar and CO2 mixtures

    NASA Astrophysics Data System (ADS)

    Koroglu, Batikan; Neupane, Sneha; Pryor, Owen; Peale, Robert E.; Vasu, Subith S.

    2018-02-01

    The absorption cross-sections of CH4 at two wavelengths in the mid-IR region: λpeak = 3403.4 nm and λvalley = 3403.7 nm were measured. Data were taken using three different compositions of non-reactive gas mixtures comprising CH4/Ar/CO2 between 700 < T < 2000 K and 0.1 < P < 1.5 atm in a shock tube utilizing a continuous-wave distributed-feedback quantum cascade laser. Also, broadband room temperature methane cross section measurements were performed using a Fourier transform infrared spectrometer and the cascade laser to gain a better insight into the changes of the line shapes in various bath gasses (Ar, CO2, and N2). An application of the high-temperature cross-section data was demonstrated to determine the concentration of methane during oxy-methane combustion in a mixture of CO2, O2, and Ar. Current measurements will be valuable addition to the spectroscopy database for methane- an important fuel used for power generation and heating around the world.

  18. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for recoil cross section spectra under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Iwamoto, Yosuke; Ogawa, Tatsuhiko

    2017-04-01

    Because primary knock-on atoms (PKAs) create point defects and clusters in materials that are irradiated with neutrons, it is important to validate the calculations of recoil cross section spectra that are used to estimate radiation damage in materials. Here, the recoil cross section spectra of fission- and fusion-relevant materials were calculated using the Event Generator Mode (EGM) of the Particle and Heavy Ion Transport code System (PHITS) and also using the data processing code NJOY2012 with the nuclear data libraries TENDL2015, ENDF/BVII.1, and JEFF3.2. The heating number, which is the integral of the recoil cross section spectra, was also calculated using PHITS-EGM and compared with data extracted from the ACE files of TENDL2015, ENDF/BVII.1, and JENDL4.0. In general, only a small difference was found between the PKA spectra of PHITS + TENDL2015 and NJOY + TENDL2015. From analyzing the recoil cross section spectra extracted from the nuclear data libraries using NJOY2012, we found that the recoil cross section spectra were incorrect for 72Ge, 75As, 89Y, and 109Ag in the ENDF/B-VII.1 library, and for 90Zr and 55Mn in the JEFF3.2 library. From analyzing the heating number, we found that the data extracted from the ACE file of TENDL2015 for all nuclides were problematic in the neutron capture region because of incorrect data regarding the emitted gamma energy. However, PHITS + TENDL2015 can calculate PKA spectra and heating numbers correctly.

  19. The role of nonlinear torsional contributions on the stability of flexural-torsional oscillations of open-cross section beams

    NASA Astrophysics Data System (ADS)

    Di Egidio, Angelo; Contento, Alessandro; Vestroni, Fabrizio

    2015-12-01

    An open-cross section thin-walled beam model, already developed by the authors, has been conveniently simplified while maintaining the capacity of accounting for the significant nonlinear warping effects. For a technical range of geometrical and mechanical characteristics of the beam, the response is characterized by the torsional curvature prevailing over the flexural ones. A Galerkin discretization is performed by using a suitable expansion of displacements based on shape functions. The attention is focused on the dynamic response of the beam to a harmonic force, applied at the free end of the cantilever beam. The excitation is directed along the symmetry axis of the beam section. The stability of the one-component oscillations has been investigated using the analytical model, showing the importance of the internal resonances due to the nonlinear warping coupling terms. Comparison with the results provided by a computational finite element model has been performed. The good agreement among the results of the analytical and the computational models confirms the effectiveness of the simplified model of a nonlinear open-cross section thin-walled beam and overall the important role of the warping and of the torsional elongation in the study of the one-component dynamic oscillations and their stability.

  20. Photoionization of Se+ and Se2+ Ions: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Esteves, D. A.; Sterling, N. C.; Alna'Washi, Ghassan; Aguilar, A.; Kilcoyne, A. L. D.; Balance, C. P.; Norrington, P. H.; McLaughlin, B. M.

    2007-06-01

    The determination of elemental abundances in astrophysical nebulae are highly dependent on the accuracy of the available atomic data. Numerical simulations show that derived Se abundances in ionized nebulae can be uncertain by factors of two or more from atomic data uncertainties alone. Of these uncertainties, photoionization cross section data are the most important, particularly in the near threshold region of the valence shell. Absolute photoionization cross sections for Se^+ and Se^2+ ions near their thresholds have been measured at the Advanced Light Source in Berkeley, using the merged beams photo-ion technique. Theoretical photoionization cross sections calculations were performed for both of these Se ions using the state-of-the-art fully relativistic Dirac R-matrix code (DARC). The calculations show encouraging agreement with the experimental measurements. A more comprehensive set of results will be presented at the meeting.

  1. High-resolution photoabsorption cross sections of E1Pi - X1Sigma(+) vibrational bands of CO-12 and CO-13

    NASA Technical Reports Server (NTRS)

    Stark, G.; Smith, P. L.; Ito, K.; Yoshino, K.

    1992-01-01

    Photodissociation following absorption of extreme-ultraviolet photons is an important factor in determining the abundance and isotropic fractionation of CO in diffuse and translucent interstellar clouds. The principal channel for destruction of CO-13 in such clouds begins with absorption in the (1,0) vibrational band of the E1Pi - X1Sigma(+) system; similarly, absorption in the (0,0) band begins a significant destruction channel for CO-12. Reliable modeling of the CO fractionation process depends critically upon the accuracy of the photoabsorption cross section for these bands. We have measured the cross sections for the relevant isotropic species and for the (1,0) band of CO-12. Our results, which are uncertain by about 10 percent, are for the most part larger than previous measurements.

  2. The generation of O(1S) from the dissociative recombination of O2(+)

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.; Giusti-Suzor, Annick

    1991-01-01

    The multichannel quantum defect theory (MQDT) method and large scale wave functions are applied to the calculation of the cross sections and rates for dissociative recombination of O2(+) along the 1Sigma-u(+) dissociative potential. Indirect dissociative recombination is accounted for by simultaneously including both the vibronic and electronic coupling to the intermediate Rydberg resonances. An enhanced MQDT approach involving a second-order K matrix is described. Cross sections and rates for the lowest three vibrational levels of the ion are reported. The shapes of the cross sections are discussed in terms of Fano's profile index. It is found that, for each of the three ion vibrational levels, the intermediate Rydberg resonances reduce the dissociative recombination rate below the direct recombination rate. Just above threshold, resonances with centers below threshold play an important role.

  3. Neutron cross section measurements at n-TOF for ADS related studies

    NASA Astrophysics Data System (ADS)

    Mastinu, P. F.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Bustreo, N.; aumann, P.; vá, F. Be; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; itzpatrick, L.; Frais-Kölbl, H.; Fujii, K.; Furman, W.; Guerrero, C.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krti ka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescherand, M.; Wisshak, K.

    2006-05-01

    A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.

  4. Pascalutsa-Vanderhaeghen light-by-light sum rule from photon-photon collisions

    DOE PAGES

    Dai, Ling -Yun; Pennington, Michael R.

    2017-03-06

    Light-by-light scattering sumrules based on general field theory principles relate cross-sections with different helicities. In this paper the simplest sumrule is tested for themore » $I=0$ and $2$$ channels for \\lq\\lq real'' photon-photon collisions. Important contributions come from the long-lived pseudoscalar mesons and from di-meson intermediate states. The latest Amplitude Analysis of $$\\gamma\\gamma\\to\\pi\\pi, \\overline{K}K$ allows this contribution to be evaluated. Furthermore, we find that other multi-meson contributions up to 2.5~GeV are required to satisfy the sumrules. While data on three and four pion cross-sections exist, there is no information about their isospin and helicity decomposition. Nevertheless, we show the measured cross-sections are sufficiently large to ensure the sumrules for the helicity differences are likely fulfilled.« less

  5. Direct contact as a moderator of extended contact effects: cross-sectional and longitudinal impact on outgroup attitudes, behavioral intentions, and attitude certainty.

    PubMed

    Christ, Oliver; Hewstone, Miles; Tausch, Nicole; Wagner, Ulrich; Voci, Alberto; Hughes, Joanne; Cairns, Ed

    2010-12-01

    Cross-group friendships (the most effective form of direct contact) and extended contact (i.e., knowing ingroup members who have outgroup friends) constitute two of the most important means of improving outgroup attitudes. Using cross-sectional and longitudinal samples from different intergroup contexts, this research demonstrates that extended contact is most effective when individuals live in segregated neighborhoods having only few, or no, direct friendships with outgroup members. Moreover, by including measures of attitudes and behavioral intentions the authors showed the broader impact of these forms of contact, and, by assessing attitude certainty as one dimension of attitude strength, they tested whether extended contact can lead not only to more positive but also to stronger outgroup orientations. Cross-sectional data showed that direct contact was more strongly related to attitude certainty than was extended contact, but longitudinal data showed both forms of contact affected attitude certainty in the long run.

  6. Measurement of the inclusive and fiducial t\\bar{t} production cross-sections in the lepton+jets channel in pp collisions at √{s} = 8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Bergsten, L. J.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, Dr.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casha, A. F.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioară, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'eramo, L.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vasconcelos Corga, K.; De Vivie De Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Bello, F. A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Dickinson, J.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonski, J. L.; González de la Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handl, D. M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Holzbock, M.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; Navarro, J. L. La Rosa; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, C.-Q.; Li, H.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, C. Y.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maiani, C.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Ng, Y. S.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olsson, M. J. R.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; St. Panagiotopoulou, E.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Roy, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Rüttinger, E. M.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schenck, F.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Šfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherman, A. D.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, DMS; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakamiya, K.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, A.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; zur Nedden, M.; Zwalinski, L.

    2018-06-01

    The inclusive and fiducial t\\bar{t} production cross-sections are measured in the lepton+jets channel using 20.2 fb^{-1} of proton-proton collision data at a centre-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. Major systematic uncertainties due to the modelling of the jet energy scale and b-tagging efficiency are constrained by separating selected events into three disjoint regions. In order to reduce systematic uncertainties in the most important background, the W {+ jets} process is modelled using Z+ jets events in a data-driven approach. The inclusive t\\bar{t} cross-section is measured with a precision of 5.7% to be σ _{ {inc}}(t\\bar{t}) = 248.3 ± 0.7 ({stat.}) ± 13.4 ({syst.}) ± 4.7 ({lumi.}) {pb}, assuming a top-quark mass of 172.5 GeV. The result is in agreement with the Standard Model prediction. The cross-section is also measured in a phase space close to that of the selected data. The fiducial cross-section is σ _{ {fid}}(t\\bar{t}) = 48.8 ± 0.1 ({stat.}) ± 2.0 ({syst.}) ± 0.9 ({lumi.}) {pb} with a precision of 4.5%.

  7. Indirect study of 12C(α,γ)16O reaction

    NASA Astrophysics Data System (ADS)

    Hammache, F.; Oulebsir, N.; Roussel, P.; Pellegriti, M. G.; Audouin, L.; Beaumel, D.; Bouda, A.; Descouvemont, P.; Fortier, S.; Gaudefroy, L.; Kiener, J.; Lefebvre-Schuhl, A.; Tatischeff, V.

    2016-01-01

    The radiative capture reaction 12C(α,γ)16O plays an important role in helium burning in massive stars and their subsequent evolution [1]. However, despite various experimental studies, the cross section of this reaction at stellar energies remains highly uncertain. The extrapolation down to stellar energy (Ecm˜300 keV) of the measured cross sections at higher energies is made difficult by the overlap of various contributions of which some are badly known such as that of the 2+ (Ex=6.92 MeV) and 1- (Ex=7.12 MeV) sub-threshold states of 16O. Hence, to further investigate the contribution of these two-subthreshold resonances to the 12C(α,γ)16O cross section, a new determination of their a-reduced widths and so their a- spectroscopic-factors was performed using 12C(7Li,t)16O transfer reaction measurements at two incident energies and a detailed DWBA analysis of the data [2]. The measured and calculated differential cross sections are presented as well as the obtained spectroscopic factors and the a- reduced widths as well as the assymptotic normalization constants (ANC) for the 2+ and 1- subthreshold states. Finally, the results obtained from the R-matrix calculations of the 12C(α,γ)16O cross section using our obtained a-reduced widths for the two sub-threshold resonances are presented and discussed.

  8. Testing charged current quasi-elastic and multinucleon interaction models in the NEUT neutrino interaction generator with published datasets from the MiniBooNE and MINERνA experiments

    NASA Astrophysics Data System (ADS)

    Wilkinson, C.; Terri, R.; Andreopoulos, C.; Bercellie, A.; Bronner, C.; Cartwright, S.; de Perio, P.; Dobson, J.; Duffy, K.; Furmanski, A. P.; Haegel, L.; Hayato, Y.; Kaboth, A.; Mahn, K.; McFarland, K. S.; Nowak, J.; Redij, A.; Rodrigues, P.; Sánchez, F.; Schwehr, J. D.; Sinclair, P.; Sobczyk, J. T.; Stamoulis, P.; Stowell, P.; Tacik, R.; Thompson, L.; Tobayama, S.; Wascko, M. O.; Żmuda, J.

    2016-04-01

    There has been a great deal of theoretical work on sophisticated charged current quasi-elastic (CCQE) neutrino interaction models in recent years, prompted by a number of experimental results that measured unexpectedly large CCQE cross sections on nuclear targets. As the dominant interaction mode at T2K energies, and the signal process in oscillation analyses, it is important for the T2K experiment to include realistic CCQE cross section uncertainties in T2K analyses. To this end, T2K's Neutrino Interaction Working Group has implemented a number of recent models in NEUT, T2K's primary neutrino interaction event generator. In this paper, we give an overview of the models implemented and present fits to published νμ and ν¯ μ CCQE cross section measurements from the MiniBooNE and MINER ν A experiments. The results of the fits are used to select a default cross section model for future T2K analyses and to constrain the cross section uncertainties of the model. We find strong tension between datasets for all models investigated. Among the evaluated models, the combination of a modified relativistic Fermi gas with multinucleon CCQE-like interactions gives the most consistent description of the available data.

  9. Elastic/Inelastic Measurement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, Steven; Hicks, Sally; Vanhoy, Jeffrey

    2016-03-01

    The work scope involves the measurement of neutron scattering from natural sodium ( 23Na) and two isotopes of iron, 56Fe and 54Fe. Angular distributions, i.e., differential cross sections, of the scattered neutrons will be measured for 5 to 10 incident neutron energies per year. The work of the first year concentrates on 23Na, while the enriched iron samples are procured. Differential neutron scattering cross sections provide information to guide nuclear reaction model calculations in the low-­energy (few MeV) fast-­neutron region. This region lies just above the isolated resonance region, which in general is well studied; however, model calculations are difficultmore » in this region because overlapping resonance structure is evident and direct nuclear reactions are becoming important. The standard optical model treatment exhibits good predictive ability for the wide-­region average cross sections but cannot treat the overlapping resonance features. In addition, models that do predict the direct reaction component must be guided by measurements to describe correctly the strength of the direct component, e.g., β 2 must be known to describe the direct component of the scattering to the first excited state. Measurements of the elastic scattering differential cross sections guide the optical model calculations, while inelastic differential cross sections provide the crucial information for correctly describing the direct component. Activities occurring during the performance period are described.« less

  10. Human immunodeficiency viruses appear compartmentalized to the female genital tract in cross-sectional analyses but genital lineages do not persist over time.

    PubMed

    Bull, Marta E; Heath, Laura M; McKernan-Mullin, Jennifer L; Kraft, Kelli M; Acevedo, Luis; Hitti, Jane E; Cohn, Susan E; Tapia, Kenneth A; Holte, Sarah E; Dragavon, Joan A; Coombs, Robert W; Mullins, James I; Frenkel, Lisa M

    2013-04-15

    Whether unique human immunodeficiency type 1 (HIV) genotypes occur in the genital tract is important for vaccine development and management of drug resistant viruses. Multiple cross-sectional studies suggest HIV is compartmentalized within the female genital tract. We hypothesize that bursts of HIV replication and/or proliferation of infected cells captured in cross-sectional analyses drive compartmentalization but over time genital-specific viral lineages do not form; rather viruses mix between genital tract and blood. Eight women with ongoing HIV replication were studied during a period of 1.5 to 4.5 years. Multiple viral sequences were derived by single-genome amplification of the HIV C2-V5 region of env from genital secretions and blood plasma. Maximum likelihood phylogenies were evaluated for compartmentalization using 4 statistical tests. In cross-sectional analyses compartmentalization of genital from blood viruses was detected in three of eight women by all tests; this was associated with tissue specific clades containing multiple monotypic sequences. In longitudinal analysis, the tissues-specific clades did not persist to form viral lineages. Rather, across women, HIV lineages were comprised of both genital tract and blood sequences. The observation of genital-specific HIV clades only in cross-sectional analysis and an absence of genital-specific lineages in longitudinal analyses suggest a dynamic interchange of HIV variants between the female genital tract and blood.

  11. Re-measurement of the 33S(α ,p )36Cl cross section for early solar system nuclide enrichment

    NASA Astrophysics Data System (ADS)

    Anderson, Tyler; Skulski, Michael; Clark, Adam; Nelson, Austin; Ostdiek, Karen; Collon, Philippe; Chmiel, Greg; Woodruff, Tom; Caffee, Marc

    2017-07-01

    Short-lived radionuclides (SLRs) with half-lives less than 100 Myr are known to have existed around the time of the formation of the solar system around 4.5 billion years ago. Understanding the production sources for SLRs is important for improving our understanding of processes taking place just after solar system formation as well as their timescales. Early solar system models rely heavily on calculations from nuclear theory due to a lack of experimental data for the nuclear reactions taking place. In 2013, Bowers et al. measured 36Cl production cross sections via the 33S(α ,p ) reaction and reported cross sections that were systematically higher than predicted by Hauser-Feshbach codes. Soon after, a paper by Peter Mohr highlighted the challenges the new data would pose to current nuclear theory if verified. The 33S(α ,p )36Cl reaction was re-measured at five energies between 0.78 MeV/nucleon and 1.52 MeV/nucleon, in the same range as measured by Bowers et al., and found systematically lower cross sections than originally reported, with the new results in good agreement with the Hauser-Feshbach code talys. Loss of Cl carrier in chemical extraction and errors in determination of reaction energy ranges are both possible explanations for artificially inflated cross sections measured in the previous work.

  12. Measurement of the differential cross section and charge asymmetry for inclusive [Formula: see text] production at [Formula: see text] TeV.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; De Visscher, S; Delaere, C; Delcourt, M; Favart, D; Forthomme, L; Giammanco, A; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Costa, E M Da; Jesus Damiao, D De; Oliveira Martins, C De; De Souza, S Fonseca; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Souza Santos, A De; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Leggat, D; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; El-Khateeb, E; Elkafrawy, T; Mahmoud, M A; Calpas, B; Kadastik, M; Murumaa, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Peltola, T; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; de Monchenault, G Hamel; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Bihan, A-C Le; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; Mamouni, H El; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Ruiz Alvarez, J D; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Lomidze, D; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schulte, J F; Verlage, T; Weber, H; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Beernaert, K; Behnke, O; Behrens, U; Borras, K; Burgmeier, A; Campbell, A; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Nayak, A; Ntomari, E; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Trippkewitz, K D; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Sander, C; Scharf, C; Schleper, P; Schlieckau, E; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Descroix, A; Dierlamm, A; Fink, S; Frensch, F; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Filipovic, N; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Mal, P; Mandal, K; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; U Bhawandeep; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Jain, Sa; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Rane, A; Sharma, S; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Cappello, G; Chiorboli, M; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Redaelli, N; de Fatis, T Tabarelli; Buontempo, S; Cavallo, N; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gonella, F; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; Licata, C La; Schizzi, A; Zanetti, A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kong, D J; Lee, S; Lee, S W; Oh, Y D; Sakharov, A; Son, D C; Brochero Cifuentes, J A; Kim, H; Kim, T J; Song, S; Cho, S; Choi, S; Go, Y; Gyun, D; Hong, B; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Yoo, H D; Choi, M; Kim, H; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Ali, M A B Md; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Casimiro Linares, E; Castilla-Valdez, H; Cruz-Burelo, E De La; Cruz, I Heredia-De La; Hernandez-Almada, A; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Qazi, S; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Traczyk, P; Zalewski, P; Brona, G; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Golutvin, I; Kamenev, A; Karjavin, V; Korenkov, V; Kozlov, G; Lanev, A; Malakhov, A; Matveev, V; Mitsyn, V V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Tikhonenko, E; Voytishin, N; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Chadeeva, M; Chistov, R; Danilov, M; Markin, O; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Baskakov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; Cruz, B De La; Delgado Peris, A; Del Valle, A Escalante; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; De Martino, E Navarro; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Palencia Cortezon, E; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; De Saa, J R Castiñeiras; Curras, E; Castro Manzano, P De; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Benhabib, L; Berruti, G M; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; Pree, T du; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Knünz, V; Kortelainen, M J; Kousouris, K; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Piparo, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Arbol, P Martinez Ruiz Del; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Grundler, U; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Petrakou, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Tali, B; Topakli, H; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Alimena, J; Benelli, G; Berry, E; Cutts, D; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Jesus, O; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Syarif, R; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Paneva, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Malberti, M; Olmedo Negrete, M; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Incandela, J; Mccoll, N; Mullin, S D; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bendavid, J; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Nauenberg, U; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Sun, W; Tan, S M; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Lewis, J; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Rossin, R; Shchutska, L; Snowball, M; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Barnett, B A; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Baringer, P; Bean, A; Bruner, C; Castle, J; Kenny Iii, R P; Kropivnitskaya, A; Majumder, D; Malek, M; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Ratnikov, F; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; De Lima, R Teixeira; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Bhattacharya, S; Hahn, K A; Kubik, A; Low, J F; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Rupprecht, N; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Ji, W; Ling, T Y; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Benedetti, D; Bortoletto, D; Gutay, L; Jha, M K; Jones, M; Jung, A W; Jung, K; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Chou, J P; Contreras-Campana, E; Ferencek, D; Gershtein, Y; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Krutelyov, V; Mueller, R; Osipenkov, I; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Wang, Z; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Mao, Y; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Wood, J; Xia, F; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Sarangi, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Verwilligen, P; Woods, N; Collaboration, Authorinst The Cms

    2016-01-01

    The differential cross section and charge asymmetry for inclusive [Formula: see text] production at [Formula: see text] are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8[Formula: see text] recorded with the CMS detector at the LHC. These results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from [Formula: see text] to [Formula: see text].

  13. Critical Evaluation of Chemical Reaction Rates and Collision Cross Sections of Importance in the Earth's Upper Atmosphere and the Atmospheres of Other Planets, Moons, and Comets

    NASA Technical Reports Server (NTRS)

    Huestis, David L.

    2006-01-01

    We propose to establish a long-term program of critical evaluation by domain experts of the rates and cross sections for atomic and molecular processes that are needed for understanding and modeling the atmospheres in the solar system. We envision data products resembling those of the JPL/NASA Panel for Data Evaluation and the similar efforts of the international combustion modeling community funded by US DoE and its European counterpart.

  14. Neutrino-nucleus scattering of {sup 95,97}Mo and {sup 116}Cd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ydrefors, E.; Almosly, W.; Suhonen, J.

    2013-12-30

    Accurate knowledge about the nuclear responses to supernova neutrinos for relevant nuclear targets is important both for neutrino detection and for astrophysical applications. In this paper we discuss the cross sections for the charged-current neutrino-nucleus scatterings off {sup 95,97}Mo and {sup 116}Cd. The microscopic quasiparticle-phonon model is adopted for the odd-even nuclei {sup 95,97}Mo. In the case of {sup 116}Cd we present cross sections both for the Bonn one-boson-exchange potential and self-consistent calculations based on modern Skyrme interactions.

  15. Electron impact ionization of plasma important SiClX (X = 1-4) molecules: theoretical cross sections

    NASA Astrophysics Data System (ADS)

    Kothari, Harshit N.; Pandya, Siddharth H.; Joshipura, K. N.

    2011-06-01

    Electron impact ionization of SiClX (X = 1-4) molecules is less studied but an important process for understanding and modelling the interactions of silicon-chlorine plasmas with different materials. The SiCl3 radical is a major chloro-silicon species involved in the CVD (chemical vapour deposition) of silicon films from SiCl4/Ar microwave plasmas. We report in this paper the total ionization cross sections for electron collisions on these silicon compounds at incident energies from the ionization threshold to 2000 eV. We employ the 'complex scattering potential-ionization contribution' method and identify the relative importance of various channels, with ionization included in the cumulative inelastic scattering. New results are also presented on these exotic molecular targets. This work is significant in view of the paucity of theoretical studies on the radicals SiClX (X = 1-3) and on SiCl4.

  16. Fusion cross sections measurements with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  17. Neutrino-nucleus cross sections for oscillation experiments

    NASA Astrophysics Data System (ADS)

    Katori, Teppei; Martini, Marco

    2018-01-01

    Neutrino oscillations physics is entering an era of high precision. In this context, accelerator-based neutrino experiments need a reduction in systematic errors to the level of a few percent. Today, one of the most important sources of systematic errors are neutrino-nucleus cross sections which, in the energy region of hundreds of MeV to a few GeV, are known to a precision not exceeding 20%. In this article we review the present experimental and theoretical knowledge of neutrino-nucleus interaction physics. After introducing neutrino-oscillation physics and accelerator-based neutrino experiments, we give an overview of general aspects of neutrino-nucleus cross sections, from both the theoretical and experimental point of view. Then, we focus on these cross sections in different reaction channels. We start with the quasi-elastic and quasi-elastic-like cross section, placing a special emphasis on the multinucleon emission channel, which has attracted a lot of attention in the last few years. We review the main aspects of the different microscopic models for this channel by discussing analogies and the differences among them. The discussion is always driven by a comparison with the experimental data. We then consider the one-pion production channel where agreement between data and theory remains highly unsatisfactory. We describe how to interpret pion data, and then analyze, in particular, the puzzle related to the difficulty of theoretical models and Monte Carlo to simultaneously describe MiniBooNE and MINERvA experimental results. Inclusive cross sections are also discussed, as well as the comparison between the {ν }μ and {ν }e cross sections, relevant for the charge-conjugation-parity violation experiments. The impact of nuclear effects on the reconstruction of neutrino energy and on the determination of the neutrino-oscillation parameters is also reviewed. Finally, we look to the future by discussing projects and efforts in relation to future detectors, beams, and analysis.

  18. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells.

    PubMed

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-02

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  19. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  20. Direct nuclear reaction experiments for stellar nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Cherubini, S.

    2017-09-01

    During the last two decades indirect methods where proposed and used in many experiments in order to measure nuclear cross sections between charged particles at stellar energies. These are among the lowest to be measured in nuclear physics. One of these methods, the Trojan Horse method, is based on the Quasi-Free reaction mechanism and has proved to be particularly flexible and reliable. It allowed for the measurement of the cross sections of various reactions of astrophysical interest using stable beams. The use and reliability of indirect methods become even more important when reactions induced by Radioactive Ion Beams are considered, given the much lower intensity generally available for these beams. The first Trojan Horse measurement of a process involving the use of a Radioactive Ion Beam dealt with the ^{18} F(p, α ^{15} O process in Nova conditions. To obtain pieces of information on this process, in particular about its cross section at Nova energies, the Trojan Horse method was applied to the ^{18} F(d, α ^{15} O)n three body reaction. In order to establish the reliability of the Trojan Horse method approach, the Treiman-Yang criterion is an important test and it will be addressed briefly in this paper.

  1. Compositional changes of human hair melanin resulting from bleach treatment investigated by nanoscale secondary ion mass spectrometry.

    PubMed

    Kojima, Toru; Yamada, Hiromi; Isobe, Mitsuru; Yamamoto, Toshihiko; Takeuchi, Miyuki; Aoki, Dan; Matsushita, Yasuyuki; Fukushima, Kazuhiko

    2014-11-01

    It is important to understand the influence of bleach treatment on human hair because it is one of the most important chemical treatments in hair cosmetic processes. A comparison of the elemental composition of melanin between virgin hair and bleached hair would provide important information about the structural changes of melanin. To investigate the elemental composition of melanin granules in virgin black hair and bleached hair, these hair cross-sections are analyzed by using a nanoscale secondary ion mass spectrometry (NanoSIMS). The virgin black hair and bleached hair samples were embedded in resin and smooth hair cross-sections were obtained using an ultramicrotome. NanoSIMS measurements were performed using a Cs(+) primary ion beam to detect negative secondary ions. More intensive (16) O(-) ions were detected from the melanin granules of bleached hair than from those of virgin black hair in NanoSIMS (16) O(-) ion image. In addition, it was indicated that (16) O(-) ion intensity and (16) O(-) /(12) C(14) N(-) ion intensity ratio of melanin granules in bleached hair were higher than those in virgin black hair. Nanoscale secondary ion mass spectrometry analysis of the cross-sections of virgin black hair and bleached hair indicated that the oxygen content in melanin granules was increased by bleach treatment. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. A Cross-Sectional Investigation of the Importance of Park Features for Promoting Regular Physical Activity in Parks.

    PubMed

    Costigan, Sarah A; Veitch, Jenny; Crawford, David; Carver, Alison; Timperio, Anna

    2017-11-02

    Parks in the US and Australia are generally underutilised, and park visitors typically engage in low levels of physical activity (PA). Better understanding park features that may encourage visitors to be active is important. This study examined the perceived importance of park features for encouraging park-based PA and examined differences by sex, age, parental-status and participation in PA. Cross-sectional surveys were completed by local residents ( n = 2775) living near two parks (2013/2015). Demographic variables, park visitation and leisure-time PA were self-reported, respondents rated the importance of 20 park features for encouraging park-based PA in the next fortnight. Chi-square tests of independence examined differences in importance of park features for PA among sub-groups of local residents (sex, age, parental-status, PA). Park features ranked most important for park-based PA were: well maintained (96.2%), feel safe (95.4%), relaxing atmosphere (91.2%), easy to get to (91.7%), and shady trees (90.3%). All subgroups ranked 'well maintained' as most important. Natural and built environment features of parks are important for promoting adults' park-based PA, and should be considered in park (re)design.

  3. Effects of reagent rotational excitation on the H + CHD₃ → H₂ + CD₃ reaction: a seven dimensional time-dependent wave packet study.

    PubMed

    Zhang, Zhaojun; Zhang, Dong H

    2014-10-14

    Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD3 in J0 = 1, 2 rotationally excited initial states with k0 = 0 - J0 (the projection of CHD3 rotational angular momentum on its C3 axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K0) equal to k0 are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagent CHD3 with respect to the relative velocity between the reagents H and CHD3. However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K0 specified cross sections for the K0 = k0 initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K0 averaging for the J0 = 1, 2 initial states with all different k0 are essentially identical to the corresponding CS and CC results for the J0 = 0 initial state, meaning that the initial rotational excitation of CHD3 up to J0 = 2, regardless of its initial k0, does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J0 = 1, 2 initial states are the same as those for the J0 = 0 initial state.

  4. A dependence of quasielastic charged-current neutrino-nucleus cross sections

    NASA Astrophysics Data System (ADS)

    Van Dessel, N.; Jachowicz, N.; González-Jiménez, R.; Pandey, V.; Van Cuyck, T.

    2018-04-01

    Background: 12C has been and is still widely used in neutrino-nucleus scattering and oscillation experiments. More recently, 40Ar has emerged as an important nuclear target for current and future experiments. Liquid argon time projection chambers (LArTPCs) possess various advantages in measuring electroweak neutrino-nucleus cross sections. Concurrent theoretical research is an evident necessity. Purpose: 40Ar is larger than 12C , and one expects nuclear effects to play a bigger role in reactions. We present inclusive differential and total cross section results for charged-current neutrino scattering on 40Ar and perform a comparison with 12C , 16O , and 56Fe targets, to find out about the A -dependent behavior of model predictions. Method: Our model starts off with a Hartree-Fock description of the nucleus, with the nucleons interacting through a mean field generated by an effective Skyrme force. Long-range correlations are introduced by means of a continuum random phase approximation approach. Further methods to improve the accuracy of model predictions are also incorporated in the calculations. Results: We present calculations for 12C , 16O , 40Ar , and 56Fe , showcasing differential cross sections over a broad range of kinematic values in the quasielastic regime. We furthermore show flux-folded results for 40Ar and we discuss the differences between nuclear responses. Conclusions: At low incoming energies and forward scattering we identify an enhancement in the 40Ar cross section compared to 12C , as well as in the high ω (low Tμ) region across the entire studied Eν range. The contribution to the folded cross section of the reaction strength at values of ω lower than 50 MeV for forward scattering is sizable.

  5. Charge-changing cross-section measurements of C-1612 at around 45 A MeV and development of a Glauber model for incident energies 10 A -2100 A MeV

    NASA Astrophysics Data System (ADS)

    Tran, D. T.; Ong, H. J.; Nguyen, T. T.; Tanihata, I.; Aoi, N.; Ayyad, Y.; Chan, P. Y.; Fukuda, M.; Hashimoto, T.; Hoang, T. H.; Ideguchi, E.; Inoue, A.; Kawabata, T.; Khiem, L. H.; Lin, W. P.; Matsuta, K.; Mihara, M.; Momota, S.; Nagae, D.; Nguyen, N. D.; Nishimura, D.; Ozawa, A.; Ren, P. P.; Sakaguchi, H.; Tanaka, J.; Takechi, M.; Terashima, S.; Wada, R.; Yamamoto, T.; RCNP-E372 Collaboration

    2016-12-01

    We have measured for the first time the charge-changing cross sections (σCC) of C-1612 on a 12C target at energies below 100 A MeV. To analyze these low-energy data, we have developed a finite-range Glauber model with a global parameter set within the optical-limit approximation which is applicable to reaction cross section (σR) and σCC measurements at incident energies from 10 A to 2100 A MeV. Adopting the proton-density distribution of 12C known from the electron-scattering data, as well as the bare total nucleon-nucleon cross sections and the real-to-imaginary-part ratios of the forward proton-proton elastic scattering amplitude available in the literatures, we determine the energy-dependent slope parameter βp n of the proton-neutron elastic differential cross section so as to reproduce the existing σR and interaction cross-section data for 12C+12C over a wide range of incident energies. The Glauber model thus formulated is applied to calculate the σR's of 12C on a 9Be and 27Al targets at various incident energies. Our calculations show excellent agreement with the experimental data. Applying our model to the σR and σCC for the so-called neutron-skin 16C nucleus, we reconfirm the importance of measurements at incident energies below 100 A MeV. The proton root-mean-square radii of C-1612 are extracted using the measured σCC's and the existing σR data. The results for C-1412 are consistent with the values from the electron scatterings, demonstrating the feasibility, usefulness of the σCC measurement, and the present Glauber model.

