Science.gov

Sample records for cross talk blocks

  1. Cross-Talk in QPSK Communication Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien Manh; Owens, Yvette

    1994-01-01

    This report investigates the effects of cross-talk on the Bit Error Rate (BER) performance of QPSK communication systems. There are four different sources that can cause cross-talk in QPSK systems, namely, a band-limited channel, asymmetry in filters, phase imbalance between the channels, and imperfect carrier tracking. This report emphasizes the last two problems (where either phase imbalance in the local VCOs or imperfect carrier tracking exists).

  2. Small digital recording head has parallel bit channels, minimizes cross talk

    NASA Technical Reports Server (NTRS)

    Eller, E. E.; Laue, E. G.

    1964-01-01

    A small digital recording head consists of closely spaced parallel wires, imbedded in a ferrite block to concentrate the magnetic flux. Parallel-recorded information bits are converted into serial bits on moving magnetic tape and cross talk is suppressed.

  3. Technique for controlling cross-talk noise in volume holography

    NASA Astrophysics Data System (ADS)

    Neifeld, Mark A.; McDonald, Mark

    1996-08-01

    We study cross-talk noise in holographic memory and estimate storage limits. We examine the effects of reduced angular density and the use of an apodized reconstruction beam on capacity, cross-talk noise, and diffraction efficiency. Experimental Bragg-selectivity curves with and without an apodized reconstruction beam verify the expected reduction in cross talk.

  4. Hormone cross-talk during seed germination.

    PubMed

    Gazzarrini, Sonia; Tsai, Allen Yi-Lun

    2015-01-01

    Hormones are chemical substances that can affect many cellular and developmental processes at low concentrations. Plant hormones co-ordinate growth and development at almost all stages of the plant's life cycle by integrating endogenous signals and environmental cues. Much debate in hormone biology revolves around specificity and redundancy of hormone signalling. Genetic and molecular studies have shown that these small molecules can affect a given process through a signalling pathway that is specific for each hormone. However, classical physiological and genetic studies have also demonstrated that the same biological process can be regulated by many hormones through independent pathways (co-regulation) or shared pathways (cross-talk or cross-regulation). Interactions between hormone pathways are spatiotemporally controlled and thus can vary depending on the stage of development or the organ being considered. In this chapter we discuss interactions between abscisic acid, gibberellic acid and ethylene in the regulation of seed germination as an example of hormone cross-talk. We also consider hormone interactions in response to environmental signals, in particular light and temperature. We focus our discussion on the model plant Arabidopsis thaliana.

  5. Cross-talk in abscisic acid signaling

    NASA Technical Reports Server (NTRS)

    Fedoroff, Nina V.

    2002-01-01

    "Cross-talk" in hormone signaling reflects an organism's ability to integrate different inputs and respond appropriately, a crucial function at the heart of signaling network operation. Abscisic acid (ABA) is a plant hormone involved in bud and seed dormancy, growth regulation, leaf senescence and abscission, stomatal opening, and a variety of plant stress responses. This review summarizes what is known about ABA signaling in the control of stomatal opening and seed dormancy and provides an overview of emerging knowledge about connections between ABA, ethylene, sugar, and auxin synthesis and signaling.

  6. Cross-talk in abscisic acid signaling

    NASA Technical Reports Server (NTRS)

    Fedoroff, Nina V.

    2002-01-01

    "Cross-talk" in hormone signaling reflects an organism's ability to integrate different inputs and respond appropriately, a crucial function at the heart of signaling network operation. Abscisic acid (ABA) is a plant hormone involved in bud and seed dormancy, growth regulation, leaf senescence and abscission, stomatal opening, and a variety of plant stress responses. This review summarizes what is known about ABA signaling in the control of stomatal opening and seed dormancy and provides an overview of emerging knowledge about connections between ABA, ethylene, sugar, and auxin synthesis and signaling.

  7. Development of low optical cross talk filters for VIIRS (JPSS)

    NASA Astrophysics Data System (ADS)

    Murgai, Vijay; Hendry, Derek; Downing, Kevin; Carbone, David; Potter, John

    2016-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on Suomi National Polar-orbiting Partnership (S-NPP) satellite launched on October 28, 2011 into a polar orbit of 824 km nominal altitude and the JPSS sensors currently being built and integrated. VIIRS collects radiometric and imagery data of the Earth's atmosphere, oceans, and land surfaces in 22 spectral bands spanning the visible and infrared spectrum from 0.4 to 12.5 μm. Interference filters assembled in `butcher-block' arrays mounted adjacent to focal plane arrays provide spectral definition. Out-of-band signal and out-of-band optical cross-talk was observed for bands in the 0.4 to 1 μm range in testing of VIIRS for S-NPP. Optical cross-talk is in-band or out-of-band light incident on an adjacent filter or adjacent region of the same filter reaching the detector. Out-of-band optical cross-talk results in spectral and spatial `impurities' in the signal and consequent errors in the calculated environmental parameters such as ocean color that rely on combinations of signals from more than one band. This paper presents results of characterization, specification, and coating process improvements that enabled production of filters with significantly reduced out of band light for Joint Polar Satellite System (JPSS) J1 and subsequent sensors. Total transmission and scatter measurements at a wavelength within the pass band can successfully characterize filter performance prior to dicing and assembling filters into butcher block assemblies. Coating and process development demonstrated performance on test samples followed by production of filters for J1 and J2. Results for J1 and J2 filters are presented.

  8. Cross Talk Free Fluorescence Cross Correlation Spectroscopy in Live Cells

    PubMed Central

    Thews, Elmar; Gerken, Margarita; Eckert, Reiner; Zäpfel, Johannes; Tietz, Carsten; Wrachtrup, Jörg

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) is now a widely used technique to measure small ensembles of labeled biomolecules with single molecule detection sensitivity (e.g., low endogenous concentrations). Fluorescence cross correlation spectroscopy (FCCS) is a derivative of this technique that detects the synchronous movement of two biomolecules with different fluorescence labels. Both methods can be applied to live cells and, therefore, can be used to address a variety of unsolved questions in cell biology. Applications of FCCS with autofluorescent proteins (AFPs) have been hampered so far by cross talk between the detector channels due to the large spectral overlap of the fluorophores. Here we present a new method that combines advantages of these techniques to analyze binding behavior of proteins in live cells. To achieve this, we have used dual color excitation of a common pair of AFPs, ECFP and EYFP, being discriminated in excitation rather than in emission. This is made possible by pulsed excitation and detection on a shorter timescale compared to the average residence time of particles in the FCS volume element. By this technique we were able to eliminate cross talk in the detector channels and obtain an undisturbed cross correlation signal. The setup was tested with ECFP/EYFP lysates as well as chimeras as negative and positive controls and demonstrated to work in live HeLa cells coexpressing the two fusion proteins ECFP-connexin and EYFP-connexin. PMID:15951373

  9. National CrossTalk. Volume 19, Number 1

    ERIC Educational Resources Information Center

    National Center for Public Policy and Higher Education, 2011

    2011-01-01

    "National CrossTalk" is a publication of the National Center for Public Policy and Higher Education. The National Center promotes public policies that enhance opportunities for quality education and training beyond high school. The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher…

  10. National CrossTalk. Volume 17, Number 2

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2009-01-01

    "National CrossTalk" is a publication of the National Center for Public Policy and Higher Education. The National Center promotes public policies that enhance opportunities for quality education and training beyond high school. The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher…

  11. National CrossTalk. Volume 18, Number 2

    ERIC Educational Resources Information Center

    National Center for Public Policy and Higher Education, 2010

    2010-01-01

    "National CrossTalk" is a publication of the National Center for Public Policy and Higher Education. The National Center promotes public policies that enhance opportunities for quality education and training beyond high school. The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher…

  12. National CrossTalk. Volume 18, Number 1

    ERIC Educational Resources Information Center

    National Center for Public Policy and Higher Education, 2010

    2010-01-01

    "National CrossTalk" is a publication of the National Center for Public Policy and Higher Education. The National Center promotes public policies that enhance opportunities for quality education and training beyond high school. The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher…

  13. Understanding Cross Talk on the NPOI Multibeam Combiner

    NASA Astrophysics Data System (ADS)

    Schmitt, H. R.; Armstrong, J. T.; Hindsley, R. B.; Pauls, T. A.

    We present the results of tests done with the Navy Prototype Optical Interferometer (NPOI) multibeam combiner, designed to study the effects of fringe cross talk resulting from multiple baselines being recorded by the same spectrograph. We find that in most cases cross talk is not a significant issue, except when the fringes are separated by only one wavenumber.

  14. National CrossTalk. Volume 12, Number 1, Winter 2004

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2004-01-01

    "National CrossTalk" is a publication of the National Center for Public Policy and Higher Education. The National Center promotes public policies that enhance opportunities for quality education and training beyond high school. The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher…

  15. Endogenous cross-talk of fungal metabolites

    PubMed Central

    Sheridan, Kevin J.; Dolan, Stephen K.; Doyle, Sean

    2015-01-01

    Non-ribosomal peptide (NRP) synthesis in fungi requires a ready supply of proteogenic and non-proteogenic amino acids which are subsequently incorporated into the nascent NRP via a thiotemplate mechanism catalyzed by NRP synthetases. Substrate amino acids can be modified prior to or during incorporation into the NRP, or following incorporation into an early stage amino acid-containing biosynthetic intermediate. These post-incorporation modifications involve a range of additional enzymatic activities including but not exclusively, monooxygenases, methyltransferases, epimerases, oxidoreductases, and glutathione S-transferases which are essential to effect biosynthesis of the final NRP. Likewise, polyketide biosynthesis is directly by polyketide synthase megaenzymes and cluster-encoded ancillary decorating enzymes. Additionally, a suite of additional primary metabolites, for example: coenzyme A (CoA), acetyl CoA, S-adenosylmethionine, glutathione (GSH), NADPH, malonyl CoA, and molecular oxygen, amongst others are required for NRP and polyketide synthesis (PKS). Clearly these processes must involve exquisite orchestration to facilitate the simultaneous biosynthesis of different types of NRPs, polyketides, and related metabolites requiring identical or similar biosynthetic precursors or co-factors. Moreover, the near identical structures of many natural products within a given family (e.g., ergot alkaloids), along with localization to similar regions within fungi (e.g., conidia) suggests that cross-talk may exist, in terms of biosynthesis and functionality. Finally, we speculate if certain biosynthetic steps involved in NRP and PKS play a role in cellular protection or environmental adaptation, and wonder if these enzymatic reactions are of equivalent importance to the actual biosynthesis of the final metabolite. PMID:25601857

  16. Molecular Cross-Talk at the Feto-Maternal Interface.

    PubMed

    Lash, Gendie E

    2015-09-18

    Molecular cross-talk at the feto-maternal interface occurs between many different cell types, including uterine leukocytes, extravillous trophoblast cells, and uterine spiral arteries, is essential for the establishment and maintenance of pregnancy. This review concentrates on human pregnancy and examines three main areas in which cross-talk occurs; immune tolerance, regulation of extravillous trophoblast invasion, and remodeling of the uterine spiral arteries. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. Input statistics and Hebbian cross-talk effects.

    PubMed

    Rădulescu, Anca

    2014-04-01

    As an extension of prior work, we studied inspecific Hebbian learning using the classical Oja model. We used a combination of analytical tools and numerical simulations to investigate how the effects of synaptic cross talk (which we also refer to as synaptic inspecificity) depend on the input statistics. We investigated a variety of patterns that appear in dimensions higher than two (and classified them based on covariance type and input bias). We found that the effects of cross talk on learning dynamics and outcome is highly dependent on the input statistics and that cross talk may lead in some cases to catastrophic effects on learning or development. Arbitrarily small levels of cross talk are able to trigger bifurcations in learning dynamics, or bring the system in close enough proximity to a critical state, to make the effects indistinguishable from a real bifurcation. We also investigated how cross talk behaves toward unbiased ("competitive") inputs and in which circumstances it can help the system productively resolve the competition. Finally, we discuss the idea that sophisticated neocortical learning requires accurate synaptic updates (similar to polynucleotide copying, which requires highly accurate replication). Since it is unlikely that the brain can completely eliminate cross talk, we support the proposal that is uses a neural mechanism that "proofreads" the accuracy of the updates, much as DNA proofreading lowers copying error rate.

  18. Cross Talk Inhibition Nullified by a Receiver Domain Missense Substitution

    PubMed Central

    Huynh, TuAnh Ngoc; Lin, Hsia-Yin; Noriega, Chris E.; Lin, Alice V.

    2015-01-01

    ABSTRACT In two-component signal transduction, a sensor protein transmitter module controls cognate receiver domain phosphorylation. Most receiver domain sequences contain a small residue (Gly or Ala) at position T + 1 just distal to the essential Thr or Ser residue that forms part of the active site. However, some members of the NarL receiver subfamily have a large hydrophobic residue at position T + 1. Our laboratory previously isolated a NarL mutant in which the T + 1 residue Val-88 was replaced with an orthodox small Ala. This NarL V88A mutant confers a striking phenotype in which high-level target operon expression is both signal (nitrate) and sensor (NarX and NarQ) independent. This suggests that the NarL V88A protein is phosphorylated by cross talk from noncognate sources. Although cross talk was enhanced in ackA null strains that accumulate acetyl phosphate, it persisted in pta ackA double null strains that cannot synthesize this compound and was observed also in narL+ strains. This indicates that acetate metabolism has complex roles in mediating NarL cross talk. Contrariwise, cross talk was sharply diminished in an arcB barA double null strain, suggesting that the encoded sensors contribute substantially to NarL V88A cross talk. Separately, the V88A substitution altered the in vitro rates of NarL autodephosphorylation and transmitter-stimulated dephosphorylation and decreased affinity for the cognate sensor, NarX. Together, these experiments show that the residue at position T + 1 can strongly influence two distinct aspects of receiver domain function, the autodephosphorylation rate and cross talk inhibition. IMPORTANCE Many bacterial species contain a dozen or more discrete sensor-response regulator two-component systems that convert a specific input into a distinct output pattern. Cross talk, the unwanted transfer of signals between circuits, occurs when a response regulator is phosphorylated inappropriately from a noncognate source. Cross talk is

  19. National CrossTalk. Volume 13, Number 1, Winter 2005

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2005-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) A Legacy to Overcome: The University of Georgia Hopes to Become a More Desirable Destination for Black Students (Don Campbell); (2) Oklahoma's Brain Gain: A Comprehensive…

  20. National CrossTalk. Volume 12, Number 4, Fall 2004

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2004-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) Code of Conduct: Air Force Academy Adopts Changes in Response to 2003 Sexual Assault Scandal (Kathy Witkowsky); (2) Political Football: Partisan Politics Could Determine…

  1. National CrossTalk. Volume 13, Number 2, Spring 2005

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2005-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) CUNY [City University of New York] Sheds Reputation as "Tutor U": The Nation's Largest Urban University Raises Standards, and Grapples with Remediation (Jon…

  2. National CrossTalk. Volume 14, Number 2, Spring 2006

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2006-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) "Effectiveness and Efficiency": The University System of Maryland's Campaign to Control Costs and Increase Student Aid (Kay Mills); (2) Remote Access: Western…

  3. National CrossTalk. Volume 16, Number 1, Fall 2008

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2008-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) The Credit Crisis Goes to College: Upheaval in the Student-Loan Business Leaves Students and Parents Scrambling (Susan C. Thomson); (2) The Engaged University: Northern…

  4. National CrossTalk. Volume 14, Number 4, Fall 2006

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2006-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) Keeping Them in College: East Carolina University's Efforts to Improve Retention and Graduation Rates (Don Campbell); (2) The "Seamless System": Florida's Flurry…

  5. National CrossTalk. Volume 14, Number 1, Winter 2006

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2006-01-01

    The primary purpose of "National Cross Talk" is to stimulate informed discussion and debate of higher education issues. This publication contains the following articles: (1) The Plagiarism Plague: In the Internet Era, Cheating Has Become an Epidemic on College Campuses (Don Campbell); (2) Dillard's Dire Straits: Historically Black…

  6. National CrossTalk. Volume 12, Number 3, Summer 2004

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2004-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) U.K. Adopts "Top-Up" Tuition Fees: British Universities Prepare to Compete in a More "American" System (Jon Marcus); (2) "Plain Living": Berea…

  7. National CrossTalk. Volume 13, Number 4, Fall 2005

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2005-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This publication contains the following articles: (1) "Truth in Tuition" (Susan C. Thomson); (2) In Katrina's Wake (Kathy Witkowsky); (3) News from the Center: New Center Associates; (4) Colorado On the Edge…

  8. National CrossTalk. Volume 15, Number 1, Winter 2007

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2007-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) The Celtic Tiger: Ireland Invests Heavily in Higher Education, and Benefits Mightily (Jon Marcus); (2) Western Classic: Nevada's James Rogers Is a Non-Traditional…

  9. National CrossTalk. Volume 14, Number 3, Summer 2006

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2006-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) The M Word: "Marketing" Has Changed from a Dirty Word to a Buzzword in Higher Education (Jon Marcus); (2) A Contrarian View of the Testing Industry: FairTest…

  10. National CrossTalk. Volume 17, Number 1

    ERIC Educational Resources Information Center

    Trombley, William, Ed.

    2009-01-01

    The primary purpose of "National CrossTalk" is to stimulate informed discussion and debate of higher education issues. This issue contains the following articles: (1) Florida's Unnatural Disaster: The State's Economic Bubble Has Burst, Leaving Higher Education in a Double Bind (Jon Marcus); (2) Saudi King's Modern University:…

  11. Regulation of cross-talk in yeast MAPK signaling pathways.

    PubMed

    Saito, Haruo

    2010-12-01

    MAP kinase (MAPK) modules are conserved three-kinase cascades that serve central roles in intracellular signal transduction in eukaryotic cells. MAPK pathways of different inputs and outputs use overlapping sets of signaling components. In yeast, for example, three MAPK pathways (pheromone response, filamentous growth response, and osmostress adaptation) all use the same Ste11 MAPK kinase kinase (MAPKKK). How undesirable leakage of signal, or cross-talk, is prevented between these pathways has been a subject of intensive study. This review discusses recent findings from yeast that indicate that there is no single mechanism, but that a combination of four general strategies (docking interactions, scaffold proteins, cross-pathway inhibition, and kinetic insulation) are utilized for the prevention of cross-talk between any two MAPK modules.

  12. Embryonic-maternal cross-talk via exosomes: potential implications.

    PubMed

    Saadeldin, Islam M; Oh, Hyun Ju; Lee, Byeong Chun

    2015-01-01

    A myriad of locally produced factors into the microenvironment of the reproductive tract is regulated, not one-way but rather, through embryonic-maternal cross-talk. In this mini-review, we focused on the exosomes, which are cell-derived vesicles of 30-100 nm in diameter, as a communicating language facilitating this dialog. These nanovesicles are secreted from pre-implantation embryos, oviduct epithelium, and endometrium as well as from the placenta, and contain proteins, messenger RNA (mRNA), microRNA, and DNA cargoes, and have pleiotropic effects on both embryonic and maternal environments. A better understanding of the molecular mechanisms mediating this cross-talk will lead to the development of new regulating agents, with novel diagnostic, biological, and therapeutic potential for either supporting or hindering the normal reproductive functions.

  13. Molecular view on PRR cross-talk in antifungal immunity.

    PubMed

    Hontelez, S; Sanecka, A; Netea, M G; van Spriel, A B; Adema, G J

    2012-04-01

    The identification of a major class of innate immune receptors, termed pattern recognition receptors (PRRs), has boosted research on innate pathogen recognition. The immune response to a specific pathogen is not restricted to the recognition by one type of PRR or activation of a single cell type, but instead comprises complex collaborations between different receptors, cells and signal mediators. Here we will discuss the cross-talk between PRRs involved in fungal recognition, focusing on the molecular interactions occurring at the plasma membrane.

  14. Cross-talk between bone morphogenetic proteins and inflammatory pathways.

    PubMed

    van der Kraan, Peter M; Davidson, Esmeralda N Blaney

    2015-11-23

    Pro-inflammatory cytokines and bone morphogenetic proteins are generally studied separately and considered to be elements of different worlds, immunology and developmental biology. Varas and colleagues report that these factors show cross-talk in rheumatoid arthritis synoviocytes. They show that pro-inflammatory cytokines not only stimulate the production of bone morphogenetic proteins but that these endogenously produced bone morphogenetic proteins interfere with the effects of pro-inflammatory cytokines on synoviocytes.

  15. Characterization of Thermal Cross-talk in a {gamma}-ray Microcalorimeter Array

    SciTech Connect

    Jethava, N.; Ullom, J. N.; Bennett, D. A.; Irwin, K. D.; Horansky, R. D.; Beall, J. A.; Hilton, G. C.; Vale, L. R.; Hoover, A.; Bacrania, M. K.; Rabin, M. W.

    2009-12-16

    We present experimental data describing cross-talk within an array of gamma-ray microcalorimeters during gamma-ray irradiation. The microcalorimeters consist of Mo/Cu transition-edge sensors (TESs) with attached Sn absorbers. We observe both thermal and electrical cross-talk with peak cross-talk amplitudes as large as 0.4%. We have developed an analytical model for thermal cross-talk and make a preliminary comparison to data. Cross-talk must be understood and minimized for high resolution spectroscopy at high input count rates.

  16. Specificity, cross-talk and adaptation in Interferon signaling

    NASA Astrophysics Data System (ADS)

    Zilman, Anton

    Innate immune system is the first line of defense of higher organisms against pathogens. It coordinates the behavior of millions of cells of multiple types, achieved through numerous signaling molecules. This talk focuses on the signaling specificity of a major class of signaling molecules - Type I Interferons - which are also used therapeutically in the treatment of a number of diseases, such as Hepatitis C, multiple sclerosis and some cancers. Puzzlingly, different Interferons act through the same cell surface receptor but have different effects on the target cells. They also exhibit a strange pattern of temporal cross-talk resulting in a serious clinical problem - loss of response to Interferon therapy. We combined mathematical modeling with quantitative experiments to develop a quantitative model of specificity and adaptation in the Interferon signaling pathway. The model resolves several outstanding experimental puzzles and directly affects the clinical use of Type I Interferons in treatment of viral hepatitis and other diseases.

  17. Cross-talk among gp130 cytokines in adipocytes.

    PubMed

    Zvonic, Sanjin; Baugh, James E; Arbour-Reily, Patricia; Mynatt, Randall L; Stephens, Jacqueline M

    2005-10-07

    The interleukin-6 (IL-6) family of cytokines is a family of structurally and functionally related proteins, including IL-6, IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1). These proteins are also known as gp130 cytokines because they all share gp130 as a common transducer protein within their functional receptor complexes. Several of these cytokines (LIF, OSM, CNTF, and CT-1) also utilize the LIF receptor (LIFR) as a component of their receptor complex. We have shown that all of these cytokines are capable of activating both the JAK/STAT and p42/44 mitogen-activated protein kinase signaling pathways in 3T3-L1 adipocytes. By performing a variety of preincubation studies and examining the ability of these cytokines to activate STATs, ERKs, and induce transcription of SOCS-3 mRNA, we have also examined the ability of gp130 cytokines to modulate the action of their family members. Our results indicate that a subset of gp130 cytokines, in particular CT-1, LIF, and OSM, has the ability to impair subsequent signaling activity initiated by gp130 cytokines. However, IL-6 and CNTF do not exhibit this cross-talk ability. Moreover, our results indicate that the cross-talk among gp130 cytokines is mediated by the ability of these cytokines to induce ligand-dependent degradation of the LIFR, in a proteasome-independent manner, which coincides with decreased levels of LIFR at the plasma membrane. In summary, our results demonstrate that an inhibitory cross-talk among specific gp130 cytokines in 3T3-L1 adipocytes occurs as a result of specific degradation of LIFR via a lysosome-mediated pathway.

  18. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression.

    PubMed

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-07-01

    The conversion of vascular smooth muscle cells (SMCs) from contractile to proliferative phenotype is thought to play an important role in atherosclerosis. However, the contribution of this process to plaque growth has never been fully defined. In this study, we show that activation of SMC TGFβ signaling, achieved by suppression of SMC fibroblast growth factor (FGF) signaling input, induces their conversion to a contractile phenotype and dramatically reduces atherosclerotic plaque size. The FGF/TGFβ signaling cross talk was observed in vitro and in vivo In vitro, inhibition of FGF signaling increased TGFβ activity, thereby promoting smooth muscle differentiation and decreasing proliferation. In vivo, smooth muscle-specific knockout of an FGF receptor adaptor Frs2α led to a profound inhibition of atherosclerotic plaque growth when these animals were crossed on Apoe(-/-) background and subjected to a high-fat diet. In particular, there was a significant reduction in plaque cellularity, increase in fibrous cap area, and decrease in necrotic core size. In agreement with these findings, examination of human coronary arteries with various degrees of atherosclerosis revealed a strong correlation between the activation of FGF signaling, loss of TGFβ activity, and increased disease severity. These results identify SMC FGF/TGFβ signaling cross talk as an important regulator of SMC phenotype switch and document a major contribution of medial SMC proliferation to atherosclerotic plaque growth.

  19. Cross-talk between probiotic lactobacilli and host immune system.

    PubMed

    Kemgang, T S; Kapila, S; Shanmugam, V P; Kapila, R

    2014-08-01

    The mechanism by which probiotic lactobacilli affect the immune system is strain specific. As the immune system is a multicompartmental system, each strain has its way to interact with it and induce a visible and quantifiable effect. This review summarizes the interplay existing between the host immune system and probiotic lactobacilli, that is, with emphasis on lactobacilli as a prototype probiotic genus. Several aspects including the bacterial-host cross-talk with the mucosal and systemic immune system are presented, as well as short sections on the competing effect towards pathogenic bacteria and their uses as delivery vehicle for antigens. © 2014 The Society for Applied Microbiology.

  20. Cross-Talk in Viral Defense Signaling in Plants

    PubMed Central

    Moon, Ju Y.; Park, Jeong M.

    2016-01-01

    Viruses are obligate intracellular parasites that have small genomes with limited coding capacity; therefore, they extensively use host intracellular machinery for their replication and infection in host cells. In recent years, it was elucidated that plants have evolved intricate defense mechanisms to prevent or limit damage from such pathogens. Plants employ two major strategies to counteract virus infections: resistance (R) gene-mediated and RNA silencing-based defenses. In this review, plant defenses and viral counter defenses are described, as are recent studies examining the cross-talk between different plant defense mechanisms. PMID:28066385

  1. Mapping signaling pathway cross-talk in Drosophila cells

    PubMed Central

    Ammeux, Noemie; Housden, Benjamin E.; Georgiadis, Andrew; Hu, Yanhui; Perrimon, Norbert

    2016-01-01

    During development and homeostasis, cells integrate multiple signals originating either from neighboring cells or systemically. In turn, responding cells can produce signals that act in an autocrine, paracrine, or endocrine manner. Although the nature of the signals and pathways used in cell–cell communication are well characterized, we lack, in most cases, an integrative view of signaling describing the spatial and temporal interactions between pathways (e.g., whether the signals are processed sequentially or concomitantly when two pathways are required for a specific outcome). To address the extent of cross-talk between the major metazoan signaling pathways, we characterized immediate transcriptional responses to either single- or multiple pathway stimulations in homogeneous Drosophila cell lines. Our study, focusing on seven core pathways, epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP), Jun kinase (JNK), JAK/STAT, Notch, Insulin, and Wnt, revealed that many ligands and receptors are primary targets of signaling pathways, highlighting that transcriptional regulation of genes encoding pathway components is a major level of signaling cross-talk. In addition, we found that ligands and receptors can integrate multiple pathway activities and adjust their transcriptional responses accordingly. PMID:27528688

  2. Functional Cross-talk between Ras and Rho Pathways

    PubMed Central

    Jaiswal, Mamta; Dvorsky, Radovan; Amin, Ehsan; Risse, Sarah L.; Fansa, Eyad K.; Zhang, Si-Cai; Taha, Mohamed S.; Gauhar, Aziz R.; Nakhaei-Rad, Saeideh; Kordes, Claus; Koessmeier, Katja T.; Cirstea, Ion C.; Olayioye, Monilola A.; Häussinger, Dieter; Ahmadian, Mohammad R.

    2014-01-01

    The three deleted in liver cancer genes (DLC1–3) encode Rho-specific GTPase-activating proteins (RhoGAPs). Their expression is frequently silenced in a variety of cancers. The RhoGAP activity, which is required for full DLC-dependent tumor suppressor activity, can be inhibited by the Src homology 3 (SH3) domain of a Ras-specific GAP (p120RasGAP). Here, we comprehensively investigated the molecular mechanism underlying cross-talk between two distinct regulators of small GTP-binding proteins using structural and biochemical methods. We demonstrate that only the SH3 domain of p120 selectively inhibits the RhoGAP activity of all three DLC isoforms as compared with a large set of other representative SH3 or RhoGAP proteins. Structural and mutational analyses provide new insights into a putative interaction mode of the p120 SH3 domain with the DLC1 RhoGAP domain that is atypical and does not follow the classical PXXP-directed interaction. Hence, p120 associates with the DLC1 RhoGAP domain by targeting the catalytic arginine finger and thus by competitively and very potently inhibiting RhoGAP activity. The novel findings of this study shed light on the molecular mechanisms underlying the DLC inhibitory effects of p120 and suggest a functional cross-talk between Ras and Rho proteins at the level of regulatory proteins. PMID:24443565

  3. Plant hormone cross-talk: the pivot of root growth.

    PubMed

    Pacifici, Elena; Polverari, Laura; Sabatini, Sabrina

    2015-02-01

    Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process. A pool of stem cells, placed in a niche at the apex of the meristem, is a source of self-renewing cells that provides cells for tissue formation. During the first days post-germination, the meristem reaches its final size as a result of a balance between cell division and cell differentiation. A complex network of interactions between hormonal pathways co-ordinates such developmental inputs. In recent years, by means of molecular and computational approaches, many efforts have been made aiming to define the molecular components of these networks. In this review, we focus our attention on the molecular mechanisms at the basis of hormone cross-talk during root meristem size determination.

  4. Systematic Characterization and Prediction of Post-Translational Modification Cross-Talk*

    PubMed Central

    Huang, Yuanhua; Xu, Bosen; Zhou, Xueya; Li, Ying; Lu, Ming; Jiang, Rui; Li, Tingting

    2015-01-01

    Post-translational modification (PTM)1 plays an important role in regulating the functions of proteins. PTMs of multiple residues on one protein may work together to determine a functional outcome, which is known as PTM cross-talk. Identification of PTM cross-talks is an emerging theme in proteomics and has elicited great interest, but their properties remain to be systematically characterized. To this end, we collected 193 PTM cross-talk pairs in 77 human proteins from the literature and then tested location preference and co-evolution at the residue and modification levels. We found that cross-talk events preferentially occurred among nearby PTM sites, especially in disordered protein regions, and cross-talk pairs tended to co-evolve. Given the properties of PTM cross-talk pairs, a naïve Bayes classifier integrating different features was built to predict cross-talks for pairwise combination of PTM sites. By using a 10-fold cross-validation, the integrated prediction model showed an area under the receiver operating characteristic (ROC) curve of 0.833, superior to using any individual feature alone. The prediction performance was also demonstrated to be robust to the biases in the collected PTM cross-talk pairs. The integrated approach has the potential for large-scale prioritization of PTM cross-talk candidates for functional validation and was implemented as a web server available at http://bioinfo.bjmu.edu.cn/ptm-x/. PMID:25605461

  5. Topical androgen antagonism promotes cutaneous wound healing without systemic androgen deprivation by blocking β-catenin nuclear translocation and cross-talk with TGF-β signaling in keratinocytes.

    PubMed

    Toraldo, Gianluca; Bhasin, Shalender; Bakhit, Mena; Guo, Wen; Serra, Carlo; Safer, Joshua D; Bhawan, Jag; Jasuja, Ravi

    2012-01-01

    Orchidectomy in rodents and lower testosterone levels in men are associated with improved cutaneous wound healing. However, due to the adverse effects on skeletal and sexual tissues, systemic androgen blockade is not a viable therapeutic intervention. Accordingly, we tested the hypothesis that topical application of an androgen antagonist would elicit accelerated wound healing without systemic androgen antagonism. Full-thickness cutaneous wounds were created on adult C57BL6/J mice. Daily topical application of androgen receptor antagonist, flutamide, resulted in improved gap closure similar to orchiectomized controls and faster than orchidectomized mice treated with topical testosterone. In vivo data showed that the effects of androgen antagonism on wound closure primarily accelerate keratinocytes migration without effecting wound contraction. Consequently, mechanisms of testosterone action on reepithelialization were investigated in vitro by scratch wounding assays in confluent keratinocytes. Testosterone inhibited keratinocyte migration and this effect was in part mediated through promotion of nuclear translocation of β-catenin and by attenuating transforming growth factor-β (TGF-β) signaling through β-catenin. The link between Wnt and TGF beta signaling was confirmed by blocking β-catenin and by following TGF-β-induced transcription of a luciferase reporter gene. Together, these data show that blockade of β-catenin can, as a potential target for novel therapeutic interventions, accelerate cutaneous wound healing.

  6. Melatonin and Hippo Pathway: Is There Existing Cross-Talk?

    PubMed Central

    Lo Sardo, Federica; Muti, Paola; Blandino, Giovanni; Strano, Sabrina

    2017-01-01

    Melatonin is an indolic hormone that regulates a plethora of functions ranging from the regulation of circadian rhythms and antioxidant properties to the induction and maintenance of tumor suppressor pathways. It binds to specific receptors as well as to some cytosolic proteins, leading to several cellular signaling cascades. Recently, the involvement of melatonin in cancer insurgence and progression has clearly been demonstrated. In this review, we will first describe the structure and functions of melatonin and its receptors, and then discuss both molecular and epidemiological evidence on melatonin anticancer effects. Finally, we will shed light on potential cross-talk between melatonin signaling and the Hippo signaling pathway, along with the possible implications for cancer therapy. PMID:28878191

  7. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development.

    PubMed

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-09-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses.

  8. Phosphoinositide kinase signaling controls ER-PM cross-talk

    PubMed Central

    Omnus, Deike J.; Manford, Andrew G.; Bader, Jakob M.; Emr, Scott D.; Stefan, Christopher J.

    2016-01-01

    Membrane lipid dynamics must be precisely regulated for normal cellular function, and disruptions in lipid homeostasis are linked to the progression of several diseases. However, little is known about the sensory mechanisms for detecting membrane composition and how lipid metabolism is regulated in response to membrane stress. We find that phosphoinositide (PI) kinase signaling controls a conserved PDK-TORC2-Akt signaling cascade as part of a homeostasis network that allows the endoplasmic reticulum (ER) to modulate essential responses, including Ca2+-regulated lipid biogenesis, upon plasma membrane (PM) stress. Furthermore, loss of ER-PM junctions impairs this protective response, leading to PM integrity defects upon heat stress. Thus PI kinase–mediated ER-PM cross-talk comprises a regulatory system that ensures cellular integrity under membrane stress conditions. PMID:26864629

  9. Cross Talk Effects on the NPOI Multibeam Combiner

    NASA Astrophysics Data System (ADS)

    Schmitt, H. R.; Armstrong, J. T.; Hindsley, R. B.; Pauls, T. A.

    2005-05-01

    We present results of a series of tests done with the Navy Prototype Optical Interferometer multibeam combiner. These tests take advantage of the NPOI beam combiner design, where certain baselines can be recorded on two different spectrographs. Based on this characteristic we chose a set of stations such that one spectrograph only records the light from two stations, while a second one records these two stations as well as two additional ones. Since the first spectrograph has only one fringe frequency, it is used as a reference for comparison with the second spectrograph, when light from a third and a fourth station are added to it. These observations were used to characterize properties of the NPOI system and to study the effects of fringe frequency cross talk resulting from adding multiple baselines in the same spectrograph.

  10. NK cells: immune cross-talk and therapeutic implications

    PubMed Central

    Malhotra, Anshu; Shanker, Anil

    2011-01-01

    Increased evidence of cross-talk between NK cells and other immune cells has enhanced the possibilities of exploiting the interplay between the activation and inhibition of NK cells for immunotherapeutic purposes. The battery of receptors possessed by NK cells help them to efficiently detect aberrant and infected cells and embark on the signaling pathways necessary to eliminate them. Endogenous expansion of NK cells and their effector mechanisms are under exploration for enhancing adoptive immunotherapy prospects in combination with immunostimulatory and cell-death-sensitizing treatments against cancer, viral infections and other pathophysiological autoimmune conditions. Various modes of NK cell manipulation are being undertaken to overcome issues such as relapse and graft rejections associated with adoptive immunotherapy. While tracing the remarkable properties of NK cells and the major developments in this field, we highlight the role of immune cooperativity in the betterment of current immunotherapeutic approaches. PMID:21995569

  11. SOI CMOS Imager with Suppression of Cross-Talk

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Zheng, Xingyu; Cunningham, Thomas J.; Seshadri, Suresh; Sun, Chao

    2009-01-01

    A monolithic silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) image-detecting integrated circuit of the active-pixel-sensor type, now undergoing development, is designed to operate at visible and near-infrared wavelengths and to offer a combination of high quantum efficiency and low diffusion and capacitive cross-talk among pixels. The imager is designed to be especially suitable for astronomical and astrophysical applications. The imager design could also readily be adapted to general scientific, biological, medical, and spectroscopic applications. One of the conditions needed to ensure both high quantum efficiency and low diffusion cross-talk is a relatively high reverse bias potential (between about 20 and about 50 V) on the photodiode in each pixel. Heretofore, a major obstacle to realization of this condition in a monolithic integrated circuit has been posed by the fact that the required high reverse bias on the photodiode is incompatible with metal oxide/semiconductor field-effect transistors (MOSFETs) in the CMOS pixel readout circuitry. In the imager now being developed, the SOI structure is utilized to overcome this obstacle: The handle wafer is retained and the photodiode is formed in the handle wafer. The MOSFETs are formed on the SOI layer, which is separated from the handle wafer by a buried oxide layer. The electrical isolation provided by the buried oxide layer makes it possible to bias the MOSFETs at CMOS-compatible potentials (between 0 and 3 V), while biasing the photodiode at the required higher potential, and enables independent optimization of the sensory and readout portions of the imager.

  12. Integrating Multi-Omics for Uncovering the Architecture of Cross-Talking Pathways in Breast Cancer

    PubMed Central

    Zhao, Hongying; Li, Feng; Hu, Jing; Zhang, Hongyi; Deng, Yulan; Tian, Jiawei; Li, Xia

    2014-01-01

    Cross-talk among abnormal pathways widely occurs in human cancer and generally leads to insensitivity to cancer treatment. Moreover, alterations in the abnormal pathways are not limited to single molecular level. Therefore, we proposed a strategy that integrates a large number of biological sources at multiple levels for systematic identification of cross-talk among risk pathways in cancer by random walk on protein interaction network. We applied the method to multi-Omics breast cancer data from The Cancer Genome Atlas (TCGA), including somatic mutation, DNA copy number, DNA methylation and gene expression profiles. We identified close cross-talk among many known cancer-related pathways with complex change patterns. Furthermore, we identified key genes (linkers) bridging these cross-talks and showed that these genes carried out consistent biological functions with the linked cross-talking pathways. Through identification of leader genes in each pathway, the architecture of cross-talking pathways was built. Notably, we observed that linkers cooperated with leaders to form the fundamentation of cross-talk of pathways which play core roles in deterioration of breast cancer. As an example, we observed that KRAS showed a direct connection to numerous cancer-related pathways, such as MAPK signaling pathway, suggesting that it may be a central communication hub. In summary, we offer an effective way to characterize complex cross-talk among disease pathways, which can be applied to other diseases and provide useful information for the treatment of cancer. PMID:25137136

  13. Integrating multi-omics for uncovering the architecture of cross-talking pathways in breast cancer.

    PubMed

    Wang, Li; Xiao, Yun; Ping, Yanyan; Li, Jing; Zhao, Hongying; Li, Feng; Hu, Jing; Zhang, Hongyi; Deng, Yulan; Tian, Jiawei; Li, Xia

    2014-01-01

    Cross-talk among abnormal pathways widely occurs in human cancer and generally leads to insensitivity to cancer treatment. Moreover, alterations in the abnormal pathways are not limited to single molecular level. Therefore, we proposed a strategy that integrates a large number of biological sources at multiple levels for systematic identification of cross-talk among risk pathways in cancer by random walk on protein interaction network. We applied the method to multi-Omics breast cancer data from The Cancer Genome Atlas (TCGA), including somatic mutation, DNA copy number, DNA methylation and gene expression profiles. We identified close cross-talk among many known cancer-related pathways with complex change patterns. Furthermore, we identified key genes (linkers) bridging these cross-talks and showed that these genes carried out consistent biological functions with the linked cross-talking pathways. Through identification of leader genes in each pathway, the architecture of cross-talking pathways was built. Notably, we observed that linkers cooperated with leaders to form the fundamentation of cross-talk of pathways which play core roles in deterioration of breast cancer. As an example, we observed that KRAS showed a direct connection to numerous cancer-related pathways, such as MAPK signaling pathway, suggesting that it may be a central communication hub. In summary, we offer an effective way to characterize complex cross-talk among disease pathways, which can be applied to other diseases and provide useful information for the treatment of cancer.

  14. Small pixel cross-talk MTF and its impact on MWIR sensor performance

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Willers, Cornelius J.

    2017-05-01

    As pixel sizes reduce in the development of modern High Definition (HD) Mid Wave Infrared (MWIR) detectors the interpixel cross-talk becomes increasingly difficult to regulate. The diffusion lengths required to achieve the quantum efficiency and sensitivity of MWIR detectors are typically longer than the pixel pitch dimension, and the probability of inter-pixel cross-talk increases as the pixel pitch/diffusion length fraction decreases. Inter-pixel cross-talk is most conveniently quantified by the focal plane array sampling Modulation Transfer Function (MTF). Cross-talk MTF will reduce the ideal sinc square pixel MTF that is commonly used when modelling sensor performance. However, cross-talk MTF data is not always readily available from detector suppliers, and since the origins of inter-pixel cross-talk are uniquely device and manufacturing process specific, no generic MTF models appear to satisfy the needs of the sensor designers and analysts. In this paper cross-talk MTF data has been collected from recent publications and the development for a generic cross-talk MTF model to fit this data is investigated. The resulting cross-talk MTF model is then included in a MWIR sensor model and the impact on sensor performance is evaluated in terms of the National Imagery Interoperability Rating Scale's (NIIRS) General Image Quality Equation (GIQE) metric for a range of fnumber/ detector pitch Fλ/d configurations and operating environments. By applying non-linear boost transfer functions in the signal processing chain, the contrast losses due to cross-talk may be compensated for. Boost transfer functions, however, also reduce the signal to noise ratio of the sensor. In this paper boost function limits are investigated and included in the sensor performance assessments.

  15. The chemical cross talk between rice and barnyardgrass

    PubMed Central

    2011-01-01

    The chemical cross talk between rice and barnyardgrass which is one of the most noxious weeds in rice cultivation was investigated. Allelopathic activity of rice was increased by the presence of barnyardgrass seedlings or barnyardgrass root exudates. Rice allelochemical, momilactone B, concentration in rice seedlings and momilactone B secretion level from rice were also increased by the presence of barnyardgrass seedlings or barnyardgrass root exudates. As momilactone B possesses strong growth inhibitory activity and acts as an allelochemical, barnyardgrass-induced rice allelopathy may be due to the increased momilactone B secretion. These results suggest that rice may respond to the presence of neighboring barnyardgrass by sensing the chemical components in barnyardgrass root exudates and increase allelopathic activity by elevated production and secretion levels of momilactone B. Thus, rice allelopathy may be one of the inducible defense mechanisms by chemical-mediated plant interaction between rice and barnyardgrass and the induced-allelopathy may provide a competitive advantage for rice through suppression of the growth of barnyardgrass. PMID:21758010

  16. The chemical cross talk between rice and barnyardgrass.

    PubMed

    Kato-Noguchi, Hisashi

    2011-08-01

    The chemical cross talk between rice and barnyardgrass which is one of the most noxious weeds in rice cultivation was investigated. Allelopathic activity of rice was increased by the presence of barnyardgrass seedlings or barnyardgrass root exudates. Rice allelochemical, momilactone B, concentration in rice seedlings and momilactone B secretion level from rice were also increased by the presence of barnyardgrass seedlings or barnyardgrass root exudates. As momilactone B possesses strong growth inhibitory activity and acts as an allelochemical, barnyardgrass-induced rice allelopathy may be due to the increased momilactone B secretion. These results suggest that rice may response to the presence of neighboring barnyardgrass by sensing the chemical components in barnyardgrass root exudates and increase allelopathic activity by elevated production and secretion levels of momilactone B. Thus, rice allelopathy may be one of the inducible defense mechanisms by chemical-mediated plant interaction between rice and barnyardgrass and the induced-allelopathy may provide a competitive advantage for rice through suppression of the growth of barnyardgrass.

  17. Hierarchical beamformer and cross-talk reduction in electroneurography

    NASA Astrophysics Data System (ADS)

    Calvetti, Daniela; Wodlinger, Brian; Durand, Dominique M.; Somersalo, Erkki

    2011-10-01

    Electroneurography (ENG) is a method of recording neural activity within nerves. Using nerve electrodes with multiple contacts the activation patterns of individual neuronal fascicles can be estimated by measuring the surface voltages induced by the intraneural activity. The information about neuronal activation can be used for functional electric stimulation (FES) of patients suffering from spinal chord injury, or to control a robotic prosthetic limb of an amputee. However, the ENG signal estimation is a severely ill-posed inverse problem due to uncertainties in the model, low resolution due to limitations of the data, geometric constraints and the difficulty in separating the signal from biological and exogenous noise. In this paper, a reduced computational model for the forward problem is proposed, and the ENG problem is addressed by using beamformer techniques. Furthermore, we show that using a hierarchical statistical model, it is possible to develop an adaptive beamformer algorithm that estimates directly the source variances rather than the voltage source itself. The advantage of this new algorithm, e.g., over a traditional adaptive beamformer algorithm, is that it allows a very stable noise reduction by averaging over a time window. In addition, a new projection technique for separating sources and reducing cross-talk between different fascicle signals is proposed. The algorithms are tested on a computer model of realistic nerve geometry and time series signals.

  18. Microenvironment and autophagy cross-talk: Implications in cancer therapy.

    PubMed

    Gomes, Luciana R; Vessoni, Alexandre T; Menck, Carlos F M

    2016-05-01

    There are many ongoing clinical trials to validate tumour microenvironment or autophagic pathway components as targets for anticancer therapies. Different components of the tumour microenvironment play important roles in tumour cell responses, directly affecting malignant transformation, drug resistance and metastasis. Autophagy is also related to chemotherapy responses by inducing tumour cell death or survival. Thus, the autophagy pathway may act as oncosuppressor, in addition to protecting cells from chemotherapy. The cross-talk between the microenvironment and autophagy is very complex and poorly understood. In a recent study using a three-dimensional (3D) cell culture model, the well-documented chemotherapy-mediated activation of autophagy was impaired in breast cancer cells, suggesting a context-dependent outcome for autophagy modulators, under the control of the p53 protein. A deeper understanding of this microenvironment/autophagy interplay may provide important clues for identifying differences in the tumour cell signalling network from in vitro basic research studies to the actual clinical context. In this work, we summarize the role of the microenvironment and autophagy in physiological and tumourigenic conditions, their interactions, and the challenges related to the use of drugs that target these pathways in cancer treatment protocols, emphasizing the potential use of 3D cell culture models in preclinical studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Photodiode arrays having minimized cross-talk between diodes

    DOEpatents

    Guckel, Henry; McNamara, Shamus P.

    2000-10-17

    Photodiode arrays are formed with close diode-to-diode spacing and minimized cross-talk between diodes in the array by isolating the diodes from one another with trenches that are formed between the photodiodes in the array. The photodiodes are formed of spaced regions in a base layer, each spaced region having an impurity type opposite to that of the base layer to define a p-n junction between the spaced regions and the base layer. The base layer meets a substrate at a boundary, with the substrate being much more heavily doped than the base layer with the same impurity type. The trenches extend through the base layer and preferably into the substrate. Minority carriers generated by absorption of light photons in the base layer can only migrate to an adjacent photodiode through the substrate. The lifetime and the corresponding diffusion length of the minority carriers in the substrate is very short so that all minority carriers recombine in the substrate before reaching an adjacent photodiode.

  20. Host-microbial Cross-talk in Inflammatory Bowel Disease

    PubMed Central

    Nagao-Kitamoto, Hiroko

    2017-01-01

    A vast community of commensal microorganisms, commonly referred to as the gut microbiota, colonizes the gastrointestinal tract (GI). The involvement of the gut microbiota in the maintenance of the gut ecosystem is two-fold: it educates host immune cells and protects the host from pathogens. However, when healthy microbial composition and function are disrupted (dysbiosis), the dysbiotic gut microbiota can trigger the initiation and development of various GI diseases, including inflammatory bowel disease (IBD). IBD, primarily includes ulcerative colitis (UC) and Crohn's disease (CD), is a major global public health problem affecting over 1 million patients in the United States alone. Accumulating evidence suggests that various environmental and genetic factors contribute to the pathogenesis of IBD. In particular, the gut microbiota is a key factor associated with the triggering and presentation of disease. Gut dysbiosis in patients with IBD is defined as a reduction of beneficial commensal bacteria and an enrichment of potentially harmful commensal bacteria (pathobionts). However, as of now it is largely unknown whether gut dysbiosis is a cause or a consequence of IBD. Recent technological advances have made it possible to address this question and investigate the functional impact of dysbiotic microbiota on IBD. In this review, we will discuss the recent advances in the field, focusing on host-microbial cross-talk in IBD. PMID:28261015

  1. Cross-talk between KLF4 and STAT3 regulates axon regeneration

    NASA Astrophysics Data System (ADS)

    Qin, Song; Zou, Yuhua; Zhang, Chun-Li

    2013-10-01

    Cytokine-induced activation of signal transducer and activator of transcription 3 (STAT3) promotes the regrowth of damaged axons in the adult central nervous system (CNS). Here we show that KLF4 physically interacts with STAT3 upon cytokine-induced phosphorylation of tyrosine 705 (Y705) on STAT3. This interaction suppresses STAT3-dependent gene expression by blocking its DNA-binding activity. The deletion of KLF4 in vivo induces axon regeneration of adult retinal ganglion cells (RGCs) via Janus kinase (JAK)-STAT3 signalling. This regeneration can be greatly enhanced by exogenous cytokine treatment, or removal of an endogenous JAK-STAT3 pathway inhibitor called suppressor of cytokine signalling 3 (SOCS3). These findings reveal an unexpected cross-talk between KLF4 and activated STAT3 in the regulation of axon regeneration that might have therapeutic implications in promoting repair of injured adult CNS.

  2. Talking

    ERIC Educational Resources Information Center

    Rosen, Connie; Rosen, Harold

    1974-01-01

    Excepts from THE LANGUAGE OF PRIMARY SCHOOL CHILDREN (Penguin, 1973), which evolved from a project initiated by the English Committee of the Schools Council of England and conducted under the direction of Mrs. Connie Rosen; focuses on the talk of primary school children in the presence of a teacher. (Author/JM)

  3. Talking

    ERIC Educational Resources Information Center

    Rosen, Connie; Rosen, Harold

    1974-01-01

    Excepts from THE LANGUAGE OF PRIMARY SCHOOL CHILDREN (Penguin, 1973), which evolved from a project initiated by the English Committee of the Schools Council of England and conducted under the direction of Mrs. Connie Rosen; focuses on the talk of primary school children in the presence of a teacher. (Author/JM)

  4. Stem cells: cross-talk and developmental programs.

    PubMed Central

    Imitola, Jaime; Park, Kook In; Teng, Yang D; Nisim, Sahar; Lachyankar, Mahesh; Ourednik, Jitka; Mueller, Franz-Josef; Yiou, Rene; Atala, Anthony; Sidman, Richard L; Tuszynski, Mark; Khoury, Samia J; Snyder, Evan Y

    2004-01-01

    The thesis advanced in this essay is that stem cells-particularly those in the nervous system-are components in a series of inborn 'programs' that not only ensure normal development, but persist throughout life so as to maintain homeostasis in the face of perturbations-both small and great. These programs encode what has come to be called 'plasticity'. The stem cell is one of the repositories of this plasticity. This review examines the evidence that interaction between the neural stem cell (as a prototypical somatic stem cell) and the developing or injured brain is a dynamic, complex, ongoing reciprocal set of interactions where both entities are constantly in flux. We suggest that this interaction can be viewed almost from a 'systems biology' vantage point. We further advance the notion that clones of exogenous stem cells in transplantation paradigms may not only be viewed for their therapeutic potential, but also as biological tools for 'interrogating' the normal or abnormal central nervous system environment, indicating what salient cues (among the many present) are actually guiding the expression of these 'programs'; in other words, using the stem cell as a 'reporter cell'. Based on this type of analysis, we suggest some of the relevant molecular pathways responsible for this 'cross-talk' which, in turn, lead to proliferation, migration, cell genesis, trophic support, protection, guidance, detoxification, rescue, etc. This type of developmental insight, we propose, is required for the development of therapeutic strategies for neurodegenerative disease and other nervous system afflictions in humans. Understanding the relevant molecular pathways of stem cell repair phenotype should be a priority, in our view, for the entire stem cell field. PMID:15293810

  5. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects.

    PubMed

    Sinclair, Brent J; Ferguson, Laura V; Salehipour-shirazi, Golnaz; MacMillan, Heath A

    2013-10-01

    Multiple stressors, both abiotic and biotic, often are experienced simultaneously by organisms in nature. Responses to these stressors may share signaling pathways ("cross-talk") or protective mechanisms ("cross-tolerance"). Temperate and polar insects that must survive the winter experience low temperatures accompanied by additional abiotic stressors, such as low availability of water. Cold and desiccation have many similar effects at a cellular level, and we present evidence that the cellular mechanisms that protect against cold stress also protect against desiccation, and that the responses to cold and dehydration likely evolved as cross-tolerance. By contrast, there are several lines of evidence suggesting that low temperature stress elicits an upregulation of immune responses in insects (and vice versa). Because there is little mechanistic overlap between cold stress and immune stress at the cellular level, we suggest that this is cross-talk. Both cross-talk and cross-tolerance may be adaptive and likely evolved in response to synchronous stressors; however, we suggest that cross-talk and cross-tolerance may lead to different responses to changes in the timing and severity of multiple stress interactions in a changing world. We present a framework describing the potentially different responses of cross-tolerance and cross-talk to a changing environment and describe the nature of these impacts using interaction of cold-desiccation and cold-immunity in overwintering insects as an example.

  6. A Study on Cross-Talk Nerve Stimulation: Electrode Placement and Current Leakage Lid

    PubMed Central

    Julémont, Nicolas; Nonclercq, Antoine; Delchambre, Alain; Vanhoestenberghe, Anne

    2016-01-01

    Cross-talk phenomena should be avoided when stimulating nerves. One option to limit the current spread is to use tripolar electrodes, but at the cost of increasing the number of wires connection. This should be avoided since cables must be thin and compliant. We investigated the impact of the central electrode position and of current spread due to a gap between book and lid on cross-talk, in a set of tripolar or quasi-tripolar configurations.. PMID:27990238

  7. The Effect of Neutron and Gamma Ray Cross Talk Between Plastic Scintillating Detectors

    SciTech Connect

    Pozzi, S.A.

    2000-11-06

    In this paper a method is developed, using higher order statistics, to identify the type and degree of neutron and gamma ray cross talk between detectors that are placed in proximity to one another. A set of measurements was performed using the Nuclear Materials Identification System (NMIS) to acquire the time-dependent bicovariance of the pulses in fast plastic scintillating detectors. These signatures were analyzed to infer the degree and type of false coincidences (cross talk) in relation to true coincidences.

  8. Preliminary results on the suppression of sensing cross-talk in LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Wanner, Gudrun; Karnesis, Nikolaos; LISA Pathfinder Collaboration

    2017-05-01

    In the original paper describing the first measurements performed with LISA Pathfinder, a bulge in the acceleration noise was shown in the 200 mHz - 20 mHz frequency band. This bulge noise originated from cross-coupling of spacecraft motion into the longitudinal readout and it was shown that it is possible to subtract this cross-talk noise. We discuss here the model that was used for subtraction as well as an alternative approach to suppress the cross talk by realignment of the test masses. Such a realignment was performed after preliminary analysis of a dedicated cross-talk experiment, and we show the resulting noise suppression. Since then, further experiments have been performed to investigate the cross-coupling behaviour, however analysis of these experiments is still on-going.

  9. Cross-Talk and Information Transfer in Mammalian and Bacterial Signaling

    PubMed Central

    Lyons, Samanthe M.; Prasad, Ashok

    2012-01-01

    In mammalian and bacterial cells simple phosphorylation circuits play an important role in signaling. Bacteria have hundreds of two-component signaling systems that involve phosphotransfer between a receptor and a response regulator. In mammalian cells a similar pathway is the TGF-beta pathway, where extracellular TGF-beta ligands activate cell surface receptors that phosphorylate Smad proteins, which in turn activate many genes. In TGF-beta signaling the multiplicity of ligands begs the question as to whether cells can distinguish signals coming from different ligands, but transduced through a small set of Smads. Here we use information theory with stochastic simulations of networks to address this question. We find that when signals are transduced through only one Smad, the cell cannot distinguish between different levels of the external ligands. Increasing the number of Smads from one to two significantly improves information transmission as well as the ability to discriminate between ligands. Surprisingly, both total information transmitted and the capacity to discriminate between ligands are quite insensitive to high levels of cross-talk between the two Smads. Robustness against cross-talk requires that the average amplitude of the signals are large. We find that smaller systems, as exemplified by some two-component systems in bacteria, are significantly much less robust against cross-talk. For such system sizes phosphotransfer is also less robust against cross-talk than phosphorylation. This suggests that mammalian signal transduction can tolerate a high amount of cross-talk without degrading information content. This may have played a role in the evolution of new functionalities from small mutations in signaling pathways, allowed for the development of cross-regulation and led to increased overall robustness due to redundancy in signaling pathways. On the other hand the lack of cross-regulation observed in many bacterial two-component systems may partly be

  10. Cross-talk and information transfer in mammalian and bacterial signaling.

    PubMed

    Lyons, Samanthe M; Prasad, Ashok

    2012-01-01

    In mammalian and bacterial cells simple phosphorylation circuits play an important role in signaling. Bacteria have hundreds of two-component signaling systems that involve phosphotransfer between a receptor and a response regulator. In mammalian cells a similar pathway is the TGF-beta pathway, where extracellular TGF-beta ligands activate cell surface receptors that phosphorylate Smad proteins, which in turn activate many genes. In TGF-beta signaling the multiplicity of ligands begs the question as to whether cells can distinguish signals coming from different ligands, but transduced through a small set of Smads. Here we use information theory with stochastic simulations of networks to address this question. We find that when signals are transduced through only one Smad, the cell cannot distinguish between different levels of the external ligands. Increasing the number of Smads from one to two significantly improves information transmission as well as the ability to discriminate between ligands. Surprisingly, both total information transmitted and the capacity to discriminate between ligands are quite insensitive to high levels of cross-talk between the two Smads. Robustness against cross-talk requires that the average amplitude of the signals are large. We find that smaller systems, as exemplified by some two-component systems in bacteria, are significantly much less robust against cross-talk. For such system sizes phosphotransfer is also less robust against cross-talk than phosphorylation. This suggests that mammalian signal transduction can tolerate a high amount of cross-talk without degrading information content. This may have played a role in the evolution of new functionalities from small mutations in signaling pathways, allowed for the development of cross-regulation and led to increased overall robustness due to redundancy in signaling pathways. On the other hand the lack of cross-regulation observed in many bacterial two-component systems may partly be

  11. Information content and cross-talk in biological signal transduction: An information theory study

    NASA Astrophysics Data System (ADS)

    Prasad, Ashok; Lyons, Samanthe

    2014-03-01

    Biological cells respond to chemical cues provided by extra-cellular chemical signals, but many of these chemical signals and the pathways they activate interfere and overlap with one another. How well cells can distinguish between interfering extra-cellular signals is thus an important question in cellular signal transduction. Here we use information theory with stochastic simulations of networks to address the question of what happens to total information content when signals interfere. We find that both total information transmitted by the biological pathway, as well as its theoretical capacity to discriminate between overlapping signals, are relatively insensitive to cross-talk between the extracellular signals, until significantly high levels of cross-talk have been reached. This robustness of information content against cross-talk requires that the average amplitude of the signals are large. We predict that smaller systems, as exemplified by simple phosphorylation relays (two-component systems) in bacteria, should be significantly much less robust against cross-talk. Our results suggest that mammalian signal transduction can tolerate a high amount of cross-talk without degrading information content, while smaller bacterial systems cannot.

  12. Signaling cross-talk in the resistance to HER family receptor targeted therapy.

    PubMed

    Yamaguchi, H; Chang, S-S; Hsu, J L; Hung, M-C

    2014-02-27

    Epidermal growth factor receptor (EGFR) and human EGFR 2 (HER2) have an important role in the initiation and progression of various types of cancer. Inhibitors targeting these receptor tyrosine kinases are some of the most successful targeted anticancer drugs widely used for cancer treatment; however, cancer cells have mechanisms of intrinsic and acquired drug resistance that pose as major obstacles in drug efficacy. Extensive studies from both clinical and laboratory research have identified several molecular mechanisms underlying resistance. Among them is the role of signaling cross-talk between the EGFR/HER2 and other signaling pathways. In this review, we focus particularly on this signaling cross-talk at the receptor, mediator and effector levels, and further discuss alternative approaches to overcome resistance. In addition to well-recognized signaling cross-talk involved in the resistance, we also introduce the cross-talk between EGFR/HER2-mediated pathways and pathways triggered by other types of receptors, including those of the Notch, Wnt and TNFR/IKK/NF-κB pathways, and discuss the potential role of targeting this cross-talk to sensitize cells to EGFR/HER2 inhibitors.

  13. Cross talk between cardiac myocytes and fibroblasts: from multiscale investigative approaches to mechanisms and functional consequences.

    PubMed

    Zhang, P; Su, J; Mende, U

    2012-12-15

    The heart is comprised of a syncytium of cardiac myocytes (CM) and surrounding nonmyocytes, the majority of which are cardiac fibroblasts (CF). CM and CF are highly interspersed in the myocardium with one CM being surrounded by one or more CF. Bidirectional cross talk between CM and CF plays important roles in determining cardiac mechanical and electrical function in both normal and diseased hearts. Genetically engineered animal models and in vitro studies have provided evidence that CM and CF can regulate each other's function. Their cross talk contributes to structural and electrical remodeling in both atria and ventricles and appears to be involved in the pathogenesis of various heart diseases that lead to heart failure and arrhythmia disorders. Mechanisms of CM-CF cross talk, which are not yet fully understood, include release of paracrine factors, direct cell-cell interactions via gap junctions and potentially adherens junctions and nanotubes, and cell interactions with the extracellular matrix. In this article, we provide an overview of the existing multiscale experimental and computational approaches for the investigation of cross talk between CM and CF and review recent progress in our understanding of the functional consequences and underlying mechanisms. Targeting cross talk between CM and CF could potentially be used therapeutically for the modulation of the cardiac remodeling response in the diseased heart and may lead to new strategies for the treatment of heart failure or rhythm disturbances.

  14. Statistical analysis of cross-talk noise and storage capacity in volume holographic memory: image plane holograms

    NASA Astrophysics Data System (ADS)

    Yi, Xianmin; Campbell, Scott; Yeh, Pochi; Gu, Claire

    1995-04-01

    We investigate the cross-talk noise in optical storage based on angle-multiplexed image plane volume holograms. Simple expressions for the signal-to-noise ratio and the storage density are obtained. The cross-talk noise is found to limit the size of the pixels and the number of recorded holograms. The cross-talk-limited storage density of image plane holographic storage is found to be close to that of Fourier plane holographic storage.

  15. Cross-talk artefacts in Kelvin probe force microscopy imaging: A comprehensive study

    NASA Astrophysics Data System (ADS)

    Barbet, S.; Popoff, M.; Diesinger, H.; Deresmes, D.; Théron, D.; Mélin, T.

    2014-04-01

    We provide in this article a comprehensive study of the role of ac cross-talk effects in Kelvin Probe Force Microscopy (KPFM), and their consequences onto KPFM imaging. The dependence of KPFM signals upon internal parameters such as the cantilever excitation frequency and the projection angle of the KPFM feedback loop is reviewed, and compared with an analytical model. We show that ac cross-talks affect the measured KPFM signals as a function of the tip-substrate distance, and thus hamper the measurement of three-dimensional KPFM signals. The influence of ac cross-talks is also demonstrated onto KPFM images, in the form of topography footprints onto KPFM images, especially in the constant distance (lift) imaging mode. Our analysis is applied to unambiguously probe charging effects in tobacco mosaic viruses (TMVs) in ambient air. TMVs are demonstrated to be electrically neutral when deposited on silicon dioxide surfaces, but inhomogeneously negatively charged when deposited on a gold surface.

  16. Cross-Talk in the ACS WFC Detectors. I: Description of the Effect

    NASA Astrophysics Data System (ADS)

    Biavalisco, Mauro

    2004-08-01

    Images acquired with the Wide Field Channel (WFC) of the Advanced Camera for Surveys (ACS) are affected by cross talk between the four CCD quadrants that correspond to the four amplifiers of the detector array. The effect is observed as (mostly) negative ghost images generated by relatively bright sources located in adjacent quadrants. Their position in the quadrant is mirror-symmetric relative to the positions of the generating sources. The strength of the cross talk is small, i.e. the ghost images have apparent surface brightness of only a few electrons per pixel, and it appears to be mostly a cosmetic problem, with little measurable effects on the photometry of affected sources. Here we describe the phenomenology of the cross talk, and in a companion ISR (Giavalisco 2004) we suggest an observing strategy to minimize its effects on the images.

  17. Kinetic Buffering of Cross Talk between Bacterial Two-Component Sensors

    PubMed Central

    Groban, Eli S.; Clarke, Elizabeth J.; Salis, Howard M.; Miller, Susan M.; Voigt, Christopher A.