  6. H{sub 2} dissociation due to collisions with He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohlinger, L.; Forrey, R. C.; Lee, Teck-Ghee

    2007-10-15

    Cross sections for dissociation of H{sub 2} due to collision with He are calculated for highly excited rovibrational states using the quantum-mechanical coupled-states approximation. An L{sup 2} Sturmian basis set with multiple length scales is used to provide a discrete representation of the H{sub 2} continuum which includes orbiting resonances and a nonresonant background. Cross sections are given over a range of translational energies for both resonant and nonresonant dissociation together with the most important bound-state transitions for many different initial states. The results demonstrate that it is possible to compute converged quantum-mechanical cross sections using basis sets of modestmore » size. It is found that collision-induced dissociation competes with inelastic scattering as a depopulation mechanism for the highly excited states. The relevance of the present calculations to astrophysical models is discussed.« less

  7. Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at $$ \\sqrt{s}=8 $$ TeV

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2017-04-05

    Cross sections for the production of a Z boson in association with jets in proton-proton collisions at a centre-of-mass energy of √s = 8 TeV are measured using a data sample collected by the CMS experiment at the LHC corresponding to 19.6 fb -1. Furthermore, differential cross sections are presented as functions of up to three observables that describe the jet kinematics and the jet activity. Correlations between the azimuthal directions and the rapidities of the jets and the Z boson are studied in detail. The predictions of a number of multileg generators with leading or next-to-leading order accuracy aremore » compared with the measurements. Our comparison shows the importance of including multi-parton contributions in the matrix elements and the improvement in the predictions when next-to-leading order terms are included.« less

  8. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    NASA Technical Reports Server (NTRS)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  9. Low shear stress gravel-bed river

    USGS Publications Warehouse

    Milhous, Robert T.

    1997-01-01

    A low stress gravel bed river is a river where the cross-sectional average dimensionless shear stress (??*) rarely exceeds 0.047. That is the case for the Gunnison River below Delta in Western Colorado. The cross-sectional average ??* in the Gunnison River has not exceeded 0.047, except at one cross section during one year, in the 87 years of record. A ??* of 0.047 is the critical ??* in the bed-load equation considered to be most applicable to gravel/cobble bed rivers (the Meyer-Peter, Mueller equation). According to this equation, there has been no bed-material movement in the Gunnison River since 1920; in fact there has been bed-material movement and this movement is biologically important. Bed-material is moved when the ??* is 0.016 or larger. Streamflows that cause a ??* of at least 0.016 maintain the aquatic habitat in a low shear stress river.

  10. Measurement of the cross section for prompt isolated diphoton production using the full CDF run II data sample.

    PubMed

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Ciocci, M A; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; De Barbaro, P; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Eusebi, R; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-03-08

    This Letter reports a measurement of the cross section for producing pairs of central prompt isolated photons in proton-antiproton collisions at a total energy sqrt[s] = 1.96 TeV using data corresponding to 9.5 fb(-1) integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. The measured differential cross section is compared to three calculations derived from the theory of strong interactions. These include a prediction based on a leading order matrix element calculation merged with a parton shower model, a next-to-leading order calculation, and a next-to-next-to-leading order calculation. The first and last calculations reproduce most aspects of the data, thus showing the importance of higher-order contributions for understanding the theory of strong interaction and improving measurements of the Higgs boson and searches for new phenomena in diphoton final states.

  11. Evaluation of the relationship between mandibular third molar and mandibular canal by different algorithms of cone-beam computed tomography.

    PubMed

    Mehdizadeh, Mojdeh; Ahmadi, Navid; Jamshidi, Mahsa

    2014-11-01

    Exact location of the inferior alveolar nerve (IAN) bundle is very important. The aim of this study is to evaluate the relationship between the mandibular third molar and the mandibular canal by cone-beam computed tomography. This was a cross-sectional study with convenience sampling. 94 mandibular CBCTs performed with CSANEX 3D machine (Soredex, Finland) and 3D system chosen. Vertical and horizontal relationship between the mandibular canal and the third molar depicted by 3D, panoramic reformat view of CBCT and cross-sectional view. Cross-sectional view was our gold standard and other view evaluated by it. There were significant differences between the vertical and horizontal relation of nerve and tooth in all views (p < 0.001). The results showed differences in the position of the inferior alveolar nerve with different views of CBCT, so CBCT images are not quite reliable and have possibility of error.

  12. Cascades from nu_E above 1020 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Spencer R.

    2004-12-21

    At very high energies, the Landau-Pomeranchuk-Migdal effect reduces the cross sections for electron bremsstrahlung and photon e{sup +}e{sup -} pair production. The fractional electron energy loss and pair production cross sections drop as the energy increases. In contrast, the cross sections for photonuclear interactions grow with energy. In solids and liquids, at energies above 10{sup 20} eV, photonuclear reactions dominate, and showers that originate as photons or electrons quickly become hadronic showers. These electron-initiated hadronic showers are much shorter (due to the absence of the LPM effect), but wider than purely electromagnetic showers would be. This change in shape altersmore » the spectrum of the electromagnetic and acoustic radiation emitted from the shower. These alterations have important implications for existing and planned searches for radiation from u{sub e} induced showers above 10{sup 20} eV, and some existing limits should be reevaluated.« less

  13. 3He(α, γ)7Be cross section in a wide energy range

    NASA Astrophysics Data System (ADS)

    Szücs, Tamás; Gyürky, György; Halász, Zoltán; Kiss, Gábor Gy.; Fülöp, Zsolt

    2018-01-01

    The reaction rate of the 3He(α,γ)7 Be reaction is important both in the Big Bang Nucleosynthesis (BBN) and in the Solar hydrogen burning. There have been a lot of experimental and theoretical efforts to determine this reaction rate with high precision. Some long standing issues have been solved by the more precise investigations, like the different S(0) values predicted by the activation and in-beam measurement. However, the recent, more detailed astrophysical model predictions require the reaction rate with even higher precision to unravel new issues like the Solar composition. One way to increase the precision is to provide a comprehensive dataset in a wide energy range, extending the experimental cross section database of this reaction. This paper presents a new cross section measurement between Ecm = 2.5 - 4.4 MeV, in an energy range which extends above the 7Be proton separation threshold.

  14. Neutron-rich nuclei produced at zero degrees in damped collisions induced by a beam of 18O on a 238U target

    NASA Astrophysics Data System (ADS)

    Stefan, I.; Fornal, B.; Leoni, S.; Azaiez, F.; Portail, C.; Thomas, J. C.; Karpov, A. V.; Ackermann, D.; Bednarczyk, P.; Blumenfeld, Y.; Calinescu, S.; Chbihi, A.; Ciemala, M.; Cieplicka-Oryńczak, N.; Crespi, F. C. L.; Franchoo, S.; Hammache, F.; Iskra, Ł. W.; Jacquot, B.; Janssens, R. V. F.; Kamalou, O.; Lauritsen, T.; Lewitowicz, M.; Olivier, L.; Lukyanov, S. M.; Maccormick, M.; Maj, A.; Marini, P.; Matea, I.; Naumenko, M. A.; de Oliveira Santos, F.; Petrone, C.; Penionzhkevich, Yu. E.; Rotaru, F.; Savajols, H.; Sorlin, O.; Stanoiu, M.; Szpak, B.; Tarasov, O. B.; Verney, D.

    2018-04-01

    Cross sections and corresponding momentum distributions have been measured for the first time at zero degrees for the exotic nuclei obtained from a beam of 18O at 8.5 MeV/A impinging on a 1 mg/cm2238U target. Sizable cross sections were found for the production of exotic species arising from the neutron transfer and proton removal from the projectile. Comparisons of experimental results with calculations based on deep-inelastic reaction models, taking into account the particle evaporation process, indicate that zero degree is a scattering angle at which the differential reaction cross section for production of exotic nuclei is at its maximum. This result is important in view of the new generation of zero degrees spectrometers under construction, such as the S3 separator at GANIL, for example.

  15. Theoretical X-ray production cross sections at incident photon energies across Li (i=1-3) absorption edges of Br

    NASA Astrophysics Data System (ADS)

    Puri, Sanjiv

    2015-08-01

    The X-ray production (XRP) cross sections, σLk (k = l, η, α, β6, β1, β3, β4, β9,10, γ1,5, γ2,3) have been evaluated at incident photon energies across the Li(i=1-3) absorption edge energies of 35Br using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.

  16. Fragmentation contributions to J / ψ photoproduction at HERA

    DOE PAGES

    Bodwin, Geoffrey T.; Chung, Hee Sok; Kim, U-Rae; ...

    2015-10-28

    Here, we compute leading-power fragmentation corrections to J/ψ photoproduction at DESY HERA, making use of the nonrelativistic QCD factorization approach. Our calculations include parton production cross sections through order α 3 s, fragmentation functions though order α 2 s, and leading logarithms of the transverse momentum divided by the charm-quark mass to all orders in α s. We find that the leading-power fragmentation corrections, beyond those that are included through next-to-leading order in α s, are small relative to the fixed-order contributions through next-to-leading order in α s. Consequently, an important discrepancy remains between the experimental measurements of the J/ψmore » photoproduction cross section and predictions that make use of nonrelativistic-QCD long-distance matrix elements that are extracted from the J/ψ hadroproduction cross-section and polarization data.« less

  17. Reaction production + AMS: An alternative method to study low energy reactions. 26Al as a test case

    NASA Astrophysics Data System (ADS)

    Acosta, L.; Araujo-Escalona, V.; Chávez, E.; Andrade, E.; Barrón-Palos, L.; Favela, F.; Flores, M. A.; García-Ramírez, J.; Huerta, A.; de Lucio, O.; Méndez-García, C.; Ortiz, M. E.; Padilla, S.; Sánchez-Benítez, A. M.; Santa Rita, P.; Solís, C.

    2018-01-01

    Considering the importance of the 26Al nuclei in Astrophysics, in this work, preliminary results regarding a campaign of measurements related with this radioisotope production, are presented. We have taken advantage of two different facilities: first, the radio-nucleus is produced by means of irradiation of targets selected in correlation with particular reactions; once the enrichment with 26Al was made, the targets are analyzed in an AMS machine to obtain the concentration of 26Al produced during the irradiation. With this off-line method, it is possible to measure acceptable small cross sections of a selected low energy reaction. In this work, our preliminary results for three different energies of 28Si(d,α)26Al reaction cross sections are shown, as well as our first considerations to commence with measurements of 25Mg(p,γ)26Al reaction cross sections below 1 MeV.

  18. Radiolysis of astrophysical ices by heavy ion irradiation: Destruction cross section measurement

    NASA Astrophysics Data System (ADS)

    de Barros, A. L. F.; Boduch, P.; Domaracka, A.; Rothard, H.; da Silveira, E. F.

    2012-08-01

    Many solar system objects, such as planets and their satellites, dust grains in rings, and comets, are known to either be made of ices or to have icy surfaces. These ices are exposed to ionizing radiation including keV, MeV and GeV ions from solar wind or cosmic rays. Moreover, icy dust grains are present in interstellar space and, in particular, in dense molecular clouds. Radiation effects include radiolysis (the destruction of molecules leading to formation of radicals), the formation of new molecules following radiolysis, the desorption or sputtering of atoms or molecules from the surface, compaction of porous ices, and phase changes. This review discusses the application of infrared spectroscopy FTIR to study the evolution of the chemical composition of ices containing the most abundant molecular species found in the solar system and interstellar medium, such as H2O, CO, CO2 and hydrocarbons. We focus on the evolution of chemical composition with ion fluence in order to deduce the corresponding destruction and formation cross sections. Although initial approach focused on product identification, it became increasingly necessary to work toward a comprehensive understanding of ice chemistry. The abundances of these molecules in different phases of ice mantles provide important clues to the chemical processes in dense interstellar clouds, and therefore it is of importance to accurately measure the quantities such as dissociation and formation cross sections of the infrared features of these molecules. We also are able to obtain the scaling of these cross sections with deposited energy.

  19. Influence of breakup on elastic and α-production channels in the 6Li+ 116Sn reaction

    NASA Astrophysics Data System (ADS)

    Patel, D.; Mukherjee, S.; Deshmukh, N.; Lubian, J.; Wang, Jian-Song; Correa, T.; Nayak, B. K.; Yang, Yan-Yun; Ma, Wei-Hu; Biswas, D. C.; Gupta, Y. K.; Santra, S.; Mirgule, E. T.; Danu, L. S.; Singh, N. L.; Saxena, A.

    2017-10-01

    The effects of breakup reactions on elastic and α-production channels for the 6Li+116Sn system have been investigated at energies below and near the Coulomb barrier. The angular distributions of α-particle production differential cross sections have been obtained at several projectile energies between 22 and 40 MeV. The measured breakup α-particle differential cross sections and elastic scattering angular distributions have been compared with the predictions of continuum-discretized coupled channels (CDCC) calculations. The influence of breakup coupling has also been investigated by extracting dynamic polarization potentials (DPP) from the CDCC calculations. From the predictions of CDCC calculations the relative importance of the nuclear, Coulomb, and total breakup contributions have also been investigated. The nuclear breakup couplings are observed to play an important role in comparison to the Coulomb breakup for the direct breakup mechanisms associated in the reaction of 6Li projectile with 116Sn target nuclei. The influence of strong nuclear breakup coupling exhibits suppression in the Coulomb-nuclear interference peak. The direct breakup cross sections from the CDCC calculations under-predict the measured α-particle differential cross sections at all energies. This suggests that the measured α particles may also have contributions from other possible breakup reaction channels. One of the authors (SM) would like to thank DAE-BRNS for financial assistance through a major research project. This work is supported by National Natural Science Foundation of China (U1432247, 11575256, U1632138, 11605253) and China Postdoctoral Science Foundation (2016M602906)

  20. Two-Phase Flow in Microchannels with Non-Circular Cross Section

    NASA Astrophysics Data System (ADS)

    Eckett, Chris A.; Strumpf, Hal J.

    2002-11-01

    Two-phase flow in microchannels is of practical importance in several microgravity space technology applications. These include evaporative and condensing heat exchangers for thermal management systems and vapor cycle systems, phase separators, and bioreactors. The flow passages in these devices typically have a rectangular cross-section or some other non-circular cross-section; may include complex flow paths with branches, merges and bends; and may involve channel walls of different wettability. However, previous experimental and analytical investigations of two-phase flow in reduced gravity have focussed on straight, circular tubes. This study is an effort to determine two-phase flow behavior, both with and without heat transfer, in microchannel configurations other than straight, circular tubes. The goals are to investigate the geometrical effects on flow pattern, pressure drop and liquid holdup, as well as to determine the relative importance of capillary, surface tension, inertial, and gravitational forces in such geometries. An evaporative heat exchanger for microgravity thermal management systems has been selected as the target technology in this investigation. Although such a heat exchanger has never been developed at Honeywell, a preliminary sizing has been performed based on knowledge of such devices in normal gravity environments. Fin shapes considered include plain rectangular, offset rectangular, and wavy fin configurations. Each of these fin passages represents a microchannel of non-circular cross section. The pans at the inlet and outlet of the heat exchanger are flow branches and merges, with up to 90-deg bends. R-134a has been used as the refrigerant fluid, although ammonia may well be used in the eventual application.

  1. Study of proton induced reactions on niobium targets up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Takács, S.; Tárkányi, F.; Baba, M.; Corniani, E.; Shubin, Yu. N.

    2008-12-01

    Niobium is a metal with important technological applications: use as alloying element to increase strength of super alloys, as thin layer for tribological applications, as superconductive material, in high temperature engineering systems, etc. In the frame of a systematic study of activation cross-sections of charged particle induced reactions on structural materials proton induced excitation functions on Nb targets were determined with the aim of applications in accelerator and reactor technology and for thin layer activation (TLA). The charged particle activation cross-sections on this element are also important for yield calculation of medical isotope production ( 88,89Zr, 86,87,88Y) and for dose estimation in PET targetry. As Niobium is a monoisotopic element it is an ideal target material to test nuclear reaction theories. We present here the integral excitation functions of 93Nb(p,x) 90,93mMo, 92m,91m,90Nb, 86,88,89Zr, 86,87mg,88Y and 85Sr in the energy range 30-70 MeV, some measured for the first time at this energy range. The results were compared with the theoretical cross-sections calculated by means of the code ALICE-IPPE and with the literature data. The calculations have been carried out without any parameter adjustment. The theory reproduces the shape of the measured results well and magnitude is also acceptable. Thick target yields calculated from our fitted cross-section give reliable estimations for production of medically relevant radioisotopes and for dose estimation in accelerator technology.

  2. Tin particle size measurements in high explosively driven shockwave experiments using Mie scattering method

    NASA Astrophysics Data System (ADS)

    Monfared, Shabnam; Buttler, William; Schauer, Martin; Lalone, Brandon; Pack, Cora; Stevens, Gerald; Stone, Joseph; Special Technologies Laboratory Collaboration; Los Alamos National Laboratory Team

    2014-03-01

    Los Alamos National Laboratory is actively engaged in the study of material failure physics to support the hydrodynamic models development, where an important failure mechanism of explosively shocked metals causes mass ejection from the backside of a shocked surface with surface perturbations. Ejecta models are in development for this situation. Our past work has clearly shown that the total ejected mass and mass-velocity distribution sensitively link to the wavelength and amplitude of these perturbations. While we have had success developing ejecta mass and mass-velocity models, we need to better understand the size and size-velocity distributions of the ejected mass. To support size measurements we have developed a dynamic Mie scattering diagnostic based on a CW laser that permits measurement of the forward attenuation cross-section combined with a dynamic mass-density and mass-velocity distribution, as well as a measurement of the forward scattering cross-section at 12 angles (5- 32.5 degrees) in increments of 2.5 degrees. We compare size distribution followed from Beers law with attenuation cross-section and mass measurement to the dynamic size distribution determined from scattering cross-section alone. We report results from our first quality experiments.

  3. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    NASA Astrophysics Data System (ADS)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  4. Dynamic Effects in the Photoionization of the 6s Subshell of Radon and Nobelium

    NASA Astrophysics Data System (ADS)

    Keating, David; Manson, Steven; Deshmukh, Pranawa

    2017-04-01

    Relativistic interactions are very important contributors to atomic properties. Of interest is the alterations made to the wave functions, i.e., the dynamics. These dynamical changes can greatly affect the photoionization cross section of heavy (high Z) atoms. To explore the extent of these dynamic effects a theoretical study of the 6s photoionization cross section of both radon (Z = 86) and nobelium (Z = 102) have been performed using the relativistic random phase approximation (RRPA) methodology. These two cases have been selected because they offer the clearest picture of the effects in question. In order to determine which features in the photoionization cross section are due to relativity, calculations using the (nonrelativistic) random phase approximation with exchange method (RPAE) are performed for comparison. Interchannel coupling can obscure the dynamic effects by ``pulling'' minima out of the discrete spectrum and into the continuum or by inducing minima. Therefore it is necessary to perform calculations without coupling included. This is possible thanks to the RRPA and RPAE codes being able to calculate cross sections with particular channels omitted. Comparisons are presented between calculations with and without interchannel coupling. Work supported by DOE and NSF.

  5. 3D Measurement of Anatomical Cross-sections of Foot while Walking

    NASA Astrophysics Data System (ADS)

    Kimura, Makoto; Mochimaru, Masaaki; Kanade, Takeo

    Recently, techniques for measuring and modeling of human body are taking attention, because human models are useful for ergonomic design in manufacturing. We aim to measure accurate shape of human foot that will be useful for the design of shoes. For such purpose, shape measurement of foot in motion is obviously important, because foot shape in the shoe is deformed while walking or running. In this paper, we propose a method to measure anatomical cross-sections of foot while walking. No one had ever measured dynamic shape of anatomical cross-sections, though they are very basic and popular in the field of biomechanics. Our proposed method is based on multi-view stereo method. The target cross-sections are painted in individual colors (red, green, yellow and blue), and the proposed method utilizes the characteristic of target shape in the camera captured images. Several nonlinear conditions are introduced in the process to find the consistent correspondence in all images. Our desired accuracy is less than 1mm error, which is similar to the existing 3D scanners for static foot measurement. In our experiments, the proposed method achieved the desired accuracy.

  6. Photoionization of the beryllium isoelectronic sequence: Relativistic and nonrelativistic R-matrix calculations

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Chun

    The photoionization of the beryllium-like isoelectronic series has been studied. The bound state wave functions of the target ions were built with CIV3 program. The relativistic Breit-Pauli R-matrix method was used to calculate the cross sections in the photon energy range between the ionization threshold and 1s24 f7/2 threshold for each ion. For the total cross sections of Be, B+, C+2, N+3, and O +4, our results match experiment well. The comparison between the present work and other theoretical works are also discussed. We show the comparison with our LS results as it indicates the importance of relativistic effects on different ions. In the analysis, the resonances converging to 1 s22lj and 1s 23lj were identified and characterized with quantum defects, energies and widths using the eigenphase sum methodology. We summarize the general appearance of resonances along the resonance series and along the isoelectronic sequence. Partial cross sections are also reported systematically along the sequence. All calculations were performed on the NERSC system. INDEX WORDS: Photoionization, R-matrix, Cross section, Beryllium-like ion, Resonance

  7. Stellar Neutron Capture Cross Sections of the Lu and Hf Isotopes

    NASA Astrophysics Data System (ADS)

    Wisshak, K.; Voss, F.; Käppeler, F.; Kazakov, L.; Krtička, M.

    2005-05-01

    The neutron capture cross sections of 175,176Lu and 176,177,178,179,180Hf have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced by the 7Li(p,n)7Be reaction and capture events were detected by the Karlsruhe 4πBaF2 detector. The cross section ratios could be determined with uncertainties between 0.9 and 1.8% about a factor of five more accurate than previous data. A strong population of isomeric states was found in neutron capture of the Hf isotopes, which are only partially explained by CASINO/GEANT simulations based on the known level schemes. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 keV and 100 keV. Severe differences up to40% were found to the data of a recent evaluation based on existing experimental results. The new data allow for a much more reliable analysis of the important branching in the s-process synthesis path at 176Lu which can be interpreted as an s-process thermometer.

  8. State-resolved Photodissociation and Radiative Association Data for the Molecular Hydrogen Ion

    NASA Astrophysics Data System (ADS)

    Zammit, Mark C.; Savage, Jeremy S.; Colgan, James; Fursa, Dmitry V.; Kilcrease, David P.; Bray, Igor; Fontes, Christopher J.; Hakel, Peter; Timmermans, Eddy

    2017-12-01

    We present state-resolved (electronic, vibrational, and rotational) cross sections and rate coefficients for the photodissociation (PD) of {{{H}}}2+ and radiative association (RA) of H–H+. We developed a fully quantum mechanical approach within the nonrelativistic Born–Oppenheimer approximation to describe {{{H}}}2+ and calculate the data for transitions between the ground electronic state 1s{σ }g and the 2p{σ }u, 2p{π }u, 3p{σ }u, 3p{π }u, 4p{σ }u, 4f{σ }u, 4f{π }u, and 4p{π }u electronic states (i.e., up to {{{H}}}2+ n = 4). Tables of the dipole-matrix elements and energies needed to calculate state-resolved cross sections and rate coefficients will be made publicly available. These data could be important in astrophysical models when dealing with photon wavelengths (or radiation temperature distributions that are weighted toward such wavelengths) around 100 nm. For example, at these wavelengths and a material temperature of 8400 K, the LTE-averaged PD cross section via the (second electronically excited) 2p{π }u state is over three times larger than the PD cross section via the (first electronically excited) 2p{σ }u state.

  9. Cross sections for ν μ and ν ¯ μ induced pion production on hydrocarbon in the few-GeV region using MINERvA

    DOE PAGES

    McGivern, C. L.; Le, T.; Eberly, B.; ...

    2016-09-06

    Separate samples of charged-current pion production events representing two semi-inclusive channels ν μ–CC(π +) and ν¯ μ–CC(π 0) have been obtained using neutrino and antineutrino exposures of the MINERvA detector. Distributions in kinematic variables based upon μ±-track reconstructions are analyzed and compared for the two samples. The differential cross sections for muon production angle, muon momentum, and four-momentum transfer Q 2 are reported, and cross sections versus neutrino energy are obtained. Comparisons with predictions of current neutrino event generators are used to clarify the role of the Δ(1232) and higher-mass baryon resonances in CC pion production and to show themore » importance of pion final-state interactions. For the ν μ–CC(π +) [ν¯ μ–CC(π 0)] sample, the absolute data rate is observed to lie below (above) the predictions of some of the event generators by amounts that are typically 1-to- 2σ. Furthermore, the generators are able to reproduce the shapes of the differential cross sections for all kinematic variables of either data set.« less

  10. Important comments on KERMA factors and DPA cross-section data in ACE files of JENDL-4.0, JEFF-3.2 and ENDF/B-VII.1

    NASA Astrophysics Data System (ADS)

    Konno, Chikara; Tada, Kenichi; Kwon, Saerom; Ohta, Masayuki; Sato, Satoshi

    2017-09-01

    We have studied reasons of differences of KERMA factors and DPA cross-section data among nuclear data libraries. Here the KERMA factors and DPA cross-section data included in the official ACE files of JENDL-4.0, ENDF/B-VII.1 and JEFF-3.2 are examined in more detail. As a result, it is newly found out that the KERMA factors and DPA cross-section data of a lot of nuclei are different among JENDL-4.0, ENDF/B-VII.1 and JEFF-3.2 and reasons of the differences are the followings: 1) large secondary particle production yield, 2) no secondary gamma data, 3) secondary gamma data in files12-15 mt = 3, 4) mt = 103-107 data without mt = 600 s-800 s data in file6. The issue 1) is considered to be due to nuclear data, while the issues 2)-4) seem to be due to NJOY. The ACE files of JENDL-4.0, ENDF/B-VII.1 and JEFF-3.2 with these problems should be revised after correcting wrong nuclear data and NJOY problems.

  11. Is localized infrared spectroscopy now possible in the electron microscope?

    PubMed

    Rez, Peter

    2014-06-01

    The recently developed in-column monochromators make it possible to record energy-c spectra with resolutions better than 30 meV from nanometer-sized regions. It should therefore in principle be possible to detect localized vibrational excitations. The scattering geometry in the electron microscope means that bond stretching in the specimen plane or longitudinal optic phonons dominate the scattering. Most promising for initial studies are vibrations with energies between 300 and 400 meV from hydrogen bonded to other atoms. Estimates of the scattering cross-sections on the basis of a simple model show that they are about the same as inner shell scattering cross-sections. Cross-sections also increase with charge transfer between the atoms, and theory incorporating realistic charge distributions shows that signal/noise is the only limitation to high-resolution imaging. Given the magnitude of the scattering cross-sections, minimizing the tail of the zero-loss peak is just as important as achieving a small-width at half-maximum. Improvements in both resolution and controlling the zero-loss tail will be necessary before it is practical to detect optic phonons in solids between 40 and 60 meV.

  12. Measurement of the hadronic activity in events with a Z and two jets and extraction of the cross section for the electroweak production of a Z with two jets in pp collisions at $$ \\sqrt{s}=7 $$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    2013-10-01

    The first measurement of the electroweak production cross section of a Z boson with two jets (Zjj) in pp collisions atmore » $$\\sqrt{s}$$ = 7 TeV is presented, based on a data sample recorded by the CMS experiment at the LHC with an integrated luminosity of 5 inverse femtobarns. The cross section is measured for the lljj (l = e, $$\\mu$$) final state in the kinematic region $$m_{ll} \\gt$$ 50 GeV, $$m_{jj} \\gt$$ 120 GeV, transverse momenta $$p_T^{j} \\gt$$ 25 GeV and pseudorapidity abs($$\\eta^{j}$$) $$\\lt$$ 4.0. The measurement, combining the muon and electron channels, yields $$\\sigma$$ = 154 +/- 24 (stat.) +/- 46 (exp. syst.) +/- 27 (th. syst.) +/- 3 (lum.) fb, in agreement with the theoretical cross section. The hadronic activity, in the rapidity interval between the jets, is also measured. These results establish an important foundation for the more general study of vector boson fusion processes, of relevance for Higgs boson searches and for measurements of electroweak gauge couplings and vector boson scattering.« less

  13. Vascular Imaging: The Evolving Role of the Multidisciplinary Team Meeting in Peripheral Vascular Disease

    PubMed Central

    Christie, Andrew; Roditi, Giles

    2014-01-01

    This article reviews the importance of preinterventional cross-sectional imaging in the evaluation of peripheral arterial disease, as well as discussing the pros and cons of each imaging modality. The importance of a multidisciplinary team approach is emphasized. PMID:25435657

  14. Evolution of flexural rigidity according to the cross-sectional dimension of a superelastic nickel titanium orthodontic wire.

    PubMed

    Garrec, Pascal; Tavernier, Bruno; Jordan, Laurence

    2005-08-01

    The choice of the most suitable orthodontic wire for each stage of treatment requires estimation of the forces generated. In theory, the selection of wire sequences should initially utilize a lower flexural rigidity; thus clinicians use smaller round cross-sectional dimension wires to generate lighter forces during the preliminary alignment stage. This assessment is true for conventional alloys, but not necessarily for superelastic nickel titanium (NiTi). In this case, the flexural rigidity dependence on cross-sectional dimension differs from the linear elasticity prediction because of the martensitic transformation process. It decreases with increasing deflection and this phenomenon is accentuated in the unloading process. This behaviour should lead us to consider differently the biomechanical approach to orthodontic treatment. The present study compared bending in 10 archwires made from NiTi orthodontics alloy of two cross-sectional dimensions. The results were based on microstructural and mechanical investigations. With conventional alloys, the flexural rigidity was constant for each wire and increased largely with the cross-sectional dimension for the same strain. With NiTi alloys, the flexural rigidity is not constant and the influence of size was not as important as it should be. This result can be explained by the non-constant elastic modulus during the martensite transformation process. Thus, in some cases, treatment can begin with full-size (rectangular) wires that nearly fill the bracket slot with a force application deemed to be physiologically desirable for tooth movement and compatible with patient comfort.

  15. Human Immunodeficiency Viruses Appear Compartmentalized to the Female Genital Tract in Cross-Sectional Analyses but Genital Lineages Do Not Persist Over Time

    PubMed Central

    Bull, Marta E.; Heath, Laura M.; McKernan-Mullin, Jennifer L.; Kraft, Kelli M.; Acevedo, Luis; Hitti, Jane E.; Cohn, Susan E.; Tapia, Kenneth A.; Holte, Sarah E.; Dragavon, Joan A.; Coombs, Robert W.; Mullins, James I.; Frenkel, Lisa M.

    2013-01-01

    Background. Whether unique human immunodeficiency type 1 (HIV) genotypes occur in the genital tract is important for vaccine development and management of drug resistant viruses. Multiple cross-sectional studies suggest HIV is compartmentalized within the female genital tract. We hypothesize that bursts of HIV replication and/or proliferation of infected cells captured in cross-sectional analyses drive compartmentalization but over time genital-specific viral lineages do not form; rather viruses mix between genital tract and blood. Methods. Eight women with ongoing HIV replication were studied during a period of 1.5 to 4.5 years. Multiple viral sequences were derived by single-genome amplification of the HIV C2-V5 region of env from genital secretions and blood plasma. Maximum likelihood phylogenies were evaluated for compartmentalization using 4 statistical tests. Results. In cross-sectional analyses compartmentalization of genital from blood viruses was detected in three of eight women by all tests; this was associated with tissue specific clades containing multiple monotypic sequences. In longitudinal analysis, the tissues-specific clades did not persist to form viral lineages. Rather, across women, HIV lineages were comprised of both genital tract and blood sequences. Conclusions. The observation of genital-specific HIV clades only in cross-sectional analysis and an absence of genital-specific lineages in longitudinal analyses suggest a dynamic interchange of HIV variants between the female genital tract and blood. PMID:23315326

  16. Evidence for color fluctuations in hadrons from coherent nuclear diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frankfurt, L.; Miller, G.A.; Strikman, M.

    A QCD-based treatment of projectile size fluctuations is used to compute inelastic diffractive cross sections [sigma][sub diff] for coherent hadron-nuclear processes. We find that fluctuations near the average size give the major contribution to the cross section with [lt] few % contribution from small size configurations. The computed values of [sigma][sub diff] are consistent with the limited available data. The importance of coherent diffraction studies for a wide range of projectiles for high energy Fermilab fixed target experiments is emphasized. The implications of these significant color fluctuations for relativistic heavy ion collisions are discussed.

  17. Measurement of the differential cross section and charge asymmetry for inclusive $$\\mathrm {p}\\mathrm {p}\\rightarrow \\mathrm {W}^{\\pm }+X$$ production at $${\\sqrt{s}} = 8$$

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2016-08-22

    The differential cross section and charge asymmetry for inclusive pp → W ± + X → μ ±ν + X production at √s = 8 TeV are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8 inverse femtobarns recorded with the CMS detector at the LHC. Furthermore, these results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10E -3 to 10E -1.

  18. Measurement of the differential cross section and charge asymmetry for inclusive {p}{p}→ {W}^{± }+X production at {√{s}} = 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; de Visscher, S.; Delaere, C.; Delcourt, M.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Costa, E. M. Da; Jesus Damiao, D. De; Oliveira Martins, C. De; de Souza, S. Fonseca; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Souza Santos, A. De; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; El-Khateeb, E.; Elkafrawy, T.; Mahmoud, M. A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Bihan, A.-C. Le; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; Mamouni, H. El; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Ruiz Alvarez, J. D.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Lomidze, D.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; U. Bhawandeep; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Licata, C. La; Schizzi, A.; Zanetti, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; Cruz-Burelo, E. De La; Cruz, I. Heredia-De La; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Qazi, S.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Traczyk, P.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Voytishin, N.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Markin, O.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; Cruz, B. De La; Delgado Peris, A.; Del Valle, A. Escalante; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; de Martino, E. Navarro; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; de Saa, J. R. Castiñeiras; Curras, E.; Castro Manzano, P. De; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Pree, T. Du; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kortelainen, M. J.; Kousouris, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Arbol, P. Martinez Ruiz Del; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; McLean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lewis, J.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Bruner, C.; Castle, J.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Malek, M.; McBrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; de Lima, R. Teixeira; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.; CMS Collaboration

    2016-08-01

    The differential cross section and charge asymmetry for inclusive {p}{p}→ {W}^{± }+X → μ ^{± }ν +X production at √{s}=8 TeV are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8 {fb}^{-1} recorded with the CMS detector at the LHC. These results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10^{-3} to 10^{-1}.

  19. Rotational and vibrational transitions for Li + H2 collisions

    NASA Technical Reports Server (NTRS)

    Choi, B. H.; Poe, R. T.; Tang, K. T.

    1977-01-01

    Close coupling calculations for integral and differential cross sections have been carried out for Li + H2 collisions with an ab initio Hartree-Fock potential energy surface. Rotational, vibrational, and vib-rotational excitation cross sections are reported at 0.4336 eV, 0.7 eV, and 0.8673 eV in the center of mass system. For pure rotational excitations, which dominate the inelastic scattering, coupling with vibrational states is not very important. For vibrational transitions, the influence of large multiquantum rotational transitions is far less than that found for Li(+) + H2 collisions.

  20. A radiologic correlation with the basic functional neuroanatomy of the brain.

    PubMed

    Bilicka, Z; Liska, M; Bluska, P; Bilicky, J

    2014-01-01

    Primary cortical areas for motor, sensory and sensitive functions are localized in certain areas of the brain cortex. In clinical practice, cross sectional imaging (computer tomography and magnetic resonance) is wildy used for diagnostics purpose, treatment planning and follow up of the patients. Accurate orientation in brain structures is necessary for the evaluation of radiological images. There are numerable landmark signs, which can be used for precise identification of important brain structures. In this review article, the mostly used anatomical landmarks are described and shown on the cross sectional images (magnetic resonance imaging) (Fig. 14, Ref. 25).

  1. Electron impact cross-sections and cooling rates for methane. [in thermal balance of electrons in atmospheres and ionospheres of planets and satellites in outer solar system

    NASA Technical Reports Server (NTRS)

    Gan, L.; Cravens, T. E.

    1992-01-01

    Energy transfer between electrons and methane gas by collisional processes plays an important role in the thermal balance of electrons in the atmospheres and ionospheres of planets and satellites in the outer solar system. The literature is reviewed for electron impact cross-sections for methane in this paper. Energy transfer rates are calculated for elastic and inelastic processes using a Maxwellian electron distribution. Vibrational, rotational, and electronic excitation and ionization are included. Results are presented for a wide range of electron temperatures and neutral temperatures.

  2. Low levels of antiretroviral-resistant HIV infection in a routine clinic in Cameroon that uses the World Health Organization (WHO) public health approach to monitor antiretroviral treatment and adequacy with the WHO recommendation for second-line treatment.

    PubMed

    Kouanfack, Charles; Montavon, Celine; Laurent, Christian; Aghokeng, Avelin; Kenfack, Alain; Bourgeois, Anke; Koulla-Shiro, Sinata; Mpoudi-Ngole, Eitel; Peeters, Martine; Delaporte, Eric

    2009-05-01

    A cross-sectional study, performed at a routine human immunodeficiency virus (HIV)/AIDS clinic in Cameroon that uses the World Health Organization public health approach, showed low rates of virological failure and drug resistance at 12 and 24 months after initiation of antiretroviral therapy. Importantly, the cross-sectional study also showed that the World Health Organization recommendation for second-line treatment would be effective in almost all patients with HIV drug resistance mutations.

  3. Oscillator strengths and integral cross sections for the valence-shell excitations of nitric oxide studied by fast electron impact.

    PubMed

    Xu, Xin; Xu, Long-Quan; Xiong, Tao; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan

    2018-01-28

    The generalized oscillator strengths for the valence-shell excitations of A 2 Σ + , C 2 Π, and D 2 Σ + electronic-states of nitric oxide have been determined at an incident electron energy of 1500 eV with an energy resolution of 70 meV. The optical oscillator strengths for these transitions have been obtained by extrapolating the generalized oscillator strengths to the limit that the squared momentum transfer approaches to zero, which give an independent cross-check to the previous experimental and theoretical results. The integral cross sections for the valence-shell excitations of nitric oxide have been determined systematically from the threshold to 2500 eV with the aid of the newly developed BE-scaling method for the first time. The present optical oscillator strengths and integral cross sections of the valence-shell excitations of nitric oxide play an important role in understanding many physics and chemistry of the Earth's upper atmosphere such as the radiative cooling, ozone destruction, day glow, aurora, and so on.

  4. Protonium Formation in Collisions of Antiprotons with Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Cohen, James S.

    1997-04-01

    The first full-dynamics calculation of barp capture by the H2 molecule has been performed using the quasiclassical Kirschbaum-Wilets method with modifications for accurate treatment of the molecular structure. It had been speculated in calculations of heavy-negative-particle (μ^-) capture by the H atom(J. S. Cohen, R. L. Martin, and W. R. Wadt, Phys. Rev. A 27), 1821 (1983). that the capture cross section for the H2 molecule might be smaller than that for the atom at very low energies (based on the absence of adiabatic ionization for the molecule) but larger at higher energies (based on the molecule having two electrons and a higher ionization potential). This speculation seemed to be borne out by a diabatic-states calculation,(G. Ya. Korenman and V. P. Popov, AIP Conference Proceedings 181, p. 145 (1989).) which showed the two cross sections crossing at a center-of-mass energy of ~8 eV. However, both the qualitative argument and that calculation neglected the molecular vibrational and rotational dynamics. The present calculations show that the molecular degrees of freedom of the target are important and that the molecular capture cross section is always larger and extends to a higher collision energy ( ~80 eV vs. ~25 eV) than the atomic cross section. The distribution of n and l quantum numbers of the captured barp will also be presented.

  5. Photoeffect cross sections of some rare-earth elements at 145.4 keV

    NASA Astrophysics Data System (ADS)

    Umesh, T. K.; Ranganathaiah, C.; Sanjeevaiah, B.

    1985-08-01

    Total attenuation cross sections in the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er were derived from the measured total cross sections of their simple oxide compounds, by employing the mixture rule at 145.4-keV photon energy. The compound cross sections have been measured by performing transmission experiments in a good geometry setup. From the derived total cross sections of elements, photoeffect cross sections have been obtained by subtracting the theoretical scattering cross sections. A good agreement is observed between the present data of photoeffect cross sections and Scofield's theoretical data.

  6. VUV-absorption cross section of carbon dioxide from 150 to 800 K and applications to warm exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Venot, O.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Lefèvre, F.; Es-sebbar, Et.; Hébrard, E.; Schwell, M.; Bahrini, C.; Montmessin, F.; Lefèvre, M.; Waldmann, I. P.

    2018-01-01

    Context. Most exoplanets detected so far have atmospheric temperatures significantly higher than 300 K. Often close to their star, they receive an intense UV photons flux that triggers important photodissociation processes. The temperature dependency of vacuum ultraviolet (VUV) absorption cross sections are poorly known, leading to an undefined uncertainty in atmospheric models. Similarly, data measured at low temperatures similar to those of the high atmosphere of Mars, Venus, and Titan are often lacking. Aims: Our aim is to quantify the temperature dependency of the VUV absorption cross sections of important molecules in planetary atmospheres. We want to provide high-resolution data at temperatures prevailing in these media, and a simple parameterisation of the absorption in order to simplify its use in photochemical models. This study focuses on carbon dioxide (CO2). Methods: We performed experimental measurements of CO2 absorption cross sections with synchrotron radiation for the wavelength range (115-200 nm). For longer wavelengths (195-230 nm), we used a deuterium lamp and a 1.5 m Jobin-Yvon spectrometer. We used these data in our one-dimensional (1D) thermo-photochemical model in order to study their impact on the predicted atmospheric compositions. Results: The VUV absorption cross section of CO2 increases with the temperature. The absorption we measured at 150 K seems to be close to the absorption of CO2 in the fundamental ground state. The absorption cross section can be separated into two parts: a continuum and a fine structure superimposed on the continuum. The variation in the continuum of absorption can be represented by the sum of three Gaussian functions. Using data at high temperature in thermo-photochemical models significantly modifies the abundance and the photodissociation rates of many species in addition to CO2, such as methane and ammonia. These deviations have an impact on synthetic transmission spectra, leading to variations of up to 5 ppm. Conclusions: We present a full set of high-resolution (Δλ = 0.03 nm) absorption cross sections of CO2 from 115 to 230 nm for temperatures ranging from 150 to 800 K. A parameterisation allows us to calculate the continuum of absorption in this wavelength range. Extrapolation at higher temperature has not been validated experimentally and therefore should be used with caution. Similar studies on other major species are necessary to improve our understanding of planetary atmospheres. The data presented in Fig. 1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A34

  7. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    PubMed Central

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-01-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer. PMID:28251983

  8. R-Matrix Analysis of the 13C(α,n)16O Reaction

    NASA Astrophysics Data System (ADS)

    Kock, Arthur; Rogachev, Grigory

    2015-10-01

    The 13C(α,n)16O reaction plays a crucial role in the main s-process occurring in low-mass thermally-pulsing asymptotic giant branch (TP-AGB) stars, which produces about half of all nuclei heavier than iron. However, direct measurements of this reaction cross section near the Gamow-peak energy are currently not possible due to very small reaction cross sections. Additionally, available cross-section data at higher energy have some inconsistencies, leading to significant uncertainties in low energy extrapolations. A global R-matrix fit was conducted, using all available data for the 13C(α,n)16O, 13C(α, α)13C, and 16O(n,n)16O reactions. Of particular importance was the inclusion of the fixed ANC for the 1 / 2 + state at 6 . 356 MeV in 17O, which was measured recently using the sub-Coulomb α-transfer reaction, as well as the new 13C+ α elastic-scattering data measured in the low-energy region 1 . 6 - 3 . 8 MeV. Important constraining information on various resonances was found, and the uncertainty for the astrophysical 13C(α,n)16O reaction rate was dramatically reduced. Much work on the analysis was done by A. K. Nurmukhanbetova from National Laboratory Astana in Astana, Kazakhstan.

  9. Sectioning studies of biomimetic collagen-hydroxyapatite coatings on Ti-6Al-4V substrates using focused ion beam

    NASA Astrophysics Data System (ADS)

    Hu, Changmin; Yu, Le; Wei, Mei

    2018-06-01

    A biomimetic bone-like collagen-hydroxyapatite (Col-HA) composite coating was formed on a surface-treated Ti-6Al-4V alloy substrate via simultaneous collagen self-assembly and hydroxyapatite nucleation. The coating process has been carried out by immersing sand-blasted, acid-etched and UV irradiated Ti-6Al-4V alloy in type I collagen-containing modified simulated body fluid (m-SBF). The surface morphology and phase composition of the coating were characterized using various techniques. More importantly, dual-beam FIB/SEMs with either gallium ion source (GFIB) or xenon plasma ion source (PFIB) were used to investigate the cross-sectional features of the biomimetic Col-HA composite coating in great details. As a result, the cross-sectional images and thin transmission electron microscopy (TEM) specimens were successfully obtained from the composite coating with no obvious damages or milling ion implantations. Both the cross-sectional SEM and TEM results have confirmed that the Col-HA coating demonstrates a similar microstructure to that of pure HA coating with homogeneously distributed elements across the whole cross section. Both coatings consist of a uniform, crack-free gradient structure with a dense layer adjacent to the interface between the Ti-6Al-4V substrate and the coating facilitating a strong bonding, while a porous structure at the coating surface aiding cell attachment.

  10. Measuring and modeling the backscattering cross section of a leaf

    NASA Technical Reports Server (NTRS)

    Senior, T. B. A.; Sarabandi, K.; Ulaby, F. T.

    1987-01-01

    Leaves are a significant feature of any vegetation canopy, and for remote sensing purposes it is important to develop an effective model for predicting the scattering from a leaf. From measurements of the X band backscattering cross section of a coleus leaf in varying stages of dryness, it is shown that a uniform resistive sheet constitutes such a model for a planar leaf. The scattering is determined by the (complex) resistivity which is, in turn, entirely specified by the gravimetric moisture content of the leaf. Using an available asymptotic expression for the scattering from a rectangular resistive plate which includes, as a special case, a metallic plate whose resistivity is zero, the computed backscattering cross sections for both principal polarizations are found to be in excellent agreement with data measured for rectangular sections of leaves with different moisture contents. If the resistivity is sufficiently large, the asymptotic expressions do not differ significantly from the physical optics ones, and for naturally shaped leaves as well as rectangular sections, the physical optics approximation in conjunction with the resistive sheet model faithfully reproduces the dominant feataures of the scattering patterns under all moisture conditions.

  11. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  12. A cross-sectional study of Tritrichomonas foetus infection in feral and shelter cats in Prince Edward Island, Canada.

    PubMed

    Raab, Oriana; Greenwood, Spencer; Vanderstichel, Raphael; Gelens, Hans

    2016-03-01

    A cross-sectional study examined the occurrence of Tritrichomonas foetus, and other intestinal parasites, in feral and shelter cats in Prince Edward Island (PEI). Fecal samples were collected from 100 feral cats, 100 cats from the PEI Humane Society, and 5 cats from a private residence. The occurrence of T. foetus, based on fecal culture, was 0% in feral and shelter cats. A single positive sample was obtained from an owned Abyssinian cat that was imported to PEI. Intestinal parasites were identified via fecal flotation in 76% of feral cats and 39% of cats from the humane society. Feral cats had a higher incidence of Toxocara cati than cats from the humane society (P < 0.001), conversely, shelter cats had a higher incidence of Cystoisospora spp. (P < 0.001). These results suggest that while T. foetus is not of importance in feral and shelter cats in PEI, imported cats could serve as reservoirs.

  13. A cross-sectional study of Tritrichomonas foetus infection in feral and shelter cats in Prince Edward Island, Canada

    PubMed Central

    Raab, Oriana; Greenwood, Spencer; Vanderstichel, Raphael; Gelens, Hans

    2016-01-01

    A cross-sectional study examined the occurrence of Tritrichomonas foetus, and other intestinal parasites, in feral and shelter cats in Prince Edward Island (PEI). Fecal samples were collected from 100 feral cats, 100 cats from the PEI Humane Society, and 5 cats from a private residence. The occurrence of T. foetus, based on fecal culture, was 0% in feral and shelter cats. A single positive sample was obtained from an owned Abyssinian cat that was imported to PEI. Intestinal parasites were identified via fecal flotation in 76% of feral cats and 39% of cats from the humane society. Feral cats had a higher incidence of Toxocara cati than cats from the humane society (P < 0.001), conversely, shelter cats had a higher incidence of Cystoisospora spp. (P < 0.001). These results suggest that while T. foetus is not of importance in feral and shelter cats in PEI, imported cats could serve as reservoirs. PMID:26933262

  14. Progress Towards an Indirect Neutron Capture Capability at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehler, Paul E.; Ullmann, John Leonard; Couture, Aaron Joseph

    2017-09-20

    There are many neutron-capture cross sections of importance to radiochemical diagnostics and nuclear forensics which are beyond the reach of direct measurements. Hence, we have been developing an apparatus on flight path (FP) 13 at target 1 at LANSCE for tightly constraining these cross sections via determination of the underlying physical quantities. FP-13 was initially a cold-neutron beam line for materials science and therefore required substantial modification for use for nuclear physics. In FY17, we made several improvements to FP-13, demonstrated improved performance due to these changes via measurements on a variety of samples, identified a few more needed improvements,more » and reconfigured the beam line to implement the most important of these. New measurements to assess the impact of the most recent improvement will commence when beam is restored to LANSCE. Although FP-13 has not yet reached the performance required for small radioactive samples, measurements on a gold sample have led to an important science result which we are preparing for publication.« less

  15. The effect of nozzle-exit-channel shape on resultant fiber diameter in melt-electrospinning

    NASA Astrophysics Data System (ADS)

    Esmaeilirad, Ahmad; Ko, Junghyuk; Rukosuyev, Maxym V.; Lee, Jason K.; Lee, Patrick C.; Jun, Martin B. G.

    2017-01-01

    In recent decades, electrospinning using a molten poly (ε-caprolactone) resin has gained attention for creating fibrous tissue scaffolds. The topography and diameter control of such electrospun microfibers is an important issue for their different applications in tissue engineering. Charge density, initial nozzle-exit-channel cross-sectional area, nozzle to collector distance, viscosity, and processing temperature are the most important input parameters that affect the final electrospun fiber diameters. In this paper we will show that the effect of nozzle-exit-channel shape is as important as the other effective parameters in a resultant fiber diameter. However, to the best of our knowledge, the effect of nozzle-exit-channel shapes on a resultant fiber diameter have not been studied before. Comparing rectangular and circular nozzles with almost the same exit-channel cross-sectional areas in a similar processing condition showed that using a rectangular nozzle resulted in decreasing final fiber diameter up to 50%. Furthermore, the effect of processing temperature on the final fiber topography was investigated.

  16. Values and Preferences of Individuals with Dementia: Perceptions of Family Caregivers over Time

    ERIC Educational Resources Information Center

    Reamy, Allison M.; Kim, Kyungmin; Zarit, Steven H.; Whitlatch, Carol J.

    2013-01-01

    Purpose of the Study: Cross-sectional evidence indicates that family caregivers reporting on the importance of daily care values and preferences of individuals with mild-to-moderate dementia consistently report less importance than individuals with dementia (IWDs) self-report. Discrepancy is primarily associated with caregivers' beliefs about…

  17. Importance of resonance interference effects in multigroup self-shielding calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachowski, R.E.; Protsik, R.

    1995-12-31

    The impact of the resonance interference method (RIF) on multigroup neutron cross sections is significant for major isotopes in the fuel, indicating the importance of resonance interference in the computation of gadolinia burnout and plutonium buildup. The self-shielding factor method with the RIF method effectively eliminates shortcomings in multigroup resonance calculations.

  18. Reducing cross-sectional data using a genetic algorithm method and effects on cross-section geometry and steady-flow profiles

    USGS Publications Warehouse

    Berenbrock, Charles E.

    2015-01-01

    The effects of reduced cross-sectional data points on steady-flow profiles were also determined. Thirty-five cross sections of the original steady-flow model of the Kootenai River were used. These two methods were tested for all cross sections with each cross section resolution reduced to 10, 20 and 30 data points, that is, six tests were completed for each of the thirty-five cross sections. Generally, differences from the original water-surface elevation were smaller as the number of data points in reduced cross sections increased, but this was not always the case, especially in the braided reach. Differences were smaller for reduced cross sections developed by the genetic algorithm method than the standard algorithm method.

  19. Influence of nuclear data uncertainties on thorium fusion-fission hybrid blanket nucleonic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, E.T.; Mathews, D.R.

    1979-09-01

    The fusion-fission hybrid blanket proposed for the Tandem Mirror Hybrid Reactor employs thorium metal as the fertile material. Based on the ENDF/B-IV nuclear data, the /sup 233/U and tritium production rate and blanket energy multiplication averaged over the blanket lifetime of about 9 MW-yr/m/sup 2/ are 0.76 and 1.12 per D-T neutron and 4.8, respectively. At the time of the blanket discharge, the /sup 233/U enrichment in the thorium metal is about 3%. The thorium cross sections given by the ENDF/B-IV and V were reviewed, and the important partial cross sections such as (n,2n), (n,3n), and (n,..gamma..) were found tomore » be known to +-10 to 20% in the respective energy range of interest. A sensitivity study showed that the /sup 233/U and tritium production rate and blanket energy multiplication are relatively sensitive to the thorium capture and fission cross section uncertainties. In order to predict the above parameters within +-1%, the Th(n,..gamma..) and Th(n,..nu..f) cross sections must be measured within about +-2% in the energy range 3 to 3000 keV and 13.5 to 15 MeV, respectively.« less

  20. Signatures of the electron saddle swaps mechanism in the photon spectra following charge-exchange collisions

    NASA Astrophysics Data System (ADS)

    Otranto, Sebastian

    2014-10-01

    During the last few years, several experimental and theoretical studies have focused on state selective charge exchange processes between charged ions and alkali metals. These data are of particular importance for the tokamak nuclear fusion reactor program, since diagnostics on the plasma usually rely on charge-exchange spectroscopy. In this sense, alkali metals, have been proposed as potential alternatives to excited hydrogen/deuterium for which laboratory experiments are not feasible at present. In this talk, we present our recent work involving ion collisions with alkali metals. Oscillatory structures in the angular differential charge-exchange cross sections obtained using the MOTRIMS technique are correctly described by classical trajectory Monte Carlo simulations. These oscillations are found to originate from the number of swaps the electron undergoes around the projectile-target potential saddle before capture takes place and are very prominent at impact energies below 10 keV/amu. Moreover, cross sections of higher order of differentiability also indicate that the swaps leave distinctive signatures in the (n,l)-state selective cross sections and in the photon line emission cross sections. Oscillatory structures for the x-ray hardness ratio parameter are also predicted. In collaboration with Ronnie Hoekstra, Zernike Institute for Advanced Materials, University of Groningen and Ronald Olson, Department of Physics, Missouri University of Science and Technology.

  1. Social Media Use, Social Media Stress, and Sleep: Examining Cross-Sectional and Longitudinal Relationships in Adolescents.

    PubMed

    van der Schuur, Winneke A; Baumgartner, Susanne E; Sumter, Sindy R

    2018-01-09

    There are concerns that social media (SM) use and SM stress may disrupt sleep. However, evidence on both the cross-sectional and longitudinal relationships is limited. Therefore, the main aim of this study is to address this gap in the literature by examining the cross-sectional and longitudinal relationships between SM use, SM stress, and sleep (i.e., sleep latency and daytime sleepiness) in adolescents. In total, 1,441 adolescents 11-15 years, 51% boys) filled out a survey in at least one of three waves that were three to four months apart (N Wave1  = 1,241; N Wave2  = 1,216; N Wave3  = 1,103). Cross-sectionally, we found that SM use and SM stress were positively related to sleep latency and daytime sleepiness. However, when examined together, SM use was not a significant predictor of sleep latency and daytime sleepiness above the effects of SM stress. The longitudinal findings showed that SM stress was positively related to subsequent sleep latency and daytime sleepiness, but only among girls. Our findings stress that it is important to focus on how adolescents perceive and cope with their SM use, instead of focusing on the mere frequency of SM use.

  2. Longitudinal versus cross-sectional methodology for estimating the economic burden of breast cancer: a pilot study.

    PubMed

    Mullins, C Daniel; Wang, Junling; Cooke, Jesse L; Blatt, Lisa; Baquet, Claudia R

    2004-01-01

    Projecting future breast cancer treatment expenditure is critical for budgeting purposes, medical decision making and the allocation of resources in order to maximise the overall impact on health-related outcomes of care. Currently, both longitudinal and cross-sectional methodologies are used to project the economic burden of cancer. This pilot study examined the differences in estimates that were obtained using these two methods, focusing on Maryland, US Medicaid reimbursement data for chemotherapy and prescription drugs for the years 1999-2000. Two different methodologies for projecting life cycles of cancer expenditure were considered. The first examined expenditure according to chronological time (calendar quarter) for all cancer patients in the database in a given quarter. The second examined only the most recent quarter and constructed a hypothetical expenditure life cycle by taking into consideration the number of quarters since the respective patient had her first claim. We found different average expenditures using the same data and over the same time period. The longitudinal measurement had less extreme peaks and troughs, and yielded average expenditure in the final period that was 60% higher than that produced using the cross-sectional analysis; however, the longitudinal analysis had intermediate periods with significantly lower estimated expenditure than the cross-sectional data. These disparate results signify that each of the methods has merit. The longitudinal method tracks changes over time while the cross-sectional approach reflects more recent data, e.g. current practice patterns. Thus, this study reiterates the importance of considering the methodology when projecting future cancer expenditure.

  3. The level of leisure time physical activity is associated with work ability-a cross sectional and prospective study of health care workers.

    PubMed

    Arvidson, Elin; Börjesson, Mats; Ahlborg, Gunnar; Lindegård, Agneta; Jonsdottir, Ingibjörg H

    2013-09-17

    With increasing age, physical capacity decreases, while the need and time for recovery increases. At the same time, the demands of work usually do not change with age. In the near future, an aging and physically changing workforce risks reduced work ability. Therefore, the impact of different factors, such as physical activity, on work ability is of interest. Thus, the aim of this study was to evaluate the association between physical activity and work ability using both cross sectional and prospective analyses. This study was based on an extensive questionnaire survey. The number of participants included in the analysis at baseline in 2004 was 2.783, of whom 2.597 were also included in the follow-up in 2006. The primary outcome measure was the Work Ability Index (WAI), and the level of physical activity was measured using a single-item question. In the cross-sectional analysis we calculated the level of physical activity and the prevalence of poor or moderate work ability as reported by the participants. In the prospective analysis we calculated different levels of physical activity and the prevalence of positive changes in WAI-category from baseline to follow-up. In both the cross sectional and the prospective analyses the prevalence ratio was calculated using Generalized Linear Models. The cross-sectional analysis showed that with an increased level of physical activity, the reporting of poor or moderate work ability decreased. In the prospective analysis, participants reporting a higher level of physical activity were more likely to have made an improvement in WAI from 2004 to 2006. The level of physical activity seems to be related to work ability. Assessment of physical activity may also be useful as a predictive tool, potentially making it possible to prevent poor work ability and improve future work ability. For employers, the main implications of this study are the importance of promoting and facilitating the employees' engagement in physical activity, and the importance of the employees' maintaining a physically active lifestyle.

  4. Neutron-capture cross-section measurements of Xe136 between 0.4 and 14.8 MeV

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, W.

    2014-03-01

    Fast-neutron-capture cross-section data on Xe136 have been measured with the activation method between 0.4 and 14.8 MeV. The cross section was found to be of the order of 1 mb at the eleven energies investigated. This result is important to interpret potential neutron-induced backgrounds in the enriched xenon observatory and KamLAND-Zen neutrinoless double-β decay searches that use xenon as both source and detector. A high-pressure sphere filled with Xe136 was irradiated with monoenergetic neutrons produced by the reactions 3H(p ,n)3He, 2H(d ,n)3He, and 3H(d ,n)4He. Indium and gold monitor foils were irradiated simultaneously with the Xe136 to determine the incident neutron flux. The activities of the reaction products were measured with high-resolution γ-ray spectroscopy. The present results are compared to predictions from ENDF/B-VII.1 and TENDL-2012.

  5. Polarization Dependent Bulk-sensitive Valence Band Photoemission Spectroscopy and Density Functional Theory Calculations: Part I. 3d Transition Metals

    NASA Astrophysics Data System (ADS)

    Ueda, Shigenori; Hamada, Ikutaro

    2017-12-01

    The X-ray polarization dependent valence band HAXPES spectra of 3d transition metals (TMs) of Ti-Zn were measured to investigate the orbital resolved electronic structures by utilizing that the fact the photoionization cross-section of the atomic orbitals strongly depends on the experimental geometry. We have calculated the HAXPES spectra, which correspond to the cross-section weighted densities of states (CSW-DOSs), where the DOSs were obtained by the density functional theory calculations, and we have determined the relative photoionization cross-sections of the 4s and 4p orbitals to the 3d orbital in the 3d TMs. The experimentally obtained bulk-sensitive 3d and 4s DOSs were good agreement with the calculated DOSs in Ti, V, Cr, and Cu. In contrast, the deviations between the experimental and calculated 3d DOSs for Mn, Fe, Co, Ni were found, suggesting that the electron correlation plays an important role in the electronic structures for these materials.

  6. Microwave signatures of snow, ice and soil at several wavelengths

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Schmugge, T. J.; Chang, T. C.

    1974-01-01

    Analyses of data obtained from aircraft-borne radiometers have shown that the microwave signatures of various parts of the terrain depend on both the volume scattering cross-section and the dielectric loss in the medium. In soil, it has been found that experimental data fit a model in which the scattering cross section is negligible compared to the dielectric loss. On the other hand, the volume scattering cross-section in snow and continental ice was found, from analyzing data obtained with aircraft- and spacecraft-borne radiometers, to be more important than the dielectric loss or surface reflectivity in determining the observed microwave emissivity. A model which assumes Mie scattering of ice particles of various sizes was found to be the dominant volume scattering mechanism in these media. Both spectral variation in the microwave signatures of snow and ice fields, as well as the variation in the emissivity of continental ice sheets such as those covering Greenland and Antarctica appear to be consistent with this model.

  7. Multiple parton interactions and forward double pion production in pp and dA scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strikman, M.; Vogelsang, W.

    2011-02-01

    We estimate the contributions by double-parton interactions to the cross sections for pp{yields}{pi}{sup 0}{pi}{sup 0}X and dA{yields}{pi}{sup 0}{pi}{sup 0}X at the Relativistic Heavy Ion Collider (RHIC). We find that such contributions become important at large forward rapidities of the produced pions. This is, in particular, the case for dA scattering, where they strongly enhance the azimuthal-angular independent pedestal component of the cross section, providing a natural explanation of this feature of the RHIC dA data. We argue that the discussed processes open a window to studies of double quark distributions in nucleons. We also briefly address the roles of shadowingmore » and energy loss in dA scattering, which we show to affect the double-inclusive pion cross section much more strongly than the single-inclusive one. We discuss the implications of our results for the interpretation of pion azimuthal correlations.« less

  8. Collision cross sections and diffusion parameters for H and D in atomic oxygen. [in upper earth and Venus atmospheres

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1993-01-01

    Modeling the behavior of H and D in planetary exospheres requires detailed knowledge of the differential scattering cross sections for all of the important neutral-neutral and ion-neutral collision processes affecting these species over their entire ranges of interaction energies. In the upper atmospheres of Earth, Venus, and other planets as well, the interactions of H and D with atomic oxygen determine the rates of diffusion of escaping hydrogen isotopes through the thermosphere, the velocity distributions of exospheric atoms that encounter the upper thermosphere, the lifetimes of exospheric orbiters with periapsides near the exobase, and the transfer of momentum in collisions with hot O. The nature of H-O and D-O collisions and the derivation of a data base consisting of phase shifts and the differential, total, and momentum transfer cross sections for these interactions in the energy range 0.001 - 10 eV are discussed. Coefficients of mutual diffusion and thermal diffusion factors are calculated for temperatures of planetary interest.

  9. Cross-sections for (p,x) reactions on natural chromium for the production of 52,52m,54Mn radioisotopes

    DOE PAGES

    Wooten, A. Lake; Lewis, Benjamin C.; Lapi, Suzanne E.

    2014-12-11

    The production of positron-emitting isotopes of manganese is potentially important for developing contrast agents for dual-modality positron emission tomography and magnetic resonance (PET/MR) imaging, as well as for in vivo imaging of the biodistribution and toxicity of manganese. Furthermore, the decay properties of 52Mn make it an excellent candidate for these applications, and it can easily be produced by bombardment of a chromium target with protons or deuterons from a low-energy biomedical cyclotron. There are several parameters essential to this mode of production—target thickness, beam energy, beam current, and bombardment time—depend heavily on the availability of reliable, reproducible cross-section data.more » Our paper contributes to the routine production of 52gMn for biomedical research by contributing experimental cross-sections for natural chromium ( natCr) targets for the natCr(p,x) 52gMn reaction, as well as for the production of the radiocontaminants 52m, 54Mn.« less

  10. Anomalous Photoionization in Xe

    NASA Astrophysics Data System (ADS)

    Klapisch, Marcel; Busquet, Michel

    2012-10-01

    Photoionization (PI) cross sections are important components of the opacities that are necessary for the simulation of astrophysical and ICF plasmas. Most of PI cross sections (i) start abruptly at threshold and (ii) decrease as an inverse power (e.g.3^rd) of the photon energy. In the framework of the CRASH project [1] we computed Xe opacities with the STA code [2]. We observed that the PI cross section for the 4d shell has neither of these 2 characteristics. We explain this result as interference between the bound 4d wavefunction (wf), the photon, and the free electron wf. Similar, but less pronounced effects are seen for the 5d and 5p shells. Simplified models of PI not involving the actual wf would not show this effect and would probably be inaccurate.[4pt] [1] Doss, F. W., Drake, R. P., and Kuranz, C. C., High Ener. Dens. Phys. 6, 157-61.[0pt] [2] Busquet, M., Klapisch, M., Bar-Shalom, A., et al., Bull. Am. Phys. Soc. 55, 225 (2010).

  11. A 100,000 Scale Factor Radar Range.

    PubMed

    Blanche, Pierre-Alexandre; Neifeld, Mark; Peyghambarian, Nasser

    2017-12-19

    The radar cross section of an object is an important electromagnetic property that is often measured in anechoic chambers. However, for very large and complex structures such as ships or sea and land clutters, this common approach is not practical. The use of computer simulations is also not viable since it would take many years of computational time to model and predict the radar characteristics of such large objects. We have now devised a new scaling technique to overcome these difficulties, and make accurate measurements of the radar cross section of large items. In this article we demonstrate that by reducing the scale of the model by a factor 100,000, and using near infrared wavelength, the radar cross section can be determined in a tabletop setup. The accuracy of the method is compared to simulations, and an example of measurement is provided on a 1 mm highly detailed model of a ship. The advantages of this scaling approach is its versatility, and the possibility to perform fast, convenient, and inexpensive measurements.

  12. Molecular versus squared Woods-Saxon α-nucleus potentials in the 27Al(α, t)28Si reaction

    NASA Astrophysics Data System (ADS)

    Abdullah, M. N. A.; Das, S. K.; Tariq, A. S. B.; Mahbub, M. S.; Mondal, A. S.; Uddin, M. A.; Basak, A. K.; Gupta, H. M. Sen; Malik, F. B.

    2003-06-01

    The differential cross-section of the 27Al(alpha, t)28Si reaction for 64.5 MeV incident energy has been reanalysed in DWBA with full finite range using a squared Woods-Saxon (Michel) alpha-nucleus potential with the modified value of the depth parameter alpha = 2.0 as reported in a comment article by Michel and Reidemeister. This new value produces significant improvement in fitting the data of the reaction with its overall performance, in some cases, close to that previously observed for the molecular potential. Although the non-monotonic shallow molecular potential with a soft repulsive core and the Michel potentials produce the same quality fits to the elastic scattering and non-elastic processes, they are not phase equivalent. The two types of potential produce altogether different cross-sections, particularly at large reaction angles. The importance of the experimental cross-sections at large angles for both elastic scattering and non-elastic processes is elucidated.

  13. Cross-sectional echocardiographic diagnosis of azygos continuation of the inferior vena cava.

    PubMed

    Huhta, J C; Smallhorn, J F; Macartney, F J

    1984-01-01

    Azygos continuation of the inferior vena cava has importance for both the invasive diagnosis of congenital heart disease by catheterization and for surgical treatment. Cross-sectional echocardiography was used to examine 1,000 patients (1 day to 16 years, mean 3.3 years) who also had angiographic or surgical confirmation. Twenty-eight patients (3%) had azygos continuation (left 13, right 14, bilateral 1) and, in 26 patients, the hepatic portion of the inferior vena cava was absent. Azygos continuation was prospectively detected in all and was directly visualized in subcostal scans as a venous structure posterior to the aorta coursing behind the heart and not entering the inferior aspect of either atrium in 26/28 (93%). Azygos connection to the ipsilateral superior vena cava or atrium was correctly predicted in all. The inferior vena cava was visualized in all patients without azygos continuation, except one neonate with omphalocele. We conclude that cross-sectional echocardiography can accurately detect azygos continuation of the inferior vena cava and predict its side and connection.

  14. Forward J / ψ production at high energy: Centrality dependence and mean transverse momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducloué, B.; Lappi, T.; Mäntysaari, H.