    2010-01-01

    Two-component systems are a class of sensors that enable bacteria to respond to environmental and cell-state signals. The canonical system consists of a membrane-bound sensor histidine kinase that autophosphorylates in response to a signal and transfers the phosphate to an intracellular response regulator. Bacteria typically have dozens of two-component systems. The key questions are whether these systems are linear and, if they are, how cross talk between systems is buffered. In this work, we studied the EnvZ/OmpR and CpxA/CpxR systems from Escherichia coli, which have been shown previously to exhibit slow cross talk in vitro. Using in vitro radiolabeling and a rapid quenched-flow apparatus, we experimentally measured 10 biochemical parameters capturing the cognate and non-cognate phosphotransfer reactions between the systems. These data were used to parameterize a mathematical model that was used to predict how cross talk is affected as different genes are knocked out. It was predicted that significant cross talk between EnvZ and CpxR only occurs for the triple mutant ΔompR ΔcpxA ΔactA-pta. All seven combinations of these knockouts were made to test this prediction and only the triple mutant demonstrated significant cross talk, where the cpxP promoter was induced 280-fold upon the activation of EnvZ. Furthermore, the behavior of the other knockouts agrees with the model predictions. These results support a kinetic model of buffering where both the cognate bifunctional phosphatase activity and the competition between regulator proteins for phosphate prevent cross talk in vivo. PMID:19445950

  18. Endothelin(A)-endothelin(B) receptor cross talk in endothelin-1-induced contraction of smooth muscle.

    PubMed

    Rapoport, Robert M; Zuccarello, Mario

    2012-11-01

    The efficacy of selective endothelin (ET) receptor antagonists may be limited by a functional interaction between the ET(A) and ET(B) receptors. This interaction, also termed "cross talk", is characterized by the dependency of the inhibition of an ET-1 response due to antagonism of one ET receptor subtype upon concomitant antagonism of the other ET receptor subtype. Although a reduction in ET(A)-ET(B) receptor cross talk would presumably increase the efficacy of selective ET receptor antagonists, an approach that accomplishes this aim is largely absent due to a lack of mechanistic understanding. Toward this goal, we evaluated the characteristics and potential dependencies of cross talk in smooth muscle. Smooth muscle was adopted as an exemplar not only because cross talk is widely reported in this tissue type, thereby allowing numerous comparisons, but also significant controversy surrounds the use of selective versus nonselective ET receptor antagonists in ET-1-related pathophysiologies involving smooth muscle. Based on this evaluation, we suggest that ET(A)-ET(B) receptor cross talk is a dynamic process directed by either or both ET receptor subtypes and expressed to varying magnitudes depending on the ET-1 and selective ET receptor antagonist concentrations, tone due to intraluminal pressure/stretch, agonists acting at receptors other than the ET(A)/ET(B) receptors, and endothelial/epithelial function. It is speculated that ET(A)-ET(B) receptor cross talk occurs through signal transduction pathways along with changes at the receptor level. Pharmacologic intervention of the signaling pathways could increase the therapeutic efficacy of ET receptor antagonists.

  19. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM.

    PubMed

    Koul, Vatsala; Tripathi, Chandrakant; Adholeya, Alok; Kochar, Mandira

    2015-04-01

    Production of nitric oxide (NO) and the presence of NO metabolism genes, nitrous oxide reductase (nosZ), nitrous oxide reductase regulator (nosR) and nitric oxide reductase (norB) were identified in the plant-associated bacterium (PAB) Azospirillum brasilense SM. NO presence was confirmed in all overexpressing strains, while improvement in the plant growth response of these strains was mediated by increased NO and indole-3-acetic acid (IAA) levels in the strains. Electron microscopy showed random distribution to biofilm, with surface colonization of pleiomorphic Azospirilla. Quantitative IAA estimation highlighted a crucial role of nosR and norBC in regulating IAA biosynthesis. The NO quencher and donor reduced/blocked IAA biosynthesis by all strains, indicating their common regulatory role in IAA biosynthesis. Tryptophan (Trp) and l-Arginine (Arg) showed higher expression of NO genes tested, while in the case of ipdC, only Trp and IAA increased expression, while Arg had no significant effect. The highest nosR expression in SMnosR in the presence of IAA and Trp, along with its 2-fold IAA level, confirmed the relationship of nosR overexpression with Trp in increasing IAA. These results indicate a strong correlation between IAA and NO in A. brasilense SM and suggest the existence of cross-talk or shared signaling mechanisms in these two growth regulators. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 2

    DTIC Science & Technology

    2007-02-01

    Hippocrates , the father of medicine, in the 4th Century B.C., or by one of his stu- dents [1...or vio- late it, may the reverse be my lot. Modern physicians found Hippocrates ’ Oath a bit antiquated and in 1964 Louis Lasagna, Academic Dean of the...gary.petersen@shiminc.com Hippocrates and the Oath CrossTalk / 517 SMXS/MXDEA 6022 Fir AVE BLDG 1238 Hill AFB, UT 84056-5820 PRSRT STD U.S. POSTAGE PAID Albuquerque, NM Permit 737 CrossTalk is co-sponsored by the following organizations:

  1. Membrane traffic and synaptic cross-talk during host cell entry by Trypanosoma cruzi

    PubMed Central

    Butler, Claire E; Tyler, Kevin M

    2012-01-01

    It is widely accepted that Trypanosoma cruzi can exploit the natural exocytic response of the host to cell damage, utilizing host cell lysosomes as important effectors. It is, though, increasingly clear that the parasite also exploits endocytic mechanisms which allow for incorporation of plasma membrane into the parasitophorous vacuole. Further, that these endocytic mechanisms are involved in cross-talk with the exocytic machinery, in the recycling of vesicles and in the manipulation of the cytoskeleton. Here we review the mechanisms by which T. cruzi exploits features of the exocytic and endocytic pathways in epithelial and endothelial cells and the evidence for cross-talk between these pathways. PMID:22646288

  2. Parabens and Human Epidermal Growth Factor Receptor Ligand Cross-Talk in Breast Cancer Cells

    PubMed Central

    Pan, Shawn; Yuan, Chaoshen; Tagmount, Abderrahmane; Rudel, Ruthann A.; Ackerman, Janet M.; Yaswen, Paul; Vulpe, Chris D.; Leitman, Dale C.

    2015-01-01

    Background: Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe. However, previous cell-based studies with parabens do not take into account the signaling cross-talk between estrogen receptor α (ERα) and the human epidermal growth factor receptor (HER) family. Objectives: We investigated the hypothesis that the potency of parabens can be increased with HER ligands, such as heregulin (HRG). Methods: The effects of HER ligands on paraben activation of c-Myc expression and cell proliferation were determined by real-time polymerase chain reaction, Western blots, flow cytometry, and chromatin immunoprecipitation assays in ERα- and HER2-positive human BT-474 breast cancer cells. Results: Butylparaben (BP) and HRG produced a synergistic increase in c-Myc mRNA and protein levels in BT-474 cells. Estrogen receptor antagonists blocked the synergistic increase in c-Myc protein levels. The combination of BP and HRG also stimulated proliferation of BT-474 cells compared with the effects of BP alone. HRG decreased the dose required for BP-mediated stimulation of c-Myc mRNA expression and cell proliferation. HRG caused the phosphorylation of serine 167 in ERα. BP and HRG produced a synergistic increase in ERα recruitment to the c-Myc gene. Conclusion: Our results show that HER ligands enhanced the potency of BP to stimulate oncogene expression and breast cancer cell proliferation in vitro via ERα, suggesting that parabens might be active at exposure levels not previously considered toxicologically relevant from studies testing their effects in isolation. Citation: Pan S, Yuan C, Tagmount A, Rudel RA, Ackerman JM

  3. Parabens and Human Epidermal Growth Factor Receptor Ligand Cross-Talk in Breast Cancer Cells.

    PubMed

    Pan, Shawn; Yuan, Chaoshen; Tagmount, Abderrahmane; Rudel, Ruthann A; Ackerman, Janet M; Yaswen, Paul; Vulpe, Chris D; Leitman, Dale C

    2016-05-01

    Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe. However, previous cell-based studies with parabens do not take into account the signaling cross-talk between estrogen receptor α (ERα) and the human epidermal growth factor receptor (HER) family. We investigated the hypothesis that the potency of parabens can be increased with HER ligands, such as heregulin (HRG). The effects of HER ligands on paraben activation of c-Myc expression and cell proliferation were determined by real-time polymerase chain reaction, Western blots, flow cytometry, and chromatin immunoprecipitation assays in ERα- and HER2-positive human BT-474 breast cancer cells. Butylparaben (BP) and HRG produced a synergistic increase in c-Myc mRNA and protein levels in BT-474 cells. Estrogen receptor antagonists blocked the synergistic increase in c-Myc protein levels. The combination of BP and HRG also stimulated proliferation of BT-474 cells compared with the effects of BP alone. HRG decreased the dose required for BP-mediated stimulation of c-Myc mRNA expression and cell proliferation. HRG caused the phosphorylation of serine 167 in ERα. BP and HRG produced a synergistic increase in ERα recruitment to the c-Myc gene. Our results show that HER ligands enhanced the potency of BP to stimulate oncogene expression and breast cancer cell proliferation in vitro via ERα, suggesting that parabens might be active at exposure levels not previously considered toxicologically relevant from studies testing their effects in isolation. Pan S, Yuan C, Tagmount A, Rudel RA, Ackerman JM, Yaswen P, Vulpe CD, Leitman DC. 2016. Parabens and human epidermal

  4. Cross-talk from β-adrenergic receptors modulates α2A-adrenergic receptor endocytosis in sympathetic neurons via protein kinase A and spinophilin.

    PubMed

    Cottingham, Christopher; Lu, Roujian; Jiao, Kai; Wang, Qin

    2013-10-04

    Inter-regulation of adrenergic receptors (ARs) via cross-talk is a long appreciated but mechanistically unclear physiological phenomenon. Evidence from the AR literature and our own extensive studies on regulation of α2AARs by the scaffolding protein spinophilin have illuminated a potential novel mechanism for cross-talk from β to α2ARs. In the present study, we have characterized a mode of endogenous AR cross-talk in native adrenergic neurons whereby canonical βAR-mediated signaling modulates spinophilin-regulated α2AAR endocytosis through PKA. Our findings demonstrate that co-activation of β and α2AARs, either by application of endogenous agonist or by simultaneous stimulation with distinct selective agonists, results in acceleration of endogenous α2AAR endocytosis in native neurons. We show that receptor-independent PKA activation by forskolin is sufficient to accelerate α2AAR endocytosis and that α2AAR stimulation alone drives accelerated endocytosis in spinophilin-null neurons. Endocytic response acceleration by β/α2AAR co-activation is blocked by PKA inhibition and lost in spinophilin-null neurons, consistent with our previous finding that spinophilin is a substrate for phosphorylation by PKA that disrupts its interaction with α2AARs. Importantly, we show that α2AR agonist-mediated α2AAR/spinophilin interaction is blocked by βAR co-activation in a PKA-dependent fashion. We therefore propose a novel mechanism for cross-talk from β to α2ARs, whereby canonical βAR-mediated signaling coupled to PKA activation results in phosphorylation of spinophilin, disrupting its interaction with α2AARs and accelerating α2AAR endocytic responses. This mechanism of cross-talk has significant implications for endogenous adrenergic physiology and for therapeutic targeting of β and α2AARs.

  5. CrossTalk: The Journal of Defense Software Engineering. Volume 23, Number 4, July/August 2010

    DTIC Science & Technology

    2010-08-01

    CrossTalk ONLINE Stephen P.Welby Jeff Schwalb Karl Rogers Joe Jarzombek Brent Baxter Kasey Thompson Drew Brown Chelene Fortier-Lozancich Marek Steed (801...Changing the Game The 22nd Annual Systems and Software Technology Conference Photography by Drew Brown, Marek Steed, and Bill Orndorff Brig Gen John...B. Cooper gives the opening general session remarks. Marek Steed, CrossTalk article coordinator (far right), talks with visitors at the Software Tech

  6. Cross-situational statistically-based word learning intervention for late-talking toddlers

    PubMed Central

    Alt, Mary; Meyers, Christina; Oglivie, Trianna; Nicholas, Katrina; Arizmendi, Genesis

    2015-01-01

    Purpose To explore the efficacy of a word learning intervention for late-talking toddlers that is based on principles of cross-situational statistical learning. Methods Four late-talking toddlers were individually provided with 7–10 weeks of bi-weekly word learning intervention that incorporated principles of cross-situational statistical learning. Treatment was input-based meaning that, aside from initial probes, children were not asked to produce any language during the sessions. Pre-intervention data included parent-reported measures of productive vocabulary and language samples. Data collected during intervention included production on probes, spontaneous production during treatment, and parent report of words used spontaneously at home. Data were analyzed for number of target words learned relative to control words, effect sizes, and pre-post treatment vocabulary measures. Results All children learned more target words than control words, and, on average, showed a large treatment effect size. Children made pre-post vocabulary gains, increasing their percentile scores on the MCDI, and demonstrated a rate of word learning that was faster than rates found in the literature. Conclusions Cross-situational statistically-based word learning intervention has the potential to improve vocabulary learning in late-talking toddlers. Limitations on interpretation are also discussed. Cross-situational statistically-based word learning intervention for late-talking toddlers PMID:25155254

  7. Systematic Analysis and Prediction of In Situ Cross Talk of O-GlcNAcylation and Phosphorylation.

    PubMed

    Yao, Heming; Li, Ao; Wang, Minghui

    2015-01-01

    Reversible posttranslational modification (PTM) plays a very important role in biological process by changing properties of proteins. As many proteins are multiply modified by PTMs, cross talk of PTMs is becoming an intriguing topic and draws much attention. Currently, lots of evidences suggest that the PTMs work together to accomplish a specific biological function. However, both the general principles and underlying mechanism of PTM crosstalk are elusive. In this study, by using large-scale datasets we performed evolutionary conservation analysis, gene ontology enrichment, motif extraction of proteins with cross talk of O-GlcNAcylation and phosphorylation cooccurring on the same residue. We found that proteins with in situ O-GlcNAc/Phos cross talk were significantly enriched in some specific gene ontology terms and no obvious evolutionary pressure was observed. Moreover, 3 functional motifs associated with O-GlcNAc/Phos sites were extracted. We further used sequence features and GO features to predict O-GlcNAc/Phos cross talk sites based on phosphorylated sites and O-GlcNAcylated sites separately by the use of SVM model. The AUC of classifier based on phosphorylated sites is 0.896 and the other classifier based on GlcNAcylated sites is 0.843. Both classifiers achieved a relatively better performance compared with other existing methods.

  8. Simulation of cross-talk between thermal track positioning control and thermal flying height controla)

    NASA Astrophysics Data System (ADS)

    Li, Hui; Shen, Shengnan; Cui, Fuhao; Huang, Jie; Wu, Shijing

    2014-05-01

    In this study, a coupling analysis of thermal-structural simulation and air-bearing simulation has been performed to investigate the cross-talk effects between thermal track positioning control (TPC) and thermal flying height control (TFC) on the static flying attitude of a TPC-TFC slider. Simulation results show that the TPC heating induced head protrusion towards disk is comparable to the head actuation stroke along the cross-track direction. By optimizing the distance of TPC heater to air bearing surface, and the distance of TPC heater to the slider center line, it can obtain a large TPC actuation stroke and a small head protrusion towards disk. Moreover, it is found that the TPC heating will cause large protrusion of the side edge of trailing pad and change the flying characteristics significantly. A trade-off performance between cross-talk effects and TPC actuation stroke along cross-track direction is needed.

  9. Rotavirus and Serotonin Cross-Talk in Diarrhoea

    PubMed Central

    Nordgren, Johan; Karlsson, Thommie; Sharma, Sumit; Magnusson, Karl-Eric; Svensson, Lennart

    2016-01-01

    Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p < 0.05) less diarrhoea, lower diarrhoea severity score and lower total diarrhoea output as compared to mock-treated mice (n = 9). Similarly, Ondansetron-treated mice had better weight gain than mock-treated animals (p < 0.05). A most surprising finding was that the serotonin receptor antagonist significantly (p < 0.05) also attenuated total viral shedding. In summary, we show that intracellularly expressed NSP4 stimulates release of serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron. PMID:27459372

  10. Rotavirus and Serotonin Cross-Talk in Diarrhoea.

    PubMed

    Bialowas, Sonja; Hagbom, Marie; Nordgren, Johan; Karlsson, Thommie; Sharma, Sumit; Magnusson, Karl-Eric; Svensson, Lennart

    2016-01-01

    Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p < 0.05) less diarrhoea, lower diarrhoea severity score and lower total diarrhoea output as compared to mock-treated mice (n = 9). Similarly, Ondansetron-treated mice had better weight gain than mock-treated animals (p < 0.05). A most surprising finding was that the serotonin receptor antagonist significantly (p < 0.05) also attenuated total viral shedding. In summary, we show that intracellularly expressed NSP4 stimulates release of serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron.

  11. Cross-talk compensation of hyperfine control in donor-qubit architectures

    NASA Astrophysics Data System (ADS)

    Kandasamy, G.; Wellard, C. J.; Hollenberg, L. C. L.

    2006-09-01

    We theoretically investigate cross-talk in hyperfine gate control of donor-qubit quantum computer architectures, in particular the Kane proposal. By solving the Poisson and Schrödinger equations numerically for the gated donor system, we calculate the change in hyperfine coupling and thus the error in spin-rotation for the donor nuclear-electron spin system, as the gate-donor distance is varied. We thus determine the effect of cross-talk—the inadvertent effect on non-target neighbouring qubits—which occurs due to closeness of the control gates (20-30 nm). The use of compensation protocols is investigated, whereby the extent of cross-talk is limited by the application of compensation bias to a series of gates. In the light of these factors, architectural implications are then considered.

  12. Metabolic cross-talk between pathways of terpenoid backbone biosynthesis in spike lavender.

    PubMed

    Mendoza-Poudereux, Isabel; Kutzner, Erika; Huber, Claudia; Segura, Juan; Eisenreich, Wolfgang; Arrillaga, Isabel

    2015-10-01

    The metabolic cross-talk between the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in developing spike lavender (Lavandula latifolia Med) was analyzed using specific inhibitors and on the basis of (13)C-labeling experiments. The presence of mevinolin (MEV), an inhibitor of the MVA pathway, at concentrations higher than 0.5 μM significantly reduced plant development, but not the synthesis of chlorophylls and carotenoids. On the other hand, fosmidomycin (FSM), an inhibitor of the MEP pathway, at concentrations higher than 20 μM blocked the synthesis of chlorophyll, carotenoids and essential oils, and significantly reduced stem development. Notably, 1.2 mM MVA could recover the phenotype of MEV-treated plants, including the normal growth and development of roots, and could partially restore the biosynthesis of photosynthetic pigments and, to a lesser extent, of the essential oils in plantlets treated with FSM. Spike lavender shoot apices were also used in (13)C-labeling experiments, where the plantlets were grown in the presence of [U-(13)C6]glucose. GC-MS-analysis of 1,8-cineole and camphor indicated that the C5-precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) of both monoterpenes are predominantly biosynthesized via the methylerythritol phosphate (MEP) pathway. However, on the basis of the isotopologue profiles, a minor contribution of the MVA pathway was evident that was increased in transgenic spike lavender plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the first enzyme of the MVA pathway. Together, these findings provide evidence for a transport of MVA-derived precursors from the cytosol to the plastids in leaves of spike lavender.

  13. Heat Sinking, Cross Talk, and Temperature Stability for Large, Close-Packed Arrays of Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Imoto, Naoko; Bandler, SImon; Brekosky, Regis; Chervenak, James; Figueroa-Felicano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Porter, Frederick; Sadleir, Jack; hide

    2007-01-01

    We are developing large, close-packed arrays of x-ray transition-edge sensor (TES) microcalorimeters. In such a device, sufficient heat sinking is important to to minimize thermal cross talk between pixels and to stabilize the bath temperature for all pixels. We have measured cross talk on out 8 x 8 arrays and studied the shape and amount of thermal crosstalk as a function of pixel location and efficiency of electrothermal feedback. In this presentation, we will compare measurements made on arrays with and without a backside, heat-sinking copper layer, as well as results of devices on silicon-nitride membranes and on solid substrates, and we will discuss the implications for energy resolution and maximum count rate. We will also discuss the dependence of pulse height upon bath temperature, and the measured and required stability of the bath temperature.

  14. Cross-talk and specificity in two-component signal transduction pathways.

    PubMed

    Agrawal, Ruchi; Sahoo, Bikash Kumar; Saini, Deepak Kumar

    2016-05-01

    Two-component signaling systems (TCSs) are composed of two proteins, sensor kinases and response regulators, which can cross-talk and integrate information between them by virtue of high-sequence conservation and modular nature, to generate concerted and diversified responses. However, TCSs have been shown to be insulated, to facilitate linear signal transmission and response generation. Here, we discuss various mechanisms that confer specificity or cross-talk among TCSs. The presented models are supported with evidence that indicate the physiological significance of the observed TCS signaling architecture. Overall, we propose that the signaling topology of any TCSs cannot be predicted using obvious sequence or structural rules, as TCS signaling is regulated by multiple factors, including spatial and temporal distribution of the participating proteins.

  15. Non cross talk multi-channel photomultiplier using guided electron multipliers

    DOEpatents

    Gomez, Javier; Majewski, Stanislaw; Weisenberger, Andrew G.

    1995-01-01

    An improved multi-channel electron multiplier is provided that exhibits zero cross-talk and high rate operation. Resistive material input and output masks are employed to control divergence of electrons. Electron multiplication takes place in closed channels. Several embodiments are provided for these channels including a continuous resistive emissive multiplier and a discrete resistive multiplier with discrete dynode chains interspaced with resistive layers-masks. Both basic embodiments provide high gain multiplication of electrons without accumulating surface charges while containing electrons to their proper channels to eliminate cross-talk. The invention can be for example applied to improve the performance of ion mass spectrometers, positron emission tomography devices, in DNA sequencing and other beta radiography applications and in many applications in particle physics.

  16. Non-cross talk multi-channel photomultiplier using guided electron multipliers

    DOEpatents

    Gomez, J.; Majewski, S.; Weisenberger, A.G.

    1995-09-26

    An improved multi-channel electron multiplier is provided that exhibits zero cross-talk and high rate operation. Resistive material input and output masks are employed to control divergence of electrons. Electron multiplication takes place in closed channels. Several embodiments are provided for these channels including a continuous resistive emissive multiplier and a discrete resistive multiplier with discrete dynode chains interspaced with resistive layers-masks. Both basic embodiments provide high gain multiplication of electrons without accumulating surface charges while containing electrons to their proper channels to eliminate cross-talk. The invention can be for example applied to improve the performance of ion mass spectrometers, positron emission tomography devices, in DNA sequencing and other beta radiography applications and in many applications in particle physics. 28 figs.

  17. Cross-talk among structural domains of human DBP upon binding 25-hydroxyvitamin D

    PubMed Central

    Ray, Arjun; Swamy, Narasimha; Ray, Rahul

    2007-01-01

    Serum vitamin D-binding protein (DBP) is structurally very similar to serum albumin (ALB); both have three distinct structural domains and high cysteine-content. Yet, functionally they are very different. DBP possesses high affinity for vitamin D metabolites and G-actin, but ALB does not. It has been suggested that there may be cross-talk among the domains so that binding of one ligand may influence the binding of others. In this study we have employed 2-p-toluidinyl-6-sulphonate (TNS), a reporter molecule that fluoresces upon binding to hydrophobic pockets of DBP. We observed that recombinant domain III possesses strong binding for TNS, which is not influenced by 25-hydroxyvitamin D3 (25-OH-D3), yet TNS-fluorescence of the whole protein is quenched by 25-OH-D3. These results provide a direct evidence of cross-talk among the structural domains of DBP. PMID:18035050

  18. Decoupling indirect topographic cross-talk in band excitation piezoresponse force microscopy imaging and spectroscopy

    SciTech Connect

    Mazet, Lucie; Jesse, Stephen; Niu, Gang; Schroeder, Thomas; Schamm-Chardon, Sylvie; Dubourdieu, Catherine; Baddorf, Arthur P.; Kalinin, Sergei V.; Yang, Sang Mo; Okatan, M. Baris

    2016-06-20

    Here, all scanning probe microscopies are subjected to topographic cross-talk, meaning the topography-related contrast in functional images. Here, we investigate the signatures of indirect topographic cross-talk in piezoresponse force microscopy (PFM) imaging and spectroscopy and its decoupling using band excitation (BE) method in ferroelectric BaTiO3 deposited on the Si substrates with free standing nanopillars of diameter 50 nm. Comparison between the single-frequency PFM and BE-PFM results shows that the measured signal can be significantly distorted by topography-induced shifts in the contact resonance frequency and cantilever transfer function. However, with proper correction, such shifts do not affect PFM imaging and hysteresis loop measurements. This suggests the necessity of an advanced approach, such as BE-PFM, for detection of intrinsic sample piezoresponse on the topographically non-uniform surfaces.

  19. Cross-talk in phase encoded volume holographic memories employing unitary matrices

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Berger, G.; Dietz, M.; Denz, C.

    2006-12-01

    The cross-talk noise in phase encoded holographic memories employing unitary matrices is theoretically investigated. After reviewing some earlier work in this area, we derive a relationship for the noise-to-signal ratio for phase-code multiplexing with unitary matrices. The noise-to-signal ratio rises in a zigzag way on increasing the storage capacity. Cross-talk is mainly caused by high-frequency phase codes. Unitary matrices of even orders have only one bad code, while unitary matrices of odd orders have four bad codes. The signal-to-noise ratios of all other codes can in each case be drastically improved by omission of these bad codes. We summarize the optimal orders of Hadamard and unitary matrices for recording a given number of holograms. The unitary matrices can enable us to adjust the available spatial light modulators to achieve the maximum possible storage capacity in both circumstances with and without bad codes.

  20. Cross-Talk in the ACS WFC Detectors. II: Using GAIN=2 to Minimize the Effect

    NASA Astrophysics Data System (ADS)

    Giavalisco, Mauro

    2004-08-01

    Cross talk is observed in images taken with ACS WFC between the four CCD quadrants that correspond to the four amplifiers of the detector array (see Giavalisco 2004). The effect manifests itself as (mostly) negative ghost images placed in locations that are mirror- symmetric to those of the generating sources in adjacent quadrants. Here we show that the apparent flux of the ghost images is significantly reduced when the camera is used with gain setting GAIN=2. This corresponds to an average inverse gain of ~2.0 e-/DN, which is adequate to sample the read-out noise of the CCDs, whose average value is 5.25 e-rms. Although the cross talk appears to have negligible photometric effects in most applications and is primarily a cosmetic problem, using the setting GAIN=2 minimizes its effects with no penalty and, in fact, has the added bonus of providing an expanded dynamic range.

  1. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling.

    PubMed

    Mattila, Pieta K; Batista, Facundo D; Treanor, Bebhinn

    2016-02-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival.

  2. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling

    PubMed Central

    Mattila, Pieta K.; Batista, Facundo D.

    2016-01-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival. PMID:26833785

  3. Decoupling indirect topographic cross-talk in band excitation piezoresponse force microscopy imaging and spectroscopy

    SciTech Connect

    Mazet, Lucie; Jesse, Stephen; Niu, Gang; Schroeder, Thomas; Schamm-Chardon, Sylvie; Dubourdieu, Catherine; Baddorf, Arthur P.; Kalinin, Sergei V.; Yang, Sang Mo; Okatan, M. Baris

    2016-06-20

    Here, all scanning probe microscopies are subjected to topographic cross-talk, meaning the topography-related contrast in functional images. Here, we investigate the signatures of indirect topographic cross-talk in piezoresponse force microscopy (PFM) imaging and spectroscopy and its decoupling using band excitation (BE) method in ferroelectric BaTiO3 deposited on the Si substrates with free standing nanopillars of diameter 50 nm. Comparison between the single-frequency PFM and BE-PFM results shows that the measured signal can be significantly distorted by topography-induced shifts in the contact resonance frequency and cantilever transfer function. However, with proper correction, such shifts do not affect PFM imaging and hysteresis loop measurements. This suggests the necessity of an advanced approach, such as BE-PFM, for detection of intrinsic sample piezoresponse on the topographically non-uniform surfaces.

  4. Decoupling indirect topographic cross-talk in band excitation piezoresponse force microscopy imaging and spectroscopy

    DOE PAGES

    Mazet, Lucie; Jesse, Stephen; Niu, Gang; ...

    2016-06-20

    Here, all scanning probe microscopies are subjected to topographic cross-talk, meaning the topography-related contrast in functional images. Here, we investigate the signatures of indirect topographic cross-talk in piezoresponse force microscopy (PFM) imaging and spectroscopy and its decoupling using band excitation (BE) method in ferroelectric BaTiO3 deposited on the Si substrates with free standing nanopillars of diameter 50 nm. Comparison between the single-frequency PFM and BE-PFM results shows that the measured signal can be significantly distorted by topography-induced shifts in the contact resonance frequency and cantilever transfer function. However, with proper correction, such shifts do not affect PFM imaging and hysteresismore » loop measurements. This suggests the necessity of an advanced approach, such as BE-PFM, for detection of intrinsic sample piezoresponse on the topographically non-uniform surfaces.« less

  5. Disorders from perturbations of nuclear-mitochondrial intergenomic cross-talk.

    PubMed

    Spinazzola, A; Zeviani, M

    2009-02-01

    In the course of evolution, mitochondria lost their independence, and mitochondrial DNA (mtDNA) became the 'slave' of nuclear DNA, depending on numerous nucleus-encoded factors for its integrity, replication and expression. Mutations in any of these factors may alter the cross-talk between the two genomes and cause Mendelian disorders characterized by qualitative (multiple deletions) or quantitative (depletion) alterations of mtDNA, or by defective translation of mtDNA-encoded respiratory chain components.

  6. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 5, May 2007

    DTIC Science & Technology

    2007-05-01

    DIRECTOR PUBLISHER MANAGING EDITOR ASSOCIATE EDITOR ARTICLE COORDINATOR PHONE E-MAIL CROSSTALK ONLINE The Honorable John Grimes Jeff Schwalb Kevin...issue are trademarks of their companies. CrossTalk Online Services: See <www.stsc.hill.af.mil/ crosstalk>, call (801) 777-0857 or e-mail <stsc.web...excel- lent analogy. Today, most people are very competent car shoppers . They use tools such as the Internet, car magazines, buying guides, and lessons

  7. Pathway Cross-Talk Analysis in Detecting Significant Pathways in Barrett’s Esophagus Patients

    PubMed Central

    Xu, Zhengyuan; Yan, Yan; He, Jian; Shan, Xinfang; Wu, Weiguo

    2017-01-01

    Background The pathological mechanism of Barrett’s esophagus (BE) is still unclear. In the present study, pathway cross-talks were analyzed to identify hub pathways for BE, with the purpose of finding an efficient and cost-effective detection method to discover BE at its early stage and take steps to prevent its progression. Material/Methods We collected and preprocessed gene expression profile data, original pathway data, and protein-protein interaction (PPI) data. Then, we constructed a background pathway cross-talk network (BPCN) based on the original pathway data and PPI data, and a disease pathway cross-talk network (DPCN) based on the differential pathways between the PPI data and the BE and normal control. Finally, a comprehensive analysis was conducted on these 2 networks to identify hub pathway cross-talks for BE, so as to better understand the pathological mechanism of BE from the pathway level. Results A total of 12 411 genes, 300 pathways (6919 genes), and 787 896 PPI interactions (16 730 genes) were separately obtained from their own databases. Then, we constructed a BPCN with 300 nodes (42 293 interactions) and a DPCN with 296 nodes (15 073 interactions). We identified 4 hub pathways: AMP signaling pathway, cGMP-PKG signaling pathway, natural killer cell-mediated cytotoxicity, and osteoclast differentiation. We found that these pathways might play important roles during the occurrence and development of BE. Conclusions We predicted that these pathways (such as AMP signaling pathway and cAMP signaling pathway) could be used as potential biomarkers for early diagnosis and therapy of BE. PMID:28263955

  8. Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration.

    PubMed

    Lu, Zufu; Wang, Guocheng; Roohani-Esfahani, Iman; Dunstan, Colin R; Zreiqat, Hala

    2014-03-01

    Understanding interactions among the three elements (cells, scaffolds, and bioactive factors) is critical for successful tissue engineering. This study was aimed to investigate how scaffolds would affect osteogenic gene expression in human adipose tissue-derived stem cells (ASCs) or human primary osteoblasts (HOBs), and their cross talk. Either ASCs or HOBs were seeded on Baghdadite (Ca3ZrSi2O9) and hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds, and osteogenic gene expression was assessed. To further evaluate how substrate affected HOB and ASC cross talk, an indirect co-culture system with semipermeable inserts placed on the culture plate was set up to co-culture ASCs or HOBs, which were grown in monolayer or seeded on Baghdadite or HA/TCP scaffolds, and osteogenic differentiation of the cells was assessed. We found that Baghdadite scaffolds induced a significantly greater increase in RUNX2, osteopontin, bone sialoprotein, and osteocalcin gene expression in HOBs in comparison to HA/TCP scaffolds; Baghdadite scaffolds also significantly induced RUNX2 and osteopontin, but not bone sialoprotein and osteocalcin gene expression in ASCs. In the co-culture system, the HOBs on Baghdadite scaffolds more markedly promoted osteogenic gene expression in ASCs compared to HOBs in monolayer or the HOBs on HA/TCP scaffolds. In addition, the ASCs seeded on Baghdadite scaffolds more markedly promoted osteogenic gene expression in HOBs than did the ASCs on HA/TCP scaffolds. BMP-2 expression in ASCs or HOBs was increased when they were seeded on Baghdadite scaffolds, and adding Noggin into the co-culture medium largely abrogated Baghdadite scaffold-modulated ASC-HOB cross talk. In summary, Baghdadite scaffolds not only promote the osteogenic differentiation of HOBs or ASCs but also modulate the cross talk between ASCs and HOBs, in part via increasing BMP2 expression, thereby promoting their osteogenic differentiation.

  9. Cross Talk between Proliferative, Angiogenic, and Cellular Mechanisms Orchestred by HIF-1α in Psoriasis

    PubMed Central

    Torales-Cardeña, Azael; Martínez-Torres, Isaí; Rodríguez-Martínez, Sandra; Gómez-Chávez, Fernando; Cancino-Díaz, Juan C.; Vázquez-Sánchez, Ernesto A.; Cancino-Díaz, Mario E.

    2015-01-01

    Psoriasis is a chronic inflammatory skin disease where the altered regulation in angiogenesis, inflammation, and proliferation of keratinocytes are the possible causes of the disease, and the transcription factor “hypoxia-inducible factor 1-alpha” (HIF-1α) is involved in the homeostasis of these three biological phenomena. In this review, the role of HIF-1α in the cross talk between the cytokines and cells of the immunological system involved in the pathogenesis of psoriasis is discussed. PMID:26136626

  10. Cross Talk Between Ceramide and Redox Signaling: Implications for Endothelial Dysfunction and Renal Disease

    PubMed Central

    Li, Pin-Lan; Zhang, Yang

    2013-01-01

    Recent studies have demonstrated that cross talk between ceramide and redox signaling modulates various cell activities and functions and contributes to the development of cardiovascular diseases and renal dysfunctions. Ceramide triggers the generation of reactive oxygen species (ROS) and increases oxidative stress in many mammalian cells and animal models. On the other hand, inhibition of ROS-generating enzymes or treatment of antioxidants impairs sphingomyelinase activation and ceramide production. As a mechanism, ceramide-enriched signaling platforms, special cell membrane rafts (MR) (formerly lipid rafts), provide an important microenvironment to mediate the cross talk of ceramide and redox signaling to exert a corresponding regulatory role on cell and organ functions. In this regard, activation of acid sphingomyelinase and generation of ceramide mediate the formation of ceramide-enriched membrane platforms, where trans-membrane signals are transmitted or amplified through recruitment, clustering, assembling, or integration of various signaling molecules. A typical such signaling platform is MR redox signaling platform that is centered on ceramide production and aggregation leading to recruitment and assembling of NADPH oxidase to form an active complex in the cell plasma membrane. This redox signaling platform not only conducts redox signaling or regulation but also facilitates a feedforward amplification of both ceramide and redox signaling. In addition to this membrane MR redox signaling platform, the cross talk between ceramide and redox signaling may occur in other cell compartments. This book chapter focuses on the molecular mechanisms, spatial–temporal regulations, and implications of this cross talk between ceramide and redox signaling, which may provide novel insights into the understanding of both ceramide and redox signaling pathways. PMID:23563657

  11. Cross-talk noise in volume holographic memory with spherical reference beams

    NASA Astrophysics Data System (ADS)

    Yi, Xianmin; Yeh, Pochi; Gu, Claire

    1995-09-01

    We investigate angle-multiplexed volume holographic memory with spherical reference beams, for which the spherical approximation is made to model the wave-front distortion in general. We find that the angular selectivity and the cross-talk noise with spherical reference beams are close to those with planar reference beams. The results indicate that angle-multiplexed volume holographic memory can be realized in compact systems for which large wave-front distortion is expected.

  12. Oligodendrocyte-microglia cross-talk in the central nervous system.

    PubMed

    Peferoen, Laura; Kipp, Markus; van der Valk, Paul; van Noort, Johannes M; Amor, Sandra

    2014-03-01

    Communication between the immune system and the central nervous system (CNS) is exemplified by cross-talk between glia and neurons shown to be essential for maintaining homeostasis. While microglia are actively modulated by neurons in the healthy brain, little is known about the cross-talk between oligodendrocytes and microglia. Oligodendrocytes, the myelin-forming cells in the CNS, are essential for the propagation of action potentials along axons, and additionally serve to support neurons by producing neurotrophic factors. In demyelinating diseases such as multiple sclerosis, oligodendrocytes are thought to be the victims. Here, we review evidence that oligodendrocytes also have strong immune functions, express a wide variety of innate immune receptors, and produce and respond to chemokines and cytokines that modulate immune responses in the CNS. We also review evidence that during stress events in the brain, oligodendrocytes can trigger a cascade of protective and regenerative responses, in addition to responses that elicit progressive neurodegeneration. Knowledge of the cross-talk between microglia and oligodendrocytes may continue to uncover novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and degeneration.

  13. Glomerular endothelial cell injury and cross talk in diabetic kidney disease.

    PubMed

    Fu, Jia; Lee, Kyung; Chuang, Peter Y; Liu, Zhihong; He, John Cijiang

    2015-02-15

    Diabetic kidney disease (DKD) remains a leading cause of new-onset end-stage renal disease (ESRD), and yet, at present, the treatment is still very limited. A better understanding of the pathogenesis of DKD is therefore necessary to develop more effective therapies. Increasing evidence suggests that glomerular endothelial cell (GEC) injury plays a major role in the development and progression of DKD. Alteration of the glomerular endothelial cell surface layer, including its major component, glycocalyx, is a leading cause of microalbuminuria observed in early DKD. Many studies suggest a presence of cross talk between glomerular cells, such as between GEC and mesangial cells or GEC and podocytes. PDGFB/PDGFRβ is a major mediator for GEC and mesangial cell cross talk, while vascular endothelial growth factor (VEGF), angiopoietins, and endothelin-1 are the major mediators for GEC and podocyte communication. In DKD, GEC injury may lead to podocyte damage, while podocyte loss further exacerbates GEC injury, forming a vicious cycle. Therefore, GEC injury may predispose to albuminuria in diabetes either directly or indirectly by communication with neighboring podocytes and mesangial cells via secreted mediators. Identification of novel mediators of glomerular cell cross talk, such as microRNAs, will lead to a better understanding of the pathogenesis of DKD. Targeting these mediators may be a novel approach to develop more effective therapy for DKD.

  14. Fast method of cross-talk effect reduction in biomedical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nowakowski, Maciej; Kolenderska, Sylwia M.; Borycki, Dawid; Wojtkowski, Maciej

    2016-03-01

    Optical imaging of biological samples or living tissue structures requires light delivery to a region of interest and then collection of scattered light or fluorescent light in order to reconstruct an image of the object. When the coherent illumination light enters bulky biological object, each of scattering center (single molecule, group of molecules or other sample feature) acts as a secondary light source. As a result, scattered spherical waves from these secondary sources interact with each other, generating cross-talk noise between optical channels (eigenmodes). The cross-talk effect have serious impact on the performance of the imaging systems. In particular it reduces an ability of optical system to transfer high spatial frequencies thereby reducing its resolution. In this work we present a fast method to eliminate all unwanted waves combination, that overlap at image plane, suppressing recovery of high spatial frequencies by using the spatio-temporal optical coherence manipulation (STOC, [1]). In this method a number of phase mask is introduced to illuminating beam by spatial light modulator in a time of single image acquisition. We use a digital mirror device (DMD) in order to rapid cross-talk noise reduction (up to 22kHz modulation frequency) when imaging living biological cells in vivo by using full-field microscopy setup with double pass arrangement. This, to our best knowledge, has never been shown before. [1] D. Borycki, M. Nowakowski, and M. Wojtkowski, Opt. Lett. 38, 4817 (2013).

  15. Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging

    PubMed Central

    Shimozawa, Togo; Yamagata, Kazuo; Kondo, Takefumi; Hayashi, Shigeo; Shitamukai, Atsunori; Konno, Daijiro; Matsuzaki, Fumio; Takayama, Jun; Onami, Shuichi; Nakayama, Hiroshi; Kosugi, Yasuhito; Watanabe, Tomonobu M.; Fujita, Katsumasa; Mimori-Kiyosue, Yuko

    2013-01-01

    A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to “pinhole cross-talk,” which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging. PMID:23401517

  16. Tubular cross talk in acute kidney injury: a story of sense and sensibility.

    PubMed

    El-Achkar, Tarek M; Dagher, Pierre C

    2015-06-15

    The mammalian kidney is an organ composed of numerous functional units or nephrons. Beyond the filtering glomerulus of each nephron, various tubular segments with distinct populations of epithelial cells sequentially span the kidney from cortex to medulla. The highly organized folding of the tubules results in a spatial distribution that allows intimate contact between various tubular subsegments. This unique arrangement can promote a newly recognized type of horizontal epithelial-to-epithelial cross talk. In this review, we discuss the importance of this tubular cross talk in shaping the response of the kidney to acute injury in a sense and sensibility model. We propose that injury-resistant tubules such as S1 proximal segments and thick ascending limbs (TAL) can act as "sensors" and thus modulate the responsiveness or "sensibility" of the S2-S3 proximal segments to injury. We also discuss new findings that highlight the importance of tubular cross talk in regulating homeostasis and inflammation not only in the kidney, but also systemically.

  17. Glomerular endothelial cell injury and cross talk in diabetic kidney disease

    PubMed Central

    Fu, Jia; Lee, Kyung; Chuang, Peter Y.; Liu, Zhihong

    2014-01-01

    Diabetic kidney disease (DKD) remains a leading cause of new-onset end-stage renal disease (ESRD), and yet, at present, the treatment is still very limited. A better understanding of the pathogenesis of DKD is therefore necessary to develop more effective therapies. Increasing evidence suggests that glomerular endothelial cell (GEC) injury plays a major role in the development and progression of DKD. Alteration of the glomerular endothelial cell surface layer, including its major component, glycocalyx, is a leading cause of microalbuminuria observed in early DKD. Many studies suggest a presence of cross talk between glomerular cells, such as between GEC and mesangial cells or GEC and podocytes. PDGFB/PDGFRβ is a major mediator for GEC and mesangial cell cross talk, while vascular endothelial growth factor (VEGF), angiopoietins, and endothelin-1 are the major mediators for GEC and podocyte communication. In DKD, GEC injury may lead to podocyte damage, while podocyte loss further exacerbates GEC injury, forming a vicious cycle. Therefore, GEC injury may predispose to albuminuria in diabetes either directly or indirectly by communication with neighboring podocytes and mesangial cells via secreted mediators. Identification of novel mediators of glomerular cell cross talk, such as microRNAs, will lead to a better understanding of the pathogenesis of DKD. Targeting these mediators may be a novel approach to develop more effective therapy for DKD. PMID:25411387

  18. Oligodendrocyte-microglia cross-talk in the central nervous system

    PubMed Central

    Peferoen, Laura; Kipp, Markus; Valk, Paul; Noort, Johannes M; Amor, Sandra

    2014-01-01

    Communication between the immune system and the central nervous system (CNS) is exemplified by cross-talk between glia and neurons shown to be essential for maintaining homeostasis. While microglia are actively modulated by neurons in the healthy brain, little is known about the cross-talk between oligodendrocytes and microglia. Oligodendrocytes, the myelin-forming cells in the CNS, are essential for the propagation of action potentials along axons, and additionally serve to support neurons by producing neurotrophic factors. In demyelinating diseases such as multiple sclerosis, oligodendrocytes are thought to be the victims. Here, we review evidence that oligodendrocytes also have strong immune functions, express a wide variety of innate immune receptors, and produce and respond to chemokines and cytokines that modulate immune responses in the CNS. We also review evidence that during stress events in the brain, oligodendrocytes can trigger a cascade of protective and regenerative responses, in addition to responses that elicit progressive neurodegeneration. Knowledge of the cross-talk between microglia and oligodendrocytes may continue to uncover novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and degeneration. PMID:23981039

  19. Remifentanil-induced preconditioning has cross-talk with A1 and A2B adenosine receptors in ischemic-reperfused rat heart.

    PubMed

    Lee, Yong-Cheol; Jung, Jiyoon; Park, Sang-Jin

    2016-01-01

    The purpose of this study was to determine whether there is a cross-talk between opioid receptors (OPRs) and adenosine receptors (ADRs) in remifentanil preconditioning (R-Pre) and, if so, to investigate the types of ADRs involved in the cross-talk. Isolated rat hearts received 30 min of regional ischemia followed by 2 hr of reperfusion. OPR and ADR antagonists were perfused from 10 min before R-Pre until the end of R-Pre. The heart rate, left ventricular developed pressure (LVDP),velocity of contraction (+dP/dtmax), and coronary flow (CF) were recorded. The area at risk and area of necrosis were measured. After reperfusion, the LVDP, +dP/dtmax,and CF showed a significant increase in the R-Pre group compared with the control group (no intervention before or after regional ischemia). These increases in the R-Pre group were blocked by naloxone, a nonspecific ADR antagonist, an A1 ADR antagonist, and an A2B ADR antagonist. The infarct size was reduced significantly in the R-Pre group compared with the control group. The infarct-reducing effect in the R-Pre group was blocked by naloxone, the nonspecific ADR antagonist, the A1 ADR antagonist, and the A2B ADR antagonist. The results of this study demonstrate that there is cross-talk between ADRs and OPRs in R-Pre and that A1 ADR and A2B ADR appear to be involved in the cross-talk.

  20. Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network.

    PubMed

    Zhao, Claire Y; Greenstein, Joseph L; Winslow, Raimond L

    2016-02-01

    The balanced signaling between the two cyclic nucleotides (cNs) cAMP and cGMP plays a critical role in regulating cardiac contractility. Their degradation is controlled by distinctly regulated phosphodiesterase isoenzymes (PDEs), which in turn are also regulated by these cNs. As a result, PDEs facilitate communication between the β-adrenergic and Nitric Oxide (NO)/cGMP/Protein Kinase G (PKG) signaling pathways, which regulate the synthesis of cAMP and cGMP respectively. The phenomena in which the cAMP and cGMP pathways influence the dynamics of each other are collectively referred to as cN cross-talk. However, the cross-talk response and the individual roles of each PDE isoenzyme in shaping this response remain to be fully characterized. We have developed a computational model of the cN cross-talk network that mechanistically integrates the β-adrenergic and NO/cGMP/PKG pathways via regulation of PDEs by both cNs. The individual model components and the integrated network model replicate experimentally observed activation-response relationships and temporal dynamics. The model predicts that, due to compensatory interactions between PDEs, NO stimulation in the presence of sub-maximal β-adrenergic stimulation results in an increase in cytosolic cAMP accumulation and corresponding increases in PKA-I and PKA-II activation; however, the potentiation is small in magnitude compared to that of NO activation of the NO/cGMP/PKG pathway. In a reciprocal manner, β-adrenergic stimulation in the presence of sub-maximal NO stimulation results in modest cGMP elevation and corresponding increase in PKG activation. In addition, we demonstrate that PDE2 hydrolyzes increasing amounts of cAMP with increasing levels of β-adrenergic stimulation, and hydrolyzes increasing amounts of cGMP with decreasing levels of NO stimulation. Finally, we show that PDE2 compensates for inhibition of PDE5 both in terms of cGMP and cAMP dynamics, leading to cGMP elevation and increased PKG activation

  1. EndothelinA-endothelinB receptor cross-talk in rat basilar artery in situ.

    PubMed

    Yoon, SeongHun; Zuccarello, Mario; Rapoport, Robert M

    2012-04-01

    The rationale for the therapeutic use of dual as opposed to selective endothelin (ET) receptor antagonists stems in part from cross-talk between the ET(A) and ET(B) receptors. However, whether ET(A)-ET(B) receptor cross-talk is present in the cerebral vasculature is difficult to discern since findings of cross-talk contrast even among the few reports available. Thus, this study tested whether ET(A)-ET(B) receptor cross-talk is present in the rat basilar artery. In an in situ cranial window, 0.1 μM sarafotoxin S6c, an ET(B) receptor agonist, relaxed basilar artery basal tone by 54%. ET-1 (3 nM) in the absence and presence of 10 μM BQ123, an ET(A) receptor agonist, induced 13% contraction and 15% relaxation, respectively. In contrast, the 3-nM ET-1 plateau contraction was relaxed by only ∼50% by 3-10 μM BQ123 and 10 μM BQ610, ET(A) receptor antagonists. N(ω)-nitro-L: -arginine, an NO synthase inhibitor, did not enhance contraction to 3 nM ET-1, suggesting that the partial relaxation of the ET-1 plateau contraction did not involve unmasked endothelial ET(B) receptor-mediated relaxation. The ∼50% ET-1 contraction that remained following ET(A) receptor antagonist was relaxed by 3-10 μM BQ788, consistent with an ET(B) receptor-mediated component of contraction. However, 10 μM BQ788 in the absence of prior ET(A) receptor antagonist did not cause relaxation. Subsequent BQ123 addition in the presence of BQ788 completely relaxed the ET-1 contraction. PD145065 (1 μM), an ET(A/B) receptor antagonist, completely relaxed 3-nM ET-1 contracted vessels in both the absence and presence of BQ123. These findings suggest that the inability of ET(A) receptor antagonist to completely relax the ET-1 plateau contraction in rat basilar artery is due to ET(A)-ET(B) receptor cross-talk.

  2. Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints.

    PubMed

    Pan, Jun; Wang, Bin; Li, Wen; Zhou, Xiaozhou; Scherr, Thomas; Yang, Yunyi; Price, Christopher; Wang, Liyun

    2012-08-01

    Osteoarthritis (OA) is a degenerative joint disease and one of the leading causes of disability in the United States and across the world. As a disease of the whole joint, OA exhibits a complicated etiology with risk factors including, but not limited to, ageing, altered joint loading, and injury. Subchondral bone is hypothesized to be involved in OA development. However, direct evidence supporting this is lacking. We previously detected measurable transport of solute across the mineralized calcified cartilage in normal joints, suggesting a potential cross-talk between subchondral bone and cartilage. Whether this cross-talk exists in OA has not been established yet. Using two models that induced OA by either ageing or surgery (destabilization of medial meniscus, DMM), we tested the hypothesis that increased cross-talk occurs in OA. We quantified the diffusivity of sodium fluorescein (mol. wt. 376Da), a marker of small-sized signaling molecules, within calcified joint matrix using our newly developed fluorescence loss induced by photobleaching (FLIP) method. Tracer diffusivity was found to be 0.30±0.17 and 0.33±0.20μm(2)/s within the calcified cartilage and 0.12±0.04 and 0.07±0.03μm(2)/s across the osteochondral interface in the aged (20-24-month-old, n=4) and DMM OA joints (5-month-old, n=5), respectively, which were comparable to the control values for the contralateral non-operated joints in the DMM mice (0.48±0.13 and 0.12±0.06μm(2)/s). Although we did not detect significant changes in tissue matrix permeability in OA joints, we found i) an increased number of vessels invading the calcified cartilage (and sometimes approaching the tidemark) in the aged (+100%) and DMM (+50%) joints relative to the normal age controls; and ii) a 60% thinning of the subchondral bone and calcified cartilage layers in the aged joints (with no significant changes detected in the DMM joints). These results suggested that the capacity for cross-talk between subchondral bone

  3. Propagation dynamics of controlled cross-talk via interplay between {chi}{sup (1)} and {chi}{sup (3)} processes

    SciTech Connect

    Hsu, Paul S.; Welch, George R.; Gord, James R.; Patnaik, Anil K.

    2011-05-15

    We investigate theoretically and experimentally the propagation dynamics of a nonlinear cross-talk effect between two probe channels in a double-ladder system and show that an interplay between {chi}{sup (1)} and {chi}{sup (3)} processes leads to the control of cross-talk. We derive analytical solutions to describe the propagation dynamics of the probe fields with the cross-talk effect built in. From the analytical results we identify and examine the regimes of interest where contributions of either {chi}{sup (1)} or {chi}{sup (3)} or both are significant. The control of cross-talk is demonstrated experimentally, and good quantitative agreement is found between the analytical solutions and the experiment.

  4. Photosensitive cross-linked block copolymers with controllable release.

    PubMed

    Yu, Lili; Lv, Cong; Wu, LiZhu; Tung, ChenHo; Lv, WanLiang; Li, ZhongJin; Tang, XinJing

    2011-01-01

    We intend to form photosensitive block copolymer micelles for controllable release of encapsulated substances. Here, we designed and synthesized a new photocleavable cross-linker (2-nitrophenyl ethylene glycol dimethacrylate) for methyl methacrylate (MMA) atom transfer radical polymerization. Four different ratios (0:1, 1:26, 1:16, 1:8.8) of the photocleavable cross-linker to MMA monomer were used and four block copolymers (P0, P1, P2, P3) were synthesized with PEO-Br as the macroinitiator. Gel permeation chromatography and (1) H NMR studies showed that linear polymer molecules could be cross-linked by the photocleavable linker. The fluorescence studies of the encapsulated Nile Red (NR) showed that there were lower critical micelle concentrations for the polymer P1, P2 and P3 than polymer P0. And dynamic light scattering and SEM confirmed the formation of polymer micelles. Photolysis experiments demonstrated that NR encapsulated in the polymer micelles could be released upon UV irradiation (365 nm, 11 mW cm(-2)) due to the breakage of the photocleavable linker and the generation of more hydrophilic acid moieties, which destabilized polymer micelles. Our study shows a new strategy for the possibility of photocontrollable drug release for hydrophobic drugs.

  5. Staphylococcus epidermidis agr quorum-sensing system: signal identification, cross talk, and importance in colonization.

    PubMed

    Olson, Michael E; Todd, Daniel A; Schaeffer, Carolyn R; Paharik, Alexandra E; Van Dyke, Michael J; Büttner, Henning; Dunman, Paul M; Rohde, Holger; Cech, Nadja B; Fey, Paul D; Horswill, Alexander R

    2014-10-01

    Staphylococcus epidermidis is an opportunistic pathogen that is one of the leading causes of medical device infections. Global regulators like the agr quorum-sensing system in this pathogen have received a limited amount of attention, leaving important questions unanswered. There are three agr types in S. epidermidis strains, but only one of the autoinducing peptide (AIP) signals has been identified (AIP-I), and cross talk between agr systems has not been tested. We structurally characterized all three AIP types using mass spectrometry and discovered that the AIP-II and AIP-III signals are 12 residues in length, making them the largest staphylococcal AIPs identified to date. S. epidermidis agr reporter strains were developed for each system, and we determined that cross-inhibitory interactions occur between the agr type I and II systems and between the agr type I and III systems. In contrast, no cross talk was observed between the type II and III systems. To further understand the outputs of the S. epidermidis agr system, an RNAIII mutant was constructed, and microarray studies revealed that exoenzymes (Ecp protease and Geh lipase) and low-molecular-weight toxins were downregulated in the mutant. Follow-up analysis of Ecp confirmed the RNAIII is required to induce protease activity and that agr cross talk modulates Ecp activity in a manner that mirrors the agr reporter results. Finally, we demonstrated that the agr system enhances skin colonization by S. epidermidis using a porcine model. This work expands our knowledge of S. epidermidis agr system function and will aid future studies on cell-cell communication in this important opportunistic pathogen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Elevated intracellular calcium triggers recruitment of the receptor cross-talk accessory protein calcyon to the plasma membrane.

    PubMed

    Ali, Mohammad Kutub; Bergson, Clare

    2003-12-19

    Calcyon is called a "cross-talk accessory protein" because the mechanism by which it enables the typically Gs-linked D1 dopamine receptor to stimulate intracellular calcium release depends on a priming step involving heterologous Gq-linked G-protein-coupled receptor activation. The details of how priming facilitates the D1R calcium response have yet to be precisely elucidated. The present work shows that calcyon is constitutively localized both in vesicular and plasma membrane compartments within HEK293 cells. In addition, surface biotinylation and luminescence assays revealed that priming stimulates a 2-fold increase in the levels of calcyon expressed on the cell surface and that subsequent D1R activation produces further accumulation of the protein in the plasma membrane. The effects of priming and D1R agonists were blocked by nocodazole implicating microtubules in the delivery of calcyon-containing vesicles to the cell surface. Accumulation of calcyon in the plasma membrane correlated well with increased intracellular calcium levels as thapsigargin mimicked, and 2-aminoethoxydiphenylborane abrogated, the effects of priming. KN-62, an inhibitor of calcium/calmodulin-dependent protein kinase II (CaMKII) also blocked the effects of priming and D1R agonists. Furthermore, expression of constitutively active forms of the kinase bypassed the requirement for priming indicating that CaMKII is a key effector in the Ca2+ and microtubule-dependent delivery of calcyon to the cell surface.

  7. PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling

    PubMed Central

    Petriello, Michael C.; Han, Sung Gu; Newsome, Bradley J.; Hennig, Bernhard

    2014-01-01

    Environmental toxicants such as polychlorinated biphenyls (PCBs) have been implicated in the promotion of multiple inflammatory disorders including cardiovascular disease, but information regarding mechanisms of toxicity and cross-talk between relevant cell signaling pathways is lacking. To examine the hypothesis that cross-talk between membrane domains called caveolae and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways alter PCB-induced inflammation, caveolin-1 was silenced in vascular endothelial cells, resulting in a decreased PCB-induced inflammatory response. Cav-1 silencing (siRNA treatment) also increased levels of Nrf2-ARE transcriptional binding, resulting in higher mRNA levels of the antioxidant genes glutathione s-transferase and NADPH dehydrogenase quinone-1 in both vehicle and PCB-treated systems. Along with this upregulated antioxidant response, Cav-1 siRNA treated cells exhibited decreased mRNA levels of the Nrf2 inhibitory protein Keap1 in both vehicle and PCB-treated samples. Silencing Cav-1 also decreased protein levels of Nrf2 inhibitory proteins Keap1 and Fyn kinase, especially in PCB-treated cells. Further, endothelial cells from wildtype and Cav-1−/− mice were isolated and treated with PCB to better elucidate the role of functional caveolae in PCB-induced endothelial inflammation. Cav-1−/− endothelial cells were protected from PCB-induced cellular dysfunction as evidenced by decreased vascular cell adhesion molecule (VCAM-1) protein induction. Compared to wildtype cells, Cav-1−/− endothelial cells also allowed for a more effective antioxidant response, as observed by higher levels of the antioxidant genes. These data demonstrate novel cross-talk mechanisms between Cav-1 and Nrf2 and implicate the reduction of Cav-1 as a protective mechanism for PCB-induced cellular dysfunction and inflammation. PMID:24709675

  8. PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling.

    PubMed

    Petriello, Michael C; Han, Sung Gu; Newsome, Bradley J; Hennig, Bernhard

    2014-06-01

    Environmental toxicants such as polychlorinated biphenyls (PCBs) have been implicated in the promotion of multiple inflammatory disorders including cardiovascular disease, but information regarding mechanisms of toxicity and cross-talk between relevant cell signaling pathways is lacking. To examine the hypothesis that cross-talk between membrane domains called caveolae and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways alters PCB-induced inflammation, caveolin-1 was silenced in vascular endothelial cells, resulting in a decreased PCB-induced inflammatory response. Cav-1 silencing (siRNA treatment) also increased levels of Nrf2-ARE transcriptional binding, resulting in higher mRNA levels of the antioxidant genes glutathione s-transferase and NADPH dehydrogenase quinone-1 in both vehicle and PCB-treated systems. Along with this upregulated antioxidant response, Cav-1 siRNA treated cells exhibited decreased mRNA levels of the Nrf2 inhibitory protein Keap1 in both vehicle and PCB-treated samples. Silencing Cav-1 also decreased protein levels of Nrf2 inhibitory proteins Keap1 and Fyn kinase, especially in PCB-treated cells. Further, endothelial cells from wildtype and Cav-1-/- mice were isolated and treated with PCB to better elucidate the role of functional caveolae in PCB-induced endothelial inflammation. Cav-1-/- endothelial cells were protected from PCB-induced cellular dysfunction as evidenced by decreased vascular cell adhesion molecule (VCAM-1) protein induction. Compared to wildtype cells, Cav-1-/- endothelial cells also allowed for a more effective antioxidant response, as observed by higher levels of the antioxidant genes. These data demonstrate novel cross-talk mechanisms between Cav-1 and Nrf2 and implicate the reduction of Cav-1 as a protective mechanism for PCB-induced cellular dysfunction and inflammation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Statistics of accumulated splice-cross talk in weakly coupled few-mode fiber links

    NASA Astrophysics Data System (ADS)

    Han, Jiawei; Qu, Caifeng

    2016-07-01

    For uncoupled mode-division-multiplexed systems in weakly coupled (WC) few-mode fibers (FMFs), we numerically investigate the effect of splices on the statistical regularities of WC property preservation along the transmission link. At each splice, the probability density functions of intermodal cross talk (XT) for the transmitted linearly polarized mode(s) are numerically analyzed by using Gaussian fitting. Under the assessment criterion of accumulated intermodal XT affected by discrete splices, we give an empirical evaluation on the uncoupled probability value versus transmission distance, for WC FMF links with different splicing qualities.

  10. CrossTalk: The Journal of Defense Software Engineering. Volume 19, Number 8

    DTIC Science & Technology

    2006-08-01

    aircraft, as well as future aircraft such as the Boeing 7E7 prototype. • The National Ignition Facility ( NIF ) at Lawrence Livermore National Lab. The NIF ...www.cnsoftware.org/nss2report/Chen-NSS2v.3. pdf >. 2. See “Correctness by Construction: A Manifesto for High-Integrity Software” by Martin Croxford...and Roderick Chapman, CrossTalk, Dec. 2005 at <www stsc. hill.af.mil/crosstalk/2005/12/0512CroxfordChapman.html>. 3. See <www.rtj.org/rtsj-V1.0. pdf >. 4

  11. CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 2

    DTIC Science & Technology

    2008-02-01

    FEB 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4 . TITLE AND SUBTITLE CrossTalk: The Journal of Defense Software Engineering...The Journal of Defense Software Engineering February 2008 4 9 14 19 22 27 3 8 18 28 29 30 31 D ep ar t m e n t s From the Publisher Coming Events Call...for both. Good Things Come in Small Packages Elizabeth Starrett Publisher 4 CROSSTALK The Journal of Defense Software Engineering February 2008 DRILS

  12. Cross-talk between gibberellins and salicylic acid in early stress responses in Arabidopsis thaliana seeds

    PubMed Central

    Alonso-Ramírez, Ana; Rodríguez, Dolores; Reyes, David; Jiménez, Jesús Angel; Nicolás, Gregorio; López-Climent, María; Gómez-Cadenas, Aurelio

    2009-01-01

    Salicylic acid (SA) is a plant hormone mainly associated with the induction of defense mechanism in plants, although in the last years there is increasing evidence on the role of SA in plant responses to abiotic stress. We recently reported that an increase in endogenous SA levels are able to counteract the inhibitory effects of several abiotic stress conditions during germination and seedling establishment of Arabidopsis thaliana and that this effect is modulated by gibberellins (GAs) probably through a member of the GASA (Giberellic Acid Stimulated in Arabidopsis) gene family, clearly showing the existence of a cross talk between these two plant hormones in Arabidopsis. PMID:19820299

  13. Computational analysis of miRNA-target community network reveals cross talk among different metabolisms

    PubMed Central

    Nigam, Deepti; Kadimi, Puneet K.; Kumar, Sanjeev; Mishra, Dwijesh Chandra; Rai, Anil

    2015-01-01

    To date, only a few conserved miRNAs have been predicted in hexaploid (AABBDD) bread wheat and till now community behavior among miRNA is still in dark. Analysis of publically available 1287279 ESTs from NCBI resulted 262 putative pre-miRNAs and 39 novel mature miRNAs. A total 22,468 targets were identified on 21 chromosomes. MiRNA target community was identified for genomes with different levels of cross talks. Gene ontology of these community targets suggests their differential involvement in different metabolisms along with common and stringent involvement in nitrogen metabolism. PMID:26484271

  14. PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling

    SciTech Connect

    Petriello, Michael C.; Han, Sung Gu; Newsome, Bradley J.; Hennig, Bernhard

    2014-06-01

    Environmental toxicants such as polychlorinated biphenyls (PCBs) have been implicated in the promotion of multiple inflammatory disorders including cardiovascular disease, but information regarding mechanisms of toxicity and cross-talk between relevant cell signaling pathways is lacking. To examine the hypothesis that cross-talk between membrane domains called caveolae and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways alters PCB-induced inflammation, caveolin-1 was silenced in vascular endothelial cells, resulting in a decreased PCB-induced inflammatory response. Cav-1 silencing (siRNA treatment) also increased levels of Nrf2-ARE transcriptional binding, resulting in higher mRNA levels of the antioxidant genes glutathione s-transferase and NADPH dehydrogenase quinone-1 in both vehicle and PCB-treated systems. Along with this upregulated antioxidant response, Cav-1 siRNA treated cells exhibited decreased mRNA levels of the Nrf2 inhibitory protein Keap1 in both vehicle and PCB-treated samples. Silencing Cav-1 also decreased protein levels of Nrf2 inhibitory proteins Keap1 and Fyn kinase, especially in PCB-treated cells. Further, endothelial cells from wildtype and Cav-1 −/− mice were isolated and treated with PCB to better elucidate the role of functional caveolae in PCB-induced endothelial inflammation. Cav-1 −/− endothelial cells were protected from PCB-induced cellular dysfunction as evidenced by decreased vascular cell adhesion molecule (VCAM-1) protein induction. Compared to wildtype cells, Cav-1 −/− endothelial cells also allowed for a more effective antioxidant response, as observed by higher levels of the antioxidant genes. These data demonstrate novel cross-talk mechanisms between Cav-1 and Nrf2 and implicate the reduction of Cav-1 as a protective mechanism for PCB-induced cellular dysfunction and inflammation. - Highlights: • Reduction of caveolin-1 protein protects against polychlorinated biphenyl toxicity. • Decreasing

  15. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 12

    DTIC Science & Technology

    2007-12-01

    Sustainment for the F-35 Lightning II This article describes some of the revolutionary conclusions and products of an analysis of the sustainment for the F-35...U.S. government, the DoD, the co-sponsors, or the STSC.All product names referenced in this issue are trademarks of their companies. CrossTalk Online...industry has more than 50 years of product experience, the personnel who repair existing products tend to outnum- ber the personnel who build new prod

  16. Cross-talk between liver and intestine in control of cholesterol and energy homeostasis.

    PubMed

    Groen, Albert K; Bloks, Vincent W; Verkade, Henkjan; Kuipers, Folkert

    2014-06-01

    A major hurdle for organisms to dispose of cholesterol is the inability to degrade the sterol nucleus which constitutes the central part of the molecule. Synthesis of the sterol nucleus requires a complex, energy costly, metabolic pathway but also generates a diverse array of intermediates serving crucial roles in cellular energy metabolism and signal transduction. This may be the reason why this complex pathway has survived evolutionary pressure. The only way to get rid of substantial amounts of cholesterol is conversion into bile acid or direct excretion of the sterol in the feces. The lack of versatility in disposal mechanisms causes a lack of flexibility to regulate cholesterol homeostasis which may underlie the considerable human pathology linked to cholesterol removal from the body. Export of cholesterol from the body requires an intricate communication between intestine and the liver. The last decade this inter-organ cross talk has been focus of intense research leading to considerable new insight. This novel information on particular the cross-talk between liver and intestine and role of bile acids as signal transducing molecules forms the focus of this review. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Astroglia-Microglia Cross Talk during Neurodegeneration in the Rat Hippocampus

    PubMed Central

    Batlle, Montserrat; Ferri, Lorenzo; Andrade, Carmen; Ortega, Francisco-Javier; Vidal-Taboada, Jose M.; Pugliese, Marco; Mahy, Nicole; Rodríguez, Manuel J.