    2016-10-21

    Forward rapidity J/more » $$\\psi$$ meson production in proton-nucleus collisions can be an important constraint of descriptions of the small- x nuclear wave function. In an earlier work we studied this process using a dipole cross section satisfying the Balitsky-Kovchegov equation, fit to HERA inclusive data and consistently extrapolated to the nuclear case using a standard Woods-Saxon distribution. In this paper we present further calculations of these cross sections, studying the mean transverse momentum of the meson and the dependence on collision centrality. We also extend the calculation to backward rapidities using nuclear parton distribution functions. Here, we show that the parametrization is overall rather consistent with the available experimental data. However, there is a tendency towards a too strong centrality dependence. This can be traced back to the rather small transverse area occupied by small- x gluons in the nucleon that is seen in the HERA data, compared to the total inelastic nucleon-nucleon cross section.« less

  15. Pseudostate methods and differential cross sections for antiproton ionization of atomic hydrogen and helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGovern, M.; Walters, H. R. J.; Assafrao, D.

    2010-03-15

    A relaxed form of a recent impact parameter coupled pseudostate approximation of McGovern et al. [Phys. Rev. A 79, 042707 (2009)] for calculating differential ionization cross sections is proposed. This greatly eases the computational burden in cases where a range of ejected electron energies has to be considered. The relaxed approximation is tested against exact first Born calculations for antiproton impact on H and nonperturbatively for the highly nonperturbative system of Au{sup 53+} incident upon He. The approximation performs well in these tests. It is shown how, with a little further approximation, the relaxed theory leads to a widely usedmore » prescription for the total ionization cross section. Results for differential ionization of H and He by antiprotons are presented. These reveal the growing dominance of the interaction between the antiproton and the target nucleus at low impact energies and show the changing importance of the role of the postcollisional interaction between the antiproton and the ejected electron.« less

  16. Comparative study of tool machinery sliding systems; comparison between plane and cylindrical basic shapes

    NASA Astrophysics Data System (ADS)

    Glăvan, D. O.; Babanatsas, T.; Babanatis Merce, R. M.; Glăvan, A.

    2018-01-01

    The paper brings in attention the importance that the sliding system of a tool machinery is having in the final precision of the manufacturing. We are basically comparing two type of slides, one constructed with plane surfaces and the other one with circular cross-sections (as known as cylindrical slides), analysing each solution from the point of view of its technology of manufacturing, of the precision that the particular slides are transferring to the tool machinery, cost of production, etc. Special attention is given to demonstrate theoretical and to confirm by experimental works what is happening with the stress distribution in the case of plane slides and cylindrical slides, both in longitudinal and in cross-over sections. Considering the results obtained for the stress distribution in the transversal and longitudinal cross sections, by composing them, we can obtain the stress distribution on the semicircular slide. Based on the results, special solutions for establishing the stress distribution between two surfaces without interact in the contact zone have been developed.

  17. Importance of projectile-target interactions in the triple differential cross sections for Low energy (e,2e) ionization of aligned H2

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Madison, Don; Ren, X.; Dorn, A.; Ning, Chuangang

    2014-10-01

    Experimental and theoretical Triple Differential Cross Sections (TDCS) are presented for electron impact ionization-excitation of the 2 sσg state of H2 in the perpendicular plane. The excited 2 sσg state immediately dissociates and the alignment of the molecule is determined by detecting one of the fragments. Results are presented for three different alignments in the xy-plane (scattering plane is xz)-alignment along y-axis, x-axis, and 45° between the x- and y-axes for incident electron energies of 4, 10, and 25 eV and different scattered electron angles of 20° and 30° in the perpendicular plane. Theoretical M4DW (molecular 4-body distorted wave) results are compared to experimental data, and overall we found reasonably good agreement between experiment and theory. The Results show that (e,2e) cross sections for excitation-ionization depend strongly on the orientation of the H2 molecule.

  18. Measurement of the 23Na(n,2n) cross section in 235U and 252Cf fission neutron spectra

    NASA Astrophysics Data System (ADS)

    Košťál, Michal; Schulc, Martin; Rypar, Vojtěch; Losa, Evžen; Švadlenková, Marie; Baroň, Petr; Jánský, Bohumil; Novák, Evžen; Mareček, Martin; Uhlíř, Jan

    2017-09-01

    The presented paper aims to compare the calculated and experimental reaction rates of 23Na(n,2n)22Na in a well-defined reactor spectra and in the spontaneous fission spectrum of 252Cf. The experimentally determined reaction rate, derived using gamma spectroscopy of irradiated NaF sample, is used for average cross section determination.Estimation of this cross-section is important as it is included in International Reactor Dosimetry and Fusion File and is also relevant to the correct estimation of long-term activity of Na coolant in Sodium Fast Reactors. The calculations were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010, CENDL-3.1 and IRDFF nuclear data libraries. In the case of reactor spectrum, reasonable agreement was not achieved with any library. However, in the case of 252Cf spectrum agreement was achieved with IRDFF, JEFF-3.1 and JENDL libraries.

  19. Measurement of the inelastic proton-proton cross-section at √s=7 TeV with the ATLAS detector.

    PubMed

    2011-09-06

    The dependence of the rate of proton-proton interactions on the centre-of-mass collision energy, √s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurement of the inelastic proton-proton interaction cross-section at a centre-of-mass energy, √s, of 7 TeV using the ATLAS detector at the Large Hadron Collider. Events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic cross-section of 60.3 ± 2.1 mb is measured for ξ > 5×10⁻⁶, where ξ is calculated from the invariant mass, M(X), of hadrons selected using the largest rapidity gap in the event. For diffractive events, this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV.

  20. Oscillations above the barrier in the fusion of 28Si + 28Si

    DOE PAGES

    Montagnoli, G.; Stefanini, A.M.; Esbensen, H.; ...

    2015-05-13

    Fusion cross sections of 28Si+ 28Si have been measured in a range above the barrier with a very small energy step (Delta E lab=0.5 MeV). Regular oscillations have been observed, best evidenced in the first derivative of the energy-weighted excitation function. For the first time, quite different behaviors (the appearance of oscillations and the trend of sub-barrier cross sections) have been reproduced within the same theoretical frame, i.e., the coupled-channel model using the shallow M3Y+repulsion potential. The calculations suggest that channel couplings play an important role in the appearance of the oscillations, and that the simple relation between a peakmore » in the derivative of the energy-weighted cross section and the height of a centrifugal barrier is lost, and so is the interpretation of the second derivative of the excitation function as a barrier distribution for this system, at energies above the Coulomb barrier.« less

  1. Theoretical X-ray production cross sections at incident photon energies across L{sub i} (i=1-3) absorption edges of Br

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puri, Sanjiv

    The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, inmore » order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.« less

  2. Role of deformation in odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Hagino, K.; Sagawa, H.

    2017-12-01

    We discuss the role of pairing antihalo effect in the observed odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes by taking into account the ground-state deformation of these nuclei. To this end, we construct the ground-state density for the Ne,3130 and Mg,3736 nuclei based on a deformed Woods-Saxon potential, while for the 32Ne and 38Mg nuclei we also take into account the pairing correlation using the Hartree-Fock-Bogoliubov method. We demonstrate that, when the one-neutron separation energy is small for the odd-mass nuclei, a significant odd-even staggering still appears even with finite deformation, although the degree of staggering is somewhat reduced compared to the spherical case. This implies that the pairing antihalo effect in general plays an important role in generating the odd-even staggering in reaction cross sections for weakly bound nuclei.

  3. Open-source Framework for Storing and Manipulation of Plasma Chemical Reaction Data

    NASA Astrophysics Data System (ADS)

    Jenkins, T. G.; Averkin, S. N.; Cary, J. R.; Kruger, S. E.

    2017-10-01

    We present a new open-source framework for storage and manipulation of plasma chemical reaction data that has emerged from our in-house project MUNCHKIN. This framework consists of python scripts and C + + programs. It stores data in an SQL data base for fast retrieval and manipulation. For example, it is possible to fit cross-section data into most widely used analytical expressions, calculate reaction rates for Maxwellian distribution functions of colliding particles, and fit them into different analytical expressions. Another important feature of this framework is the ability to calculate transport properties based on the cross-section data and supplied distribution functions. In addition, this framework allows the export of chemical reaction descriptions in LaTeX format for ease of inclusion in scientific papers. With the help of this framework it is possible to generate corresponding VSim (Particle-In-Cell simulation code) and USim (unstructured multi-fluid code) input blocks with appropriate cross-sections.

  4. Experiments on Antiprotons: Antiproton-Nucleon Cross Sections

    DOE R&D Accomplishments Database

    Chamberlain, Owen; Keller, Donald V.; Mermond, Ronald; Segre, Emilio; Steiner, Herbert M.; Ypsilantis, Tom

    1957-07-22

    In this paper experiments are reported on annihilation and scattering of antiprotons in H{sub 2}O , D{sub 2}O, and O{sub 2}. From the data measured it is possible to obtain an antiproton-proton and an antiproton-deuteron cross section at 457 Mev (lab). Further analysis gives the p-p and p-n cross sections as 104 mb for the p-p reaction cross section and 113 mb for the p-n reaction cross section. The respective annihilation cross sections are 89 and 74 mb. The Glauber correction necessary in order to pass from the p-d to the p-n cross section by subtraction of the p-p cross section is unfortunately large and somewhat uncertain. The data are compared with the p-p and p-n cross sections and with other results on p-p collisions.

  5. Geophysical Plasmas and Atmospheric Modeling.

    DTIC Science & Technology

    1983-02-01

    section of ozone partial pressure at Arosa , Switzerland (from W~tsch, 1974). P- 41 C 2 10 ____ \\ \\ 3 20 4 500 _____ km_ 20 1000 5 -0 -620 2 0 0 0...a.Arti tp b. Polr typ 2004 6t p Figure 2.6 shows a time cross section of vertical ozone over Arosa , Switzerland. The most important feature to note is the

  6. Importance of Thomas single-electron transfer in fast p-He collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.; Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1 D-69126; Gudmundsson, M.

    We report experimental angular differential cross sections for nonradiative single-electron capture in p-He collisions (p+ He -> H + He{sup +}) with a separate peak at the 0.47 mrad Thomas scattering angle for energies in the 1.3-12.5 MeV range. We find that the intensity of this peak scales with the projectile velocity as v{sub P}{sup -11}. This constitutes the first experimental test of the prediction from 1927 by L. H. Thomas [Proc. R. Soc. 114, 561 (1927)]. At our highest energy, the peak at the Thomas angle contributes with 13.5% to the total integrated nonradiative single-electron capture cross section.

  7. Electron-impact ionization and electron attachment cross sections of radicals important in transient gaseous discharges

    NASA Technical Reports Server (NTRS)

    Lee, Long C.; Srivastava, Santosh K.

    1990-01-01

    Electron-impact ionization and electron attachment cross sections of radicals and excited molecules were measured using an apparatus that consists of an electron beam, a molecular beam and a laser beam. The information obtained is needed for the pulse power applications in the areas of high power gaseous discharge switches, high energy lasers, particle beam experiments, and electromagnetic pulse systems. The basic data needed for the development of optically-controlled discharge switches were also investigated. Transient current pulses induced by laser irradiation of discharge media were observed and applied for the study of electron-molecule reaction kinetics in gaseous discharges.

  8. Frequency and Perceptions of Herbal Medicine use Among Hmong Americans: a Cross Sectional Survey.

    PubMed

    Lor, Kajua B; Moua, Sakura; Ip, Eric J

    2016-04-01

    To determine the frequency and perceptions of herbal medicine use among Hmong Americans. Cross-sectional telephone survey. Sacramento, California Hmong community. Out of 118 subjects reached, 77 (65.3 %) reported lifetime use of herbal medicines. A majority of respondents agreed that herbal medicines were able to treat the body as a whole. Respondents felt that a leaflet of information indicating uses/side effects would be important to include for herbal medicines. Herbal medicine use was commonly reported among Hmong Americans. Thus, health care providers should be encouraged to discuss these alternative medicines with their Hmong American patients.

  9. Depression among the urban poor in Peninsular Malaysia: a community based cross-sectional study.

    PubMed

    Tan, Kok Leong; Yadav, Hematram

    2013-01-01

    This community based cross-sectional study examined the prevalence and factors associated with depression among urban poor in Peninsular Malaysia. The Patient Health Questionnaire (PHQ-9) was used to determine the presence or absence of depression. The prevalence of depression among the urban poor was 12.3%. Factors significantly associated with depression included respondents under 25 years old, male gender, living in the area for less than four years and those who do not exercise regularly. It is important to identify individuals with depression and its associated factors early because depression can severely affect the quality of life.

  10. Photoabsorption and photodissociation of molecules important in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Lee, Long C.; Suto, Masako

    1991-01-01

    The photoabsorption, photodissociation, and fluorescence cross sections of interstellar molecules are measured at 90 to 250 nm. These quantitative optical data are needed for the understanding of the formation and destruction processes of molecules under the intense interstellar UV radiation field. Research covering the following topics is presented: (1) fluorescences from photoexcitation of CH4, CH3OH, and CH3SH; (2) NO gamma emission from photoexcitation of NO; (3) photoexcitation cross sections of aromatic molecules; (4) IR emission from UV excitation of HONO2; (5) IR emission from UV excitation of benzene and methyl-derivitives; and (6) IR emission from UV excitation of polycyclic aromatic hydrocarbon molecules.

  11. Track structure: time evolution from physics to chemistry.

    PubMed

    Dingfelder, M

    2006-01-01

    This review discusses interaction cross sections of charged particles (electrons, protons, light ions) with atoms and molecules. The focus is on biological relevant targets like liquid water which serves as a substitute of soft tissue in most Monte Carlo codes. The spatial distribution of energy deposition patterns by different radiation qualities and their importance to the time evolution from the physical to the chemical stage or radiation response is discussed. The determination of inelastic interaction cross sections for charged particles in condensed matter is discussed within the relativistic plane-wave Born approximation and semi-empirical models. The dielectric-response-function of liquid water is discussed.

  12. Multiple nucleon knockout by Coulomb dissociation in relativistic heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Norbury, John W.; Townsend, Lawrence W.

    1988-01-01

    The Coulomb dissociation contributions to fragmentation cross sections in relativistic heavy ion collisions, where more than one nucleon is removed, are estimated using the Weizsacker-Williams method of virtual quanta. Photonuclear cross sections taken from experimental results were used to fold into target photon number spectra calculated with the Weizsacker-Williams method. Calculations for several projectile target combinations over a wide range of charge numbers, and a wide range of incident projectile energies, are reported. These results suggest that multiple nucleon knockout by the Coulomb field may be of negligible importance in galactic heavy ion studies for projectiles lighter than Fe-56.

  13. Averaging cross section data so we can fit it

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  14. Effects of reagent rotational excitation on the H + CHD{sub 3} → H{sub 2} + CD{sub 3} reaction: A seven dimensional time-dependent wave packet study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhaojun; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn

    Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD{sub 3} in J{sub 0} = 1, 2 rotationally excited initial states with k{sub 0} = 0 − J{sub 0} (the projection of CHD{sub 3} rotational angular momentum on its C{sub 3} axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K{sub 0}) equal to k{sub 0} are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagentmore » CHD{sub 3} with respect to the relative velocity between the reagents H and CHD{sub 3}. However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K{sub 0} specified cross sections for the K{sub 0} = k{sub 0} initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K{sub 0} averaging for the J{sub 0} = 1, 2 initial states with all different k{sub 0} are essentially identical to the corresponding CS and CC results for the J{sub 0} = 0 initial state, meaning that the initial rotational excitation of CHD{sub 3} up to J{sub 0} = 2, regardless of its initial k{sub 0}, does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J{sub 0} = 1, 2 initial states are the same as those for the J{sub 0} = 0 initial state.« less

  15. A computer program for analyzing channel geometry

    USGS Publications Warehouse

    Regan, R.S.; Schaffranek, R.W.

    1985-01-01

    The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)

  16. Multistrand superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easil

  17. Perception of Mattering and Suicide Ideation in the Australian Working Population: Evidence from a Cross-Sectional Survey.

    PubMed

    Milner, A; Page, K M; LaMontagne, A D

    2016-07-01

    Thoughts about suicide are a risk factor for suicide deaths and attempts and are associated with a range of mental health outcomes. While there is considerable knowledge about risk factors for suicide ideation, there is little known about protective factors. The current study sought to understand the role of perceived mattering to others as a protective factor for suicide in a working sample of Australians using a cross-sectional research design. Logistic regression analysis indicated that people with a higher perception that they mattered had lower odds of suicide ideation than those with lower reported mattering, after controlling for psychological distress, demographic and relationship variables. These results indicate the importance of further research and intervention studies on mattering as a lever for reducing suicidality. Understanding more about protective factors for suicide ideation is important as this may prevent future adverse mental health and behavioural outcomes.

  18. Exploring the Earth's crust: history and results of controlled-source seismology

    USGS Publications Warehouse

    Prodehl, Claus; Mooney, Walter D.

    2012-01-01

    This volume contains a comprehensive, worldwide history of seismological studies of the Earth’s crust using controlled sources from 1850 to 2005. Essentially all major seismic projects on land and the most important oceanic projects are covered. The time period 1850 to 1939 is presented as a general synthesis, and from 1940 onward the history and results are presented in separate chapters for each decade, with the material organized by geographical region. Each chapter highlights the major advances achieved during that decade in terms of data acquisition, processing technology, and interpretation methods. For all major seismic projects, the authors provide specific details on field observations, interpreted crustal cross sections, and key references. They conclude with global and continental-scale maps of all field measurements and interpreted Moho contours. An accompanying DVD contains important out-of-print publications and an extensive collection of controlled-source data, location maps, and crustal cross sections.

  19. Morphology of the pore space in claystones - evidence from BIB/FIB ion beam sectioning and cryo-SEM observations

    NASA Astrophysics Data System (ADS)

    Desbois, G.; Urai, J. L.; Kukla, P. A.

    2009-12-01

    Mudrocks and clay-rich fault gouges are important mechanical elements in the Earth’s crust and form seals for crustal fluids such as groundwater and hydrocarbons. Other fields of interest are the storage of anthropogenic carbon dioxide and radioactive waste in geologic formations. In addition, coupled flows, capillary processes, and associated deformation are of importance in many applied fields. A key factor to understanding these processes is a detailed understanding of the morphology of the pore space. Classic studies of porosity in fine grained materials are performed on dried or freeze dried samples and include metal injection methods, magnetic susceptibility measurement, SEM and TEM imaging, neutron scattering, NMR spectroscopy, and ESEM. Confocal microscopy and X-ray tomography are used to image porosity in coarse grained sediments but the resolution of these techniques is not sufficient at present for applications to mudrocks or clay-rich fault gouges. Therefore, observations and interpretations remain difficult because none of these approaches is able to directly describe the in-situ porosity at the pore scale. In addition, some methods require dried samples in which the natural structure of pores may have been damaged to some extent due to desiccation and dehydration of the clay minerals. A recently developed alternative is to study wet samples using a cryo-SEM, which allows stabilization of wet media at cryo-temperature, in-situ sample preparation by ion beam cross-sectioning (BIB, FIB) and observations of the stabilized microstructure at high resolution. We report on a study of Boom clay from a proposed disposal site of radioactive waste (Mol site, Belgium) using cryo-SEM at cryogenic temperature, with ion beam cross-sectioning to prepare smooth, damage free surfaces. Pores commonly have crack-like tips, preferred orientation parallel to bedding and power law size distribution. We define a number of pore types depending on shape and location in the microstructure. 3-D reconstruction by serial cross-sectioning shows 3-D connectivity of the pore space. These findings offer a new insight into the morphology of pores down to nano-scale and provide the basis for microstructure-based models of transport in clays. SEM image (SE) of a Broad Ion Beam polished cross-section performed on dry Boom clay (Mol site, Belgium) showing the 2D apparent porosity (26.3%). The cross-section is perpendicular to the bedding.

  20. Potential role of CS2 photooxidation in tropospheric sulfur chemistry

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Chameides, W. L.; Ravishankara, A. R.

    1981-01-01

    Absorption cross section measurements and model calculations indicate that CS2 photooxidation may be an important tropospheric sink for the CS2, giving a lifetime on the order of a week or two. If background CS2 levels are 10-20 pptv, then CS2 photooxidation may be an important global source of OCS as well.

  1. Cross Section Calculations and Comparison to Experiment

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Ford, W. P.; Dewet, W. C.; Werneth, C. M.

    2016-01-01

    Understanding fragmentation of galactic cosmic ray nuclei in collisions within spacecraft structures and human tissues is an important element in assessing biological risk to crew members from this radiation source. Over the past four decades, various models have been developed to describe these important processes. Some models invoke semi-classical concepts based upon geometric descriptions of collisions between spherical nuclei.

  2. A Cross-Sectional Analysis of the Importance of Agricultural Mechanics Skills Taught

    ERIC Educational Resources Information Center

    Rasty, John R.; Anderson, Ryan G.

    2014-01-01

    In 1994, Laird conducted a study using secondary agricultural education teachers across the United States to determine the depth agricultural mechanics skills were being taught at the time, and how important those skills would be in 2004. The researchers conducted a follow up study in 2016, using secondary agricultural education teachers in Iowa…

  3. Importance of Nuclear Physics to NASA's Space Missions

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    We show that nuclear physics is extremely important for accurate risk assessments for space missions. Due to paucity of experimental input radiation interaction information it is imperative to develop reliable accurate models for the interaction of radiation with matter. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center and are discussed.

  4. Exploring Issues of Participation among Adolescents with Cerebral Palsy: What's Important to Them?

    ERIC Educational Resources Information Center

    Livingston, Michael H.; Stewart, Debra; Rosenbaum, Peter L.; Russell, Dianne J.

    2011-01-01

    The purpose of this cross-sectional study was to determine what participation issues are important to adolescents with cerebral palsy (CP). Two hundred and three adolescents with CP (mean age 16.0 [plus or minus] 1.8 years) were assessed using the Canadian Occupational Performance Measure (COPM). This was done through semistructured interviews by…

  5. Simultaneous measurement of (n,{gamma}) and (n,fission) cross sections with the DANCE 4{pi} BaF2 array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.

    2006-03-13

    Neutron capture cross section measurements on many of the actinides are complicated by low-energy neutron-induced fission, which competes with neutron capture to varying degrees depending on the nuclide of interest. Measurements of neutron capture on 235U using the Detector for Advanced Neutron Capture Experiments (DANCE) have shown that we can partially resolve capture from fission events based on total photon calorimetry (i.e. total {gamma}-ray energy and {gamma}-ray multiplicity per event). The addition of a fission-tagging detector to the DANCE array will greatly improve our ability to separate these two competing processes so that improved neutron capture and (n,{gamma})/(n,fission) cross sectionmore » ratio measurements can be obtained. The addition of a fission-tagging detector to the DANCE array will also provide a means to study several important issues associated with neutron-induced fission, including (n,fission) cross sections as a function of incident neutron energy, and total energy and multiplicity of prompt fission photons. We have focused on two detector designs with complementary capabilities, a parallel-plate avalanche counter and an array of solar cells.« less

  6. Electron-impact-ionization dynamics of S F6

    NASA Astrophysics Data System (ADS)

    Bull, James N.; Lee, Jason W. L.; Vallance, Claire

    2017-10-01

    A detailed understanding of the dissociative electron ionization dynamics of S F6 is important in the modeling and tuning of dry-etching plasmas used in the semiconductor manufacture industry. This paper reports a crossed-beam electron ionization velocity-map imaging study on the dissociative ionization of cold S F6 molecules, providing complete, unbiased kinetic energy distributions for all significant product ions. Analysis of these distributions suggests that fragmentation following single ionization proceeds via formation of S F5 + or S F3 + ions that then dissociate in a statistical manner through loss of F atoms or F2, until most internal energy has been liberated. Similarly, formation of stable dications is consistent with initial formation of S F4 2 + ions, which then dissociate on a longer time scale. These data allow a comparison between electron ionization and photoionization dynamics, revealing similar dynamical behavior. In parallel with the ion kinetic energy distributions, the velocity-map imaging approach provides a set of partial ionization cross sections for all detected ionic fragments over an electron energy range of 50-100 eV, providing partial cross sections for S2 +, and enables the cross sections for S F4 2 + from S F+ to be resolved.

  7. Ion dipole capture cross sections at low ion and rotational energies - Comparison of integrated capture cross sections with reaction cross sections for NH3 and H2O parent-ion collisions.

    NASA Technical Reports Server (NTRS)

    Dugan, J. V., Jr.; Canright, R. B., Jr.

    1972-01-01

    The numerical capture cross section is calculated from the capture ratio, defined as the fraction of trajectories reaching a prescribed minimum separation of 3 A. The calculated capture cross sections for a rotational temperature of 77 K suggest large reaction cross sections in 80 K experiments for the large dipole-moment target, methyl cyanide.

  8. Sex- and age-related differences in mid-thigh composition and muscle quality determined by computed tomography in middle-aged and elderly Japanese.

    PubMed

    Kasai, Takehiro; Ishiguro, Naoki; Matsui, Yasumoto; Harada, Atsushi; Takemura, Marie; Yuki, Atsumu; Kato, Yuki; Otsuka, Rei; Ando, Fujiko; Shimokata, Hiroshi

    2015-06-01

    Sex- and age-related differences in mid-thigh composition and muscle quality remain unclear. The present study aimed to clarify these differences using computed tomography in middle-aged and elderly Japanese. A total of 2310 participants (age 40-89 years), who were randomly selected from the local residents, underwent computed tomography examination of the right mid-thigh. Thigh circumference and cross-sectional areas of the thigh, muscle, quadriceps, non-quadriceps, fat, and bone were measured. Knee extension strength and muscle quality index (knee extension strength/quadriceps cross-sectional area) were also assessed. Sex- and age-related differences in these indices were analyzed. The thigh cross-sectional area in men and women decreased by 0.6% and 0.5%/year, respectively, because of a decrease in muscle cross-sectional area (men 75.2%, women 40.6%), fat cross-sectional area (men 24.4%, women 59.6%) and bone cross-sectional area (men 0.5%, women -0.2%). Muscle cross-sectional area in men and women decreased by 0.6% and 0.4%/year, respectively, because of a decrease in quadriceps cross-sectional area (men 65.6%, women 81.6%) and non-quadriceps cross-sectional area (men 34.4%, women 18.4%). Muscle quality in men and women decreased by 0.4% and 0.3%/year, respectively. Thigh cross-sectional area decreased with age mainly because of a decrease in muscle cross-sectional area in men and fat cross-sectional area in women. The rate of decrease in muscle cross-sectional area was 1.5-fold higher in men than in women. Muscle cross-sectional area decreased with age mainly because of a decrease in quadriceps cross-sectional area, especially in women. Decrease in muscle quality with age was similar in both sexes. © 2014 Japan Geriatrics Society.

  9. The association between depression and emotional and social loneliness in older persons and the influence of social support, cognitive functioning and personality: A cross-sectional study.

    PubMed

    Peerenboom, L; Collard, R M; Naarding, P; Comijs, H C

    2015-08-15

    We investigated the association between old age depression and emotional and social loneliness. A cross-sectional study was performed using data from the Netherlands Study of Depression in Older Persons (NESDO). A total of 341 participants diagnosed with a depressive disorder, and 125 non-depressed participants were included. Depression diagnosis was confirmed with the Composite International Diagnostic Interview. Emotional and social loneliness were assessed using the De Jong Gierveld Loneliness Scale. Socio-demographic variables, social support variables, depression characteristics (Inventory of Depressive Symptoms), cognitive functioning (Mini Mental State Examination) and personality factors (the NEO- Five Factor Inventory and the Pearlin Mastery Scale) were considered as possible explanatory factors or confounders. (Multiple) logistic regression analyses were performed. Depression was strongly associated with emotional loneliness, but not with social loneliness. A higher sense of neuroticism and lower sense of mastery were the most important explanatory factors. Also, we found several other explanatory and confounding factors in the association of depression and emotional loneliness; a lower sense of extraversion and higher severity of depression. We performed a cross-sectional observational study. Therefore we cannot add evidence in regard to causation; whether depression leads to loneliness or vice versa. Depression in older persons is strongly associated with emotional loneliness but not with social loneliness. Several personality traits and the severity of depression are important in regard to the association of depression and emotional loneliness. It is important to develop interventions in which both can be treated. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Uncertainty-driven nuclear data evaluation including thermal (n,α) applied to 59Ni

    NASA Astrophysics Data System (ADS)

    Helgesson, P.; Sjöstrand, H.; Rochman, D.

    2017-11-01

    This paper presents a novel approach to the evaluation of nuclear data (ND), combining experimental data for thermal cross sections with resonance parameters and nuclear reaction modeling. The method involves sampling of various uncertain parameters, in particular uncertain components in experimental setups, and provides extensive covariance information, including consistent cross-channel correlations over the whole energy spectrum. The method is developed for, and applied to, 59Ni, but may be used as a whole, or in part, for other nuclides. 59Ni is particularly interesting since a substantial amount of 59Ni is produced in thermal nuclear reactors by neutron capture in 58Ni and since it has a non-threshold (n,α) cross section. Therefore, 59Ni gives a very important contribution to the helium production in stainless steel in a thermal reactor. However, current evaluated ND libraries contain old information for 59Ni, without any uncertainty information. The work includes a study of thermal cross section experiments and a novel combination of this experimental information, giving the full multivariate distribution of the thermal cross sections. In particular, the thermal (n,α) cross section is found to be 12.7 ± . 7 b. This is consistent with, but yet different from, current established values. Further, the distribution of thermal cross sections is combined with reported resonance parameters, and with TENDL-2015 data, to provide full random ENDF files; all of this is done in a novel way, keeping uncertainties and correlations in mind. The random files are also condensed into one single ENDF file with covariance information, which is now part of a beta version of JEFF 3.3. Finally, the random ENDF files have been processed and used in an MCNP model to study the helium production in stainless steel. The increase in the (n,α) rate due to 59Ni compared to fresh stainless steel is found to be a factor of 5.2 at a certain time in the reactor vessel, with a relative uncertainty due to the 59Ni data of 5.4%.

  11. Total cross sections for positrons scattered elastically from helium based on new measurements of total ionization cross sections

    NASA Technical Reports Server (NTRS)

    Diana, L. M.; Chaplin, R. L.; Brooks, D. L.; Adams, J. T.; Reyna, L. K.

    1990-01-01

    An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease.

  12. A sub-GeV charged-current quasi-elastic $$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walding, Joseph James

    2009-12-01

    Neutrino-nucleus charged-current quasi-elastic scattering is the signal interaction used by many neutrino oscillation experiments. For muon disappearance studies the signal mode is ν μn → μp. Modern oscillation experiments, such as T2K, produce neutrino beams with peak beam energies of order a few-GeV. It is therefore vitally important to have accurate measurements of the charged-current quasi-elastic crosssection for future neutrino oscillation experiments. Neutrino-nucleus cross-sections in the few-GeV region are not well understood, with the main uncertainties coming from understanding of the neutrino beam flux and the final state interactions within nuclei. SciBooNE is a sub-GeV neutrino-nucleus cross-section experiment based atmore » Fermilab, Batavia, USA, with the goal to measure neutrino cross-sections with precision of order 5%. SciBooNE took data from June 2007 until August 2008, in total 0.99×10 20 and 1.53×10 20 protons on target were collected in neutrino and anti-neutrino mode, respectively. In this thesis a ν μ charged-current quasi-elastic (CCQE) cross-section contained within the SciBar sub-detector is presented. A method to tag muons in SciBar was developed and three samples were isolated. An excess in backwards tracks in the one-track sample is observed. A Poisson maximum likelihood is used to extract the CCQE cross-section. The fit was applied using a basic fit parameter model, successfully used to obtain the cross-section in the SciBar-MRD matched CCQE analysis. This method was found to be insufficient in describing the data for the SciBarcontained CCQE analysis. By adding two migration parameters the cross-section was calculated to be 1.004 ± 0.031 (stat) +0.101 -0.150(sys) × 10 -38 cm 2/neutron, excluding backwards tracks with a χ 2 = 203.8/76 d.o.f. and 1.083 ± 0.030(stat) +0.115 -0.177(sys) × 10 -38 cm 2/neutron, including backwards tracks with a χ 2 = 659.8/133 d.o.f. Only neutrino beam and detector systematics have been considered. Further study of the SciBar-contained sample is suggested, introducing additional fit parameters and considering the remaining systematics. The end goal is to extract a SciBooNE CCQE cross-section using the SciBar-contained and SciBar-MRD matched samples.« less

  13. Nano-fabricated plasmonic optical transformer

    DOEpatents

    Choo, Hyuck; Cabrini, Stefano; Schuck, P. James; Liang, Xiaogan; Yablonovitch, Eli

    2015-06-09

    The present invention provides a plasmonic optical transformer to produce a highly focuses optical beam spot, where the transformer includes a first metal layer, a dielectric layer formed on the first metal layer, and a second metal layer formed on the dielectric layer, where the first metal layer, the dielectric layer, and the second layer are patterned to a shape including a first section having a first cross section, a second section following the first section having a cross-section tapering from the first section to a smaller cross-section, and a third section following the second section having a cross-section matching the tapered smaller cross-section of the second section.

  14. Geologic cross section C-C' through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania

    USGS Publications Warehouse

    Ryder, Robert T.; Trippi, Michael H.; Swezey, Christopher S.; Crangle, Robert D.; Hope, Rebecca S.; Rowan, Elisabeth L.; Lentz, Erika E.

    2012-01-01

    Geologic cross section C-C' is the third in a series of cross sections constructed by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section C-C' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from north-central Ohio to the Valley and Ridge province in south-central Pennsylvania, a distance of approximately 260 miles (mi). This cross section is a companion to cross sections E-E' and D-D' that are located about 50 to 125 mi and 25 to 50 mi, respectively, to the southwest. Cross section C-C' contains much information that is useful for evaluating energy resources in the Appalachian basin. Although specific petroleum systems are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on what is shown on the cross section. Cross section C-C' also provides a general framework (stratigraphic units and general rock types) for the coal-bearing section, although the cross section lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank). In addition, cross section C-C' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.

  15. Multistrand superconductor cable

    DOEpatents

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  16. Research at the University of Kentucky Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Kovash, M. A.

    The Department of Physics and Astronomy at the University of Kentucky operates a 7-MV CN Van de Graaff accelerator that produces primary beams of protons, deuterons, and helium ions. An in-terminal pulsing and bunching system operates at 1.875 MHz and is capable of providing 1 ns beam bunches at an average current of several microamperes. Nearly all ongoing research programs involve secondary pulsed neutrons produced with gas cells containing deuterium or tritium, as well as with a variety of solid targets. Most experiments are performed at a target station positioned over a deep pit, so as to reduce the background created by backscattered neutrons. Recent experiments will be described; these include: measurements of n-p scattering total cross sections from En= 90 to 1800 keV to determine the n-p effective range parameter; the response of the plastic scintillator BC-418 below 1 MeV to low-energy recoil protons; n-p radiative capture cross sections important for our understanding of nucleosynthesis approximately 2 minutes after the occurrence of the Big Bang; γ-ray spectroscopy following inelastic neutron scattering to study nuclear structure relevant to double-β decay and to understand the role of phonon-coupled excitations in weakly deformed nuclei; and measurements of neutron elastic and inelastic scattering cross sections for nuclei that are important for energy production and for our global understanding of the interaction of neutrons with matter.