    2015-01-01

    Brain injury triggers a progressive inflammatory response supported by a dynamic astroglia-microglia interplay. We investigated the progressive chronic features of the astroglia-microglia cross talk in the perspective of neuronal effects in a rat model of hippocampal excitotoxic injury. N-Methyl-D-aspartate (NMDA) injection triggered a process characterized within 38 days by atrophy, neuronal loss, and fast astroglia-mediated S100B increase. Microglia reaction varied with the lesion progression. It presented a peak of tumor necrosis factor-α (TNF-α) secretion at one day after the lesion, and a transient YM1 secretion within the first three days. Microglial glucocorticoid receptor expression increased up to day 5, before returning progressively to sham values. To further investigate the astroglia role in the microglia reaction, we performed concomitant transient astroglia ablation with L-α-aminoadipate and NMDA-induced lesion. We observed a striking maintenance of neuronal death associated with enhanced microglial reaction and proliferation, increased YM1 concentration, and decreased TNF-α secretion and glucocorticoid receptor expression. S100B reactivity only increased after astroglia recovery. Our results argue for an initial neuroprotective microglial reaction, with a direct astroglial control of the microglial cytotoxic response. We propose the recovery of the astroglia-microglia cross talk as a tissue priority conducted to ensure a proper cellular coordination that retails brain damage. PMID:25977914

  18. Reverse Engineering: A Key Component of Systems Biology to Unravel Global Abiotic Stress Cross-Talk

    PubMed Central

    Friedel, Swetlana; Usadel, Björn; von Wirén, Nicolaus; Sreenivasulu, Nese

    2012-01-01

    Understanding the global abiotic stress response is an important stepping stone for the development of universal stress tolerance in plants in the era of climate change. Although co-occurrence of several stress factors (abiotic and biotic) in nature is found to be frequent, current attempts are poor to understand the complex physiological processes impacting plant growth under combinatory factors. In this review article, we discuss the recent advances of reverse engineering approaches that led to seminal discoveries of key candidate regulatory genes involved in cross-talk of abiotic stress responses and summarized the available tools of reverse engineering and its relevant application. Among the universally induced regulators involved in various abiotic stress responses, we highlight the importance of (i) abscisic acid (ABA) and jasmonic acid (JA) hormonal cross-talks and (ii) the central role of WRKY transcription factors (TF), potentially mediating both abiotic and biotic stress responses. Such interactome networks help not only to derive hypotheses but also play a vital role in identifying key regulatory targets and interconnected hormonal responses. To explore the full potential of gene network inference in the area of abiotic stress tolerance, we need to validate hypotheses by implementing time-dependent gene expression data from genetically engineered plants with modulated expression of target genes. We further propose to combine information on gene-by-gene interactions with data from physical interaction platforms such as protein–protein or TF-gene networks. PMID:23293646

  19. Large area UV SiPMs with extremely low cross-talk

    NASA Astrophysics Data System (ADS)

    Dolgoshein, B.; Mirzoyan, R.; Popova, E.; Buzhan, P.; Ilyin, A.; Kaplin, V.; Stifutkin, A.; Teshima, M.; Zhukov, A.

    2012-12-01

    For about ten years the collaboration MEPhI-Max Plank Institute for Physics in Munich has been developing SiPMs for the MAGIC and EUSO astro-particle physics experiments. The aim was to develop UV sensitive sensors of very high photon detection efficiency, substantially exceeding that of the classical photo multiplier tubes. For very high photo detection efficiency one needs to operate SiPM under the highest Geiger efficiency, i.e., to apply a high over-voltage. This means operating SiPM under high gain that in its turn produces a very high cross-talk. For suppressing the latter adverse effect we used isolating trenches and a second p-n junction, but also special implantation profiles and layers. We produced UV sensitive SiPMs of sizes 1 mm×1 mm and 3 mm×3 mm showing a peak Photon Detection Efficiency in the range of 50-60% at a cross-talk level of only 3-5%. One of the outstanding features of the new SiPM is their extremely low sensitivity of gain to temperature variations, amounting to 0.5%/°C. Below we report on new SiPMs.

  20. Reverse engineering: a key component of systems biology to unravel global abiotic stress cross-talk.

    PubMed

    Friedel, Swetlana; Usadel, Björn; von Wirén, Nicolaus; Sreenivasulu, Nese

    2012-01-01

    Understanding the global abiotic stress response is an important stepping stone for the development of universal stress tolerance in plants in the era of climate change. Although co-occurrence of several stress factors (abiotic and biotic) in nature is found to be frequent, current attempts are poor to understand the complex physiological processes impacting plant growth under combinatory factors. In this review article, we discuss the recent advances of reverse engineering approaches that led to seminal discoveries of key candidate regulatory genes involved in cross-talk of abiotic stress responses and summarized the available tools of reverse engineering and its relevant application. Among the universally induced regulators involved in various abiotic stress responses, we highlight the importance of (i) abscisic acid (ABA) and jasmonic acid (JA) hormonal cross-talks and (ii) the central role of WRKY transcription factors (TF), potentially mediating both abiotic and biotic stress responses. Such interactome networks help not only to derive hypotheses but also play a vital role in identifying key regulatory targets and interconnected hormonal responses. To explore the full potential of gene network inference in the area of abiotic stress tolerance, we need to validate hypotheses by implementing time-dependent gene expression data from genetically engineered plants with modulated expression of target genes. We further propose to combine information on gene-by-gene interactions with data from physical interaction platforms such as protein-protein or TF-gene networks.

  1. Rgg-Associated SHP Signaling Peptides Mediate Cross-Talk in Streptococci

    PubMed Central

    Fleuchot, Betty; Guillot, Alain; Mézange, Christine; Besset, Colette; Chambellon, Emilie; Monnet, Véronique; Gardan, Rozenn

    2013-01-01

    We described a quorum-sensing mechanism in the streptococci genus involving a short hydrophobic peptide (SHP), which acts as a pheromone, and a transcriptional regulator belonging to the Rgg family. The shp/rgg genes, found in nearly all streptococcal genomes and in several copies in some, have been classified into three groups. We used a genetic approach to evaluate the functionality of the SHP/Rgg quorum-sensing mechanism, encoded by three selected shp/rgg loci, in pathogenic and non-pathogenic streptococci. We characterized the mature form of each SHP pheromone by mass-spectrometry. We produced synthetic peptides corresponding to these mature forms, and used them to study functional complementation and cross-talk between these different SHP/Rgg systems. We demonstrate that a SHP pheromone of one system can influence the activity of a different system. Interestingly, this does not seem to be dependent on the SHP/Rgg group and cross-talk between pathogenic and non-pathogenic streptococci is observed. PMID:23776602

  2. Review: Post-translational cross-talk between brassinosteroid and sucrose signaling.

    PubMed

    Kühn, Christina

    2016-07-01

    A direct link has been elucidated between brassinosteroid function and perception, and sucrose partitioning and transport. Sucrose regulation and brassinosteroid signaling cross-talk at various levels, including the well-described regulation of transcriptional gene expression: BZR-like transcription factors link the signaling pathways. Since brassinosteroid responses depend on light quality and quantity, a light-dependent alternative pathway was postulated. Here, the focus is on post-translational events. Recent identification of sucrose transporter-interacting partners raises the question whether brassinosteroid and sugars jointly affect plant innate immunity and plant symbiotic interactions. Membrane permeability and sensitivity depends on the number of cell surface receptors and transporters. More than one endocytic route has been assigned to specific components, including brassinosteroid-receptors. The number of such proteins at the plasma membrane relies on endocytic recycling, internalization and/or degradation. Therefore, vesicular membrane trafficking is gaining considerable attention with regard to plant immunity. The organization of pattern recognition receptors (PRRs), other receptors or transporters in membrane microdomains participate in endocytosis and the formation of specific intracellular compartments, potentially impacting biotic interactions. This minireview focuses on post-translational events affecting the subcellular compartmentation of membrane proteins involved in signaling, transport, and defense, and on the cross-talk between brassinosteroid signals and sugar availability.

  3. VEGF-mediated cross-talk within the neonatal murine thymus

    PubMed Central

    Cuddihy, Andrew R.; Ge, Shundi; Zhu, Judy; Jang, Julie; Chidgey, Ann; Thurston, Gavin; Boyd, Richard

    2009-01-01

    Although the mechanisms of cross-talk that regulate the hematopoietic and epithelial compartments of the thymus are well established, the interactions of these compartments with the thymic endothelium have been largely ignored. Current understanding of the thymic vasculature is based on studies of adult thymus. We show that the neonatal period represents a unique phase of thymic growth and differentiation, marked by endothelium that is organized as primitive, dense networks of capillaries dependent on vascular endothelial growth factor (VEGF). VEGF dependence in neonates is mediated by significantly higher levels of both VEGF production and endothelial VEGF receptor 2 (VEGF-R2) expression than in the adult thymus. VEGF is expressed locally in the neonatal thymus by immature, CD4−CD8− “double negative” (DN) thymocytes and thymic epithelium. Relative to adult thymus, the neonatal thymus has greater thymocyte proliferation, and a predominance of immature thymocytes and cortical thymic epithelial cells (cTECs). Inhibition of VEGF signaling during the neonatal period results in rapid loss of the dense capillaries in the thymus and a marked reduction in the number of thymocytes. These data demonstrate that, during the early postnatal period, VEGF mediates cross-talk between the thymocyte and endothelial compartments of the thymus. PMID:19088378

  4. Seeing induced cross-talks in filter-based velocity measurements

    NASA Astrophysics Data System (ADS)

    Sreejith, P.; Sridharan, R.; Sankarasubramanian, K.

    Narrow band imaging using Universal Birefringent Filter (UBF) can be used to measure velocity features on the Sun. Velocity maps, in filter-based observations, are created by taking the intensity differences between the blue and red wing images of a chosen spectral line. In the case of variable seeing, there is a large probability that one of the (red- or blue-) wing images can be affected more compared to the other. Such differential seeing leads to spurious velocity values which are contributed due to cross-talk from the intensity, and found to be more pronounced in umbra and penumbra of sunspots. Simulations are carried out to estimate and understand the sources of the cross-talk. Variable seeing conditions are created using the Adaptive Optics Performance Evaluator (AOPE) software. The point-spread-function (PSF) produced by the AOPE is used to generate the red- and blue-wing images. In this paper, we also discuss the advantages of using AO corrected images in such variable seeing scenario.

  5. Regulation of phosphate starvation responses in plants: signaling players and cross-talks.

    PubMed

    Rouached, Hatem; Arpat, A Bulak; Poirier, Yves

    2010-03-01

    Phosphate (Pi) availability is a major factor limiting growth, development, and productivity of plants. In both ecological and agricultural contexts, plants often grow in soils with low soluble phosphate content. Plants respond to this situation by a series of developmental and metabolic adaptations that are aimed at increasing the acquisition of this vital nutrient from the soil, as well as to sustain plant growth and survival. The development of a comprehensive understanding of how plants sense phosphate deficiency and coordinate the responses via signaling pathways has become of major interest, and a number of signaling players and networks have begun to surface for the regulation of the phosphate-deficiency response. In practice, application of such knowledge to improve plant Pi nutrition is hindered by complex cross-talks, which are emerging in the face of new data, such as the coordination of the phosphate-deficiency signaling networks with those involved with hormones, photo-assimilates (sugar), as well as with the homeostasis of other ions, such as iron. In this review, we focus on these cross-talks and on recent progress in discovering new signaling players involved in the Pi-starvation responses, such as proteins having SPX domains.

  6. Two-stage cross-talk mitigation in an orbital-angular-momentum-based free-space optical communication system.

    PubMed

    Qu, Zhen; Djordjevic, Ivan B

    2017-08-15

    We propose and experimentally demonstrate a two-stage cross-talk mitigation method in an orbital-angular-momentum (OAM)-based free-space optical communication system, which is enabled by combining spatial offset and low-density parity-check (LDPC) coded nonuniform signaling. Different from traditional OAM multiplexing, where the OAM modes are centrally aligned for copropagation, the adjacent OAM modes (OAM states 2 and -6 and OAM states -2 and 6) in our proposed scheme are spatially offset to mitigate the mode cross talk. Different from traditional rectangular modulation formats, which transmit equidistant signal points with uniform probability, the 5-quadrature amplitude modulation (5-QAM) and 9-QAM are introduced to relieve cross-talk-induced performance degradation. The 5-QAM and 9-QAM formats are based on the Huffman coding technique, which can potentially achieve great cross-talk tolerance by combining them with corresponding nonbinary LDPC codes. We demonstrate that cross talk can be reduced by 1.6 dB and 1 dB via spatial offset for OAM states ±2 and ±6, respectively. Compared to quadrature phase shift keying and 8-QAM formats, the LDPC-coded 5-QAM and 9-QAM are able to bring 1.1 dB and 5.4 dB performance improvements in the presence of atmospheric turbulence, respectively.

  7. Cross-talk characterization of dense single-photon avalanche diode arrays in CMOS 150-nm technology

    NASA Astrophysics Data System (ADS)

    Xu, Hesong; Pancheri, Lucio; C. Braga, Leo H.; Betta, Gian-Franco Dalla; Stoppa, David

    2016-06-01

    Cross-talk characterization results of high-fill-factor single-photon avalanche diode (SPAD) arrays in CMOS 150-nm technology are reported and discussed. Three different SPAD structures were designed with two different sizes (15.6 and 25.6 μm pitch) and three guard ring widths (0.6, 1.1, and 1.6 μm). Each SPAD was implemented in an array, composed of 25 (5×5) devices, which can be separately activated. Measurement results show that the average cross-talk probability is well below 1% for the shallow-junction SPAD structure with 15.6 μm pitch and 39.9% fill factor, and 1.45% for the structure with 25.6 μm pitch and 60.6% fill factor. An increase of cross-talk probability with the excess bias voltage is observed.

  8. Optimal design of loudspeaker arrays for robust cross-talk cancellation using the Taguchi method and the genetic algorithm.

    PubMed

    Bai, Mingsian R; Tung, Chih-Wei; Lee, Chih-Chung

    2005-05-01

    An optimal design technique of loudspeaker arrays for cross-talk cancellation with application in three-dimensional audio is presented. An array focusing scheme is presented on the basis of the inverse propagation that relates the transducers to a set of chosen control points. Tikhonov regularization is employed in designing the inverse cancellation filters. An extensive analysis is conducted to explore the cancellation performance and robustness issues. To best compromise the performance and robustness of the cross-talk cancellation system, optimal configurations are obtained with the aid of the Taguchi method and the genetic algorithm (GA). The proposed systems are further justified by physical as well as subjective experiments. The results reveal that large number of loudspeakers, closely spaced configuration, and optimal control point design all contribute to the robustness of cross-talk cancellation systems (CCS) against head misalignment.

  9. One-dimensional photonic crystals for eliminating cross-talk in mid-IR photonics-based respiratory gas sensing

    NASA Astrophysics Data System (ADS)

    Fleming, L.; Gibson, D.; Song, S.; Hutson, D.; Reid, S.; MacGregor, C.; Clark, C.

    2017-02-01

    Mid-IR carbon dioxide (CO2) gas sensing is critical for monitoring in respiratory care, and is finding increasing importance in surgical anaesthetics where nitrous oxide (N2O) induced cross-talk is a major obstacle to accurate CO2 monitoring. In this work, a novel, solid state mid-IR photonics based CO2 gas sensor is described, and the role that 1- dimensional photonic crystals, often referred to as multilayer thin film optical coatings [1], play in boosting the sensor's capability of gas discrimination is discussed. Filter performance in isolating CO2 IR absorption is tested on an optical filter test bed and a theoretical gas sensor model is developed, with the inclusion of a modelled multilayer optical filter to analyse the efficacy of optical filtering on eliminating N2O induced cross-talk for this particular gas sensor architecture. Future possible in-house optical filter fabrication techniques are discussed. As the actual gas sensor configuration is small, it would be challenging to manufacture a filter of the correct size; dismantling the sensor and mounting a new filter for different optical coating designs each time would prove to be laborious. For this reason, an optical filter testbed set-up is described and, using a commercial optical filter, it is demonstrated that cross-talk can be considerably reduced; cross-talk is minimal even for very high concentrations of N2O, which are unlikely to be encountered in exhaled surgical anaesthetic patient breath profiles. A completely new and versatile system for breath emulation is described and the capability it has for producing realistic human exhaled CO2 vs. time waveforms is shown. The cross-talk inducing effect that N2O has on realistic emulated CO2 vs. time waveforms as measured using the NDIR gas sensing technique is demonstrated and the effect that optical filtering will have on said cross-talk is discussed.

  10. Vav1 promotes lung cancer growth by instigating tumor-microenvironment cross-talk via growth factor secretion.

    PubMed

    Sebban, Shulamit; Farago, Marganit; Rabinovich, Shiran; Lazer, Galit; Idelchuck, Yulia; Ilan, Lena; Pikarsky, Eli; Katzav, Shulamit

    2014-10-15

    Vav1 is a signal transducer that functions as a scaffold protein and a regulator of cytoskeleton organization in the hematopoietic system, where it is exclusively expressed. Recently, Vav1 was shown to be involved in diverse human cancers, including lung cancer. We demonstrate that lung cancer cells that abnormally express Vav1 secrete growth factors in a Vav1-dependent manner. Transcriptome analysis demonstrated that Vav1 depletion results in a marked reduction in the expression of colony-stimulating-factor-1 (CSF1), a hematopoietic growth factor. The association between Vav1 expression and CSF1 was further supported by signal transduction experiments, supporting involvement of Vav1 in regulating lung cancer secretome. Blocking of ERK phosphorylation, led to a decrease in CSF1 transcription, thus suggesting a role for ERK, a downstream effector of Vav1, in CSF1 expression. CSF1-silenced cells exhibited reduced focus formation, proliferation abilities, and growth in NOD/SCID mice. CSF1-silenced H358 cells resulted in significantly smaller tumors, showing increased fibrosis and a decrease in tumor infiltrating macrophages. Finally, immunohistochemical analysis of primary human lung tumors revealed a positive correlation between Vav1 and CSF1 expression, which was associated with tumor grade. Additional results presented herein suggest a potential cross-talk between cancer cells and the microenvironment controlled by CSF1/Vav1 signaling pathways.

  11. Vav1 promotes lung cancer growth by instigating tumor-microenvironment cross-talk via growth factor secretion

    PubMed Central

    Rabinovich, Shiran; Lazer, Galit; Idelchuck, Yulia; Ilan, Lena; Pikarsky, Eli; Katzav, Shulamit

    2014-01-01

    Vav1 is a signal transducer that functions as a scaffold protein and a regulator of cytoskeleton organization in the hematopoietic system, where it is exclusively expressed. Recently, Vav1 was shown to be involved in diverse human cancers, including lung cancer. We demonstrate that lung cancer cells that abnormally express Vav1 secrete growth factors in a Vav1-dependent manner. Transcriptome analysis demonstrated that Vav1 depletion results in a marked reduction in the expression of colony-stimulating-factor-1 (CSF1), a hematopoietic growth factor. The association between Vav1 expression and CSF1 was further supported by signal transduction experiments, supporting involvement of Vav1 in regulating lung cancer secretome. Blocking of ERK phosphorylation, led to a decrease in CSF1 transcription, thus suggesting a role for ERK, a downstream effector of Vav1, in CSF1 expression. CSF1-silenced cells exhibited reduced focus formation, proliferation abilities, and growth in NOD/SCID mice. CSF1-silenced H358 cells resulted in significantly smaller tumors, showing increased fibrosis and a decrease in tumor infiltrating macrophages. Finally, immunohistochemical analysis of primary human lung tumors revealed a positive correlation between Vav1 and CSF1 expression, which was associated with tumor grade. Additional results presented herein suggest a potential cross-talk between cancer cells and the microenvironment controlled by CSF1/Vav1 signaling pathways. PMID:25313137

  12. Device-Independent Randomness Generation in the Presence of Weak Cross-Talk

    NASA Astrophysics Data System (ADS)

    Silman, J.; Pironio, S.; Massar, S.

    2013-03-01

    Device-independent protocols use nonlocality to certify that they are performing properly. This is achieved via Bell experiments on entangled quantum systems, which are kept isolated from one another during the measurements. However, with present-day technology, perfect isolation comes at the price of experimental complexity and extremely low data rates. Here we argue that for device-independent randomness generation—and other device-independent protocols where the devices are in the same lab—we can slightly relax the requirement of perfect isolation and still retain most of the advantages of the device-independent approach, by allowing a little cross-talk between the devices. This opens up the possibility of using existent experimental systems with high data rates, such as Josephson phase qubits on the same chip, thereby bringing device-independent randomness generation much closer to practical application.

  13. Allosteric cross-talk in chromatin can mediate drug-drug synergy

    PubMed Central

    Adhireksan, Zenita; Palermo, Giulia; Riedel, Tina; Ma, Zhujun; Muhammad, Reyhan; Rothlisberger, Ursula; Dyson, Paul J.; Davey, Curt A.

    2017-01-01

    Exploitation of drug–drug synergism and allostery could yield superior therapies by capitalizing on the immensely diverse, but highly specific, potential associated with the biological macromolecular landscape. Here we describe a drug–drug synergy mediated by allosteric cross-talk in chromatin, whereby the binding of one drug alters the activity of the second. We found two unrelated drugs, RAPTA-T and auranofin, that yield a synergistic activity in killing cancer cells, which coincides with a substantially greater number of chromatin adducts formed by one of the compounds when adducts from the other agent are also present. We show that this occurs through an allosteric mechanism within the nucleosome, whereby defined histone adducts of one drug promote reaction of the other drug at a distant, specific histone site. This opens up possibilities for epigenetic targeting and suggests that allosteric modulation in nucleosomes may have biological relevance and potential for therapeutic interventions. PMID:28358030

  14. Brownian dynamics simulation of the cross-talking effect among modified histones on conformations of nucleosomes

    NASA Astrophysics Data System (ADS)

    Duan, Zhao-Wen; Li, Wei; Xie, Ping; Dou, Shuo-Xing; Wang, Peng-Ye

    2010-04-01

    Using Brownian dynamics simulation, we studied the effect of histone modifications on conformations of an array of nucleosomes in a segment of chromatin. The simulation demonstrated that the segment of chromatin shows the dynamic behaviour that its conformation can switch between a state with nearly all of the histones being wrapped by DNA and a state with nearly all of the histones being unwrapped by DNA, thus involving the “cross-talking" interactions among the histones. Each state can stay for a sufficiently long time. These conformational states are essential for gene expression or gene silence. The simulation also shows that these conformational states can be inherited by the daughter DNAs during DNA replication, giving a theoretical explanation of the epigenetic phenomenon.

  15. Allosteric cross-talk in chromatin can mediate drug-drug synergy

    NASA Astrophysics Data System (ADS)

    Adhireksan, Zenita; Palermo, Giulia; Riedel, Tina; Ma, Zhujun; Muhammad, Reyhan; Rothlisberger, Ursula; Dyson, Paul J.; Davey, Curt A.

    2017-03-01

    Exploitation of drug-drug synergism and allostery could yield superior therapies by capitalizing on the immensely diverse, but highly specific, potential associated with the biological macromolecular landscape. Here we describe a drug-drug synergy mediated by allosteric cross-talk in chromatin, whereby the binding of one drug alters the activity of the second. We found two unrelated drugs, RAPTA-T and auranofin, that yield a synergistic activity in killing cancer cells, which coincides with a substantially greater number of chromatin adducts formed by one of the compounds when adducts from the other agent are also present. We show that this occurs through an allosteric mechanism within the nucleosome, whereby defined histone adducts of one drug promote reaction of the other drug at a distant, specific histone site. This opens up possibilities for epigenetic targeting and suggests that allosteric modulation in nucleosomes may have biological relevance and potential for therapeutic interventions.

  16. Allosteric cross-talk in chromatin can mediate drug-drug synergy.

    PubMed

    Adhireksan, Zenita; Palermo, Giulia; Riedel, Tina; Ma, Zhujun; Muhammad, Reyhan; Rothlisberger, Ursula; Dyson, Paul J; Davey, Curt A

    2017-03-30

    Exploitation of drug-drug synergism and allostery could yield superior therapies by capitalizing on the immensely diverse, but highly specific, potential associated with the biological macromolecular landscape. Here we describe a drug-drug synergy mediated by allosteric cross-talk in chromatin, whereby the binding of one drug alters the activity of the second. We found two unrelated drugs, RAPTA-T and auranofin, that yield a synergistic activity in killing cancer cells, which coincides with a substantially greater number of chromatin adducts formed by one of the compounds when adducts from the other agent are also present. We show that this occurs through an allosteric mechanism within the nucleosome, whereby defined histone adducts of one drug promote reaction of the other drug at a distant, specific histone site. This opens up possibilities for epigenetic targeting and suggests that allosteric modulation in nucleosomes may have biological relevance and potential for therapeutic interventions.

  17. Chemical reporter for visualizing metabolic cross-talk between carbohydrate metabolism and protein modification.

    PubMed

    Zaro, Balyn W; Chuh, Kelly N; Pratt, Matthew R

    2014-09-19

    Metabolic chemical reporters have been largely used to study posttranslational modifications. Generally, it was assumed that these reporters entered one biosynthetic pathway, resulting in labeling of one type of modification. However, because they are metabolized by cells before their addition onto proteins, metabolic chemical reporters potentially provide a unique opportunity to read-out on both modifications of interest and cellular metabolism. We report here the development of a metabolic chemical reporter 1-deoxy-N-pentynyl glucosamine (1-deoxy-GlcNAlk). This small-molecule cannot be incorporated into glycans; however, treatment of mammalian cells results in labeling of a variety proteins and enables their visualization and identification. Competition of this labeling with sodium acetate and an acetyltransferase inhibitor suggests that 1-deoxy-GlcNAlk can enter the protein acetylation pathway. These results demonstrate that metabolic chemical reporters have the potential to isolate and potentially discover cross-talk between metabolic pathways in living cells.

  18. Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death

    PubMed Central

    Wang, Yiqin; Loake, Gary J.; Chu, Chengcai

    2013-01-01

    In plants, programed cell death (PCD) is an important mechanism to regulate multiple aspects of growth and development, as well as to remove damaged or infected cells during responses to environmental stresses and pathogen attacks. Under biotic and abiotic stresses, plant cells exhibit a rapid synthesis of nitric oxide (NO) and a parallel accumulation of reactive oxygen species (ROS). Frequently, these responses trigger a PCD process leading to an intrinsic execution of plant cells. The accumulating evidence suggests that both NO and ROS play key roles in PCD. These redox active small molecules can trigger cell death either independently or synergistically. Here we summarize the recent progress on the cross-talk of NO and ROS signals in the hypersensitive response, leaf senescence, and other kinds of plant PCD caused by diverse cues. PMID:23967004

  19. Nuclear–cytoskeletal linkages facilitate cross talk between the nucleus and intercellular adhesions

    PubMed Central

    Stewart, Rachel M.; Zubek, Amanda E.; Rosowski, Kathryn A.; Schreiner, Sarah M.

    2015-01-01

    The linker of nucleoskeleton and cytoskeleton (LINC) complex allows cells to actively control nuclear position by coupling the nucleus to the cytoplasmic cytoskeleton. Nuclear position responds to the formation of intercellular adhesions through coordination with the cytoskeleton, but it is not known whether this response impacts adhesion function. In this paper, we demonstrate that the LINC complex component SUN2 contributes to the mechanical integrity of intercellular adhesions between mammalian epidermal keratinocytes. Mice deficient for Sun2 exhibited irregular hair follicle intercellular adhesions, defective follicle structure, and alopecia. Primary mouse keratinocytes lacking Sun2 displayed aberrant nuclear position in response to adhesion formation, altered desmosome distribution, and mechanically defective adhesions. This dysfunction appeared rooted in a failure of Sun2-null cells to reorganize their microtubule network to support coordinated intercellular adhesion. Together, these results suggest that cross talk between the nucleus, cytoskeleton, and intercellular adhesions is important for epidermal tissue integrity. PMID:25963820

  20. Cross-talk between ROS and calcium in regulation of nuclear activities.

    PubMed

    Mazars, Christian; Thuleau, Patrice; Lamotte, Olivier; Bourque, Stéphane

    2010-07-01

    Calcium and Reactive Oxygen Species (ROS) are acknowledged as crucial second messengers involved in the response to various biotic and abiotic stresses. However, it is still not clear how these two compounds can play a role in different signaling pathways leading the plant to a variety of processes such as root development or defense against pathogens. Recently, it has been shown that the concept of calcium and ROS signatures, initially discovered in the cytoplasm, can also be extended to the nucleus of plant cells. In addition, it has been clearly proved that both ROS and calcium signals are intimately interconnected. How this cross-talk can finally modulate the translocation and/or the activity of nuclear proteins leading to the control of specific genes expression is the main focus of this review. We will especially focus on how calcium and ROS interact at the molecular level to modify their targets.

  1. Hypothalamic serotonin-insulin signaling cross-talk and alterations in a type 2 diabetic model.

    PubMed

    Papazoglou, Ioannis; Berthou, Flavien; Vicaire, Nicolas; Rouch, Claude; Markaki, Eirini M; Bailbe, Danielle; Portha, Bernard; Taouis, Mohammed; Gerozissis, Kyriaki

    2012-03-05

    Serotonin and insulin are key regulators of homeostatic mechanisms in the hypothalamus. However, in type 2 diabetes, the hypothalamic responsiveness to serotonin is not clearly established. We used a diabetic model, the Goto Kakizaki (GK) rats, to explore insulin receptor expression, insulin and serotonin efficiency in the hypothalamus and liver by means of Akt phosphorylation. Insulin or dexfenfluramine (stimulator of serotonin) treatment induced Akt phosphorylation in Wistar rats but not in GK rats that exhibit down-regulated insulin receptor. Studies in a neuroblastoma cell line showed that serotonin-induced Akt phosphorylation is PI3-kinase dependent. Finally, in response to food intake, hypothalamic serotonin release was reduced in GK rats, indicating impaired responsiveness of this neurotransmitter. In conclusion, hypothalamic serotonin as insulin efficiency is impaired in diabetic GK rats. The insulin-serotonin cross-talk and impairment observed is one potential key modification in the brain during the onset of diabetes.

  2. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development1

    PubMed Central

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-01-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses. PMID:26232489

  3. Chemical Reporter for Visualizing Metabolic Cross-Talk between Carbohydrate Metabolism and Protein Modification

    PubMed Central

    2015-01-01

    Metabolic chemical reporters have been largely used to study posttranslational modifications. Generally, it was assumed that these reporters entered one biosynthetic pathway, resulting in labeling of one type of modification. However, because they are metabolized by cells before their addition onto proteins, metabolic chemical reporters potentially provide a unique opportunity to read-out on both modifications of interest and cellular metabolism. We report here the development of a metabolic chemical reporter 1-deoxy-N-pentynyl glucosamine (1-deoxy-GlcNAlk). This small-molecule cannot be incorporated into glycans; however, treatment of mammalian cells results in labeling of a variety proteins and enables their visualization and identification. Competition of this labeling with sodium acetate and an acetyltransferase inhibitor suggests that 1-deoxy-GlcNAlk can enter the protein acetylation pathway. These results demonstrate that metabolic chemical reporters have the potential to isolate and potentially discover cross-talk between metabolic pathways in living cells. PMID:25062036

  4. Coherent cross talk and parametric driving of matter-wave vortices

    NASA Astrophysics Data System (ADS)

    Parker, N. G.; Allen, A. J.; Barenghi, C. F.; Proukakis, N. P.

    2012-07-01

    We show that the interaction between vortices and sound waves in atomic Bose-Einstein condensates can be elucidated in a double-well trap: With one vortex in each well, the sound emitted by each precessing vortex can be driven into the opposing vortex (if of the same polarity). This cross talk leads to a periodic exchange of energy between the vortices which is long range and highly efficient. The increase in vortex energy (obtained by simulations of the Gross-Pitaevskii equation) is experimentally observable as a migration of the vortex to higher density over just a few precession periods. Similar effects can be controllably engineered by introducing a precessing localized obstacle into one well as an artificial generator of sound, thereby demonstrating the parametric driving of energy into a vortex.

  5. Cross-Talk Between Mitochondria and Proteasome in Parkinson's Disease Pathogenesis

    PubMed Central

    Branco, Diogo Martins; Arduino, Daniela M.; Esteves, A. Raquel; Silva, Diana F. F.; Cardoso, Sandra M.; Oliveira, Catarina Resende

    2010-01-01

    Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder, characterized by the selective loss of nigrostriatal dopaminergic neurons, and the presence of intracellular insoluble proteinaceous inclusions, known as Lewy Bodies. Although PD etiopathogenesis remains elusive, the leading hypothesis for the death of specific groups of neurons establishes that mitochondrial dysfunction, alterations in the ubiquitin-proteasomal system (UPS), and oxidative stress are major events that act synergistically causing this devastating disease. In this review we will focus on mitochondrial impairment and its implications on proteasomal function and alpha-synuclein aggregation. We will address the role of mitochondria and proteasome cross-talk in the neuronal loss that leads to PD and discuss how this knowledge might further improve patient therapy. PMID:20577640

  6. Cross talk between activation and slow inactivation gates of Shaker potassium channels.

    PubMed

    Panyi, Gyorgy; Deutsch, Carol

    2006-11-01

    This study addresses the energetic coupling between the activation and slow inactivation gates of Shaker potassium channels. To track the status of the activation gate in inactivated channels that are nonconducting, we used two functional assays: the accessibility of a cysteine residue engineered into the protein lining the pore cavity (V474C) and the liberation by depolarization of a Cs(+) ion trapped behind the closed activation gate. We determined that the rate of activation gate movement depends on the state of the inactivation gate. A closed inactivation gate favors faster opening and slower closing of the activation gate. We also show that hyperpolarization closes the activation gate long before a channel recovers from inactivation. Because activation and slow inactivation are ubiquitous gating processes in potassium channels, the cross talk between them is likely to be a fundamental factor in controlling ion flux across membranes.

  7. ANALYSIS OF SEEING-INDUCED POLARIZATION CROSS-TALK AND MODULATION SCHEME PERFORMANCE

    SciTech Connect

    Casini, R.; De Wijn, A. G.; Judge, P. G.

    2012-09-20

    We analyze the generation of polarization cross-talk in Stokes polarimeters by atmospheric seeing, and its effects on the noise statistics of spectropolarimetric measurements for both single-beam and dual-beam instruments. We investigate the time evolution of seeing-induced correlations between different states of one modulation cycle and compare the response to these correlations of two popular polarization modulation schemes in a dual-beam system. Extension of the formalism to encompass an arbitrary number of modulation cycles enables us to compare our results with earlier work. Even though we discuss examples pertinent to solar physics, the general treatment of the subject and its fundamental results might be useful to a wider community.

  8. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance

    PubMed Central

    Motaln, Helena; Koren, Ana; Gruden, Kristina; Ramšak, Živa; Schichor, Christian; Lah, Tamara T.

    2015-01-01

    Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future. PMID:26517510

  9. Cross talk in implicit assignment of error information during bimanual visuomotor learning.

    PubMed

    Kasuga, Shoko; Nozaki, Daichi

    2011-09-01

    When a neural movement controller, called an "internal model," is adapted to a novel environment, the movement error needs to be appropriately associated with the controller. However, their association is not necessarily guaranteed for bimanual movements in which two controllers--one for each hand--result in two movement errors. Considering the implicit nature of the adaptation process, the movement error of one hand can be erroneously associated with the controller of the other hand. Here, we investigated this credit-assignment problem in bimanual movement by having participants perform bimanual, symmetric back-and-forth movements while displaying the position of the right hand only with a cursor. In the training session, the cursor position was gradually rotated clockwise, such that the participants were unaware of the rotation. The movement of the right hand gradually rotated counterclockwise as a consequence of adaptation. Although the participants knew that the cursor reflected the movement of the right hand, such gradual adaptation was also observed for the invisible left hand, especially when the cursor was presented on the left side of the display. Thus the movement error of the right hand was implicitly assigned to the left-hand controller. Such cross talk in credit assignment might influence motor adaptation performance, even when two cursors are presented; the adaptation was impaired when the rotations imposed on the cursors were opposite compared with when they were in the same direction. These results indicate the inherent presence of cross talk in the process of associating action with consequence in bimanual movement.

  10. Three-Dimensional Coculture Model to Analyze the Cross Talk Between Endothelial and Smooth Muscle Cells

    PubMed Central

    Ganesan, Minu Karthika; Finsterwalder, Richard; Leb, Heide; Resch, Ulrike; Neumüller, Karin; de Martin, Rainer

    2017-01-01

    The response of blood vessels to physiological and pathological stimuli partly depends on the cross talk between endothelial cells (EC) lining the luminal side and smooth muscle cells (SMC) building the inner part of the vascular wall. Thus, the in vitro analysis of the pathophysiology of blood vessels requires coculture systems of EC and SMC. We have developed and validated a modified three-dimensional sandwich coculture (3D SW-CC) of EC and SMC using open μ-Slides with a thin glass bottom allowing direct imaging. The culture dish comprises an intermediate plate to minimize the meniscus resulting in homogenous cell distribution. Human umbilical artery SMC were sandwiched between coatings of rat tail collagen I. Following SMC quiescence, human umbilical vein EC were seeded on top of SMC and cultivated until confluence. By day 7, EC had formed a confluent monolayer and continuous vascular endothelial (VE)-cadherin-positive cell/cell contacts. Below, spindle-shaped SMC had formed parallel bundles and showed increased calponin expression compared to day 1. EC and SMC were interspaced by a matrix consisting of laminin, collagen IV, and perlecan. Basal messenger RNA (mRNA) expression levels of E-selectin, angiopoietin-1, calponin, and intercellular adhesion molecule 1 (ICAM-1) of the 3D SW-CC was comparable to that of a freshly isolated mouse inferior vena cava. Addition of tumor necrosis factor alpha (TNF α) to the 3D SW-CC induced E-selectin and ICAM-1 mRNA and protein induction, comparable to the EC and SMC monolayers. In contrast, the addition of activated platelets induced a significantly delayed but more pronounced activation in the 3D SW-CC compared to EC and SMC monolayers. Thus, this 3D SW-CC permits analyzing the cross talk between EC and SMC that mediate cellular quiescence as well as the response to complex activation signals. PMID:27923320

  11. A possible cross-talk between autophagy and apoptosis in generating an immune response in melanoma

    PubMed Central

    Hossain, Azim; Radwan, Faisal F. Y.; Doonan, Bently P.; God, Jason M.; Zhang, Lixia; Bell, Darwin P.; Haque, Azizul

    2013-01-01

    Melanoma is the most aggressive form of skin cancer, responsible for the majority of skin cancer related deaths. Thus, the search for natural molecules which can effectively destroy tumors while promoting immune activation is essential for designing novel therapies against metastatic melanoma. Here, we report for the first time that a natural triterpenoid, Ganoderic Acid DM (GA-DM), induces an orchestrated autophagic and apoptotic cell death, as well as enhanced immunological responses via increased HLA class II presentation in melanoma cells. Annexin V staining and flow cytometry showed that GA-DM treatment induced apoptosis of melanoma cells, which was supported by a detection of increased Bax proteins, co-localization and elevation of Apaf-1 and cytochrome c, and a subsequent cleavage of caspases 9 and 3. Furthermore, GA-DM treatment initiated a possible cross-talk between autophagy and apoptosis as evidenced by increased levels of Beclin-1 and LC3 proteins, and their timely interplay with apoptotic and/or anti-apoptotic molecules in melanoma cells. Despite GA-DM's moderate cytotoxicity, viable cells expressed high levels of HLA class II proteins with improved antigen presentation and CD4+ T cell recognition. The antitumor efficacy of GA-DM was also investigated in vivo in murine B16 melanoma model, where GA-DM treatment slowed tumor formation with a significant reduction in tumor volume. Taken together, these findings demonstrate the potential of GA-DM as a natural chemo-immunotherapeutic capable of inducing a possible cross-talk between autophagy and apoptosis, as well as improved immune recognition for sustained melanoma tumor clearance. PMID:22847295

  12. Identification and characterization of genes susceptible to transcriptional cross-talk between the hypoxia and dioxin signaling cascades

    PubMed Central

    Lee, Kang Ae; Burgoon, Lyle D.; Lamb, Laura; Dere, Edward; Zacharewski, Timothy R.; Hogenesch, John B.; LaPres, John J.

    2011-01-01

    The aryl hydrocarbon receptor (AHR) and hypoxia inducible factors (HIFs) are transcription factors that control the adaptive response to toxicants, such as dioxins, and decreases in available oxygen, respectively. The AHR and HIFs utilize the same heterodimeric partner, the aryl hydrocarbon nuclear translocator (ARNT) for proper function. This requirement raises the possibility that cross-talk exists between these critical signaling systems. Single gene and reporter assays have yielded conflicting results regarding the nature of the competition for ARNT. Therefore, to determine the extent of cross-talk between the AHR and HIFs, a comprehensive analysis was performed using oligonucleotide arrays. The results identified 767 and 430 genes that are sensitive to cobalt chloride and 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD) stimulation, respectively, with 308 and 176, respectively, exhibiting sensitivity to cross-talk. The overlap between these two sets consists of 33 unique genes including the classic target genes CYP1A1, carbonic anhydrase IX and those involved in lipid metabolism, and coagulation. Computational analysis of the regulatory region of these genes identified complex relationships between HIFs, AHR, their respective response elements as well as other DNA motifs, including the SRF, Sp-1, NF-kB, and AP-2 binding sites. These results suggest that HIF - AHR cross-talk is limited to genes with regulatory regions that contain specific motifs and architecture. PMID:17040097

  13. Cross-talk in host-parasite associations: What do past and recent proteomics approaches tell us?

    PubMed

    Chetouhi, Chérif; Panek, Johan; Bonhomme, Ludovic; ElAlaoui, Hicham; Texier, Catherine; Langin, Thierry; de Bekker, Charissa; Urbach, Serge; Demettre, Edith; Missé, Dorothée; Holzmuller, Philippe; Hughes, David P; Zanzoni, Andreas; Brun, Christine; Biron, David G

    2015-07-01

    A cross-talk in host-parasite associations begins when a host encounters a parasite. For many host-parasite relationships, this cross-talk has been taking place for hundreds of millions of years. The co-evolution of hosts and parasites, the familiar 'arms race' results in fascinating adaptations. Over the years, host-parasite interactions have been studied extensively from both the host and parasitic point of view. Proteomics studies have led to new insights into host-parasite cross-talk and suggest that the molecular strategies used by parasites attacking animals and plants share many similarities. Likewise, animals and plants use several common molecular tactics to counter parasite attacks. Based on proteomics surveys undertaken since the post-genomic era, a synthesis is presented on the molecular strategies used by intra- and extracellular parasites to invade and create the needed habitat for growth inside the host, as well as strategies used by hosts to counter these parasite attacks. Pitfalls in deciphering host-parasite cross-talk are also discussed. To conclude, helpful advice is given with regard to new directions that are needed to discover the generic and specific molecular strategies used by the host against parasite invasion as well as by the parasite to invade, survive, and grow inside their hosts, and to finally discover parasitic molecular signatures associated with their development.

  14. Hirudin promotes angiogenesis by modulating the cross-talk between p38 MAPK and ERK in rat ischemic skin flap tissue.

    PubMed

    Pan, Xin-Yuan; Peng, Liu; Han, Zhi-Qiang; Yin, Guo-Qian; Song, Yan-Kun; Huang, Jun

    2015-06-01

    Hirudin's ability to increase angiogenesis in ischemic flap tissue and improve the flaps survival has been demonstrated in our previous studies. However, the knowledge about hirudin functional role in angiogenesis is still limited. In the present study, we investigate the effects of locally injected hirudin on the expression of VEGF, endostatin and thrombospondin-1 (TSP-1) using rat model. Caudally based dorsal skin flaps were created and were treated with hirudin or normal saline. Result showed that the flap survival was improved by hirudin treatment relative to the control. Treatment of flaps with hirudin exerted significant angiogenic effect as evidenced by increased VEGF expression and reduced endostatin and TSP-1 production (p<0.01), and promoted neovascularization (microvascular density, p<0.01). Moreover, hirudin treatment increased the ERK1/2 phosphorylation, while attenuated the phosphorylation of p38 MAPK, and the addition of thrombin could reverse these effects of hirudin on ERK1/2 and p38 MAPK activity. The MEK inhibitor blocked the hirudin-induced VEGF expression, and the p38 MAPK inhibitor attenuated the thrombin-induced TSP-1 expression. Furthermore, a specific inhibitor of p38 MAPK activates ERK1/2 in ischemic flaps, suggesting that cross-talk between p38 MAPK and ERK might exist in rat ischemic flap tissue. Moreover, either the hirudin or SCH79797 (PAR1 antagonist) could attenuate the p38 MAPK phosphorylation and increases the ERK1/2 phosphorylation, indicating that the cross-talk between p38 MAPK and ERK1/2 modulated by thrombin/PAR1 signaling may participate in the process of hirudin-stimulated ERK1/2 signaling. In conclusion, these observations suggest that hirudin exerts its angiogenesis effect by regulating the expression of angiogenic and antiangiogenic factors via a cross-talk of p38 MAPK-ERK pathway.

  15. Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far

    PubMed Central

    Flores, África; Maldonado, Rafael; Berrendero, Fernando

    2013-01-01

    Emerging findings suggest the existence of a cross-talk between hypocretinergic and endocannabinoid systems. Although few studies have examined this relationship, the apparent overlap observed in the neuroanatomical distribution of both systems as well as their putative functions strongly point to the existence of such cross-modulation. In agreement, biochemical and functional studies have revealed the existence of heterodimers between CB1 cannabinoid receptor and hypocretin receptor-1, which modulates the cellular localization and downstream signaling of both receptors. Moreover, the activation of hypocretin receptor-1 stimulates the synthesis of 2-arachidonoyl glycerol culminating in the retrograde inhibition of neighboring cells and suggesting that endocannabinoids could contribute to some hypocretin effects. Pharmacological data indicate that endocannabinoids and hypocretins might have common physiological functions in the regulation of appetite, reward and analgesia. In contrast, these neuromodulatory systems seem to play antagonistic roles in the regulation of sleep/wake cycle and anxiety-like responses. The present review attempts to piece together what is known about this interesting interaction and describes its potential therapeutic implications. PMID:24391536

  16. Distraction and Pedestrian Safety: How Talking on the Phone, Texting, and Listening to Music Impact Crossing the Street

    PubMed Central

    Schwebel, David C.; Stavrinos, Despina; Byington, Katherine W.; Davis, Tiffany; O’Neal, Elizabeth E.; de Jong, Desiree

    2011-01-01

    As use of handheld multimedia devices has exploded globally, safety experts have begun to consider the impact of distraction while talking, text-messaging, or listening to music on traffic safety. This study was designed to test how talking on the phone, texting, and listening to music may influence pedestrian safety. 138 college students crossed an interactive, semi-immersive virtual pedestrian street. They were randomly assigned to one of four groups: crossing while talking on the phone, crossing while texting, crossing while listening to a personal music device, or crossing while undistracted. Participants distracted by music or texting were more likely to be hit by a vehicle in the virtual pedestrian environment than were undistracted participants. Participants in all three distracted groups were more likely to look away from the street environment (and look toward other places, such as their telephone or music device) than were undistracted participants. Findings were maintained after controlling for demographics, walking frequency, and media use frequency. Distraction from multimedia devices has a small but meaningful impact on college students’ pedestrian safety. Future research should consider the cognitive demands of pedestrian safety, and how those processes may be impacted by distraction. Policymakers might consider ways to protect distracted pedestrians from harm and to reduce the number of individuals crossing streets while distracted. PMID:22269509

  17. An examination of cross-talk among surface mechanomyographic signals from the superficial quadriceps femoris muscles during isometric muscle actions.

    PubMed

    Beck, Travis W; DeFreitas, Jason M; Stock, Matt S

    2010-04-01

    The purpose of this study was to examine cross-talk among the mechanomyographic (MMG) signals from the superficial quadriceps femoris muscles during submaximal to maximal isometric muscle actions of the leg extensors. Eleven healthy men (age=20.1+/-1.1yr, mean+/-SD) volunteered to randomly perform isometric muscle actions in 10% increments from 10% to 90% of the maximum voluntary contraction (MVC). During each muscle action, MMG signals were detected from the vastus lateralis, rectus femoris, and vastus medialis with three separate accelerometers. Cross-correlation was used to quantify cross-talk among the vastus lateralis, rectus femoris, and vastus medialis during each muscle action. The results showed cross-correlation coefficients that ranged from R(x,y)=.124-.714, but generally speaking, the coefficients were between .1 and .3. In addition, there were no consistent differences among the cross-talk levels for the three muscles, and the cross-correlation coefficients generally did not increase with isometric torque. Thus, MMG can be used to examine muscle function from each of the superficial quadriceps femoris muscles during isometric muscle actions.

  18. Distraction and pedestrian safety: how talking on the phone, texting, and listening to music impact crossing the street.

    PubMed

    Schwebel, David C; Stavrinos, Despina; Byington, Katherine W; Davis, Tiffany; O'Neal, Elizabeth E; de Jong, Desiree

    2012-03-01

    As use of handheld multimedia devices has exploded globally, safety experts have begun to consider the impact of distraction while talking, text-messaging, or listening to music on traffic safety. This study was designed to test how talking on the phone, texting, and listening to music may influence pedestrian safety. 138 college students crossed an interactive, semi-immersive virtual pedestrian street. They were randomly assigned to one of four groups: crossing while talking on the phone, crossing while texting, crossing while listening to a personal music device, or crossing while undistracted. Participants distracted by music or texting were more likely to be hit by a vehicle in the virtual pedestrian environment than were undistracted participants. Participants in all three distracted groups were more likely to look away from the street environment (and look toward other places, such as their telephone or music device) than were undistracted participants. Findings were maintained after controlling for demographics, walking frequency, and media use frequency. Distraction from multimedia devices has a small but meaningful impact on college students' pedestrian safety. Future research should consider the cognitive demands of pedestrian safety, and how those processes may be impacted by distraction. Policymakers might consider ways to protect distracted pedestrians from harm and to reduce the number of individuals crossing streets while distracted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Pathogenicity Island Cross Talk Mediated by Recombination Directionality Factors Facilitates Excision from the Chromosome

    PubMed Central

    Carpenter, Megan R.; Rozovsky, Sharon

    2015-01-01

    ABSTRACT Pathogenicity islands (PAIs) are mobile integrated genetic elements (MIGEs) that contain a diverse range of virulence factors and are essential in the evolution of pathogenic bacteria. PAIs are widespread among bacteria and integrate into the host genome, commonly at a tRNA locus, via integrase-mediated site-specific recombination. The excision of PAIs is the first step in the horizontal transfer of these elements and is not well understood. In this study, we examined the role of recombination directionality factors (RDFs) and their relationship with integrases in the excision of two PAIs essential for Vibrio cholerae host colonization: Vibrio pathogenicity island 1 (VPI-1) and VPI-2. VPI-1 does not contain an RDF, which allowed us to answer the question of whether RDFs are an absolute requirement for excision. We found that an RDF was required for efficient excision of VPI-2 but not VPI-1 and that RDFs can induce excision of both islands. Expression data revealed that the RDFs act as transcriptional repressors to both VPI-1- and VPI-2-encoded integrases. We demonstrated that the RDFs Vibrio excision factor A (VefA) and VefB bind at the attachment sites (overlapping the int promoter region) of VPI-1 and VPI-2, thus supporting this mode of integrase repression. In addition, V. cholerae RDFs are promiscuous due to their dual functions of promoting excision of both VPI-1 and VPI-2 and acting as negative transcriptional regulators of the integrases. This is the first demonstration of cross talk between PAIs mediated via RDFs which reveals the complex interactions that occur between separately acquired MIGEs. IMPORTANCE Deciphering the mechanisms of pathogenicity island excision is necessary for understanding the evolution and spread of these elements to their nonpathogenic counterparts. Such mechanistic insight would assist in predicting the mobility of uncharacterized genetic elements. This study identified extensive RDF-mediated cross talk between two

  20. Cross-talk of intracellular calcium stores in the response to neuronal ischemia and ischemic tolerance.

    PubMed

    Lehotský, Ján; Racay, Peter; Pavlíková, Martina; Tatarková, Zuzana; Urban, Peter; Chomová, Mária; Kovalská, Mária; Kaplán, Peter

    2009-01-01

    Ischemic/reperfusion brain injury (IRI) is a very severe event with the multiple etiopathogenesis. Ischemic preconditioning (IPC) is an important phenomenon of adaptation of CNS to subsequent ischemia. An altered cross-talk between intracellular calcium stores is presumed in the mechanisms of ischemic damage/protection. We show here that IRI leads to the inhibition of mitochondrial respiratory complexes I and IV, however due to the excess of their capacities, the mitochondrial Ca(2+) uptake rate is not significantly depressed. IPC acts at the level of both initiation and execution of IRI-induced mitochondrial apoptosis and protects from IRI-associated changes in integrity of mitochondrial membranes. IPC also activates inhibition of p53 translocation to mitochondria. Inhibition of the mitochondrial p53 pathway might thus provide a potentially important mechanism of neuronal survival after ischemic brain damage. In addition, IRI initiates a time dependent differences in endoplasmic reticular (ER) gene expression of the key UPR proteins at both the mRNA and protein levels. Moreover, gene expression of the UPR proteins is affected by preischemic treatment by the increased expression of Ca(2+) binding protein: GRP 78 and transcriptional factor ATF6 in reperfusion times. Thus, IPC exerts a role in the attenuation of ER stress response, which might be involved in the neuroprotective phenomenon of ischemic tolerance. Hippocampal cells respond to the IRI by the specific expression pattern of the secretory pathways Ca(2+) pump (SPCA1) and this pattern is affected by preischemic challenge. IPC also incompletely suppresses lipo- and protein oxidation of hippocampal membranes and leads to partial recovery of the ischemic-induced depression of SPCA activity. The data suggests the correlation of SPCA function with the role of secretory pathways (Golgi apparatus) in response to preischemic challenge. Documented functional alterations of mitochondria, ER and Golgi apparatus put

  1. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy.

    PubMed

    Shrivastava, Ashutosh; Kuzontkoski, Paula M; Groopman, Jerome E; Prasad, Anil

    2011-07-01

    Cannabidiol (CBD), a major nonpsychoactive constituent of cannabis, is considered an antineoplastic agent on the basis of its in vitro and in vivo activity against tumor cells. However, the exact molecular mechanism through which CBD mediates this activity is yet to be elucidated. Here, we have shown CBD-induced cell death of breast cancer cells, independent of cannabinoid and vallinoid receptor activation. Electron microscopy revealed morphologies consistent with the coexistence of autophagy and apoptosis. Western blot analysis confirmed these findings. We showed that CBD induces endoplasmic reticulum stress and, subsequently, inhibits AKT and mTOR signaling as shown by decreased levels of phosphorylated mTOR and 4EBP1, and cyclin D1. Analyzing further the cross-talk between the autophagic and apoptotic signaling pathways, we found that beclin1 plays a central role in the induction of CBD-mediated apoptosis in MDA-MB-231 breast cancer cells. Although CBD enhances the interaction between beclin1 and Vps34, it inhibits the association between beclin1 and Bcl-2. In addition, we showed that CBD reduces mitochondrial membrane potential, triggers the translocation of BID to the mitochondria, the release of cytochrome c to the cytosol, and, ultimately, the activation of the intrinsic apoptotic pathway in breast cancer cells. CBD increased the generation of reactive oxygen species (ROS), and ROS inhibition blocked the induction of apoptosis and autophagy. Our study revealed an intricate interplay between apoptosis and autophagy in CBD-treated breast cancer cells and highlighted the value of continued investigation into the potential use of CBD as an antineoplastic agent. © 2011 American Association for Cancer Research.

  2. Cross-talk between reproduction and energy homeostasis: central impact of estrogens, leptin and kisspeptin signaling

    PubMed Central

    Nestor, Casey C; Kelly, Martin J.; Rønnekleiv, Oline K.

    2016-01-01

    The central nervous system receives hormonal cues (e.g., estrogens and leptin, among others) that influence reproduction and energy homeostasis. 17β-estradiol (E2) is known to regulate gonadotropin-releasing hormone (GnRH) secretion via classical steroid signaling and rapid non-classical membrane-initiated signaling. Because GnRH neurons are void of leptin receptors, the actions of leptin on these neurons must be indirect. Although it is clear that the arcuate nucleus of the hypothalamus is the primary site of overlap between these two systems, it is still unclear which neural network(s) participate in the cross-talk of E2 and leptin, two hormones essential for reproductive function and metabolism. Herein we review the progress made in understanding the interactions between reproduction and energy homeostasis by focusing on the advances made to understand the cellular signaling of E2 and leptin on three neural networks: kisspeptin, pro-opiomelanocortin (POMC) and neuropeptide Y (NPY). Although critical in mediating the actions of E2 and leptin, considerable work still remains to uncover how these neural networks interact in vivo. PMID:25372735

  3. Regulatory Cross-Talks and Cascades in Rice Hormone Biosynthesis Pathways Contribute to Stress Signaling

    PubMed Central

    Deb, Arindam; Grewal, Rumdeep K.; Kundu, Sudip

    2016-01-01

    Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus, independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level. We identified some master transcription regulators that co-ordinate different hormone biosynthesis pathways under stress. We found that Abscisic acid and Brassinosteroid regulate Cytokinin conjugation; conversely Brassinosteroid biosynthesis is affected by both Abscisic acid and Cytokinin. Jasmonic acid and Ethylene biosynthesis may be modulated by Abscisic acid through DREB transcription factors. Jasmonic acid or Salicylic acid biosynthesis pathways are co-regulated but they are unlikely to influence each others production directly. Thus, multiple hormones may modulate hormone biosynthesis pathways through a complex regulatory network, where biosynthesis of one hormone is affected by several other contributing hormones. PMID:27617021

  4. Immuno-microbiota cross and talk: the new paradigm of metabolic diseases.

    PubMed

    Burcelin, Rémy; Garidou, Lucile; Pomié, Céline

    2012-02-01

    Over the last decades the rising occurrence of metabolic diseases throughout the world points to the failure of preventive and therapeutic strategies and of the corresponding molecular and physiological concepts. Therefore, a new paradigm needs to be elucidated. Very recently the intimate cross talk of the intestinal microbiota with the host immune system has opened new avenues. The large diversity of the intestinal microbes' genome, i.e. the metagenome, and the extreme plasticity of the immune system provide a unique balance which, when finely tuned, maintains a steady homeostasis. The discovery that a new microbiota repertoire is one of the causes responsible for the onset of metabolic disease suggests that the relationship with the immune system is impaired. Therefore, we here review the recent arguments that support the view that an alteration in the microbiota to host immune system balance leads to an increased translocation of bacterial antigens towards metabolically active tissues, and could result in a chronic inflammatory state and consequently impaired metabolic functions such as insulin resistance, hepatic fat deposition, insulin unresponsiveness, and excessive adipose tissue development. This imbalance could be at the onset of metabolic disease, and therefore the early treatment of the microbiota dysbiosis or immunomodulatory strategies should prevent and slow down the epidemic of metabolic diseases and hence the corresponding lethal cardiovascular consequences.

  5. The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery.

    PubMed

    Kidane, Dawit; Ayora, Silvia; Sweasy, Joann B; Graumann, Peter L; Alonso, Juan C

    2012-01-01

    Natural transformation is a programmed mechanism characterized by binding of free double-stranded (ds) DNA from the environment to the cell pole in rod-shaped bacteria. In Bacillus subtilis some competence proteins, which process the dsDNA and translocate single-stranded (ss) DNA into the cytosol, recruit a set of recombination proteins mainly to one of the cell poles. A subset of single-stranded binding proteins, working as "guardians", protects ssDNA from degradation and limit the RecA recombinase loading. Then, the "mediators" overcome the inhibitory role of guardians, and recruit RecA onto ssDNA. A RecA·ssDNA filament searches for homology on the chromosome and, in a process that is controlled by "modulators", catalyzes strand invasion with the generation of a displacement loop (D-loop). A D-loop resolvase or "resolver" cleaves this intermediate, limited DNA replication restores missing information and a DNA ligase seals the DNA ends. However, if any step fails, the "rescuers" will repair the broken end to rescue chromosomal transformation. If the ssDNA does not share homology with resident DNA, but it contains information for autonomous replication, guardian and mediator proteins catalyze plasmid establishment after inhibition of RecA. DNA replication and ligation reconstitute the molecule (plasmid transformation). In this review, the interacting network that leads to a cross talk between proteins of the uptake and genetic recombination machinery will be placed into prospective.

  6. Cross talk between Wnt/β-catenin and Irf8 in leukemia progression and drug resistance

    PubMed Central

    Schönheit, Jörg; Zimmermann, Karin; Leser, Ulf; Rosenbauer, Frank

    2013-01-01

    Progression and disease relapse of chronic myeloid leukemia (CML) depends on leukemia-initiating cells (LIC) that resist treatment. Using mouse genetics and a BCR-ABL model of CML, we observed cross talk between Wnt/β-catenin signaling and the interferon-regulatory factor 8 (Irf8). In normal hematopoiesis, activation of β-catenin results in up-regulation of Irf8, which in turn limits oncogenic β-catenin functions. Self-renewal and myeloproliferation become dependent on β-catenin in Irf8-deficient animals that develop a CML-like disease. Combined Irf8 deletion and constitutive β-catenin activation result in progression of CML into fatal blast crisis, elevated leukemic potential of BCR-ABL–induced LICs, and Imatinib resistance. Interestingly, activated β-catenin enhances a preexisting Irf8-deficient gene signature, identifying β-catenin as an amplifier of progression-specific gene regulation in the shift of CML to blast crisis. Collectively, our data uncover Irf8 as a roadblock for β-catenin–driven leukemia and imply both factors as targets in combinatorial therapy. PMID:24101380

  7. Imbalance of mitochondrial-nuclear cross talk in isocyanate mediated pulmonary endothelial cell dysfunction☆

    PubMed Central

    Panwar, Hariom; Jain, Deepika; Khan, Saba; Pathak, Neelam; Raghuram, Gorantla V.; Bhargava, Arpit; Banerjee, Smita; Mishra, Pradyumna K.

    2013-01-01

    Mechanistic investigations coupled with epidemiology, case-control, cohort and observational studies have increasingly linked isocyanate exposure (both chronic and acute) with pulmonary morbidity and mortality. Though ascribed for impairment in endothelial cell function, molecular mechanisms of these significant adverse pulmonary outcomes remains poorly understood. As preliminary studies conducted in past have failed to demonstrate a cause-effect relationship between isocyanate toxicity and compromised pulmonary endothelial cell function, we hypothesized that direct exposure to isocyanate may disrupt endothelial structural lining, resulting in cellular damage. Based on this premise, we comprehensively evaluated the molecular repercussions of methyl isocyanate (MIC) exposure on human pulmonary arterial endothelial cells (HPAE-26). We examined MIC-induced mitochondrial oxidative stress, pro-inflammatory cytokine response, oxidative DNA damage response and apoptotic index. Our results demonstrate that exposure to MIC, augment mitochondrial reactive oxygen species production, depletion in antioxidant defense enzymes, elevated pro-inflammatory cytokine response and induced endothelial cell apoptosis via affecting the balance of mitochondrial-nuclear cross talk. We herein delineate the first and direct molecular cascade of isocyanate-induced pulmonary endothelial cell dysfunction. The results of our study might portray a connective link between associated respiratory morbidities with isocyanate exposure, and indeed facilitate to discern the exposure-phenotype relationship in observed deficits of pulmonary endothelial cell function. Further, understanding of inter- and intra-cellular signaling pathways involved in isocyanate-induced endothelial damage would not only aid in biomarker identification but also provide potential new avenues to target specific therapeutic interventions. PMID:24024149

  8. Network Modeling Reveals Cross Talk of MAP Kinases during Adaptation to Caspofungin Stress in Aspergillus fumigatus.

    PubMed

    Altwasser, Robert; Baldin, Clara; Weber, Jakob; Guthke, Reinhard; Kniemeyer, Olaf; Brakhage, Axel A; Linde, Jörg; Valiante, Vito

    2015-01-01

    Mitogen activated protein kinases (MAPKs) are highly conserved in eukaryotic organisms. In pathogenic fungi, their activities were assigned to different physiological functions including drug adaptation and resistance. Aspergillus fumigatus is a human pathogenic fungus, which causes life-threatening invasive infections. Therapeutic options against invasive mycoses are still limited. One of the clinically used drugs is caspofungin, which specifically targets the fungal cell wall biosynthesis. A systems biology approach, based on comprehensive transcriptome data sets and mathematical modeling, was employed to infer a regulatory network and identify key interactions during adaptation to caspofungin stress in A. fumigatus. Mathematical modeling and experimental validations confirmed an intimate cross talk occurring between the cell wall-integrity and the high osmolarity-glycerol signaling pathways. Specifically, increased concentrations of caspofungin promoted activation of these signalings. Moreover, caspofungin affected the intracellular transport, which caused an additional osmotic stress that is independent of glucan inhibition. High concentrations of caspofungin reduced this osmotic stress, and thus decreased its toxic activity. Our results demonstrated that MAPK signaling pathways play a key role during caspofungin adaptation and are contributing to the paradoxical effect exerted by this drug.