  17. Trojan Horse cross section measurements and their impact on primordial nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Pizzone, R. G.; Spartá, R.; Bertulani, C.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Tumino, A.

    2018-01-01

    Big Bang Nucleosynthesis (BBN) nucleosynthesis requires several nuclear physics inputs and, among them, an important role is played by nuclear reaction rates. They are among the most important input for a quantitative description of the early Universe. An up-to-date compilation of direct cross sections of d(d,p)t, d(d,n)3He and 3He(d,p)4He reactions is given, being these ones among the most uncertain bare-nucleus cross sections. An intense experimental effort has been carried on in the last decade to apply the Trojan Horse Method (THM) to study reactions of relevance for the BBN and measure their astrophysical S(E)-factor. The result of these recent measurements is reviewed and compared with the available direct data. The reaction rates and the relative error for the four reactions of interest are then numerically calculated in the temperature ranges of relevance for BBN (0.01

  18. Anomalous Rayleigh scattering with dilute concentrations of elements of biological importance

    NASA Astrophysics Data System (ADS)

    Hugtenburg, Richard P.; Bradley, David A.

    2004-01-01

    The anomalous scattering factor (ASF) correction to the relativistic form-factor approximation for Rayleigh scattering is examined in support of its utilization in radiographic imaging. ASF corrected total cross-section data have been generated for a low resolution grid for the Monte Carlo code EGS4 for the biologically important elements, K, Ca, Mn, Fe, Cu and Zn. Points in the fixed energy grid used by EGS4 as well as 8 other points in the vicinity of the K-edge have been chosen to achieve an uncertainty in the ASF component of 20% according to the Thomas-Reiche-Kuhn sum rule and an energy resolution of 20 eV. Such data is useful for analysis of imaging with a quasi-monoenergetic source. Corrections to the sampled distribution of outgoing photons, due to ASF, are given and new total cross-section data including that of the photoelectric effect have been computed using the Slater exchange self-consistent potential with the Latter tail. A measurement of Rayleigh scattering in a dilute aqueous solution of manganese (II) was performed, this system enabling determination of the absolute cross-section, although background subtraction was necessary to remove K β fluorescence and resonant Raman scattering occurring within several 100 eV of the edge. Measurements confirm the presence of below edge bound-bound structure and variation in the structure due to the ionic state that are not currently included in tabulations.

  19. Comparison of magnetic resonance imaging with cross-sectional echocardiography in the assessment of left ventricular mass in children without heart disease and in aortic isthmic coarctation.

    PubMed

    Vogel, M; Stern, H; Bauer, R; Bühlmeyer, K

    1992-04-01

    Although left ventricular (LV) mass may be important to judge effects of left-sided cardiac obstruction or hypertension, reproducible noninvasively determined normal data in the pediatric age group are scarce. To validate cross-sectional echocardiographic LV mass determination, our data were compared with LV mass assessed by magnetic resonance imaging (MRI). MRI was considered to be a good reference method because there is usually no problem in defining endo- and epicardial borders with MRI. LV mass was assessed in 14 children aged 5.3 years (10 days to 14.7 years) with a mean body surface area of 0.78 m2 (range 0.25 to 1.61). With cross-sectional echocardiography the epicardial and endocardial volumes were calculated using a Simpsons rule algorithm in the apical 2- and 4-chamber view. The difference between epi- and endocardial volumes was multiplied by 1.05 to yield the mass. Mass was assessed with MRI using a multislice technique; the area of each myocardial slice was calculated and multiplied with the slice thickness, and the resultant slice volumes were added to obtain the myocardial volume. On cross-sectional echocardiography, the mass was 55 g (range 12 to 126) or 64 g/m2 (range 46 to 79); on MRI it was 60 g (range 33 to 87) or 69 g/m2 (range 46 to 89). Regression analysis yielded an r value of 0.98 with a standard error of the estimate of 5.7 g or a 10% difference. In older children, LV mass determined by MRI was bigger than the one derived by echocardiography. It is concluded that cross-sectional echocardiography can reliably assess LV myocardial mass in pediatric patients.

  20. Systematic determination of absolute absorption cross-section of individual carbon nanotubes

    PubMed Central

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B.; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G.; Wang, Enge; Wang, Feng

    2014-01-01

    Optical absorption is the most fundamental optical property characterizing light–matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important photoluminescence and photovoltaic processes. PMID:24821815

  1. Systematic determination of absolute absorption cross-section of individual carbon nanotubes.

    PubMed

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G; Wang, Enge; Wang, Feng

    2014-05-27

    Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important photoluminescence and photovoltaic processes.

  2. Single cross-sectional area of pectoralis muscle by computed tomography - correlation with bioelectrical impedance based skeletal muscle mass in healthy subjects.

    PubMed

    Kim, Young Saing; Kim, Eun Young; Kang, Shin Myung; Ahn, Hee Kyung; Kim, Hyung Sik

    2017-09-01

    Skeletal muscle depletion is an important prognostic factor in patients with chronic obstructive pulmonary disease (COPD); a recent study demonstrated significant correlations between pectoralis muscle area on an axial CT image and COPD-related traits. The purpose of this study was to evaluate the relation between pectoralis muscle areas on CT scans and total body skeletal muscle mass (SMM) in healthy subjects. For 434 subjects that underwent a low-dose chest CT and bioelectrical impedance analysis (BIA) during health screening from January to June of 2014, cross-sectional area of pectoralis muscles were measured in CT scans. Pearson's correlation and multiple linear regression analysis were used to assess the relationship between cross-sectional CT areas of pectoralis muscles and BIA-assessed SMMs. Mean age was 50 ± 10 years (78·8% were male). The mean cross-sectional area of pectoralis muscles was 24·1 cm 2  ± 6·8. A moderate correlation was observed between pectoralis muscle area and BIA-based SMM (r = 0·665, P<0.001). Multivariable analysis showed CT determined pectoralis muscle area was significantly associated with BIA-assessed SMM after adjusting for gender, weight, height and age (β = 0·14 ± 0·02, P<0·001). Cross-sectional area of the pectoralis muscles on single axial CT images shows moderate correlation with total body SMM determined by BIA in healthy subjects. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  3. Measurement of the production cross-section of pair of top quarks in a final state with di-electrons in the data collected by D0 experiment in Run-IIa (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin Dit Latour, Bertrand

    2008-09-29

    The top quark has been discovered in 1995 by CDF and D0 collaborations in proton-antiproton collisions at the Tevatron. The amount of data recorded by both experiments makes it possible to accurately measure the properties of this very massive quark. This thesis is devoted to the measurement of the top pair production cross-section via the strong interaction, in a final state composed of two electrons, two particle jets and missing transverse energy. It is based on a 1 fb -1 data set collected by the D0 experiment between 2002 and 2006. The reconstruction and identification of electrons and jets ismore » of major importance in this analysis, and have been studied in events where a Z boson is produced together with one or more jets. The Z+jets process is indeed the dominant physics background to top pair production in the dielectron final state. The primary goal of this cross-section measurement is to verify Standard Model predictions. In this document, this result is also interpreted to indirectly extract the top quark mass. Moreover, the cross-section measurement is sensitive to new physics such as the existence of a charged Higgs boson. The selection established for the cross-section analysis has been used to search for a H + boson lighter than the top quark, where the latter can decay into a W + or H + boson and a b quark. The model that has been studied makes the assumption that the H + boson can only decay into a tau lepton and a neutrino.« less

  4. Characteristics of the Cross-Sectional Vorticity of the Natural Spawning Grounds of Schizothorax prenanti and a Vague-Set Similarity Model for Ecological Restoration

    PubMed Central

    Liu, Ming-Yang; Zhang, Ling-Lei; Li, Jia; Li, Yong; Li, Nan; Chen, Ming-Qian

    2015-01-01

    Schizothorax prenanti is an endemic fish in the mountain rivers of southwestern China with unique protection value. To further explore the vortex motion of hydraulic habitats, which is closely related to the fish breeding process, the cross-sectional vorticity was used to evaluate the hydraulic conditions of the natural spawning habitat of S. prenanti. A coupled level-set and volume-of-fluid (CLSVOF) three-dimensional (3D) model was applied to simulate the hydraulic habitat of the Weimen reach, a typical natural spawning ground for S. prenanti in the upper Yangtze River. The model was used in conjunction with the Wilcoxon rank sum test to distinguish the distributions of vertical vorticity in spawning and non-spawning reaches. Statistical analysis revealed that the cross-sectional vorticity in spawning reaches was significantly greater than in non-spawning reaches, with likely biological significance in the spawning process. The range of cross-sectional mean values of vorticity was 0.17 s-1–0.35 s-1 in areas with concentrated fish sperm and eggs; the minimum value was 0.17 s-1, and the majority of values were greater than 0.26 s-1. Based on this study, a vague-set similarity model was used to assess the effectiveness of ecological restoration by evaluating the similarity of the cross-sectional vorticity of the natural spawning reach and rehabilitated spawning reach after implementing ecological restoration measures. The outcome might provide a theoretical basis for the recovery of damaged S. prenanti spawning grounds and act as an important complement for the assessment of recovery effectiveness and as a useful reference for the coordination of ecological water use with the demands of hydraulic and hydropower engineering. PMID:26317847

  5. Cable equation for general geometry

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Erick J.; Romero, Juan M.

    2017-02-01

    The cable equation describes the voltage in a straight cylindrical cable, and this model has been employed to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables with a nonconstant radius are important for some phenomena, for example, discrete swellings along the axons appear in neurodegenerative diseases such as Alzheimers, Parkinsons, human immunodeficiency virus associated dementia, and multiple sclerosis. In this paper, using the Frenet-Serret frame, we propose a generalized cable equation for a general cable geometry. This generalized equation depends on geometric quantities such as the curvature and torsion of the cable. We show that when the cable has a constant circular cross section, the first fundamental form of the cable can be simplified and the generalized cable equation depends on neither the curvature nor the torsion of the cable. Additionally, we find an exact solution for an ideal cable which has a particular variable circular cross section and zero curvature. For this case we show that when the cross section of the cable increases the voltage decreases. Inspired by this ideal case, we rewrite the generalized cable equation as a diffusion equation with a source term generated by the cable geometry. This source term depends on the cable cross-sectional area and its derivates. In addition, we study different cables with swelling and provide their numerical solutions. The numerical solutions show that when the cross section of the cable has abrupt changes, its voltage is smaller than the voltage in the cylindrical cable. Furthermore, these numerical solutions show that the voltage can be affected by geometrical inhomogeneities on the cable.

  6. Impact of electronic coupling, symmetry, and planarization on one- and two-photon properties of triarylamines with one, two, or three diarylboryl acceptors.

    PubMed

    Makarov, Nikolay S; Mukhopadhyay, Sukrit; Yesudas, Kada; Brédas, Jean-Luc; Perry, Joseph W; Pron, Agnieszka; Kivala, Milan; Müllen, Klaus

    2012-04-19

    We have performed a study of the one- and two-photon absorption properties of a systematically varied series of triarylamino-compounds with one, two, or three attached diarylborane arms arranged in linear dipolar, bent dipolar, and octupolar geometries. Two-photon fluorescence excitation spectra were measured over a wide spectral range with femtosecond laser pulses. We found that on going from the single-arm to the two- and three-arm systems, the peak in two-photon absorption (2PA) cross-section is suppressed by factors of 3-11 for the lowest excitonic level associated with the electronic coupling of the arms, whereas it is enhanced by factors of 4-8 for the higher excitonic level. These results show that the coupling of arms redistributes the 2PA cross-section between the excitonic levels in a manner that strongly favors the higher-energy excitonic level. The experimental data on one- and two-photon cross-sections, ground- and excited-state transition dipole moments, and permanent dipole moment differences between the ground and the lowest excited states were compared to the results obtained from a simple Frenkel exciton model and from highly correlated quantum-chemical calculations. It has been found that planarization of the structure around the triarylamine moiety leads to a sizable increase in peak 2PA cross-section for the lowest excitonic level of the two-arm system, whereas for the three-arm system, the corresponding peak was weakened and shifted to lower energy. Our studies show the importance of the interarm coupling, number of arms, and structural planarity on both the enhancement and the suppression of two-photon cross-sections in multiarm molecules. © 2012 American Chemical Society

  7. Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk.

    PubMed

    Murach, Michelle M; Kang, Yun-Seok; Goldman, Samuel D; Schafman, Michelle A; Schlecht, Stephen H; Moorhouse, Kevin; Bolte, John H; Agnew, Amanda M

    2017-09-01

    The human thorax is commonly injured in motor vehicle crashes, and despite advancements in occupant safety rib fractures are highly prevalent. The objective of this study was to quantify the ability of gross and cross-sectional geometry, separately and in combination, to explain variation of human rib structural properties. One hundred and twenty-two whole mid-level ribs from 76 fresh post-mortem human subjects were tested in a dynamic frontal impact scenario. Structural properties (peak force and stiffness) were successfully predicted (p < 0.001) by rib cross-sectional geometry obtained via direct histological imaging (total area, cortical area, and section modulus) and were improved further when utilizing a combination of cross-sectional and gross geometry (robusticity, whole bone strength index). Additionally, preliminary application of a novel, adaptive thresholding technique, allowed for total area and robusticity to be measured on a subsample of standard clinical CT scans with varied success. These results can be used to understand variation in individual rib response to frontal loading as well as identify important geometric parameters, which could ultimately improve injury criteria as well as the biofidelity of anthropomorphic test devices (ATDs) and finite element (FE) models of the human thorax.

  8. Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk

    PubMed Central

    Murach, Michelle M.; Kang, Yun-Seok; Goldman, Samuel D.; Schafman, Michelle A.; Schlecht, Stephen H.; Moorhouse, Kevin; Bolte, John H.; Agnew, Amanda M.

    2018-01-01

    The human thorax is commonly injured in motor vehicle crashes, and despite advancements in occupant safety rib fractures are highly prevalent. The objective of this study was to quantify the ability of gross and cross-sectional geometry, separately and in combination, to explain variation of human rib structural properties. One hundred and twenty-two whole mid-level ribs from 76 fresh post-mortem human subjects were tested in a dynamic frontal impact scenario. Structural properties (peak force and stiffness) were successfully predicted (p<0.001) by rib cross-sectional geometry obtained via direct histological imaging (total area, cortical area, and section modulus) and were improved further when utilizing a combination of cross-sectional and gross geometry (robusticity, whole bone strength index). Additionally, preliminary application of a novel, adaptive thresholding technique, allowed for total area and robusticity to be measured on a subsample of standard clinical CT scans with varied success. These results can be used to understand variation in individual rib response to frontal loading as well as identify important geometric parameters, which could ultimately improve injury criteria as well as the biofidelity of anthropomorphic test devices (ATDs) and finite element (FE) models of the human thorax. PMID:28547660

  9. Measurement of the Elastic Ep Cross Section at Q2 = 0.66, 1.10, 1.51 and 1.65 Gev2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang

    The nucleon form factors have been investigated by physicists for decades because of their fundamental importance. The world data of the proton magnetic form factor GMp has been focused on Q2 lower than 5 GeV2 and they have large uncertainties at higher Q2. Jefferson Lab experiment E12-07-108 aims to improve the accuracy of the e ? p elastic cross section to better than 2% over a Q2 range of 7 ? 14 GeV2. From 2015 to 2016, the e ? p elastic cross section was measured over a wide range of Q2 from 0.66 ? 12.56 GeV2 at the Thomasmore » Jefferson National Accelerator Facility in Virginia, USA. An unpolarized electron beam was scattered o? a cryogenic hydrogen target and the scattered electron was detected in the high resolution spectrometers. This thesis focuses on the cross section calculations of the data taken in the spring of 2015, where Q2 = 0.66, 1.10, 1.51 and 1.66 GeV2. At Q2 = 0.66 GeV2, an uncertainty < 3% was achieved and < 5% was achieved for the other three Q2 at the moment. The results were compared with the world data and the good agreement provides confidence for the experimental measurements at higher Q2.« less

  10. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter.

    PubMed

    Johnson, W R; Nilsen, J

    2016-03-01

    The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.

  11. Cross sections for production of the 15.10 MeV and other astrophysically significant gamma-ray lines through excitation and spallation of sup 12 C and sup 16 O with protons

    NASA Technical Reports Server (NTRS)

    Lang, F. L.; Werntz, C. W.; Crannell, C. J.; Trombka, J. I.; Chang, C. C.

    1986-01-01

    The ratio of the flux of 15.10-MeV gamma rays to the flux of 4.438-MeV gamma rays resulting from excitation of the corresponding states in C-12 as a sensitive measure of the spectrum of the exciting particles produced in solar flares and other cosmic sources. These gamma rays are produced predominantly by interactions with C-12 and O-16, both of which are relatively abundant in the solar photosphere. Gamma ray production cross sections for proton interactions have been reported previously for all important channels except for the production of 15.10-MeV gamma rays from O-16. The first reported measurement of the 15.10-MeV gamma ray production cross section from p + O-16 is presented here. The University of Maryland cyclotron was employed to produce 40-, 65-, and 86-MeV protons which interacted with CH2 and BeO targets. The resultant gamma ray spectra were measured with a high-purity germanium semiconductor detector at 70, 90, 110, 125, and 140 degrees relative to the direction of the incident beam for each proton energy. Other gamma ray lines resulting from direct excitation and spallation reactions with C-12 and 0-16 were observed as well, and their gamma ray production cross sections described.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W. R.; Nilsen, J.

    Here, the influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity andmore » also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.« less

  13. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter

    DOE PAGES

    Johnson, W. R.; Nilsen, J.

    2016-03-14

    Here, the influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity andmore » also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.« less

  14. Electron-Impact Cross Sections for Ground State to np Excitations of Sodium and Potassium.

    PubMed

    Stone, Philip M; Kim, Yong-Ki

    2004-01-01

    Cross sections for electron impact excitation of atoms are important for modeling of low temperature plasmas and gases. While there are many experimental and theoretical results for excitation to the first excited states, little information is available for excitation to higher states. We present here calculations of excitations from the ground state to the np levels of sodium (n = 3 through 11) and potassium (n = 4 through 12). We also present a calculation for a transition from the excited sodium level 3p to 3d to show the generality of the method. Scaling formulas developed earlier by Kim [Phys. Rev. A 64, 032713 (2001)] for plane-wave Born cross sections are used. These formulas have been shown to be remarkably accurate yet simple to use. We have used a core polarization potential in a Dirac-Fock wave function code to calculate target atom wave functions and a matching form of the dipole transition operator to calculate oscillator strengths and Born cross sections. The scaled Born results here for excitation to the first excited levels are in very good agreement with experimental and other theoretical data, and the results for excitation to the next few levels are in satisfactory agreement with the limited data available. The present results for excitation to the higher levels are believed to be the only data available.

  15. Effect of atomic parameters on determination of aluminium abundance in atmospheres of late-type stars

    NASA Astrophysics Data System (ADS)

    Menzhevitski, V. S.; Shimanskaya, N. N.; Shimansky, V. V.; Kudryavtsev, D. O.

    2014-04-01

    We study the effect of the photoionization cross sections for the ground state of Al I on the inferred aluminium abundance in stellar atmospheres. We match the theoretical and observed line profiles of the resonance λλ 3944.01, 3961.52 Å and subordinate λλ 6696.03, 6698.68 Å doublets in high-resolution spectra of the metal-poor solar-type stars HD22879 and HD201889. We determine the parameters of these stars from their photometric and spectroscopic data. Our computations show that the profiles can be matched and a single aluminium abundance inferred simultaneously from both groups of spectral lines only with low photoionization cross sections (about 10-12 Mb). Larger cross sections (about 58-65 Mb) make such fits impossible. We therefore conclude that small photoionization cross sections should be preferred for the determination of aluminium abundances in metal-poor stars. We redetermine the aluminium abundances in the atmospheres of halo stars. The resulting abundances prove to be lower by 0.1-0.15 dex than our earlier determinations which does not affect the conclusions based on our earlier estimates. In particular, the NLTE [Al/Fe]-[Fe/H] dependence, on the whole, agrees only qualitatively with the results of theoretical predictions. Therefore further refinement of the theory of nuclear synthesis of aluminium in the process of the chemical evolution of the Galaxy remains a task of current importance.

  16. Doppler Broadening and its Contribution to Compton Energy-Absorption Cross Sections: An Analysis of the Compton Component in Terms of Mass-Energy Absorption Coefficient

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Cesareo, R.; Brunetti, A.; Gigante, G. E.

    2002-09-01

    Compton energy absorption cross sections are calculated using the formulas based on a relativistic impulse approximation to assess the contribution of Doppler broadening and to examine the Compton profile literature and explore what, if any, effect our knowledge of this line broadening has on the Compton component in terms of mass-energy absorption coefficient. Compton energy-absorption cross sections are evaluated for all elements, Z=1-100, and for photon energies 1 keV-100 MeV. Using these cross sections, the Compton component of the mass-energy absorption coefficient is derived in the energy region from 1 keV to 1 MeV for all the elements Z=1-100. The electron momentum prior to the scattering event should cause a Doppler broadening of the Compton line. The momentum resolution function is evaluated in terms of incident and scattered photon energy and scattering angle. The overall momentum resolution of each contribution is estimated for x-ray and γ-ray energies of experimental interest in the angular region 1°-180°. Also estimated is the Compton broadening using nonrelativistic formula in the angular region 1°-180°, for 17.44, 22.1, 58.83, and 60 keV photons for a few elements (H, C, N, O, P, S, K, and Ca) of biological importance.

  17. 2p2h effects on the weak pion production cross section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariano, A.; Barbero, C.

    2015-05-15

    The ν{sub l}n → l{sup −}p QE reaction on the A-target is used as a signal event or/and to reconstruct the neutrino energy, using two-body kinematics. Competition of another processes could lead to misidentification of the arriving neutrinos, being important the fake events coming from the CC1π background. A precise knowledge of cross sections is a prerequisite in order to make simulations in event generators to substract the fake ones from the QE countings, and in this contribution we analyze the different nuclear effects on the CC1π channel. Our calculations also can be extended for the NC case.

  18. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most effect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  19. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space exploration.

  20. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  1. Double Photoionization of helium atom using Screening Potential Approach

    NASA Astrophysics Data System (ADS)

    Saha, Haripada

    2014-05-01

    The triple differential cross section for double Photoionization of helium atom will be investigated using our recently extended MCHF method. It is well known that electron correlation effects in both the initial and the final states are very important. To incorporate these effects we will use the multi-configuration Hartree-Fock method to account for electron correlation in the initial state. The electron correlation in the final state will be taken into account using the angle-dependent screening potential approximation. The triple differential cross section (TDCS) will be calculated for 20 eV photon energy, which has experimental results. Our results will be compared with available experimental and the theoretical observations.

  2. Direct processes in 54-MeV Li-7 breakup reactions on C-12 and Au-197 targets, and the extraction of astrophysical cross sections

    NASA Astrophysics Data System (ADS)

    Gazes, S. B.; Mason, J. E.; Roberts, R. B.; Teichmann, S. G.

    1992-01-01

    Strong direct processes were observed for elastic breakup in 54-MeV Li-7 + C-12, Au-197 reactions. In the case of C-12, the observed Li-7 to alpha + t direct-breakup yield was significantly larger than predicted by a Coulomb-breakup calculation, indicating the importance of the nuclear field. For Au-197, final-state interactions produced a strong distortion in the fragment energy spectra, as well as a modulation of the coincidence efficiency for different detector geometries. Such Coulomb effects are found to severely complicate the extraction of radiative-capture cross sections from direct-breakup data.

  3. A clinically oriented comprehensive pictorial review of canine elbow anatomy.

    PubMed

    Constantinescu, Gheorghe M; Constantinescu, Ileana A

    2009-02-01

    The clinically oriented canine elbow anatomy in its complexity earned a high importance in surgery especially after multiple imaging modalities have been used in the benefit of diagnosis and treatment of canine elbow disorders. The bony, joint, and muscular structures, the arteries, the veins and the nerves supplying the elbow are described and illustrated in textbooks and atlases in the context of the comparative anatomy. Nevertheless, there is no publication focused on all of these structures described together from the skin to the bones in a systematic and topographic order, nor through cross and/or sagittal and coronal sections. The figures used in this article are original and drawn after dissection, cross, sagittal, and coronal sections of the elbow structures. The sections are correlated to the multiple imaging modalities shown in the next article.

  4. Axial Crushing of Thin-Walled Columns with Octagonal Section: Modeling and Design

    NASA Astrophysics Data System (ADS)

    Liu, Yucheng; Day, Michael L.

    This chapter focus on numerical crashworthiness analysis of straight thinwalled columns with octagonal cross sections. Two important issues in this analysis are demonstrated here: computer modeling and crashworthiness design. In the first part, this chapter introduces a method of developing simplified finite element (FE) models for the straight thin-walled octagonal columns, which can be used for the numerical crashworthiness analysis. Next, this chapter performs a crashworthiness design for such thin-walled columns in order to maximize their energy absorption capability. Specific energy absorption (SEA) is set as the design objective, side length of the octagonal cross section and wall thickness are selected as design variables, and maximum crushing force (Pm) occurs during crashes is set as design constraint. Response surface method (RSM) is employed to formulate functions for both SEA and Pm.

  5. AMPX: a modular code system for generating coupled multigroup neutron-gamma libraries from ENDF/B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, N.M.; Lucius, J.L.; Petrie, L.M.

    1976-03-01

    AMPX is a modular system for producing coupled multigroup neutron-gamma cross section sets. Basic neutron and gamma cross-section data for AMPX are obtained from ENDF/B libraries. Most commonly used operations required to generate and collapse multigroup cross-section sets are provided in the system. AMPX is flexibly dimensioned; neutron group structures, and gamma group structures, and expansion orders to represent anisotropic processes are all arbitrary and limited only by available computer core and budget. The basic processes provided will (1) generate multigroup neutron cross sections; (2) generate multigroup gamma cross sections; (3) generate gamma yields for gamma-producing neutron interactions; (4) combinemore » neutron cross sections, gamma cross sections, and gamma yields into final ''coupled sets''; (5) perform one-dimensional discrete ordinates transport or diffusion theory calculations for neutrons and gammas and, on option, collapse the cross sections to a broad-group structure, using the one-dimensional results as weighting functions; (6) plot cross sections, on option, to facilitate the ''evaluation'' of a particular multigroup set of data; (7) update and maintain multigroup cross section libraries in such a manner as to make it not only easy to combine new data with previously processed data but also to do it in a single pass on the computer; and (8) output multigroup cross sections in convenient formats for other codes. (auth)« less

  6. The Impact of Occupational Socialization on Physical Education Pre-Service Teachers' Beliefs about Four Important Curricular Outcomes: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Adamakis, Manolis; Zounhia, Katerina

    2016-01-01

    Most national Physical Education (PE) curriculums worldwide are based on a variety of outcome goals. The most important are physical activity and fitness, self-actualization, motor skill development and social development. Capturing PE Teacher Education pre-service teachers' beliefs toward these outcomes may offer a useful insight into the process…

  7. Salary, Performance, and Superintendent Turnover

    ERIC Educational Resources Information Center

    Grissom, Jason A.; Mitani, Hajime

    2016-01-01

    Purpose: Superintendent retention is an important goal for many school districts, yet the factors contributing to superintendent turnover are poorly understood. Most prior quantitative studies of superintendent turnover have relied on small, cross-sectional samples, limiting the evidence base. Utilizing longitudinal administrative records from…

  8. Two-loop beam and soft functions for rapidity-dependent jet vetoes

    NASA Astrophysics Data System (ADS)

    Gangal, Shireen; Gaunt, Jonathan R.; Stahlhofen, Maximilian; Tackmann, Frank J.

    2017-02-01

    Jet vetoes play an important role in many analyses at the LHC. Traditionally, jet vetoes have been imposed using a restriction on the transverse momentum p Tj of jets. Alternatively, one can also consider jet observables for which p Tj is weighted by a smooth function of the jet rapidity y j that vanishes as | y j | → ∞. Such observables are useful as they provide a natural way to impose a tight veto on central jets but a looser one at forward rapidities. We consider two such rapidity-dependent jet veto observables, T_{Bj} and {T_{Cj} , and compute the required beam and dijet soft functions for the jet-vetoed color-singlet production cross section at two loops. At this order, clustering effects from the jet algorithm become important. The dominant contributions are computed fully analytically while corrections that are subleading in the limit of small jet radii are expressed in terms of finite numerical integrals. Our results enable the full NNLL' resummation and are an important step towards N3LL resummation for cross sections with a T_{Bj} or T_{Cj} jet veto.

  9. Trunk Muscle Size and Composition Assessment in Older Adults with Chronic Low Back Pain: An Intra-Examiner and Inter-Examiner Reliability Study.

    PubMed

    Sions, Jaclyn Megan; Smith, Andrew Craig; Hicks, Gregory Evan; Elliott, James Matthew

    2016-08-01

    To evaluate intra- and inter-examiner reliability for the assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area, i.e., total cross-sectional area minus intramuscular fat, from T1-weighted magnetic resonance images obtained in older adults with chronic low back pain. Reliability study. n = 13 (69.3 ± 8.2 years old) After lumbar magnetic resonance imaging, two examiners produced relative cross-sectional area measurements of multifidi, erector spinae, psoas, and quadratus lumborum by tracing regions of interest just inside fascial borders. Pixel-intensity summaries were used to determine muscle-to-fat infiltration indices; relative muscle cross-sectional area was calculated. Intraclass correlation coefficients were used to estimate intra- and inter-examiner reliability; standard error of measurement was calculated. Intra-examiner intraclass correlation coefficient point estimates for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area were excellent for multifidi and erector spinae across levels L2-L5 (ICC = 0.77-0.99). At L3, intra-examiner reliability was excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area for both psoas and quadratus lumborum (ICC = 0.81-0.99). Inter-examiner intraclass correlation coefficients ranged from poor to excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area. Assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area in older adults with chronic low back pain can be reliably determined by one examiner from T1-weighted images. Such assessments provide valuable information, as muscle-to-fat infiltration indices and relative muscle cross-sectional area indicate that a substantial amount of relative cross-sectional area may be magnetic resonance-visible intramuscular fat in older adults with chronic low back pain. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2016-07-01

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  11. Parameterized Cross Sections for Pion Production in Proton-Proton Collisions

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Swaminathan, Sudha R.; Kruger, Adam T.; Ngom, Moussa; Norbury, John W.; Tripathi, R. K.

    2000-01-01

    An accurate knowledge of cross sections for pion production in proton-proton collisions finds wide application in particle physics, astrophysics, cosmic ray physics, and space radiation problems, especially in situations where an incident proton is transported through some medium and knowledge of the output particle spectrum is required when given the input spectrum. In these cases, accurate parameterizations of the cross sections are desired. In this paper much of the experimental data are reviewed and compared with a wide variety of different cross section parameterizations. Therefore, parameterizations of neutral and charged pion cross sections are provided that give a very accurate description of the experimental data. Lorentz invariant differential cross sections, spectral distributions, and total cross section parameterizations are presented.

  12. Importance of sexuality in colorectal cancer: predictors, changes, and response to an intimacy enhancement intervention.

    PubMed

    Reese, Jennifer Barsky; Haythornthwaite, Jennifer A

    2016-10-01

    The primary objectives were (1) to examine the importance of sexuality within the self-view and cross-sectional correlates for 120 colorectal cancer patients and (2) to determine whether the importance of sexuality changed for 46 colorectal cancer patients and partners participating in an intimacy enhancement intervention. Two newly developed items assessed importance of sexuality within the self-view (1) currently and (2) before cancer; a calculated change score assessed perceived change. In the cross-sectional sample, associations between importance of sexuality and demographic and medical factors and sexual function status were examined. Intervention participants' importance ratings before and after participation were used to calculate effect sizes. For patients, importance of sexuality before cancer was greater (M = 65.7) than current importance (M = 56.8, p = .001). Greater current importance of sexuality was associated with partnered status, non-metastatic disease, and not being in treatment. Scoring in the sexually functional range was associated with greater current importance of sexuality for men and a smaller perceived change in importance for both men and women (p values <.05). Sexual function status also significantly predicted current importance independent of covariates. Small to medium effect sizes for intervention patients (.37) and partners (.60) were found for increases in importance of sexuality. Items showed evidence of test-retest reliability and construct validity. Coping with sexual concerns is important to those affected by colorectal cancer. Findings suggest that the importance of sexuality can decrease through colorectal cancer and associated sexual problems and can increase through participating in an intimacy-focused intervention.

  13. Scattering Properties of Ground-State 23Na Vapor Using Generalized Scattering Theory

    NASA Astrophysics Data System (ADS)

    Al-Harazneh, A. A.; Sandouqa, A. S.; Joudeh, B. R.; Ghassib, H. B.

    2018-04-01

    The scattering properties of ground-state 23Na vapor are investigated within the framework of the Galitskii-Migdal-Feynman formalism. Viewed as a generalized scattering theory, this formalism is used to calculate the medium phase shifts. The scattering properties of the system—the total, viscosity, spin-exchange, and average cross sections—are then computed using these phase shifts according to standard recipes. The total cross section is found to exhibit the Ramsauer-Townsend effect as well as resonance peaks. These peaks are caused by the large difference between the potentials for electronic spin-singlet and spin-triplet states. They represent quasi-bound states in the system. The results obtained for the complex spin-exchange cross sections are particularly highlighted because of their importance in the spectroscopy of the Na2 dimer. So are the results for the scattering lengths pertaining to both singlet and triplet states. Wherever possible, comparison is made with other published results.

  14. An investigation of MCNP6.1 beryllium oxide S(α, β) cross sections

    DOE PAGES

    Sartor, Raymond F.; Glazener, Natasha N.

    2016-03-08

    In MCNP6.1, materials are constructed by identifying the constituent isotopes (or elements in a few cases) individually. This list selects the corresponding microscopic cross sections calculated from the free-gas model to create the material macroscopic cross sections. Furthermore, the free-gas model and the corresponding material macroscopic cross sections assume that the interactions of atoms do not affect the nuclear cross sections.

  15. Search for WZ+ZZ Production with Missing Transverse Energy and b Jets at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poprocki, Stephen

    Observation of diboson processes at hadron colliders is an important milestone on the road to discovery or exclusion of the standard model Higgs boson. Since the decay processes happen to be closely related, methods, tools, and insights obtained through the more common diboson decays can be incorporated into low-mass standard model Higgs searches. The combined WW + WZ + ZZ diboson cross section has been measured at the Tevatron in hadronic decay modes. In this thesis we take this one step closer to the Higgs by measuring just the WZ + ZZ cross section, exploiting a novel arti cial neural network based b-jet tagger to separate the WW background. The number of signal events is extracted from data events with large E T using a simultaneous t in events with and without two jets consistent with B hadron decays. Using 5:2 fb -1 of data from the CDF II detector, we measure a cross section of (pmore » $$\\bar{p}$$ → WZ,ZZ) = 5:8 +3.6 -3.0 pb, in agreement with the standard model.« less

  16. Variations in the course and microanatomical study of the lateral femoral cutaneous nerve and its clinical importance.

    PubMed

    Ray, Biswabina; D'Souza, A S; Kumar, Brijesh; Marx, Chakravarthy; Ghosh, Buddhadeb; Gupta, Nanda Kishore; Marx, Anitha

    2010-11-01

    The lateral femoral cutaneous nerve (LFCN), a branch from the lumbar plexus, may come to the clinician's or surgeon's attention. We studied this nerve to determine its location and its relationship with neighboring structures around the anterior superior iliac spine (ASIS) and the inguinal ligament (IL). Additionally, cross-sectional microanatomy of the LFCN at the IL was studied. The LFCN was dissected in 47 lower limbs from formalin-fixed cadavers. The distances from the ASIS to the point where the LFCN crossed the IL and the lateral border of the sartorius were measured. The distance between the ASIS and the point it pierced the deep fascia was also measured. Twelve nerve specimens at the IL were collected for histological sectioning and were stained with hematoxylin and eosin. On examination of the cross-sectional area, the nonfascicular area was wider than the fascicular area because of an increased amount of thick collagen fibers. This study may be of help to clinicians managing meralgia paresthetica and may also assist in defining a safe area for surgical intervention on the anterolateral aspect of the thigh.

  17. Sedimentation and erosion in Lake Diefenbaker, Canada: solutions for shoreline retreat monitoring.

    PubMed

    Sadeghian, Amir; de Boer, Dirk; Lindenschmidt, Karl-Erich

    2017-09-15

    This study looks into sedimentation and erosion rates in Lake Diefenbaker, a prairie reservoir, in Saskatchewan, Canada, which has been in operation since 1968. First, we looked at the historical data in all different formats over the last 70 years, which includes data from more than 20 years before the formation of the lake. The field observations indicate high rates of shoreline erosion, especially in the upstream portion as a potential region for shoreline retreat. Because of the great importance of this waterbody to the province, monitoring sedimentation and erosion rates is necessary for maintaining the quality of water especially after severe floods which are more common due to climate change effects. Second, we used Google Maps Elevation API, a new tool from Google that provides elevation data for cross sections drawn between two points, by drawing 24 cross sections in the upstream area extending 250 m from each bank. This feature from Google can be used as an easy and fast monitoring tool, is free of charge, and provides excellent control capabilities for monitoring changes in cross-sectional profiles.

  18. From eV to EeV: Neutrino cross sections across energy scales

    NASA Astrophysics Data System (ADS)

    Formaggio, J. A.; Zeller, G. P.

    2012-07-01

    Since its original postulation by Wolfgang Pauli in 1930, the neutrino has played a prominent role in our understanding of nuclear and particle physics. In the intervening 80 years, scientists have detected and measured neutrinos from a variety of sources, both man made and natural. Underlying all of these observations, and any inferences we may have made from them, is an understanding of how neutrinos interact with matter. Knowledge of neutrino interaction cross sections is an important and necessary ingredient in any neutrino measurement. With the advent of new precision experiments, the demands on our understanding of neutrino interactions is becoming even greater. The purpose of this article is to survey our current knowledge of neutrino cross sections across all known energy scales: from the very lowest energies to the highest that we hope to observe. The article covers a wide range of neutrino interactions including coherent scattering, neutrino capture, inverse beta decay, low-energy nuclear interactions, quasielastic scattering, resonant pion production, kaon production, deep inelastic scattering, and ultrahigh energy interactions. Strong emphasis is placed on experimental data whenever such measurements are available.

  19. Cross section of α-induced reactions on iridium isotopes obtained from thick target yield measurement for the astrophysical γ process

    NASA Astrophysics Data System (ADS)

    Szücs, T.; Kiss, G. G.; Gyürky, Gy.; Halász, Z.; Fülöp, Zs.; Rauscher, T.

    2018-01-01

    The stellar reaction rates of radiative α-capture reactions on heavy isotopes are of crucial importance for the γ process network calculations. These rates are usually derived from statistical model calculations, which need to be validated, but the experimental database is very scarce. This paper presents the results of α-induced reaction cross section measurements on iridium isotopes carried out at first close to the astrophysically relevant energy region. Thick target yields of 191Ir(α,γ)195Au, 191Ir(α,n)194Au, 193Ir(α,n)196mAu, 193Ir(α,n)196Au reactions have been measured with the activation technique between Eα = 13.4 MeV and 17 MeV. For the first time the thick target yield was determined with X-ray counting. This led to a previously unprecedented sensitivity. From the measured thick target yields, reaction cross sections are derived and compared with statistical model calculations. The recently suggested energy-dependent modification of the α + nucleus optical potential gives a good description of the experimental data.

  20. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  1. Measurement of the ^235mU Production Cross Section Using a Critical Assembly*

    NASA Astrophysics Data System (ADS)

    Macri, Robert; Authier, Nicolas; Becker, John; Belier, Gilbert; Bond, Evelyn; Bredeweg, Todd; Glover, S.; Meot, Vincent; Rundberg, Robert; Vieira, David; Wilhelmy, Jerry

    2006-10-01

    Measurements of the creation and destruction cross sections for actinide nuclei constitute an important experimental effort in support of Stockpile Stewardship. In this talk I will give a progress report on the effort to measure the production cross section of the ^235mU isomer integrated over a fission neutron spectrum. This ongoing experiment is fielded at CEA in Valduc, France, taking advantage of the CALIBAN critical assembly. This effort is performed in collaboration with LANL, LLNL, Bruyeres le Chatel, and Valduc staff. This experiment utilizes a technique to measure internal conversion electrons from the ^235mU isomer with the French BIII detector (Bruyeres le Chatel), and involves a substantial chemistry effort (LANL) to prepare targets for irradiation and counting, as well as to remove fission fragments after irradiation. Experimental techniques will be discussed and preliminary data presented. *Work performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory (W-7405-ENG-36) and Lawrence Livermore National Laboratory (W-7405-ENG-48), and CEA-DAM under CEA-DAM NNSA-DOE agreement.

  2. Measurements of the Total Reaction Cross Sections for 6,8He and 8,9Li Nuclei with Energies of (25-45)A Mev on natAl, natTa and natPb

    NASA Astrophysics Data System (ADS)

    Erdemchimeg, B.; Artukh, A. G.; Klygin, S. A.; Kononenko, G. A.; Kyslukha, D. A.; Sereda, Yu. M.; Vorontzov, A. N.; Lukyanov, S. M.; Penionzhkevich, Yu. E.; Davaa, S.; Khuukhenkhuu, G.; Borcea, C.; Rotaru, F.; Stanoiu, M.; Martina, L.; Saillant, F.; Raine, B.

    2015-06-01

    The total nuclear reaction cross sections (σR) measurements have long been of interest since they tell us about the radii and transparency of these nuclei and give clues to understanding of their structure. For studies of unstable nuclei, in particular the physical properties of halo nuclei and the neutron skin thickness, it is valuable to know not only the root-mean-square radii (rms) but it is important to know the details of nucleusnucleus potentials. Our goal was to study total reaction cross sections (σR) by a direct measurement technique (the so-called beam attenuation or transmission method) which allows to extract model independent information. The interaction radii for 6He, 8,9Li were extracted, which are in agreement with the previous measurement at the similar energies (about a few tens of AMeV) Our results show a tendency of increasing radii as function of mass of the secondary targets.

  3. Geologic Cross Section E-E' through the Appalachian Basin from the Findlay Arch, Wood County, Ohio, to the Valley and Ridge Province, Pendleton County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Swezey, Christopher S.; Crangle, Robert D.; Trippi, Michael H.

    2008-01-01

    Geologic cross section E-E' is the first in a series of cross sections planned by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section E-E' provides a regional view of the structural and stratigraphic framework of the basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 380 miles (mi) (fig. 1, on sheet 1). Cross section E-E' updates earlier geologic cross sections through the central Appalachian basin by Renfro and Feray (1970), Bennison (1978), and Bally and Snelson (1980) and a stratigraphic cross section by Colton (1970). Although other published cross sections through parts of the basin show more structural detail (for example, Shumaker, 1985; Kulander and Dean, 1986) and stratigraphic detail (for example, Ryder, 1992; de Witt and others, 1993; Hettinger, 2001), these other cross sections are of more limited extent geographically and stratigraphically. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section E-E' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section E-E' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste (for example, Colton, 1961; Lloyd and Reid, 1990) or for the sequestration of carbon dioxide (for example, Smith and others, 2002; Lucier and others, 2006).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, J.; Richard, P.; Gray, T.J.

    The systematics of single and double K-shell-vacancy production in titanium has been investigated in the limit of zero target thickness (approx.1 ..mu..g/cm/sup 2/) for incident C, N, O, F, Mg, Al, Si, S, and Cl ions over a maximum energy range of 0.5 to 6.5 MeV/amu. This corresponds to collision systems with 0.27< or =Z/sub 1//Z/sub 2/< or =0.77 and 0.24< or =v/sub 1//vK< or =0.85, where v/sub 1/ is the projectile nuclear velocity and vK is the mean velocity of an electron in the target K shell. The present work is divided into four major sections. (1) Single K-shell-vacancymore » production has been investigated by measuring K..cap alpha.. and K..beta.. p satellite x-ray-production cross sections for projectiles incident with no K-shell vacancies. For incident ions with Z/sub 1/> or =9, the contribution due to electron-transfer processes from the target K shell to outer shells of the projectile has also been noted. (2) Single K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly by the measuring of the enhancement in the Ti K x-ray production cross section for bare incident projectiles over ions incident with no initial K-shell vacancies. (3) Double K-vacancy production has been investigated by measuring the K..cap alpha.. hypersatellite intensity in ratio to the total K..cap alpha.. intensity. (4) Double K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly with the use of a procedure similar to that used for single K to K transfer. The measured cross sections have been compared to theoretical models for direct Coulomb ionization and inner-shell electron transfer and have been used to investigate the relative importance of these mechanisms for K-vacancy production in heavy-ion--atom collisions.« less

  5. Public roads : a journal of highway research. Vol. 25, No. 10

    DOT National Transportation Integrated Search

    1949-10-01

    In this issue of Public Roads appears the first portion of an important work on highway capacity and its practical applications. The second half of the report, dealing with intersections at grade, weaving sections and unsignalized cross movements, ra...

  6. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  7. Total, LDL, and HDL cholesterol decrease with age in older men and women. The Rancho Bernardo Study 1984-1994.

    PubMed

    Ferrara, A; Barrett-Connor, E; Shan, J

    1997-07-01

    The purpose of the present study was to study the effects of age, weight change, and covariates on lipid and lipoprotein levels cross-sectionally and prospectively in an elderly population. A community-based sample of 1041 men and 1303 women aged 50 to 93 years was studied cross-sectionally in 1984 to 1987, with follow-up of 372 men and 545 women 8 years later. In the cross-sectional study, levels of total cholesterol (TC) and LDL cholesterol (LDL-C) decreased and levels of HDL cholesterol (HDLC) increased with age in men (all P < .001) but not in women. In the prospective study, TC, LDL-C, and HDL-C levels all decreased in both men and women, in all age groups (50 to 64 years, 65 to 74 years, and > or = 75 years) and in all weight change groups (> 2.5-kg loss, change within 2.5 kg, and > 2.5-kg gain) and in all waist girth change groups, for an overall decrement of approximately 1% per year. In multiple linear regression models, change in weight was the most important independent and consistent predictor of changes in TC, LDL-C, and HDL-C. Similar results were obtained in analyses excluding subjects taking lipid-lowering drugs or estrogen and in analyses adjusted for changes in cigarette smoking, alcohol intake, physical activity, medication use, and incident myocardial infarction, cancer, or diabetes. Cross-sectional decrements in TC and LDL-C with age in men are not explained by survivor bias because they are also observed prospectively. Although weight change was the most important explanatory variable, TC, LDL-C, and HDL-C levels also decreased in those who lost or gained weight. Age was not an independent predictor of change. Other prospective studies are recommended to better define the causes and consequences of cholesterol and lipoprotein changes in old age.

  8. Continuous Retention and Viral Suppression Provide Further Insights Into the HIV Care Continuum Compared to the Cross-sectional HIV Care Cascade.

    PubMed

    Colasanti, Jonathan; Kelly, Jane; Pennisi, Eugene; Hu, Yi-Juan; Root, Christin; Hughes, Denise; Del Rio, Carlos; Armstrong, Wendy S

    2016-03-01

    The human immunodeficiency virus (HIV) care continuum has become an important tool for evaluating HIV care. Current depictions of the care continuum are often cross-sectional and evaluate retention and viral suppression (VS) in a single year, yet the National HIV/AIDS Strategy calls for programs with long-lasting outcomes. Retrospective chart review of HIV-infected patients enrolled in a large, urban clinic in 2010 followed longitudinally for 36 months. McNemar comparisons and logistic regression analyses were conducted to evaluate covariate association with continuous retention and VS. Generalized estimating equation log-linear models were used to integrate time into the model. Among 655 patients (77% male, 83% black, 54% men who have sex with men (MSM), 78% uninsured) continuous retention/VS at 12 months (84%/64%), 24 months (60%/48%), and 36 months (49%/39%) showed significant attrition (P < .0001) over time. Continuous retention was associated with prevalent VS at the end of 36 months (adjusted prevalence ratio 3.12; 95% confidence interval [CI], 2.40, 4.07). 12-month retention for black (84%) and nonblack (85%) patients was equivalent, yet fewer blacks (46%) than nonblacks (63%) achieved 36-month continuous retention due to a significant interaction between race and time (aOR 0.75, 95% CI, .59, .95). Continuous retention is a critically important measure of long-term success in HIV treatment and the crucial component of successful treatment-as-prevention but is infrequently evaluated. Single cross-sections may overestimate successful retention and virologic outcomes. A longitudinal HIV care continuum provides greater insight into long-term outcomes and exposes disparities not evident with traditional cross-sectional care continua. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  9. K-Shell Photoabsorption and Photoionisation of Trace Elements I. Isoelectronic Sequences With Electron Number 3< or = N < or = 11

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Witthoeft, M. C.; Kallman, T. R.

    2016-01-01

    Context. With the recent launching of the Hitomi X-ray space observatory, K lines and edges of chemical elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn, can be resolved and used to determine important properties of supernova remnants, galaxy clusters and accreting black holes and neutron stars.Aims. The second stage of the present ongoing project involves the computation of the accurate photoabsorption and photoionisation cross sections required to interpret the X-ray spectra of such trace elements.Methods. Depending on target complexity and computer tractability, ground-state cross sections are computed either with the close-coupling Breit-Pauli R-matrix method or with the autostructure atomic structure code in the isolated-resonance approximation. The intermediate-coupling scheme is used whenever possible. In order to determine a realistic K-edge behaviour for each species, both radiative and Auger dampings are taken into account, the latter being included in the R-matrix formalism by means of an optical potential.Results. Photoabsorption and total and partial photoionisation cross sections are reported for isoelectronic sequences with electron numbers 3< or = N< or = 11. The Na sequence (N=11) is used to estimate the contributions from configurations with a 2s hole (i.e. [2s]) and those containing 3d orbitals, which will be crucial when considering sequences with N 11.Conclusions. It is found that the [2s/u] configurations must be included in the target representations of species with N> 11 as they contribute significantly to the monotonic background of the cross section between the L and K edges. Configurations with 3d orbitals are important in rendering an accurate L edge, but they can be practically neglected in the K-edge region.

  10. 94 Mo(γ,n) and 90Zr(γ,n) cross-section measurements towards understanding the origin of p-nuclei

    NASA Astrophysics Data System (ADS)

    Meekins, E.; Banu, A.; Karwowski, H.; Silano, J.; Zimmerman, W.; Muller, J.; Rich, G.; Bhike, M.; Tornow, W.; McClesky, M.; Travaglio, C.

    2014-09-01

    The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross sections will be presented along with their comparison to predictions by a statistical model based on the Hauser-Feshbach formalism implemented in codes like TALYS and SMARAGD. The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross sections will be presented along with their comparison to predictions by a statistical model based on the Hauser-Feshbach formalism implemented in codes like TALYS and SMARAGD. This research was supported by the Research Corporation for Science Advancement.

  11. Fraunhofer and refractive scattering of heavy ions in strong laser fields

    NASA Astrophysics Data System (ADS)

    Mişicu, Şerban; Carstoiu, Florin

    2018-05-01

    Until recently the potential scattering of a charged particle in a laser field received attention exclusively in atomic physics. The differential cross-section of laser-assisted electron-atom collisions for n emitted or absorbed photons is provided by a simple law which casts the result as a product between the field-free value and the square of the Bessel function of order n with its argument containing the effect of the laser in a non-perturbative way. From the experimental standpoint, laser-assisted electron-atom collisions are important because they allow the observation of multiphoton effects even at moderate laser intensities. The aim of this study is to calculate the nucleus-nucleus differential cross section in the field of a strong laser with wavelengths in the optical domain such that the low-frequency approximation is fulfilled. We investigate the dependence of the n-photon differential cross-section on the intensity, photon energy and shape of the pulse for a projectile/target combination at a fixed collision energy which exhibits a superposition of Fraunhofer and refractive behavior. We also discuss the role of the laser perturbation on the near and farside decomposition in the angular distribution, an issue never discussed before in the literature. We apply a standard optical model approach to explain the experimental differential cross-section of the elastic scattering of 4He on 58Ni at a laboratory energy E = 139 MeV and resolve the corresponding farside/nearside (F/N) decomposition in the field-free case. We give an example of reaction in which Fraunhofer diffraction and refractive rainbow hump effects are easily recognized in the elastic angular distribution. Next, we apply the Kroll-Watson theorem, in order to determine the n -photon contributions to the cross-section for continuous-wave (cw) and modulated pulses. In the elastic scattering of heavy ions in a radiation field of low intensity, the amplitude drops by orders of magnitude with respect to the unperturbed case once the exchange of photons is initiated. For intensities approaching I=10^{17} W/cm2 multiphoton effects become important. In the case of short laser pulses we conclude that the strength of n-photon contribution increases with the pulse duration.

  12. BACKSCAT Lidar Simulation Version 3.0: Technical Documentation and Users Guide

    DTIC Science & Technology

    1992-12-03

    Raman Cross Section of Some Simple Gases, J. Opt. Soc. Am., 63:73. 20 Penny, C.M., St. Peters, R.L., and Lapp, M., (1974) Absolute Rotational Raman...of the molecule, and the remaining columns list the relative normalized cross sections for the respective excitation wavelength. The absolute Raman...cross section is obtained by simply multiplying the relative normalized cross section for a molecular species of interest by the absolute cross section

  13. On the tidal prism-channel area relations

    NASA Astrophysics Data System (ADS)

    D'Alpaos, Andrea; Lanzoni, Stefano; Marani, Marco; Rinaldo, Andrea

    2010-03-01

    We verify the broad applicability of tidal prism cross-sectional area relationships, originally proposed to relate the total water volume entering a lagoon during a characteristic tidal cycle (the tidal prism) to the size of its inlet, to arbitrary sheltered cross sections within a tidal network. We suggest, with reasonable approximation defining a statistical tendency rather than a pointwise equivalence, that the regime of tidal channels may be anywhere related to local landscape-forming prisms embedded in a characteristic spring tide oscillation. The importance of the proposed extension stems from its potential for quantitative predictions of the long-term morphological evolution of whole tidal landforms, in response to forcings affecting tidal prisms. This is the case, in particular, for alterations of relative mean sea levels possibly driven by climate change. Various 1-D and 2-D morphodynamic and hydrodynamic models are employed to evaluate peak flow rates, bottom shear stresses, and the ensuing local tidal prisms. One-dimensional morphodynamic models describing both the longitudinal and cross-sectional evolution of tidal channels are used to verify the validity of the relationship for sheltered sections. Relevant hydrodynamic features determined through accurate 2-D numerical models are compared with those obtained through time-invariant equivalents, defining a mean watershed by an energy landscape from averaged free surface gradients. Empirical evidence gathered within the lagoon of Venice (Italy) supports the proposed extension. We conclude that the geomorphic law relating tidal prisms to channel cross-sectional areas anywhere within a tidal landscape is a valuable tool for studies on long-term tidal geomorphology.

  14. Energy and Mass-Number Dependence of Hadron-Nucleus Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2016-09-01

    We thoroughly investigate how proton-nucleus total reaction cross sections depend on the target mass number A and the proton incident energy. In doing so, we systematically analyze nuclear reaction data that are sensitive to nuclear size, namely, proton-nucleus total reaction cross sections and differential elastic cross sections, using a phenomenological black-sphere approximation of nuclei that we are developing. In this framework, the radius of the black sphere is found to be a useful length scale that simultaneously accounts for the observed proton-nucleus total reaction cross section and first diffraction peak in the proton elastic differential cross section. This framework, which is shown here to be applicable to antiprotons, is expected to be applicable to any kind of projectile that is strongly attenuated in the nucleus. On the basis of a cross-section formula constructed within this framework, we find that a less familiar A1/6 dependence plays a crucial role in describing the energy dependence of proton-nucleus total reaction cross sections.

  15. Activation cross section and isomeric cross-section ratio for the 151Eu(n,2n)150m,gEu process

    NASA Astrophysics Data System (ADS)

    Luo, Junhua; Li, Suyuan; Jiang, Li

    2018-07-01

    The cross sections of 151Eu(n,2n)150m,gEu reactions and their isomeric cross section ratios σm/σt have been measured experimentally. Cross sections are measured, relative to a reference 93Nb(n,2n)92mNb reaction cross section, by means of the activation technique at three neutron energies 13.5, 14.1, and 14.8 MeV. Monoenergetic neutron beams were formed via the 3H(d,n)4He reaction and both Eu2O3 samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The activities induced in the reaction products were measured using high-resolution gamma ray spectroscopy. Cross sections were also evaluated theoretically using the numerical nuclear model code, TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  16. Differential cross sections for electron-impact excitation of the electronic states of pyrimidine

    NASA Astrophysics Data System (ADS)

    Brunger, Michael; Jones, Darryl; Bellm, Susan

    2012-06-01

    Pyrimidine (C4N2H4) is an important molecule, as it forms the basis of larger biomolecules, such as the DNA bases thymine, cytosine and uracil. There is a pressing demand for low-energy electron scattering data from such biological analogs in order to model radiation induced damage [1]. We therefore present the first measurements for absolute differential cross section data for low-energy electron-impact excitation of the electronic states of pyrimidine. The present measurements were performed using a crossed-beam apparatus [2] for incident electron energies ranging between 15 to 50eV while covering a 10 to 90^o angular range. Here the absolute scale has been determined through a normalisation to the recently measured elastic scattering differential cross section data for pyrimidine [3]. [1] F. Ferreira da Silva, D. Almeida, G. Martins, A. R. Milosavljevic, B. P. Marinkovic, S. V. Hoffmann, N. J. Mason, Y. Nunes, G. Garcia and P. Limao-Vieira, Phys Chem Chem Phys 12, 6717 (2010). [2] M. J. Brunger and P. J. O. Teubner, Phys Rev A 41, 1413 (1990). [3] P. Palihawadana, J. Sullivan, M. Brunger, C. Winstead, V. McKoy, G. Garcia, F. Blanco and S. Buckman, Phys Rev A 84, 062702 (2011).

  17. Virtopsy - the concept of a centralized database in forensic medicine for analysis and comparison of radiological and autopsy data.

    PubMed

    Aghayev, Emin; Staub, Lukas; Dirnhofer, Richard; Ambrose, Tony; Jackowski, Christian; Yen, Kathrin; Bolliger, Stephan; Christe, Andreas; Roeder, Christoph; Aebi, Max; Thali, Michael J

    2008-04-01

    Recent developments in clinical radiology have resulted in additional developments in the field of forensic radiology. After implementation of cross-sectional radiology and optical surface documentation in forensic medicine, difficulties in the validation and analysis of the acquired data was experienced. To address this problem and for the comparison of autopsy and radiological data a centralized database with internet technology for forensic cases was created. The main goals of the database are (1) creation of a digital and standardized documentation tool for forensic-radiological and pathological findings; (2) establishing a basis for validation of forensic cross-sectional radiology as a non-invasive examination method in forensic medicine that means comparing and evaluating the radiological and autopsy data and analyzing the accuracy of such data; and (3) providing a conduit for continuing research and education in forensic medicine. Considering the infrequent availability of CT or MRI for forensic institutions and the heterogeneous nature of case material in forensic medicine an evaluation of benefits and limitations of cross-sectional imaging concerning certain forensic features by a single institution may be of limited value. A centralized database permitting international forensic and cross disciplinary collaborations may provide important support for forensic-radiological casework and research.

  18. Phylogenetic patterns and correlation of key structures for jumping: bone crests and cross-sectional areas of muscles in Leptodactylus (Anura, Leptodactylidae).

    PubMed

    Ponssa, María Laura; Fratani, Jéssica; Abdala, Virginia

    2018-05-01

    Anurans are characterized by their saltatory mode of locomotion, which is associated with a specific morphology. The coordinated action of the muscles and bones of the pelvic girdle is key to the transmission of the force of the hindlimbs to the axial skeleton during jumping. Two features are critical for optimal locomotory performance: the cross-sectional area of muscle and the bone crest attachment sites. The first character is a proxy of the force exerted by the muscle, whereas the crests are muscle attachments sites related to muscle force. The provisory relationship between these features has previously been identified and bone crest size can be used to infer the magnitude and, therefore, muscle force in fossils records. In this work, we explore the correlation between the cross-sectional area of essential muscles to the jumping mechanism (longissimus dorsi, extensor iliotibialis B, tenuissimus, puboischiofemoralis internus B, coccygeo-sacralis and coccygeo-iliacus) and the bone crests where these muscles are inserted (dorsal tubercle, dorsal crest and urostylar crest) in species of the genus Leptodactylus. This genus, along with other leptodactylids, exhibits a diversity of locomotor modes, including jumping, hopping, swimming and burrowing. We therefore analyzed the morphometric variation in the two features, cross-sectional area and bone crest area, expecting a correlation with different locomotor types. Our results showed: (i) a correlation between the urostylar crest and the cross-sectional area of the related muscles; (ii) that the bone crest surface area of urostyle and ilium and the cross-sectional area of the corresponding muscles can be utilized to infer locomotor faculties in leptodactylid frogs; and (iii) that the evolution of both characters demonstrates a general tendency from lower values in leptodactylid ancestors to higher values in the Leptodactylus genus. The results attest to the importance of the comparison of current ecological and phylogenetic analogues as they allow us to infer functionality and behavior in fossil and extant groups based on skeletal evidence. Phylogenetic patterns in character evolution and their correlation with locomotory types could imply that functional restrictions are also inherited in leptodactylid. © 2018 Anatomical Society.

  19. Water in the hydration shell of halide ions has significantly reduced Fermi resonance and moderately enhanced Raman cross section in the OH stretch regions.

    PubMed

    Ahmed, Mohammed; Singh, Ajay K; Mondal, Jahur A; Sarkar, Sisir K

    2013-08-22

    Water in the presence of electrolytes plays an important role in biological and industrial processes. The properties of water, such as the intermolecular coupling, Fermi resonance (FR), hydrogen-bonding, and Raman cross section were investigated by measuring the Raman spectra in the OD and OH stretch regions in presence of alkali halides (NaX; X = F, Cl, Br, I). It is observed that the changes in spectral characteristics by the addition of NaX in D2O are similar to those obtained by the addition of H2O in D2O. The spectral width decreases significantly by the addition of NaX in D2O (H2O) than that in the isotopically diluted water. Quantitative estimation, on the basis of integrated Raman intensity, revealed that the relative Raman cross section, σ(H)/σ(b) (σ(H) and σ(b) are the average Raman cross section of water in the first hydration shell of X(-) and in bulk, respectively), in D2O and H2O is higher than those in the respective isotopically diluted water. These results suggest that water in the hydration shell has reduced FR and intermolecular coupling compared to those in bulk. In the isotopically diluted water, the relative Raman cross section increases with increase in size of the halide ions (σ(H)/σ(b) = 0.6, 1.1, 1.5, and 1.9 for F(-), Cl(-), Br(-), and I(-), respectively), which is assignable to the enhancement of Raman cross section by charge transfer from halide ions to the hydrating water. Nevertheless, the experimentally determined σ(H)/σ(b) is lower than the calculated values obtained on the basis of the energy of the charge transfer state of water. The weak enhancement of σ(H)/σ(b) signifies that the charge transfer transition in the hydration shell of halide ions causes little change in the OD (OH) bond lengths of hydrating water.

  20. A laboratory study of the UV Absorption Spectrum of the ClO Dimer (Cl2O2) and the Implications for Polar Stratospheric Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Papanastasiou, D. K.; Papadimitriou, V. C.; Fahey, D. W.; Burkholder, J. B.

    2009-12-01

    Chlorine containing species play an important role in catalytic ozone depleting cycles in the Antarctic and Arctic stratosphere. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the majority of the observed polar ozone loss. A key step in this catalytic cycle is the UV photolysis of Cl2O2. The determination of the Cl2O2 UV absorption spectrum has been the subject of several studies since the late 1980’s. Recently, Pope et al. (J. Phys. Chem. A, 111, 4322, 2007) reported significantly lower absorption cross sections for Cl2O2 for the atmospherically relevant wavelength region, >300 nm, than currently recommended for use in atmospheric models. If correct, the Pope et al. results would alter our understanding of the chemistry of polar ozone depletion significantly. In this study, the UV absorption spectrum and absolute cross sections of gas-phase Cl2O2 are reported for the wavelength range 200 - 420 nm at ~200 K. Sequential pulsed laser photolysis of various precursors were used to produce the ClO radical and Cl2O2 via the subsequent ClO + ClO + M reaction under static conditions. UV absorption spectra of the reaction mixture were measured using a diode array spectrometer after completion of the gas-phase radical chemistry. The spectral analysis utilized the observed isosbestic points, reaction stoichiometry, and chlorine mass balance to determine the UV spectrum and absolute cross section of Cl2O2. A complementary experimental technique similar to that used by Pope et al. was also used in this study. We obtained consistent Cl2O2 UV absorption spectra using the two different techniques. The Cl2O2 absorption cross sections for wavelengths in the 300 - 420 nm range were found to be in very good agreement with the values reported previously by Burkholder et al. (J. Phys. Chem. A, 94, 687, 1990) and significantly greater than the Pope et al. values in this atmospherically important wavelength region. A possible explanation for the disagreement with the Pope et al. study will be discussed. Finally, using the Cl2O2 UV cross sections reported in this work representative atmospheric photolysis rates along with a detailed analysis of estimated uncertainties will be presented. A conclusion from this work is that the Cl2O2 absorption cross section data obtained in this work is sufficient to adequately model the observed ozone losses in the Antarctic and Arctic stratosphere.

  1. Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.

    2001-01-01

    Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observationsmore » for all the targets reported here, especially for the total cross section.« less

  3. Flow behavior in the Wright Brothers Facility

    NASA Technical Reports Server (NTRS)

    Genn, S.

    1984-01-01

    It has become increasingly apparent that a reexamination of the flow characteristics in the low speed Wright Brothers Facility (WBF) is of some importance in view of recent improvements in the precision of the data acquisition system. In particular, the existence of local regions of separation, if any, in back portions of the circuit, and possible related unsteadiness, are of interest. Observations from that initial experiment did indicate some unsteady air flow problems in the cross leg, and thereafter the test region (Section A) was calibrated quantitatively. The intent was to learn something about the effect of upstream intermittent behavior flow on the test section flow, as well as to provide an extensive calibration as a standard for the effects induced by future alteration of the tunnel. Distributions of total pressure coefficients were measured first at one cross-section plane of the test section, namely the model station. Data were obtained for several tunnel speeds. The reduced data yielded an unexpected distribution involving larger pressures along the inside wall.

  4. Cross sections for direct and dissociative ionization of NH3 and CS2 by electron impact

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Srivastava, S. K.

    1991-01-01

    A crossed electron beam-molecular beam collision geometry is used to measure cross sections for the production of positive ions by electron impact on NH3 and CS2. Ionization cross-section data for NH3 and the values of various cross sections are presented, as well as ionization efficiency curves for CS2. Considerable differences are found between the various results on NH3. The present values are close to the data of Djuric et al. (1981). The semiempirical calculations of Hare and Meath (1987) differ considerably in the absolute values of cross sections. Discrepancies were observed in comparisons of cross sections of other fragment ions resulting from the ionization and dissociate ionization of NH3.

  5. Importance of Phonological and Orthographic Skills for English Reading and Spelling: A Comparison of English Monolingual and Mandarin-English Bilingual Children

    ERIC Educational Resources Information Center

    Yeong, Stephanie H. M.; Fletcher, Janet; Bayliss, Donna M.

    2014-01-01

    This cross-sectional study examines the importance of English phonological and orthographic processing skills to English word reading and spelling in 3 groups of younger (8-9 years) and older (11-12 years) children from different language backgrounds: English monolingual, English first language (L1)-Mandarin second language (L2), and Mandarin…

  6. Nuclear Forensics and Radiochemistry: Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.

  7. Fragmentation Cross Sections of Medium-Energy 35Cl, 40Ar, and 48TiBeams on Elemental Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitlin, C.; Guetersloh, S.; Heilbronn, L.

    Charge-changing and fragment production cross sections at 0degrees have been obtained for interactions of 290, 400, and 650MeV/nucleon 40Ar beams, 650 and 1000 MeV/nucleon 35Cl beams, and a 1000MeV/nucleon 48Ti beam. Targets of C, CH2, Al, Cu, Sn, and Pb were used.Using standard analysis methods, we obtain fragment cross sections forcharges as low as 8 for Cl and Ar beams, and as low as 10 for the Tibeam. Using data obtained with small-acceptance detectors, we reportfragment production cross sections for charges as low as 5, corrected foracceptance using a simple model of fragment angular distributions. Withthe lower-charged fragment cross sections,more » we cancompare the data topredictions from several models (including NUCFRG2, EPAX2, and PHITS) ina region largely unexplored in earlier work. As found in earlier workwith other beams, NUCFRG2 and PHITS predictions agree reasonably wellwith the data for charge-changing cross sections, but do not accuratelypredict the fragment production cross sections. The cross sections forthe lightest fragments demonstrate the inadequacy of several models inwhich the cross sections fall monotonically with the charge of thefragment. PHITS, despite not agreeing particularly well with the fragmentproduction cross sections on average, nonetheless qualitativelyreproduces somesignificant features of the data that are missing from theother models.« less

  8. Aquatic organism passage at road-stream crossings—synthesis and guidelines for effectiveness monitoring

    USGS Publications Warehouse

    Hoffman, Robert L.; Dunham, Jason B.; Hansen, Bruce P.