  9. Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium

    PubMed Central

    van Noort, Vera; Seebacher, Jan; Bader, Samuel; Mohammed, Shabaz; Vonkova, Ivana; Betts, Matthew J; Kühner, Sebastian; Kumar, Runjun; Maier, Tobias; O'Flaherty, Martina; Rybin, Vladimir; Schmeisky, Arne; Yus, Eva; Stülke, Jörg; Serrano, Luis; Russell, Robert B; Heck, Albert JR; Bork, Peer; Gavin, Anne-Claude

    2012-01-01

    Protein post-translational modifications (PTMs) represent important regulatory states that when combined have been hypothesized to act as molecular codes and to generate a functional diversity beyond genome and transcriptome. We systematically investigate the interplay of protein phosphorylation with other post-transcriptional regulatory mechanisms in the genome-reduced bacterium Mycoplasma pneumoniae. Systematic perturbations by deletion of its only two protein kinases and its unique protein phosphatase identified not only the protein-specific effect on the phosphorylation network, but also a modulation of proteome abundance and lysine acetylation patterns, mostly in the absence of transcriptional changes. Reciprocally, deletion of the two putative N-acetyltransferases affects protein phosphorylation, confirming cross-talk between the two PTMs. The measured M. pneumoniae phosphoproteome and lysine acetylome revealed that both PTMs are very common, that (as in Eukaryotes) they often co-occur within the same protein and that they are frequently observed at interaction interfaces and in multifunctional proteins. The results imply previously unreported hidden layers of post-transcriptional regulation intertwining phosphorylation with lysine acetylation and other mechanisms that define the functional state of a cell. PMID:22373819

  10. Kidney-brain axis inflammatory cross-talk: from bench to bedside.

    PubMed

    Miranda, Aline Silva; Cordeiro, Thiago Macedo; Dos Santos Lacerda Soares, Thomas Mucida; Ferreira, Rodrigo Novaes; Simões E Silva, Ana Cristina

    2017-06-01

    Epidemiologic data suggest that individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing neuropsychiatric disorders, cognitive impairment, and dementia. This risk is generally explained by the high prevalence of both symptomatic and subclinical ischemic cerebrovascular lesions. However, other potential mechanisms, including cytokine/chemokine release, production of reactive oxygen species (ROS), circulating and local formation of trophic factors and of renin-angiotensin system (RAS) molecules, could also be involved, especially in the absence of obvious cerebrovascular disease. In this review, we discuss experimental and clinical evidence for the role of these mechanisms in kidney-brain cross-talk. In addition, we hypothesize potential pathways for the interactions between kidney and brain and their pathophysiological role in neuropsychiatric and cognitive changes found in patients with CKD. Understanding the pathophysiologic interactions between renal impairment and brain function is important in order to minimize the risk for future cognitive impairment and to develop new strategies for innovative pharmacological treatment. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  11. Natural variation in cross-talk between glucosinolates and onset of flowering in Arabidopsis

    PubMed Central

    Jensen, Lea M.; Jepsen, Henriette S. K.; Halkier, Barbara A.; Kliebenstein, Daniel J.; Burow, Meike

    2015-01-01

    Naturally variable regulatory networks control different biological processes including reproduction and defense. This variation within regulatory networks enables plants to optimize defense and reproduction in different environments. In this study we investigate the ability of two enzyme-encoding genes in the glucosinolate pathway, AOP2 and AOP3, to affect glucosinolate accumulation and flowering time. We have introduced the two highly similar enzymes into two different AOPnull accessions, Col-0 and Cph-0, and found that the genes differ in their ability to affect glucosinolate levels and flowering time across the accessions. This indicated that the different glucosinolates produced by AOP2 and AOP3 serve specific regulatory roles in controlling these phenotypes. While the changes in glucosinolate levels were similar in both accessions, the effect on flowering time was dependent on the genetic background pointing to natural variation in cross-talk between defense chemistry and onset of flowering. This variation likely reflects an adaptation to survival in different environments. PMID:26442014

  12. Do androgen deprivation drugs affect the immune cross-talk between mononuclear and prostate cancer cells?

    PubMed

    Salman, Hertzel; Bergman, Michael; Blumberger, Naava; Djaldetti, Meir; Bessler, Hanna

    2014-02-01

    The aim of the study was to examine the effect of androgen deprivation drugs, i.e. leuprolide and bicalutamide on the immune cross-talk between human peripheral blood mononuclear cells (PBMC) and cells from PC-3 and LNCaP human prostate cancer lines. PBMC, PC-3 and LNCaP were separately incubated without and with two androgen-deprivation drugs, i.e. leuprolide and bicalutamide, and the secretion of IL-1β, IL-6, IL-1ra and IL-10 was examined. In addition, the effect of both drugs on the production of those cytokines was carried out after 24 hours incubation of PBMC with both types of cancer cells. Leuprolide or bicalutamide did not affect the production of the cytokines by PBMC or by the prostate cancer cells from the two lines. Incubation of PBMC with PC-3 or LNCaP cells caused increased production of IL-1β, IL-6 and IL-10 as compared with PBMC incubated without malignant cells. While 10(-7) M and 10(-8) M of leuprolide caused a decreased secretion of IL-1β by PBMC previously incubated with prostate cancer cells without the drug, bicalutamide did not affect this PBMC activity at any drug concentration. This observation suggests the existence of an additional mechanism explaining the effect of androgen deprivation therapy in prostate cancer patients.

  13. Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics

    NASA Astrophysics Data System (ADS)

    Al-Rekabi, Zeinab; Pelling, Andrew E.

    2013-12-01

    Growing evidence suggests that critical cellular processes are profoundly influenced by the cross talk between extracellular nanomechanical forces and the material properties of the cellular microenvironment. Although many studies have examined either the effect of nanomechanical forces or the material properties of the microenvironment on biological processes, few have investigated the influence of both. Here, we performed simultaneous atomic force microscopy and traction force microscopy to demonstrate that muscle precursor cells (myoblasts) rapidly generate a significant increase in traction when stimulated with a local 10 nN force. Cells were cultured and nanomechanically stimulated on hydrogel substrates with controllable local elastic moduli varying from ˜16-89 kPa, as confirmed with atomic force microscopy. Importantly, cellular traction dynamics in response to nanomechanical stimulation only occurred on substrates that were similar to the elasticity of working muscle tissue (˜64-89 kPa) as opposed to substrates mimicking resting tissue (˜16-51 kPa). The traction response was also transient, occurring within 30 s, and dissipating by 60 s, during constant nanomechanical stimulation. The observed biophysical dynamics are very much dependent on rho-kinase and myosin-II activity and likely contribute to the physiology of these cells. Our results demonstrate the fundamental ability of cells to integrate nanoscale information in the cellular microenvironment, such as nanomechanical forces and substrate mechanics, during the process of mechanotransduction.

  14. Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics.

    PubMed

    Al-Rekabi, Zeinab; Pelling, Andrew E

    2013-12-01

    Growing evidence suggests that critical cellular processes are profoundly influenced by the cross talk between extracellular nanomechanical forces and the material properties of the cellular microenvironment. Although many studies have examined either the effect of nanomechanical forces or the material properties of the microenvironment on biological processes, few have investigated the influence of both. Here, we performed simultaneous atomic force microscopy and traction force microscopy to demonstrate that muscle precursor cells (myoblasts) rapidly generate a significant increase in traction when stimulated with a local 10 nN force. Cells were cultured and nanomechanically stimulated on hydrogel substrates with controllable local elastic moduli varying from ~16-89 kPa, as confirmed with atomic force microscopy. Importantly, cellular traction dynamics in response to nanomechanical stimulation only occurred on substrates that were similar to the elasticity of working muscle tissue (~64-89 kPa) as opposed to substrates mimicking resting tissue (~16-51 kPa). The traction response was also transient, occurring within 30 s, and dissipating by 60 s, during constant nanomechanical stimulation. The observed biophysical dynamics are very much dependent on rho-kinase and myosin-II activity and likely contribute to the physiology of these cells. Our results demonstrate the fundamental ability of cells to integrate nanoscale information in the cellular microenvironment, such as nanomechanical forces and substrate mechanics, during the process of mechanotransduction.

  15. The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin.

    PubMed

    Vandenbussche, Filip; Smalle, Jan; Le, Jie; Saibo, Nelson José Madeira; De Paepe, Annelies; Chaerle, Laury; Tietz, Olaf; Smets, Raphael; Laarhoven, Lucas J J; Harren, Frans J M; Van Onckelen, Harry; Palme, Klaus; Verbelen, Jean-Pierre; Van Der Straeten, Dominique

    2003-03-01

    Ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) can stimulate hypocotyl elongation in light-grown Arabidopsis seedlings. A mutant, designated ACC-related long hypocotyl 1 (alh1), that displayed a long hypocotyl in the light in the absence of the hormone was characterized. Etiolated alh1 seedlings overproduced ethylene and had an exaggerated apical hook and a thicker hypocotyl, although no difference in hypocotyl length was observed when compared with wild type. Alh1 plants were less sensitive to ethylene, as reflected by reduction of ACC-mediated inhibition of hypocotyl growth in the dark and delay in flowering and leaf senescence. Alh1 also had an altered response to auxin, whereas auxin levels in whole alh1 seedlings remained unaffected. In contrast to wild type, alh1 seedlings showed a limited hypocotyl elongation when treated with indole-3-acetic acid. Alh1 roots had a faster response to gravity. Furthermore, the hypocotyl elongation of alh1 and of ACC-treated wild type was reverted by auxin transport inhibitors. In addition, auxin up-regulated genes were ectopically expressed in hypocotyls upon ACC treatment, suggesting that the ethylene response is mediated by auxins. Together, these data indicate that alh1 is altered in the cross talk between ethylene and auxins, probably at the level of auxin transport.

  16. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington's disease

    PubMed Central

    Valenza, M; Marullo, M; Di Paolo, E; Cesana, E; Zuccato, C; Biella, G; Cattaneo, E

    2015-01-01

    In the adult brain, neurons require local cholesterol production, which is supplied by astrocytes through apoE-containing lipoproteins. In Huntington's disease (HD), such cholesterol biosynthesis in the brain is severely reduced. Here we show that this defect, occurring in astrocytes, is detrimental for HD neurons. Astrocytes bearing the huntingtin protein containing increasing CAG repeats secreted less apoE-lipoprotein-bound cholesterol in the medium. Conditioned media from HD astrocytes and lipoprotein-depleted conditioned media from wild-type (wt) astrocytes were equally detrimental in a neurite outgrowth assay and did not support synaptic activity in HD neurons, compared with conditions of cholesterol supplementation or conditioned media from wt astrocytes. Molecular perturbation of cholesterol biosynthesis and efflux in astrocytes caused similarly altered astrocyte–neuron cross talk, whereas enhancement of glial SREBP2 and ABCA1 function reversed the aspects of neuronal dysfunction in HD. These findings indicate that astrocyte-mediated cholesterol homeostasis could be a potential therapeutic target to ameliorate neuronal dysfunction in HD. PMID:25301063

  17. Cross talk between inflammatory cytokines and granulocyte-macrophage colony-stimulating factor in transplant vasculopathy.

    PubMed

    Sterpetti, Antonio V; Borrelli, Valeria; Ventura, Marco; Cucina, Alessandra

    2017-05-15

    Transplant vasculopathy limits the clinical results of solid organ transplantation. Thirty-three arterial grafts were implanted in the abdominal aorta of Lewis rats. The animals were humanely sacrificed 4 wk after surgery. The study groups had 15 arterial isografts and 18 arterial allografts. Growth factors and inflammatory cytokines, released by the removed grafts, were studied in organ culture. The released growth factors were analyzed in vitro to assess their effect on the proliferation of endothelial, smooth muscle cells and fibroblasts. In arterial isogenic and allogenic grafts, platelet-derived growth factor and basic fibroblastic growth factor release was minimal (P < 0.01). There was a significant release of granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-α (TNF-α; P < 0.001) in allografts. GM-CSF and TNF-α, at concentrations in the allograft organ cultures, stimulated significantly the growth of smooth muscle cells. The simultaneous action of TNF-α and GM-CSF had an exponential growth effect on endothelial cells and smooth muscle cells. Interleukin (IL)-1, IL-2, and IL-9 were released in high quantities by allografts. In vitro, IL-1, IL-2, and IL-9 facilitated the growth effect of GM-CSF and TNF-α. Transplant vasculopathy depends on the simultaneous and complementary additive effects of several growth factors and cytokines, which have a continuous "cross talk." Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cross-talk between the cellular redox state and the circadian system in Neurospora.

    PubMed

    Yoshida, Yusuke; Iigusa, Hideo; Wang, Niyan; Hasunuma, Kohji

    2011-01-01

    The circadian system is composed of a number of feedback loops, and multiple feedback loops in the form of oscillators help to maintain stable rhythms. The filamentous fungus Neurospora crassa exhibits a circadian rhythm during asexual spore formation (conidiation banding) and has a major feedback loop that includes the FREQUENCY (FRQ)/WHITE COLLAR (WC) -1 and -2 oscillator (FWO). A mutation in superoxide dismutase (sod)-1, an antioxidant gene, causes a robust and stable circadian rhythm compared with that of wild-type (Wt). However, the mechanisms underlying the functions of reactive oxygen species (ROS) remain unknown. Here, we show that cellular ROS concentrations change in a circadian manner (ROS oscillation), and the amplitudes of ROS oscillation increase with each cycle and then become steady (ROS homeostasis). The ROS oscillation and homeostasis are produced by the ROS-destroying catalases (CATs) and ROS-generating NADPH oxidase (NOX). cat-1 is also induced by illumination, and it reduces ROS levels. Although ROS oscillation persists in the absence of frq, wc-1 or wc-2, its homeostasis is altered. Furthermore, genetic and biochemical evidence reveals that ROS concentration regulates the transcriptional function of WCC and a higher ROS concentration enhances conidiation banding. These findings suggest that the circadian system engages in cross-talk with the cellular redox state via ROS-regulatory factors.

  19. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease

    PubMed Central

    Gumeni, Sentiljana; Trougakos, Ioannis P.

    2016-01-01

    Mitochondria are highly dynamic organelles that provide essential metabolic functions and represent the major bioenergetic hub of eukaryotic cell. Therefore, maintenance of mitochondria activity is necessary for the proper cellular function and survival. To this end, several mechanisms that act at different levels and time points have been developed to ensure mitochondria quality control. An interconnected highly integrated system of mitochondrial and cytosolic chaperones and proteases along with the fission/fusion machinery represents the surveillance scaffold of mitostasis. Moreover, nonreversible mitochondrial damage targets the organelle to a specific autophagic removal, namely, mitophagy. Beyond the organelle dynamics, the constant interaction with the ubiquitin-proteasome-system (UPS) has become an emerging aspect of healthy mitochondria. Dysfunction of mitochondria and UPS increases with age and correlates with many age-related diseases including cancer and neurodegeneration. In this review, we discuss the functional cross talk of proteostasis and mitostasis in cellular homeodynamics and the impairment of mitochondrial quality control during ageing, cancer, and neurodegeneration. PMID:26977249

  20. A proteomic approach towards understanding the cross talk between Bacteroides fragilis and Bifidobacterium longum in coculture.

    PubMed

    Rios-Covián, David; Sánchez, Borja; Martínez, Noelia; Cuesta, Isabel; Hernández-Barranco, Ana M; de Los Reyes-Gavilán, Clara G; Gueimonde, Miguel

    2016-07-01

    A better understanding of the interactions among intestinal microbes is needed to decipher the complex cross talk that takes place within the human gut. Bacteroides and Bifidobacterium genera are among the most relevant intestinal bacteria, and it has been previously reported that coculturing of these 2 microorganisms affects their survival. Therefore, coculturing of Bifidobacterium longum NB667 and Bacteroides fragilis DSMZ2151 was performed with the aim of unravelling the mechanisms involved in their interaction. To this end, we applied proteomic (2D-DIGE) analyses, and by chromatographic techniques we quantified the bacterial metabolites produced during coincubation. Coculture stimulated the growth of B. longum, retarding that of B. fragilis, with concomitant changes in the production of some proteins and metabolites of both bacteria. The combined culture promoted upregulation of the bifidobacterial pyruvate kinase and downregulation of the Bacteroides phosphoenolpyruvate carboxykinase - 2 enzymes involved in the catabolism of carbohydrates. Moreover, B. fragilis FKBP-type peptidyl-prolyl cis-trans isomerase, a protein with chaperone-like activity, was found to be overproduced in coculture, suggesting the induction of a stress response in this microorganism. This study provides mechanistic data to deepen our understanding of the interaction between Bacteroides and Bifidobacterium intestinal populations.

  1. MenaINV mediates synergistic cross-talk between signaling pathways driving chemotaxis and haptotaxis

    PubMed Central

    Oudin, Madeleine J.; Miller, Miles A.; Klazen, Joelle A. Z.; Kosciuk, Tatsiana; Lussiez, Alisha; Hughes, Shannon K.; Tadros, Jenny; Bear, James E.; Lauffenburger, Douglas A.; Gertler, Frank B.

    2016-01-01

    Directed cell migration, a key process in metastasis, arises from the combined influence of multiple processes, including chemotaxis—the directional movement of cells to soluble cues—and haptotaxis—the migration of cells on gradients of substrate-bound factors. However, it is unclear how chemotactic and haptotactic pathways integrate with each other to drive overall cell behavior. MenaINV has been implicated in metastasis by driving chemotaxis via dysregulation of phosphatase PTP1B and more recently in haptotaxis via interaction with integrin α5β1. Here we find that MenaINV-driven haptotaxis on fibronectin (FN) gradients requires intact signaling between α5β1 integrin and the epidermal growth factor receptor (EGFR), which is influenced by PTP1B. Furthermore, we show that MenaINV-driven haptotaxis and ECM reorganization both require the Rab-coupling protein RCP, which mediates α5β1 and EGFR recycling. Finally, MenaINV promotes synergistic migratory response to combined EGF and FN in vitro and in vivo, leading to hyperinvasive phenotypes. Together our data demonstrate that MenaINV is a shared component of multiple prometastatic pathways that amplifies their combined effects, promoting synergistic cross-talk between RTKs and integrins. PMID:27559126

  2. Cross Talk Between O-GlcNAcylation and Phosphorylation: Roles in Signaling, Transcription, and Chronic Disease

    PubMed Central

    Hart, Gerald W.; Slawson, Chad; Ramirez-Correa, Genaro; Lagerlof, Olof

    2012-01-01

    O-GlcNAcylation is the addition of β-D-N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. O-linked N-acetylglucosamine (O-GlcNAc) was not discovered until the early 1980s and still remains difficult to detect and quantify. Nonetheless, O-GlcNAc is highly abundant and cycles on proteins with a timescale similar to protein phosphorylation. O-GlcNAc occurs in organisms ranging from some bacteria to protozoans and metazoans, including plants and nematodes up the evolutionary tree to man. O-GlcNAcylation is mostly on nuclear proteins, but it occurs in all intracellular compartments, including mitochondria. Recent glycomic analyses have shown that O-GlcNAcylation has surprisingly extensive cross talk with phosphorylation, where it serves as a nutrient/stress sensor to modulate signaling, transcription, and cytoskeletal functions. Abnormal amounts of O-GlcNAcylation underlie the etiology of insulin resistance and glucose toxicity in diabetes, and this type of modification plays a direct role in neurodegenerative disease. Many oncogenic proteins and tumor suppressor proteins are also regulated by O-GlcNAcylation. Current data justify extensive efforts toward a better understanding of this invisible, yet abundant, modification. As tools for the study of O-GlcNAc become more facile and available, exponential growth in this area of research will eventually take place. PMID:21391816

  3. Cross-talk compensation of a spatial light modulator for iterative phase retrieval applications.

    PubMed

    Gemayel, Pierre; Colicchio, Bruno; Dieterlen, Alain; Ambs, Pierre

    2016-02-01

    Beam-propagation-based phase recovery approaches, also known as phase retrieval methods, retrieve the amplitude and the phase of arbitrary complex-valued fields. We present and experimentally demonstrate a simple and robust iterative method using a liquid crystal spatial light modulator located at an object diffraction plane. M random phase masks are applied between the object and the image sensor using the modulator, and then M diffraction patterns are collected in the Fourier plane. An iterative algorithm using these patterns and simulating the propagation of the light between the two planes allow us to recover the object wavefront. The use of this type of dynamic modulator makes the experimental setup simpler and more flexible. We need no a priori knowledge about the object field, and the convergence rate is high. Simulation results show that the method exhibits high immunity to noise and does not suffer any stagnation problem. However, experimental results have shown that the technique is sensitive to the cross talk of the modulator. We propose a method for compensating these modulator defects that are validated by experimental results.

  4. 14-3-3 Mediates Histone Cross-Talk during Transcription Elongation in Drosophila

    PubMed Central

    Karam, Caline S.; Kellner, Wendy A.; Takenaka, Naomi; Clemmons, Alexa W.; Corces, Victor G.

    2010-01-01

    Post-translational modifications of histone proteins modulate the binding of transcription regulators to chromatin. Studies in Drosophila have shown that the phosphorylation of histone H3 at Ser10 (H3S10ph) by JIL-1 is required specifically during early transcription elongation. 14-3-3 proteins bind H3 only when phosphorylated, providing mechanistic insights into the role of H3S10ph in transcription. Findings presented here show that 14-3-3 functions downstream of H3S10ph during transcription elongation. 14-3-3 proteins localize to active genes in a JIL-1–dependent manner. In the absence of 14-3-3, levels of actively elongating RNA polymerase II are severely diminished. 14-3-3 proteins interact with Elongator protein 3 (Elp3), an acetyltransferase that functions during transcription elongation. JIL-1 and 14-3-3 are required for Elp3 binding to chromatin, and in the absence of either protein, levels of H3K9 acetylation are significantly reduced. These results suggest that 14-3-3 proteins mediate cross-talk between histone phosphorylation and acetylation at a critical step in transcription elongation. PMID:20532201

  5. Exploring the cross talk between ER stress and inflammation in age-related macular degeneration.

    PubMed

    Kheitan, Samira; Minuchehr, Zarrin; Soheili, Zahra-Soheila

    2017-01-01

    Increasing evidence demonstrates that inflammation and endoplasmic reticulum (ER) stress is implicated in the development and progression of age-related macular degeneration (AMD), a multifactorial neurodegenerative disease. However the cross talk between these cellular mechanisms has not been clearly and fully understood. The present study investigates a possible intersection between ER stress and inflammation in AMD. In this study, we recruited two collections of involved protein markers to retrieve their interaction information from IMEx-curated databases, which are the most well- known protein-protein interaction collections, allowing us to design an intersection network for AMD that is unprecedented. In order to find expression activated subnetworks, we utilized AMD expression profiles in our network. In addition, we studied topological characteristics of the most expressed active subnetworks to identify the hubs. With regard to topological quantifications and expressional activity, we reported a list of the most pivotal hubs which are potentially applicable as probable therapeutic targets. Furthermore, we introduced MAPK signaling pathway as a significantly involved pathway in the association between ER stress and inflammation, leading to promising new directions in discovering AMD formation mechanisms and possible treatments.

  6. Exploring the cross talk between ER stress and inflammation in age-related macular degeneration

    PubMed Central

    Kheitan, Samira; Soheili, Zahra-Soheila

    2017-01-01

    Increasing evidence demonstrates that inflammation and endoplasmic reticulum (ER) stress is implicated in the development and progression of age-related macular degeneration (AMD), a multifactorial neurodegenerative disease. However the cross talk between these cellular mechanisms has not been clearly and fully understood. The present study investigates a possible intersection between ER stress and inflammation in AMD. In this study, we recruited two collections of involved protein markers to retrieve their interaction information from IMEx-curated databases, which are the most well- known protein-protein interaction collections, allowing us to design an intersection network for AMD that is unprecedented. In order to find expression activated subnetworks, we utilized AMD expression profiles in our network. In addition, we studied topological characteristics of the most expressed active subnetworks to identify the hubs. With regard to topological quantifications and expressional activity, we reported a list of the most pivotal hubs which are potentially applicable as probable therapeutic targets. Furthermore, we introduced MAPK signaling pathway as a significantly involved pathway in the association between ER stress and inflammation, leading to promising new directions in discovering AMD formation mechanisms and possible treatments. PMID:28742151

  7. Organelle-nucleus cross-talk regulates plant intercellular communication via plasmodesmata.

    PubMed

    Burch-Smith, Tessa M; Brunkard, Jacob O; Choi, Yoon Gi; Zambryski, Patricia C

    2011-12-20

    We use Arabidopsis thaliana embryogenesis as a model system for studying intercellular transport via plasmodesmata (PD). A forward genetic screen for altered PD transport identified increased size exclusion limit (ise) 1 and ise2 mutants with increased intercellular transport of fluorescent 10-kDa tracers. Both ise1 and ise2 exhibit increased formation of twinned and branched PD. ISE1 encodes a mitochondrial DEAD-box RNA helicase, whereas ISE2 encodes a DEVH-type RNA helicase. Here, we show that ISE2 foci are localized to the chloroplast stroma. Surprisingly, plastid development is defective in both ise1 and ise2 mutant embryos. In an effort to understand how RNA helicases that localize to different organelles have similar impacts on plastid and PD development/function, we performed whole-genome expression analyses. The most significantly affected class of transcripts in both mutants encode products that target to and enable plastid function. These results reinforce the importance of plastid-mitochondria-nucleus cross-talk, add PD as a critical player in the plant cell communication network, and thereby illuminate a previously undescribed signaling pathway dubbed organelle-nucleus-plasmodesmata signaling. Several genes with roles in cell wall synthesis and modification are also differentially expressed in both mutants, providing new targets for investigating PD development and function.

  8. Cross-talk between adipose tissue and vasculature: role of adiponectin.

    PubMed

    Li, F Y L; Cheng, K K Y; Lam, K S L; Vanhoutte, P M; Xu, A

    2011-09-01

    Adipose tissue is a highly dynamic endocrine organ, secreting a number of bioactive substances (adipokines) regulating insulin sensitivity, energy metabolism and vascular homeostasis. Dysfunctional adipose tissue is a key mediator that links obesity with insulin resistance, hypertension and cardiovascular disease. Obese adipose tissue is characterized by adipocyte hypertrophy and infiltration of inflammatory macrophages and lymphocytes, leading to the augmented production of pro-inflammatory adipokines and vasoconstrictors that induce endothelial dysfunction and vascular inflammation through their paracrine and endocrine actions. By contrast, the secretion of adiponectin, an adipokine with insulin sensitizing and anti-inflammatory activities, is decreased in obesity and its related pathologies. Emerging evidence suggests that adiponectin is protective against vascular dysfunction induced by obesity and diabetes, through its multiple favourable effects on glucose and lipid metabolism as well as on vascular function. Adiponectin improves insulin sensitivity and metabolic profiles, thus reducing the classical risk factors for cardiovascular disease. Furthermore, adiponectin protects the vasculature through its pleiotropic actions on endothelial cells, endothelial progenitor cells, smooth muscle cells and macrophages. Data from both animal and human investigations demonstrate that adiponectin is an important component of the adipo-vascular axis that mediates the cross-talk between adipose tissue and vasculature. This review highlights recent work on the vascular protective activities of adiponectin and discusses the molecular pathways underlying the vascular actions of this adipokine. © 2010 The Authors. Acta Physiologica © 2010 Scandinavian Physiological Society.

  9. Reducing Effects of Cross-Talk in a Radio Telescope Using Walsh Modulation

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sandeep C.; Gupta, Yashwant; Kumar, Ajith; Shinde, Navnath D.; Gupta, Sweta; Vishwakarma, Ajay

    Traditional Walsh technique is used to eliminate cross-talk in a array of radio telescope where achieving synchronization between modulator and demodulator without compromising sensitivity is a real challenge. The paper describes a novel approach named Walsh Delay Hunting (WDH) to synchronize independently running modulator and demodulator with no additional hardware. This approach is unique and can easily be implemented in any existing radio telescope with minimal changes, thus by putting Walsh modulator at telescope and demodulation can be done in digital back-end. The scheme greatly reduces antenna electronics and overhead of sending synchronizing Walsh start pulse back to center station and vice versa. The paper describes WDH method and its feasibility study for Giant Meterwave Radio Telescope (GMRT) along with test results. The modulator is a low cost CPLD-based module and demodulation is done in a Reconfigurable Open Architecture Computing Hardware (ROACH)-based digitizer and packetizer. The scheme requires noise injection facility before modulator, which GMRT has for antenna calibration.

  10. Reducing Effects of Cross-Talk in a Radio Telescope Using Walsh Modulation

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sandeep C.; Gupta, Yashwant; Kumar, Ajith; Shinde, Navnath D.; Gupta, Sweta; Vishwakarma, Ajay

    2016-03-01

    Traditional Walsh technique is used to eliminate cross-talk in a array of radio telescope where achieving synchronization between modulator and demodulator without compromising sensitivity is a real challenge. The paper describes a novel approach named Walsh Delay Hunting (WDH) to synchronize independently running modulator and demodulator with no additional hardware. This approach is unique and can easily be implemented in any existing radio telescope with minimal changes, thus by putting Walsh modulator at telescope and demodulation can be done in digital back-end. The scheme greatly reduces antenna electronics and overhead of sending synchronizing Walsh start pulse back to center station and vice versa. The paper describes WDH method and its feasibility study for Giant Meterwave Radio Telescope (GMRT) along with test results. The modulator is a low cost CPLD-based module and demodulation is done in a Reconfigurable Open Architecture Computing Hardware (ROACH)-based digitizer and packetizer. The scheme requires noise injection facility before modulator, which GMRT has for antenna calibration.

  11. Histidine kinases in plants: cross talk between hormone and stress responses.

    PubMed

    Nongpiur, Ramsong; Soni, Praveen; Karan, Ratna; Singla-Pareek, Sneh L; Pareek, Ashwani

    2012-10-01

    Two-component signaling pathways involve sensory histidine kinases (HK), histidine phosphotransfer proteins (HpT) and response regulators (RR). Recent advancements in genome sequencing projects for a number of plant species have established the TCS family to be multigenic one. In plants, HKs operate through the His-Asp phosphorelay and control many physiological and developmental processes throughout the lifecycle of plants. Despite the huge diversity reported for the structural features of the HKs, their functional redundancy has also been reported via mutant approach. Several sensory HKs having a CHASE domain, transmembrane domain(s), transmitter domain and receiver domain have been reported to be involved in cytokinin and ethylene signaling. On the other hand, there are also increasing evidences for some of the sensory HKs to be performing their role as osmosensor, clearly indicating toward a possible cross-talk between hormone and stress responsive cascades. In this review, we bring out the latest knowledge about the structure and functions of histidine kinases in cytokinin and ethylene signaling and their role(s) in development and the regulation of environmental stress responses.

  12. A Glutathione-Nrf2-Thioredoxin Cross-Talk Ensures Keratinocyte Survival and Efficient Wound Repair

    PubMed Central

    Telorack, Michèle; Meyer, Michael; Ingold, Irina; Conrad, Marcus; Bloch, Wilhelm; Werner, Sabine

    2016-01-01

    The tripeptide glutathione is the most abundant cellular antioxidant with high medical relevance, and it is also required as a co-factor for various enzymes involved in the detoxification of reactive oxygen species and toxic compounds. However, its cell-type specific functions and its interaction with other cytoprotective molecules are largely unknown. Using a combination of mouse genetics, functional cell biology and pharmacology, we unraveled the function of glutathione in keratinocytes and its cross-talk with other antioxidant defense systems. Mice with keratinocyte-specific deficiency in glutamate cysteine ligase, which catalyzes the rate-limiting step in glutathione biosynthesis, showed a strong reduction in keratinocyte viability in vitro and in the skin in vivo. The cells died predominantly by apoptosis, but also showed features of ferroptosis and necroptosis. The increased cell death was associated with increased levels of reactive oxygen and nitrogen species, which caused DNA and mitochondrial damage. However, epidermal architecture, and even healing of excisional skin wounds were only mildly affected in the mutant mice. The cytoprotective transcription factor Nrf2 was strongly activated in glutathione-deficient keratinocytes, but additional loss of Nrf2 did not aggravate the phenotype, demonstrating that the cytoprotective effect of Nrf2 is glutathione dependent. However, we show that deficiency in glutathione biosynthesis is efficiently compensated in keratinocytes by the cysteine/cystine and thioredoxin systems. Therefore, our study highlights a remarkable antioxidant capacity of the epidermis that ensures skin integrity and efficient wound healing. PMID:26808544

  13. Imbalance of mitochondrial-nuclear cross talk in isocyanate mediated pulmonary endothelial cell dysfunction.

    PubMed

    Panwar, Hariom; Jain, Deepika; Khan, Saba; Pathak, Neelam; Raghuram, Gorantla V; Bhargava, Arpit; Banerjee, Smita; Mishra, Pradyumna K

    2013-01-01

    Mechanistic investigations coupled with epidemiology, case-control, cohort and observational studies have increasingly linked isocyanate exposure (both chronic and acute) with pulmonary morbidity and mortality. Though ascribed for impairment in endothelial cell function, molecular mechanisms of these significant adverse pulmonary outcomes remains poorly understood. As preliminary studies conducted in past have failed to demonstrate a cause-effect relationship between isocyanate toxicity and compromised pulmonary endothelial cell function, we hypothesized that direct exposure to isocyanate may disrupt endothelial structural lining, resulting in cellular damage. Based on this premise, we comprehensively evaluated the molecular repercussions of methyl isocyanate (MIC) exposure on human pulmonary arterial endothelial cells (HPAE-26). We examined MIC-induced mitochondrial oxidative stress, pro-inflammatory cytokine response, oxidative DNA damage response and apoptotic index. Our results demonstrate that exposure to MIC, augment mitochondrial reactive oxygen species production, depletion in antioxidant defense enzymes, elevated pro-inflammatory cytokine response and induced endothelial cell apoptosis via affecting the balance of mitochondrial-nuclear cross talk. We herein delineate the first and direct molecular cascade of isocyanate-induced pulmonary endothelial cell dysfunction. The results of our study might portray a connective link between associated respiratory morbidities with isocyanate exposure, and indeed facilitate to discern the exposure-phenotype relationship in observed deficits of pulmonary endothelial cell function. Further, understanding of inter- and intra-cellular signaling pathways involved in isocyanate-induced endothelial damage would not only aid in biomarker identification but also provide potential new avenues to target specific therapeutic interventions.

  14. Cross-talk between reproduction and energy homeostasis: central impact of estrogens, leptin and kisspeptin signaling.

    PubMed

    Nestor, Casey C; Kelly, Martin J; Rønnekleiv, Oline K

    2014-03-01

    The central nervous system receives hormonal cues (e.g., estrogens and leptin, among others) that influence reproduction and energy homeostasis. 17β-estradiol (E2) is known to regulate gonadotropin-releasing hormone (GnRH) secretion via classical steroid signaling and rapid non-classical membrane-initiated signaling. Because GnRH neurons are void of leptin receptors, the actions of leptin on these neurons must be indirect. Although it is clear that the arcuate nucleus of the hypothalamus is the primary site of overlap between these two systems, it is still unclear which neural network(s) participate in the cross-talk of E2 and leptin, two hormones essential for reproductive function and metabolism. Herein we review the progress made in understanding the interactions between reproduction and energy homeostasis by focusing on the advances made to understand the cellular signaling of E2 and leptin on three neural networks: kisspeptin, pro-opiomelanocortin (POMC) and neuropeptide Y (NPY). Although critical in mediating the actions of E2 and leptin, considerable work still remains to uncover how these neural networks interact in vivo.

  15. Protective environments and health status: cross-talk between human and animal studies.

    PubMed

    Singer, Burton; Friedman, Elliot; Seeman, Teresa; Fava, Giovanni A; Ryff, Carol D

    2005-12-01

    Although aging populations tend to have increased prevalence of a diversity of diseases and disabilities, there are substantial numbers of people who, nevertheless, maintain good health into old age. Human studies frequently demonstrate associations between environmental factors, particularly supportive social environments, and positive states of health. Identifying the pathways from protective social environments to reduced disease risk necessitates the use of animal models as a basis of explanation and a source of suggestions for further human research. We present two examples of this kind of cross-talk: (i) the possibility that the success of well-being therapy following pharmacological treatment for depression as a means of preventing recurrent depressive episodes is based on the stimulation of enrichment of dendritic networks in the hippocampus and spine retraction in the basolateral amygdala; (ii) the possibility that the release of intracerebral oxytocin is a mediating factor between persistently supportive social environments and reduced disease in later life, as exemplified by low levels of allostatic load.

  16. Reciprocal oxylipin-mediated cross-talk in the Aspergillus-seed pathosystem.

    PubMed

    Brodhagen, Marion; Tsitsigiannis, Dimitrios I; Hornung, Ellen; Goebel, Cornelia; Feussner, Ivo; Keller, Nancy P

    2008-01-01

    In Aspergilli, mycotoxin production and sporulation are governed, in part, by endogenous oxylipins (oxygenated, polyunsaturated fatty acids and metabolites derived therefrom). In Aspergillus nidulans, oxylipins are synthesized by the dioxygenase enzymes PpoA, PpoB and PpoC. Structurally similar oxylipins are synthesized in seeds via the action of lipoxygenase (LOX) enzymes. Previous reports have shown that exogenous application of seed oxylipins to Aspergillus cultures alters sporulation and mycotoxin production. Herein, we explored whether a plant oxylipin biosynthetic gene (ZmLOX3) could substitute functionally for A. nidulans ppo genes. We engineered ZmLOX3 into wild-type A. nidulans, and into a DeltappoAC strain that was reduced in production of oxylipins, conidia and the mycotoxin sterigmatocystin. ZmLOX3 expression increased production of conidia and sterigmatocystin in both backgrounds. We additionally explored whether A. nidulans oxylipins affect seed LOX gene expression during Aspergillus colonization. We observed that peanut seed pnlox2-3 expression was decreased when infected by A. nidulansDeltappo mutants compared with infection by wild type. This result provides genetic evidence that fungal oxylipins are involved in plant LOX gene expression changes, leading to possible alterations in the fungal/host interaction. This report provides the first genetic evidence for reciprocal oxylipin cross-talk in the Aspergillus-seed pathosystem.

  17. Genetic-and-Epigenetic Interspecies Networks for Cross-Talk Mechanisms in Human Macrophages and Dendritic Cells during MTB Infection

    PubMed Central

    Li, Cheng-Wei; Lee, Yun-Lin; Chen, Bor-Sen

    2016-01-01

    Tuberculosis is caused by Mycobacterium tuberculosis (Mtb) infection. Mtb is one of the oldest human pathogens, and evolves mechanisms implied in human evolution. The lungs are the first organ exposed to aerosol-transmitted Mtb during gaseous exchange. Therefore, the guards of the immune system in the lungs, such as macrophages (Mϕs) and dendritic cells (DCs), are the most important defense against Mtb infection. There have been several studies discussing the functions of Mϕs and DCs during Mtb infection, but the genome-wide pathways and networks are still incomplete. Furthermore, the immune response induced by Mϕs and DCs varies. Therefore, we analyzed the cross-talk genome-wide genetic-and-epigenetic interspecies networks (GWGEINs) between Mϕs vs. Mtb and DCs vs. Mtb to determine the varying mechanisms of both the host and pathogen as it relates to Mϕs and DCs during early Mtb infection. First, we performed database mining to construct candidate cross-talk GWGEIN between human cells and Mtb. Then we constructed dynamic models to characterize the molecular mechanisms, including intraspecies gene/microRNA (miRNA) regulation networks (GRNs), intraspecies protein-protein interaction networks (PPINs), and the interspecies PPIN of the cross-talk GWGEIN. We applied a system identification method and a system order detection scheme to dynamic models to identify the real cross-talk GWGEINs using the microarray data of Mϕs, DCs and Mtb. After identifying the real cross-talk GWGEINs, the principal network projection (PNP) method was employed to construct host-pathogen core networks (HPCNs) between Mϕs vs. Mtb and DCs vs. Mtb during infection process. Thus, we investigated the underlying cross-talk mechanisms between the host and the pathogen to determine how the pathogen counteracts host defense mechanisms in Mϕs and DCs during Mtb H37Rv early infection. Based on our findings, we propose Rv1675c as a potential drug target because of its important defensive role in

  18. Academic Talk in American University Classrooms: Crossing the Boundaries of Oral-Literate Discourse?

    ERIC Educational Resources Information Center

    Csomay, Eniko

    2006-01-01

    "Is academic speech "more like" casual conversation or academic writing?" [Swales, J. (2001). "Metatalk in American academic talk. The cases of 'point' and 'thing'." "Journal of English Language," 29(1), p. 37]. Taking a corpus-based perspective to the analysis, this study compares the language of university classroom talk to academic prose and…

  19. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease

    PubMed Central

    Lian, Hong; Litvinchuk, Alexandra; Chiang, Angie C.-A.; Aithmitti, Nadia; Jankowsky, Joanna L.

    2016-01-01

    Increasing evidence supports a role of neuroinflammation in the pathogenesis of Alzheimer's disease (AD). Previously, we identified a neuron–glia signaling pathway whereby Aβ acts as an upstream activator of astroglial nuclear factor kappa B (NF-κB), leading to the release of complement C3, which acts on the neuronal C3a receptor (C3aR) to influence dendritic morphology and cognitive function. Here we report that astrocytic complement activation also regulates Aβ dynamics in vitro and amyloid pathology in AD mouse models through microglial C3aR. We show that in primary microglial cultures, acute C3 or C3a activation promotes, whereas chronic C3/C3a treatment attenuates, microglial phagocytosis and that the effect of chronic C3 exposure can be blocked by cotreatment with a C3aR antagonist and by genetic deletion of C3aR. We further demonstrate that Aβ pathology and neuroinflammation in amyloid precursor protein (APP) transgenic mice are worsened by astroglial NF-κB hyperactivation and resulting C3 elevation, whereas treatment with the C3aR antagonist (C3aRA) ameliorates plaque load and microgliosis. Our studies define a complement-dependent intercellular cross talk in which neuronal overproduction of Aβ activates astroglial NF-κB to elicit extracellular release of C3. This promotes a pathogenic cycle by which C3 in turn interacts with neuronal and microglial C3aR to alter cognitive function and impair Aβ phagocytosis. This feedforward loop can be effectively blocked by C3aR inhibition, supporting the therapeutic potential of C3aR antagonists under chronic neuroinflammation conditions. SIGNIFICANCE STATEMENT The complement pathway is activated in Alzheimer's disease. Here we show that the central complement factor C3 secreted from astrocytes interacts with microglial C3a receptor (C3aR) to mediate β-amyloid pathology and neuroinflammation in AD mouse models. Our study provides support for targeting C3aR as a potential therapy for Alzheimer's disease. PMID

  20. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease.

    PubMed

    Lian, Hong; Litvinchuk, Alexandra; Chiang, Angie C-A; Aithmitti, Nadia; Jankowsky, Joanna L; Zheng, Hui

    2016-01-13

    Increasing evidence supports a role of neuroinflammation in the pathogenesis of Alzheimer's disease (AD). Previously, we identified a neuron-glia signaling pathway whereby Aβ acts as an upstream activator of astroglial nuclear factor kappa B (NF-κB), leading to the release of complement C3, which acts on the neuronal C3a receptor (C3aR) to influence dendritic morphology and cognitive function. Here we report that astrocytic complement activation also regulates Aβ dynamics in vitro and amyloid pathology in AD mouse models through microglial C3aR. We show that in primary microglial cultures, acute C3 or C3a activation promotes, whereas chronic C3/C3a treatment attenuates, microglial phagocytosis and that the effect of chronic C3 exposure can be blocked by cotreatment with a C3aR antagonist and by genetic deletion of C3aR. We further demonstrate that Aβ pathology and neuroinflammation in amyloid precursor protein (APP) transgenic mice are worsened by astroglial NF-κB hyperactivation and resulting C3 elevation, whereas treatment with the C3aR antagonist (C3aRA) ameliorates plaque load and microgliosis. Our studies define a complement-dependent intercellular cross talk in which neuronal overproduction of Aβ activates astroglial NF-κB to elicit extracellular release of C3. This promotes a pathogenic cycle by which C3 in turn interacts with neuronal and microglial C3aR to alter cognitive function and impair Aβ phagocytosis. This feedforward loop can be effectively blocked by C3aR inhibition, supporting the therapeutic potential of C3aR antagonists under chronic neuroinflammation conditions. The complement pathway is activated in Alzheimer's disease. Here we show that the central complement factor C3 secreted from astrocytes interacts with microglial C3a receptor (C3aR) to mediate β-amyloid pathology and neuroinflammation in AD mouse models. Our study provides support for targeting C3aR as a potential therapy for Alzheimer's disease. Copyright © 2016 the authors

  1. CMOS Imager Has Better Cross-Talk and Full-Well Performance

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas J.

    2011-01-01

    A complementary metal oxide/semiconductor (CMOS) image detector now undergoing development is designed to exhibit less cross-talk and greater full-well capacity than do prior CMOS image detectors of the same type. Imagers of the type in question are designed to operate from low-voltage power supplies and are fabricated by processes that yield device features having dimensions in the deep submicron range. Because of the use of low supply potentials, maximum internal electric fields and depletion widths are correspondingly limited. In turn, these limitations are responsible for increases in cross-talk and decreases in charge-handling capacities. Moreover, for small pixels, lateral depletion cannot be extended. These adverse effects are even more accentuated in a back-illuminated CMOS imager, in which photogenerated charge carriers must travel across the entire thickness of the device. The figure shows a partial cross section of the structure in the device layer of the present developmental CMOS imager. (In a practical imager, the device layer would sit atop either a heavily doped silicon substrate or a thin silicon oxide layer on a silicon substrate, not shown here.) The imager chip is divided into two areas: area C, which contains readout circuits and other electronic circuits; and area I, which contains the imaging (photodetector and photogenerated-charge-collecting) pixel structures. Areas C and I are electrically isolated from each other by means of a trench filled with silicon oxide. The electrical isolation between areas C and I makes it possible to apply different supply potentials to these areas, thereby enabling optimization of the supply potential and associated design features for each area. More specifically, metal oxide semiconductor field-effect transistors (MOSFETs) that are typically included in CMOS imagers now reside in area C and can remain unchanged from established designs and operated at supply potentials prescribed for those designs, while the

  2. Cross-talk Suppression between the CpxA-CpxR and EnvZ-OmpR Two-Component Systems in E. coli

    PubMed Central

    Siryaporn, Albert; Goulian, Mark

    2009-01-01

    Many bacteria possess large numbers of two-component signaling systems, which are composed of histidine kinase-response regulator pairs. The high level of sequence similarity between some systems raises the possibility of undesired cross-talk between a histidine kinase and a non-cognate response regulator. Although molecular specificity ensures that phospho-transfer occurs primarily between correct partners, even a low level of inappropriate cross-talk could lead to unacceptable levels of noise or interference in signal transduction. To explore mechanisms that provide insulation against such interference, we have examined cross-talk between the histidine kinase CpxA and non-cognate response regulator OmpR in Escherichia coli. Our results show that there are two mechanisms that suppress cross-talk between these two proteins, which depend on the corresponding cognate partners CpxR and EnvZ and on the bifunctional nature of the histidine kinases CpxA and EnvZ. When cross-talk is detectable, we find it is independent of CpxA stimulus. We also show that cross-talk suppression leads to mutational robustness, i.e. it masks the effects of mutations that would otherwise lead to increased cross-talk. The mechanisms that provide insulation against interference described here may be applicable to many other two-component systems. PMID:18761686

  3. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression.

    PubMed

    Ostrand-Rosenberg, Suzanne; Sinha, Pratima; Beury, Daniel W; Clements, Virginia K

    2012-08-01

    The tumor microenvironment is a complex milieu of tumor and host cells. Host cells can include tumor-reactive T cells capable of killing tumor cells. However, more frequently the tumor and host components interact to generate a highly immune suppressive environment that frustrates T cell cytotoxicity and promotes tumor progression through a variety of immune and non-immune mechanisms. Myeloid-derived suppressor cells (MDSC) are a major host component contributing to the immune suppressive environment. In addition to their inherent immune suppressive function, MDSC amplify the immune suppressive activity of macrophages and dendritic cells via cross-talk. This article will review the cell-cell interactions used by MDSC to inhibit anti-tumor immunity and promote progression, and the role of inflammation in promoting cross-talk between MDSC and other cells in the tumor microenvironment.

  4. New Design of the Kerfs of an Ultrasonic Two-Dimensional Array Transducer to Minimize Cross-Talk

    NASA Astrophysics Data System (ADS)

    Lee, Wonseok; Roh, Yongrae

    2010-07-01

    The transducer under consideration is a planar two-dimensional (2D) array transducer working at 3.5 MHz. The transducer is composed of 17×17 piezoelectric elements separated by major and minor kerfs. Through finite element analyses (FEA), the performance of the 2D array transducer was investigated in relation to the acoustic impedance and structure of the kerfs. Based on the analysis results, three new types of kerfs were proposed to reduce the cross-talk. Detailed material properties and structures of the new kerfs were determined to provide the lowest cross-talk level and highest pulse-echo sensitivity while preserving a desired acceptance angle at the center frequency of 3.5 MHz. The results in this work can contribute to developing a 2D array transducer which would result in having a higher signal-to-noise level, which in turn will lead to better ultrasonic imaging.

  5. New Design of the Kerfs of an Ultrasonic Two-Dimensional Array Transducer to Minimize Cross-Talk

    NASA Astrophysics Data System (ADS)

    Wonseok Lee,; Yongrae Roh,

    2010-07-01

    The transducer under consideration is a planar two-dimensional (2D) array transducer working at 3.5 MHz. The transducer is composed of 17× 17 piezoelectric elements separated by major and minor kerfs. Through finite element analyses (FEA), the performance of the 2D array transducer was investigated in relation to the acoustic impedance and structure of the kerfs. Based on the analysis results, three new types of kerfs were proposed to reduce the cross-talk. Detailed material properties and structures of the new kerfs were determined to provide the lowest cross-talk level and highest pulse-echo sensitivity while preserving a desired acceptance angle at the center frequency of 3.5 MHz. The results in this work can contribute to developing a 2D array transducer which would result in having a higher signal-to-noise level, which in turn will lead to better ultrasonic imaging.

  6. Suppression of the cross-talk effect in a dual-axis K -Rb -21Ne comagnetometer

    NASA Astrophysics Data System (ADS)

    Jiang, Liwei; Quan, Wei; Li, Rujie; Duan, Lihong; Fan, Wenfeng; Wang, Zhuo; Liu, Feng; Xing, Li; Fang, Jiancheng

    2017-06-01

    A compact dual-axis K -Rb -21Ne comagnetometer with one circularly polarized pump beam and two orthogonal linearly polarized probe beams is presented. It can be exploited for rotation sensing by operating in the spin-exchange relaxation-free regime. Due to the light shift arising from the pump laser, there is a cross-talk effect between the two sensitive axes, which limits the comagnetometer applications. To eliminate this effect, an external field parallel to the direction of the pump beam is used to compensate the light-shift field. It is validated theoretically and experimentally in the dual-axis K -Rb -21Ne comagnetometer. With the cross-talk effect suppressed, the comagnetometer can carry out high-precision rotation sensing along two sensitive axes simultaneously and independently.

  7. New topical treatment of vulvodynia based on the pathogenetic role of cross talk between nociceptors, immunocompetent cells, and epithelial cells

    PubMed Central

    Keppel Hesselink, J M; Kopsky, D J; Sajben, N

    2016-01-01

    Topical treatments of localized neuropathic pain syndromes in general are mostly neglected, mainly due to the fact that most pain physicians expect that a topical formulation needs to result in a transdermal delivery of the active compounds. On the basis of the practical experience, this study brings forth a new, somewhat neglected element of the vulvodynia pathogenesis: the cross talk between the nerve endings of nociceptors, the adjacent immunocompetent cells, and vaginal epithelial cells. Insight into this cross talk during a pathogenic condition supports the treatment of vulvodynia with topical (compounded) creams. Vulvodynia was successfully treated with an analgesic cream consisting of baclofen 5% together with the autacoid palmitoylethanolamide 1%, an endogenous anti-inflammatory compound. In this review, data is presented to substantiate the rationale behind developing and prescribing topical products for localized pain states such as vulvodynia. Most chronic inflammatory disorders are based on a network pathogenesis, and monotherapeutic inroads into the treatment of such disorders are obsolete. PMID:27757050

  8. Order-Disorder Transitions in Cross-Linked Block Copolymer Solids

    SciTech Connect

    Das, J.

    2005-01-12

    With a view toward creating solid block copolymers wherein the order-disorder transition can be accessed many times they investigated the nature of order-disorder transitions in cross-linked diblock copolymer melts using synergistic theory and experiment. A mean-field theory based on a coarse grained free-energy and the Random Phase Approximation (RPA) is developed for the system of interest. The quenched distribution of cross-links is averaged using the replica method. The phase behavior of a particular A-B block copolymer melt with a randomly cross-linked B-Block is determined as a function of the Florry-Huggins interaction parameter ({chi}) and the average number of cross-links per chain N{sub c}. They find for a cross-link density greater than N*{sub c} the B monomers are localized within a region of size {zeta} {approx} (N{sub c} - N*{sub c}){sup -1/2}. The cross-links strongly oppose ordering in the system as {zeta} becomes comparable to the radius of gyration of the block copolymer chain. As such the order-disorder transition temperature T{sub ODT} decreases precipitously when N{sub c} > N*{sub c}. When N{sub c} < N*{sub c}, T{sub ODT} increases weakly with N{sub c}. Experiments were conducted on cross-linked polystyrene-block-polyisoprene copolymer samples wherein the polyisoprene block was selectively cross-linked at a temperature well above the order-disorder transition temperature of the pure block copolymer. Small angle X-ray scattering (SAXS) and birefringence measurements on the cross-linked samples are consistent with the theoretical prediction. T{sub ODT} decreases rapidly when the cross-linking density exceeds the critical cross-linking density.

  9. CrossTalk: The Journal of Defense Software Engineering. Volume 22, Number 6, September/October 2009

    DTIC Science & Technology

    2009-10-01

    Rogers Joe Jarzombek Brent Baxter Kasey Thompson Drew Brown Chelene Fortier-Lozancich Marek Steed (801) 775-5555 stsc.customerservice@ hill.af.mil...prototype pacemaker for patients with heart diseases . Pacemakers are also mixed-critical- ity systems. The safety core is a simple timer for rest rate...Ride It Was! A Farewell From a Longtime CrossTalk Staffer Introducing Marek We’d like to welcome our new Article Coordinator, Marek Steed. Be nice to her

  10. Cross-talk between lysophosphatidic acid receptor 1 and tropomyosin receptor kinase A promotes lung epithelial cell migration.

    PubMed

    Nan, Ling; Wei, Jianxin; Jacko, Anastasia M; Culley, Miranda K; Zhao, Jing; Natarajan, Viswanathan; Ma, Haichun; Zhao, Yutong

    2016-02-01

    Lysophosphatidic acid (LPA) is a bioactive lysophospholipid, which plays a crucial role in the regulation of cell proliferation, migration, and differentiation. LPA exerts its biological effects mainly through binding to cell-surface LPA receptors (LPA1-6), which belong to the G protein-coupled receptor (GPCR) family. Recent studies suggest that cross-talk between receptor tyrosine kinases (RTKs) and GPCRs modulates GPCRs-mediated signaling. Tropomyosin receptor kinase A (TrkA) is a RTK, which mediates nerve growth factor (NGF)-induced biological functions including cell migration in neuronal and non-neuronal cells. Here, we show LPA1 transactivation of TrkA in murine lung epithelial cells (MLE12). LPA induced tyrosine phosphorylation of TrkA in both time- and dose-dependent manners. Down-regulation of LPA1 by siRNA transfection attenuated LPA-induced phosphorylation of TrkA, suggesting a cross-talk between LPA1 and TrkA. To investigate the molecular regulation of the cross-talk, we focused on the interaction between LPA1 and TrkA. We found that LPA induced interaction between LPA1 and TrkA. The LPA1/TrkA complex was localized on the plasma membrane and in the cytoplasm. The C-terminus of LPA1 was identified as the binding site for TrkA. Inhibition of TrkA attenuated LPA-induced phosphorylation of TrkA and LPA1 internalization, as well as lung epithelial cell migration. These studies provide a molecular mechanism for the transactivation of TrkA by LPA, and suggest that the cross-talk between LPA1 and TrkA regulates LPA-induced receptor internalization and lung epithelial cell migration. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. CrossTalk: The Journal of Defense Software Engineering. Volume 24, Number 6. November/December 2011

    DTIC Science & Technology

    2011-11-01

    NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-11-2011 to 00-12-2011 4. TITLE AND SUBTITLE CrossTalk: The Journal of Defense Software Engineering...Brian Dougherty, Douglas C. Schmidt, Jules White, Russell Kegley, and Jonathan Preston 8 4 11 16 22 28 31 Publisher’s Choice Departments Cover Design by...applications. • Create several test scenarios that ensure all top-level requirements are covered , with majority focused on most-likely circumstances

  12. Cross Talk between β1 and αV Integrins: β1 Affects β3 mRNA Stability

    PubMed Central

    Retta, Saverio Francesco; Cassarà, Georgia; D'Amato, Monica; Alessandro, Riccardo; Pellegrino, Maurizio; Degani, Simona; De Leo, Giacomo; Silengo, Lorenzo; Tarone, Guido

    2001-01-01

    There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of β1-null GD25 cells ectopically expressing the β1A integrin subunit, we provide evidence for the existence of a cross talk between β1 and αV integrins that affects the ratio of αVβ3 and αVβ5 integrin cell surface levels. In particular, we demonstrate that a down-regulation of αVβ3 and an up-regulation of αVβ5 occur as a consequence of β1A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms β1B and β1D, as well as two β1 cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (β1TR) or only its “variable” region (β1COM), we show that the effects of β1 over αV integrins take place irrespective of the type of β1 isoform, but require the presence of the “common” region of the β1 cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby β1 integrins exert their trans-acting functions, we have found that the down-regulation of αVβ3 is due to a decreased β3 subunit mRNA stability, whereas the up-regulation of αVβ5 is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability. PMID:11598197

  13. CrossTalk: The Journal of Defense Software Engineering. Volume 27, Number 5, September/October 2014

    DTIC Science & Technology

    2014-10-01

    Response) Alerts CMSPs relay these alerts from FEMA’s Integrated Public Alert and Warning System (IPAWS) to mobile phones using cell broadcast technology...which does not get backlogged during times of emergency, unlike wireless voice and data services. Customers who own WEA-capable mobile phones will...Editor Brandon Ellis Associate Editor Colin Kelly Art Director Kevin Kiernan Phone 801-777-9828 E-mail Crosstalk.Articles@hill.af.mil CrossTalk

  14. A novel receptor cross-talk between the ATP receptor P2Y2 and formyl peptide receptors reactivates desensitized neutrophils to produce superoxide.

    PubMed

    Önnheim, Karin; Christenson, Karin; Gabl, Michael; Burbiel, Joachim C; Müller, Christa E; Oprea, Tudor I; Bylund, Johan; Dahlgren, Claes; Forsman, Huamei

    2014-04-15

    Neutrophils express several G-protein coupled receptors (GPCRs) and they cross regulate each other. We described a novel cross-talk mechanism in neutrophils, by which signals generated by the receptor for ATP (P2Y2) reactivate desensitized formyl peptide receptors (FPRs) so that these ligand-bound inactive FPRs resume signaling. At the signaling level, the cross-talk was unidirectional, i.e., P2Y2 ligation reactivated FPR, but not vice versa and was sensitive to the phosphatase inhibitor calyculinA. Further, we show that the cross talk between P2Y2 and FPR bypassed cytosolic Ca(2+) transients and did not rely on the actin cytoskeleton. In summary, our data demonstrate a novel cross-talk mechanism that results in reactivation of desensitized FPRs and, an amplification of the neutrophil response to ATP. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Spatio-energetic cross talk in photon counting detectors: Detector model and correlated Poisson data generator.

    PubMed

    Taguchi, Katsuyuki; Polster, Christoph; Lee, Okkyun; Stierstorfer, Karl; Kappler, Steffen

    2016-12-01

    An x-ray photon interacts with photon counting detectors (PCDs) and generates an electron charge cloud or multiple clouds. The clouds (thus, the photon energy) may be split between two adjacent PCD pixels when the interaction occurs near pixel boundaries, producing a count at both of the pixels. This is called double-counting with charge sharing. (A photoelectric effect with K-shell fluorescence x-ray emission would result in double-counting as well). As a result, PCD data are spatially and energetically correlated, although the output of individual PCD pixels is Poisson distributed. Major problems include the lack of a detector noise model for the spatio-energetic cross talk and lack of a computationally efficient simulation tool for generating correlated Poisson data. A Monte Carlo (MC) simulation can accurately simulate these phenomena and produce noisy data; however, it is not computationally efficient. In this study, the authors developed a new detector model and implemented it in an efficient software simulator that uses a Poisson random number generator to produce correlated noisy integer counts. The detector model takes the following effects into account: (1) detection efficiency; (2) incomplete charge collection and ballistic effect; (3) interaction with PCDs via photoelectric effect (with or without K-shell fluorescence x-ray emission, which may escape from the PCDs or be reabsorbed); and (4) electronic noise. The correlation was modeled by using these two simplifying assumptions: energy conservation and mutual exclusiveness. The mutual exclusiveness is that no more than two pixels measure energy from one photon. The effect of model parameters has been studied and results were compared with MC simulations. The agreement, with respect to the spectrum, was evaluated using the reduced χ(2) statistics or a weighted sum of squared errors, χred(2)(≥1), where χred(2)=1 indicates a perfect fit. The model produced spectra with flat field irradiation that

  16. Cross-talk between the NR3B and NR4A families of orphan nuclear receptors

    SciTech Connect

    Lammi, Johanna; Rajalin, Ann-Marie; Huppunen, Johanna; Aarnisalo, Piia . E-mail: piia.aarnisalo@helsinki.fi

    2007-07-27

    Estrogen-related receptors (NR3B family) and Nurr1, NGFI-B, and Nor1 (NR4A family) are orphan nuclear receptors lacking identified natural ligands. The mechanisms regulating their transcriptional activities have remained elusive. We have previously observed that the members of NR3B and NR4A families are coexpressed in certain cell types such as osteoblasts and that the ability of Nurr1 to transactivate the osteopontin promoter is repressed by ERRs. We have now studied the cross-talk between NR3B and NR4A receptors. We show that NR3B and NR4A receptors mutually repress each others' transcriptional activity. The repression involves intact DNA-binding domains and dimerization interfaces but does not result from competition for DNA binding or from heterodimerization. The activation functions of NR3B and NR4A receptors are dispensable for the cross-talk. In conclusion, we report that cross-talk between NR3B and NR4A receptors is a mechanism modulating the transcriptional activities of these orphan nuclear receptors.

  17. A trapped-ion-based quantum byte with 10(-5) next-neighbour cross-talk.

    PubMed

    Piltz, C; Sriarunothai, T; Varón, A F; Wunderlich, C

    2014-08-19

    The addressing of a particular qubit within a quantum register is a key pre-requisite for scalable quantum computing. In general, executing a quantum gate with a single qubit, or a subset of qubits, affects the quantum states of all other qubits. This reduced fidelity of the whole-quantum register could prevent the application of quantum error correction protocols and thus preclude scalability. Here we demonstrate addressing of individual qubits within a quantum byte (eight qubits) and measure the error induced in all non-addressed qubits (cross-talk) associated with the application of single-qubit gates. The quantum byte is implemented using microwave-driven hyperfine qubits of (171)Yb(+) ions confined in a Paul trap augmented with a magnetic gradient field. The measured cross-talk is on the order of 10(-5) and therefore below the threshold commonly agreed sufficient to efficiently realize fault-tolerant quantum computing. Hence, our results demonstrate how this threshold can be overcome with respect to cross-talk.

  18. Mode-coupling analysis and trench design for large-mode-area low-cross-talk multicore fiber.

    PubMed

    Zheng, Siwen; Ren, Guobin; Lin, Zhen; Jian, Shuisheng

    2013-07-01

    The complete analytical solutions of the mode-coupling dynamics for seven-core multicore fibers (MCFs) with identical cores is proposed. All the coupling coefficients C(mn) of adjacent cores and nonadjacent cores as a function of the structural parameters are investigated. It is shown that the coupling coefficients can decrease by adjusting the structural parameters. In addition, the trench-assisted structure could be used for suppressing cross talk in MCF, and the effective area A(eff) can be enlarged without degrading the crosstalk properties. Simulations suggest that low cross talk and/or large A(eff) could be achieved by adjusting the trench parameters. Large mode area could be obtained by utilizing small trench (small trench width c, small refractive index difference Δ(trench)) in the trench-assisted MCF (TA-MCF), whereas low cross talk could be achieved by utilizing larger trench (large trench width c, large Δ(trench)) in the TA-MCF.

  19. Reduction Characteristics of FM-Band Cross-Talks between Two Parallel Signal Traces on Printed Circuit Boards for Vehicles

    NASA Astrophysics Data System (ADS)

    Maeno, Tsuyoshi; Ueyama, Hiroya; Iida, Michihira; Fujiwara, Osamu

    It is well known that electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns with slits. To suppress the noise current outflows from the PCBs of this kind, we previously measured noise current outflows from simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits, which revealed that making slits with open ends on the ground patterns in parallel with the traces can reduce the conducted noise currents. In the present study, with the FDTD simulation, we investigated reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces for eighteen PCBs, which have different ground patterns with/without slits parallel to the traces and dielectric layers with different thickness. As a result, we found that the cross-talk reduction effect due to slits is obtained by 3.6-5.3dB, while the cross-talks between signal traces are reduced in inverse proportion to the square of the dielectric-layer thickness and in proportion to the square of the trace interval and, which can quantitatively be explained from an inductive coupling theory.

  20. Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes.

    PubMed

    Viau, V

    2002-06-01

    Under normal conditions, the adrenal glucocorticoids, the endproduct of the hypothalamic-pituitary-adrenal (HPA) axis, provide a frontline of defence against threats to homeostasis (i.e. stress). On the other hand, chronic HPA drive and glucocorticoid hypersecretion have been implicated in the pathogenesis of several forms of systemic, neurodegenerative and affective disorders. The HPA axis is subject to gonadal influence, indicated by sex differences in basal and stress HPA function and neuropathologies associated with HPA dysfunction. Functional cross-talk between the gonadal and adrenal axes is due in large part to the interactive effects of sex steroids and glucocorticoids, explaining perhaps why several disease states linked to stress are sex-dependent. Realizing the interactive nature by which the hypothalamic-pituitary-gonadal and HPA systems operate, however, has made it difficult to model how these hormones act in the brain. Manipulation of one endocrine system is not without effects on the other. Simultaneous manipulation and assessment of both endocrine systems can overcome this problem. This dual approach in the male rat reveals that testosterone can act and interact on different aspects of basal and stress HPA function. Basal adrenocorticotropic hormone (ACTH) release is regulated by testosterone-dependent effects on arginine vasopressin synthesis, and corticosterone-dependent effects on corticotropin-releasing hormone (CRH) synthesis in the paraventricular nucleus (PVN) of the hypothalamus. In contrast, testosterone and corticosterone interact on stress-induced ACTH release and drive to the PVN motor neurones. Candidate structures mediating this interaction include several testosterone-sensitive afferents to the HPA axis, including the medial preoptic area, central and medial amygdala and bed nuclei of the stria terminalis. All of these relay homeostatic information and integrate reproductive and social behaviour. Because these modalities are affected

  1. Nitric Oxide, Ethylene, and Auxin Cross Talk Mediates Greening and Plastid Development in Deetiolating Tomato Seedlings.

    PubMed

    Melo, Nielda K G; Bianchetti, Ricardo E; Lira, Bruno S; Oliveira, Paulo M R; Zuccarelli, Rafael; Dias, Devisson L O; Demarco, Diego; Peres, Lazaro E P; Rossi, Magdalena; Freschi, Luciano

    2016-04-01

    The transition from etiolated to green seedlings involves the conversion of etioplasts into mature chloroplasts via a multifaceted, light-driven process comprising multiple, tightly coordinated signaling networks. Here, we demonstrate that light-induced greening and chloroplast differentiation in tomato (Solanum lycopersicum) seedlings are mediated by an intricate cross talk among phytochromes, nitric oxide (NO), ethylene, and auxins. Genetic and pharmacological evidence indicated that either endogenously produced or exogenously applied NO promotes seedling greening by repressing ethylene biosynthesis and inducing auxin accumulation in tomato cotyledons. Analysis performed in hormonal tomato mutants also demonstrated that NO production itself is negatively and positively regulated by ethylene and auxins, respectively. Representing a major biosynthetic source of NO in tomato cotyledons, nitrate reductase was shown to be under strict control of both phytochrome and hormonal signals. A close NO-phytochrome interaction was revealed by the almost complete recovery of the etiolated phenotype of red light-grown seedlings of the tomato phytochrome-deficient aurea mutant upon NO fumigation. In this mutant, NO supplementation induced cotyledon greening, chloroplast differentiation, and hormonal and gene expression alterations similar to those detected in light-exposed wild-type seedlings. NO negatively impacted the transcript accumulation of genes encoding phytochromes, photomorphogenesis-repressor factors, and plastid division proteins, revealing that this free radical can mimic transcriptional changes typically triggered by phytochrome-dependent light perception. Therefore, our data indicate that negative and positive regulatory feedback loops orchestrate ethylene-NO and auxin-NO interactions, respectively, during the conversion of colorless etiolated seedlings into green, photosynthetically competent young plants. © 2016 American Society of Plant Biologists. All Rights

  2. Cross-talk of opioid peptide receptor and beta-adrenergic receptor signalling in the heart.

    PubMed

    Pepe, Salvatore; van den Brink, Olivier W V; Lakatta, Edward G; Xiao, Rui-Ping

    2004-08-15

    Opioid peptide receptor (OPR) and beta-adrenergic receptor (beta-AR) are well-established members of G-protein-coupled receptor (GPCR) superfamily and are involved in regulating cardiac contractility, energy metabolism, myocyte survival or death. OPRs are typical Gi/Go-coupled receptors and activated by opioid peptides derived from the endorphin, dynorphin and enkephalin families, whereas beta-AR stimulated by catecholamines is the model system for Gs-coupled receptors. While it is widely accepted that beta-AR stimulation serves as the most powerful means to increase cardiac output in response to stress or exercise, we have only begun to appreciate functional roles of OPR stimulation in regulating cardiovascular performance. Cardiovascular regulatory effects of endogenous opioids were initially considered to originate from the central nervous system and involved the pre-synaptic co-release of norepinephrine with enkephalin from sympathetic neuronal terminals in the heart. However, opioid peptides of myocardial origin have been shown to play important roles in local regulation of the heart. Notably, OPR stimulation not only inhibits cardiac excitation-contraction coupling, but also protects the heart against hypoxic and ischemic injury via activation of Gi-mediated signalling pathways. Further, OPRs functionally and physically cross-talk with beta-ARs via multiple hierarchical mechanisms, including heterodimerization of these receptors, counterbalance of functional opposing G protein signalling, and interface at downstream signalling events. As a result, the beta-AR-mediated positive inotropic effect and increase in cAMP are markedly attenuated by OPR activation in isolated cardiomyocytes as well as sympathectomized intact rat hearts. This brief review will focus on the interaction between beta-AR and OPR and its potential physiological and pathophysiological relevance in the heart. Copryright 2004 European Society of Cardiology

  3. Bovine embryo-oviduct interaction in vitro reveals an early cross talk mediated by BMP signaling.

    PubMed

    García, Elina V; Hamdi, Meriem; Barrera, Antonio D; Sánchez-Calabuig, María J; Gutiérrez-Adán, Alfonso; Rizos, Dimitrios

    2017-05-01

    Signaling components of bone morphogenetic proteins (BMPs) are expressed in an anatomically and temporally regulated fashion in bovine oviduct. However, a local response of this signaling to the presence of the embryo has yet to be elucidated. The aim of the present study was to evaluate if early embryo-oviduct interaction induces changes in the gene expression of BMP signaling components. For this purpose, we used an in vitro co-culture system to investigate the local interaction between bovine oviductal epithelial cells (BOEC) from the isthmus region with early embryos during two developmental periods: before (from the 2-cell to 8-cell stage) or during (from the 8-cell to 16-cell stage) the main phase of embryonic genome activation (EGA). Exposure to embryos, irrespective of the period, significantly reduced the relative abundance of BMPR1B, BMPR2, SMAD1, SMAD6 and ID2 mRNAs in BOEC. In contrast, embryos that interacted with BOEC before EGA showed a significant increase in the relative abundance of SMAD1 mRNA at the 8-cell stage compared to embryos cultured without BOEC. Moreover, embryos at the 16-cell stage that interacted with BOEC during EGA showed a significant increase in BMPR1B, BMPR2 and ID2 mRNA. These results demonstrate that embryo-oviduct interaction in vitro induces specific changes in the transcriptional levels of BMP signaling, causing a bidirectional response that reduces the expression levels of this signaling in the oviductal cells while increases them in the early embryo. This suggests that BMP signaling pathway could be involved in an early cross talk between the bovine embryo and the oviduct during the first stages of development.

  4. The cell pole: The site of cross talk between the DNA uptake and genetic recombination machinery

    PubMed Central

    Kidane, Dawit; Ayora, Silvia; Sweasy, Joann; Graumann, Peter L.; Alonso, Juan C.

    2012-01-01

    Natural transformation is a programmed mechanism characterized by binding of free double-stranded (ds) DNA from the environment to the cell pole in rod-shaped bacteria. In Bacillus subtilis some competence proteins, which process the dsDNA and translocate single-stranded (ss) DNA into the cytosol, recruit a set of recombination proteins mainly to one of the cell poles. A subset of single-stranded binding proteins, working as “guardians”, protect ssDNA from degradation and limit the RecA recombinase loading. Then, the “mediators” overcome the inhibitory role of guardians, and recruit RecA onto ssDNA. A RecA·ssDNA filament searches for homology on the chromosome and, in a process that is controlled by “modulators”, catalyzes strand invasion with the generation of a displacement loop (D-loop). A D-loop resolvase or “resolver” cleaves this intermediate, limited DNA replication restores missing information and a DNA ligase seals the DNA ends. However, if any step fails, the “rescuers” will repair the broken end to rescue chromosomal transformation. If the ssDNA does not share homology with resident DNA, but it contains information for autonomous replication, guardian and mediator proteins catalyze plasmid establishment after inhibition of RecA. DNA replication and ligation reconstitute the molecule (plasmid transformation). In this review, the interacting network that leads to a cross talk between proteins of the uptake and genetic recombination machinery will be placed into prospective. PMID:23046409

  5. Salt stress and senescence: identification of cross-talk regulatory components.

    PubMed

    Allu, Annapurna Devi; Soja, Aleksandra Maria; Wu, Anhui; Szymanski, Jedrzej; Balazadeh, Salma

    2014-07-01

    Leaf senescence is an active process with a pivotal impact on plant productivity. It results from extensive signalling cross-talk coordinating environmental factors with intrinsic age-related mechanisms. Although many studies have shown that leaf senescence is affected by a range of external parameters, knowledge about the regulatory systems that govern the interplay between developmental programmes and environmental stress is still vague. Salinity is one of the most important environmental stresses that promote leaf senescence and thus affect crop yield. Improving salt tolerance by avoiding or delaying senescence under stress will therefore play an important role in maintaining high agricultural productivity. Experimental evidence suggests that hydrogen peroxide (H2O2) functions as a common signalling molecule in both developmental and salt-induced leaf senescence. In this study, microarray-based gene expression profiling on Arabidopsis thaliana plants subjected to long-term salinity stress to induce leaf senescence was performed, together with co-expression network analysis for H2O2-responsive genes that are mutually up-regulated by salt induced- and developmental leaf senescence. Promoter analysis of tightly co-expressed genes led to the identification of seven cis-regulatory motifs, three of which were known previously, namely CACGTGT and AAGTCAA, which are associated with reactive oxygen species (ROS)-responsive genes, and CCGCGT, described as a stress-responsive regulatory motif, while the others, namely ACGCGGT, AGCMGNC, GMCACGT, and TCSTYGACG were not characterized previously. These motifs are proposed to be novel elements involved in the H2O2-mediated control of gene expression during salinity stress-triggered and developmental senescence, acting through upstream transcription factors that bind to these sites.

  6. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.

    PubMed

    Everard, Amandine; Belzer, Clara; Geurts, Lucie; Ouwerkerk, Janneke P; Druart, Céline; Bindels, Laure B; Guiot, Yves; Derrien, Muriel; Muccioli, Giulio G; Delzenne, Nathalie M; de Vos, Willem M; Cani, Patrice D

    2013-05-28

    Obesity and type 2 diabetes are characterized by altered gut microbiota, inflammation, and gut barrier disruption. Microbial composition and the mechanisms of interaction with the host that affect gut barrier function during obesity and type 2 diabetes have not been elucidated. We recently isolated Akkermansia muciniphila, which is a mucin-degrading bacterium that resides in the mucus layer. The presence of this bacterium inversely correlates with body weight in rodents and humans. However, the precise physiological roles played by this bacterium during obesity and metabolic disorders are unknown. This study demonstrated that the abundance of A. muciniphila decreased in obese and type 2 diabetic mice. We also observed that prebiotic feeding normalized A. muciniphila abundance, which correlated with an improved metabolic profile. In addition, we demonstrated that A. muciniphila treatment reversed high-fat diet-induced metabolic disorders, including fat-mass gain, metabolic endotoxemia, adipose tissue inflammation, and insulin resistance. A. muciniphila administration increased the intestinal levels of endocannabinoids that control inflammation, the gut barrier, and gut peptide secretion. Finally, we demonstrated that all these effects required viable A. muciniphila because treatment with heat-killed cells did not improve the metabolic profile or the mucus layer thickness. In summary, this study provides substantial insight into the intricate mechanisms of bacterial (i.e., A. muciniphila) regulation of the cross-talk between the host and gut microbiota. These results also provide a rationale for the development of a treatment that uses this human mucus colonizer for the prevention or treatment of obesity and its associated metabolic disorders.

  7. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity

    PubMed Central

    Everard, Amandine; Belzer, Clara; Geurts, Lucie; Ouwerkerk, Janneke P.; Druart, Céline; Bindels, Laure B.; Guiot, Yves; Derrien, Muriel; Muccioli, Giulio G.; Delzenne, Nathalie M.; de Vos, Willem M.; Cani, Patrice D.

    2013-01-01

    Obesity and type 2 diabetes are characterized by altered gut microbiota, inflammation, and gut barrier disruption. Microbial composition and the mechanisms of interaction with the host that affect gut barrier function during obesity and type 2 diabetes have not been elucidated. We recently isolated Akkermansia muciniphila, which is a mucin-degrading bacterium that resides in the mucus layer. The presence of this bacterium inversely correlates with body weight in rodents and humans. However, the precise physiological roles played by this bacterium during obesity and metabolic disorders are unknown. This study demonstrated that the abundance of A. muciniphila decreased in obese and type 2 diabetic mice. We also observed that prebiotic feeding normalized A. muciniphila abundance, which correlated with an improved metabolic profile. In addition, we demonstrated that A. muciniphila treatment reversed high-fat diet-induced metabolic disorders, including fat-mass gain, metabolic endotoxemia, adipose tissue inflammation, and insulin resistance. A. muciniphila administration increased the intestinal levels of endocannabinoids that control inflammation, the gut barrier, and gut peptide secretion. Finally, we demonstrated that all these effects required viable A. muciniphila because treatment with heat-killed cells did not improve the metabolic profile or the mucus layer thickness. In summary, this study provides substantial insight into the intricate mechanisms of bacterial (i.e., A. muciniphila) regulation of the cross-talk between the host and gut microbiota. These results also provide a rationale for the development of a treatment that uses this human mucus colonizer for the prevention or treatment of obesity and its associated metabolic disorders. PMID:23671105

  8. Myeloperoxidase–Hepatocyte–Stellate Cell Cross Talk Promotes Hepatocyte Injury and Fibrosis in Experimental Nonalcoholic Steatohepatitis

    PubMed Central

    Pulli, Benjamin; Ali, Muhammad; Iwamoto, Yoshiko; Zeller, Matthias W.G.; Schob, Stefan; Linnoila, Jenny J.

    2015-01-01

    Abstract Aims: Myeloperoxidase (MPO), a highly oxidative enzyme secreted by leukocytes has been implicated in human and experimental nonalcoholic steatohepatitis (NASH), but the underlying mechanisms remain unknown. In this study, we investigated how MPO contributes to progression from steatosis to NASH. Results: In C57Bl/6J mice fed a diet deficient in methionine and choline to induce NASH, neutrophils and to a lesser extent inflammatory monocytes are markedly increased compared with sham mice and secrete abundant amounts of MPO. Through generation of HOCl, MPO directly causes hepatocyte death in vivo. In vitro experiments demonstrate mitochondrial permeability transition pore induction via activation of SAPK/JNK and PARP. MPO also contributes to activation of hepatic stellate cells (HSCs), the most important source of collagen in the liver. In vitro MPO-activated HSCs have an activation signature (MAPK and PI3K-AKT phosphorylation) and upregulate COL1A1, α-SMA, and CXCL1. MPO-derived oxidative stress also activates transforming growth factor β (TGF-β) in vitro, and TGF-β signaling inhibition with SB-431542 decreased steatosis and fibrosis in vivo. Conversely, congenital absence of MPO results in reduced hepatocyte injury, decreased levels of TGF-β, fewer activated HSCs, and less severe fibrosis in vivo. Innovation and Conclusion: Cumulatively, these findings demonstrate important cross talk between inflammatory myeloid cells, hepatocytes, and HSCs via MPO and establish MPO as part of a proapoptotic and profibrotic pathway of progression in NASH, as well as a potential therapeutic target to ameliorate this disease. Antioxid. Redox Signal. 23, 1255–1269. PMID:26058518

  9. Origins of specificity and cross-talk in metal ion sensing by Bacillus subtilis Fur.

    PubMed

    Ma, Zhen; Faulkner, Melinda J; Helmann, John D

    2012-12-01

    Fur (ferric uptake regulator) is the master regulator of iron homeostasis in many bacteria, but how it responds specifically to Fe(II) in vivo is not clear. Biochemical analyses of Bacillus subtilis Fur (BsFur) reveal that in addition to Fe(II), both Zn(II) and Mn(II) allosterically activate BsFur-DNA binding. Dimeric BsFur co-purifies with site 1 structural Zn(II) (Fur(2) Zn(2) ) and can bind four additional Zn(II) or Mn(II) ions per dimer. Metal ion binding at previously described site 3 occurs with highest affinity, but the Fur(2) Zn(2) :Me(2) form has only a modest increase in DNA binding affinity (approximately sevenfold). Metallation of site 2 (Fur(2) Zn(2) :Me(4) ) leads to a ~ 150-fold further enhancement in DNA binding affinity. Fe(II) binding studies indicate that BsFur buffers the intracellular Fe(II) concentration at ~ 1 μM. Both Mn(II) and Zn(II) are normally buffered at levels insufficient for metallation of BsFur site 2, thereby accounting for the lack of cross-talk observed in vivo. However, in a perR mutant, where the BsFur concentration is elevated, BsFur may now use Mn(II) as a co-repressor and inappropriately repress iron uptake. Since PerR repression of fur is enhanced by Mn(II), and antagonized by Fe(II), PerR may co-regulate Fe(II) homeostasis by modulating BsFur levels in response to the Mn(II)/Fe(II) ratio.

  10. Intergenomic evolution and metabolic cross-talk between rumen and thermophilic autotrophic methanogenic archaea.

    PubMed

    Bharathi, M; Chellapandi, P

    2017-02-01

    Methanobrevibacter ruminantium M1 (MRU) is a rumen methanogenic archaean that can be able to utilize formate and CO2/H2 as growth substrates. Extensive analysis on the evolutionary genomic contexts considered herein to unravel its intergenomic relationship and metabolic adjustment acquired from the genomic content of Methanothermobacter thermautotrophicus ΔH. We demonstrated its intergenomic distance, genome function, synteny homologs and gene families, origin of replication, and methanogenesis to reveal the evolutionary relationships between Methanobrevibacter and Methanothermobacter. Comparison of the phylogenetic and metabolic markers was suggested for its archaeal metabolic core lineage that might have evolved from Methanothermobacter. Orthologous genes involved in its hydrogenotrophic methanogenesis might be acquired from intergenomic ancestry of Methanothermobacter via Methanobacterium formicicum. Formate dehydrogenase (fdhAB) coding gene cluster and carbon monoxide dehydrogenase (cooF) coding gene might have evolved from duplication events within Methanobrevibacter-Methanothermobacter lineage, and fdhCD gene cluster acquired from bacterial origins. Genome-wide metabolic survey found the existence of four novel pathways viz. l-tyrosine catabolism, mevalonate pathway II, acyl-carrier protein metabolism II and glutathione redox reactions II in MRU. Finding of these pathways suggested that MRU has shown a metabolic potential to tolerate molecular oxygen, antimicrobial metabolite biosynthesis and atypical lipid composition in cell wall, which was acquainted by metabolic cross-talk with mammalian bacterial origins. We conclude that coevolution of genomic contents between Methanobrevibacter and Methanothermobacter provides a clue to understand the metabolic adaptation of MRU in the rumen at different environmental niches. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Nuclear-mitochondrial cross-talk during heat shock in Arabidopsis cell culture.

    PubMed

    Rikhvanov, Eugene G; Gamburg, Kim Z; Varakina, Nina N; Rusaleva, Tatyana M; Fedoseeva, Irina V; Tauson, Elena L; Stupnikova, Irina V; Stepanov, Alexey V; Borovskii, Genadii B; Voinikov, Victor K

    2007-11-01

    Apart from energy generation, mitochondria perform a signalling function determining the life and death of a cell under stress exposure. In the present study we have explored patterns of heat-induced synthesis of Hsp101, Hsp70, Hsp17.6 (class I), Hsp17.6 (class II) and Hsp60, and the development of induced thermotolerance in Arabidopsis thaliana cell culture under conditions of mitochondrial dysfunction. It was shown that treatment by mitochondrial inhibitors and uncouplers at the time of mild heat shock downregulates HSP synthesis, which is important for induced thermotolerance in plants. The exposure to elevated temperature induced an increase in cell oxygen consumption and hyperpolarization of the inner mitochondrial membrane. Taken together, these facts suggest that mitochondrial functions are essential for heat-induced HSP synthesis and development of induced thermotolerance in A. thaliana cell culture, suggesting that mitochondrial-nuclear cross-talk is activated under stress conditions. Treatment of Arabidopsis cell culture at 50 degrees C initiates a programmed cell death determined by the time course of viability decrease, DNA fragmentation and cytochrome c release from mitochondria. As treatment at 37 degrees C protected Arabidopsis cells from heat-induced cell death, it may be suggested that Hsp101, Hsp70 and small heat-shock proteins, the synthesis of which is induced under these conditions, are playing an anti-apoptotic role in the plant cell. On the other hand, drastic heat shock upregulated mitochondrial Hsp60 synthesis and induced its release from mitochondria to the cytosol, indicating a pro-apoptotic role of plant Hsp60.

  12. EMMPRIN/CD147 deficiency disturbs ameloblast-odontoblast cross-talk and delays enamel mineralization.

    PubMed

    Khaddam, Mayssam; Huet, Eric; Vallée, Benoît; Bensidhoum, Morad; Le Denmat, Dominique; Filatova, Anna; Jimenez-Rojo, Lucia; Ribes, Sandy; Lorenz, Georg; Morawietz, Maria; Rochefort, Gael Y; Kiesow, Andreas; Mitsiadis, Thimios A; Poliard, Anne; Petzold, Matthias; Gabison, Eric E; Menashi, Suzanne; Chaussain, Catherine

    2014-09-01

    Tooth development is regulated by a series of reciprocal inductive signaling between the dental epithelium and mesenchyme, which culminates with the formation of dentin and enamel. EMMPRIN/CD147 is an Extracellular Matrix MetalloPRoteinase (MMP) INducer that mediates epithelial-mesenchymal interactions in cancer and other pathological processes and is expressed in developing teeth. Here we used EMMPRIN knockout (KO) mice to determine the functional role of EMMPRIN on dental tissue formation. We report a delay in enamel deposition and formation that is clearly distinguishable in the growing incisor and associated with a significant reduction of MMP-3 and MMP-20 expression in tooth germs of KO mice. Insufficient basement membrane degradation is evidenced by a persistent laminin immunostaining, resulting in a delay of both odontoblast and ameloblast differentiation. Consequently, enamel volume and thickness are decreased in adult mutant teeth but enamel maturation and tooth morphology are normal, as shown by micro-computed tomographic (micro-CT), nanoindentation, and scanning electron microscope analyses. In addition, the dentino-enamel junction appears as a rough calcified layer of approximately 10±5μm thick (mean±SD) in both molars and growing incisors of KO adult mice. These results indicate that EMMPRIN is involved in the epithelial-mesenchymal cross-talk during tooth development by regulating the expression of MMPs. The mild tooth phenotype observed in EMMPRIN KO mice suggests that the direct effect of EMMPRIN may be limited to a short time window, comprised between basement membrane degradation allowing direct cell contact and calcified matrix deposition. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Retinoic acid cross-talk with calcitriol activity in Atlantic salmon (Salmo salar).

    PubMed

    Ørnsrud, R; Lock, E J; Glover, C N; Flik, G

    2009-09-01

    Vitamins A (VA) and D (VD) are metabolised by vertebrates to bioactive retinoic acid (RA) and calcitriol (CTR). RA and CTR involvement in bone metabolism requires fine-tuned regulation of their synthesis and breakdown. In mammals antagonism of VA and VD is observed, but the mechanism of interaction is unknown. We investigated VA-VD interactions in Atlantic salmon (Salmo salar L.) following i.p. injection of RA and/or CTR. VA metabolites, CTR, calcium (Ca), magnesium (Mg) and phosphorus (P) were determined in plasma. Expression of bone matrix Gla protein (mgp), collagen 1 alpha2 chain (col1a2) and alkaline phosphatase (alp) mRNA was quantified to reflect osteogenesis. Branchial epithelial Ca channel (ecac listed as trpv6 in ZFIN Database) mRNA levels and intestinal Ca and P influx were determined to study Ca/P handling targets of RA and CTR. RA-injection (with or without CTR) decreased plasma CTR-levels three- to sixfold. CTR injection did not affect RA metabolites, but lowered CTR in plasma 3 and 5 days after injection. Lowered plasma CTR correlated with decreased mgp and col1a2 expression in all groups and with decreased alp in CTR-injected fish. RA-treated salmon had enhanced alp expression, irrespective of reduced plasma CTR. Expression of ecac and unidirectional intestinal influx of Ca were stimulated following RA-CTR treatment. Plasma Ca, Mg and P were not affected by any treatment. The results suggest cross-talk of RA with the VD endocrine system in Atlantic salmon. Enhanced Ca flux and osteogenesis (alp transcription) in RA-treated fish and inhibition of mgp expression revealed unprecedented disturbance of Ca physiology in hypervitaminosis A.

  14. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment

    SciTech Connect

    Borsi, Enrica; Perrone, Giulia; Terragna, Carolina; Martello, Marina; Zamagni, Elena; Tacchetti, Paola; Pantani, Lucia; Brioli, Annamaria; Dico, Angela Flores; Zannetti, Beatrice Anna; Rocchi, Serena; Cavo, Michele

    2014-11-01

    Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma. - Highlights: • HIF-1α inhibition induces a mild apoptotic cell death. • Down-modulation of cytokine-induced signaling cascades upon HIF-1α inhibition. • Reduced interaction between MM cells and BMSCs upon HIF-1α down-modulation. • Reduced PCs adhesion to the extracellular matrix protein induced by EZN-2968. • HIF-1α inhibition may be an attractive therapeutic strategy for Multiple Myeloma.

  15. Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways.

    PubMed

    Fuchs, Beth Burgwyn; Mylonakis, Eleftherios

    2009-11-01

    Fungi occupy diverse environments and are subjected to many extreme conditions. Among the stressful conditions faced by fungi are pH changes, osmotic changes, thermal changes, oxide radicals, nutrient deprivation, and exposure to chemicals. These adversities can be found either in the environment or in animal and human hosts. The cell wall integrity (CWI) pathway provides a means to fortify and repair damages to the cell wall in order to withstand stressful environments. The CWI pathway in comprised of cell wall stress sensors that lead to activation of a mitogen-activated protein kinase (MAPK) cascade. Signaling through the MAPK cascade leads to expression of transcription factors that facilitate biosynthesis of cell wall components and actin organization. Given the relatively limited number of components of the CWI pathway and the very diverse stimuli, there must be a means of expanding the pathway. To manage the diverse stress conditions, the CWI pathway cross talks with other pathways or proteins, and these cross talk events enhance the signaling capabilities of the CWI pathway. Lateral influences that facilitate maintaining the cell wall under stress conditions are TOR signaling, calcineurin signaling, the high-osmolarity glycerol pathway, the cyclic AMP-protein kinase A pathway, and additional proteins. In this article, we highlight several of the cross talk events that have been described for Saccharomyces cerevisiae and several other fungi.

  16. Membrane receptor cross talk in gonadotropin-, IGF-I-, and insulin-mediated steroidogenesis in fish ovary: An overview.

    PubMed

    Mukherjee, Dilip; Majumder, Suravi; Roy Moulik, Sujata; Pal, Puja; Gupta, Shreyasi; Guha, Payel; Kumar, Dhynendra

    2017-01-01

    Gonadal steroidogenesis is critical for survival and reproduction of all animals. The pathways that regulate gonadal steroidogenesis are therefore conserved among animals from the steroidogenic enzymes to the intracellular signaling molecules and G protein-coupled receptors (GPCRs) that mediate the activity of these enzymes. Regulation of fish ovarian steroidogenesis in vitro by gonadotropin (GtH) and GPCRs revealed interaction between adenylate cyclase and calcium/calmodulin-dependent protein kinases (CaMKs) and also MAP kinase pathway. Recent studies revealed another important pathway in GtH-induced fish ovarian steroidogenesis: cross talk between GPCRs and membrane receptor tyrosine kinases. Gonadotropin binding to Gαs-coupled membrane receptor in fish ovary leads to production of cAMP which in turn trans-activate the membrane-bound epidermal growth factor receptor (EGFR). This is followed by activation of ERK1/2 signaling that promotes steroid production. Interestingly, GtH-induced trans-activation of EGFR in the fish ovary uniquely requires matrix-metalloproteinase-mediated release of EGF. Inhibition of these proteases blocks GtH-induced steroidogenesis. Increased cAMP production in fish ovarian follicle upregulate follicular cyp19a1a mRNA expression and aromatase activity leading to increased biosynthesis of 17β-estradiol (E2). Evidence for involvement of SF-1 protein in inducing cyp19a1a mRNA and aromatase activity has also been demonstrated. In addition to GtH, insulin-like growth factor (IGF-I) and bovine insulin can alone induced steroidogenesis in fish ovary. In intact follicles and isolated theca cells, IGF-I and insulin had no effect on GtH-induced testosterone and 17a,hydroxysprogeaterone production. GtH-stimulated E2 and 17,20bdihydroxy-4-pregnane 3-one production in granulosa cells however, was significantly increased by IGF-I and insulin. Both IGF-I and insulin mediates their signaling via receptor tyrosine kinases leading to activation of PI3

  17. 'Cross talk' between opioid peptide and adrenergic receptor signaling in isolated rat heart.

    PubMed

    Pepe, S; Xiao, R P; Hohl, C; Altschuld, R; Lakatta, E G

    1997-04-15

    Cardiac myocyte sarcolemma contains both catecholamine and opioid peptide receptors (OPRs). Opioid peptides are coreleased with catecholamines from nerve terminals in the heart. We investigated whether OPR stimulation influences the effects of beta-adrenergic receptor (beta-AR) stimulation in the isolated, isovolumic rat heart and whether the mechanism of such an interaction involves both beta-AR subtypes or an alteration in beta-AR-mediated increase in cAMP. Norepinephrine (NE, 10(-7) mol/L) increased peak left ventricular systolic pressure (LVSP) and cAMP more than twofold compared with controls. The delta-OPR agonist leucine-enkephalin (LE, 10(-8) mol/L) markedly inhibited the beta1-AR-induced positive inotropic effect and increase in cAMP but alone had no effect on basal LVSP or basal cAMP levels. The OPR antagonist naloxone 10(-8) mol/L added to LE+NE perfusate reversed the LE-induced decrease in cAMP and LVSP even though naloxone alone had no effect on LVSP and cAMP levels. LE could not counteract the twofold increase in LVSP produced by the nondegradable cAMP analog CPT-cAMP 2.3x10(-5) mol/L or a high concentration of forskolin (10(-7) mol/L) but did reverse the 173+/-11.8% and 135+/-13.6% increases in LVSP stimulated by 10(-8) and 0.5x10(-8) mol/L forskolin, respectively. LE inhibited cAMP production at all concentrations of forskolin (10(-7), 10(-8), and 0.5x10(-8) mol/L). Pertussis toxin (PTX) pretreatment abolished LE effects on beta1-AR stimulation. Zinterol 10(-5) and 10(-6) mol/L, a specific beta2-AR agonist that elicits a cAMP-independent inotropic effect in rat heart, caused 225+/-14% and 182+/-5% increases in LVSP that could not be reversed by addition of LE. Potent, inhibitory "cross talk" between delta-OPR and beta1-AR signaling pathways occurs via a PTX-sensitive G(i/o) protein involved in adenylyl cyclase inhibition in rat heart.

  18. Cross-talk between interferon-gamma and interleukin-18 in melanogenesis.

    PubMed

    Zhou, Jia; Ling, Jingjing; Wang, Yong; Shang, Jing; Ping, Fengfeng

    2016-10-01

    Skin is the largest organ in our body and strategically placed to provide a metabolically active biological barrier against a range of noxious stressors. A lot of inflammatory cytokines, which are increased after ultraviolet (UV) irradiation produced by keratinocytes or other immunocytes, are closely related to pigmentary changes, including interleukin-18 (IL-18) and interferon-γ (IFN-γ). In this study, the effect of cross-talk between IL-18 and IFN-γ on melanogenesis was investigated. Treatment with IL-18 resulted in a dose-dependent increase of melanogenesis, while IFN-γ made an opposite effect. This influence of IL-18 and IFN-γ was mediated by regulations of microphthalmia-associated transcription factor (MITF) and its downstream enzymatic cascade expressions. Furthermore, IFN-γ inhibited basal and IL-18-induced melanogenesis. IFN-γ increased signal transducer and activator of transcription-1 (STAT-1) phosphorylation to play its position in regulating melanin pigmentation, and its inhibitory effect could be prevented by Janus Kinase 1 (JAK 1) inhibitor. IFN-γ could inhibit melanogenesis by decreasing melanocyte dendrite formation. In addition, IFN-γ inhibited the expressions of Rab Pases to suppress the mature and transport of melanosomes. IL-18 could rapidly induce Akt and PTEN phosphorylation and p65 expression in B16F10 cells. When treatment with IL-18 and IFN-γ together, the phosphorylation level of Protein Kinase B (Akt) and phosphatase and tensin homolog deleted on chromosome ten (PTEN) and expression of p65 NF-κB were inhibited, compared with treated with IL-18 only. Our studies indicated that IFN-γ could directly induce B16F10 cells apoptosis in vitro. Furthermore, we demonstrated that IFN-γ markedly up-regulated IL-18 binding protein (BP) production in normal human foreskin-derived epidermal keratinocytes in dose-dependent manner. UVB irradiation induced protease-activated receptor-2 (PAR-2) expression in NHEK, IFN-γ could inhibit this

  19. Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma.

    PubMed

    Coulouarn, Cédric; Corlu, Anne; Glaise, Denise; Guénon, Isabelle; Thorgeirsson, Snorri S; Clément, Bruno

    2012-05-15

    Many solid malignant tumors arise on a background of inflamed and/or fibrotic tissues, features that are found in more than 80% hepatocellular carcinomas (HCC). Activated hepatic stellate cells (HSC) play a critical role in fibrogenesis associated with HCC onset and progression, yet their functional impact on hepatocyte fate remains largely unexplored. Here, we used a coculture model to investigate the cross-talk between hepatocytes (human hepatoma cells) and activated human HSCs. Unsupervised genome-wide expression profiling showed that hepatocyte-HSC cross-talk is bidirectional and results in the deregulation of functionally relevant gene networks. Notably, coculturing increased the expression of proinflammatory cytokines and modified the phenotype of hepatocytes toward motile cells. Hepatocyte-HSC cross-talk also generated a permissive proangiogenic microenvironment, particularly by inducing VEGFA and matrix metalloproteinase (MMP)9 expression in HSCs. An integrative genomic analysis revealed that the expression of genes associated with hepatocyte-HSC cross-talk correlated with HCC progression in mice and was predictive of a poor prognosis and metastasis propensity in human HCCs. Interestingly, the effects of cross-talk on migration and angiogenesis were reversed by the histone deacetylase inhibitor trichostatin A. Our findings, therefore, indicate that the cross-talk between hepatoma cells and activated HSCs is an important feature of HCC progression, which may be targeted by epigenetic modulation.

  20. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer

    PubMed Central

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H.; Nevosad, Andreas; Teichert, Christian; S. White, Matthew.; S. Sariciftci, Niyazi.; Scharber, Markus C.

    2014-01-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  1. Neuron-glia cross talk revealed in reverberating networks by simultaneous extracellular recording of spikes and astrocytes' glutamate transporter and K+ currents.

    PubMed

    Wanke, Enzo; Gullo, Francesca; Dossi, Elena; Valenza, Gaetano; Becchetti, Andrea

    2016-12-01

    Astrocytes uptake synaptically released glutamate with electrogenic transporters (GluT) and buffer the spike-dependent extracellular K(+) excess with background K(+) channels. We studied neuronal spikes and the slower astrocytic signals on reverberating neocortical cultures and organotypic slices from mouse brains. Spike trains and glial responses were simultaneously captured from individual sites of multielectrode arrays (MEA) by splitting the recorded traces into appropriate filters and reconstructing the original signal by deconvolution. GluT currents were identified by using dl-threo-β-benzyloxyaspartate (TBOA). K(+) currents were blocked by 30 μM Ba(2+), suggesting a major contribution of inwardly rectifying K(+) currents. Both types of current were tightly correlated with the spike rate, and their astrocytic origin was tested in primary cultures by blocking glial proliferation with cytosine β-d-arabinofuranoside (AraC). The spike-related, time-locked inward and outward K(+) currents in different regions of the astrocyte syncytium were consistent with the assumptions of the spatial K(+) buffering model. In organotypic slices from ventral tegmental area and prefrontal cortex, the GluT current amplitudes exceeded those observed in primary cultures by several orders of magnitude, which allowed to directly measure transporter currents with a single electrode. Simultaneously measuring cell signals displaying widely different amplitudes and kinetics will help clarify the neuron-glia interplay and make it possible to follow the cross talk between different cell types in excitable as well as nonexcitable tissue.

  2. Neuron-glia cross talk revealed in reverberating networks by simultaneous extracellular recording of spikes and astrocytes' glutamate transporter and K+ currents

    PubMed Central

    Wanke, Enzo; Gullo, Francesca; Dossi, Elena; Valenza, Gaetano

    2016-01-01

    Astrocytes uptake synaptically released glutamate with electrogenic transporters (GluT) and buffer the spike-dependent extracellular K+ excess with background K+ channels. We studied neuronal spikes and the slower astrocytic signals on reverberating neocortical cultures and organotypic slices from mouse brains. Spike trains and glial responses were simultaneously captured from individual sites of multielectrode arrays (MEA) by splitting the recorded traces into appropriate filters and reconstructing the original signal by deconvolution. GluT currents were identified by using dl-threo-β-benzyloxyaspartate (TBOA). K+ currents were blocked by 30 μM Ba2+, suggesting a major contribution of inwardly rectifying K+ currents. Both types of current were tightly correlated with the spike rate, and their astrocytic origin was tested in primary cultures by blocking glial proliferation with cytosine β-d-arabinofuranoside (AraC). The spike-related, time-locked inward and outward K+ currents in different regions of the astrocyte syncytium were consistent with the assumptions of the spatial K+ buffering model. In organotypic slices from ventral tegmental area and prefrontal cortex, the GluT current amplitudes exceeded those observed in primary cultures by several orders of magnitude, which allowed to directly measure transporter currents with a single electrode. Simultaneously measuring cell signals displaying widely different amplitudes and kinetics will help clarify the neuron-glia interplay and make it possible to follow the cross talk between different cell types in excitable as well as nonexcitable tissue. PMID:27683885

  3. Dendritic Cell-Lymphocyte Cross Talk Downregulates Host Restriction Factor SAMHD1 and Stimulates HIV-1 Replication in Dendritic Cells

    PubMed Central

    Biedma, Marina Elizabeth; Lederle, Alexandre; Peressin, Maryse; Lambotin, Mélanie; Proust, Alizé; Decoville, Thomas; Schmidt, Sylvie; Laumond, Géraldine

    2014-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) replication in dendritic cells (DCs) is restricted by SAMHD1. This factor is counteracted by the viral protein Vpx; Vpx is found in HIV-2 and simian immunodeficiency virus (SIV) from sooty mangabeys (SIVsm) or from macaques (SIVmac) but is absent from HIV-1. We previously observed that HIV-1 replication in immature DCs is stimulated by cocultivation with primary T and B lymphocytes, suggesting that HIV-1 restriction in DCs may be overcome under coculture conditions. Here, we aimed to decipher the mechanism of SAMHD1-mediated restriction in DC-lymphocyte coculture. We found that coculture with lymphocytes downregulated SAMHD1 expression and was associated with increased HIV-1 replication in DCs. Moreover, in infected DC-T lymphocyte cocultures, DCs acquired maturation status and secreted type 1 interferon (alpha interferon [IFN-α]). The blockade of DC-lymphocyte cross talk by anti-ICAM-1 antibody markedly inhibited the stimulation of HIV-1 replication and prevented the downregulation of SAMHD1 expression in cocultured DCs. These results demonstrate that, in contrast to purified DCs, cross talk with lymphocytes downregulates SAMHD1 expression in DCs, triggering HIV-1 replication and an antiviral immune response. Therefore, HIV-1 replication and immune sensing by DCs should be investigated in more physiologically relevant models of DC/lymphocyte coculture. IMPORTANCE SAMHD1 restricts HIV-1 replication in dendritic cells (DCs). Here, we demonstrate that, in a coculture model of DCs and lymphocytes mimicking early mucosal HIV-1 infection, stimulation of HIV-1 replication in DCs is associated with downregulation of SAMHD1 expression and activation of innate immune sensing by DCs. We propose that DC-lymphocyte cross talk occurring in vivo modulates host restriction factor SAMHD1, promoting HIV-1 replication in cellular reservoirs and stimulating immune sensing. PMID:24574390

  4. Cross-talk and co-trafficking between rho1/GABA receptors and ATP-gated channels.

    PubMed

    Boué-Grabot, Eric; Emerit, Michel B; Toulmé, Estelle; Séguéla, Philippe; Garret, Maurice

    2004-02-20

    Gamma-aminobutyric-acid (GABA) and ATP ionotropic receptors represent two structurally and functionally different classes of neurotransmitter-gated channels involved in fast synaptic transmission. We demonstrate here that, when the inhibitory rho1/GABA and the excitatory P2X2 receptor channels are co-expressed in Xenopus oocytes, activation of one channel reduces the currents mediated by the other one. This reciprocal inhibitory cross-talk is a receptor-mediated phenomenon independent of agonist cross-modulation, membrane potential, direction of ionic flux, or channel densities. Functional interaction is disrupted when the cytoplasmic C-terminal domain of P2X2 is deleted or in competition experiments with minigenes coding for the C-terminal domain of P2X2 or the main intracellular loop of rho1 subunits. We also show a physical interaction between P2X2 and rho1 receptors expressed in oocytes and the co-clustering of these receptors in transfected hippocampal neurons. Co-expression with P2X2 induces retargeting and recruitment of mainly intracellular rho1/GABA receptors to surface clusters. Therefore, molecular and functional cross-talk between inhibitory and excitatory ligand-gated channels may regulate synaptic strength both by activity-dependent current occlusion and synaptic receptors co-trafficking.

  5. CrossTalk. The Journal of Defense Software Engineering. Volume 14, Number 5, May 2001

    DTIC Science & Technology

    2001-05-01

    divided into two or more blocks , with increasing increments of capability.” (p. 20) Here, a block corresponds to a single product release. The text goes...on to speci- fy the use of spiral development within blocks : “For both the evolutionary and single- step approaches, software develop- ment shall...Binks, on Novocain , reciting Shakespeare. What an Odyssey. – Gary Petersen, Shim Enterprise Inc. BACKTALK May 2001 www.stsc.hill.af.mil 35

  6. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach

    PubMed Central

    2011-01-01

    Background Field observations and a few physiological studies have demonstrated that peach embryogenesis and fruit development are tightly coupled. In fact, attempts to stimulate parthenocarpic fruit development by means of external tools have failed. Moreover, physiological disturbances during early embryo development lead to seed abortion and fruitlet abscission. Later in embryo development, the interactions between seed and fruit development become less strict. As there is limited genetic and molecular information about seed-pericarp cross-talk and development in peach, a massive gene approach based on the use of the μPEACH 1.0 array platform and quantitative real time RT-PCR (qRT-PCR) was used to study this process. Results A comparative analysis of the transcription profiles conducted in seed and mesocarp (cv Fantasia) throughout different developmental stages (S1, S2, S3 and S4) evidenced that 455 genes are differentially expressed in seed and fruit. Among differentially expressed genes some were validated as markers in two subsequent years and in three different genotypes. Seed markers were a LTP1 (lipid transfer protein), a PR (pathogenesis-related) protein, a prunin and LEA (Late Embryogenesis Abundant) protein, for S1, S2, S3 and S4, respectively. Mesocarp markers were a RD22-like protein, a serin-carboxypeptidase, a senescence related protein and an Aux/IAA, for S1, S2, S3 and S4, respectively. The microarray data, analyzed by using the HORMONOMETER platform, allowed the identification of hormone-responsive genes, some of them putatively involved in seed-pericarp crosstalk. Results indicated that auxin, cytokinins, and gibberellins are good candidates, acting either directly (auxin) or indirectly as signals during early development, when the cross-talk is more active and vital for fruit set, whereas abscisic acid and ethylene may be involved later on. Conclusions In this research, genes were identified marking different phases of seed and mesocarp

  7. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells

    PubMed Central

    2011-01-01

    carbohydrate metabolism (ACO1, 2), molecular transport (GAPDH, GFPT1) and nucleic acid metabolism (CBS, NOS2), those over expressed in CCs + OO are involved in cellular growth and proliferation (FOS, GADD45A), cell cycle (HAS2, VEGFA), cellular development (AMD1, AURKA, DPP4) and gene expression (FOSB, TGFB2). Conclusion In conclusion, this study has generated large scale gene expression data from different oocyte and CCs samples that would provide insights into gene functions and interactions within and across different pathways that are involved in the maturation of bovine oocytes. Moreover, the presence or absence of oocyte and CC factors during bovine oocyte maturation can have a profound effect on transcript abundance of each cell types, thereby showing the prevailing molecular cross-talk between oocytes and their corresponding CCs. PMID:21261964

  8. The cross-talk problem in SiPMs and their use as light sensors for imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kaplin, V.; Klemin, S.; Mirzoyan, R.; Popova, E.; Teshima, M.

    2009-10-01

    One of the major drawbacks of a SiPM is due to the so-called cross-talk effect. Often, one single photon in a chain reaction can generate more photons and thus can fire more than one micro-cell of a SiPM. This can be considered as a noise in the signal multiplication process and this degrades the signal/noise ratio. In self-trigger schemes this noise can be so high that it can make operating them difficult at low threshold settings. For the past few years, we have dwelt on this effect aiming to suppress it at the design stage. One can use (a) trenches around the micro-cells for suppressing the direct photon “communication” channel and (b) the so-called double p-n junction for suppressing photon-induced charge “communication” in neighbor pixels. The low cross-talk is mandatory, for example, for producing SiPM-based light sensor modules for the Imaging Atmospheric Cherenkov Technique projects for ground-based gamma-ray astrophysics. We produced and tested a few modules consisting of 4 SiPMs, each with a size of 5 mm×5 mm of custom production type. We report here on the main parameters of these units.

  9. Cross-talk Between Nitrate-Nitrite-NO and NO Synthase Pathways in Control of Vascular NO Homeostasis.

    PubMed

    Carlström, Mattias; Liu, Ming; Yang, Ting; Zollbrecht, Christa; Huang, Liyue; Peleli, Maria; Borniquel, Sara; Kishikawa, Hiroaki; Hezel, Michael; Persson, A Erik G; Weitzberg, Eddie; Lundberg, Jon O

    2015-08-01

    Inorganic nitrate and nitrite from endogenous and dietary sources have emerged as alternative substrates for nitric oxide (NO) formation in addition to the classic L-arginine NO synthase (NOS)-dependent pathway. Here, we investigated a potential cross-talk between these two pathways in the regulation of vascular function. Long-term dietary supplementation with sodium nitrate (0.1 and 1 mmol kg(-1) day(-1)) in rats caused a reversible dose-dependent reduction in phosphorylated endothelial NOS (eNOS) (Ser1177) in aorta and a concomitant increase in phosphorylation at Thr495. Moreover, eNOS-dependent vascular responses were attenuated in vessels harvested from nitrate-treated mice or when nitrite was acutely added to control vessels. The citrulline-to-arginine ratio in plasma, as a measure of eNOS activity, was reduced in nitrate-treated rodents. Telemetry measurements revealed that a low dietary nitrate dose reduced blood pressure, whereas a higher dose was associated with a paradoxical elevation. Finally, plasma cyclic guanosine monophosphate increased in mice that were treated with a low dietary nitrate dose and decreased with a higher dose. These results demonstrate the existence of a cross-talk between the nitrate-nitrite-NO pathway and the NOS-dependent pathway in control of vascular NO homeostasis.

  10. Do circulating blood cells contribute to maternal tissue remodeling and embryo-maternal cross-talk around the implantation period?

    PubMed

    Fujiwara, Hiroshi

    2009-06-01

    In early pregnancy, human chorionic gonadotrophin (HCG) stimulates the corpus luteum (CL) of pregnancy to produce progesterone, which in turn maintains human embryo implantation in the uterus. In addition to this embryo-maternal cross-talk via the endocrine systems through blood circulation, accumulating evidence suggests that circulating blood cells also play an important role in embryo implantation. Peripheral blood mononuclear cells (PBMC) derived from pregnant women increased the progesterone production by luteal cells and promoted the invasion of embryos in vitro. Recombinant-HCG increased chemokine production by PBMC through lectin-glycan interaction and enhanced the effects of PBMC on embryo invasion. Later, it was shown that not only PBMC, but also circulating platelets were possible sources of these chemokines that promote extravillous trophoblast invasion to reconstruct maternal endometrial artery. Circulating platelets were also proposed to induce neovascularization during CL formation. Furthermore, intrauterine administration of autologous PBMC effectively improved live birth, pregnancy and implantation rates in patients with repeated (four or more) implantation failures during in vitro fertilization therapy. These findings suggest that circulating blood cells positively contribute to maternal tissue remodeling and embryo-maternal cross-talk around the implantation period in cooperation with the endocrine system.

  11. After-pulsing, cross-talk, dark-count, and gain of MPPC under 7-T static magnetic field.

    PubMed

    Hirano, Yoshiyuki; Nishikido, Fumihiko; Kokuryo, Daisuke; Yamaya, Taiga

    2016-07-01

    Multi-pixel photon counters (MPPCs) have been used instead of photomultiplier tubes for positron emission tomography combined with magnetic resonance (PET-MR). However, the effects of the magnetic field (MF) on the intrinsic properties-gain, cross-talk, after-pulsing, and dark-count-have not been sufficiently investigated. Therefore, we measured these properties for two types of MPPCs-S10931-50P and S12572-50P-in a static 7-T MF. These properties were measured with a pulse-shape analysis using pulse data acquired by a digital oscilloscope in the presence of the MF (w/MF) and the absence of the MF (w/o MF) by changing the supplied over-voltages (from 0.95 to 2.1 V for S10931 and from 2.1 to 3.3 V for S12572). No significant differences between the w/MF and w/o MF cases were observed for either MPPC, suggesting that the gain, cross-talk, after-pulsing, and dark-count are insensitive to a 7-T MF. The present work shows that constant MPPC performance is expected under a strong MF and demonstrates positive results for PET-MR.

  12. Functional Cross-Talking between Differentially Expressed and Alternatively Spliced Genes in Human Liver Cancer Cells Treated with Berberine.

    PubMed

    Sheng, Zhen; Sun, Yi; Zhu, Ruixin; Jiao, Na; Tang, Kailin; Cao, Zhiwei; Ma, Chao

    2015-01-01

    Berberine has been identified with anti-proliferative effects on various cancer cells. Many researchers have been trying to elucidate the anti-cancer mechanisms of berberine based on differentially expressed genes. However, differentially alternative splicing genes induced by berberine might also contribute to its pharmacological actions and have not been reported yet. Moreover, the potential functional cross-talking between the two sets of genes deserves further exploration. In this study, RNA-seq technology was used to detect the differentially expressed genes and differentially alternative spliced genes in BEL-7402 cancer cells induced by berberine. Functional enrichment analysis indicated that these genes were mainly enriched in the p53 and cell cycle signalling pathway. In addition, it was statistically proven that the two sets of genes were locally co-enriched along chromosomes, closely connected to each other based on protein-protein interaction and functionally similar on Gene Ontology tree. These results suggested that the two sets of genes regulated by berberine might be functionally cross-talked and jointly contribute to its cell cycle arresting effect. It has provided new clues for further researches on the pharmacological mechanisms of berberine as well as the other botanical drugs.

  13. Bimanual cross-talk during reaching movements is primarily related to response selection, not the specification of motor parameters

    NASA Technical Reports Server (NTRS)

    Hazeltine, Eliot; Diedrichsen, Joern; Kennerley, Steven W.; Ivry, Richard B.

    2003-01-01

    Simultaneous reaching movements made with the two hands can show a considerable increase in reaction time (RT) when they differ in terms of direction or extent, compared to when the movements involve the same direction and extent. This cost has been attributed to cross-talk in the specification of the motor parameters for the two hands. However, a recent study [Diedrichsen, Hazeltine, Kennerley, & Ivry, (2001). Psychological Science, 12, 493-498] indicates that when reaching movements are cued by the onset of the target endpoint, no compatibility effects are observed. To determine why directly cued movements are immune from interference, we varied the stimulus onset asynchrony for the two movements and used different combinations of directly cued and symbolically cued movements. In two experiments, compatibility effects were only observed when both movements were symbolically cued. No difference was found between compatible and incompatible movements when both movements were directly cued or when one was directly cued and the other was symbolically cued. These results indicate that interference is not related to the specification of movement parameters but instead emerges from processes associated with response selection. Moreover, the data suggest that cross-talk, when present, primarily shortens the RT of the second movement on compatible trials rather than lengthening this RT on incompatible trials.

  14. Real-time monitoring of mesangial cell-macrophage cross-talk using SEAP in vitro and ex vivo.

    PubMed

    Meng, Yiman; Kasai, Ayumi; Hiramatsu, Nobuhiko; Hayakawa, Kunihiro; Takeda, Masayuki; Shimizu, Fujio; Kawachi, Hiroshi; Yao, Jian; Kitamura, Masanori

    2005-08-01

    Macrophage-mesangial cell interaction plays a crucial role in the pathogenesis of glomerulonephritis. We established a novel system for continuous, real-time monitoring of cross-talk between macrophages and mesangial cells in vitro and ex vivo. Rat mesangial cells were genetically engineered to produce secreted alkaline phosphatase (SEAP) under the control of the nuclear factor-kappaB (NF-kappaB) enhancer elements. The established sensor cells were exposed to macrophages or macrophage-derived factors, and the level of SEAP production was evaluated. In vitro, the established cells expressed and secreted SEAP when exposed to activated macrophages or to cytokines produced by macrophages. The kinetics of SEAP activity in culture media was closely correlated with the expression level of SEAP mRNA. The sensor cells also secreted SEAP in response to media conditioned by macrophage-accumulating, inflamed rat glomeruli. When the sensor cells were transferred adoptively into rat glomeruli subjected to acute anti-Thy 1 glomerulonephritis, the isolated glomeruli containing sensor cells secreted SEAP rapidly and progressively. These data suggested that the established system provides simple and useful tools for monitoring of cross-talk between macrophages and mesangial cells in vitro and ex vivo. This approach would be useful for investigation of molecular mechanisms involved in mesangial cell-macrophage interaction and also for screening of therapeutic agents that efficiently interfere with the link between infiltrating leukocytes and resident glomerular cells.

  15. Cross-talk Between Nitrate-Nitrite-NO and NO Synthase Pathways in Control of Vascular NO Homeostasis

    PubMed Central

    Liu, Ming; Yang, Ting; Zollbrecht, Christa; Huang, Liyue; Peleli, Maria; Borniquel, Sara; Kishikawa, Hiroaki; Hezel, Michael; Persson, A. Erik G.; Weitzberg, Eddie; Lundberg, Jon O.

    2015-01-01

    Abstract Aims: Inorganic nitrate and nitrite from endogenous and dietary sources have emerged as alternative substrates for nitric oxide (NO) formation in addition to the classic L-arginine NO synthase (NOS)-dependent pathway. Here, we investigated a potential cross-talk between these two pathways in the regulation of vascular function. Results: Long-term dietary supplementation with sodium nitrate (0.1 and 1 mmol kg−1 day−1) in rats caused a reversible dose-dependent reduction in phosphorylated endothelial NOS (eNOS) (Ser1177) in aorta and a concomitant increase in phosphorylation at Thr495. Moreover, eNOS-dependent vascular responses were attenuated in vessels harvested from nitrate-treated mice or when nitrite was acutely added to control vessels. The citrulline-to-arginine ratio in plasma, as a measure of eNOS activity, was reduced in nitrate-treated rodents. Telemetry measurements revealed that a low dietary nitrate dose reduced blood pressure, whereas a higher dose was associated with a paradoxical elevation. Finally, plasma cyclic guanosine monophosphate increased in mice that were treated with a low dietary nitrate dose and decreased with a higher dose. Innovation and Conclusions: These results demonstrate the existence of a cross-talk between the nitrate-nitrite-NO pathway and the NOS-dependent pathway in control of vascular NO homeostasis. Antioxid. Redox Signal. 23, 295–306. PMID:24224525

  16. Bimanual cross-talk during reaching movements is primarily related to response selection, not the specification of motor parameters

    NASA Technical Reports Server (NTRS)

    Hazeltine, Eliot; Diedrichsen, Joern; Kennerley, Steven W.; Ivry, Richard B.

    2003-01-01

    Simultaneous reaching movements made with the two hands can show a considerable increase in reaction time (RT) when they differ in terms of direction or extent, compared to when the movements involve the same direction and extent. This cost has been attributed to cross-talk in the specification of the motor parameters for the two hands. However, a recent study [Diedrichsen, Hazeltine, Kennerley, & Ivry, (2001). Psychological Science, 12, 493-498] indicates that when reaching movements are cued by the onset of the target endpoint, no compatibility effects are observed. To determine why directly cued movements are immune from interference, we varied the stimulus onset asynchrony for the two movements and used different combinations of directly cued and symbolically cued movements. In two experiments, compatibility effects were only observed when both movements were symbolically cued. No difference was found between compatible and incompatible movements when both movements were directly cued or when one was directly cued and the other was symbolically cued. These results indicate that interference is not related to the specification of movement parameters but instead emerges from processes associated with response selection. Moreover, the data suggest that cross-talk, when present, primarily shortens the RT of the second movement on compatible trials rather than lengthening this RT on incompatible trials.

  17. PPARγ and RXR ligands disrupt the inflammatory cross-talk in the hypoxic breast cancer stem cells niche.

    PubMed

    Papi, Alessio; De Carolis, Sabrina; Bertoni, Sara; Storci, Gianluca; Sceberras, Virginia; Santini, Donatella; Ceccarelli, Claudio; Taffurelli, Mario; Orlandi, Marina; Bonafé, Massimiliano

    2014-11-01

    Cancer stem cells (CSCs) are affected by the local micro-environment, the niche, in which inflammatory stimuli and hypoxia act as steering factors. Here, two nuclear receptors (NRs) agonists, i.e. pioglitazone (PGZ), a ligand of peroxisome proliferator activated receptor-γ, and 6-OH-11-O-hydroxyphenanthrene (IIF), a ligand of retinoid X receptors, were investigated for their capability to interference with the cross-talk between breast CSCs and the niche compartment. We found that IIF potentiates the ability of PGZ to hamper the mammospheres-forming capability of human breast tumours and MCF7 cancer cells, reducing the expression of CSCs regulatory genes (Notch3, Jagged1, SLUG, Interleukin-6, Apolipoprotein E, Hypoxia inducible factor-1α and Carbonic anhydrase IX). Notably, these effects are not observed in normal-MS obtained from human breast tissue. Importantly, NRs agonists abolish the capability of hypoxic MCF7 derived exosomes to induce a pro-inflammatory phenotype in mammary glands fibroblasts. Moreover, NRs agonist also directly acts on breast tumour associated fibroblasts to downregulate nuclear factor-κB pathway and metalloproteinases (MMP2 and MMP9) expression and activity. In conclusion, NRs agonists disrupt the inflammatory cross-talk of the hypoxic breast CSCs niche. © 2014 Wiley Periodicals, Inc.

  18. New insights into myeloid-derived suppressor cells and their roles in feto-maternal immune cross-talk.

    PubMed

    Zhao, Ai-Min; Xu, Hai-Jing; Kang, Xiao-Min; Zhao, Ai-Min; Lu, Li-Ming

    2016-02-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells that suppress both innate and adaptive immune responses through multiple mechanisms. In recent years, much of our knowledge of the function of MDSCs has come from cancer studies. However, a few recent advances have begun to characterize MDSCs in feto-maternal immune cross-talk. The microenvironment at the fetal-maternal interface is a complex milieu of trophoblasts and maternally-derived cells, which are biased to tolerogenic and Th2-type responses. Current data reveal that MDSCs accumulate at the fetal-maternal interface in healthy pregnancies. Yet, little is known about how MDSCs develop and why the response of MDSCs is heavily granulocytic. In this review, we discuss recent findings on the molecular mechanisms that regulate the expansion and function of MDSCs, in addition to various roles of MDSCs implicated in the modulation of feto-maternal immune cross-talk. Understanding the roles of MDSCs in inducing maternal-fetal tolerance, which is compromised in patients suffering from pregnancy complications, including preeclampsia, intrauterine growth restriction, spontaneous abortion, and preterm birth, we thus propose that the immunomodulatory activity of MDSCs should be carefully considered for the therapeutic approaches targeting pregnancy complications. Copyright © 2015. Published by Elsevier Ireland Ltd.

  19. Novel detector design for reducing intercell x-ray cross-talk in the variable resolution x-ray CT scanner: A Monte Carlo study

    SciTech Connect

    Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib

    2011-03-15

    Purpose: The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Methods: Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 deg. to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. Results: The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. Conclusions: The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.

  20. Large scale analysis of co-existing post-translational modifications in histone tails reveals global fine structure of cross-talk.

    PubMed

    Schwämmle, Veit; Aspalter, Claudia-Maria; Sidoli, Simone; Jensen, Ole N

    2014-07-01

    Mass spectrometry (MS) is a powerful analytical method for the identification and quantification of co-existing post-translational modifications in histone proteins. One of the most important challenges in current chromatin biology is to characterize the relationships between co-existing histone marks, the order and hierarchy of their deposition, and their distinct biological functions. We developed the database CrossTalkDB to organize observed and reported co-existing histone marks as revealed by MS experiments of histone proteins and their derived peptides. Statistical assessment revealed sample-specific patterns for the co-frequency of histone post-translational modifications. We implemented a new method to identify positive and negative interplay between pairs of methylation and acetylation marks in proteins. Many of the detected features were conserved between different cell types or exist across species, thereby revealing general rules for cross-talk between histone marks. The observed features are in accordance with previously reported examples of cross-talk. We observed novel types of interplay among acetylated residues, revealing positive cross-talk between nearby acetylated sites but negative cross-talk for distant ones, and for discrete methylation states at Lys-9, Lys-27, and Lys-36 of histone H3, suggesting a more differentiated functional role of methylation beyond the general expectation of enhanced activity at higher methylation states.

  1. A new cross-diamond search algorithm for fast block motion estimation

    NASA Astrophysics Data System (ADS)

    Zhu, Shiping; Shen, Xiaodong

    2008-10-01

    In block motion estimation, search patterns have a large impact on the searching speed and quality of performance. Based on motion vector distribution characteristics of real world video sequences, we propose a new cross-diamond search algorithm (NCDS) using cross-search patterns before large/small diamond search patterns in this paper. NCDS employs halfway technique to achieve significant speedup on sequence with (quasi-) stationary blocks. NCDS employs Modified Partial Distortion Criterion (MPDC), which results in fewer search points with similar distortion. Experimental results show that the improvements of NCDS over CDS can be up to a 16% gain on speedup while similar prediction accuracy is maintained, and NCDS provides faster searching speed and smaller distortions than other popular fast block-matching algorithms.

  2. Cross-linked block copolymer templated assembly of nanoparticle arrays with high density and position selectivity

    NASA Astrophysics Data System (ADS)

    Liu, Zhicheng; Chang, Tongxin; Huang, Haiying; Bai, Lu

    2016-10-01

    Patterning ordered nanoparticle arrays is crucial for the fascinating collective properties of nanoparticles. Block copolymer template provides us a platform for the simple and efficient assembly of nanoparticle arrays. In this work, cylinder-forming poly(styrene-block-2-vinylpyridine) thin film was firstly plasma-etched to expose poly(2-vinylpyridine) cylinders. Then the templates were cross-linked by small molecules so as to access gold nanoparticle arrays with both high density and excellent position selectivity. The cross-linking process significantly restrains the unfavorable surface reconstruction of the thin film. It is demonstrated that the quality of the nanoparticle array was affected by the degree of the cross-linking and the immersion time in nanoparticle solution. The highly ordered gold nanoparticle arrays are promising in several fields such as optics and surface enhanced Raman scattering (SERS).

  3. Walking and talking: dual-task effects on street crossing behavior in older adults.

    PubMed

    Neider, Mark B; Gaspar, John G; McCarley, Jason S; Crowell, James A; Kaczmarski, Henry; Kramer, Arthur F

    2011-06-01

    The ability to perform multiple tasks simultaneously has become increasingly important as technologies such as cell phones and portable music players have become more common. In the current study, we examined dual-task costs in older and younger adults using a simulated street crossing task constructed in an immersive virtual environment with an integrated treadmill so that participants could walk as they would in the real world. Participants were asked to cross simulated streets of varying difficulty while either undistracted, listening to music, or conversing on a cell phone. Older adults were more vulnerable to dual-task impairments than younger adults when the crossing task was difficult; dual-task costs were largely absent in the younger adult group. Performance costs in older adults were primarily reflected in timeout rates. When conversing on a cell phone, older adults were less likely to complete their crossing compared with when listening to music or undistracted. Analysis of time spent next to the street prior to each crossing, where participants were presumably analyzing traffic patterns and making decisions regarding when to cross, revealed that older adults took longer than younger adults to initiate their crossing, and that this difference was exacerbated during cell phone conversation, suggesting impairments in cognitive planning processes. Our data suggest that multitasking costs may be particularly dangerous for older adults even during everyday activities such as crossing the street.

  4. Walking & Talking: Dual-Task Effects on Street Crossing Behavior in Older Adults

    PubMed Central

    Neider, Mark B.; Gaspar, John G.; McCarley, Jason S.; Crowell, James A.; Kaczmarski, Henry; Kramer, Arthur F.

    2013-01-01

    The ability to perform multiple tasks simultaneously has become increasingly important as technologies such as cell phones and portable music players have become more common. In the current study, we examined dual-task costs in older and younger adults using a simulated street crossing task constructed in an immersive virtual environment with an integrated treadmill so that participants could walk as they would in the real world. Participants were asked to cross simulated streets of varying difficulty while either undistracted, listening to music, or conversing on a cell phone. Older adults were more vulnerable to dual-task impairments than younger adults when the crossing task was difficult; dual-task costs were largely absent in the younger adult group. Performance costs in older adults were primarily reflected in timeout rates. When conversing on a cell phone older adults were less likely to complete their crossing compared to when listening to music or undistracted. Analysis of time spent next to the street prior to each crossing, where participants were presumably analyzing traffic patterns and making decisions regarding when to cross, revealed that older adults took longer than younger adults to initiate their crossing, and that this difference was exacerbated during cell phone conversation, suggesting impairments in cognitive planning processes. Our data suggest that multi-tasking costs may be particularly dangerous for older adults even during everyday activities such as crossing the street. PMID:21401262

  5. Cross-talk between TGF-beta/SMAD and integrin signaling pathways in regulating hypertrophy of mesenchymal stem cell chondrogenesis under deferral dynamic compression.

    PubMed

    Zhang, Tianting; Wen, Feng; Wu, Yingnan; Goh, Graham Seow Hng; Ge, Zigang; Tan, Lay Poh; Hui, James Hoi Po; Yang, Zheng

    2015-01-01

    The molecular mechanisms of mechanotransduction in regulating mesenchymal stem cell (MSC) chondrogenesis are not fully understood and represent an area of growing investigation. In this study, human MSC was subjected to chondrogenic differentiation in chitosan-coated poly L-lactide-co-ɛ-caprolactone scaffolds under free swelling or deferral dynamic compression conditions. The effect of deferral dynamic compression to MSC chondrogenesis and late stage hypertrophy development was investigated, and the involvement of TGF-β/SMAD pathway and integrin β1 signaling was analyzed. Deferral dynamic compression enhanced cartilage formation and suppressed chondrocyte hypertrophy. Differential cell morphology and cytoskeletal organization were induced under dynamic compression, together with the activation of TGF-β/Activin/Nodal and suppression of the BMP/GDP signaling. This was accompanied by the repression of integrin/FAK/ERK signaling in the non-hypertrophic cells when compared to the free swelling samples. Inhibition studies blocking TGF-β/Activin/Nodal signaling heightened hypertrophy, activate BMP/SMAD1/5/8 and integrin signaling, while inhibition of integrin-ECM interaction suppressed hypertrophy and activate TGF-β/SMAD2/3 in the free-swelling samples. This study demonstrates the roles of TGF-β/SMAD and integrin signaling, and suggests cross-talk between these two signaling pathways, in regulating the compression-driven hypertrophy development.

  6. Peroxisome Proliferator-Activated Receptor β/δ Cross Talks with E2F and Attenuates Mitosis in HRAS-Expressing Cells

    PubMed Central

    Zhu, Bokai; Khozoie, Combiz; Bility, Moses T.; Ferry, Christina H.; Blazanin, Nicholas; Glick, Adam B.; Gonzalez, Frank J.

    2012-01-01

    The role of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in Harvey sarcoma ras (Hras)-expressing cells was examined. Ligand activation of PPARβ/δ caused a negative selection with respect to cells expressing higher levels of the Hras oncogene by inducing a mitotic block. Mitosis-related genes that are predominantly regulated by E2F were induced to a higher level in HRAS-expressing Pparβ/δ-null keratinocytes compared to HRAS-expressing wild-type keratinocytes. Ligand-activated PPARβ/δ repressed expression of these genes by direct binding with p130/p107, facilitating nuclear translocation and increasing promoter recruitment of p130/p107. These results demonstrate a novel mechanism of PPARβ/δ cross talk with E2F signaling. Since cotreatment with a PPARβ/δ ligand and various mitosis inhibitors increases the efficacy of increasing G2/M arrest, targeting PPARβ/δ in conjunction with mitosis inhibitors could become a suitable option for development of new multitarget strategies for inhibiting RAS-dependent tumorigenesis. PMID:22473992

  7. Peroxisome proliferator-activated receptor β/δ cross talks with E2F and attenuates mitosis in HRAS-expressing cells.

    PubMed

    Zhu, Bokai; Khozoie, Combiz; Bility, Moses T; Ferry, Christina H; Blazanin, Nicholas; Glick, Adam B; Gonzalez, Frank J; Peters, Jeffrey M

    2012-06-01

    The role of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in Harvey sarcoma ras (Hras)-expressing cells was examined. Ligand activation of PPARβ/δ caused a negative selection with respect to cells expressing higher levels of the Hras oncogene by inducing a mitotic block. Mitosis-related genes that are predominantly regulated by E2F were induced to a higher level in HRAS-expressing Pparβ/δ-null keratinocytes compared to HRAS-expressing wild-type keratinocytes. Ligand-activated PPARβ/δ repressed expression of these genes by direct binding with p130/p107, facilitating nuclear translocation and increasing promoter recruitment of p130/p107. These results demonstrate a novel mechanism of PPARβ/δ cross talk with E2F signaling. Since cotreatment with a PPARβ/δ ligand and various mitosis inhibitors increases the efficacy of increasing G₂/M arrest, targeting PPARβ/δ in conjunction with mitosis inhibitors could become a suitable option for development of new multitarget strategies for inhibiting RAS-dependent tumorigenesis.

  8. Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor.