    2012-01-01

    Restoration and maintenance of passage for aquatic organisms at road-stream crossings represents a major management priority, involving an investment of hundreds of millions of dollars (for example, U.S. Government Accounting Office, 2001). In recent years, passage at hundreds of crossings has been restored, primarily by replacing barrier road culverts with bridges or stream simulation culverts designed to pass all species and all life stages of aquatic life and simulate natural hydro-geomorphic processes (U.S. Forest Service, 2008). The current situation has motivated two general questions: 1. Are current design standards for stream simulation culverts adequately re-establishing passage for aquatic biota? and 2. How do we monitor and evaluate effectiveness of passage restoration? To address the latter question, a national workshop was held in March 2010, in Portland, Oregon. The workshop included experts on aquatic organism passage from across the nation (see table of participants, APPENDIX) who addressed four classes of methods for monitoring effectiveness of aquatic organism passage—individual movement, occupancy, demography, and genetics. This report has been written, in part, for field biologists who will be undertaking and evaluating the effectiveness of aquatic organism passage restoration projects at road-stream crossings. The report outlines basic methods for evaluating road-stream crossing passage impairment and restoration and discusses under what circumstances and conditions each method will be useful; what questions each method can potentially answer; how to design and implement an evaluation study; and points out the fundamental reality that most evaluation projects will require special funding and partnerships among researchers and resource managers. The report is organized into the following sections, which can be read independently: 1. Historical context: In this section, we provide a brief history of events leading up to the present situation involving aquatic organism passage as a useful context for the issues covered herein. 2. Importance of connectivity for aquatic organisms: In this section, we provide background information regarding the movement characteristics of aquatic organisms and their vulnerability to passage impairment, and the importance of connectivity for a broad diversity of aquatic vertebrates and invertebrates. This section should be useful for practitioners in selecting what species to monitor in relation to aquatic organism passage. 3. Methods for evaluating aquatic organism passage: In this section, we present a range of perspectives on alternatives for assessing and monitoring aquatic organism passage impairment and the effectiveness of passage restoration actions, including the following methods: Individual Movement, Occupancy Models, Abundance (Demography), and Molecular Genetic Markers. 4. Relevance, strengths, and limitations of the four methods: In this section, we discuss the utility of each of the methods as a tool for assessing and quantifying passage impairment and restoration effectiveness. 5. Guidelines for selecting a method: In this section, we review some fundamental criteria and guidelines to consider when selecting a method for monitoring in the context of answering three important questions that should be addressed when developing a plan for evaluating aquatic organism passage. 6. Study and monitoring design considerations: In this section, we discuss four key design elements that need to be considered when developing a monitoring design for assessing passage impairment and restoration. The basic objectives of the report are to: 1. Review the movement characteristics of five groups of aquatic organisms that inhabit streams and to assess their general vulnerability to passage impairment at road-stream crossings; 2. Review four methods for monitoring aquatic organism passage impairment and the effectiveness of actions to restore passage at road-stream crossing structures; 3. Assess the relevance, strengths, and limitations of each method as a monitoring tool; 4. Identify and discuss guidelines that will be useful for selecting a monitoring method; and 5. Discuss what we have identified as the four key elements that need to be considered when developing a monitoring design for assessing passage impairment and restoration at road-stream crossings.

  9. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  10. CEPXS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-19

    CEPXS is a multigroup-Legendre cross-section generating code. The cross sections produced by CEPXS enable coupled electron-photon transport calculations to be performed with multigroup radiation transport codes, e.g. MITS and SCEPTRE. CEPXS generates multigroup-Legendre cross sections for photons, electrons and positrons over the energy range from 100 MeV to 1.0 keV. The continuous slowing-down approximation is used for those electron interactions that result in small-energy losses. The extended transport correction is applied to the forward-peaked elastic scattering cross section for electrons. A standard multigroup-Legendre treatment is used for the other coupled electron-photon cross sections. CEPXS extracts electron cross-section information from themore » DATAPAC data set and photon cross-section information from Biggs-Lighthill data. The model that is used for ionization/relaxation in CEPXS is essentially the same as that employed in ITS.« less

  11. Partial Photoneutron Cross Sections for 207,208Pb

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Utsunomiya, H.; Goriely, S.; Iwamoto, C.; Akimune, H.; Yamagata, T.; Toyokawa, H.; Harada, H.; Kitatani, F.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2014-05-01

    Using linearly-polarized laser-Compton scattering γ-rays, partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near neutron threshold by measuring anisotropies in photoneutron emission. Separately, total photoneutron cross sections were measured for 207,208Pb with a high-efficiency 4π neutron detector. The partial cross section measurement provides direct evidence for the presence of pygmy dipole resonance (PDR) in 207,208Pb in the vicinity of neutron threshold. The strength of PDR amounts to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to M1 cross sections less than 10% of the total photoneutron cross sections.

  12. Absorption Cross-Sections of Ozone in the Ultraviolet and Visible Spectral Regions: Status report 2015

    NASA Technical Reports Server (NTRS)

    Orphal, Johannes; Staehelin, Johannes; Tamminen, Johanna; Braathen, Geir; De Backer, Marie-Renee; Bais, Alkiviadis; Balis, Dimitris; Barbe, Alain; Bhartia, Pawan K.; Birk, Manfred; hide

    2016-01-01

    The activity Absorption Cross-Sections of Ozone (ACSO) started in 2008 as a joint initiative of the International Ozone Commission (IO3C), the World Meteorological Organization (WMO) and the IGACO (Integrated Global Atmospheric Chemistry Observations) O3/UV subgroup to study, evaluate, and recommend the most suitable ozone absorption cross-section laboratory data to be used in atmospheric ozone measurements. The evaluation was basically restricted to ozone absorption cross-sections in the UV range with particular focus on the Huggins band. Up until now, the data of Bass and Paur published in 1985 (BP, 1985) are still officially recommended for such measurements. During the last decade it became obvious that BP (1985) cross-section data have deficits for use in advanced space-borne ozone measurements. At the same time, it was recognized that the origin of systematic differences in ground-based measurements of ozone required further investigation, in particular whether the BP (1985) cross-section data might contribute to these differences. In ACSO, different sets of laboratory ozone absorption cross-section data (including their dependence on temperature) of the group of Reims (France) (Brion et al., 1993, 1998, 1992, 1995, abbreviated as BDM, 1995) and those of Serdyuchenko et al. (2014), and Gorshelev et al. (2014), (abbreviated as SER, 2014) were examined for use in atmospheric ozone measurements in the Huggins band. In conclusion, ACSO recommends:(a) The spectroscopic data of BP (1985) should no longer be used for retrieval of atmospheric ozone measurements.(b) For retrieval of ground-based instruments of total ozone and ozone profile measurements by the Umkehr method performed by Brewer and Dobson instruments data of SER (2014) are recommended to be used. When SER (2014) is used, the difference between total ozone measurements of Brewer and Dobson instruments are very small and the difference between Dobson measurements at AD and CD wavelength pairs are diminished.(c) For ground-based Light Detection and Ranging (LIDAR) measurements the use of BDM (1995) or SER (2014) is recommended.(d) For satellite retrieval the presently widely used data of BDM (1995) should be used because SER (2014) seems less suitable for retrievals that use wavelengths close to 300 nm due to a deficiency in the signal-to-noise ratio in the SER (2014) dataset.The work of ACSO also showed: The need to continue laboratory cross-section measurements of ozone of highest quality. The importance of careful characterization of the uncertainties of the laboratory measurements. The need to extend the scope of such studies to other wavelength ranges (particularly to cover not only the Huggins band but also the comparison with the mid-infrared region). The need for regular cooperation of experts in spectral laboratory measurements and specialists in atmospheric (ozone) measurements.

  13. Learning Science beyond the Classroom.

    ERIC Educational Resources Information Center

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  14. 75 FR 57456 - Light-Walled Rectangular Pipe and Tube from the People's Republic of China: Final Results of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ...'') U.S. affiliated importer FitMAX Inc. (``FitMAX'') on June 2, 2010 and June 16, 2010. FitMAX... carbon- quality light-walled steel pipe and tube, of rectangular (including square) cross section, having...

  15. Perspectives in Individualized Learning.

    ERIC Educational Resources Information Center

    Weisgerber, Robert A.

    The readings presented here are an analysis of selected factors underlying the process of individualized learning. The book is organized topically and moves from theoretical considerations toward an analysis of important educational components. The readings come from a cross section of experts representing the areas of learning theory, individual…

  16. Revised geologic cross sections of parts of the Colorado, White River, and Death Valley regional groundwater flow systems, Nevada, Utah, and Arizona

    USGS Publications Warehouse

    Page, William R.; Scheirer, Daniel S.; Langenheim, V.E.; Berger, Mary A.

    2006-01-01

    This report presents revisions to parts of seven of the ten cross sections originally published in U.S. Geological Survey Open-File Report 2006-1040. The revisions were necessary to correct errors in some of the original cross sections, and to show new parts of several sections that were extended and (or) appended to the original section profiles. Revisions were made to cross sections C-C', D-D', E-E', F-F', G-G', I-I', and J-J', and the parts of the sections revised or extended are highlighted below the sections on plate 1 by red brackets and the word "revised," or "extended." Sections not listed above, as well as the interpretive text and figures, are generally unchanged from the original report. Cross section C-C' includes revisions in the east Mormon Mountains in the east part of the section; D-D' includes revisions in the Mormon Mesa area in the east part of the section; E-E' includes revisions in the Muddy Mountains in the east part of the section; F-F' includes revisions from the Muddy Mountains to the south Virgin Mountains in the east part of the section; and J-J' includes some revisions from the east Mormon Mountains to the Virgin Mountains. The east end of G-G' was extended about 16 km from the Black Mountains to the southern Virgin Mountains, and the northern end of I-I' was extended about 45 km from the Muddy Mountains to the Mormon Mountains, and revisions were made in the Muddy Mountains part of the original section. This report contains 10 interpretive cross sections and an integrated text describing the geology of parts of the Colorado, White River, and Death Valley regional groundwater flow systems in Nevada, Utah, and Arizona. The primary purpose of the report is to provide geologic framework data for input into a numerical groundwater model. Therefore, the stratigraphic and structural summaries are written in a hydrogeologic context. The oldest rocks (basement) are Early Proterozoic metamorphic and intrusive crystalline rocks that are considered confining units because of their low permeability. Late Proterozoic to Lower Cambrian clastic units overlie the crystalline rocks and are also considered confining units within the regional flow systems. Above the clastic units are Middle Cambrian to Lower Permian carbonate rocks that are the primary aquifers in the flow systems. The Middle Cambrian to Lower Permian carbonate rocks are overlain by a sequence of mainly clastic rocks of late Paleozoic to Mesozoic age that are mostly considered confining units, but they may be permeable where faulted. Tertiary volcanic and plutonic rocks are exposed in the northern and southern parts of the study area. In the Clover and Delamar Mountains, these rocks are highly deformed by north- and northwest-striking normal and strike-slip faults that are probably important conduits in transmitting groundwater from the basins in the northern Colorado and White River flow systems to basins in the southern part of the flow systems. The youngest rocks in the region are Tertiary to Quaternary basin-fill deposits. These rocks consist of middle to late Tertiary sediments consisting of limestone, conglomerate, sandstone, tuff, and gypsum, and younger Quaternary surficial units consisting of alluvium, colluvium, playa deposits, and eolian deposits. Basin-fill deposits are both aquifers and aquitards. The rocks in the study area were complexly deformed by episodes of Mesozoic compression and Cenozoic extensional tectonism. Some Cretaceous thrust faults and folds of the Sevier orogenic belt form duplex zones and define areas of maximum thickness for the Paleozoic carbonate rocks. Cenozoic faults are important because they are the primary structures that control groundwater flow in the regional flow systems.

  17. Neutron Capture Measurements on 97Mo with the DANCE Array

    NASA Astrophysics Data System (ADS)

    Walker, Carrie L.

    Neutron capture is a process that is crucial to understanding nucleosynthesis, reactors, and nuclear weapons. Precise knowledge of neutron capture cross-sections and level densities is necessary in order to model these high-flux environments. High-confidence spin and parity assignments for neutron resonances are of critical importance to this end. For nuclei in the A=100 mass region, the p-wave neutron strength function is at a maximum, and the s-wave strength function is at a minimum, producing up to six possible Jpi combinations. Parity determination becomes important to assigning spins in this mass region, and the large number of spin groups adds complexity to the problem. In this work, spins and parities for 97Mo resonances are assigned, and best fit models for photon strength function and level density are determined. The neutron capture-cross section for 97Mo is also determined, as are resonance parameters for neutron energies ranging from 16 eV to 2 keV.

  18. Illiquidity premium and expected stock returns in the UK: A new approach

    NASA Astrophysics Data System (ADS)

    Chen, Jiaqi; Sherif, Mohamed

    2016-09-01

    This study examines the relative importance of liquidity risk for the time-series and cross-section of stock returns in the UK. We propose a simple way to capture the multidimensionality of illiquidity. Our analysis indicates that existing illiquidity measures have considerable asset specific components, which justifies our new approach. Further, we use an alternative test of the Amihud (2002) measure and parametric and non-parametric methods to investigate whether liquidity risk is priced in the UK. We find that the inclusion of the illiquidity factor in the capital asset pricing model plays a significant role in explaining the cross-sectional variation in stock returns, in particular with the Fama-French three-factor model. Further, using Hansen-Jagannathan non-parametric bounds, we find that the illiquidity-augmented capital asset pricing models yield a small distance error, other non-liquidity based models fail to yield economically plausible distance values. Our findings have important implications for managing the liquidity risk of equity portfolios.

  19. Anxiety and Spiritual Well-Being in Nursing Students: A Cross-Sectional Study.

    PubMed

    Fabbris, Jéssika Leão; Mesquita, Ana Cláudia; Caldeira, Sílvia; Carvalho, Ana Maria Pimenta; Carvalho, Emilia Campos de

    2016-06-20

    To analyze the relation between anxiety and spiritual well-being in undergraduate nursing students. Cross sectional, correlational, and survey design. A total of 169 students from a Brazilian Nursing School completed three instruments: demographic data, Spiritual Well-Being Scale (SWBS), and Beck Anxiety Inventory (BAI). The mean score of SWBS was high, and the mean score of BAI was low. When experiencing anxiety, there was lower probability of experiencing high spiritual well-being. For those students considering religiosity very important, the score of SWBS was high. Students scoring lower in SWBS had more probability of experiencing moderate/high anxiety. Higher scores of SWBS and importance given to religiosity were related to lower scores of BAI. Also, the performance and score of spiritual well-being were related to anxiety scores. Further research is worthy to identify and validate which educational aspects could promote spiritual well-being and reduce anxiety as well as research to analyze the relation between spiritual well-being score and learning outcomes. © The Author(s) 2016.

  20. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  1. Delayed neutron spectral data for Hansen-Roach energy group structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J.M.; Spriggs, G.D.

    A detailed knowledge of delayed neutron spectra is important in reactor physics. It not only allows for an accurate estimate of the effective delayed neutron fraction {beta}{sub eff} but also is essential to calculating important reactor kinetic parameters, such as effective group abundances and the ratio of {beta}{sub eff} to the prompt neutron generation time. Numerous measurements of delayed neutron spectra for various delayed neutron precursors have been performed and reported in the literature. However, for application in reactor physics calculations, these spectra are usually lumped into one of the traditional six groups of delayed neutrons in accordance to theirmore » half-lives. Subsequently, these six-group spectra are binned into energy intervals corresponding to the energy intervals of a chosen nuclear cross-section set. In this work, the authors present a set of delayed neutron spectra that were formulated specifically to match Keepin`s six-group parameters and the 16-energy-group Hansen-Roach cross sections.« less

  2. Free-electron-laser coherent diffraction images of individual drug-carrying liposome particles in solution.

    PubMed

    Huang, Chi-Feng; Liang, Keng S; Hsu, Tsui-Ling; Lee, Tsung-Tse; Chen, Yi-Yun; Yang, Shun-Min; Chen, Hsiang-Hsin; Huang, Shih-Hsin; Chang, Wei-Hau; Lee, Ting-Kuo; Chen, Peilin; Peng, Kuei-En; Chen, Chien-Chun; Shi, Cheng-Zhi; Hu, Yu-Fang; Margaritondo, Giorgio; Ishikawa, Tetsuya; Wong, Chi-Huey; Hwu, Y

    2018-02-08

    Using the excellent performances of a SACLA (RIKEN/HARIMA, Japan) X-ray free electron laser (X-FEL), coherent diffraction imaging (CDI) was used to detect individual liposome particles in water, with or without inserted doxorubicin nanorods. This was possible because of the electron density differences between the carrier, the liposome, and the drug. The result is important since liposome nanocarriers at present dominate drug delivery systems. In spite of the low cross-section of the original ingredients, the diffracted intensity of drug-free liposomes was sufficient for spatial reconstruction yielding quantitative structural information. For particles containing doxorubicin, the structural parameters of the nanorods could be extracted from CDI. Furthermore, the measurement of the electron density of the solution enclosed in each liposome provides direct evidence of the incorporation of ammonium sulphate into the nanorods. Overall, ours is an important test for extending the X-FEL analysis of individual nanoparticles to low cross-sectional systems in solution, and also for its potential use to optimize the manufacturing of drug nanocarriers.

  3. Causes of job stress in nurses: A cross-sectional study

    PubMed Central

    Najimi, Arash; Goudarzi, Ali Moazemi; Sharifirad, Gholamreza

    2012-01-01

    Background: Nursing is naturally a stressful job. Stress in nurses can cause depression, isolation from patients, absence and decrease in their qualification. This study aimed to determine the causes of job stress in nurses of Kashan, Iran. Materials and Methods: In this cross-sectional study, 189 nurses from Kashan hospitals of different wards were studied. The information collection tool was Occupational Stress Inventory-Revised™ (OSI-R™). Findings: The most important job stress aspects in female nurses were range of roles (48.4%), role duality (40.9%) and job environment (39.6%). In men, range of roles (57.5%), job environment (50%) and responsibility (45%) were the most significant aspects. In addition, lack of balance between skill and education and job environment requirements in both genders was the least important aspect of job stress. Conclusions: The results showed that the level of stress in most of the nurses was in medium level. Job factors were more involved in job stress than demographic and other factors. PMID:23833631

  4. Heavy ion action on yeast cells: Inhibition of ribosomal-RNA synthesis, loss of colony forming ability and induction of mutants

    NASA Astrophysics Data System (ADS)

    Kiefer, J.; Rase, S.; Schöpfer, F.; Schneider, E.; Weber, K.; Kraft, G.

    The action of heavy ions (Ar to U) accelerated to specific energies up to about 10 MeV/u (u=atomic mass unit) on different functions of yeast cells was studied. Ribosomal-RNA synthesis is inhibited according to a single-hit mechanism. Inactivation cross-sections were linearly related to the ratio of the squares of the effective charge Z* and the velocity of the ions. It is concluded from the analysis that the range of the most energetic δ-electrons is larger than previously assumed. There is no such dependence for survival and induction of mutants. In both cases cross-sections increase with the ion's specific-energy indicating an important contribution of long-range δ-electrons. The analysis shows that diploid yeast is not killed by a single-hit mechanism even by very heavy ions if the track width is too small. The relative importance of the penumbral region is even more pronounced with the more sensitive strains.

  5. Research at the University of Kentucky Accelerator Laboratory

    DOE PAGES

    Hicks, S. F.; Kovash, M. A.

    2017-10-26

    The Department of Physics and Astronomy at the University of Kentucky operates a 7-MV CN Van de Graaff accelerator that produces primary beams of protons, deuterons, and helium ions. An in-terminal pulsing and bunching system operates at 1.875 MHz and is capable of providing 1 ns beam bunches at an average current of several microamperes. Nearly all ongoing research programs involve secondary pulsed neutrons produced with gas cells containing deuterium or tritium, as well as with a variety of solid targets. Most experiments are performed at a target station positioned over a deep pit, so as to reduce the backgroundmore » created by backscattered neutrons. Here, recent experiments will be described; these include: measurements of n-p scattering total cross sections from E n = 90 to 1800 keV to determine the n-p effective range parameter; the response of the plastic scintillator BC-418 below 1 MeV to low-energy recoil protons; n-p radiative capture cross sections important for our understanding of nucleosynthesis approximately 2 minutes after the occurrence of the Big Bang; γ-ray spectroscopy following inelastic neutron scattering to study nuclear structure relevant to double-β decay and to understand the role of phonon-coupled excitations in weakly deformed nuclei; and measurements of neutron elastic and inelastic scattering cross sections for nuclei that are important for energy production and for our global understanding of the interaction of neutrons with matter.« less

  6. Research at the University of Kentucky Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, S. F.; Kovash, M. A.

    The Department of Physics and Astronomy at the University of Kentucky operates a 7-MV CN Van de Graaff accelerator that produces primary beams of protons, deuterons, and helium ions. An in-terminal pulsing and bunching system operates at 1.875 MHz and is capable of providing 1 ns beam bunches at an average current of several microamperes. Nearly all ongoing research programs involve secondary pulsed neutrons produced with gas cells containing deuterium or tritium, as well as with a variety of solid targets. Most experiments are performed at a target station positioned over a deep pit, so as to reduce the backgroundmore » created by backscattered neutrons. Here, recent experiments will be described; these include: measurements of n-p scattering total cross sections from E n = 90 to 1800 keV to determine the n-p effective range parameter; the response of the plastic scintillator BC-418 below 1 MeV to low-energy recoil protons; n-p radiative capture cross sections important for our understanding of nucleosynthesis approximately 2 minutes after the occurrence of the Big Bang; γ-ray spectroscopy following inelastic neutron scattering to study nuclear structure relevant to double-β decay and to understand the role of phonon-coupled excitations in weakly deformed nuclei; and measurements of neutron elastic and inelastic scattering cross sections for nuclei that are important for energy production and for our global understanding of the interaction of neutrons with matter.« less

  7. Geologic Cross Section D-D' Through the Appalachian Basin from the Findlay Arch, Sandusky County, Ohio, to the Valley and Ridge Province, Hardy County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Crangle, Robert D.; Trippi, Michael H.; Swezey, Christopher S.; Lentz, Erika E.; Rowan, Elisabeth L.; Hope, Rebecca S.

    2009-01-01

    Geologic cross section D-D' is the second in a series of cross sections constructed by the U.S. Geological Survey to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section D-D' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 290 miles. The information shown on the cross section is based on geological and geophysical data from 13 deep drill holes, several of which penetrate the Paleozoic sedimentary rocks of the basin and bottom in Mesoproterozoic (Grenville-age) crystalline basement rocks. This cross section is a companion to cross section E-E' (Ryder and others, 2008) that is located about 25 to 50 mi to the southwest. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section D-D' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general geologic framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section D-D' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.

  8. Differential Cross Sections for the Electron Impact Excitation of the A(sup 3)(Sigma)(sub u)(sup +), B(sup 3)Pi(sub g), W(sup 3)(Delta)(sub u), B'(sup 3)(Sigma)(sub u)(sup -), a'(sup 1)Sigma(sub u)(sup -), a(sup 1)Pi(sub g), w(sup 1)Delta(sub u), and C(sup 3)Pi(sub u) States of N(sub 2)

    NASA Technical Reports Server (NTRS)

    Khakoo, M. A.; Johnson, P. V.; Ozkay, I.; Yan, P.; Trajmar, S.; Kanik, I.

    2005-01-01

    Measurements of differential cross sections for the electron-impact excitation of molecular nitrogen from the ground X(sup 1)(Sigma)(sub g)(sup +)(v''=0)level to the A(sup 3)(Sigma)(sub u)(sup +)(v'), B(sup 3)Pi(sub g)(v'), W(sup 3)(Delta)(sub u)(v'),B'(sup 3)(Sigma)(sub u)(sup -)(v'), a(sup 1)(Pi)(sub g)(v'), w(sup 1)(Delta)(sub u)(v'), and C(sup 3)(Pi)(sub u)(v') levels are presented. The data are obtained at the incident energies of 10, 12.5, 15, 17.5, 20, 30, 50, and 100 eV over the angular range of 5(deg)-130(deg) in 5(deg) intervals. The individual electronic state excitation differential cross sections are obtained by unfolding electron energy-loss spectra of molecular nitrogen using available semiempirical Frank-Condon factors. The data are compared to previous measurements and to available theory. We also make several important suggestions regarding future work that, like the present, relies on the unfolding of electron energy-loss spectra for obtaining differential cross sections.

  9. Absolute cross sections for the ionization-excitation of helium by electron impact

    NASA Astrophysics Data System (ADS)

    Bellm, S.; Lower, J.; Weigold, E.; Bray, I.; Fursa, D. V.; Bartschat, K.; Harris, A. L.; Madison, D. H.

    2008-09-01

    In a recent publication we presented detailed experimental and theoretical results for the electron-impact-induced ionization of ground-state helium atoms. The purpose of that work was to refine theoretical approaches and provide further insight into the Coulomb four-body problem. Cross section ratios were presented for transitions leading to excited states, relative to those leading to the ground state, of the helium ion. We now build on that study by presenting individual relative triple-differential ionization cross sections (TDCSs) for an additional body of experimental data measured at lower values of scattered-electron energies. This has been facilitated through the development of new electron-gun optics which enables us to accurately characterize the spectrometer transmission at low energies. The experimental results are compared to calculations resulting from a number of different approaches. For ionization leading to He+(1s2)1S , cross sections are calculated by the highly accurate convergent close-coupling (CCC) method. The CCC data are used to place the relative experimental data on to an absolute scale. TDCSs describing transitions to the excited states are calculated through three different approaches, namely, through a hybrid distorted- wave+R -matrix (close-coupling) model, through the recently developed four-body distorted-wave model, and by a first Born approximation calculation. Comparison of the first- and second-order theories with experiment allows for the accuracy of the different theoretical approaches to be assessed and gives insight into which physical aspects of the problem are most important to accurately model.

  10. Constraints on WIMP annihilation for contracted dark matter in the inner Galaxy with the Fermi-LAT

    DOE PAGES

    Gómez-Vargas, Germán A.; Sánchez-Conde, Miguel A.; Huh, Ji -Haeng; ...

    2013-10-16

    Here, we derive constraints on parameters of generic dark matter candidates by comparing theoretical predictions with the gamma-ray emission observed by the Fermi-LAT from the region around the Galactic Center. Our analysis is conservative since it simply requires that the expected dark matter signal does not exceed the observed emission. The constraints obtained in the likely case that the collapse of baryons to the Galactic Center is accompanied by the contraction of the dark matter are strong. In particular, we find that for b b¯ and τ +τ – or W +W – dark matter annihilation channels, the upper limitsmore » on the annihilation cross section imply that the thermal cross section is excluded for a Weakly Interacting Massive Particle (WIMP) mass smaller than about 700 and 500 GeV, respectively. For the μ +μ – channel, where the effect of the inverse Compton scattering is important, depending on models of the Galactic magnetic field the exclusion of the thermal cross-section is for a WIMP mass smaller than about 150 to 400 GeV. The upper limits on the annihilation cross section of dark matter particles obtained are two orders of magnitude stronger than without contraction. In the latter case our results are compatible with the upper limits from the Galactic halo analysis reported by the Fermi-LAT collaboration for the case in which the same conservative approach without modeling of the astrophysical background is employed.« less

  11. Mechanical versus kinematical shortening reconstructions of the Zagros High Folded Zone (Kurdistan region of Iraq)

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Reif, Daniel; Grasemann, Bernhard

    2012-06-01

    This paper compares kinematical and mechanical techniques for the palinspastic reconstruction of folded cross sections in collision orogens. The studied area and the reconstructed NE-SW trending, 55.5 km long cross section is located in the High Folded Zone of the Zagros fold-and-thrust belt in the Kurdistan region of Iraq. The present-day geometry of the cross section has been constructed from field as well as remote sensing data. In a first step, the structures and the stratigraphy are simplified and summarized in eight units trying to identify the main geometric and mechanical parameters. In a second step, the shortening is kinematically estimated using the dip domain method to 11%-15%. Then the same cross section is used in a numerical finite element model to perform dynamical unfolding simulations taking various rheological parameters into account. The main factor allowing for an efficient dynamic unfolding is the presence of interfacial slip conditions between the mechanically strong units. Other factors, such as Newtonian versus power law viscous rheology or the presence of a basement, affect the numerical simulations much less strongly. If interfacial slip is accounted for, fold amplitudes are reduced efficiently during the dynamical unfolding simulations, while welded layer interfaces lead to unrealistic shortening estimates. It is suggested that interfacial slip and decoupling of the deformation along detachment horizons is an important mechanical parameter that controlled the folding processes in the Zagros High Folded Zone.

  12. Mechanical versus kinematical shortening reconstructions of the Zagros High Folded Zone (Kurdistan Region of Iraq)

    NASA Astrophysics Data System (ADS)

    Frehner, M.; Reif, D.; Grasemann, B.

    2012-04-01

    Our study compares kinematical and mechanical techniques for the palinspastic reconstruction of folded cross-sections in collision orogens. The studied area and the reconstructed NE-SW-trending, 55.5 km long cross-section is located in the High Folded Zone of the Zagros fold-and-thrust belt in the Kurdistan Region of Iraq. The present-day geometry of the cross-section has been constructed from field, as well as remote sensing data. In a first step, the structures and the stratigraphy are simplified and summarized in eight units trying to identify the main geometric and mechanical parameters. In a second step, the shortening is kinematically estimated using the dip-domain method to 11%-15%. Then the same cross-section is used in a numerical finite-element model to perform dynamical unfolding simulations taking various rheological parameters into account. The main factor allowing for an efficient dynamic unfolding is the presence of interfacial slip conditions between the mechanically strong units. Other factors, such as Newtonian vs. power-law viscous rheology or the presence of a basement affect the numerical simulations much less strongly. If interfacial slip is accounted for, fold amplitudes are reduced efficiently during the dynamical unfolding simulations, while welded layer interfaces lead to unrealistic shortening estimates. It is suggested that interfacial slip and decoupling of the deformation along detachment horizons is an important mechanical parameter that controlled the folding processes in the Zagros High Folded Zone.

  13. Numerical study of the effects of contact angle and viscosity ratio on the dynamics of snap-off through porous media

    NASA Astrophysics Data System (ADS)

    Starnoni, Michele; Pokrajac, Dubravka

    2018-01-01

    Snap-off is a pore-scale mechanism occurring in porous media in which a bubble of non-wetting phase displacing a wetting phase, and vice-versa, can break-up into ganglia when passing through a constriction. This mechanism is very important in foam generation processes, enhanced oil recovery techniques and capillary trapping of CO2 during its geological storage. In the present study, the effects of contact angle and viscosity ratio on the dynamics of snap-off are examined by simulating drainage in a single pore-throat constriction of variable cross-section, and for different pore-throat geometries. To model the flow, we developed a CFD code based on the Finite Volume method. The Volume-of-fluid method is used to track the interfaces. Results show that the threshold contact angle for snap-off, i.e. snap-off occurs only for contact angles smaller than the threshold, increases from a value of 28° for a circular cross-section to 30-34° for a square cross-section and up to 40° for a triangular one. For a throat of square cross-section, increasing the viscosity of the injected phase results in a drop in the threshold contact angle from a value of 30° when the viscosity ratio μ bar is equal to 1 to 26° when μ bar = 20 and down to 24° when μ bar = 20 .

  14. Positron scattering from pyridine

    NASA Astrophysics Data System (ADS)

    Stevens, D.; Babij, T. J.; Machacek, J. R.; Buckman, S. J.; Brunger, M. J.; White, R. D.; García, G.; Blanco, F.; Ellis-Gibbings, L.; Sullivan, J. P.

    2018-04-01

    We present a range of cross section measurements for the low-energy scattering of positrons from pyridine, for incident positron energies of less than 20 eV, as well as the independent atom model with the screening corrected additivity rule including interference effects calculation, of positron scattering from pyridine, with dipole rotational excitations accounted for using the Born approximation. Comparisons are made between the experimental measurements and theoretical calculations. For the positronium formation cross section, we also compare with results from a recent empirical model. In general, quite good agreement is seen between the calculations and measurements although some discrepancies remain which may require further investigation. It is hoped that the present study will stimulate development of ab initio level theoretical methods to be applied to this important scattering system.

  15. Data analysis and theoretical studies for atmospheric Explorer C, D and E

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.

    1983-01-01

    The research concentrated on construction of a comprehensive model of the chemistry of the ionosphere. It proceeded by comparing detailed predictions of the atmospheric parameters observed by the instrumentation on board the Atmospheric Explorer Satellites with the measured values and modifying the chemistry to bring about consistency. Full account was taken of laboratory measurements of the processes identified as important. The research programs were made available to the AE team members. Regularly updated tables of recommended values of photoionization cross sections and electron impact excitation and ionization cross sections were provided. The research did indeed lead to a chemistry model in which the main pathways are quantitatively secure. The accuracy was sufficient that remaining differences are small.

  16. Accurate measurements of the 63Cu(d,p)64Cu and natCu(d,x)65Zn cross-sections in the 2.77-5.62 MeV energy range

    NASA Astrophysics Data System (ADS)

    Weissman, L.; Kreisel, A.; Hirsh, T.; Aviv, O.; Berkovits, D.; Girshevitz, O.; Eisen, Y.

    2015-01-01

    The cross sections of 63Cu(d,p)64Cu and natCu(d,x)65Zn were determined for deuteron beam energy range of 2.77-5.62 MeV at the SARAF Phase I variable energy LINAC. Thin copper foils were irradiated by a deuteron beam followed up by measurement of the produced activation at the Soreq NRC low-background γ-counting system. The results are consistent with data in the literature, but are of better accuracy. The data are important for assessment of the activation of components of Radio Frequency Quadrupole injectors and Medium Energy Beam Transport beam dumps in modern deuteron LINACs.

  17. Time dependent variation of carrying capacity of prestressed precast beam

    NASA Astrophysics Data System (ADS)

    Le, Tuan D.; Konečný, Petr; Matečková, Pavlína

    2018-04-01

    The article deals with the evaluation of the precast concrete element time dependent carrying capacity. The variation of the resistance is inherited property of laboratory as well as in-situ members. Thus the specification of highest, yet possible, laboratory sample resistance is important with respect to evaluation of laboratory experiments based on the test machine loading capabilities. The ultimate capacity is evaluated through the bending moment resistance of a simply supported prestressed concrete beam. The probabilistic assessment is applied. Scatter of random variables of compressive strength of concrete and effective height of the cross section is considered. Monte Carlo simulation technique is used to investigate the performance of the cross section of the beam with changes of tendons’ positions and compressive strength of concrete.

  18. Measurements of the 169Tm(n ,2 n )168Tm cross section from threshold to 15 MeV

    NASA Astrophysics Data System (ADS)

    Soter, J.; Bhike, M.; Finch, S. W.; Krishichayan, Tornow, W.