    PubMed Central

    Migliaccio, A; Piccolo, D; Castoria, G; Di Domenico, M; Bilancio, A; Lombardi, M; Gong, W; Beato, M; Auricchio, F

    1998-01-01

    The molecular mechanisms by which ovarian hormones stimulate growth of breast tumors are unclear. It has been reported previously that estrogens activate the signal-transducing Src/p21(ras)/Erk pathway in human breast cancer cells via an interaction of estrogen receptor (ER) with c-Src. We now show that progestins stimulate human breast cancer T47D cell proliferation and induce a similar rapid and transient activation of the pathway which, surprisingly, is blocked not only by anti-progestins but also by anti-estrogens. In Cos-7 cells transfected with the B isoform of progesterone receptor (PRB), progestin activation of the MAP kinase pathway depends on co-transfection of ER. A transcriptionally inactive PRB mutant also activates the signaling pathway, demonstrating that this activity is independent of transcriptional effects. PRB does not interact with c-Src but associates via the N-terminal 168 amino acids with ER. This association is required for the signaling pathway activation by progestins. We propose that ER transmits to the Src/p21(ras)/Erk pathway signals received from the agonist-activated PRB. These findings reveal a hitherto unrecognized cross-talk between ovarian hormones which could be crucial for their growth-promoting effects on cancer cells. PMID:9524123

  9. Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer's Amyloid-β Oligomers in Mice.

    PubMed

    Ledo, Jose Henrique; Azevedo, Estefania P; Beckman, Danielle; Ribeiro, Felipe C; Santos, Luis E; Razolli, Daniela S; Kincheski, Grasielle C; Melo, Helen M; Bellio, Maria; Teixeira, Antonio L; Velloso, Licio A; Foguel, Debora; De Felice, Fernanda G; Ferreira, Sergio T

    2016-11-30

    Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aβ oligomers (AβOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AβO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AβOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AβOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AβOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD.

  10. Cross-talk between receptors with intrinsic tyrosine kinase activity and alpha1b-adrenoceptors.

    PubMed Central

    del Carmen Medina, L; Vázquez-Prado, J; García-Sáinz, J A

    2000-01-01

    The effect of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) on the phosphorylation and function of alpha(1b)-adrenoceptors transfected into Rat-1 fibroblasts was studied. EGF and PDGF increased the phosphorylation of these adrenoceptors. The effect of EGF was blocked by tyrphostin AG1478 and that of PDGF was blocked by tyrphostin AG1296, inhibitors of the intrinsic tyrosine kinase activities of the receptors for these growth factors. Wortmannin, an inhibitor of phosphoinositide 3-kinase, blocked the alpha(1b)-adrenoceptor phosphorylation induced by EGF but not that induced by PDGF. Inhibition of protein kinase C blocked the adrenoceptor phosphorylation induced by EGF and PDGF. The ability of noradrenaline to increase [(35)S]guanosine 5'-[gamma-thio]triphosphate ([(35)S]GTP[S]) binding in membrane preparations was used as an index of the functional coupling of the alpha(1b)-adrenoceptors and G-proteins. Noradrenaline-stimulated [(35)S]GTP[S] binding was markedly decreased in membranes from cells pretreated with EGF or PDGF. Our data indicate that: (i) activation of EGF and PDGF receptors induces phosphorylation of alpha(1b)-adrenoceptors, (ii) phosphatidylinositol 3-kinase is involved in the EGF response, but does not seem to play a major role in the action of PDGF, (iii) protein kinase C mediates this action of both growth factors and (iv) the phosphorylation of alpha(1b)-adrenoceptors induced by EGF and PDGF is associated with adrenoceptor desensitization. PMID:10947955

  11. Block-Regularized m × 2 Cross-Validated Estimator of the Generalization Error.

    PubMed

    Wang, Ruibo; Wang, Yu; Li, Jihong; Yang, Xingli; Yang, Jing

    2017-02-01

    A cross-validation method based on [Formula: see text] replications of two-fold cross validation is called an [Formula: see text] cross validation. An [Formula: see text] cross validation is used in estimating the generalization error and comparing of algorithms' performance in machine learning. However, the variance of the estimator of the generalization error in [Formula: see text] cross validation is easily affected by random partitions. Poor data partitioning may cause a large fluctuation in the number of overlapping samples between any two training (test) sets in [Formula: see text] cross validation. This fluctuation results in a large variance in the [Formula: see text] cross-validated estimator. The influence of the random partitions on variance becomes serious as [Formula: see text] increases. Thus, in this study, the partitions with a restricted number of overlapping samples between any two training (test) sets are defined as a block-regularized partition set. The corresponding cross validation is called block-regularized [Formula: see text] cross validation ([Formula: see text] BCV). It can effectively reduce the influence of random partitions. We prove that the variance of the [Formula: see text] BCV estimator of the generalization error is smaller than the variance of [Formula: see text] cross-validated estimator and reaches the minimum in a special situation. An analytical expression of the variance can also be derived in this special situation. This conclusion is validated through simulation experiments. Furthermore, a practical construction method of [Formula: see text] BCV by a two-level orthogonal array is provided. Finally, a conservative estimator is proposed for the variance of estimator of the generalization error.

  12. Analytical expression for position sensitivity of linear response beam position monitor having inter-electrode cross talk

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Ojha, A.; Garg, A. D.; Puntambekar, T. A.; Senecha, V. K.

    2017-02-01

    According to the quasi electrostatic model of linear response capacitive beam position monitor (BPM), the position sensitivity of the device depends only on the aperture of the device and it is independent of processing frequency and load impedance. In practice, however, due to the inter-electrode capacitive coupling (cross talk), the actual position sensitivity of the device decreases with increasing frequency and load impedance. We have taken into account the inter-electrode capacitance to derive and propose a new analytical expression for the position sensitivity as a function of frequency and load impedance. The sensitivity of a linear response shoe-box type BPM has been obtained through simulation using CST Studio Suite to verify and confirm the validity of the new analytical equation. Good agreement between the simulation results and the new analytical expression suggest that this method can be exploited for proper designing of BPM.

  13. Mitigation of Charge Sharing and Cross-Talk in a Planar Germanium Double-Sided Strip Detector

    NASA Astrophysics Data System (ADS)

    Larson, N.; Liddick, S. N.; Crider, B. P.; Kondev, F. G.; Kumar, S.; Paulauskas, S. V.; Prokop, C. J.; Suchyta, S.

    2014-09-01

    Fragmentation facilities provide access to a wide range of beta-decaying nuclei for experimental study. However, the higher the atomic number of species of interest the greater the chance that the ion will not be fully stripped of its atomic electrons. The delivery of multiple charge states, predominately fully stripped and H-like, to the experimental system typically leads to overlaps in standard DE-TOF identification plots. A standard method for resolving multiple charge states is a measurement of the ion's total kinetic energy. A recently commissioned planar Ge double-sided strip detector (GeDSSD) is being used at the NSCL for beta-decay spectroscopy studies. The capability of the GeDSSD to measure total kinetic energies and resolve charge state contamination in a cocktail of radioactive ions is being investigated which requires addressing the dual problems of charge sharing between neighboring strips within the detector and electronic cross talk. Preliminary results will be presented.

  14. Orphan proteins of unknown function in the mitochondrial intermembrane space proteome: New pathways and metabolic cross-talk.

    PubMed

    Nuebel, Esther; Manganas, Phanee; Tokatlidis, Kostas

    2016-11-01

    The mitochondrial intermembrane space (IMS) is involved in protein transport, lipid homeostasis and metal ion exchange, while further acting in signalling pathways such as apoptosis. Regulation of these processes involves protein modifications, as well as stress-induced import or release of proteins and other signalling molecules. Even though the IMS is the smallest sub-compartment of mitochondria, its redox state seems to be tightly regulated. However, the way in which this compartment participates in the cross-talk between the multiple organelles and the cytosol is far from understood. Here we focus on newly identified IMS proteins that may represent future challenges in mitochondrial research. We present an overview of the import pathways, the recently discovered new components of the IMS proteome and how these relate to key aspects of cell signalling and progress made in stem cell and cancer research. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Dispersion compensation of a 1x N passive optical router with low loss, a flat passband, and low cross talk.

    PubMed

    Leick, L; Madsen, C K

    2002-08-01

    A 1xN interferometer-based router with single-stage all-pass filters in the arms has low loss, a flat passband, and low cross talk. However, we show that the router has substantial cubic dispersion over the channel passband, which is identical from channel to channel. For a 1x4 router with a free spectral range of 100 GHz, the average dispersion slope over a 60% passband is -8x10(3)ps/nm(2), and thus a cascade of four routers incurs a significant system power penalty. A three-stage all-pass filter placed on the input arm reduces the dispersion of all channels by a factor of 16. The router is quite insensitive to variations in the all-pass filter design parameters.

  16. Molecular Heterogeneities of Adipose Depots - Potential Effects on Adipose-Muscle Cross-Talk in Humans, Mice and Farm Animals

    PubMed Central

    Komolka, Katrin; Albrecht, Elke; Wimmers, Klaus; Michal, Jennifer J.; Maak, Steffen

    2014-01-01

    Adipose tissue is considered as a major endocrine organ that secretes numerous proteins called adipokines. The heterogeneous nature of adipose tissue in different parts of the body suggests respective heterogeneity of proteomes and secretomes. This review consolidates knowledge from recent studies targeting the diversity of different adipose depots affecting the pattern of secreted adipokines and discusses potential consequences for the cross-talk between adipose and skeletal muscle in humans, rodent models and farm animals. Special attention is paid to muscle-associated fat depots like inter- and intramuscular fat that become focus of attention in the context of the rather new notion of skeletal muscle as a major endocrine organ. Understanding the complexity of communication between adipocytes and skeletal muscle cells will allow developing strategies for improvement of human health and for sustainable production of high quality meat. PMID:25057322

  17. Dynamic Modeling and Analysis of the Cross-Talk between Insulin/AKT and MAPK/ERK Signaling Pathways

    PubMed Central

    Arkun, Yaman

    2016-01-01

    Feedback loops play a key role in the regulation of the complex interactions in signal transduction networks. By studying the network of interactions among the biomolecules present in signaling pathways at the systems level, it is possible to understand how the biological functions are regulated and how the diseases emerge from their deregulations. This paper identifies the key feedback loops involved in the cross-talk among the insulin-AKT and MAPK/ERK signaling pathways. We developed a mathematical model that can be used to study the steady-state and dynamic behavior of the interactions among these two important signaling pathways. Modeling analysis and simulation case studies identify the key interaction parameters and the feedback loops that determine the normal and disease phenotypes. PMID:26930065

  18. Exported proteins in probiotic bacteria: adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host.

    PubMed

    Sánchez, Borja; Bressollier, Philippe; Urdaci, María C

    2008-10-01

    The group of exported proteins of a bacterium are those proteins that are sorted from the cytoplasm to the bacterial surface or to the surroundings of the microorganism. In probiotic bacteria, these proteins are of special relevance because they might determine important traits such as adhesion to intestinal surfaces and molecular cross-talking with the host. Current knowledge about the presence and biological relevance of exported proteins produced by the main genera of probiotic bacteria in the gastrointestinal environment is reviewed in this minireview. As will be seen, some of these proteins are involved in host adhesion or are able to modify certain signalization pathways within host cells, whereas others are important for the physiology of probiotic bacteria in the gastrointestinal tract.

  19. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress.

    PubMed

    Thao, Nguyen Phuong; Khan, M Iqbal R; Thu, Nguyen Binh Anh; Hoang, Xuan Lan Thi; Asgher, Mohd; Khan, Nafees A; Tran, Lam-Son Phan

    2015-09-01

    Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance.

  20. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress1

    PubMed Central

    Thao, Nguyen Phuong; Khan, M. Iqbal R.; Thu, Nguyen Binh Anh; Hoang, Xuan Lan Thi; Asgher, Mohd; Khan, Nafees A.; Tran, Lam-Son Phan

    2015-01-01

    Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance. PMID:26246451

  1. Cross Talk between the Calcium-Sensing Receptor and the Vitamin D System in Prevention of Cancer

    PubMed Central

    Aggarwal, Abhishek; Kállay, Enikö

    2016-01-01

    There is epidemiological evidence for the cancer preventive effect of dietary calcium (Ca2+) and vitamin D. This effect is strongest in colorectal cancer (CRC). The active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25D3), bound to its receptor, the vitamin D receptor (VDR) regulates the expression of hundreds of different genes in a cell- and tissue-specific manner. While Ca2+ acts through multiple mechanisms and pathways, some of its effects are mediated by the calcium-sensing receptor (CaSR). The joint action of Ca2+ and 1,25D3 is due to the fact that both regulate some of the main processes involved in the development of various cancers, such as proliferation, differentiation, apoptosis, migration, and inflammation. Moreover, 1,25D3, bound to VDR can induce translation of the CaSR, while the amount and activity of the CaSR affects 1,25D3 signaling. However, the complexity of the cross-talk between the CaSR and the vitamin D system goes beyond regulating similar pathways and affecting each other's expression. Our aim was to review some of the mechanisms that drive the cross-talk between the vitamin D system and the CaSR with a special focus on the interaction in CRC cells. We evaluated the molecular evidence that supports the epidemiological observation that both vitamin D and calcium are needed for protection against malignant transformation of the colon and that their effect is modulated by the presence of a functional CaSR. PMID:27803671

  2. Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells

    PubMed Central

    Liu, Xing; Qin, Jiaqiang; Luo, Qing; Bi, Yang; Zhu, Gaohui; Jiang, Wei; Kim, Stephanie H; Li, Mi; Su, Yuxi; Nan, Guoxin; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Rogers, Mary Rose; Zhang, Hongyu; Shui, Wei; Zhao, Chen; Wang, Ning; Liang, Xi; Wu, Ningning; He, Yunfeng; Luu, Hue H; Haydon, Rex C; Shi, Lewis L; Li, Tingyu; He, Tong-Chuan; Li, Ming

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross-talks with BMP9 and regulates BMP9-induced osteogenic differentiation. We find that EGF potentiates BMP9-induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG-1478 and AG-494 in a dose- and time-dependent manner. Furthermore, EGF significantly augments BMP9-induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9-induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up-regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross-talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine. PMID:23844832

  3. Honokiol suppresses pancreatic tumor growth, metastasis and desmoplasia by interfering with tumor-stromal cross-talk.

    PubMed

    Averett, Courey; Bhardwaj, Arun; Arora, Sumit; Srivastava, Sanjeev K; Khan, Mohammad Aslam; Ahmad, Aamir; Singh, Seema; Carter, James E; Khushman, Moh'd; Singh, Ajay P

    2016-11-01

    The poor clinical outcome of pancreatic cancer (PC) is largely attributed to its aggressive nature and refractoriness to currently available therapeutic modalities. We previously reported antitumor efficacy of honokiol (HNK), a phytochemical isolated from various parts of Magnolia plant, against PC cells in short-term in vitro growth assays. Here, we report that HNK reduces plating efficiency and anchorage-independent growth of PC cells and suppresses their migration and invasiveness. Furthermore, significant inhibition of pancreatic tumor growth by HNK is observed in orthotopic mouse model along with complete-blockage of distant metastases. Histological examination suggests reduced desmoplasia in tumors from HNK-treated mice, later confirmed by immunohistochemical analyses of myofibroblast and extracellular matrix marker proteins (α-SMA and collagen I, respectively). At the molecular level, HNK treatment leads to decreased expression of sonic hedgehog (SHH) and CXCR4, two established mediators of bidirectional tumor-stromal cross-talk, both in vitro and in vivo . We also show that the conditioned media (CM) from HNK-treated PC cells have little growth-inducing effect on pancreatic stellate cells (PSCs) that could be regained by the addition of exogenous recombinant SHH. Moreover, pretreatment of CM of vehicle-treated PC cells with SHH-neutralizing antibody abolishes their growth-inducing potential on PSCs. Likewise, HNK-treated PC cells respond poorly to CM from PSCs due to decreased CXCR4 expression. Lastly, we show that the transfection of PC cells with constitutively active IKKβ mutant reverses the suppressive effect of HNK on nuclear factor-kappaB activation and partially restores CXCR4 and SHH expression. Taken together, these findings suggest that HNK interferes with tumor-stromal cross-talk via downregulation of CXCR4 and SHH and decreases pancreatic tumor growth and metastasis. © The Author 2016. Published by Oxford University Press. All rights reserved

  4. Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloprotease synthesis and promotes angiogenesis.

    PubMed

    Butoi, E; Gan, A M; Tucureanu, M M; Stan, D; Macarie, R D; Constantinescu, C; Calin, M; Simionescu, M; Manduteanu, I

    2016-07-01

    Coronary atherosclerosis complicated by plaque disruption and thrombosis is a critical event in myocardial infarction and stroke, the major causes of cardiovascular death. In atherogenesis, macrophages (MAC) and smooth muscle cells (SMC) are key actors; they synthesize matrix components and numerous factors involved in the process. Here, we design experiments to investigate whether SMC-MAC communication induces changes in ECM protein composition and/or neo-angiogenesis. Cell to cell communication was achieved using trans-well chambers, where SMCs were grown in the upper chamber and differentiated MAC in the bottom chamber for 24 or 72h. We found that cross-talk between MAC and SMC during co-culture: (i) significantly decreased the expression of ECM proteins (collagen I, III, elastin) in SMC; (ii) increased the expression and activity of metalloprotease MMP-9 and expression of collagenase MMP-1, in both MAC and SMC; (iii) augmented the secretion of soluble VEGF in the conditioned media of cell co-culture and VEGF gene expression in both cell types, compared with control cells. Moreover, the conditioned media collected from MAC-SMC co-culture promoted endothelial cell tube formation in Matrigel, signifying an increased angiogenic effect. In addition, the MAC-SMC communication led to an increase in inflammatory IL-1β and TLR-2, which could be responsible for cellular signaling. In conclusion, MAC-SMC communication affects factors and molecules that could alter ECM composition and neo-angiogenesis, features that could directly dictate the progression of atheroma towards the vulnerable plaque. Targeting the MAC-SMC cross-talk may represent a novel therapeutic strategy to slow-down or retard the plaque progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Cross-talk between the aryl hydrocarbon receptor and hypoxia inducible factor signaling pathways. Demonstration of competition and compensation.

    PubMed

    Chan, W K; Yao, G; Gu, Y Z; Bradfield, C A

    1999-04-23

    The aryl hydrocarbon receptor (AHR) and the alpha-class hypoxia inducible factors (HIF1alpha, HIF2alpha, and HIF3alpha) are basic helix-loop-helix PAS (bHLH-PAS) proteins that heterodimerize with ARNT. In response to 2,3,7,8-tetrachlorodibenzo-p-dioxin, the AHR. ARNT complex binds to "dioxin responsive enhancers" (DREs) and activates genes involved in the metabolism of xenobiotics, e.g. cytochrome P4501A1 (Cyp1a1). The HIF1alpha.ARNT complex binds to "hypoxia responsive enhancers" and activates the transcription of genes that regulate adaptation to low oxygen, e.g. erythropoietin (Epo). We postulated that activation of one pathway would inhibit the other due to competition for ARNT or other limiting cellular factors. Using pathway specific reporters in transient transfection assays, we observed that DRE driven transcription was markedly inhibited by hypoxia and that hypoxia responsive enhancer driven transcription was inhibited by AHR agonists. When we attempted to support this cross-talk model using endogenous loci, we observed that activation of the hypoxia pathway inhibited Cyp1a1 up-regulation, but that activation of the AHR actually enhanced the induction of Epo by hypoxia. To explain this unexpected additivity, we examined the Epo gene and found that its promoter harbors DREs immediately upstream of its transcriptional start site. These experiments outline conditions where inhibitory and additive cross-talk occur between the hypoxia and dioxin signal transduction pathways and identify Epo as an AHR-regulated gene.

  6. The nonlinear dynamics and fluctuations of mRNA levels in cross-talking pathway activated transcription.

    PubMed

    Yu, Jianshe; Sun, Qiwen; Tang, Moxun

    2014-12-21

    Gene transcription is a stochastic process, and is often activated by multiple signal transduction pathways. In this work, we study gene transcription activated randomly by two cross-talking pathways, with the messenger RNA (mRNA) molecules being produced in a simple birth and death process. We derive the analytical formulas for the mean and the second moment of mRNA copy numbers and characterize the nature of transcription noise. We find that the stationary noise strength Φ is close to its baseline limit 1 when the mRNA level is high due to strong activation or stable transcription, or the mRNA level is low due to unstable transcription or ineffective mRNA production. If Φ stays well above 1, then the gene is infrequently active but mRNAs are accumulated rapidly once it is active. In this case, the system generates a transcriptional bursting, and the mean mRNA level peaks at a finite time. By examining the nonlinear dependance of Φ on transcriptional efficiency, we show that the maximum noise strength is attained only when the gene is silent in the majority of cells as observed in recent experiments. By comparing the current findings with our previous results in sequential pathway model, we come up with a profound conclusion that parallel, cross-talking pathways tend to increase transcription noise, whereas sequential pathways tend to reduce transcription noise. A further study on gene transcription activated by entangling pathways may help us reveal the subtle connection between the characteristics of transcription noise and the topology of genetic network.

  7. Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients.

    PubMed

    Letellier, Kareen; Azeddine, Bouziane; Parent, Stefan; Labelle, Hubert; Rompré, Pierre H; Moreau, Alain; Moldovan, Florina

    2008-11-01

    Adolescent idiopathic scoliosis (AIS) represents the most frequently occurring form of scoliosis that occurs and progresses in puberty. This critical period coincides with many biological changes related to estrogens. The aim of this study was to determine the effect of 17-beta-estradiol on the responsiveness of AIS osteoblasts to melatonin and the cross-talk between estrogen and melatonin at the levels of the G(S)alpha and G(i)alpha proteins. Human osteoblasts derived from AIS (n = 40) and control patients (n = 10) were first screened for their functional response to the melatonin and 17-beta-estradiol. In response to the 17-beta-estradiol in a specific group of scoliotic patients, the level of 3',5'-cyclic adenosine monophosphate (cAMP) was significantly decreased when compared with the level observed in the presence of increasing concentrations of melatonin alone. Ours results provide strong evidence of the cross-talk between 17-beta-estradiol and melatonin signaling in human AIS osteoblasts. These results indicate a novel role for 17-beta-estradiol and melatonin in AIS, controlling the coupling of G(S)alpha protein and MT2 receptor on human osteoblasts. We found that the increased cAMP levels induced by melatonin can be corrected by the treatment of the cells with 17-beta-estradiol. Thus, estrogens or estrogen receptor agonists become important compounds to consider in AIS osteoblast cell functioning. Consequently, our results add a new facet to the understanding the role and function of melatonin in AIS.

  8. Cross-talk between P2X4 and gamma-aminobutyric acid, type A receptors determines synaptic efficacy at a central synapse.

    PubMed

    Jo, Young-Hwan; Donier, Emmanuelle; Martinez, Audrey; Garret, Maurice; Toulmé, Estelle; Boué-Grabot, Eric

    2011-06-03

    The essence of neuronal function is to generate outputs in response to synaptic potentials. Synaptic integration at postsynaptic sites determines neuronal outputs in the CNS. Using immunohistochemical and electrophysiological approaches, we first reveal that steroidogenic factor 1 (SF-1) green fluorescent protein (GFP)-positive neurons in the ventromedial nucleus of the hypothalamus express P2X4 subunits that are activated by exogenous ATP. Increased membrane expression of P2X4 channels by using a peptide competing with P2X4 intracellular endocytosis motif enhances neuronal excitability of SF-1 GFP-positive neurons. This increased excitability is inhibited by a P2X receptor antagonist. Furthermore, increased surface P2X4 receptor expression significantly decreases the frequency and the amplitude of GABAergic postsynaptic currents of SF-1 GFP-positive neurons. Co-immunopurification and pulldown assays reveal that P2X4 receptors complex with aminobutyric acid, type A (GABA(A)) receptors and demonstrate that two amino acids in the carboxyl tail of the P2X4 subunit are crucial for its physical association with GABA(A) receptors. Mutation of these two residues prevents the physical association, thereby blocking cross-inhibition between P2X4 and GABA(A) receptors. Moreover, disruption of the physical coupling using competitive peptides containing the identified motif abolishes current inhibition between P2X4 and GABA(A) receptors in recombinant system and P2X4 receptor-mediated GABAergic depression in SF-1 GFP-positive neurons. Our present work thus provides evidence for cross-talk between excitatory and inhibitory receptors that appears to be crucial in determining GABAergic synaptic strength at a central synapse.

  9. Cross-talk between P2X4 and γ-Aminobutyric Acid, Type A Receptors Determines Synaptic Efficacy at a Central Synapse*

    PubMed Central

    Jo, Young-Hwan; Donier, Emmanuelle; Martinez, Audrey; Garret, Maurice; Toulmé, Estelle; Boué-Grabot, Eric

    2011-01-01

    The essence of neuronal function is to generate outputs in response to synaptic potentials. Synaptic integration at postsynaptic sites determines neuronal outputs in the CNS. Using immunohistochemical and electrophysiological approaches, we first reveal that steroidogenic factor 1 (SF-1) green fluorescent protein (GFP)-positive neurons in the ventromedial nucleus of the hypothalamus express P2X4 subunits that are activated by exogenous ATP. Increased membrane expression of P2X4 channels by using a peptide competing with P2X4 intracellular endocytosis motif enhances neuronal excitability of SF-1 GFP-positive neurons. This increased excitability is inhibited by a P2X receptor antagonist. Furthermore, increased surface P2X4 receptor expression significantly decreases the frequency and the amplitude of GABAergic postsynaptic currents of SF-1 GFP-positive neurons. Co-immunopurification and pulldown assays reveal that P2X4 receptors complex with aminobutyric acid, type A (GABAA) receptors and demonstrate that two amino acids in the carboxyl tail of the P2X4 subunit are crucial for its physical association with GABAA receptors. Mutation of these two residues prevents the physical association, thereby blocking cross-inhibition between P2X4 and GABAA receptors. Moreover, disruption of the physical coupling using competitive peptides containing the identified motif abolishes current inhibition between P2X4 and GABAA receptors in recombinant system and P2X4 receptor-mediated GABAergic depression in SF-1 GFP-positive neurons. Our present work thus provides evidence for cross-talk between excitatory and inhibitory receptors that appears to be crucial in determining GABAergic synaptic strength at a central synapse. PMID:21482824

  10. Super-robust, lightweight, conducting carbon nanotube blocks cross-linked by de-fluorination.

    PubMed

    Sato, Yoshinori; Ootsubo, Makoto; Yamamoto, Go; Van Lier, Gregory; Terrones, Mauricio; Hashiguchi, Shinji; Kimura, Hisamichi; Okubo, Akira; Motomiya, Kenichi; Jeyadevan, Balachandran; Hashida, Toshiyuki; Tohji, Kazuyuki

    2008-02-01

    We produced large binder-free multi-walled carbon nanotube (MWNT) blocks from fluorinated MWNTs using thermal heating and a compressing method in vacuo. This technique resulted in the formation of covalent MWNT networks generated by the introduction of sp(3)-hybridized carbon atoms that cross-link between nanotubes upon de-fluorination. The resulting carbon nanotube blocks are lighter than graphite, can be machined and polished, and possess average bending strengths of 102.2 MPa, a bending modulus of 15.4 GPa, and an electrical conductivity of 2.1 x 10(2) S/cm. Although each nanotube exhibits a random structure in these blocks, the mechanical properties are 3 times higher than those obtained for commercial graphite. On the basis of theoretical molecular dynamics simulations, a model is presented for the nanotube interconnecting mechanism upon de-fluorination.

  11. People Would Talk: Normative Barriers to Cross-Sex Friendships for Elderly Women.

    ERIC Educational Resources Information Center

    Adams, Rebecca G.

    1985-01-01

    A normative explanation for elderly women's lack of male friends is developed by showing that cross-sex friendship is defined as romance, that there are norms inhibiting romance during old age, and that other norms encourage them to reject potential mates who can no longer meet traditional sex role demands. (Author/BL)

  12. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing

    PubMed Central

    Zhang, Li; Tran, Ngoc-Tung; Su, Hairui; Wang, Rui; Lu, Yuheng; Tang, Haiping; Aoyagi, Sayura; Guo, Ailan; Khodadadi-Jamayran, Alireza; Zhou, Dewang; Qian, Kun; Hricik, Todd; Côté, Jocelyn; Han, Xiaosi; Zhou, Wenping; Laha, Suparna; Abdel-Wahab, Omar; Levine, Ross L; Raffel, Glen; Liu, Yanyan; Chen, Dongquan; Li, Haitao; Townes, Tim; Wang, Hengbin; Deng, Haiteng; Zheng, Y George; Leslie, Christina; Luo, Minkui; Zhao, Xinyang

    2015-01-01

    RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia. DOI: http://dx.doi.org/10.7554/eLife.07938.001 PMID:26575292

  13. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing.

    PubMed

    Zhang, Li; Tran, Ngoc-Tung; Su, Hairui; Wang, Rui; Lu, Yuheng; Tang, Haiping; Aoyagi, Sayura; Guo, Ailan; Khodadadi-Jamayran, Alireza; Zhou, Dewang; Qian, Kun; Hricik, Todd; Côté, Jocelyn; Han, Xiaosi; Zhou, Wenping; Laha, Suparna; Abdel-Wahab, Omar; Levine, Ross L; Raffel, Glen; Liu, Yanyan; Chen, Dongquan; Li, Haitao; Townes, Tim; Wang, Hengbin; Deng, Haiteng; Zheng, Y George; Leslie, Christina; Luo, Minkui; Zhao, Xinyang

    2015-11-17

    RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia.

  14. Size Effect of Ground Patterns on FM-Band Cross-Talks between Two Parallel Signal Traces of Printed Circuit Boards for Vehicles

    NASA Astrophysics Data System (ADS)

    Iida, Michihira; Maeno, Tsuyoshi; Wang, Jianqing; Fujiwara, Osamu

    Electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common slitting ground patterns. To suppress these kinds of noise currents, we previously measured them for simple two-layer PCBs with two parallel signal traces and slitting or non-slitting ground patterns, and then investigated by the FDTD simulation the reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces on six simple PCB models having different slitting ground or different divided ground patterns parallel to the traces. As a result, we found that the contributory factor for the FM-band cross-talk reduction is the reduction of mutual inductance between the two parallel traces, and also the noise currents from PCBs can rather be suppressed even if the size of the return ground becomes small. In this study, to investigate this finding, we further simulated the frequency characteristics of cross-talk reduction for additional six simple PCB models with different dividing dimensions ground patterns parallel to the traces, which revealed an interesting phenomenon that cross-talk reduction characteristics do not always decrease with increasing the width between the divided ground patterns.

  15. Coupling and cross-talk effects in 12-15 microm diameter single-mode fiber arrays for simultaneous transmission and photon collection from scattering media.

    PubMed

    Luo, Yuan; Castillo, Jose; Arauz, Lina; Barton, Jennifer; Kostuk, Raymond K

    2007-01-10

    We examine signal degradation effects in fiber arrays from fiber-to-fiber coupling and from cross talk attributable to backscatter from the sample medium originating from adjacent fibers in the array. An analysis of coupling and cross talk for single-mode fibers (SMFs) operating at 1310 nm with different core diameters, interaction lengths, core center spacing, and numerical apertures (NAs) is evaluated. The coupling was evaluated using beam propagation algorithms and cross talk was analyzed by using Monte Carlo methods. Several multimode fiber types that are currently used in fiber image guides were also evaluated for comparative purposes. The analysis shows that an optimum NA and core diameter can be found for a specific fiber center separation that maximizes the directly backscattered signal relative to the cross talk. The coupling between fibers can be kept less than -35 dB for interaction lengths less than 5 mm. The calculations were compared to an experimentally fabricated SMF array with 15 microm center spacing and showed good agreement. The experimental fiber array without a lens was also used in a coherent detection configuration to measure the position of a mirror. Accurate depth ranging up to a distance of 250 microm from the tip of the fiber was achieved, which was five times the Rayleigh range of the beam emitted from the fiber.

  16. Interorgan cross talk between fatty acid metabolism, tissue inflammation, and FADS2 genotype in humans with obesity.

    PubMed

    Vaittinen, Maija; Männistö, Ville; Käkelä, Pirjo; Ågren, Jyrki; Tiainen, Mika; Schwab, Ursula; Pihlajamäki, Jussi

    2017-03-01

    Fatty acid (FA) composition affects obesity-associated low-grade inflammation. It has been shown that the fatty acid desaturase (FADS) 2 gene polymorphism associates with FA metabolism and adipose tissue (AT) inflammation. This study aimed to investigate the relationship between FA metabolism and inflammation in different tissues and the possible interorgan cross talk. Cross-sectional baseline data from 155 individuals with obesity (both male and female) participating in the Roux-en-Y gastric bypass operation in the ongoing Kuopio Obesity Surgery Study were used. Gas chromatograph for FA composition, liver histology, and targeted RNA expression for gene expression profile were performed. It was demonstrated that the saturated fatty acid (SFA) proportion in AT correlated positively with inflammation in subcutaneous AT (SAT) and visceral AT (VAT) but not in the liver, while the monounsaturated fatty acid (MUFA) proportion in SAT and VAT correlated negatively with AT inflammation. Notably, there was a positive correlation between AT n-6 polyunsaturated fatty acids (PUFAs), but not AT SFAs or MUFAs, and liver inflammation. This correlation was modified by the FADS2 genotype. The AT FA profile relates with AT inflammation. Additionally, there seems to be a complex interaction, partly regulated by the FADS2 genotype, regulating the interaction between FAs in AT and liver inflammation. © 2017 The Obesity Society.

  17. Hormones and immunity in cancer: are thyroid hormones endocrine players in the microglia/glioma cross-talk?

    PubMed Central

    Perrotta, Cristiana; De Palma, Clara; Clementi, Emilio; Cervia, Davide

    2015-01-01

    Accumulating evidence indicates that the endocrine and immune systems engage in complex cross-talks in which a prominent role is played by thyroid hormones (THs). The increase of resident vs. monocyte recruited macrophages was shown to be an important effector of the TH 3,3′,5′-Triiodo-L-thyronine (T3)-induced protection against inflammation and a key role of T3 in inhibiting the differentiation of peripheral monocytes into macrophages was observed. Herein, we report on the role of T3 as a modulator of microglia, the specialized macrophages of the central nervous system (CNS). Mounting evidence supports a role of microglia and macrophages in the growth and invasion of malignant glioma. In this respect, we unveil the putative involvement of T3 in the microglia/glioma cell communication. Since THs are known to cross the blood-brain barrier, we suggest that T3 not only exerts a direct modulation of brain cancer cell itself but also indirectly promotes glioma growth through a modulation of microglia. Our observations expand available information on the role of TH system in glioma and its microenvironment and highlight the endocrine modulation of microglia as an important target for future therapeutic development of glioma treatments. PMID:26157361

  18. Molecular Cross-talk between Misfolded Proteins in Animal Models of Alzheimer’s and Prion Diseases

    PubMed Central

    Morales, Rodrigo; Estrada, Lisbell D.; Diaz-Espinoza, Rodrigo; Morales-Scheihing, Diego; Jara, Maria C.; Castilla, Joaquin; Soto, Claudio

    2010-01-01

    The central event in Protein Misfolding Disorders (PMDs) is the accumulation of a misfolded form of a naturally expressed protein. Despite the diversity of clinical symptoms associated to different PMDs, many similarities in their mechanism suggest that distinct pathologies may cross-talk at the molecular level. The main goal of this study was to analyze the interaction of the protein misfolding processes implicated in Alzheimer’s and prion diseases. For this purpose we inoculated prions in an Alzheimer’s transgenic mouse model that develop typical amyloid plaques and followed the progression of pathological changes over time. Our findings show a dramatic acceleration and exacerbation of both pathologies. The onset of prion disease symptoms in transgenic mice appeared significantly faster with a concomitant increase on the level of misfolded prion protein in the brain. A striking increase in amyloid plaque deposition was observed in prion infected mice compared with their non-inoculated counterparts. Histological and biochemical studies showed the association of the two misfolded proteins in the brain and in vitro experiments showed that protein misfolding can be enhanced by a cross-seeding mechanism. These results suggest a profound interaction between Alzheimer’s and prion pathologies, indicating that one protein misfolding process may be an important risk factor for the development of a second one. Our findings may have important implications to understand the origin and progression of PMDs. PMID:20357103

  19. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation.

    PubMed

    Desai, Sejal; Kobayashi, Alisa; Konishi, Teruaki; Oikawa, Masakazu; Pandey, Badri N

    2014-01-01

    Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549-A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549-WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation.

    PubMed Central

    Linette, G P; Li, Y; Roth, K; Korsmeyer, S J

    1996-01-01

    BCL-2-deficient T cells demonstrate accelerated cell cycle progression and increased apoptosis following activation. Increasing the levels of BCL-2 retarded the G0-->S transition, sustained the levels of cyclin-dependent kinase inhibitor p27Kip1, and repressed postactivation death. Proximal signal transduction events and immediate early gene transcription were unaffected. However, the transcription and synthesis of interleukin 2 and other delayed early cytokines were markedly attenuated by BCL-2. In contrast, a cysteine protease inhibitor that also blocks apoptosis had no substantial affect upon cytokine production. InterleUkin 2 expression requires several transcription factors of which nuclear translocation of NFAT (nuclear factor of activated T cells) and NFAT-mediated transactivation were impaired by BCL-2. Thus, select genetic aberrations in the apoptotic pathway reveal a cell autonomous coregulation of activation. Images Fig. 3 Fig. 4 Fig. 7 PMID:8790367

  1. Intermolecular cross-talk between the prostaglandin E2 receptor (EP)3 of subtype and thromboxane A(2) receptor signalling in human erythroleukaemic cells.

    PubMed

    Reid, Helen M; Kinsella, B Therese

    2009-10-01

    In previous studies investigating cross-talk of signalling between prostaglandin (PG)E(2) receptor (EP) and the TPalpha and TPbeta isoforms of the human thromboxane (TX)A(2) receptor (TP), 17-phenyl trinor PGE(2)-induced desensitization of TP receptor signalling through activation of the AH6809 and SC19220-sensitive EP(1) subtype of the EP receptor family, in a cell-specific manner. Here, we sought to further investigate that cross-talk in human erythroleukaemic (HEL) 92.1.7 cells. Specificity of 17-phenyl trinor PGE(2) signalling and its possible cross-talk with signalling by TPalpha/TPbeta receptors endogenously expressed in HEL cells was examined through assessment of agonist-induced inositol 1,4,5-trisphosphate (IP)(3) generation and intracellular calcium ([Ca(2+)](i)) mobilization. While 17-Phenyl trinor PGE(2) led to activation of phospholipase (PL)Cbeta to yield increases in IP(3) generation and [Ca(2+)](i), it did not desensitize but rather augmented that signalling in response to subsequent stimulation with the TXA(2) mimetic U46619. Furthermore, the augmentation was reciprocal. Signalling by 17-phenyl trinor PGE(2) was found to occur through AH6809- and SC19920-insensitive, Pertussis toxin-sensitive, G(i)/G(betagamma)-dependent activation of PLCbeta. Further pharmacological investigation using selective EP receptor subtype agonists and antagonists confirmed that 17-phenyl trinor PGE(2)-mediated signalling and reciprocal cross-talk with the TP receptors occurred through the EP(3), rather than the EP(1), EP(2) or EP(4) receptor subtype in HEL cells. The EP(1) and EP(3) subtypes of the EP receptor family mediated intermolecular cross-talk to differentially regulate TP receptor-mediated signalling whereby activation of EP(1) receptors impaired or desensitized, while that of EP(3) receptors augmented signalling through TPalpha/TPbeta receptors, in a cell type-specific manner.

  2. Comparative proteomic analysis of silkworm fat body after knocking out fibroin heavy chain gene: a novel insight into cross-talk between tissues.

    PubMed

    Chen, Quanmei; Ma, Zhengang; Wang, Xin; Li, Zhiqing; Zhang, Yan; Ma, Sanyuan; Zhao, Ping; Xia, Qingyou

    2015-09-01

    Cross-talk between tissues plays key roles in development of organisms; however, there are few researches on cross-talk between tissues in insects. Our previous studies showed that the pupal body weight was elevated after knocking out the fibroin heavy chain gene (BmFib-H), whereas the gene specifically expressed in silk glands of silkworm. Hence, the mutant is a good material for studying the cross-talk between tissues. It is considered that the fat body of silkworm during larval stage is used to store nutrients for pupal development. Herein, comparative proteomic of fat body on the 5th day of fifth instar was performed between BmFib-H gene knock-out Bombyx mori line (FGKO) and its wide-type Dazao. These results revealed that a single gene knock-out in silk gland triggered large-scale metabolic pathways changes in fat body. The levels of proteins involved in glycolysis/gluconeogenesis, pentose phosphate pathway, and glycine-serine biosynthetic pathway were down-regulated in the FGKO fat body. In contrast, the abundances of many proteins participating in protein synthesis, including ribosomal proteins, eukaryotic translation initiation factor, and elongation factor, were up-regulated. Moreover, the concentrations of glycogen and proteins in the FGKO fat body were greatly increased. These findings provided a novel insight into the cross-talk between silk gland and fat body in silkworm, and the presence of cross-talk between silk gland and fat body could regulate the redistribution of nutrients in the FGKO fat body leading to the increase of the pupal weight.

  3. Cross-talks via mTORC2 can explain enhanced activation in response to insulin in diabetic patients

    PubMed Central

    Magnusson, Rasmus; Gustafsson, Mika; Cedersund, Gunnar; Strålfors, Peter

    2016-01-01

    The molecular mechanisms of insulin resistance in Type 2 diabetes have been extensively studied in primary human adipocytes, and mathematical modelling has clarified the central role of attenuation of mammalian target of rapamycin (mTOR) complex 1 (mTORC1) activity in the diabetic state. Attenuation of mTORC1 in diabetes quells insulin-signalling network-wide, except for the mTOR in complex 2 (mTORC2)-catalysed phosphorylation of protein kinase B (PKB) at Ser473 (PKB-S473P), which is increased. This unique increase could potentially be explained by feedback and interbranch cross-talk signals. To examine if such mechanisms operate in adipocytes, we herein analysed data from an unbiased phosphoproteomic screen in 3T3-L1 adipocytes. Using a mathematical modelling approach, we showed that a negative signal from mTORC1-p70 S6 kinase (S6K) to rictor–mTORC2 in combination with a positive signal from PKB to SIN1–mTORC2 are compatible with the experimental data. This combined cross-branch signalling predicted an increased PKB-S473P in response to attenuation of mTORC1 – a distinguishing feature of the insulin resistant state in human adipocytes. This aspect of insulin signalling was then verified for our comprehensive model of insulin signalling in human adipocytes. Introduction of the cross-branch signals was compatible with all data for insulin signalling in human adipocytes, and the resulting model can explain all data network-wide, including the increased PKB-S473P in the diabetic state. Our approach was to first identify potential mechanisms in data from a phosphoproteomic screen in a cell line, and then verify such mechanisms in primary human cells, which demonstrates how an unbiased approach can support a direct knowledge-based study. PMID:27986865

  4. Cross Talk and Interference Enhance Information Capacity of a Signaling Pathway

    PubMed Central

    Hormoz, Sahand

    2013-01-01

    A recurring motif in gene regulatory networks is transcription factors (TFs) that regulate each other and then bind to overlapping sites on DNA, where they interact and synergistically control transcription of a target gene. Here, we suggest that this motif maximizes information flow in a noisy network. Gene expression is an inherently noisy process due to thermal fluctuations and the small number of molecules involved. A consequence of multiple TFs interacting at overlapping binding sites is that their binding noise becomes correlated. Using concepts from information theory, we show that in general a signaling pathway transmits more information if 1), noise of one input is correlated with that of the other; and 2), input signals are not chosen independently. In the case of TFs, the latter criterion hints at upstream cross-regulation. We demonstrate these ideas for competing TFs and feed-forward gene-regulatory modules, and discuss generalizations to other signaling pathways. Our results challenge the conventional approach of treating biological noise as uncorrelated fluctuations, and present a systematic method for understanding TF cross-regulation networks either from direct measurements of binding noise or from bioinformatic analysis of overlapping binding sites. PMID:23473500

  5. Cross-Talk in the Female Rat Mammary Gland: Influence of Aryl Hydrocarbon Receptor on Estrogen Receptor Signaling

    PubMed Central

    Helle, Janina; Bader, Manuela I.; Keiler, Annekathrin M.; Zierau, Oliver; Vollmer, Günter; Chittur, Sridar V.; Tenniswood, Martin; Kretzschmar, Georg

    2015-01-01

    Background: Cross-talk between the aryl hydrocarbon receptor (AHR) and the estrogen receptor (ER) plays a major role in signaling processes in female reproductive organs. Objectives: We investigated the influence of the AHR ligand 3-methylcholanthrene (3-MC) on ER-mediated signaling in mammary gland tissue of ovariectomized (ovx) rats. Methods: After 14 days of hormonal decline, ovx rats were treated for 3 days with 4 μg/kg 17β-estradiol (E2), 15 mg/kg 8-prenylnaringenin (8-PN), 15 mg/kg 3-MC, or a combination of these compounds (E2 + 3-MC, 8-PN + 3-MC). Whole-mount preparations of the mammary gland were used to count terminal end buds (TEBs). Protein expression studies (immunohistochemistry, immunofluorescence), a cDNA microarray, pathway analyses, and quantitative real-time polymerase chain reaction (qPCR) were performed to evaluate the interaction between AHR- and ER-mediated signaling pathways. Results: E2 treatment increased the number of TEBs and the levels of Ki-67 protein and progesterone receptor (PR); this treatment also changed the expression of 325 genes by more than 1.5-fold. Although 3-MC treatment alone had marginal impact on gene or protein expression, when rats were co-treated with 3-MC and E2, 3-MC strongly inhibited E2-induced TEB development, protein synthesis, and the expression of nearly half of E2-induced genes. This inhibitory effect of 3-MC was partially mirrored when 8-PN was used as an ER ligand. The anti-estrogenicity of ligand-activated AHR was at least partly due to decreased protein levels of ERα in ductal epithelial cells. Conclusion: Our data show transcriptome-wide anti-estrogenic properties of ligand-activated AHR on ER-mediated processes in the mammary gland, thereby contributing an explanation for the chemopreventive and endocrine-disrupting potential of AHR ligands. Citation: Helle J, Bader MI, Keiler AM, Zierau O, Vollmer G, Chittur SV, Tenniswood M, Kretzschmar G. 2016. Cross-talk in the female rat mammary gland: influence

  6. Cross-talk between non-genomic and genomic signalling pathways - Distinct effect profiles of environmental estrogens

    SciTech Connect

    Silva, Elisabete; Kabil, Alena; Kortenkamp, Andreas

    2010-06-01

    Estrogen receptor (ER) transcriptional cross-talk after activation by 17{beta}-estradiol (E2) has been studied in considerable detail, but comparatively little is known about the ways in which synthetic estrogen-like chemicals, so-called xenoestrogens, interfere with these signalling pathways. E2 can stimulate rapid, non-genomic signalling events, such as activation of the Src/Ras/Erk signalling pathway. We investigated how activation of this pathway by E2, the estrogenic environmental contaminants o,p'-DDT, {beta}-HCH and p,p'-DDE, and epidermal growth factor (EGF) influences the expression of ER target genes, such as TFF1, ER, PR, BRCA1 and CCND1, and the proliferation of breast cancer cells. Despite commonalities in their estrogenicity as judged by cell proliferation assays, the environmental contaminants exhibited striking differences in their non-genomic and genomic signalling. The gene expression profiles of o,p'-DDT and {beta}-HCH resembled the effects observed with E2. In the case of {beta}-HCH this is surprising, considering its reported lack of affinity to the 'classical' ER. The expression profiles seen with p,p'-DDE showed some similarities with E2, but overall, p,p'-DDE was a fairly weak transcriptional inducer of TFF1, ER, PR, BRCA1 and CCND1. We observed distinct differences in the non-genomic signalling of the tested compounds. p,p'-DDE was unable to stimulate Src and Erk1/Erk2 activations. The effects of E2 on Src and Erk1/Erk2 phosphorylation were transient and weak when compared to EGF, but {beta}-HCH induced strong and sustained activation of all tested kinases. Transcription of TFF1, ER, PR and BRCA1 by E2, o,p'-DDT and {beta}-HCH could be suppressed partially by inhibiting the Src/Ras/Erk pathway with PD 98059. However, this was not seen with p,p'-DDE. Our investigations show that the cellular activities of estrogens and xenoestrogens are the result of a combination of extranuclear (non-genomic) and nuclear (genomic) events and highlight the

  7. Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation

    PubMed Central

    Nelson, W. Bradley; Ashley J., Smuder; Hudson, Matthew B.; Talbert, Erin E.; Powers, Scott K.

    2012-01-01

    OBJECTIVE Diaphragmatic weakness, due to both atrophy and contractile dysfunction, is a well-documented response following prolonged mechanical ventilation (MV). Evidence indicates that activation of the proteases calpain and caspase-3 are essential for MV-induced diaphragmatic weakness to occur. We tested the hypothesis that a regulatory cross-talk exists between calpain and caspase-3 in the diaphragm during prolonged MV. To test this prediction, we determined if selective pharmacological inhibition of calpain would prevent activation of caspase-3 and conversely, if selective inhibition of caspase-3 would abate calpain activation. DESIGN Animal study. SETTING University Research Laboratory SUBJECTS Female Sprague-Dawley rats INTERVENTIONS Animals were randomly divided into a control or one of three 12 hour MV groups that were treated with/without a selective pharmacological protease inhibitor: 1) control; 2) MV; 3) MV with a selective caspase-3 inhibitor; and 4) MV with a selective calpain inhibitor. MEASUREMENTS AND MAIN RESULTS Compared to control, MV resulted in calpain and caspase-3 activation in the diaphragm accompanied by atrophy of type I, type IIa, and type IIx/IIb fibers. Independent inhibition of either calpain or caspase-3 prevented this MV-induced atrophy. Pharmacological inhibition of calpain prevented MV-induced activation of diaphragmatic caspase-3 and inhibition of caspase-3 prevented activation of diaphragmatic calpain. Further, calpain inhibition also prevented the activation of caspase-9 and caspase-12, along with the cleavage of Bid to tBid, all upstream signals for caspase-3 activation. Lastly, caspase-3 inhibition prevented the MV-induced degradation of the endogenous calpain inhibitor, calpastatin. CONCLUSIONS Collectively, these results indicate that MV-induced diaphragmatic atrophy is dependent upon the activation of both calpain and caspase-3. Importantly, these findings provide the first experimental evidence in diaphragm muscle that

  8. Cytoplasmic genome substitution in wheat affects the nuclear-cytoplasmic cross-talk leading to transcript and metabolite alterations

    PubMed Central

    2013-01-01

    Background Alloplasmic lines provide a unique tool to study nuclear-cytoplasmic interactions. Three alloplasmic lines, with nuclear genomes from Triticum aestivum and harboring cytoplasm from Aegilops uniaristata, Aegilops tauschii and Hordeum chilense, were investigated by transcript and metabolite profiling to identify the effects of cytoplasmic substitution on nuclear-cytoplasmic signaling mechanisms. Results In combining the wheat nuclear genome with a cytoplasm of H. chilense, 540 genes were significantly altered, whereas 11 and 28 genes were significantly changed in the alloplasmic lines carrying the cytoplasm of Ae. uniaristata or Ae. tauschii, respectively. We identified the RNA maturation-related process as one of the most sensitive to a perturbation of the nuclear-cytoplasmic interaction. Several key components of the ROS chloroplast retrograde signaling, together with the up-regulation of the ROS scavenging system, showed that changes in the chloroplast genome have a direct impact on nuclear-cytoplasmic cross-talk. Remarkably, the H. chilense alloplasmic line down-regulated some genes involved in the determination of cytoplasmic male sterility without expressing the male sterility phenotype. Metabolic profiling showed a comparable response of the central metabolism of the alloplasmic and euplasmic lines to light, while exposing larger metabolite alterations in the H. chilense alloplasmic line as compared with the Aegilops lines, in agreement with the transcriptomic data. Several stress-related metabolites, remarkably raffinose, were altered in content in the H. chilense alloplasmic line when exposed to high light, while amino acids, as well as organic acids were significantly decreased. Alterations in the levels of transcript, related to raffinose, and the photorespiration-related metabolisms were associated with changes in the level of related metabolites. Conclusion The replacement of a wheat cytoplasm with the cytoplasm of a related species affects

  9. Role of p53–fibrinolytic system cross-talk in the regulation of quartz-induced lung injury

    SciTech Connect

    Bhandary, Yashodhar P.; Shetty, Shwetha K.; Marudamuthu, Amarnath S.; Fu, Jian; Pinson, Barbara M.; Levin, Jeffrey; Shetty, Sreerama

    2015-03-01

    Silica is the major component of airborne dust generated by wind, manufacturing and/or demolition. Chronic occupational inhalation of silica dust containing crystalline quartz is by far the predominant form of silicosis in humans. Silicosis is a progressive lung disease that typically arises after a very long latency and is a major occupational concern with no known effective treatment. The mechanism of silicosis is not clearly understood. However, silicosis is associated with increased cell death, expression of redox enzymes and pro-fibrotic cytokines and chemokines. Since alveolar epithelial cell (AEC) death and disruption of alveolar fibrinolysis is often associated with both acute and chronic lung injuries, we explored whether p53-mediated changes in the urokinase-type plasminogen activator (uPA) system contributes to silica-induced lung injury. We further sought to determine whether caveolin-1 scaffolding domain peptide (CSP), which inhibits p53 expression, mitigates lung injury associated with exposure to silica. Lung tissues and AECs isolated from wild-type (WT) mice exposed to silica exhibit increased apoptosis, p53 and PAI-1, and suppression of uPA expression. Treatment of WT mice with CSP inhibits PAI-1, restores uPA expression and prevents AEC apoptosis by suppressing p53, which is otherwise induced in mice exposed to silica. The process involves CSP-mediated inhibition of serine-15 phosphorylation of p53 by inhibition of protein phosphatase 2A-C (PP2A-C) interaction with silica-induced caveolin-1 in AECs. These observations suggest that changes in the p53–uPA fibrinolytic system cross-talk contribute to lung injury caused by inhalation of silica dust containing crystalline quartz and is protected by CSP by targeting this pathway. - Highlights: • Chronic exposure to quartz dusts is a major cause of lung injury and silicosis. • The survival of patients with silicosis is bleak due to lack of effective treatments. • This study defines a new role of

  10. Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses.

    PubMed

    Abdulkhalek, Samar; Szewczuk, Myron R

    2013-11-01

    The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses.

  11. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells.

    PubMed

    Hayashida, Tomoko; Decaestecker, Mark; Schnaper, H William

    2003-08-01

    Transforming growth factor beta (TGF-beta) stimulates renal cell fibrogenesis by a poorly understood mechanism. Previously, we suggested a synergy between TGF-beta1 activated extracellular signal-regulated kinase (ERK) and Smad signaling in collagen production by human glomerular mesangial cells. In a heterologous DNA binding transcription assay, biochemical or dominant-negative ERK blockade reduced TGF-beta1 induced Smad3 activity. Total serine phosphorylation of Smad2/3, but not phosphorylation of the C-terminal SS(P)XS(P) motif, was decreased by pretreatment with the MEK/ERK inhibitors, PD98059 (10 microM) or U0126 (25 microM). This effect was not seen in the mouse mammary epithelial NMuMG cell line, indicating that ERK-dependent activation of Smad2/3 occurs only in certain cell types. TGF-beta stimulated phosphorylation of an expressed Smad3A construct, with a mutated C-terminal SS(P)XS(P) motif, was reduced by a MEK/ERK inhibitor. In contrast, MEK/ERK inhibition did not affect phosphorylation of a Smad3 construct mutated at consensus phosphorylation sites in the linker region (Smad3EPSM). Constitutively active MEK (caMEK) induced alpha2(I) collagen promoter activity, an effect blocked by co-transfected Smad3EPSM, but not Smad3A. The effects of caMEK and TGF-beta1 on collagen promoter activity were additive. These results indicate that ERK-dependent R-Smad linker region phosphorylation enhances collagen I synthesis and imply positive cross talk between the ERK and Smad pathways in human mesangial cells.

  12. Positive and Negative Cross-Talk between Lysophosphatidic Acid Receptor 1, Free Fatty Acid Receptor 4, and Epidermal Growth Factor Receptor in Human Prostate Cancer Cells.

    PubMed

    Hopkins, Mandi M; Liu, Ze; Meier, Kathryn E

    2016-10-01

    Lysophosphatidic acid (LPA) is a lipid mediator that mediates cellular effects via G protein-coupled receptors (GPCRs). Epidermal growth factor (EGF) is a peptide that acts via a receptor tyrosine kinase. LPA and EGF both induce proliferation of prostate cancer cells and can transactivate each other's receptors. The LPA receptor LPA1 is particularly important for LPA response in human prostate cancer cells. Previous work in our laboratory has demonstrated that free fatty acid 4 (FFA4), a GPCR activated by ω-3 fatty acids, inhibits responses to both LPA and EGF in these cells. One potential mechanism for the inhibition involves negative interactions between FFA4 and LPA1, thereby suppressing responses to EGF that require LPA1 In the current study, we examined the role of LPA1 in mediating EGF and FFA4 agonist responses in two human prostate cancer cell lines, DU145 and PC-3. The results show that an LPA1-selective antagonist inhibits proliferation and migration to both LPA and EGF. Knockdown of LPA1 expression, using silencing RNA, blocks responses to LPA and significantly inhibits responses to EGF. The partial response to EGF that is observed after LPA1 knockdown is not inhibited by FFA4 agonists. Finally, the role of arrestin-3, a GPCR-binding protein that mediates many actions of activated GPCRs, was tested. Knockdown of arrestin-3 completely inhibits responses to both LPA and EGF in prostate cancer cells. Taken together, these results suggest that LPA1 plays a critical role in EGF responses and that FFA4 agonists inhibit proliferation by suppressing positive cross-talk between LPA1 and the EGF receptor. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Acquired resistance to oestrogen deprivation: role for growth factor signalling kinases/oestrogen receptor cross-talk revealed in new MCF-7X model.

    PubMed

    Staka, Cindy M; Nicholson, Robert I; Gee, Julia M W

    2005-07-01

    In vitro models of long-term oestrogen deprivation utilise increased oestrogen receptor (ER) and are oestrogen hypersensitive, with emerging evidence that growth factor signalling contributes and interacts with ER. However, such models are commonly derived in the presence of serum growth factors that may force the resistance mechanism. Our new in vitro model, MCF-7X, has thus been developed under conditions of both oestrogen and growth factor depletion. ER expression, serine 118 phosphorylation on this receptor and its transcriptional activity were modestly increased compared to the parental MCF-7 cells, although MCF-7X cells were not oestrogen hypersensitive. Faslodex (0.1 microM) partially decreased ER and its transcriptional activity, with associated decreases in serine 118 phosphorylation. Faslodex inhibited MCF-7X growth by 50% for 10 weeks. Classical growth factor receptors did not impact on MCF-7X growth and only a modest contribution for MAP kinase was revealed using PD98059 (25 microM; 35% inhibition for 3 weeks). However, the phosphatidylinositol-3-OH (PI3)-kinase inhibitor LY294002 (5 microM) inhibited MCF-7X growth by 65% for 10 weeks. In contrast to PD98059, LY294002 also partially-inhibited ER transcriptional activity and decreased serine 167 ER phosphorylation. Co-treatment with faslodex plus LY294002 to decrease activity of both serine 118 and 167 proved superior vs the single agents in decreasing ER transcriptional activity and MCF-7X growth (90% inhibition for 25 weeks). However, triple treatment including PD98059 was required to prevent resistance in MCF-7X, an event dependent on maximal depletion of serine 118 phosphorylation and ER transcriptional activity. Kinases clearly contribute in resistance to oestrogen deprivation, cross-talking with ER signalling via AF-1 phosphorylation. While inhibiting each pathway has potential to treat this state, combined therapy targeting all regulators of ER phosphorylation may be required to block subsequent

  14. Forskolin increases angiogenesis through the coordinated cross-talk of PKA-dependent VEGF expression and Epac-mediated PI3K/Akt/eNOS signaling.

    PubMed

    Namkoong, Seung; Kim, Chun-Ki; Cho, Young-Lai; Kim, Ji-Hee; Lee, Hansoo; Ha, Kwon-Soo; Choe, Jongseon; Kim, Pyeung-Hyeun; Won, Moo-Ho; Kwon, Young-Geun; Shim, Eun Bo; Kim, Young-Myeong

    2009-06-01

    Forskolin, a potent activator of adenylyl cyclases, has been implicated in modulating angiogenesis, but the underlying mechanism has not been clearly elucidated. We investigated the signal mechanism by which forskolin regulates angiogenesis. Forskolin stimulated angiogenesis of human endothelial cells and in vivo neovascularization, which was accompanied by phosphorylation of CREB, ERK, Akt, and endothelial nitric oxide synthase (eNOS) as well as NO production and VEGF expression. Forskolin-induced CREB phosphorylation, VEGF promoter activity, and VEGF expression were blocked by the PKA inhibitor PKI.Moreover, phosphorylation of ERK by forskolin was inhibited by the MEK inhibitor PD98059, but not PKI. The forskolin-induced Akt/eNOS/NO pathway was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, but not significantly suppressed by PKI. These inhibitors and a NOS inhibitor partially inhibited forskolin-induced angiogenesis. The exchange protein directly activated by cAMP (Epac) activator, 8CPT-2Me-cAMP, promoted the Akt/eNOS/NO pathway and ERK phosphorylation,but did not induce CREB phosphorylation and VEGF expression. The angiogenic effect of the Epac activator was diminished by the inhibition of PI3K and MEK, but not by the PKA inhibitor. Small interfering RNA-mediated knockdown of Epac1 suppressed forskolin-induced angiogenesis and phosphorylation of ERK, Akt, and eNOS, but not CREB phosphorylation and VEGF expression. These results suggest that forskolin stimulates angiogenesis through coordinated cross-talk between two distinct pathways, PKA-dependent VEGF expression and Epac-dependent ERKactivation and PI3K/Akt/eNOS/NO signaling.

  15. CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells.

    PubMed

    Yan, Zhaoyong; Qu, Kai; Zhang, Jing; Huang, Qichao; Qu, Ping; Xu, Xinsen; Yuan, Peng; Huang, Xiaojun; Shao, Yongping; Liu, Chang; Zhang, Hongxin; Xing, Jinliang

    2015-10-01

    Although previous evidence indicates close involvement of CD147 in the pathogenesis of liver fibrosis, the underlying molecular mechanisms and its therapeutic value remain largely unknown. In the present study, we investigated the biological roles of CD147 in liver fibrosis and assessed its therapeutic value as a target molecule in the CCl4-induced liver fibrosis mouse model. We found that CD147 was highly expressed in both hepatocytes and SECs (sinusoidal endothelial cells) in fibrotic liver tissues. Additionally, it was significantly associated with the fibrosis stage. TGF-β1 (transforming growth factor β1) was found to be mainly responsible for the up-regulation of CD147. Bioinformatic and experimental data suggest a functional link between CD147 expression and VEGF-A (vascular endothelial growth factor A)/VEGR-2 (VEGF receptor 2) signalling-mediated angiogenesis in fibrotic liver tissues. Furthermore, we observed that the CD147-induced activation of the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway promotes the production of VEGF-A in hepatocytes and expression of VEGFR-2 in SECs, which was found to enhance the angiogenic capability of SECs. Finally, our data indicate that blocking of CD147 using an mAb (monoclonal antibody) attenuated liver fibrosis progression via inhibition of VEGF-A/VEGFR-2 signalling and subsequent amelioration of microvascular abnormality in the CCl4-induced mouse model. Our findings suggest a novel functional mechanism that CD147 may promote liver fibrosis progression via inducing the VEGF-A/VEGFR-2 signalling pathway-mediated cross-talk between hepatocytes and SECs. New strategies based on the intervention of CD147 can be expected for prevention of liver fibrosis.

  16. Understanding cross sample talk as a result of triboelectric charging on future mars missions

    NASA Astrophysics Data System (ADS)

    Beegle, L. W.; Anderson, R. C.; Fleming, G.

    2009-12-01

    Proper scientific analysis requires the material that is collected and analyzed by in-situ instruments be as close as possible (chemically and mineralogically) to the initial, unaltered surface material prior to its collection and delivery. However this is not always possible for automated robotic in situ analysis. Therefore it is vital to understanding how the sample has been changed/altered prior to analysis so that analysis can be put in the proper context. We have examined the transport of fines when transferred under ambient martian conditions in hardware analogous to that being developed for the Mars Science Laboratory (MSL) sample acquisition flight hardware. We will discuss the amount of cross sample contamination when different mineralogy’s are transferred under Martian environmental conditions. Similar issues have been identified as problems within the terrestrial mining, textile, and pharmaceutical research communities that may alter/change the chemical and mineralogical compositions of samples before they are delivered to the MSL Chemistry and Mineralogy (CheMin) and the Sample Analysis at Mars (SAM) analytical instruments. These cross-sample contamination will affect the overall quality of the science results and each of these processes need to be examined and understood prior to MSL landing on the surface of Mars. There are two forms of triboelectric charging that have been observed to occur on Earth and they are 1) when dissimilar material comes in contact (one material charges positive and the other negative depending on their relative positions on the triboelectric series and the work function of the material) and 2) when two similar materials come in contact, the larger particles can transfer one of their high energy electrons to a smaller particle. During the collisions, the transferred electron tends to lose energy and the charge tends not to move from the smaller particle back to the larger particle in further collisions. This transfer effect

  17. Cross-talk between TGF-beta1 and IL-6 in human trabecular meshwork cells.

    PubMed

    Liton, Paloma B; Li, Guorong; Luna, Coralia; Gonzalez, Pedro; Epstein, David L

    2009-01-01

    To investigate the relationship between transforming growth factor beta-1 (TGF-beta1) and interleukin-6 (IL-6) in human trabecular meshwork (HTM) cells as well as to identify the signaling pathway/s involved in the increased IL-6 expression that occurs in response to mechanical stress and TGF-beta1. All experiments were performed in confluent monolayers of HTM cells at passage 3. Secreted IL-6 was quantified by ELISA. Levels of IL-6 mRNA were evaluated by polymerase chain reaction (PCR) analysis. Activation of the IL-6 and TGF-beta1 promoters was monitored by measuring secreted alkaline phosphatase protein (SEAP) released into the culture medium by HTM cells infected with an adenovirus expressing the SEAP reporter gene that was controlled by either the IL-6 promoter (AdIL6-SEAP) or the TGF-beta1 promoter (AdTGFbeta1-SEAP). Cyclic mechanical stress (5% elongation, one cycle per second) was applied using the Flexcell System. Reagents used in this study included human TGF-beta1, human IL-6, and the inhibitors for the p38 mitogen-activated protein kinase (MAPK; SB202190), c-jun NH2-terminal kinase (JNK; SP600125), extracellular-regulating kinase (ERK; PD98059), and TGF type I activin receptor (SB431542). Incubation of HTM cells with TGF-beta1 (5 ng/ml) resulted in a significant increase in the protein and mRNA levels of IL-6, which was significantly diminished in the presence of the inhibitors for p38 MAPK or JNK. No transcriptional activation of the exogenous IL-6 promoter was observed following TGF-beta1 treatment. In addition, the presence of inhibitors for the p38 MAPK, ERK, and TGF-beta1 pathways significantly decreased the increased expression of IL-6 by cyclic mechanical stress. Furthermore, exposure of HTM cells to IL-6 (100 ng/ml) demonstrated the transcriptional activation of TGF-beta1 promoter, which was severely impaired by blocking the p38 MAPK pathway. Our results indicate that TGF-beta1 participates in the regulation of basal expression and the stretch

  18. The cross-talk of HIV-1 Tat and methamphetamine in HIV-associated neurocognitive disorders

    PubMed Central

    Mediouni, Sonia; Garibaldi Marcondes, Maria Cecilia; Miller, Courtney; McLaughlin, Jay P.; Valente, Susana T.

    2015-01-01

    Antiretroviral therapy has dramatically improved the lives of human immunodeficiency virus 1 (HIV-1) infected individuals. Nonetheless, HIV-associated neurocognitive disorders (HAND), which range from undetectable neurocognitive impairments to severe dementia, still affect approximately 50% of the infected population, hampering their quality of life. The persistence of HAND is promoted by several factors, including longer life expectancies, the residual levels of virus in the central nervous system (CNS) and the continued presence of HIV-1 regulatory proteins such as the transactivator of transcription (Tat) in the brain. Tat is a secreted viral protein that crosses the blood–brain barrier into the CNS, where it has the ability to directly act on neurons and non-neuronal cells alike. These actions result in the release of soluble factors involved in inflammation, oxidative stress and excitotoxicity, ultimately resulting in neuronal damage. The percentage of methamphetamine (MA) abusers is high among the HIV-1-positive population compared to the general population. On the other hand, MA abuse is correlated with increased viral replication, enhanced Tat-mediated neurotoxicity and neurocognitive impairments. Although several strategies have been investigated to reduce HAND and MA use, no clinically approved treatment is currently available. Here, we review the latest findings of the effects of Tat and MA in HAND and discuss a few promising potential therapeutic developments. PMID:26557111

  19. Pericyte-Endothelial Cross-Talk: Implications and Opportunities for Advanced Cellular Therapies

    PubMed Central

    Geevarghese, Anita; Herman, Ira M.

    2014-01-01

    Pericytes are mural cells of the microcirculation, which have been shown to play key roles in regulating microvascular morphogenesis and stability, throughout each tissue bed and organ system assessed. Importantly, recent work has revealed that pericytes share several characteristics with mesenchymally- and adipose-derived stem cells suggesting that there may be lineage-related connections amongst bonafide pericytes and these vascular ‘progenitors,’ which can assume a perivascular position in association with endothelial cells. Hence, pericyte identity as a mediator of vascular remodeling may be confounded by its close relationships with its progenitors or pluripotent cell counterparts and yet demonstrates their potential utility as cell-based therapies for unmet clinical needs. Crucial to the development of such therapies will be a comprehensive understanding of the origin and fate regulating these related cell types as well as the unveiling of the molecular mechanisms by which pericytes and endothelial cells communicate. Such mechanistic inputs, which disrupt normal cellular ‘cross-talk’ during disease inception and progression, offer opportunities for intervention and will be discussed in the context of the vasculopathies accompanying tumor growth, diabetes, and fibrosis. PMID:24530608

  20. There's more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling.

    PubMed

    Jeandroz, Sylvain; Lamotte, Olivier; Astier, Jérémy; Rasul, Sumaira; Trapet, Pauline; Besson-Bard, Angélique; Bourque, Stéphane; Nicolas-Francès, Valérie; Ma, Wei; Berkowitz, Gerald A; Wendehenne, David

    2013-10-01

    Calcium and nitric oxide (NO) are two important biological messengers. Increasing evidence indicates that Ca(2+) and NO work together in mediating responses to pathogenic microorganisms and microbe-associated molecular patterns. Ca(2+) fluxes were recognized to account for NO production, whereas evidence gathered from a number of studies highlights that NO is one of the key messengers mediating Ca(2+) signaling. Here, we present a concise description of the current understanding of the molecular mechanisms underlying the cross talk between Ca(2+) and NO in plant cells exposed to biotic stress. Particular attention will be given to the involvement of cyclic nucleotide-gated ion channels and Ca(2+) sensors. Notably, we provide new evidence that calmodulin might be regulated at the posttranslational level by NO through S-nitrosylation. Furthermore, we report original transcriptomic data showing that NO produced in response to oligogalacturonide regulates the expression of genes related to Ca(2+) signaling. Deeper insight into the molecules involved in the interplay between Ca(2+) and NO not only permits a better characterization of the Ca(2+) signaling system but also allows us to further understand how plants respond to pathogen attack.

  1. Cross-talk between microbiota and immune fitness to steer and control response to anti PD-1/PDL-1 treatment.

    PubMed

    Botticelli, Andrea; Zizzari, Ilaria; Mazzuca, Federica; Ascierto, Paolo Antonio; Putignani, Lorenza; Marchetti, Luca; Napoletano, Chiara; Nuti, Marianna; Marchetti, Paolo

    2017-01-31

    Immune Checkpoint Inhibitors (ICIs) are improving the survival of cancer patients, however only the 20-30% of treated patients present clinical benefits. Toxicity represents the major cause of reduced dosage, delayed drug administration and therapy discontinuation. Hence in the context of multiple treatment possibilities, the identification of predictive markers of response and toxicity is a challenging approach for drug selection in order to obtain the best clinical benefit while minimizing the side effects. The loss of the protective function of intestinal barriers that interacts with the environment measured as increased intestinal permeability and the changes occurring in the microbiota composition have been proposed as a mechanism potentially explaining the pathogenesis of immune related toxicity.In this review we discuss the new perspectives on the involvement of PD-1 and PDL-1 in the cross talk between gut microbiota and immune fitness and how gut microbiota impacts on the efficacy of anti-PD-1 and anti-PDL-1 treatments in cancer.

  2. Cross-talk between the calcium-sensing receptor and the epidermal growth factor receptor in Rat-1 fibroblasts

    SciTech Connect

    Tomlins, Scott A.; Bollinger, Nikki; Creim, Jeffrey A.; Rodland, Karin D.

    2005-08-15

    The calcium-sensing receptor (CaR) is a G-protein coupled receptor that is activated by extracellular calcium (Ca2+o). Rat-1 fibroblasts have been shown to proliferate and increase ERK activity in response to elevation of [Ca2+]o, and these responses are dependent on functional CaR expression. In this report, we examined the role of cross-talk between the CaR and the epidermal growth factor receptor (EGFR) in mediating these responses in Rat-1 cells. This report shows that AG1478, a specific inhibitor of the EGFR kinase, significantly inhibits the increase in proliferation induced by elevated Ca2+o. Further, we show that AG1478 acts downstream or separately from G-protein subunit activation of phospholipase C. AG1478 significantly inhibits Ca2+o-stimulated ERK phosphorylation and in vitro kinase activity. A similar inhibition of ERK phosphorylation was observed in response to the inhibitor AG494. In addition, treatment with inhibitors of metalloproteases involved in shedding of membrane anchored EGF family ligands substantially inhibited the increase in ERK activation in response to elevated Ca2+o. This is consistent with the known expression of TGFa by Rat-1 cells. These results indicate that EGFR transactivation is an important component of the CaR mediated response to increased Ca2+o in Rat-1 fibroblasts, and most likely involves CaR-mediated induction of regulated proteolysis and ligand shedding.

  3. Cross-Talk Between Ionic and Nanoribbon Current Signals in Graphene Nanoribbon-Nanopore Sensors for Single-Molecule Detection.

    PubMed

    Puster, Matthew; Balan, Adrian; Rodríguez-Manzo, Julio A; Danda, Gopinath; Ahn, Jae-Hyuk; Parkin, William; Drndić, Marija

    2015-12-16

    Nanopores are now being used not only as an ionic current sensor but also as a means to localize molecules near alternative sensors with higher sensitivity and/or selectivity. One example is a solid-state nanopore embedded in a graphene nanoribbon (GNR) transistor. Such a device possesses the high conductivity needed for higher bandwidth measurements and, because of its single-atomic-layer thickness, can improve the spatial resolution of the measurement. Here measurements of ionic current through the nanopore are shown during double-stranded DNA (dsDNA) translocation, along with the simultaneous response of the neighboring GNR due to changes in the surrounding electric potential. Cross-talk originating from capacitive coupling between the two measurement channels is observed, resulting in a transient response in the GNR during DNA translocation; however, a modulation in device conductivity is not observed via an electric-field-effect response during DNA translocation. A field-effect response would scale with GNR source-drain voltage (Vds), whereas the capacitive coupling does not scale with Vds . In order to take advantage of the high bandwidth potential of such sensors, the field-effect response must be enhanced. Potential field calculations are presented to outline a phase diagram for detection within the device parameter space, charting a roadmap for future optimization of such devices.

  4. Iron Availability Affects Phosphate Deficiency-Mediated Responses, and Evidence of Cross-Talk with Auxin and Zinc in Arabidopsis.

    PubMed

    Rai, Vandna; Sanagala, Raghavendrarao; Sinilal, Bhaskaran; Yadav, Sandeep; Sarkar, Ananda K; Dantu, Prem Kumar; Jain, Ajay

    2015-06-01

    Phosphate (Pi) is pivotal for plant growth and development. Pi deficiency triggers local and systemically regulated adaptive responses in Arabidopsis thaliana. Inhibition of primary root growth (PRG) and retarded development of lateral roots (LRs) are typical local Pi deficiency-mediated responses of the root system. Expression of Pi starvation-responsive (PSR) genes is regulated systemically. Here, we report the differential influence of iron (Fe) availability on local and systemic sensing of Pi by Arabidopsis. P-Fe- condition disrupted local Pi sensing, resulting in an elongated primary root (PR). Altered Fe homeostasis in the lpsi mutant with aberration in local Pi sensing provided circumstantial evidence towards the role of Fe in the maintenance of Pi homeostasis. Reporter gene assays, expression analysis of auxin-responsive genes (ARGs) and root phenotyping of the arf7arf19 mutant demonstrated the role of Fe availability on local Pi deficiency-mediated LR development. In addition, Fe availability also exerted a significant influence on PSR genes belonging to different functional categories. Together, these results demonstrated a substantial influence of Fe availability on Pi deficiency-mediated responses of ontogenetically distinct traits of the root system and PSR genes. The study also provided evidence of cross-talk between Pi, Fe and Zn, highlighting a complex tripartite interaction amongst them for maintaining Pi homeostasis. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Toll-like receptor 2 signalling: Significance in megakaryocyte development through wnt signalling cross-talk and cytokine induction.

    PubMed

    Undi, Ram Babu; Sarvothaman, Shilpa; Narasaiah, Kovuru; Gutti, Usha; Gutti, Ravi Kumar

    2016-07-01

    TLR2 is a toll-like receptor protein which is involved in innate immune responses. TLR2 recognize several virus, fungal and bacterial pathogens, upon their uptake cause internalization and cellular activation. During this process several cytokines participate including interleukins, IL6 and IL12. Interestingly, TLR2 is expressed on megakaryocytes (MKs) and platelets, which is crucial for immune mediated platelet activation. The role of TLR2 on MKs is not completely understood. We observed TLR2 induction leads to MK maturation and is involved in production of ROS which is essential for MK development. In Dami cells, TLR2 up-regulation causes increase in the cytokine production, particularly IL-6, which has been shown to stimulate CFU formation and CD41 expression. Additionally, TLR2 ligand induces wnt β-catenin signalling pathway components suggesting a cross talk between wnt and TLR pathway leading to maturation of MKs. This study shows TLR2 signalling induce cytokine production and regulate wnt signalling thereby cause maturation of MKs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. PGE2 triggers recovery of transmucosal resistance via EP receptor cross talk in porcine ischemia-injured ileum.

    PubMed

    Blikslager, A T; Pell, S M; Young, K M

    2001-08-01

    16,16-Dimethyl-PGE2 (PGE2) may interact with one of four prostaglandin type E (EP) receptors, which signal via cAMP (via EP2 or EP4 receptors) or intracellular Ca(2+) (via EP1 receptors). Furthermore, EP3 receptors have several splice variants, which may signal via cAMP or intracellular Ca(2+). We sought to determine the PGE2 receptor interactions that mediate recovery of transmucosal resistance (R) in ischemia-injured porcine ileum. Porcine ileum was subjected to 45 min of ischemia, after which the mucosa was mounted in Ussing chambers. Tissues were pretreated with indomethacin (5 microM). Treatment with the EP1, EP2, EP3, and EP4 agonist PGE2 (1 microM) elevated R twofold and significantly increased tissue cAMP content, whereas the EP2 and EP4 agonist deoxy-PGE1 (1 microM) or the EP1 and EP3 agonist sulprostone (1 microM) had no effect. However, a combination of deoxy-PGE1 and sulprostone stimulated synergistic elevations in R and tissue cAMP content. Furthermore, treatment of tissues with deoxy-PGE1 and the Ca(2+) ionophore A-23187 stimulated synergistic increases in R and cAMP, indicating that PGE2 triggers recovery of R via EP receptor cross talk mechanisms involving cAMP and intracellular Ca(2+).

  7. Quantification of sleep behavior and of its impact on the cross-talk between the brain and peripheral metabolism.

    PubMed

    Hanlon, Erin C; Van Cauter, Eve

    2011-09-13

    Rates of obesity have been steadily increasing, along with disorders commonly associated with obesity, such as cardiovascular disease and type II diabetes. Simultaneously, average sleep times have progressively decreased. Recently, evidence from both laboratory and epidemiologic studies has suggested that insufficient sleep may stimulate overeating and thus play a role in the current epidemic of obesity and diabetes. In the human sleep laboratory it is now possible to carefully control sleep behavior and study the link between sleep duration and alterations in circulating hormones involved in feeding behavior, glucose metabolism, hunger, and appetite. This article focuses on the methodologies used in experimental protocols that have examined modifications produced by sleep restriction (or extension) compared with normal sleep. The findings provide evidence that sleep restriction does indeed impair glucose metabolism and alters the cross-talk between the periphery and the brain, favoring excessive food intake. A better understanding of the adverse effects of sleep restriction on the CNS control of hunger and appetite may have important implications for public health.

  8. Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids.

    PubMed

    Lopes-Coelho, Filipa; André, Saudade; Félix, Ana; Serpa, Jacinta

    2017-01-22

    The cellular components of microenvironment are partners of cancer cells, sharing soluble factors and organic molecules to accomplish tumor energy and biomass demands. We tested the role of fibroblasts in fatty acids metabolism in breast cancer, addressing fatty acid synthase (FASN) expression and activity, the expression of lipids chaperons (FABPs) and transporters (FATPs) and lipids cellular content. We showed that the amount of lipids increased in cancer cells exposed to fibroblasts conditioned media, showing that lipids transfer is crucial in this metabolic cross-talk. Accordingly, it was seen in those cancer cells a concomitant decrease in the expression of FABP2 and FABP3 and an increase in FATP1 expression, whose function is independent of FABPs. The in vivo experiment corroborates the role of CAFs in tumor growth. Our study is one more step toward the understanding of metabolic dynamics between cancer cells and CAFs, disclosing FATP1 as a putative target to disturb the transfer of lipids between CAFs and breast cancer cells.

  9. Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index.

    PubMed

    Choi, Hae Young; Mudhana, Gopinath; Park, Kwan Seob; Paek, Un-Chul; Lee, Byeong Ha

    2010-01-04

    We propose and demonstrate a cross-talk free simultaneous measurement system for temperature and external refractive index (ERI) implemented by dual-cavity Fabry-Perot (FP) fiber interferometer. The sensing probe consists of two cascaded FP cavities formed with a short piece of multimode fiber (MMF) and a micro-air-gap made of hollow core fiber (HOF). The fabricated sensor head was ultra-compact; the total length of the sensing part was less than 600 mum. Since the reflection spectrum of the composite FP structures is given by the superposition of each cavity spectrum, the spectrum measured in the wavelength domain was analyzed in the Fourier or spatial frequency domain. The experimental results showed that temperature could be determined independently from the spatial frequency shift without being affected by the ERI, while the ERI could be also measured solely by monitoring the intensity variation in the spatial frequency spectrum. The ERI and the temperature sensitivities were approximately 16 dB/RIU for the 1.33-1.45 index range, and 8.9 nm/ degrees C at low temperature and 14.6 nm/ degrees C at high temperature, respectively. In addition, it is also demonstrated that the proposed dual-cavity FP sensor has potential for compensating any power fluctuation that might happen in the input light source.

  10. Spermidine-induced improvement of memory involves a cross-talk between protein kinases C and A.

    PubMed

    Guerra, Gustavo P; Mello, Carlos F; Bochi, Guilherme V; Pazini, Andréia M; Rosa, Michelle M; Ferreira, Juliano; Rubin, Maribel A

    2012-07-01

    Spermidine (SPD) is an endogenous aliphatic amine with polycationic structure that modulates NMDA receptor activity and improves memory. Recent evidence suggests that cAMP-dependent protein kinase (PKA) and cAMP response element-binding protein (CREB) play a role in SPD-induced improvement of memory. In the current study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in SPD-induced facilitation of memory of inhibitory avoidance task in adult rats. The post-training administration of the PKC inhibitor, 3-[1-(dimethylaminopropyl)indol-3-yl]-4-(indol-3-yl)maleimide hydrochloride [GF 109203X, 2.5 ρmol, intrahippocampal (ih)] with SPD (0.2 nmol, ih) prevented memory improvement induced by SPD. Intrahippocampal administration of SPD (0.2 nmol) facilitated PKC phosphorylation in the hippocampus, 30 min after administration. GF 109203X prevented not only the stimulatory effect of SPD on PKC but also PKA and CREB phosphorylation. These results suggest that memory enhancement induced by the ih administration of SPD involves the cross-talk between PKC and PKA/CREB, with sequential activation of PKC and PKA/CREB pathways, in rats.

  11. Cross-talk and regulatory interactions between the essential response regulator RpaB and cyanobacterial circadian clock output.

    PubMed

    Espinosa, Javier; Boyd, Joseph S; Cantos, Raquel; Salinas, Paloma; Golden, Susan S; Contreras, Asuncion

    2015-02-17

    The response regulator RpaB (regulator of phycobilisome associated B), part of an essential two-component system conserved in cyanobacteria that responds to multiple environmental signals, has recently been implicated in the control of cell dimensions and of circadian rhythms of gene expression in the model cyanobacterium Synechococcus elongatus PCC 7942. However, little is known of the molecular mechanisms that underlie RpaB functions. In this study we show that the regulation of phenotypes by RpaB is intimately connected with the activity of RpaA (regulator of phycobilisome associated A), the master regulator of circadian transcription patterns. RpaB affects RpaA activity both through control of gene expression, a function requiring an intact effector domain, and via altering RpaA phosphorylation, a function mediated through the N-terminal receiver domain of RpaB. Thus, both phosphorylation cross-talk and coregulation of target genes play a role in the genetic interactions between the RpaA and RpaB pathways. In addition, RpaB∼P levels appear critical for survival under light:dark cycles, conditions in which RpaB phosphorylation is environmentally driven independent of the circadian clock. We propose that the complex regulatory interactions between the essential and environmentally sensitive NblS-RpaB system and the SasA-RpaA clock output system integrate relevant extra- and intracellular signals to the circadian clock.

  12. Structural Basis for Phosphorylation and Lysine Acetylation Cross-talk in a Kinase Motif Associated with Myocardial Ischemia and Cardioprotection*

    PubMed Central

    Parker, Benjamin L.; Shepherd, Nicholas E.; Trefely, Sophie; Hoffman, Nolan J.; White, Melanie Y.; Engholm-Keller, Kasper; Hambly, Brett D.; Larsen, Martin R.; James, David E.; Cordwell, Stuart J.

    2014-01-01

    Myocardial ischemia and cardioprotection by ischemic pre-conditioning induce signal networks aimed at survival or cell death if the ischemic period is prolonged. These pathways are mediated by protein post-translational modifications that are hypothesized to cross-talk with and regulate each other. Phosphopeptides and lysine-acetylated peptides were quantified in isolated rat hearts subjected to ischemia or ischemic pre-conditioning, with and without splitomicin inhibition of lysine deacetylation. We show lysine acetylation (acetyl-Lys)-dependent activation of AMP-activated protein kinase, AKT, and PKA kinases during ischemia. Phosphorylation and acetyl-Lys sites mapped onto tertiary structures were proximal in >50% of proteins investigated, yet they were mutually exclusive in 50 ischemic pre-conditioning- and/or ischemia-associated peptides containing the KXXS basophilic protein kinase consensus motif. Modifications in this motif were modeled in the C terminus of muscle-type creatine kinase. Acetyl-Lys increased proximal dephosphorylation by 10-fold. Structural analysis of modified muscle-type creatine kinase peptide variants by two-dimensional NMR revealed stabilization via a lysine-phosphate salt bridge, which was disrupted by acetyl-Lys resulting in backbone flexibility and increased phosphatase accessibility. PMID:25008320

  13. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease.

    PubMed

    Worthington, John J

    2015-08-01

    The intestinal epithelium represents one of our most important interfaces with the external environment. It must remain tightly balanced to allow nutrient absorption, but maintain barrier function and immune homoeostasis, a failure of which results in chronic infection or debilitating inflammatory bowel disease (IBD). The intestinal epithelium mainly consists of absorptive enterocytes and secretory goblet and Paneth cells and has recently come to light as being an essential modulator of immunity as opposed to a simple passive barrier. Each epithelial sub-type can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. The enteroendocrine cells comprise just 1% of this epithelium, but collectively form the bodies' largest endocrine system. The mechanisms of enteroendocrine cell peptide secretion during feeding, metabolism and nutrient absorption are well studied; but their potential interactions with the enriched numbers of surrounding immune cells remain largely unexplored. This review focuses on alterations in enteroendocrine cell number and peptide secretion during inflammation and disease, highlighting the few in depth studies which have attempted to dissect the immune driven mechanisms that drive these phenomena. Moreover, the emerging potential of enteroendocrine cells acting as innate sensors of intestinal perturbation and secreting peptides to directly orchestrate immune cell function will be proposed. In summary, the data generated from these studies have begun to unravel a complex cross-talk between immune and enteroendocrine cells, highlighting the emerging immunoendocrine axis as a potential target for therapeutic strategies for infections and inflammatory disorders of the intestine.

  14. Ionizing radiation promotes CCL27 secretion from keratinocytes through the cross talk between TNF-α and ROS.

    PubMed

    Zhang, Qian; Zhu, Linlin; Wang, Gang; Zhao, Ye; Xiong, Na; Bao, Hegang; Jin, Wensen

    2017-03-01

    The skin-associated chemokine CCL27 and its receptor CCR10 mediate the immune response of skin-homing T cells. The CCL27 secreted from keratinocytes was reportedly involved in inflammatory skin diseases such as atopic dermatitis, contact dermatitis, and psoriasis. However, whether ionizing radiation increases the levels of CCL27 secretion still remains unclear. In HaCaT cells, a human keratinocyte cell line, CCL27 secretion was markedly increased after X-ray irradiation. We further found that irradiation boosted the generation of reactive oxygen species (ROS), which was concomitant with the release of tumor necrosis factor-alpha (TNF-α). Moreover, alteration of ROS in irradiated HaCaT cells correlated with TNF-α secretion, indicating a positive loop of TNF-α secretion and ROS generation. This positive loop regulated the secretion of CCL27 from irradiated cells. We therefore concluded that the cross talk between TNF-α and ROS after keratinocytes was exposed to radiation, triggered CCL27 secretion for subsequent inflammation response.

  15. Potential Role of ANGPTL4 in the Cross Talk between Metabolism and Cancer through PPAR Signaling Pathway

    PubMed Central

    La Paglia, Laura; Listì, Angela; Caruso, Stefano; Passiglia, Francesco; Bazan, Viviana

    2017-01-01

    The angiopoietin-like 4 (ANGPTL4) protein belongs to a superfamily of secreted proteins structurally related to factors modulating angiogenesis known as angiopoietins. At first, ANGPTL4 has been identified as an adipokine exclusively involved in lipid metabolism, because of its prevalent expression in liver and adipose tissue. This protein regulates lipid metabolism by inhibiting lipoprotein lipase (LPL) activity and stimulating lipolysis of white adipose tissue (WAT), resulting in increased levels of plasma triglycerides (TG) and fatty acids. Subsequently, ANGPTL4 has been shown to be involved in several nonmetabolic and metabolic conditions, both physiological and pathological, including angiogenesis and vascular permeability, cell differentiation, tumorigenesis, glucose homoeostasis, lipid metabolism, energy homeostasis, wound healing, inflammation, and redox regulation. The transcriptional regulation of ANGPTL4 can be modulated by several transcription factors, including PPARα, PPARβ/δ, PPARγ, and HIF-1α, and nutritional and hormonal conditions. Several studies showed that high levels of ANGPTL4 are associated with poor prognosis in patients with various solid tumors, suggesting an important role in cancer onset and progression, metastasis, and anoikis resistance. Here, we have discussed the potential role of ANGPTL4 in mediating the cross talk between metabolic syndromes, such as diabetes and obesity, and cancer through regulation of its expression by PPARs. PMID:28182091

  16. Cross talk between tetanus neurotoxin-insensitive vesicle-associated membrane protein-mediated transport and L1-mediated adhesion.

    PubMed

    Alberts, Philipp; Rudge, Rachel; Hinners, Ina; Muzerelle, Aude; Martinez-Arca, Sonia; Irinopoulou, Theano; Marthiens, Veronique; Tooze, Sharon; Rathjen, Fritz; Gaspar, Patricia; Galli, Thierry

    2003-10-01

    The membrane-trafficking pathway mediated by tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) in neurons is still unknown. We show herein that TI-VAMP expression is necessary for neurite outgrowth in PC12 cells and hippocampal neurons in culture. TI-VAMP interacts with plasma membrane and endosomal target soluble N-ethylmaleimide-sensitive factor attachment protein receptors, suggesting that TI-VAMP mediates a recycling pathway. L1, a cell-cell adhesion molecule involved in axonal outgrowth, colocalized with TI-VAMP in the developing brain, neurons in culture, and PC12 cells. Plasma membrane L1 was internalized into the TI-VAMP-containing compartment. Silencing of TI-VAMP resulted in reduced expression of L1 at the plasma membrane. Finally, using the extracellular domain of L1 and N-cadherin immobilized on beads, we found that the silencing of TI-VAMP led to impaired L1- but not N-cadherin-mediated adhesion. Furthermore, TI-VAMP- but not synaptobrevin 2-containing vesicles accumulated at the site of the L1 bead-cell junction. We conclude that TI-VAMP mediates the intracellular transport of L1 and that L1-mediated adhesion controls this membrane trafficking, thereby suggesting an important cross talk between membrane trafficking and cell-cell adhesion.

  17. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease

    PubMed Central

    Worthington, John J

    2015-01-01

    The intestinal epithelium represents one of our most important interfaces with the external environment. It must remain tightly balanced to allow nutrient absorption, but maintain barrier function and immune homoeostasis, a failure of which results in chronic infection or debilitating inflammatory bowel disease (IBD). The intestinal epithelium mainly consists of absorptive enterocytes and secretory goblet and Paneth cells and has recently come to light as being an essential modulator of immunity as opposed to a simple passive barrier. Each epithelial sub-type can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. The enteroendocrine cells comprise just 1% of this epithelium, but collectively form the bodies’ largest endocrine system. The mechanisms of enteroendocrine cell peptide secretion during feeding, metabolism and nutrient absorption are well studied; but their potential interactions with the enriched numbers of surrounding immune cells remain largely unexplored. This review focuses on alterations in enteroendocrine cell number and peptide secretion during inflammation and disease, highlighting the few in depth studies which have attempted to dissect the immune driven mechanisms that drive these phenomena. Moreover, the emerging potential of enteroendocrine cells acting as innate sensors of intestinal perturbation and secreting peptides to directly orchestrate immune cell function will be proposed. In summary, the data generated from these studies have begun to unravel a complex cross-talk between immune and enteroendocrine cells, highlighting the emerging immunoendocrine axis as a potential target for therapeutic strategies for infections and inflammatory disorders of the intestine. PMID:26551720

  18. Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses

    PubMed Central

    Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V.; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino

    2015-01-01

    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR. PMID:25840417

  19. Regulation of Raf-1 kinase by TNF via its second messenger ceramide and cross-talk with mitogenic signalling.

    PubMed Central

    Müller, G; Storz, P; Bourteele, S; Döppler, H; Pfizenmaier, K; Mischak, H; Philipp, A; Kaiser, C; Kolch, W

    1998-01-01

    Raf-1 kinase is a central regulator of mitogenic signal pathways, whereas its general role in signal transduction of tumour necrosis factor (TNF) is less well defined. We have investigated mechanisms of Raf-1 regulation by TNF and its messenger ceramide in cell-free assays, insect and mammalian cell lines. In vitro, ceramide specifically bound to the purified catalytic domain and enhanced association with activated Ras proteins, but did not affect the kinase activity of Raf-1. Cell-permeable ceramides induced a marked increase of Ras-Raf-1 complexes in cells co-expressing Raf-1 and activated Ras. Likewise, a fast elevation of the endogeneous ceramide level, induced by TNF treatment of human Kym-1 rhabdomyosarcoma cells, was followed by stimulation of Ras-Raf-1 association without significant Raf-1 kinase activation. Failure of TNF or ceramide to induce Raf-1 kinase was observed in several TNF-responsive cell lines. Both TNF and exogeneous C6-ceramide interfered with the mitogenic activation of Raf-1 and ERK by epidermal growth factor and down-regulated v-Src-induced Raf-1 kinase activity. TNF also induced the translocation of Raf-1 from the cytosolic to the particulate fraction, indicating that this negative regulatory cross-talk occurs at the cell membrane. Interference with mitogenic signals at the level of Raf-1 could be an important initial step in TNF's cytostatic action. PMID:9450998

  20. The binaural performance of a cross-talk cancellation system with matched or mismatched setup and playback acoustics

    PubMed Central

    Akeroyd, Michael A.; Chambers, John; Bullock, David; Palmer, Alan R.; Summerfield, A. Quentin; Nelson, Philip A.; Gatehouse, Stuart

    2013-01-01

    Cross-talk cancellation is a method for synthesising virtual auditory space using loudspeakers. One implementation is the “Optimal Source Distribution” technique [T. Takeuchi and P. Nelson, J. Acoust. Soc. Am. 112, 2786-2797 (2002)], in which the audio bandwidth is split across three pairs of loudspeakers, placed at azimuths of ±90°, ±15°, and ±3°, conveying low, mid and high frequencies, respectively. A computational simulation of this system was developed and verified against measurements made on an acoustic system using a manikin. Both the acoustic system and the simulation gave a wideband average cancellation of almost 25 dB. The simulation showed that when there was a mismatch between the head-related transfer functions used to set up the system and those of the final listener, the cancellation was reduced to an average of 13 dB. Moreover, in this case the binaural ITDs and ILDs delivered by the simulation of the OSD system often differed from the target values. It is concluded that only when the OSD system is set up with “matched” head-related transfer functions can it deliver accurate binaural cues. PMID:17348528

  1. Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors

    PubMed Central

    Beury, Daniel W.; Parker, Katherine H.; Nyandjo, Maeva; Sinha, Pratima; Carter, Kayla A.; Ostrand-Rosenberg, Suzanne

    2014-01-01

    MDSC and macrophages are present in most solid tumors and are important drivers of immune suppression and inflammation. It is established that cross-talk between MDSC and macrophages impacts anti-tumor immunity; however, interactions between tumor cells and MDSC or macrophages are less well studied. To examine potential interactions between these cells, we studied the impact of MDSC, macrophages, and four murine tumor cell lines on each other, both in vitro and in vivo. We focused on IL-6, IL-10, IL-12, TNF-α, and NO, as these molecules are produced by macrophages, MDSC, and many tumor cells; are present in most solid tumors; and regulate inflammation. In vitro studies demonstrated that MDSC-produced IL-10 decreased macrophage IL-6 and TNF-α and increased NO. IL-6 indirectly regulated MDSC IL-10. Tumor cells increased MDSC IL-6 and vice versa. Tumor cells also increased macrophage IL-6 and NO and decreased macrophage TNF-α. Tumor cell-driven macrophage IL-6 was reduced by MDSC, and tumor cells and MDSC enhanced macrophage NO. In vivo analysis of solid tumors identified IL-6 and IL-10 as the dominant cytokines and demonstrated that these molecules were produced predominantly by stromal cells. These results suggest that inflammation within solid tumors is regulated by the ratio of tumor cells to MDSC and macrophages and that interactions of these cells have the potential to alter significantly the inflammatory milieu within the tumor microenvironment. PMID:25170116

  2. Cross-talk between Rho and Rac GTPases drives deterministic exploration of cellular shape space and morphological heterogeneity.

    PubMed

    Sailem, Heba; Bousgouni, Vicky; Cooper, Sam; Bakal, Chris

    2014-01-22

    One goal of cell biology is to understand how cells adopt different shapes in response to varying environmental and cellular conditions. Achieving a comprehensive understanding of the relationship between cell shape and environment requires a systems-level understanding of the signalling networks that respond to external cues and regulate the cytoskeleton. Classical biochemical and genetic approaches have identified thousands of individual components that contribute to cell shape, but it remains difficult to predict how cell shape is generated by the activity of these components using bottom-up approaches because of the complex nature of their interactions in space and time. Here, we describe the regulation of cellular shape by signalling systems using a top-down approach. We first exploit the shape diversity generated by systematic RNAi screening and comprehensively define the shape space a migratory cell explores. We suggest a simple Boolean model involving the activation of Rac and Rho GTPases in two compartments to explain the basis for all cell shapes in the dataset. Critically, we also generate a probabilistic graphical model to show how cells explore this space in a deterministic, rather than a stochastic, fashion. We validate the predictions made by our model using live-cell imaging. Our work explains how cross-talk between Rho and Rac can generate different cell shapes, and thus morphological heterogeneity, in genetically identical populations.

  3. Cross-talk related to insulin and angiotensin II binding on myocardial remodelling in diabetic rat hearts.

    PubMed

    Maharsy, Wael M; Kadi, Lina N; Issa, Nahla G; Bitar, Khalil M; Der-Boghossian, Asdghig H; Abrahamian, Roy; Bikhazi, Anwar B

    2007-06-01

    This study focused on the regulation and affinity modulation of angiotensin II (Ang II) binding to its receptor subtypes (AT(1)- and AT(2)-receptor) in the coronary endothelium (CE) and cardiomyocytes (CM) of Sprague-Dawley male rats in normal (N), normal treated with losartan (NL), streptozotocin-induced diabetic (D), insulin-treated diabetic (DI), losartan-treated diabetic (DL), and diabetic co-treated with insulin and losartan (DIL). Heart perfusion was used to estimate Ang II binding affinity (tau=1/k-(n)) to its receptor subtypes on CE and CM. Diabetes decreased tau value on CE and increased it on CM as compared to normal. In DL group, the tau value decreased on CE but was normalised on CM. Insulin treatment alone (DI) or with losartan (DIL) restored t to normal on both CE and CM. Western blot results for AT(1)-receptor density showed an increase in diabetics compared to normal with no normalising effect with insulin treatment. The AT(1)-receptor density was normalised in the diabetic groups treated with losartan +/- insulin. Results for AT(2)-receptor regulation revealed a significant difference between untreated (D) and losartan-treated (DL, DIL) diabetic groups. All of these data show the interrelated pathway and cross-talk between insulin and Ang II system indicating potentially negative effects on the diabetic heart.

  4. [Phosphodiesterase 3 mediates cross-talk between the protein kinase- and cGMP- dependent pathways and cyclic AMP metabolism].

    PubMed

    Makuch, Edyta; Matuszyk, Janusz

    2012-07-20

    PDE3 is a dual-substrate phosphodiesterase responsible for hydrolyzing both cAMP and cGMP whilst being simultaneously inhibited by cGMP. This feature is related to presence of the 44 amino acid insert in the catalytic domain, which determines the mechanism of introduction of the cyclic nucleotide into the catalytic pocket of the enzyme. Once bound in the catalytic site cGMP results in steric hindrance for cAMP to enter the site. The regulatory domain of PDE3 consists of two hydrophobic regions: NHR1 and NHR2. Their presence defines the enzyme's intracellular localization, thus determining its participation in particular signaling cascades. Due to the properties of PDE3 this enzyme has exceptional importance for the cross-talk between cAMP-dependent signaling and other cascades. There are two different mechanisms of action of PDE3 enzymes in cell signaling pathways. In many signaling cascades assembly of a signalosome is necessary for phosphorylation and activation of the PDE3 proteins. In response to certain hormones and growth factors, PDE3 merges the metabolism of cAMP with protein kinase-dependent signaling pathways. PDE3 also controls the level of cAMP with regard to the alternating concentration of cGMP. This effect occurs in signaling cascades activated by natriuretic peptide.

  5. Novel cross talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses.

    PubMed

    Malaguarnera, Roberta; Nicolosi, Maria Luisa; Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino

    2015-06-30

    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression.Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression.Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired.These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR.

  6. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD+ homeostasis and contributes to longevity

    PubMed Central

    TSANG, Felicia; LIN, Su-Ju

    2016-01-01

    Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis. PMID:27683589

  7. Block Talk: Spatial Language during Block Play

    ERIC Educational Resources Information Center

    Ferrara, Katrina; Hirsh-Pasek, Kathy; Newcombe, Nora S.; Golinkoff, Roberta Michnick; Lam, Wendy Shallcross

    2011-01-01

    Spatial skills are a central component of intellect and show marked individual differences. There is evidence that variations in the spatial language young children hear, which directs their attention to important aspects of the spatial environment, may be one of the mechanisms that contributes to these differences. To investigate how play affects…

  8. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel

    NASA Astrophysics Data System (ADS)

    von der Heydt, Alice; Zippelius, Annette

    2015-02-01

    We study analytically the intricate phase behavior of cross-linked AB diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints. Gelation, i.e., spatially random localisation of polymers forming a system-spanning cluster, is driven by increasing the number parameter μ of irreversible, type-selective cross-links between random pairs of A blocks. Self-assembly into a periodic pattern of A/B-rich microdomains (microphase separation) is controlled by the AB incompatibility χ inversely proportional to temperature. Our model aims to capture the system's essential microscopic features, including an ensemble of random networks that reflects spatial correlations at the instant of cross-linking. We identify suitable order parameters and derive a free-energy functional in the spirit of Landau theory that allows us to trace a phase diagram in the plane of μ and χ. Selective cross-links promote microphase separation at higher critical temperatures than in uncross-linked diblock copolymer melts. Microphase separation in the liquid state facilitates gelation, giving rise to a novel gel state whose chemical composition density mirrors the periodic AB pattern.

  9. Cross-Linked Nanoporous Materials from Reactive and Multifunctional Block Polymers

    SciTech Connect

    Seo, Myungeun; Amendt, Mark A.; Hillmyer, Marc A.

    2012-10-10

    Polylactide-b-poly(styrene-co-2-hydroxyethylmethacrylate) (PLA-b-P(S-co-HEMA)) and polylactide-b-poly(styrene-co-2-hydroxyethylacrylate) (PLA-b-P(S-co-HEA)) were synthesized by combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. {sup 1}H nuclear magnetic resonance spectroscopy and size exclusion chromatography data indicated that the polymerizations were controlled and that hydroxyl groups were successfully incorporated into the block polymers. The polymers were reacted with 4,4{prime}-methylenebis(phenyl isocyanate) (MDI) to form the corresponding cross-linked materials. The materials were annealed at 150 C to complete the coupling reaction. Robust nanoporous materials were obtained from the cross-linked polymers by treatment with aqueous base to hydrolyze the PLA phase. Small-angle X-ray scattering study combined with scanning electron microscopy showed that MDI-cross-linked PLA-b-P(S-co-HEMA)/PLA-b-P(S-co-HEA) can adopt lamellar, hexagonally perforated lamellar, and hexagonally packed cylindrical morphologies after annealing. In particular, the HPL morphology was found to evolve from lamellae due to increase in volume fraction of PS phase as MDI reacted with hydroxyl groups. The reaction also kinetically trapped the morphology by cross-linking. Bicontinuous morphologies were also observed when dibutyltin dilaurate was added to accelerate reaction between the polymer and MDI.

  10. Developmentally regulated availability of RANKL and CD40 ligand reveals distinct mechanisms of fetal and adult cross-talk in the thymus medulla.

    PubMed

    Desanti, Guillaume E; Cowan, Jennifer E; Baik, Song; Parnell, Sonia M; White, Andrea J; Penninger, Josef M; Lane, Peter J L; Jenkinson, Eric J; Jenkinson, William E; Anderson, Graham

    2012-12-15

    T cell tolerance in the thymus is a key step in shaping the developing T cell repertoire. Thymic medullary epithelial cells play multiple roles in this process, including negative selection of autoreactive thymocytes, influencing thymic dendritic cell positioning, and the generation of Foxp3(+) regulatory T cells. Previous studies show that medullary thymic epithelial cell (mTEC) development involves hemopoietic cross-talk, and numerous TNFR superfamily members have been implicated in this process. Whereas CD40 and RANK represent key examples, interplay between these receptors, and the individual cell types providing their ligands at both fetal and adult stages of thymus development, remain unclear. In this study, by analysis of the cellular sources of receptor activator for NF-κB ligand (RANKL) and CD40L during fetal and adult cross-talk in the mouse, we show that the innate immune cell system drives initial fetal mTEC development via expression of RANKL, but not CD40L. In contrast, cross-talk involving the adaptive immune system involves both RANKL and CD40L, with analysis of distinct subsets of intrathymic CD4(+) T cells revealing a differential contribution of CD40L by conventional, but not Foxp3(+) regulatory, T cells. We also provide evidence for a stepwise involvement of TNFRs in mTEC development, with CD40 upregulation induced by initial RANK signaling subsequently controlling proliferation within the mTEC compartment. Collectively, our findings show how multiple hemopoietic cell types regulate mTEC development through differential provision of RANKL/CD40L during ontogeny, revealing molecular differences in fetal and adult hemopoietic cross-talk. They also suggest a stepwise process of mTEC development, in which RANK is a master player in controlling the availability of other TNFR family members.

  11. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.

    PubMed

    Schmiesing, André; Emonet, Aurélia; Gouhier-Darimont, Caroline; Reymond, Philippe

    2016-04-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. Parallax adjustment for visual comfort enhancement using the effect of parallax distribution and cross talk in parallax-barrier autostereoscopic three-dimensional display

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Lee, Hyoung; Kim, Sung-Kyu; Sohn, Kwanghoon

    2015-12-01

    Visual discomfort is a common problem in three-dimensional (3D) videos, and this issue is the subject of many current studies. Among the methods to overcome visual discomfort presented in current research, parallax adjustment methods provide little guidance in determining the condition for parallax control. We propose a parallax adjustment based on the effects of parallax distribution and cross talk on visual comfort, where the visual comfort level is used as the adjustment parameter, in parallax-barrier-type autostereoscopic 3D displays. We use the horizontal image shift method for parallax adjustment to enhance visual comfort. The speeded-up robust feature is used to estimate the parallax distribution of 3D sequences, and the required amount for parallax control is chosen based on the predefined effect of parallax distribution and cross talk on visual comfort. To evaluate the performance of the proposed method, we used commercial 3D equipment with various intrinsic cross-talk levels. Subjective tests were conducted at the fixed optimal viewing distance for each piece of equipment. The results show that comfortable videos were generated based on the proposed parallax adjustment method.

  13. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract1[OPEN

    PubMed Central

    Schmiesing, André; Gouhier-Darimont, Caroline

    2016-01-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. PMID:26884488

  14. Netrin-1 regulates colon-kidney cross talk through suppression of IL-6 function in a mouse model of DSS-colitis.

    PubMed

    Ranganathan, Punithavathi; Jayakumar, Calpurnia; Santhakumar, Manicassamy; Ramesh, Ganesan

    2013-05-01

    Organ cross talk is increasingly appreciated in human disease, and inflammatory mediators are shown to mediate distant organ injury in many disease models. Colitis and intestinal injury are known to be mediated by infiltrating immune cells and their secreted cytokines. However, its effect on other organs, such as the kidney, has never been studied. In the current study, we examined the effect of dextran sulfate sodium (DSS)-colitis on kidney injury and inflammation. In addition, we hypothesized that netrin-1 could modulate colon-kidney cross talk through regulation of inflammation and apoptosis. Consistent with our hypothesis, DSS-colitis induced acute kidney injury in mice. Epithelial-specific overexpression of netrin-1 suppressed both colitis and colitis-induced acute kidney injury, which was associated with reduced weight loss, neutrophil infiltration into colon mucosa, intestinal permeability, epithelial cell apoptosis, and cytokine and chemokine production in netrin-1 transgenic mice colon and kidney. To determine whether netrin-1-protective effects were mediated through suppression of IL-6, IL-6 knockout mice were treated with DSS and acute kidney injury was determined. IL-6 knockout was resistant to colitis and acute kidney injury. Moreover, administration of IL-6 to netrin-1 transgenic mice did not affect the netrin-1-protective effects on the colon and kidney, suggesting that netrin-1 may reduce both IL-6 production and its activity. The present study identifies previously unrecognized cross talk between the colon and kidney, and netrin-1 may limit distant organ injury by suppressing inflammatory mediators and apoptosis.

  15. Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA

    PubMed Central

    Miyakoshi, Masatoshi; Chao, Yanjie; Vogel, Jörg

    2015-01-01

    There is an expanding list of examples by which one mRNA can posttranscriptionally influence the expression of others. This can involve RNA sponges that sequester regulatory RNAs of mRNAs in the same regulon, but the underlying molecular mechanism of such mRNA cross talk remains little understood. Here, we report sponge-mediated mRNA cross talk in the posttranscriptional network of GcvB, a conserved Hfq-dependent small RNA with one of the largest regulons known in bacteria. We show that mRNA decay from the gltIJKL locus encoding an amino acid ABC transporter generates a stable fragment (SroC) that base-pairs with GcvB. This interaction triggers the degradation of GcvB by RNase E, alleviating the GcvB-mediated mRNA repression of other amino acid-related transport and metabolic genes. Intriguingly, since the gltIJKL mRNA itself is a target of GcvB, the SroC sponge seems to enable both an internal feed-forward loop to activate its parental mRNA in cis and activation of many trans-encoded mRNAs in the same pathway. Disabling this mRNA cross talk affects bacterial growth when peptides are the sole carbon and nitrogen sources. PMID:25630703

  16. RGS16, a novel p53 and pRb cross-talk candidate inhibits migration and invasion of pancreatic cancer cells

    PubMed Central

    Carper, Miranda B.; Denvir, James; Boskovic, Goran; Primerano, Donald A.; Claudio, Pier Paolo

    2014-01-01

    Data collected since the discovery of p53 and pRb/RB1 suggests these tumor suppressors cooperate to inhibit tumor progression. Patients who have mutations in both p53 and RB1 genes have increased tumor reoccurrence and decreased survival compared to patients with only one tumor suppressor gene inactivated. It remains unclear how p53 and pRb cooperate toward inhibiting tumorigenesis. Using RNA expression profiling we identified 179 p53 and pRb cross-talk candidates in normal lung fibroblasts (WI38) cells exogenously coexpressing p53 and pRb. Regulator of G protein signaling 16 (RGS16) was among the p53 and pRb cross-talk candidates and has been implicated in inhibiting activation of several oncogenic pathways associated with proliferation, migration, and invasion of cancer cells. RGS16 has been found to be downregulated in pancreatic cancer patients with metastases compared to patients without metastasis. Expression of RGS16 mRNA was decreased in the pancreatic cancer cell lines tested compared to control. Expression of RGS16 inhibited migration of the BxPC-3 and AsPC-1 but not PANC-1 cells and inhibited invasion of BxPC-3 and AsPC-1 cells with no impact on cell viability. We have identified for the first time p53 and pRb cross-talk candidates and a role for RGS16 to inhibit pancreatic cancer migration and invasion. PMID:25568667

  17. Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium.

    PubMed

    Rodríguez-Serrano, María; Romero-Puertas, María C; Pazmiño, Diana M; Testillano, Pilar S; Risueño, María C; Del Río, Luis A; Sandalio, Luisa M

    2009-05-01

    Cadmium (Cd) toxicity has been widely studied in different plant species; however, the mechanism involved in its toxicity as well as the cell response against the metal have not been well established. In this work, using pea (Pisum sativum) plants, we studied the effect of Cd on antioxidants, reactive oxygen species (ROS), and nitric oxide (NO) metabolism of leaves using different cellular, molecular, and biochemical approaches. The growth of pea plants with 50 mum CdCl(2) affected differentially the expression of superoxide dismutase (SOD) isozymes at both transcriptional and posttranscriptional levels, giving rise to a SOD activity reduction. The copper/zinc-SOD down-regulation was apparently due to the calcium (Ca) deficiency induced by the heavy metal. In these circumstances, the overproduction of the ROS hydrogen peroxide and superoxide could be observed in vivo by confocal laser microscopy, mainly associated with vascular tissue, epidermis, and mesophyll cells, and the production of superoxide radicals was prevented by exogenous Ca. On the other hand, the NO synthase-dependent NO production was strongly depressed by Cd, and treatment with Ca prevented this effect. Under these conditions, the pathogen-related proteins PrP4A and chitinase and the heat shock protein 71.2, were up-regulated, probably to protect cells against damages induced by Cd. The regulation of these proteins could be mediated by jasmonic acid and ethylene, whose contents increased by Cd treatment. A model is proposed for the cellular response to long-term Cd exposure consisting of cross talk between Ca, ROS, and NO.

  18. Nitric Oxide, Ethylene, and Auxin Cross Talk Mediates Greening and Plastid Development in Deetiolating Tomato Seedlings1[OPEN

    PubMed Central

    Melo, Nielda K.G.; Bianchetti, Ricardo E.; Oliveira, Paulo M.R.; Demarco, Diego

    2016-01-01

    The transition from etiolated to green seedlings involves the conversion of etioplasts into mature chloroplasts via a multifaceted, light-driven process comprising multiple, tightly coordinated signaling networks. Here, we demonstrate that light-induced greening and chloroplast differentiation in tomato (Solanum lycopersicum) seedlings are mediated by an intricate cross talk among phytochromes, nitric oxide (NO), ethylene, and auxins. Genetic and pharmacological evidence indicated that either endogenously produced or exogenously applied NO promotes seedling greening by repressing ethylene biosynthesis and inducing auxin accumulation in tomato cotyledons. Analysis performed in hormonal tomato mutants also demonstrated that NO production itself is negatively and positively regulated by ethylene and auxins, respectively. Representing a major biosynthetic source of NO in tomato cotyledons, nitrate reductase was shown to be under strict control of both phytochrome and hormonal signals. A close NO-phytochrome interaction was revealed by the almost complete recovery of the etiolated phenotype of red light-grown seedlings of the tomato phytochrome-deficient aurea mutant upon NO fumigation. In this mutant, NO supplementation induced cotyledon greening, chloroplast differentiation, and hormonal and gene expression alterations similar to those detected in light-exposed wild-type seedlings. NO negatively impacted the transcript accumulation of genes encoding phytochromes, photomorphogenesis-repressor factors, and plastid division proteins, revealing that this free radical can mimic transcriptional changes typically triggered by phytochrome-dependent light perception. Therefore, our data indicate that negative and positive regulatory feedback loops orchestrate ethylene-NO and auxin-NO interactions, respectively, during the conversion of colorless etiolated seedlings into green, photosynthetically competent young plants. PMID:26829981

  19. Notch3 activation modulates cell growth behaviour and cross-talk to Wnt/TCF signalling pathway.

    PubMed

    Wang, Tao; Holt, Cathy M; Xu, Chiheng; Ridley, Caroline; P O Jones, Richard; Baron, Martin; Trump, Dorothy

    2007-12-01

    Notch3 is one of the four Notch receptors identified in mammal and expressed mainly in the arterial smooth muscle cells of human adult. Signalling via Notch3 is thought to be important in maintaining the phenotypic stability of the cells, but the nature of the signalling and its regulation to other signalling pathways are largely unknown. To understand further of the cellular function of Notch3 signalling, we generated cell lines stably expressing a constitutively active form of human Notch3 comprising of its soluble intracellular domain (N3IC). The N3IC expressing cells showed accelerated proliferation, decreased migration, increased cell surface N-cadherin, and growth in a colonised fashion that was reversible by N-cadherin blockade. N3IC expressing cells were also protected significantly against staurosporine-induced apoptosis and exhibited lower caspase 3/7 activity, accompanied by up-regulation of pAKT compared to control cells. We also found a complex cross-talk between Notch3 signalling and the Wnt pathway. N3IC stimulated Wnt-independent T-cell factor (TCF, the target transcription factor in the Wnt pathway) activation which was associated with increased Tyr-142 phosphorylation of beta-catenin. In contrast N3IC suppressed TCF activation in response to LiCl, which mimics the Wnt-dependent TCF activation mechanism. We conclude that Notch3 promotes cell growth and survival by activating PI3-kinase/AKT pathway; N-cadherin participates in the change of cell growth caused by Notch3 activation; and Notch3 signalling has dual-effects on the Wnt/TCF pathway suggesting a buffering role that Notch3 signalling may play in balancing these two important signalling pathways in regulating cell function.

  20. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues.

    PubMed

    Dong, Jiangling; Dong, Yanjun; Dong, Yanlan; Chen, Fang; Mitch, William E; Zhang, Liping

    2016-03-01

    In mice, a high-fat diet (HFD) induces obesity, insulin resistance and myostatin production. We tested whether inhibition of myostatin in mice can reverse these HFD-induced abnormalities. C57BL/6 mice were fed a HFD for 16 weeks including the final 4 weeks some mice were treated with an anti-myostatin peptibody. Body composition, the respiratory exchange ratio plus glucose and insulin tolerance tests were examined. Myostatin knock down in C2C12 cells was performed using small hairpin RNA lentivirus. Adipose tissue-derived stem cells were cultured to measure their responses to conditioned media from C2C12 cells lacking myostatin, or to recombinant myostatin or irisin. Isolated peritoneal macrophages were treated with myostatin or irisin to determine whether myostatin or irisin induce inflammatory mechanisms. In HFD-fed mice, peptibody treatment stimulated muscle growth and improved insulin resistance. The improved glucose and insulin tolerances were confirmed when we found increased muscle expression of p-Akt and the glucose transporter, Glut4. In HFD-fed mice, the peptibody suppressed macrophage infiltration and the expression of proinflammatory cytokines in both the muscle and adipocytes. Inhibition of myostatin caused the conversion of white (WAT) to brown adipose tissue, whereas stimulating fatty acid oxidation and increasing energy expenditure. The related mechanism is a muscle-to-fat cross talk mediated by irisin. Myostatin inhibition increased peroxisome proliferator-activated receptor gamma, coactivator 1α expression and irisin production in the muscle. Irisin then stimulated WAT browning. Irisin also suppresses inflammation and stimulates macrophage polarization from M1 to M2 types. These results uncover a metabolic pathway from an increase in myostatin that suppresses irisin leading to the activation of inflammatory cytokines and insulin resistance. Thus, myostatin is a potential therapeutic target to treat insulin resistance of type II diabetes as well

  1. Role of p53-fibrinolytic system cross-talk in the regulation of quartz-induced lung injury.

    PubMed

    Bhandary, Yashodhar P; Shetty, Shwetha K; Marudamuthu, Amarnath S; Fu, Jian; Pinson, Barbara M; Levin, Jeffrey; Shetty, Sreerama

    2015-03-01

    Silica is the major component of airborne dust generated by wind, manufacturing and/or demolition. Chronic occupational inhalation of silica dust containing crystalline quartz is by far the predominant form of silicosis in humans. Silicosis is a progressive lung disease that typically arises after a very long latency and is a major occupational concern with no known effective treatment. The mechanism of silicosis is not clearly understood. However, silicosis is associated with increased cell death, expression of redox enzymes and pro-fibrotic cytokines and chemokines. Since alveolar epithelial cell (AEC) death and disruption of alveolar fibrinolysis is often associated with both acute and chronic lung injuries, we explored whether p53-mediated changes in the urokinase-type plasminogen activator (uPA) system contributes to silica-induced lung injury. We further sought to determine whether caveolin-1 scaffolding domain peptide (CSP), which inhibits p53 expression, mitigates lung injury associated with exposure to silica. Lung tissues and AECs isolated from wild-type (WT) mice exposed to silica exhibit increased apoptosis, p53 and PAI-1, and suppression of uPA expression. Treatment of WT mice with CSP inhibits PAI-1, restores uPA expression and prevents AEC apoptosis by suppressing p53, which is otherwise induced in mice exposed to silica. The process involves CSP-mediated inhibition of serine-15 phosphorylation of p53 by inhibition of protein phosphatase 2A-C (PP2A-C) interaction with silica-induced caveolin-1 in AECs. These observations suggest that changes in the p53-uPA fibrinolytic system cross-talk contribute to lung injury caused by inhalation of silica dust containing crystalline quartz and is protected by CSP by targeting this pathway.

  2. Role of AMP-activated protein kinase in cross-talk between apoptosis and autophagy in human colon cancer

    PubMed Central

    Song, X; Kim, S-Y; Zhang, L; Tang, D; Bartlett, D L; Kwon, Y T; Lee, Y J

    2014-01-01

    Unresectable colorectal liver metastases remain a major unresolved issue and more effective novel regimens are urgently needed. While screening synergistic drug combinations for colon cancer therapy, we identified a novel multidrug treatment for colon cancer: chemotherapeutic agent melphalan in combination with proteasome inhibitor bortezomib and mTOR (mammalian target of rapamycin) inhibitor rapamycin. We investigated the mechanisms of synergistic antitumor efficacy during the multidrug treatment. All experiments were performed with highly metastatic human colon cancer CX-1 and HCT116 cells, and selected critical experiments were repeated with human colon cancer stem Tu-22 cells and mouse embryo fibroblast (MEF) cells. We used immunochemical techniques to investigate a cross-talk between apoptosis and autophagy during the multidrug treatment. We observed that melphalan triggered apoptosis, bortezomib induced apoptosis and autophagy, rapamycin caused autophagy and the combinatorial treatment-induced synergistic apoptosis, which was mediated through an increase in caspase activation. We also observed that mitochondrial dysfunction induced by the combination was linked with altered cellular metabolism, which induced adenosine monophosphate-activated protein kinase (AMPK) activation, resulting in Beclin-1 phosphorylated at Ser 93/96. Interestingly, Beclin-1 phosphorylated at Ser 93/96 is sufficient to induce Beclin-1 cleavage by caspase-8, which switches off autophagy to achieve the synergistic induction of apoptosis. Similar results were observed with the essential autophagy gene, autophagy-related protein 7, -deficient MEF cells. The multidrug treatment-induced Beclin-1 cleavage was abolished in Beclin-1 double-mutant (D133A/D146A) knock-in HCT116 cells, restoring the autophagy-promoting function of Beclin-1 and suppressing the apoptosis induced by the combination therapy. These observations identify a novel mechanism for AMPK-induced apoptosis through interplay

  3. Functional cross-talk between angiotensin II and epidermal growth factor receptors in NIH3T3 fibroblasts.

    PubMed

    De Paolis, Paola; Porcellini, Antonio; Savoia, Carmine; Lombardi, Alessia; Gigante, Bruna; Frati, Giacomo; Rubattu, Speranza; Musumeci, Beatrice; Volpe, Massimo

    2002-04-01

    The main angiotensin (Ang) II subtype receptors (AT1R and AT2R) are involved in cellular growth processes and exert functionally antagonistic effects. To characterize the mechanisms by which Ang II receptors influence growth, by investigating the interactions between Ang II subtype receptors and epidermal growth factor (EGF) receptors on mitogen-activated protein kinase (MAPK) pathway activation. The experiments were performed using a mouse fibroblast cell line, NIH3T3, by transient co-transfection with rat AT1R or AT2R expression vectors, or both. Extracellular-signal-regulated kinase (ERK)1/2 phosphorylation was analysed by western blot and the ERK activity was evaluated using PathDetect, an in-vivo signal transduction pathway trans-reporting system. Selective Ang II receptor antagonists (losartan for AT1R and PD123319 for AT2R) were used to investigate the contributions of each receptor to the response observed. Our data show that, in this cellular model, both Ang II receptors phosphorylate ERK1/2. However, in the cells expressing AT1R, the EGF-induced MAPK pathway was enhanced in the presence of Ang II in a synergistic fashion. In contrast, a reduction of EGF-induced MAPK activation was observed in the cells expressing AT2R. In cells expressing both Ang II subtype receptors, Ang II promoted an enhancement of EGF-induced MAPK activation. However, in the presence of the AT1R antagonist, losartan, the effect of EGF was reduced. These data indicate the existence of an opposite cross-talk of AT1R and AT2R with EGF receptors, and suggest a complex functional interaction between these pathways in the regulation of cellular growth processes.

  4. Cross-talk between leukemic and endothelial cells promotes angiogenesis by VEGF activation of the Notch/Dll4 pathway.

    PubMed

    Zhang, Jingru; Ye, Jingjing; Ma, Daoxin; Liu, Na; Wu, Hao; Yu, Shuang; Sun, Xiulian; Tse, William; Ji, Chunyan

    2013-03-01

    Angiogenesis is suggested to be important for leukemogenesis and chemosensitivity in acute myeloid leukemia (AML). The vascular endothelial growth factor (VEGF) and Notch/Dll4 pathways have been identified as critical in the regulation of embryonic vascular development and tumor angiogenesis. However, the potential role of the Notch/Dll4 pathway in leukemia-endothelium cross-talk and its functional link with VEGF remains obscure. This study assessed the expression of VEGF and Notch/Dll4 pathway molecules in primary AML and investigated their biological function in the coculture of endothelial cells with AML cells. The results demonstrated that bone marrow vascularity in the newly diagnosed AML patients was increased and correlated with high VEGF and Dll4 expression. Patients with untreated AML expressed higher levels of VEGFR2, Notch1, Dll4 and Hes1 than healthy controls. Moreover, the activation of the Notch/Dll4 pathway is associated with poor prognosis in AML. In addition, AML cells were shown to increase endothelial cell proliferation in Transwell coculture. This was associated with concomitant activation of the Notch/Dll4 pathway and upregulation of its downstream genes, such as matrix metalloproteinases, resulting in the enhancement of endothelial cell migration and tube formation. Our study also showed that upregulation of Dll4 expression in AML cells by cDNA transfection suppressed VEGF-induced endothelial cell proliferation and angiogenesis in direct contact coculture. These results elucidate a novel mechanism by which the interplay between AML and endothelial cells promotes angiogenesis through the Notch/Dll4 pathway. Modulation of this pathway may, therefore, hold promise as a novel antiangiogenic strategy for the treatment of AML.

  5. Ion channels and transporters in cancer. 3. Ion channels in the tumor cell-microenvironment cross talk.

    PubMed

    Arcangeli, Annarosa

    2011-10-01

    The traditional view of cancer as a collection of proliferating cells must be reconsidered, and cancer must be viewed as a "tissue" constituted by both transformed cells and a heterogeneous microenvironment, that tumor cells construct and remodel during multistep tumorigenesis. The "tumor microenvironment" (TM) is formed by mesenchymal, endothelial, and immune cells immersed in a network of extracellular matrix (ECM) proteins and soluble factors. The TM strongly contributes to tumor progression, through long distance, cell-to-cell or cell-to-matrix signals, which influence different aspects of tumor cell behavior. Understanding the relationships among the different components of the cancer tissue is crucial to design and develop new therapeutic strategies. Ion channels are emerging as relevant players in the cross talk between tumor cells and their TM. Ion channels are expressed on tumor cells, as well as in the different cellular components of the TM. In all these cells, ion channels are in a strategic position to sense and transmit extracellular signals into the intracellular machinery. Often, this transmission is mediated by integrin adhesion receptors, which can be functional partners of ion channels since they form molecular complexes with the channel protein in the context of the plasma membrane. The same relevant role is exerted by ion transporters, which also contribute to determine two facets of the cancer tissue: hypoxia and the acidic extracellular pH. On the whole, it is conceivable to prospect the targeting of ion channels for new therapeutic strategies aimed at better controlling the malignant progression of the cancer tissue.

  6. Cross-Talk between Ciliary Epithelium and Trabecular Meshwork Cells In-Vitro: A New Insight into Glaucoma

    PubMed Central

    Lerner, Natalie; Beit-Yannai, Elie

    2014-01-01

    Purpose It is assumed that the non-pigmented ciliary epithelium plays a role in regulating intraocular pressure via its neuroendocrine activities. To test this hypothesis, we investigated the effect on a human trabecular meshwork (TM) cell line (NTM) of co-culture with a human non-pigmented ciliary epithelium cell line (ODM-2). Methods The cellular cross-talk between ODM-2 and NTM cells was studied in a co-culture system in which the two cell types were co-cultured for 5 to 60min or 2, 4 and 8h and then removed from the co-culture and analyzed. Analyses of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and of the activity of TM phosphatases and matrix metalloproteins (MMPs) were performed. Acid and alkaline phosphatase activity was determined by the DiFMUP (6, 8-difluoro-4-methylumbelliferyl phosphate) assay. MMP levels were determined by gelatin zymography. Results Exposure of NTM cells to ODM-2 cells led to the activation of the MAPK signal transduction pathways in NTM cells within 5min of co-culture. Phosphorylation of ERK1/ERK2 and p38 peaked at 10 and 15min and then decreased over time. Interaction between ODM-2 and NTM cells promoted the expression of MMP-9 in the NTM cells after 4h of co-culture. Conclusions Our findings provide support for the hypothesis that crosstalk does indeed take place between ODM-2 and NTM cells. Future studies should be designed to determine the relationship between the MMP system, MAPK kinases and phosphatases. Manipulation of these signaling molecules and the related NTM signal transduction pathways may provide targets for developing improved treatments for glaucoma. PMID:25389776

  7. Cross-talk between ciliary epithelium and trabecular meshwork cells in-vitro: a new insight into glaucoma.

    PubMed

    Lerner, Natalie; Beit-Yannai, Elie

    2014-01-01

    It is assumed that the non-pigmented ciliary epithelium plays a role in regulating intraocular pressure via its neuroendocrine activities. To test this hypothesis, we investigated the effect on a human trabecular meshwork (TM) cell line (NTM) of co-culture with a human non-pigmented ciliary epithelium cell line (ODM-2). The cellular cross-talk between ODM-2 and NTM cells was studied in a co-culture system in which the two cell types were co-cultured for 5 to 60 min or 2, 4 and 8h and then removed from the co-culture and analyzed. Analyses of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and of the activity of TM phosphatases and matrix metalloproteins (MMPs) were performed. Acid and alkaline phosphatase activity was determined by the DiFMUP (6, 8-difluoro-4-methylumbelliferyl phosphate) assay. MMP levels were determined by gelatin zymography. Exposure of NTM cells to ODM-2 cells led to the activation of the MAPK signal transduction pathways in NTM cells within 5 min of co-culture. Phosphorylation of ERK1/ERK2 and p38 peaked at 10 and 15 min and then decreased over time. Interaction between ODM-2 and NTM cells promoted the expression of MMP-9 in the NTM cells after 4h of co-culture. Our findings provide support for the hypothesis that crosstalk does indeed take place between ODM-2 and NTM cells. Future studies should be designed to determine the relationship between the MMP system, MAPK kinases and phosphatases. Manipulation of these signaling molecules and the related NTM signal transduction pathways may provide targets for developing improved treatments for glaucoma.