    2017-12-01

    Measurements of the 169Tm(n ,2 n )168Tm cross section have been performed via the activation technique at 13 energies between 8.5 and 15.0 MeV. The purpose of this comprehensive data set is to provide an alternative diagnostic tool for obtaining subtle information on the neutron energy distribution produced in inertial confinement deuterium-tritium fusion experiments at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. The 169Tm(n ,2 n )168Tm reaction not only provides the primary 14-MeV neutron fluence, but also the important down-scattered neutron fluence, the latter providing information on the density achieved in the deuterium-tritium plasma during a laser shot.

  19. Determination of neutron multiplication coefficients for fuel elements irradiated by spallation neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Chitra; Kumar, V.

    2010-02-15

    A neutron multiplication coefficient, k{sub eff}, has been estimated for spallation neutron flux using the data of spectrum average cross sections of all absorption, fission, and nonelastic reaction channels of {sup 232}Th, {sup 238}U, {sup 235}U, and {sup 233}U fuel elements. It has been revealed that in spallation neutron flux (i) nonfission, nonabsorption reactions play an important role in the calculation of k{sub eff}, (ii) one can obtain a high value of k{sub eff} even for fertile {sup 232}Th fuel, which is hardly possible in a conventional fast reactor, and (iii) spectrum average absorption cross sections of neutron poisons ofmore » a conventional reactor are relatively very small.« less

  20. Simultaneous production of lepton pairs in ultraperipheral relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Kurban, E.; Güçlü, M. C.

    2017-10-01

    We calculate the total cross sections and probabilities of electromagnetic productions of electron, muon, and tauon pairs simultaneously. At the CERN Large Hadron Collider (LHC), the available electromagnetic energy is sufficient to produce all kinds of leptons coherently. The masses of muons and tauons are large, so their Compton wavelengths are small enough to interact with the colliding nuclei. Therefore, the realistic nuclear form factors are included in the calculations of electromagnetic pair productions. The cross section calculations show that, at LHC energies, the probabilities of simultaneous productions of all kinds of leptons are increased significantly compared to energies available at the BNL Relativistic Heavy Ion Collider (RHIC) . Experimentally, observing this simultaneous production can give us important information about strong QED.

  1. Tevatron Top-Quark Combinations and World Top-Quark Mass Combination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Reinhild Yvonne

    2014-11-04

    Almost 20 years after its discovery, the top quark is still an interesting particle, undergoing precise investigation of its properties. For many years, the Tevatron proton antiproton collider at Fermilab was the only place to study top quarks in detail, while with the recent start of the LHC proton proton collider a top quark factory has opened. An important ingredient for the full understanding of the top quark is the combination of measurements from the individual experiments. In particular, the Tevaton combinations of single top-quark cross sections, the ttbar production cross section, the W helicity in top-quark decays as wellmore » as the Tevatron and the world combination of the top-quark mass are discussed.« less

  2. Cross-sectional aspect ratio modulated electronic properties in Si/Ge core/shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nuo; Lu, Ning; Yao, Yong-Xin

    2013-02-28

    Electronic structures of (4, n) and (m, 4) (the NW has m layers parallel to the {1 1 1} facet and n layers parallel to {1 1 0}) Si/Ge core/shell nanowires (NWs) along the [1 1 2] direction with cross-sectional aspect ratio (m/n) from 0.36 to 2.25 are studied by first-principles calculations. An indirect to direct band gap transition is observed as m/n decreases, and the critical values of m/n and diameter for the transition are also estimated. The size of the band gap also depends on the aspect ratio. These results suggest that m/n plays an important role inmore » modulating the electronic properties of the NWs.« less

  3. Branching ratio to the 803 keV level in 210Poα decay

    NASA Astrophysics Data System (ADS)

    Shor, A.; Weissman, L.; Aviv, O.; Eisen, Y.; Brandis, M.; Paul, M.; Plompen, A.; Tessler, M.; Vaintraub, S.

    2018-03-01

    Precise knowledge of the branching ratio in the α decay of 210Po is important for accurate measurement of the 209Bi(n ,γ )Big210 cross section, the reaction involved in the termination of the astrophysical s process. The branching ratio was determined from independent measurements of α and γ spectra of bismuth samples simultaneously irradiated by neutrons near the core of the Soreq research reactor (IRR1). The branching ratio was found to be (1.15 ±0.09 ) ×10-5 , consistent with the results of several measurements performed six decades ago. As a by-product value the 209Bi(n ,γ )Big210 thermal cross section was measured to be 21.6 ±1.1 mb.

  4. Neutron cross-sections for next generation reactors: new data from n_TOF.

    PubMed

    Colonna, N; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Calviani, M; Calviño, F; Cano-Ott, D; Capote, R; de Albornoz, A Carrillo; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2010-01-01

    In 2002, an innovative neutron time-of-flight facility started operation at CERN: n_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n_TOF is presented, together with plans for new measurements related to nuclear industry. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.

    1982-01-01

    Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.

  6. Morphological Features and Important Parameters of Large Optic Discs for Diagnosing Glaucoma

    PubMed Central

    Okimoto, Satoshi; Yamashita, Keiko; Shibata, Tetsuo; Kiuchi, Yoshiaki

    2015-01-01

    Purpose To compare the optic disc parameters of glaucomatous eyes to those of non-glaucomatous eyes with large discs. Methods We studied 225 consecutive eyes with large optic discs (>2.82 mm2): 91 eyes with glaucoma and 134 eyes without glaucoma. An eye was diagnosed with glaucoma when visual field defects were detected by the Humphrey Field Analyzer. All of the Heidelberg Retina Tomograph II (HRT II) parameters were compared between the non-glaucomatous and glaucomatous eyes. A logistic regression analysis of the HRT II parameters was used to establish a new formula for diagnosing glaucoma, and the sensitivity and specificity of the Moorfields Regression Analysis (MRA) was compared to the findings made by our analyses. Results The mean disc area was 3.44±0.50 mm2 in the non-glaucomatous group and 3.40±0.52 mm2 in the glaucoma group. The cup area, cup volume, cup-to-disc area ratio, linear cup/disc ratio, mean cup depth, and the maximum cup depth were significantly larger in glaucomatous eyes than in the non-glaucomatous eyes. The rim area, rim volume, cup shape measurement, mean retinal nerve fiber layer (RNFL) thickness, and RFNL cross-sectional area were significantly smaller in glaucomatous eyes than in non-glaucomatous eyes. The cup-to-disc area ratio, the height variation contour (HVC), and the RNFL cross-sectional area were important parameters for diagnosing the early stage glaucoma, and the cup-to-disc area ratio and cup volume were useful for diagnosing advanced stage glaucoma in eyes with a large optic disc. The new formula had higher sensitivity and specificity for diagnosing glaucoma than MRA. Conclusions The cup-to-disc area ratio, HVC, RNFL cross-sectional area, and cup volume were important parameters for diagnosing glaucoma in eyes with a large optic disc. The important disc parameters to diagnose glaucoma depend on the stage of glaucoma in patients with large discs. PMID:25798580

  7. Congenital anatomic variants of the kidney and ureter: a pictorial essay.

    PubMed

    Srinivas, M R; Adarsh, K M; Jeeson, Riya; Ashwini, C; Nagaraj, B R

    2016-03-01

    Congenital renal parenchymal and pelvicalyceal abnormalities have a wide spectrum. Most of them are asymptomatic, like that of ectopia, cross fused kidney, horseshoe kidney, etc., while a few of them become complicated, leading to renal failure and death. It is very important for the radiologist to identify these anatomic variants and guide the clinicians for surgical and therapeutic procedures. Cross-sectional imaging with a volume rendered technique/maximum intensity projection has overcome ultrasonography and IVU for identification and interpretation of some of these variants.

  8. Proton-Nucleus Total Cross Sections in Coupled-Channel Approach

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.

    2000-01-01

    Recently, nucleon-nucleon (N-N) cross sections in the medium have been extracted directly from experiment. The in-medium N-N cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. In the present study the ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium N-N cross sections to calculate total proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.

  9. Calculation of total electron excitation cross-sections and partial electron ionization cross-sections for the elements. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Green, T. J.

    1973-01-01

    Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.

  10. Electron impact scattering study of hypohalous acids HOX (X = F, Cl, Br, I)

    NASA Astrophysics Data System (ADS)

    Yadav, Hitesh; Bhutadia, Harshad; Prajapati, Dinesh; Desai, Hardik; Vinodkumar, Minaxi; Vinodkumar, P. C.

    2018-05-01

    In this article we aim to report total cross sections (TCS) QT, total elastic cross sections (Qel), total inelastic cross sections (Qinel) i.e. (total ionizations cross sections (Qion)+total electronic excitation cross sections (Qexc)) from threshold of the target to 5000 eV energy range. We have used a well-defined theoretical methodology Spherical Complex Optical Potential (SCOP) to compute QT, Qel and Qinel and Complex Scattering Potential - ionization contribution (CSP - ic) method to report the (Qion). The cross-sectional data reported here for the Hypohalous Acids is for the first time and the present data can become a guideline for the experimentalist to study these targets.

  11. Probing the Depths of Space Weathering: A Cross-sectional View of Lunar Rock 76015

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.; Keller, L. P.; Stroud, Rhonda

    2007-01-01

    The term "space weathering" refers to the cumulative effects of several processes operating at the surface of any solar system body not protected by a thick atmosphere. These processes include cosmic and solar ray irradiation, solar wind implantation and sputtering, as well as melting and vaporization due to micrometeorite bombardment. Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied using SEM and TEM. It is a noritic breccia with both "glazed" (smooth glassy) and "classic" (microcratered and pancake-bearing) patina coatings. Previous TEM work on 76015 relied on ultramicrotomy to prepare cross sections of the patina coating, but these sections were limited by the "chatter" and loss of material in these brittle samples. Here we have used a focused ion beam (FIB) instrument to prepare cross sections in which the delicate stratigraphy of the patina coating is beautifully preserved.

  12. Cross sections for n+{sup 14}N from an R-matrix analysis of the {sup 15}N system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, G.M.; Young, P.G.; Chadwick, M.B.

    1994-06-01

    As part of the Hiroshima-Nagasaki Dose Reevaluation Program, a new evaluation of the neutron cross sections for {sup 14}N was made for ENDF/B-VI, based at energies below 2.5 MeV on a multichannel R-matrix analysis of reactions in the {sup 15}N system. The types of data used in the analysis, and the resulting cross sections and resonance structure for {sup 15}N are briefly described. The resonant features of the neutron cross sections were especially well determined by including precise, high-resolution neutron total cross section measurements from ORNL. While the new evaluated cross section appear to be significant improvements over the earliermore » ones, they still need to be tested more extensively against recent measurements of the differential elastic cross section from Oak Ridge.« less

  13. Electron impact cross sections for the 2,2P state excitation of lithium

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.; Register, D. F.

    1982-01-01

    Electron impact excitation of the 2p 2P state of Li was studied at 10, 20, 60, 100, 150 and 200 eV. Relative differential cross sections in the angular range 3-120 deg were measured and then normalized to the absolute scale by using the optical f value. Integral and momentum transfer cross sections were obtained by extrapolating the differential cross sections to 0 deg and to 180 deg. The question of normalizing electron-metal-atom collision cross sections in general was examined and the method of normalization to optical f values in particular was investigated in detail. It has been concluded that the extrapolation of the apparent generalized oscillator strength (obtained from the measured differential cross sections) to the zero momentum transfer limit with an expression using even powers of the momentum transfer and normalization of the limit to the optical f value yields reliable absolute cross sections.

  14. The 75As(n,2n) Cross Sections into the 74As Isomer and Ground State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younes, W; Garrett, P E; Becker, J A

    2003-06-30

    The {sup 75}As(n, 2n) cross section for the population of the T{sub 1/2} = 26.8-ns isomer at E{sub x} = 259.3 keV in {sup 74}As has been measured as a function of incident neutron energy, from threshold to E{sub n} = 20 MeV. The cross section was measured using the GEANIE spectrometer at LANSCE/WNR. For convenience, the {sup 75}As(n, 2n) population cross section for the {sup 74}As ground state has been deduced as the difference between the previously-known (n, 2n) reaction cross section and the newly measured {sup 75}As(n, 2n){sup 74}As{sup m} cross section. The (n, 2n) reaction, ground-state, andmore » isomer population cross sections are tabulated in this paper.« less

  15. Total and partial photoneutron cross sections for Pb isotopes

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Utsunomiya, H.; Goriely, S.; Daoutidis, I.; Iwamoto, C.; Akimune, H.; Okamoto, A.; Yamagata, T.; Kamata, M.; Itoh, O.; Toyokawa, H.; Lui, Y.-W.; Harada, H.; Kitatani, F.; Hilaire, S.; Koning, A. J.

    2012-07-01

    Using quasimonochromatic laser-Compton scattering γ rays, total photoneutron cross sections were measured for 206,207,208Pb near neutron threshold with a high-efficiency 4π neutron detector. Partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near threshold by measuring anisotropies in photoneutron emission with linearly polarized γ rays. The E1 strength dominates over the M1 strength in the neutron channel where E1 photoneutron cross sections show extra strength of the pygmy dipole resonance in 207,208Pb near the neutron threshold corresponding to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to an M1 cross section less than 10% of the total photoneutron cross section.

  16. Mental Visualization of Objects from Cross-Sectional Images

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George D.

    2012-01-01

    We extended the classic anorthoscopic viewing procedure to test a model of visualization of 3D structures from 2D cross-sections. Four experiments were conducted to examine key processes described in the model, localizing cross-sections within a common frame of reference and spatiotemporal integration of cross sections into a hierarchical object…

  17. Viscous Flow through Pipes of Various Cross-Sections

    ERIC Educational Resources Information Center

    Lekner, John

    2007-01-01

    An interesting variety of pipe cross-sectional shapes can be generated, for which the Navier-Stokes equations can be solved exactly. The simplest cases include the known solutions for elliptical and equilateral triangle cross-sections. Students can find pipe cross-sections from solutions of Laplace's equation in two dimensions, and then plot the…

  18. Activation cross section and isomeric cross section ratio for the 76Ge(n,2n)75m,gGe process

    NASA Astrophysics Data System (ADS)

    Luo, Junhua; Jiang, Li; Wang, Xinxing

    2018-04-01

    We measured neutron-induced reaction cross sections for the 76Ge(n,2n)75m,gGe reactions and their isomeric cross section ratios σm/σg at three neutron energies between 13 and 15MeV by an activation and off-line γ-ray spectrometric technique using the K-400 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). Ge samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The monoenergetic neutron beams were formed via the 3H( d, n)4He reaction. The pure cross section of the ground state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. The cross sections were also calculated using the nuclear model code TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20MeV. Results are discussed and compared with the corresponding literature data.

  19. O2 absorption cross sections /187-225 nm/ from stratospheric solar flux measurements

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Mentall, J. E.

    1982-01-01

    The absorption cross sections of molecular oxygen are calculated in the wavelength range from 187 to 230 nm from solar flux measurements obtained within the stratosphere. Within the Herzberg continuum wavelength region the molecular oxygen cross sections are found to be about 30% smaller than the laboratory results of Shardanand and Rao (1977) from 200 to 210 nm and about 50% smaller than those of Hasson and Nicholls (1971). At wavelengths longer than 210 nm the cross sections agree with those of Shardanand and Rao. The effective absorption cross sections of O2 in the Schumann-Runge band region from 187 to 200 nm are calculated and compared to the empirical fit given by Allen and Frederick (1982). The calculated cross sections indicate that the transmissivity of the atmosphere may be underestimated by the use of the Allen and Frederic cross sections between 195 and 200 nm. The ozone column content between 30 and 40 km and the relative ozone cross sections are determined from the same solar flux data set.

  20. Using thermochonology to validate a balanced cross section along the Karnali River, far-western Nepal

    NASA Astrophysics Data System (ADS)

    Battistella, C.; Robinson, D.; McQuarrie, N.; Ghoshal, S.

    2017-12-01

    Multiple valid balanced cross sections can be produced from mapped surface and subsurface data. By integrating low temperature thermochronologic data, we are better able to predict subsurface geometries. Existing valid balanced cross section for far western Nepal are few (Robinson et al., 2006) and do not incorporate thermochronologic data because the data did not exist. The data published along the Simikot cross section along the Karnali River since then include muscovite Ar, zircon U-Th/He and apatite fission track. We present new mapping and a new valid balanced cross section that takes into account the new field data as well as the limitations that thermochronologic data places on the kinematics of the cross section. Additional constrains include some new geomorphology data acquired since 2006 that indicate areas of increased vertical uplift, which indicate locations of buried ramps in the Main Himalayan thrust and guide the locations of Lesser Himalayan ramps in the balanced cross section. Future work will include flexural modeling, new low temperature thermochronometic data, and 2-D thermokinematic models from a sequentially forward modeled balanced cross sections in far western Nepal.

  1. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

    NASA Technical Reports Server (NTRS)

    Fahr, A.; Braun, W.; Kurylo, M. J.

    1993-01-01

    Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.

  2. Low-energy proton induced M X-ray production cross sections for 70Yb, 81Tl and 82Pb

    NASA Astrophysics Data System (ADS)

    Shehla; Mandal, A.; Kumar, Ajay; Roy Chowdhury, M.; Puri, Sanjiv; Tribedi, L. C.

    2018-07-01

    The cross sections for production of Mk (k = Mξ, Mαβ, Mγ, Mm1) X-rays of 70Yb, 81Tl and 82Pb induced by 50-250 keV protons have been measured in the present work. The experimental cross sections have been compared with the earlier reported values and those calculated using the ionization cross sections based on the ECPSSR (Perturbed (P) stationary(S) state(S), incident ion energy (E) loss, Coulomb (C) deflection and relativistic (R) correction) model, the X-ray emission rates based on the Dirac-Fock model, the fluorescence and Coster-Kronig yields based on the Dirac-Hartree-Slater (DHS) model. In addition, the present measured proton induced X-ray production cross sections have also been compared with those calculated using the Dirac-Hartree-Slater (DHS) model based ionization cross sections and those based on the Plane wave Born Approximation (PWBA). The measured M X-ray production cross sections are, in general, found to be higher than the ECPSSR and DHS model based values and lower than the PWBA model based cross sections.

  3. Electron induced inelastic and ionization cross section for plasma modeling

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby

    2016-09-01

    The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.

  4. Breakup and fusion cross sections of the 6Li nucleus with targets of mass A = 58, 144 and 208

    NASA Astrophysics Data System (ADS)

    Mukeru, B.; Rampho, G. J.; Lekala, M. L.

    2018-04-01

    We use the continuum discretized coupled channels method to investigate the effects of continuum-continuum coupling on the breakup and fusion cross sections of the weakly bound 6Li nucleus with the 58Ni, 144Sm and 208Pb nuclear targets. The cross sections were analyzed at incident energies E cm below, close to and above the Coulomb barrier V B. We found that for the medium and heavy targets, the breakup cross sections are enhanced at energies below the Coulomb barrier (E cm/V B ≤ 0.8) owing to these couplings. For the lighter target, relatively small enhancement of the breakup cross sections appear at energies well below the barrier (E cm/V B ≤ 0.6). At energies E cm/V B > 0.8 for medium and heavy targets, and E cm/V B > 0.6 for the light target, the continuum-continuum couplings substantially suppress the breakup cross sections. On the other hand, the fusion cross sections are enhanced at energies E cm/V B < 1.4, E cm/V B < 1.2 and E cm/V B < 0.8 for the light, medium and heavy target, respectively. The enhancement decreases as the target mass increases. Above the indicated respective energies, these couplings suppress the fusion cross sections. We also compared the breakup and fusion cross sections, and found that below the barrier, the breakup cross sections are more dominant regardless of whether continuum-continuum couplings are included.

  5. Characterization of Interactions between Surface Water and Near-Stream Groundwater along Fish Creek, Teton County, Wyoming, by Using Heat as a Tracer

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Wheeler, Jerrod D.; Essaid, Hedeff I.

    2009-01-01

    Fish Creek, a tributary of the Snake River, is about 25 river kilometers long and is located in Teton County in western Wyoming near the town of Wilson. Local residents began observing an increase in the growth of algae and aquatic plants in the stream during the last decade. Due to the known importance of groundwater to surface water in the area, the U.S. Geological Survey (USGS), in cooperation with the Teton Conservation District, conducted a study to characterize the interactions between surface water and near-stream groundwater along Fish Creek. The study has two main objectives: (1) develop an improved spatial and temporal understanding of water flow (fluxes) between surface water and groundwater, and (2) use a two-dimensional groundwater-flow and heat-transport model to interpret observed temperature and hydraulic-head distributions and to describe groundwater flow near Fish Creek. The study is intended to augment hydrologic information derived from previously published results of a seepage investigation on Fish Creek. Seepage measurements provide spatially averaged gains and losses over an entire reach for one point in time, whereas continuous temperature and water-level measurements provide continuous estimates of gain and loss at a specific location. Stage, water-level, and temperature data were collected from surface water and from piezometers completed in an alluvial aquifer at three cross sections on Fish Creek at Teton Village, Resor's Bridge, and Wilson from October 2004 to October 2006. The flow and energy (heat) transport model VS2DH was used to simulate flow through the streambed of Fish Creek at the Teton Village cross section from April 15 to October 14, 2006, (183 recharge periods) and at the Resor's Bridge and Wilson cross sections from June 6, 2005, to October 14, 2006 (496 recharge periods). A trial-and-error technique was used to determine the best match between simulated and measured data. These results were then used to calibrate the cross-sectional models and determine horizontal and vertical hydraulic conductivities. The fluxes of groundwater into the stream or fluxes of stream water into the alluvial aquifer were estimated by using the calibrated VS2DH model for each cross section. Results of the simulations indicated that surface water/groundwater interaction and hydraulic properties were different at the three cross sections. At the most upstream cross section, Teton Village, Fish Creek flowed intermittently and continually gained relatively large quantities of water from April through September. During other times of the year, the stream was dry near the cross section. Saturated hydraulic conductivity set at 1x10-4 m/s in both the horizontal and vertical directions resulted in the best match between simulated and measured temperatures. The Resor's Bridge cross section, about midway between the other two cross sections, was near the point where perennial flow begins. At this cross section, the stream gained water from groundwater during high flow in late spring and summer, was near equilibrium with groundwater during August and September, and lost water to groundwater during the remainder of the year. Horizontal hydraulic conductivity set at 5x10-5 m/s and vertical hydraulic conductivity set at 1x10-5 m/s resulted in the best match between simulated and measured temperatures. The Wilson cross section, the most downstream site, was at USGS streamflow-gaging station 13016450. This part of the stream is perennial and was almost always gaining a small volume of water from groundwater. Saturated hydraulic conductivity set at 1x10-4 m/s in the horizontal direction and at 5x10-6 m/s in the vertical direction resulted in the best match between simulated and measured temperatures. Quantitative values of the flux from groundwater into surface water were estimated by using VS2DH and ranged from 1.1 to 6.6 cubic meters per day (m3/d) at the Teton Village cross section, from -3.8 to 7.4 m3/d at t

  6. Simple, empirical approach to predict neutron capture cross sections from nuclear masses

    NASA Astrophysics Data System (ADS)

    Couture, A.; Casten, R. F.; Cakirli, R. B.

    2017-12-01

    Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of neutron capture cross sections, extending far from stability, including for nuclei of the highest sensitivity to r -process nucleosynthesis.

  7. Freedom of choice of specialist physicians is important to Swiss resident: a cross-sectional study.

    PubMed

    Peytremann-Bridevaux, Isabelle; Ruffieux, Christiane; Burnand, Bernard

    2011-12-19

    To assess how important the possibility to choose specialist physicians is for Swiss residents and to determine which variables are associated with this opinion. This cross-sectional study used data from the 2007 Swiss population-based health survey and included 13,642 non-institutionalised adults who responded to the telephone and paper questionnaires. The dependent variable included answers to the question "How important is it for you to be able to choose the specialist you would like to visit?" Independent variables included socio-demographics, health and past year healthcare use measures. Crude and adjusted logistic regressions for the importance of being able to choose specialist physicians were performed, accounting for the survey design. 45% of participants found it very important to be able to choose the specialist physician they wanted to visit. The answers "rather important", "rather not important" and "not important" were reported by 28%, 20% and 7% of respondents. Women, individuals in middle/high executive position, those with an ordinary insurance scheme, those reporting ≥2 chronic conditions or poorer subjective health, or those who had had ≥2 outpatient visits in the preceding year were more likely to find this choice very important. In 2007, almost half of all Swiss residents found it very important to be able to choose his/her specialist physician. The further development of physician networks or other chronic disease management initiatives in Switzerland, towards integrated care, need to pay attention to the freedom of choice of specialist physicians that Swiss residents value. Future surveys should provide information on access and consultations with specialist physicians.

  8. Measuring Learning through Cross Sectional Testing

    ERIC Educational Resources Information Center

    Lovett, Steve; Johnson, Jennie

    2012-01-01

    The measurement of student learning is becoming increasingly important in U.S. higher education. One way to measure learning is through longitudinal testing, but this becomes especially difficult when applied to cumulative learning within programs in situations of low persistence. In particular, many Hispanic Serving Institutions (HSIs) find…

  9. Suicide and religion.

    PubMed

    Cook, Christopher C H

    2014-01-01

    Much of the evidence that religion provides a protective factor against completed suicide comes from cross-sectional studies. This issue of the Journal includes a report of a new prospective study. An understanding of the relationship between spirituality, religion and suicide is important in assessing and caring for those at risk.

  10. Pion Production Data Needed for Space Radiation

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2010-01-01

    A recent discovery concerning the importance of hadron production in space radiation is that pions can contribute up to twenty percent of the dose from galactic cosmic ray interactions (S. Aghara, S. Blattnig, J. Norbury, R. Singleterry, Nuclear Instruments and Methods, Vol. 267, 2009, p. 1115). Although the contribution for dose equivalent will be smaller, the dose contribution could be important for fluence based radiation models. Pion production cross sections will be an essential ingredient to such models, and it is of interest to investigate the adequacy of the pion production experimental data base for energies relevant to space radiation. The pion production threshold in nucleon - nucleon reactions is at 280 MeV and, in an interesting accident of nature, this lies near the peak of the galactic cosmic ray proton spectrum. Therefore, pion production data are needed from threshold up to energies around 50 GeV/nucleon, where the galactic cosmic ray fluence is of decreasing importance. Total and differential cross section data for pion production in this energy range will be reviewed. The availability and accuracy of theoretical models will also be discussed. It will be shown that there are a significant lack of data in this important energy range and that theoretical models still need improvement.

  11. Investigation of α -induced reactions on Sb isotopes relevant to the astrophysical γ process

    NASA Astrophysics Data System (ADS)

    Korkulu, Z.; Özkan, N.; Kiss, G. G.; Szücs, T.; Gyürky, Gy.; Fülöp, Zs.; Güray, R. T.; Halász, Z.; Rauscher, T.; Somorjai, E.; Török, Zs.; Yalçın, C.

    2018-04-01

    Background: The reaction rates used in γ -process nucleosynthesis network calculations are mostly derived from theoretical, statistical model cross sections. Experimental data is scarce for charged particle reactions at astrophysical, low energies. Where experimental (α ,γ ) data exists, it is often strongly overestimated by Hauser-Feshbach statistical model calculations. Further experimental α -capture cross sections in the intermediate and heavy mass region are necessary to test theoretical models and to gain understanding of heavy element nucleosynthesis in the astrophysical γ process. Purpose: The aim of the present work is to measure the 121Sb(α ,γ )125I , 121Sb(α ,n )124I , and 123Sb(α ,n )126I reaction cross sections. These measurements are important tests of astrophysical reaction rate predictions and extend the experimental database required for an improved understanding of p-isotope production. Method: The α -induced reactions on natural and enriched antimony targets were investigated using the activation technique. The (α ,γ ) cross sections of 121Sb were measured and are reported for the first time. To determine the cross section of the 121Sb(α ,γ )125I , 121Sb(α ,n )124I , and 123Sb(α ,n )126I reactions, the yields of γ rays following the β decay of the reaction products were measured. For the measurement of the lowest cross sections, the characteristic x rays were counted with a low-energy photon spectrometer detector. Results: The cross section of the 121Sb(α ,γ )125I , 121Sb(α ,n )124I , and 123Sb(α ,n )126I reactions were measured with high precision in an energy range between 9.74 and 15.48 MeV, close to the astrophysically relevant energy window. The results are compared with the predictions of statistical model calculations. The (α ,n) data show that the α widths are predicted well for these reactions. The (α ,γ ) results are overestimated by the calculations but this is because of the applied neutron and γ widths. Conclusions: Relevant for the astrophysical reaction rate is the α width used in the calculations. While for other reactions the α widths seem to have been overestimated and their energy dependence was not described well in the measured energy range, this is not the case for the reactions studied here. The result is consistent with the proposal that additional reaction channels, such as Coulomb excitation, may have led to the discrepancies found in other reactions.

  12. Fragmentation of Ar-40 at 100 GeV/c

    NASA Technical Reports Server (NTRS)

    Lindstrom, P. J.; Greiner, D. E.; Heckman, H. H.; Cork, B.; Bieser, F. S.

    1975-01-01

    The delta Z is greater than or equal to 1 reaction cross section for 1.8 GeV/n Ar-40 have been measured on targets ranging from H to Pb. Comparing these cross sections with H-1, C-12, and O-16 reaction cross sections at relativistic energies yields a formula for nucleus-nucleus reaction cross sections.

  13. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  14. Fragmentation cross sections of O-16 between 0.9 and 200 GeV/nucleon

    NASA Technical Reports Server (NTRS)

    Hirzebruch, S. E.; Heinrich, W.; Tolstov, K. D.; Kovalenko, A. D.; Benton, E. V.

    1995-01-01

    Inclusive cross sections for high energy interactions at 0.9, 2.3, 3.6, and 13.5 GeV/nucleon of O-16 with C, CR-39 (C12H18O7), CH2, Al, Cu, Ag, and Pb targets were measured. The total charge-changing cross sections and partial charge-changing cross sections for the production of fragments with charge Z = 6 and Z = 7 are compared to previous experiments at 60 and 200 GeV/nucleon. The contributions of Coulomb dissociation to the total cross sections are calculated. Using factorization rules the partial electromagnetic cross sections are separated from the nuclear components. Energy dependence of both components are investigated and discussed.

  15. Nuclear annihilation by antinucleons

    DOE PAGES

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2016-01-25

    We examine the momentum dependence ofmore » $$\\bar{p}$$p and $$\\bar{n}$$p annihilation cross sections by considering the transmission through a nuclear potential and the $$\\bar {p}$$p Coulomb interaction. Compared to the $$\\bar{n}$$p annihilation cross section, the $$\\bar{p}$$p annihilation cross section is significantly enhanced by the Coulomb interaction for projectile momenta below p lab < 500 MeV/c, and the two annihilation cross sections approach the Pomeranchuk's equality limit [JETP 30, 423 (1956)] at p lab ~500 MeV/c. Using these elementary cross sections as the basic input data, the extended Glauber model is employed to evaluate the annihilation cross sections for $$\\bar{n}$$ and $$\\bar{p}$$ interaction with nuclei and the results compare well with experimental data.« less

  16. Photoeffect cross sections of several rare-earth elements for 323-keV photons

    NASA Astrophysics Data System (ADS)

    Umesh, T. K.; Anasuya, S. J.; Shylaja Kumari, J.; Gowda, Channe; Gopinathan Nair, K. P.; Gowda, Ramakrishna

    1992-02-01

    Total-attenuation cross sections of the oxides of rare-earth elements such as La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er, and also NaNO3 and NaNO2 have been measured in a narrow-beam geometry setup at 323 keV. The total-attenuation cross section for oxygen was obtained as the difference in NaNO3 and NaNO2 cross sections. Using this, the total-attenuation cross sections of the individual lanthanides have been obtained with the aid of the mixture rule. From these, the photoeffect cross sections were derived by subtracting the scattering contribution. These values are found to agree well with Scofield's theoretical data [University of California Report No. UCRL 51326, 1973 (unpublished)].

  17. Solid oxide fuel cell with transitioned cross-section for improved anode gas management at the open end

    DOEpatents

    Zafred, Paolo R [Murrysville, PA; Draper, Robert [Pittsburgh, PA

    2012-01-17

    A solid oxide fuel cell (400) is made having a tubular, elongated, hollow, active section (445) which has a cross-section containing an air electrode (452) a fuel electrode (454) and solid oxide electrolyte (456) between them, where the fuel cell transitions into at least one inactive section (460) with a flattened parallel sided cross-section (462, 468) each cross-section having channels (472, 474, 476) in them which smoothly communicate with each other at an interface section (458).

  18. Cross-calibration between airborne SAR sensors

    NASA Technical Reports Server (NTRS)

    Zink, Manfred; Olivier, Philippe; Freeman, Anthony

    1993-01-01

    As Synthetic Aperture Radar (SAR) system performance and experience in SAR signature evaluation increase, quantitative analysis becomes more and more important. Such analyses require an absolute radiometric calibration of the complete SAR system. To keep the expenditure on calibration of future multichannel and multisensor remote sensing systems (e.g., X-SAR/SIR-C) within a tolerable level, data from different tracks and different sensors (channels) must be cross calibrated. The 1989 joint E-SAR/DC-8 SAR calibration campaign gave a first opportunity for such an experiment, including cross sensor and cross track calibration. A basic requirement for successful cross calibration is the stability of the SAR systems. The calibration parameters derived from different tracks and the polarimetric properties of the uncalibrated data are used to describe this stability. Quality criteria for a successful cross calibration are the agreement of alpha degree values and the consistency of radar cross sections of equally sized corner reflectors. Channel imbalance and cross talk provide additional quality in case of the polarimetric DC-8 SAR.

  19. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  20. Cardiac Computed Tomography and Magnetic Resonance Imaging in the Evaluation of Mitral and Tricuspid Valve Disease: Implications for Transcatheter Interventions.

    PubMed

    Naoum, Christopher; Blanke, Philipp; Cavalcante, João L; Leipsic, Jonathon

    2017-03-01

    Transcatheter interventions to treat mitral and tricuspid valve disease are becoming increasingly available because of the growing number of elderly patients with significant comorbidities or high operative risk. Thorough clinical and imaging evaluation in these patients is essential. The latter involves both characterization of the mechanism and severity of valvular disease as well as determining the hemodynamic consequences and extent of ventricular remodeling, which is an important predictor of future outcomes. Moreover, an assessment of the suitability and risk of complications associated with device-specific therapies is also an important component of the preprocedural evaluation in this cohort. Although echocardiography including 2-dimensional and 3-dimensional methods has an important role in the initial assessment and procedural guidance, cross-sectional imaging, including both computed tomographic imagning and cardiac magnetic resonance imaging, is increasingly being integrated into the evaluation of mitral and tricuspid valve disease. In this review, we discuss the role of cross-sectional imaging in mitral and tricuspid valve disease, primarily valvular regurgitation assessment, with an emphasis on the preprocedural evaluation and implications for transcatheter interventions. © 2017 American Heart Association, Inc.

Top