  8. A Family of Diverse Kunitz Inhibitors from Echinococcus granulosus Potentially Involved in Host-Parasite Cross-Talk

    PubMed Central

    Margenat, Mariana; Durán, Rosario; González-Sapienza, Gualberto; Graña, Martín; Parkinson, John; Maizels, Rick M.; Salinas, Gustavo; Alvarez, Beatriz; Fernández, Cecilia

    2009-01-01

    The cestode Echinococcus granulosus, the agent of hydatidosis/echinococcosis, is remarkably well adapted to its definitive host. However, the molecular mechanisms underlying the successful establishment of larval worms (protoscoleces) in the dog duodenum are unknown. With the aim of identifying molecules participating in the E. granulosus-dog cross-talk, we surveyed the transcriptomes of protoscoleces and protoscoleces treated with pepsin at pH 2. This analysis identified a multigene family of secreted monodomain Kunitz proteins associated mostly with pepsin/H+-treated worms, suggesting that they play a role at the onset of infection. We present the relevant molecular features of eight members of the E. granulosus Kunitz family (EgKU-1 – EgKU-8). Although diverse, the family includes three pairs of close paralogs (EgKU-1/EgKU-4; EgKU-3/EgKU-8; EgKU-6/EgKU-7), which would be the products of recent gene duplications. In addition, we describe the purification of EgKU-1 and EgKU-8 from larval worms, and provide data indicating that some members of the family (notably, EgKU-3 and EgKU-8) are secreted by protoscoleces. Detailed kinetic studies with native EgKU-1 and EgKU-8 highlighted their functional diversity. Like most monodomain Kunitz proteins, EgKU-8 behaved as a slow, tight-binding inhibitor of serine proteases, with global inhibition constants (KI*) versus trypsins in the picomolar range. In sharp contrast, EgKU-1 did not inhibit any of the assayed peptidases. Interestingly, molecular modeling revealed structural elements associated with activity in Kunitz cation-channel blockers. We propose that this family of inhibitors has the potential to act at the E. granulosus-dog interface and interfere with host physiological processes at the initial stages of infection. PMID:19759914

  9. Cross talk between the KNOX and ethylene pathways is mediated by intron-binding transcription factors in barley.

    PubMed

    Osnato, Michela; Stile, Maria Rosaria; Wang, Yamei; Meynard, Donaldo; Curiale, Serena; Guiderdoni, Emmanuel; Liu, Yongxiu; Horner, David S; Ouwerkerk, Pieter B F; Pozzi, Carlo; Müller, Kai J; Salamini, Francesco; Rossini, Laura

    2010-12-01

    In the barley (Hordeum vulgare) Hooded (Kap) mutant, the duplication of a 305-bp intron sequence leads to the overexpression of the Barley knox3 (Bkn3) gene, resulting in the development of an extra flower in the spikelet. We used a one-hybrid screen to identify four proteins that bind the intron-located regulatory element (Kap intron-binding proteins). Three of these, Barley Ethylene Response Factor1 (BERF1), Barley Ethylene Insensitive Like1 (BEIL1), and Barley Growth Regulating Factor1 (BGRF1), were characterized and their in vitro DNA-binding capacities verified. Given the homology of BERF1 and BEIL1 to ethylene signaling proteins, we investigated if these factors might play a dual role in intron-mediated regulation and ethylene response. In transgenic rice (Oryza sativa), constitutive expression of the corresponding genes produced phenotypic alterations consistent with perturbations in ethylene levels and variations in the expression of a key gene of ethylene biosynthesis. In barley, ethylene treatment results in partial suppression of the Kap phenotype, accompanied by up-regulation of BERF1 and BEIL1 expression, followed by down-regulation of Bkn3 mRNA levels. In rice protoplasts, BEIL1 activates the expression of a reporter gene driven by the 305-bp intron element, while BERF1 can counteract this activation. Thus, BEIL1 and BERF1, likely in association with other Kap intron-binding proteins, should mediate the fine-tuning of Bkn3 expression by ethylene. We propose a hypothesis for the cross talk between the KNOX and ethylene pathways.

  10. Cross-talk between the calcium-sensing receptor and the epidermal growth factor receptor in Rat-1 fibroblasts

    SciTech Connect

    Tomlins, Scott A.; Bolllinger, Nikki; Creim, Jeffrey; Rodland, Karin D. . E-mail: Karin.rodland@pnl.gov

    2005-08-15

    The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that is activated by extracellular calcium (Ca {sub o} {sup 2+}). Rat-1 fibroblasts have been shown to proliferate and increase ERK activity in response to elevation of [Ca{sup 2+}] {sub o}, and these responses are dependent on functional CaR expression. In this report, we examined the role of cross-talk between the CaR and the epidermal growth factor receptor (EGFR) in mediating these responses in Rat-1 cells. This report shows that AG1478, a specific inhibitor of the EGFR kinase, significantly inhibits the increase in proliferation induced by elevated Ca {sub o} {sup 2+}. Furthermore, we show that AG1478 acts downstream or separately from G protein subunit activation of phospholipase C. AG1478 significantly inhibits Ca {sub o} {sup 2+}-stimulated ERK phosphorylation and in vitro kinase activity. A similar inhibition of ERK phosphorylation was observed in response to the inhibitor AG494. In addition, treatment with inhibitors of metalloproteases involved in shedding of membrane anchored EGF family ligands substantially inhibited the increase in ERK activation in response to elevated Ca {sub o} {sup 2+}. This is consistent with the known expression of TGF{alpha} by Rat-1 cells. These results indicate that EGFR transactivation is an important component of the CaR-mediated response to increased Ca {sub o} {sup 2+} in Rat-1 fibroblasts and most likely involves CaR-mediated induction of regulated proteolysis and ligand shedding.

  11. Global Cross-Talk of Genes of the Mosquito Aedes aegypti in Response to Dengue Virus Infection

    PubMed Central

    Behura, Susanta K.; Gomez-Machorro, Consuelo; Harker, Brent W.; deBruyn, Becky; Lovin, Diane D.; Hemme, Ryan R.; Mori, Akio; Romero-Severson, Jeanne; Severson, David W.

    2011-01-01

    Background The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito. Methods and Results To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways. Conclusions Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host

  12. Cross Talk Between Growth and Immunity: Coupling of the IGF Axis to Conserved Cytokine Pathways in Rainbow Trout.

    PubMed

    Alzaid, Abdullah; Castro, Rosario; Wang, Tiehui; Secombes, Christopher J; Boudinot, Pierre; Macqueen, Daniel J; Martin, Samuel A M

    2016-05-01

    Although disease and infection is associated with attenuated growth, the molecular pathways involved are poorly characterized. We postulated that the IGF axis, a central governor of vertebrate growth, is repressed during infection to promote resource reallocation towards immunity. This hypothesis was tested in rainbow trout (Oncorhynchus mykiss) challenged by Aeromonas salmonicida (AS), a Gram-negative bacterial pathogen, or viral hemorrhagic septicemia virus (VHSv) at hatch, first feeding, and 3 weeks after first feeding. Quantitative transcriptional profiling was performed for genes encoding both IGF hormones, 19 salmonid IGF binding proteins (IGFBPs) and a panel of marker genes for growth and immune status. There were major differences in the developmental response of the IGF axis to AS and VHSv, with the VHSv challenge causing strong down-regulation of many genes. Despite this, IGFBP-1A1 and IGFBP-6A2 subtypes, each negative regulators of IGF signaling, were highly induced by AS and VHSv in striking correlation with host defense genes regulated by cytokine pathways. Follow-up experiments demonstrated a highly significant coregulation of IGFBP-1A1 and IGFBP-6A2 with proinflammatory cytokine genes in primary immune tissues (spleen and head kidney) when trout were challenged by a different Gram-negative bacterium, Yersinia ruckeri. Based on our findings, we propose a model where certain IGFBP subtypes are directly regulated by cytokine signaling pathways, allowing immediate modulation of growth and/or immune system phenotypes according to the level of activation of immunity. Our findings provide new and comprehensive insights into cross talk between conserved pathways regulating teleost growth, development, and immunity.

  13. Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis.

    PubMed

    Safdar, Adeel; Little, Jonathan P; Stokl, Andrew J; Hettinga, Bart P; Akhtar, Mahmood; Tarnopolsky, Mark A

    2011-03-25

    Endurance exercise is known to induce metabolic adaptations in skeletal muscle via activation of the transcriptional co-activator peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α). PGC-1α regulates mitochondrial biogenesis via regulating transcription of nuclear-encoded mitochondrial genes. Recently, PGC-1α has been shown to reside in mitochondria; however, the physiological consequences of mitochondrial PGC-1α remain unknown. We sought to delineate if an acute bout of endurance exercise can mediate an increase in mitochondrial PGC-1α content where it may co-activate mitochondrial transcription factor A to promote mtDNA transcription. C57Bl/6J mice (n = 12/group; ♀ = ♂) were randomly assigned to sedentary (SED), forced-endurance (END) exercise (15 m/min for 90 min), or forced endurance +3 h of recovery (END+3h) group. The END group was sacrificed immediately after exercise, whereas the SED and END+3h groups were euthanized 3 h after acute exercise. Acute exercise coordinately increased the mRNA expression of nuclear and mitochondrial DNA-encoded mitochondrial transcripts. Nuclear and mitochondrial abundance of PGC-1α in END and END+3h groups was significantly higher versus SED mice. In mitochondria, PGC-1α is in a complex with mitochondrial transcription factor A at mtDNA D-loop, and this interaction was positively modulated by exercise, similar to the increased binding of PGC-1α at the NRF-1 promoter. We conclude that in response to acute altered energy demands, PGC-1α re-localizes into nuclear and mitochondrial compartments where it functions as a transcriptional co-activator for both nuclear and mitochondrial DNA transcription factors. These results suggest that PGC-1α may dynamically facilitate nuclear-mitochondrial DNA cross-talk to promote net mitochondrial biogenesis.

  14. p130Cas Scaffolds the Signalosome To Direct Adaptor-Effector Cross Talk during Kaposi's Sarcoma-Associated Herpesvirus Trafficking in Human Microvascular Dermal Endothelial Cells

    PubMed Central

    Bandyopadhyay, Chirosree; Veettil, Mohanan Valiya; Dutta, Sujoy

    2014-01-01

    , without any intrinsic enzymatic activity, are well known to allow a great diversity of specific and coordinated protein-protein interactions imparting signal amplification to different networks for physiological and pathological signaling. They are involved in integrating signals from growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. The present study identifies human microvascular dermal endothelial (HMVEC-d) cellular scaffold protein p130Cas (Crk-associated substrate) as a platform to promote Kaposi's sarcoma-associated herpesvirus (KSHV) trafficking. Early during KSHV de novo infection, p130Cas associates with lipid rafts and scaffolds EphrinA2 (EphA2)-associated critical adaptor members to downstream effector molecules, promoting successful nuclear delivery of the KSHV genome. Hence, simultaneous targeting of the receptor EphA2 and scaffolding action of p130Cas can potentially uncouple the signal cross talk of the KSHV entry-associated upstream signal complex from the immediate downstream trafficking-associated signalosome, consequently routing KSHV toward lysosomal degradation and eventually blocking KSHV infection and associated malignancies. PMID:25253349

  15. p130Cas scaffolds the signalosome to direct adaptor-effector cross talk during Kaposi's sarcoma-associated herpesvirus trafficking in human microvascular dermal endothelial cells.

    PubMed

    Bandyopadhyay, Chirosree; Veettil, Mohanan Valiya; Dutta, Sujoy; Chandran, Bala

    2014-12-01

    enzymatic activity, are well known to allow a great diversity of specific and coordinated protein-protein interactions imparting signal amplification to different networks for physiological and pathological signaling. They are involved in integrating signals from growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. The present study identifies human microvascular dermal endothelial (HMVEC-d) cellular scaffold protein p130Cas (Crk-associated substrate) as a platform to promote Kaposi's sarcoma-associated herpesvirus (KSHV) trafficking. Early during KSHV de novo infection, p130Cas associates with lipid rafts and scaffolds EphrinA2 (EphA2)-associated critical adaptor members to downstream effector molecules, promoting successful nuclear delivery of the KSHV genome. Hence, simultaneous targeting of the receptor EphA2 and scaffolding action of p130Cas can potentially uncouple the signal cross talk of the KSHV entry-associated upstream signal complex from the immediate downstream trafficking-associated signalosome, consequently routing KSHV toward lysosomal degradation and eventually blocking KSHV infection and associated malignancies. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. An intracellular motif of P2X(3) receptors is required for functional cross-talk with GABA(A) receptors in nociceptive DRG neurons.

    PubMed

    Toulmé, Estelle; Blais, Dominique; Léger, Claire; Landry, Marc; Garret, Maurice; Séguéla, Philippe; Boué-Grabot, Eric

    2007-08-01

    Functional cross-talk between structurally unrelated P2X ATP receptors and members of the 'cys-loop' receptor-channel superfamily represents a recently-discovered mechanism for rapid modulation of information processing. The extent and the mechanism of the inhibitory cross-talks between these two classes of ionotropic receptors remain poorly understood, however. Both ionic and molecular coupling were proposed to explain cross-inhibition between P2X subtypes and GABA(A) receptors, suggesting a P2X subunit-dependent mechanism. We show here that cross-inhibition between neuronal P2X(3) or P2X(2+3) and GABA(A) receptors does not depend on chloride and calcium ions. We identified an intracellular QST(386-388) motif in P2X(3) subunits which is required for the functional coupling with GABA(A) receptors. Moreover the cross-inhibition between native P2X(3) and GABA receptors in cultured rat dorsal root ganglia (DRG) neurons is abolished by infusion of a peptide containing the QST motif as well as by viral expression of the main intracellular loop of GABA(A)beta3 subunits. We provide evidence that P2X(3) and GABA(A) receptors are colocalized in the soma and central processes of nociceptive DRG neurons, suggesting that specific intracellular P2X(3)-GABA(A) subunit interactions underlie a pre-synaptic cross-talk that might contribute to the regulation of sensory synaptic transmission in the spinal cord.

  17. Three-dimensional multilayered nanostructures with controlled orientation of microdomains from cross-linkable block copolymers.

    PubMed

    Jung, Hyunjung; Hwang, Dongjune; Kim, Eunhye; Kim, Byung-Jae; Lee, Won Bo; Poelma, Justin E; Kim, Jihyun; Hawker, Craig J; Huh, June; Ryu, Du Yeol; Bang, Joona

    2011-08-23

    Three-dimensional (3D) nanostructures were obtained by the directed formation of multilayer block copolymer (BCP) thin films. The initial step in this strategy involves the assembly and cross-linking of cylinder-forming polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) BCP, in which 1.5 mol % of reactive azido (-N(3)) groups were randomly incorporated along the styrene backbone. Significantly, assembly of thin films of lamellar-forming BCPs on top of the underlying cross-linked cylindrical layer exhibited perpendicular orientations of microdomains between lamellae and cylinder layers. From the theoretical calculation of free energy in the multilayers, it was found that the nematic interactions between polymer chains at the interface play a critical role in the perpendicular orientation of lamellae on the cross-linked cylinder layers. Removal of the PMMA domains then affords nonsymmetrical nanostructures which illustrate the promise of this strategy for the design of well-defined 3D nanotemplates. It was also demonstrated that this structure can be effectively used to enhance the light extraction efficiency of GaN light-emitting diodes. Furthermore, we anticipate that such 3D nanotemplates can be applied to various areas, including advanced BCP nanolithography and responsive surface coating. © 2011 American Chemical Society

  18. Dynamic analysis of pedestrian crossing behaviors on traffic flow at unsignalized mid-block crosswalks

    NASA Astrophysics Data System (ADS)

    Liu, Gang; He, Jing; Luo, Zhiyong; Yang, Wunian; Zhang, Xiping

    2015-05-01

    It is important to study the effects of pedestrian crossing behaviors on traffic flow for solving the urban traffic jam problem. Based on the Nagel-Schreckenberg (NaSch) traffic cellular automata (TCA) model, a new one-dimensional TCA model is proposed considering the uncertainty conflict behaviors between pedestrians and vehicles at unsignalized mid-block crosswalks and defining the parallel updating rules of motion states of pedestrians and vehicles. The traffic flow is simulated for different vehicle densities and behavior trigger probabilities. The fundamental diagrams show that no matter what the values of vehicle braking probability, pedestrian acceleration crossing probability, pedestrian backing probability and pedestrian generation probability, the system flow shows the "increasing-saturating-decreasing" trend with the increase of vehicle density; when the vehicle braking probability is lower, it is easy to cause an emergency brake of vehicle and result in great fluctuation of saturated flow; the saturated flow decreases slightly with the increase of the pedestrian acceleration crossing probability; when the pedestrian backing probability lies between 0.4 and 0.6, the saturated flow is unstable, which shows the hesitant behavior of pedestrians when making the decision of backing; the maximum flow is sensitive to the pedestrian generation probability and rapidly decreases with increasing the pedestrian generation probability, the maximum flow is approximately equal to zero when the probability is more than 0.5. The simulations prove that the influence of frequent crossing behavior upon vehicle flow is immense; the vehicle flow decreases and gets into serious congestion state rapidly with the increase of the pedestrian generation probability.

  19. Cross-talk between TLR4 and PPARγ pathways in the arachidonic acid-induced inflammatory response in pancreatic acini.

    PubMed

    Mateu, A; Ramudo, L; Manso, M A; De Dios, I

    2015-12-01

    Arachidonic acid (AA) is generally associated with inflammation in different settings. We assess the molecular mechanisms involved in the inflammatory response exerted by AA on pancreatic acini as an approach to acute pancreatitis (AP). Celecoxib (COX-2 inhibitor), TAK-242 (TLR4 inhibitor) and 15d-PGJ2 (PPARγ agonist) were used to ascertain the signaling pathways. In addition, we examine the effects of TAK-242 and 15d-PGJ2 on AP induced in rats by bile-pancreatic duct obstruction (BPDO). To carry out in vitro studies, acini were isolated from pancreas of control rats. Generation of PGE2 and TXB2, activation of pro-inflammatory pathways (MAPKs, NF-κB, and JAK/STAT3) and overexpression of CCL2 and P-selectin was found in AA-treated acini. In addition, AA up-regulated TLR4 and down-regulated PPARγ expression. Celecoxib prevented the up-regulation of CCL2 and P-selectin but did not show any effect on the AA-mediated changes in TLR4 and PPARγ expression. TAK-242, reduced the generation of AA metabolites and repressed both the cascade of pro-inflammatory events which led to CCL2 and P-selectin overexpression as well as the AA-induced PPARγ down-regulation. Thus, TLR4 acts as upstream activating pro-inflammatory and inhibiting anti-inflammatory pathways. 15d-PGJ2 down-regulated TLR4 expression and hence prevented the synthesis of AA metabolites and the inflammatory response mediated by them. Reciprocal negative cross-talk between TLR4 and PPARγ pathways is evidenced. In vivo experiments showed that TAK-242 and 15d-PGJ2 treatments reduced the inflammatory response in BPDO-induced AP. We conclude that through TLR4-dependent mechanisms, AA up-regulated CCL2 and P-selectin in pancreatic acini, partly mediated by the generation of PGE2 and TXB2, which activated pro-inflammatory pathways, but also directly by down-regulating PPARγ expression with anti-inflammatory activity. In vitro and in vivo studies support the role of TLR4 in AP and the use of TLR4 inhibitors and

  20. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation.

    PubMed

    Ng, York Hunt; Rome, Sophie; Jalabert, Audrey; Forterre, Alexis; Singh, Harmeet; Hincks, Cassandra L; Salamonsen, Lois A

    2013-01-01

    Exosomes are nanoparticles (∼100 nm diameter) released from cells, which can transfer small RNAs and mRNA via the extracellular environment to cells at distant sites. We hypothesised that exosomes or the slightly larger microvesicles (100-300 nm) are released from the endometrial epithelium into the uterine cavity, and that these contain specific micro (mi)RNA that could be transferred to either the trophectodermal cells of the blastocyst or to endometrial epithelial cells, to promote implantation. The aim of this study was to specifically identify and characterise exosomes/microvesicles (mv) released from endometrial epithelial cells and to determine whether exosomes/mv are present in uterine fluid. Immunostaining demonstrated that the tetraspanins, CD9 and CD63 used as cell surface markers of exosomes are present on the apical surfaces of endometrial epithelial cells in tissue sections taken across the menstrual cycle: CD63 showed cyclical regulation. Exosome/mv pellets were prepared from culture medium of endometrial epithelial cell (ECC1 cells) and from uterine fluid and its associated mucus by sequential ultracentifugation. Exosomes/mv were positively identified in all preparations by FACS and immunofluorescence staining following exosome binding to beads. Size particle analysis confirmed the predominance of particles of 50-150 nm in each of these fluids. MiRNA analysis of the ECC1 cells and their exosomes/mv demonstrated sorting of miRNA into exosomes/mv: 13 of the 227 miRNA were specific to exosomes/mv, while a further 5 were not present in these. The most abundant miRNA in exosomes/mv were hsa-miR-200c, hsa-miR-17 and hsa-miR-106a. Bioinformatic analysis showed that the exosome/mv-specific miRNAs have potential targets in biological pathways highly relevant for embryo implantation. Thus exosomes/mv containing specific miRNA are present in the microenvironment in which embryo implantation occurs and may contribute to the endometrial-embryo cross talk

  1. Block copolymer cross-linked nanoassemblies improve particle stability and biocompatibility of superparamagnetic iron oxide nanoparticles.

    PubMed

    Dan, Mo; Scott, Daniel F; Hardy, Peter A; Wydra, Robert J; Hilt, J Zach; Yokel, Robert A; Bae, Younsoo

    2013-02-01

    To develop cross-linked nanoassemblies (CNAs) as carriers for superparamagnetic iron oxide nanoparticles (IONPs). Ferric and ferrous ions were co-precipitated inside core-shell type nanoparticles prepared by cross-linking poly(ethylene glycol)-poly(aspartate) block copolymers to prepare CNAs entrapping Fe(3)O(4) IONPs (CNA-IONPs). Particle stability and biocompatibility of CNA-IONPs were characterized in comparison to citrate-coated Fe(3)O(4) IONPs (Citrate-IONPs). CNA-IONPs, approximately 30 nm in diameter, showed no precipitation in water, PBS, or a cell culture medium after 3 or 30 h, at 22, 37, and 43°C, and 1, 2.5, and 5 mg/mL, whereas Citrate-IONPs agglomerated rapidly (> 400 nm) in all aqueous media tested. No cytotoxicity was observed in a mouse brain endothelial-derived cell line (bEnd.3) exposed to CNA-IONPs up to 10 mg/mL for 30 h. Citrate-IONPs (> 0.05 mg/mL) reduced cell viability after 3 h. CNA-IONPs retained the superparamagnetic properties of entrapped IONPs, enhancing T2-weighted magnetic resonance images (MRI) at 0.02 mg/mL, and generating heat at a mild hyperthermic level (40 ~ 42°C) with an alternating magnetic field (AMF). Compared to citric acid coating, CNAs with a cross-linked anionic core improved particle stability and biocompatibility of IONPs, which would be beneficial for future MRI and AMF-induced remote hyperthermia applications.

  2. Block Copolymer Cross-linked Nanoassemblies Improve Particle Stability and Biocompatibility of Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Dan, Mo; Scott, Daniel F.; Hardy, Peter A.; Wydra, Robert J.; Hilt, J. Zach; Yokel, Robert A.; Bae, Younsoo

    2014-01-01

    Purpose To develop cross-linked nanoassemblies (CNAs) as carriers for superparamagnetic iron oxide nanoparticles (IONPs). Methods Ferric and ferrous ions were co-precipitated inside core-shell type nanoparticles prepared by cross-linking poly(ethylene glycol)-poly(aspartate) block copolymers to prepare CNAs entrapping Fe3O4 IONPs (CNA-IONPs). Particle stability and biocompatibility of CNA-IONPs were characterized in comparison to citrate-coated Fe3O4 IONPs (Citrate-IONPs). Results CNA-IONPs, approximately 30 nm in diameter, showed no precipitation in water, PBS, or a cell culture medium after 3 or 30 h, at 22, 37, and 43 °C, and 1, 2.5, and 5 mg/mL, whereas Citrate-IONPs agglomerated rapidly (> 400 nm) in all aqueous media tested. No cytotoxicity was observed in a mouse brain endothelial-derived cell line (bEnd.3) exposed to CNA-IONPs up to 10 mg/mL for 30 h. Citrate-IONPs (> 0.05 mg/mL) reduced cell viability after 3 h. CNA-IONPs retained the superparamagnetic properties of entrapped IONPs, enhancing T2-weighted magnetic resonance images (MRI) at 0.02 mg/mL, and generating heat at a mild hyperthermic level (40 ~ 42 °C) with an alternating magnetic field (AMF). Conclusion Compared to citric acid coating, CNAs with a cross-linked anionic core improved particle stability and biocompatibility of IONPs, which would be beneficial for future MRI and AMF-induced remote hyperthermia applications. PMID:23080062

  3. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells.

    PubMed

    Recchia, Anna Grazia; Musti, Anna Maria; Lanzino, Marilena; Panno, Maria Luisa; Turano, Ermanna; Zumpano, Rachele; Belfiore, Antonino; Andò, Sebastiano; Maggiolini, Marcello

    2009-03-01

    In androgen sensitive LNCaP prostate cancer cells, the proliferation induced by the epidermal growth factor (EGF) involves a cross-talk between the EGF receptor (EGFR) and the androgen receptor (AR). In lung cancer the role of the EGF-EGFR transduction pathway has been documented, whereas androgen activity has received less attention. Here we demonstrate that in LNCaP and A549 non-small cell lung cancer (NSCLC), AR and EGFR are required for either 5alpha-dihydrotestosterone (DHT) or EGF-stimulated cell growth. Only EGF activated ERK signaling and up-regulated early gene expression, while DHT triggered the expression of classical AR-responsive genes with the exception of the EGF-induced PSA transcript in A549 cells. DHT and EGF up-regulated cyclinD1 (CD1) at both mRNA and protein levels in A549 cells, while in LNCaP cells each mitogen increased only CD1 protein expression. In both cell contexts, CD1 up-regulation was prevented by selective inhibitors as well as by knock-down of either AR or EGFR and also inhibiting p38MAPK and the mammalian target of rapamycin (mTOR) pathways. Interestingly, p38MAPK and mTOR repression prevented the activation of the mTOR target ribosomal p70S6 kinase induced by DHT and EGF, indicating that p38MAPK acts as an upstream mTOR regulator. In addition, the proliferative effects promoted by both DHT and EGF in LNCaP and A549 cancer cells were no longer observed blocking either p38MAPK or mTOR activity. Hence, our data suggest that p38MAPK-dependent activation of the mTOR/CD1 pathway may represent a mechanism through which AR and EGFR cross-talk contributes to prostate and lung cancer progression.

  4. Elucidation of Cross-Talk and Specificity of Early Response Mechanisms to Salt and PEG-Simulated Drought Stresses in Brassica napus Using Comparative Proteomic Analysis.

    PubMed

    Luo, Junling; Tang, Shaohua; Peng, Xiaojue; Yan, Xiaohong; Zeng, Xinhua; Li, Jun; Li, Xiaofei; Wu, Gang

    2015-01-01

    To understand the cross-talk and specificity of the early responses of plants to salt and drought, we performed physiological and proteome analyses of Brassica napus seedlings pretreated with 245 mM NaCl or 25% polyethylene glycol (PEG) 6000 under identical osmotic pressure (-1.0 MPa). Significant decreases in water content and photosynthetic rate and excessive accumulation of compatible osmolytes and oxidative damage were observed in response to both stresses. Unexpectedly, the drought response was more severe than the salt response. We further identified 45 common differentially expressed proteins (DEPs), 143 salt-specific DEPs and 160 drought-specific DEPs by isobaric tags for relative and absolute quantitation (iTRAQ) analysis. The proteome quantitative data were then confirmed by multiple reaction monitoring (MRM). The differences in the proteomic profiles between drought-treated and salt-treated seedlings exceeded the similarities in the early stress responses. Signal perception and transduction, transport and membrane trafficking, and photosynthesis-related proteins were enriched as part of the molecular cross-talk and specificity mechanism in the early responses to the two abiotic stresses. The Ca2+ signaling, G protein-related signaling, 14-3-3 signaling pathway and phosphorylation cascades were the common signal transduction pathways shared by both salt and drought stress responses; however, the proteins with executive functions varied. These results indicate functional specialization of family proteins in response to different stresses, i.e., CDPK21, TPR, and CTR1 specific to phosphorylation cascades under early salt stress, whereas STN7 and BSL were specific to phosphorylation cascades under early drought stress. Only the calcium-binding EF-hand family protein and ZKT were clearly identified as signaling proteins that acted as cross-talk nodes for salt and drought signaling pathways. Our study provides new clues and insights for developing strategies to

  5. Effect of Ground Patterns Size on FM-Band Cross-Talks between Two Parallel Signal Traces of Printed Circuit Boards for Vehicles

    NASA Astrophysics Data System (ADS)

    Iida, Michihira; Maeno, Tsuyoshi; Fujiwara, Osamu

    It is well known that electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns containing slits. To suppress the noise currents outflow from PCBs of these kinds, we previously measured noise currents outflow from simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits to reveal that making slits with open ends on the ground patterns in parallel with the traces can reduce the conducted noise currents. In the present study, with FDTD simulation, we investigated reduction effects of ground patterns size on the FM-band cross-talk noise levels between two parallel signal traces, by using four types of simple PCB models having different ground patterns formed in different numbers but containing the same planar dimension slits parallel to the traces, in addition to two types of PCB models with different ground patterns divided into two parts parallel to the traces. As a result, we found that the cross-talk noise currents for the above six types of PCBs decrease by 6.9-8.5dB compared to the PCB which has a plain ground with no slits. From this study, we got the finding that the contributing factor for the above mentioned cross-talk reduction relies on the reduction of mutual inductance between the two parallel traces. In addition, in case of this study, it is interesting to note that the noise currents outflow from PCBs can rather be suppressed when the size of the return ground of each signal trace is small.

  6. Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements1[C][W][OPEN

    PubMed Central

    Xiao, Jun; Cheng, Hongtao; Li, Xianghua; Xiao, Jinghua; Xu, Caiguo; Wang, Shiping

    2013-01-01

    Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resistance. However, it is not clear how WRKY13 directly regulates this cross talk. Here, we show that WRKY13 is a transcriptional repressor. During the rice responses to drought stress and bacterial infection, WRKY13 selectively bound to certain site- and sequence-specific cis-elements on the promoters of SNAC1 (for STRESS RESPONSIVE NO APICAL MERISTEM, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR1/2, CUP-SHAPED COTYLEDON), the overexpression of which increases drought resistance, and WRKY45-1, the knockout of which increases both bacterial disease and drought resistance. WRKY13 also bound to two cis-elements of its native promoter to autoregulate the balance of its gene expression in different physiological activities. WRKY13 was induced in leaf vascular tissue, where bacteria proliferate, during infection, and in guard cells, where the transcriptional factor SNAC1 enhances drought resistance, during both bacterial infection and drought stress. These results suggest that WRKY13 regulates the antagonistic cross talk between drought and disease resistance pathways by directly suppressing SNAC1 and WRKY45-1 and autoregulating its own expression via site- and sequence-specific cis-elements on the promoters of these genes in vascular tissue where bacteria proliferate and guard cells where the transcriptional factor SNAC1 mediates drought resistance by promoting stomatal closure. PMID:24130197

  7. Elucidation of Cross-Talk and Specificity of Early Response Mechanisms to Salt and PEG-Simulated Drought Stresses in Brassica napus Using Comparative Proteomic Analysis

    PubMed Central

    Luo, Junling; Tang, Shaohua; Peng, Xiaojue; Yan, Xiaohong; Zeng, Xinhua; Li, Jun; Li, Xiaofei; Wu, Gang

    2015-01-01

    To understand the cross-talk and specificity of the early responses of plants to salt and drought, we performed physiological and proteome analyses of Brassica napus seedlings pretreated with 245 mM NaCl or 25% polyethylene glycol (PEG) 6000 under identical osmotic pressure (-1.0 MPa). Significant decreases in water content and photosynthetic rate and excessive accumulation of compatible osmolytes and oxidative damage were observed in response to both stresses. Unexpectedly, the drought response was more severe than the salt response. We further identified 45 common differentially expressed proteins (DEPs), 143 salt-specific DEPs and 160 drought-specific DEPs by isobaric tags for relative and absolute quantitation (iTRAQ) analysis. The proteome quantitative data were then confirmed by multiple reaction monitoring (MRM). The differences in the proteomic profiles between drought-treated and salt-treated seedlings exceeded the similarities in the early stress responses. Signal perception and transduction, transport and membrane trafficking, and photosynthesis-related proteins were enriched as part of the molecular cross-talk and specificity mechanism in the early responses to the two abiotic stresses. The Ca2+ signaling, G protein-related signaling, 14-3-3 signaling pathway and phosphorylation cascades were the common signal transduction pathways shared by both salt and drought stress responses; however, the proteins with executive functions varied. These results indicate functional specialization of family proteins in response to different stresses, i.e., CDPK21, TPR, and CTR1 specific to phosphorylation cascades under early salt stress, whereas STN7 and BSL were specific to phosphorylation cascades under early drought stress. Only the calcium-binding EF-hand family protein and ZKT were clearly identified as signaling proteins that acted as cross-talk nodes for salt and drought signaling pathways. Our study provides new clues and insights for developing strategies to

  8. Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells in alcoholic liver disease.

    PubMed

    Petrasek, Jan; Iracheta-Vellve, Arvin; Saha, Banishree; Satishchandran, Abhishek; Kodys, Karen; Fitzgerald, Katherine A; Kurt-Jones, Evelyn A; Szabo, Gyongyi

    2015-08-01

    Inflammation defines the progression of ALD from reversible to advanced stages. Translocation of bacterial LPS to the liver from the gut is necessary for alcohol-induced liver inflammation. However, it is not known whether endogenous, metabolic danger signals are required for inflammation in ALD. Uric acid and ATP, 2 major proinflammatory danger signals, were evaluated in the serum of human volunteers exposed to a single dose of ethanol or in supernatants of primary human hepatocytes exposed to ethanol. In vitro studies were used to evaluate the role of uric acid and ATP in inflammatory cross-talk between hepatocytes and immune cells. The significance of signaling downstream of uric acid and ATP in the liver was evaluated in NLRP3-deficient mice fed a Lieber-DeCarli ethanol diet. Exposure of healthy human volunteers to a single dose of ethanol resulted in increased serum levels of uric acid and ATP. In vitro, we identified hepatocytes as a significant source of these endogenous inflammatory signals. Uric acid and ATP mediated a paracrine inflammatory cross-talk between damaged hepatocytes and immune cells and significantly increased the expression of LPS-inducible cytokines, IL-1β and TNF-α, by immune cells. Deficiency of NLRP3, a ligand-sensing component of the inflammasome recognizing uric acid and ATP, prevented the development of alcohol-induced liver inflammation in mice and significantly ameliorated liver damage and steatosis. Endogenous metabolic danger signals, uric acid, and ATP are involved in inflammatory cross-talk between hepatocytes and immune cells and play a crucial role in alcohol-induced liver inflammation.

  9. Isolation, Characterization and Potential Role in Beta Cell-Endothelium Cross-Talk of Extracellular Vesicles Released from Human Pancreatic Islets

    PubMed Central

    De Lena, Michela; Beltramo, Silvia; Romagnoli, Renato; Salizzoni, Mauro; Melzi, Raffaella; Nano, Rita; Piemonti, Lorenzo; Tetta, Ciro; Biancone, Luigi; Camussi, Giovanni

    2014-01-01

    The cross-talk between beta cells and endothelium plays a key role in islet physiopathology and in the revascularization process after islet transplantation. However, the molecular mechanisms involved in this cross-talk are not fully elucidated. Extracellular vesicles (EVs) are secreted membrane nanoparticles involved in inter-cellular communication through the transfer of proteins and nucleic acids. The aims of this study were: 1) isolation and characterization of EVs from human islets; 2) evaluation of the pro-angiogenic effect of islet-derived EVs on human islet endothelial cells (IECs). EVs were isolated by ultracentrifugation from conditioned medium of human islets and characterized by nanotrack analysis (Nanosight), FACS, western blot, bioanalyzer, mRNA/microRNA RT-PCR array. On IECs, we evaluated EV-induced insulin mRNA transfer, proliferation, resistance to apoptosis, in vitro angiogenesis, migration, gene and protein profiling. EVs sized 236±54 nm, expressed different surface molecules and islet-specific proteins (insulin, C-peptide, GLP1R) and carried several mRNAs (VEGFa, eNOS) and microRNAs (miR-27b, miR-126, miR-130 and miR-296) involved in beta cell function, insulin secretion and angiogenesis. Purified EVs were internalized into IECs inducing insulin mRNA expression, protection from apoptosis and enhancement of angiogenesis. Human islets release biologically active EVs able to shuttle specific mRNAs and microRNAs (miRNAs) into target endothelial cells. These results suggest a putative role for islet-derived EVs in beta cell-endothelium cross-talk and in the neoangiogenesis process which is critical for engraftment of transplanted islets. PMID:25028931

  10. Isolation, characterization and potential role in beta cell-endothelium cross-talk of extracellular vesicles released from human pancreatic islets.

    PubMed

    Figliolini, Federico; Cantaluppi, Vincenzo; De Lena, Michela; Beltramo, Silvia; Romagnoli, Renato; Salizzoni, Mauro; Melzi, Raffaella; Nano, Rita; Piemonti, Lorenzo; Tetta, Ciro; Biancone, Luigi; Camussi, Giovanni

    2014-01-01

    The cross-talk between beta cells and endothelium plays a key role in islet physiopathology and in the revascularization process after islet transplantation. However, the molecular mechanisms involved in this cross-talk are not fully elucidated. Extracellular vesicles (EVs) are secreted membrane nanoparticles involved in inter-cellular communication through the transfer of proteins and nucleic acids. The aims of this study were: 1) isolation and characterization of EVs from human islets; 2) evaluation of the pro-angiogenic effect of islet-derived EVs on human islet endothelial cells (IECs). EVs were isolated by ultracentrifugation from conditioned medium of human islets and characterized by nanotrack analysis (Nanosight), FACS, western blot, bioanalyzer, mRNA/microRNA RT-PCR array. On IECs, we evaluated EV-induced insulin mRNA transfer, proliferation, resistance to apoptosis, in vitro angiogenesis, migration, gene and protein profiling. EVs sized 236±54 nm, expressed different surface molecules and islet-specific proteins (insulin, C-peptide, GLP1R) and carried several mRNAs (VEGFa, eNOS) and microRNAs (miR-27b, miR-126, miR-130 and miR-296) involved in beta cell function, insulin secretion and angiogenesis. Purified EVs were internalized into IECs inducing insulin mRNA expression, protection from apoptosis and enhancement of angiogenesis. Human islets release biologically active EVs able to shuttle specific mRNAs and microRNAs (miRNAs) into target endothelial cells. These results suggest a putative role for islet-derived EVs in beta cell-endothelium cross-talk and in the neoangiogenesis process which is critical for engraftment of transplanted islets.

  11. Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements.

    PubMed

    Xiao, Jun; Cheng, Hongtao; Li, Xianghua; Xiao, Jinghua; Xu, Caiguo; Wang, Shiping

    2013-12-01

    Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resistance. However, it is not clear how WRKY13 directly regulates this cross talk. Here, we show that WRKY13 is a transcriptional repressor. During the rice responses to drought stress and bacterial infection, WRKY13 selectively bound to certain site- and sequence-specific cis-elements on the promoters of SNAC1 (for STRESS RESPONSIVE NO APICAL MERISTEM, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR1/2, CUP-SHAPED COTYLEDON), the overexpression of which increases drought resistance, and WRKY45-1, the knockout of which increases both bacterial disease and drought resistance. WRKY13 also bound to two cis-elements of its native promoter to autoregulate the balance of its gene expression in different physiological activities. WRKY13 was induced in leaf vascular tissue, where bacteria proliferate, during infection, and in guard cells, where the transcriptional factor SNAC1 enhances drought resistance, during both bacterial infection and drought stress. These results suggest that WRKY13 regulates the antagonistic cross talk between drought and disease resistance pathways by directly suppressing SNAC1 and WRKY45-1 and autoregulating its own expression via site- and sequence-specific cis-elements on the promoters of these genes in vascular tissue where bacteria proliferate and guard cells where the transcriptional factor SNAC1 mediates drought resistance by promoting stomatal closure.

  12. Functional ET(A)-ET(B) Receptor Cross-talk in Basilar Artery In Situ From ET(B) Receptor Deficient Rats.

    PubMed

    Yoon, SeongHun; Gariepy, Cheryl E; Yanagisawa, Masashi; Zuccarello, Mario; Rapoport, Robert M

    2016-03-01

    The role of endothelin (ET)(A)-ET(B) receptor cross-talk in limiting the ET(A) receptor antagonist inhibition of ET-1 constriction is revealed by the partial or complete dependency of the ET(A) receptor antagonist inhibition on functional removal of the ET(B) receptor. Although functional removal of the ET(B) receptor is generally accomplished with ET(B) receptor antagonist, a novel approach using rats containing a naturally occurring deletion mutation in the ET(B) receptor [rescued "spotting lethal" (sl) rats; ET(B)(sl/sl)] demonstrated increased ET(A) receptor antagonist inhibition of ET-1 constriction in vena cava. We investigated whether this deletion mutation was also sufficient to remove the ET(B) receptor dependency of the ET(A) receptor antagonist inhibition of ET-1 constriction in the basilar artery. Consistent with previous reports, ET-1 plasma levels were elevated in ET(B)(sl/sl) as compared with ET(B)(+/+) rats. ET(B) receptor antagonist failed to relax the ET-1 constricted basilar artery from ET(B)(+/+) and ET(B)(sl/sl) rats. Relaxation to combined ET(A) and ET(B) receptor antagonist was greater than relaxation to ET(A) receptor antagonist in the basilar artery from ET(B)(+/+) and, unexpectedly, ET(B)(sl/sl) rats. These findings confirm the presence of ET(A)-ET(B) receptor cross-talk in the basilar artery. We speculate that mutant ET(B) receptor expression produced by alternative splicing may be sufficient to allow cross-talk.

  13. Pedestrian gestures increase driver yielding at uncontrolled mid-block road crossings.

    PubMed

    Zhuang, Xiangling; Wu, Changxu

    2014-09-01

    To protect pedestrians, many countries give them priority at uncontrolled mid-block crosswalks or pedestrian crossings. However, the actual driver yielding rate is not always satisfactory (only 3.5% in this study). To increase the yielding rate, this study proposed eleven pedestrian gestures to inform drivers of their intent to cross. The gestures were evaluated based on the process of human interaction with environment. Four gestures were selected as candidates to test in field experiments based on scores for visibility, clarity, familiarity and courtesy (see illustration in Fig. 2): (1) right elbow bent with hands erect and palm facing left (R-bent-erect), (2) left elbow bent with hands level and palm facing left (L-bent-level), (3) left arm extended straight to left side with palm erect facing left (L-straight-erect), and (4) a 'T' gesture for "Time-out". In the experiment, confederate pedestrians waiting at the roadside displayed the gestures (baseline: no gesture) to 420 vehicles at 5 sites in Beijing, China. When pedestrians used the L-bent-level gesture, the vehicle yielding rate more than tripled of that in the baseline condition. The L-bent-level gesture also resulted in a significant decrease in driving with unchanged speed (63.5-38.8%) and had no significant side effects in terms of drivers' horn use or lane changing. The effects of such gestures in other contexts such as when pedestrians are in the crosswalk and when they are interacting with turning vehicles are discussed, together with the applications in training vulnerable pedestrian groups (children or elderly) and facilitating pedestrian detection by drivers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Hydrogels Containing Core Cross-Linked Block Co-Polymer Micelles.

    PubMed

    Lu, Changhai; Mikhail, Andrew S; Wang, Xinyue; Brook, Michael A; Allen, Christine

    2012-01-01

    Poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels loaded with core cross-linked PEG-b-PCL micelles with different morphologies (spherical and rod-like) were prepared and evaluated for use as drugeluting soft contact lenses. The relationship between the composition of micelle-loaded pHEMA hydrogels and properties such as transparency and swelling were determined. The incorporation of core crosslinked micelles into pHEMA hydrogels led to the formation of different internal nanostructures which were dependent on the amount and morphology of the micelles added. 7-Hydroxy-9H-(1,3-dichloro-9,9'-dimethylacridin-2-one) (DDAO), a hydrophobic fluorescent dye, was loaded into the micelles prior to their incorporation within the hydrogel matrix. The in vitro release of DDAO demonstrated the potential of the micelles/pHEMA hydrogels to provide controlled drug delivery for at least 14 days. This study demonstrates the feasibility of both chemical and physical incorporation of block co-polymer micelles within pHEMA hydrogels as a means to achieve sustained release of drugs for potential application in ophthalmic therapies.

  15. Natural killer (NK): dendritic cell (DC) cross talk induced by therapeutic monoclonal antibody triggers tumor antigen-specific T cell immunity.

    PubMed

    Lee, Steve C; Srivastava, Raghvendra M; López-Albaitero, Andrés; Ferrone, Soldano; Ferris, Robert L

    2011-08-01

    Tumor antigen (TA)-targeted monoclonal antibodies (mAb), trastuzumab, cetuximab, panitumumab, and rituximab, have been among the most successful new therapies in the present generation. Clinical activity is observed as a single agent, or in combination with radiotherapy or chemotherapy, against metastatic colorectal cancer, head and neck cancer, breast cancer, and follicular lymphoma. However, the activity is seen only in a minority of patients. Thus, an intense need exists to define the mechanism of action of these immunoactive mAb. Here, we discuss some of the likely immunological events that occur in treated patients: antibody-dependent cellular cytotoxicity (ADCC), cross talk among immune cells including NK cells and dendritic cells (DCs), and generation of TA-specific T lymphocyte responses. We present evidence supporting the induction of "NK:DC cross talk," leading to priming of TA-specific cellular immunity. These observations show that mAb-mediated NK cell activation can be greatly enhanced by the action of stimulatory cytokines and surface molecules on maturing DC and that NK:DC interaction facilitates the recruitment of both NK cells and DC to the tumor site(s). The cooperative, reciprocal stimulatory activity of both NK cells and DC can modulate both the innate immune response in the local tumor microenvironment and the adaptive immune response in secondary lymphoid organs. These events likely contribute to clinical activity, as well as provide a potential biomarker of response to mAb therapy.

  16. Myeloid-Derived Suppressor Cells Endow Stem-like Qualities to Breast Cancer Cells through IL6/STAT3 and NO/NOTCH Cross-talk Signaling.

    PubMed

    Peng, Dongjun; Tanikawa, Takashi; Li, Wei; Zhao, Lili; Vatan, Linda; Szeliga, Wojciech; Wan, Shanshan; Wei, Shuang; Wang, Yin; Liu, Yan; Staroslawska, Elzbieta; Szubstarski, Franciszek; Rolinski, Jacek; Grywalska, Ewelina; Stanisławek, Andrzej; Polkowski, Wojciech; Kurylcio, Andrzej; Kleer, Celina; Chang, Alfred E; Wicha, Max; Sabel, Michael; Zou, Weiping; Kryczek, Ilona

    2016-06-01

    Myeloid-derived suppressor cells (MDSC) contribute to immune suppression in cancer, but the mechanisms through which they drive metastatic progression are not fully understood. In this study, we show how MDSC convey stem-like qualities to breast cancer cells that coordinately help enable immune suppression and escape. We found that MDSC promoted tumor formation by enhancing breast cancer cell stem-like properties as well as by suppressing T-cell activation. Mechanistic investigations indicated that these effects relied upon cross-talk between the STAT3 and NOTCH pathways in cancer cells, with MDSC inducing IL6-dependent phosphorylation of STAT3 and activating NOTCH through nitric oxide leading to prolonged STAT3 activation. In clinical specimens of breast cancer, the presence of MDSC correlated with the presence of cancer stem-like cells (CSC) and independently predicted poor survival outcomes. Collectively, our work revealed an immune-associated mechanism that extrinsically confers cancer cell stemness properties and affects patient outcome. We suggest that targeting STAT3-NOTCH cross-talk between MDSC and CSC could offer a unique locus to improve cancer treatment, by coordinately targeting a coupled mechanism that enables cancer stemness and immune escape. Cancer Res; 76(11); 3156-65. ©2016 AACR.

  17. Emerging importance of mismatch repair components including UvrD helicase and their cross-talk with the development of drug resistance in malaria parasite.

    PubMed

    Ahmad, Moaz; Tuteja, Renu

    2014-12-01

    Human malaria is an important parasitic infection responsible for a significant number of deaths worldwide, particularly in tropical and subtropical regions. The recent scenario has worsened mainly because of the emergence of drug-resistant malaria parasites having the potential to spread across the world. Drug-resistant parasites possess a defective mismatch repair (MMR); therefore, it is essential to explore its mechanism in detail to determine the underlying cause. Recently, artemisinin-resistant parasites have been reported to exhibit nonsynonymous single nucleotide polymorphisms in genes involved in MMR pathways such as MutL homolog (MLH) and UvrD. Plasmodium falciparum MLH is an endonuclease required to restore the defective MMR in drug-resistant W2 strain of P. falciparum. Although the role of helicases in eukaryotic MMR has been questioned, the identification and characterization of the UvrD helicase and their cross-talk with MLH in P. falciparum suggests the possible involvement of UvrD in MMR. A comparative genome-wide analysis revealed the presence of the UvrD helicase in Plasmodium species, while it is absent in human host. Therefore, PfUvrD may emerge as a suitable drug target to control malaria. This review study is focused on recent developments in MMR biochemistry, emerging importance of the UvrD helicase, possibility of its involvement in MMR and the emerging cross-talk between MMR components and drug resistance in malaria parasite. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions

    PubMed Central

    Pavek, Petr

    2016-01-01

    Pregnane X receptor is a ligand-activated nuclear receptor (NR) that mainly controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters. Nowadays it is clear that PXR is also involved in regulation of intermediate metabolism through trans-activation and trans-repression of genes controlling glucose, lipid, cholesterol, bile acid, and bilirubin homeostasis. In these processes PXR cross-talks with other NRs. Accumulating evidence suggests that the cross-talk is often mediated by competing for common coactivators or by disruption of coactivation and activity of other transcription factors by the ligand-activated PXR. In this respect mainly PXR-CAR and PXR-HNF4α interference have been reported and several cytochrome P450 enzymes (such as CYP7A1 and CYP8B1), phase II enzymes (SULT1E1, Gsta2, Ugt1a1), drug and endobiotic transporters (OCT1, Mrp2, Mrp3, Oatp1a, and Oatp4) as well as intermediate metabolism enzymes (PEPCK1 and G6Pase) have been shown as down-regulated genes after PXR activation. In this review, I summarize our current knowledge of PXR-mediated repression and coactivation interference in PXR-controlled gene expression regulation. PMID:27932985

  19. Fluorescent Nanocomposite for Visualizing Cross-Talk between MicroRNA-21 and Hydrogen Peroxide in Ischemia-Reperfusion Injury in Live Cells and In Vivo.

    PubMed

    Yang, Limin; Ren, Yanfei; Pan, Wei; Yu, Zhengze; Tong, Lili; Li, Na; Tang, Bo

    2016-12-06

    MicroRNAs (miRNAs) and reactive oxygen species (ROS) are concurrently implicated in heart ischemia-reperfusion (IR) injury. There may exist mutual cross-talk between miRNAs and ROS in cardiac IR injury process. In this study, we developed a novel crown-like silica@polydopamine-DNA-CeO2 nanocomposite by assembly of silica@polydopamine-DNA1 nanoparticles decorated with satellite CeO2-DNA2 nanoparticles for detecting and imaging of microRNA-21 (miR-21) and hydrogen peroxide (H2O2) in simulated IR injury in living cells and in vivo. The miRNA-21 was found to be regulated by H2O2 via PI3K/AKT signaling pathway for the first time in H9C2 cells in simulated ischemia-reperfusion injury. H2O2 and miRNA-21 are overproduced during mimicked heart ischemia-reperfusion injury, suggesting that they are closely related to reperfusion injury. All these results reveal that there is definite cross-talk between miR-21 and H2O2 in IR injury. The current method can provide a promising strategy to further explore the interplaying roles between ROS and miRNAs in other pathological processes.

  20. Hypotonicity-induced TRPV4 function in renal collecting duct cells: modulation by progressive cross-talk with Ca2+-activated K+ channels.

    PubMed

    Jin, Min; Berrout, Jonathan; Chen, Ling; O'Neil, Roger G

    2012-02-01

    The mouse cortical collecting duct (CCD) M-1 cells were grown to confluency on coverslips to assess the interaction between TRPV4 and Ca(2+)-activated K(+) channels. Immunocytochemistry demonstrated strong expression of TRPV4, along with the CCD marker, aquaporin-2, and the Ca(2+)-activated K(+) channels, the small conductance SK3 (K(Ca)2.3) channel and large conductance BKα channel (K(Ca)1.1). TRPV4 overexpression studies demonstrated little physical dependency of the K(+) channels on TRPV4. However, activation of TRPV4 by hypotonic swelling (or GSK1016790A, a selective agonist) or inhibition by the selective antagonist, HC-067047, demonstrated a strong dependency of SK3 and BK-α activation on TRPV4-mediated Ca(2+) influx. Selective inhibition of BK-α channel (Iberiotoxin) or SK3 channel (apamin), thereby depolarizing the cells, further revealed a significant dependency of TRPV4-mediated Ca(2+) influx on activation of both K(+) channels. It is concluded that a synergistic cross-talk exists between the TRPV4 channel and SK3 and BK-α channels to provide a tight functional regulation between the channel groups. This cross-talk may be progressive in nature where the initial TRPV4-mediated Ca(2+) influx would first activate the highly Ca(2+)-sensitive SK3 channel which, in turn, would lead to enhanced Ca(2+) influx and activation of the less Ca(2+)-sensitive BK channel.

  1. Transcriptional kinetics of the cross-talk between the ortho-cleavage and TOL pathways of toluene biodegradation in Pseudomonas putida mt-2.

    PubMed

    Tsipa, Argyro; Koutinas, Michalis; Pistikopoulos, Efstratios N; Mantalaris, Athanasios

    2016-06-20

    The TOL plasmid promoters are activated by toluene leading to gene expression responsible for the degradation of the environmental signal. Benzoate is formed as an intermediate, activating the BenR protein of the chromosomal ortho-cleavage pathway that up-regulates the chromosomal PbenA promoter and the TOL Pm promoter resulting in cross-talk between the two networks. Herein, the transcriptional kinetics of the PbenR and PbenA promoters in conjunction with TOL promoters was monitored by real-time PCR during toluene biodegradation of different concentrations in batch cultures. The cross-talk between the two pathways was indicated by the simultaneous maximal expression of the Pm and PbenR promoters, as well as the transcriptional activation from PbenA occurring prior to PbenR, which indicates the potential up-regulation of PbenA by the TOL XylS protein. The repressory effect of toluene on Pr was evident for concentrations higher than 0.3mM suggesting a threshold value for restoring the promoter's activity, while all the other promoters followed a specific expression pattern, regardless of the initial inducer concentration. Induction of the system with higher toluene concentrations revealed an oscillatory behaviour of Pm, the expression of which remained at high levels until the late exponential phase, demonstrating a novel function of this network. Copyright © 2016. Published by Elsevier B.V.

  2. Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie's lab and the Chuanyou Li's lab.

    PubMed

    Wasternack, Claus

    2014-05-01

    Jasmonates (JAs) are lipid-derived signals in plant responses to biotic and abiotic stresses and in development. The most active JA compound is (+)-7-iso-JA-Ile, a JA conjugate with isoleucine. Biosynthesis, metabolism and key components of perception and signal transduction have been identified and numerous JA-induced gene expression data collected. For JA-Ile perception, the SCF(COI1)-JAZ co-receptor complex has been identified and crystalized. Activators such as MYC2 and repressors such as JAZs including their targets were found. Involvement of JA-Ile in response to herbivores and pathogens and in root growth inhibition is among the most studied aspects of JA-Ile signaling. There are an increasing number of examples, where JA-Ile shows cross-talk with other plant hormones. Seminal contributions in JA/JA-Ile research were given by Daoxin Xie's lab and Chuanyou Li's lab, both in Beijing. Here, characterization was done regarding components of the JA-Ile receptor, such as COI1 (JAI1) and SCF, regarding activators (MYCs, MYBs) and repressors (JAV1, bHLH IIId's) of JA-regulated gene expression, as well as regarding components of auxin biosynthesis and action, such as the transcription factor PLETHORA active in the root stem cell niche. This overview reflects the work of both labs in the light of our present knowledge on biosynthesis, perception and signal transduction of JA/JA-Ile and its cross-talk to other hormones.

  3. Multifactor dimensionality reduction analysis to elucidate the cross-talk between one-carbon and xenobiotic metabolic pathways in multi-disease models.

    PubMed

    Naushad, Shaik Mohammad; Vijayalakshmi, Sana Venkata; Rupasree, Yedluri; Kumudini, Nadella; Sowganthika, Sampathkumar; Naidu, Janardhanan Venketlakshmi; Ramaiah, M Janaki; Rao, Dunna Nageswara; Kutala, Vijay Kumar

    2015-07-01

    Putatively functional polymorphisms of one-carbon and xenobiotic metabolic pathways influence susceptibility for wide spectrum of diseases. The current study was aimed to explore gene-gene interactions among these two metabolic pathways in four diseases i.e. breast cancer, systemic lupus erythematosus (SLE), coronary artery disease (CAD) and Parkinson's disease (PD). Multifactor dimensionality reduction analysis was carried out on four case-control datasets. Cross-talk was observed between one-carbon and xenobiotic pathways in breast cancer (RFC 80 G>A, COMT H108L and TYMS 5'-UTR 28 bp tandem repeat) and SLE (CYP1A1 m1, MTRR 66 A>G and GSTT1). Gene-gene interactions within one-carbon metabolic pathway were observed in CAD (GCPII 1561 C>T, SHMT 1420 C>T and MTHFR 677 C>T) and PD (cSHMT 1420 C>T, MTRR 66 A>G and RFC1 80 G>A). These interaction models showed good predictability of risk for PD (The area under the receiver operating characteristic curve (C) = 0.83) and SLE (C = 0.73); and moderate predictability of risk for breast cancer (C = 0.64) and CAD (C = 0.63). Cross-talk between one-carbon and xenobiotic pathways was observed in diseases with female preponderance. Gene-gene interactions within one-carbon metabolic pathway were observed in diseases with male preponderance.

  4. Comparative analysis of the Spirulina platensis subcellular proteome in response to low- and high-temperature stresses: uncovering cross-talk of signaling components

    PubMed Central

    2011-01-01

    The present study focused on comparative proteome analyses of low- and high-temperature stresses and potential protein-protein interaction networks, constructed by using a bioinformatics approach, in response to both stress conditions. The data revealed two important points: first, the results indicate that low-temperature stress is tightly linked with oxidative stress as well as photosynthesis; however, no specific mechanism is revealed in the case of the high-temperature stress response. Second, temperature stress was revealed to be linked with nitrogen and ammonia assimilation. Moreover, the data also highlighted the cross-talk of signaling pathways. Some of the detected signaling proteins, e.g., Hik14, Hik26 and Hik28, have potential interactions with differentially expressed proteins identified in both temperature stress conditions. Some differentially expressed proteins found in the Spirulina protein-protein interaction network were also examined for their physical interactions by a yeast two hybrid system (Y2H). The Y2H results obtained in this study suggests that the potential PPI network gives quite reliable potential interactions for Spirulina. Therefore, the bioinformatics approach employed in this study helps in the analysis of phenomena where proteome analyses of knockout mutants have not been carried out to directly examine for specificity or cross-talk of signaling components. PMID:21756373

  5. AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of {beta}-catenin at Ser 552

    SciTech Connect

    Zhao, Junxing; Yue, Wanfu; Zhu, Mei J.; Sreejayan, Nair; Du, Min

    2010-04-23

    AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; its activity is regulated by a plethora of physiological conditions, exercises and many anti-diabetic drugs. Recent studies show that AMPK involves in cell differentiation but the underlying mechanism remains undefined. Wingless Int-1 (Wnt)/{beta}-catenin signaling pathway regulates the differentiation of mesenchymal stem cells through enhancing {beta}-catenin/T-cell transcription factor 1 (TCF) mediated transcription. The objective of this study was to determine whether AMPK cross-talks with Wnt/{beta}-catenin signaling through phosphorylation of {beta}-catenin. C3H10T1/2 mesenchymal cells were used. Chemical inhibition of AMPK and the expression of a dominant negative AMPK decreased phosphorylation of {beta}-catenin at Ser 552. The {beta}-catenin/TCF mediated transcription was correlated with AMPK activity. In vitro, pure AMPK phosphorylated {beta}-catenin at Ser 552 and the mutation of Ser 552 to Ala prevented such phosphorylation, which was further confirmed using [{gamma}-{sup 32}P]ATP autoradiography. In conclusion, AMPK phosphorylates {beta}-catenin at Ser 552, which stabilizes {beta}-catenin, enhances {beta}-catenin/TCF mediated transcription, expanding AMPK from regulation of energy metabolism to cell differentiation and development via cross-talking with the Wnt/{beta}-catenin signaling pathway.

  6. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and PH domain and leucine-rich repeat phosphatase cross-talk (PHLPP) in cancer cells and in transforming growth factor β-activated stem cells.

    PubMed

    Ghalali, Aram; Ye, Zhi-Wei; Högberg, Johan; Stenius, Ulla

    2014-04-25

    Akt kinase controls cell survival, proliferation, and invasive growth and is a critical factor for cancer development. Here we describe a cross-talk between phosphatases that may preserve levels of activated/phosphorylated Akt and confer aggressive growth of cancer cells. In prostatic cancer cells, but not in non-transformed cells or in prostate stem cells, we found that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) overexpression down-regulated PH domain and leucine-rich repeat phosphatase (PHLPP) and that PHLPP overexpression down-regulated PTEN. We also show that silencing PTEN by siRNA increased the levels of PHLPPs. This cross-talk facilitated invasive migration and was mediated by epigenetic alterations, including activation of miR-190, miR-214, polycomb group of proteins, as well as DNA methylation. A role for the purinergic receptor P2X4, previously associated with wound healing, was indicated. We also show that TGF-β1 induced cross-talk concomitant with epithelial-mesenchymal transition in stem cells. The cross-talk emerged as an integrated part of epithelial-mesenchymal transition. We conclude that cross-talk between PTEN and PHLPPs is silenced in normal prostate cells but activated in TGF-β1 transformed prostate stem and cancer cells and facilitates invasive growth.

  7. A rare cationic building block that generates a new type of polyhedral network with "cross-linked" pto topology.

    PubMed

    Lusi, Matteo; Fechine, Pierre B A; Chen, Kai-Jie; Perry, John J; Zaworotko, Michael J

    2016-03-18

    A rare 8-connected cationic building block, [Cu2L8(μ-MF6)](2+) (L = pyridyl ligand, M = Si, Ti, Ge, Zr or Sn), enables the formation of a small cubicuboctahedral supramolecular building block, SBB, when complexed by 2,4,6-tris(4-pyridyl)pyridine. The coordination network resulting from fusing the square faces of the SBBs can be described as a pto topology in which half of the square faces are cross-linked by MF6(2-) moieties, and represents the first example of a new 3,5-c topology.

  8. Cross-over component code construction for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Kasami, Tadao; Takata, Toyoo; Fujiwara, Toru; Lin, Shu

    1990-01-01

    This paper investigates the multilevel technique for combining block coding and modulation. Several specific methods for constructing multilevel block modulation codes with interdependency among component codes are presented. Given a multilevel block modulation code C with no interdependency among the binary component codes, the proposed methods give a multilevel block modulation code C-prime which has the same rate as C, a minimum squared Euclidean distance not less than that of C, a trellis diagram with the same number of states as that of C, and a smaller number of nearest neighbor codewords than that of C.

  9. Cross-over component code construction for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Kasami, Tadao; Takata, Toyoo; Fujiwara, Toru; Lin, Shu

    1990-01-01

    This paper investigates the multilevel technique for combining block coding and modulation. Several specific methods for constructing multilevel block modulation codes with interdependency among component codes are presented. Given a multilevel block modulation code C with no interdependency among the binary component codes, the proposed methods give a multilevel block modulation code C-prime which has the same rate as C, a minimum squared Euclidean distance not less than that of C, a trellis diagram with the same number of states as that of C, and a smaller number of nearest neighbor codewords than that of C.

  10. Talking Science

    ERIC Educational Resources Information Center

    Shwartz, Yael; Weizman, Ayelet; Fortus, David; Sutherland, LeeAnn; Merrit, Joi; Krajcik, Joe

    2009-01-01

    Science is a social process--one that involves particular ways of talking, reasoning, observing, analyzing, and writing, which often have meaning only when shared within the scientific community. Discussions are one of the best ways to help students learn to "talk science" and construct understanding in a social context. Since inquiry is an…

  11. Talking Science

    ERIC Educational Resources Information Center

    Shwartz, Yael; Weizman, Ayelet; Fortus, David; Sutherland, LeeAnn; Merrit, Joi; Krajcik, Joe

    2009-01-01

    Science is a social process--one that involves particular ways of talking, reasoning, observing, analyzing, and writing, which often have meaning only when shared within the scientific community. Discussions are one of the best ways to help students learn to "talk science" and construct understanding in a social context. Since inquiry is an…

  12. [Sleep talking].

    PubMed

    Challamel, M J

    2001-11-01

    Sleep talking is very common in the general population. Its prevalence remains stable from childhood through adulthood. Sleep talking is often associated with other parasomnias: sleep walking, sleep terrors or REM sleep behavior disorders. It may arise from either REM or non REM sleep, when associated with REM sleep it is more comprehensible and often associated with clear sentences and recall of sleep mentation. Sleep talking is a benign entity and does not require any treatment; however an exceptional organic cause or psychopathology should be suspected if the onset is late (after 25 years); if the mental content is too violent or too emotional.

  13. Evaluation of the optical cross talk level in the SiPMs adopted in ASTRI SST-2M Cherenkov Camera using EASIROC front-end electronics

    NASA Astrophysics Data System (ADS)

    Impiombato, D.; Giarrusso, S.; Mineo, T.; Agnetta, G.; Biondo, B.; Catalano, O.; Gargano, C.; La Rosa, G.; Russo, F.; Sottile, G.; Belluso, M.; Billotta, S.; Bonanno, G.; Garozzo, S.; Marano, D.; Romeo, G.

    2014-02-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana), is a flagship project of the Italian Ministry of Education, University and Research whose main goal is the design and construction of an end-to-end prototype of the Small Size of Telescopes of the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, will adopt a wide field dual mirror optical system in a Schwarzschild-Couder configuration to explore the VHE range of the electromagnetic spectrum. The camera at the focal plane is based on Silicon Photo-Multipliers detectors which is an innovative solution for the detection astronomical Cherenkov light. This contribution reports some preliminary results on the evaluation of the optical cross talk level among the SiPM pixels foreseen for the ASTRI SST-2M camera.

  14. Thymic Medullary Epithelial Cell Differentiation, Thymocyte Emigration, and the Control of Autoimmunity Require Lympho–Epithelial Cross Talk via LTβR

    PubMed Central

    Boehm, Thomas; Scheu, Stefanie; Pfeffer, Klaus; Bleul, Conrad C.

    2003-01-01

    Thymocytes depend on the interaction with thymic epithelial cells for the generation of a diverse, nonautoreactive T cell repertoire. In turn, thymic epithelial cells acquire their three-dimensional cellular organization via instructive signals from developing thymocytes. The nature of these signals has been elusive so far. We show that thymocytes and medullary epithelial cells (MECs) communicate via the lymphotoxin β receptor (LTβR) signaling axis. Normal differentiation of thymic MECs requires LTβR ligand on thymocytes and LTβR together with nuclear factor–κB-inducing kinase (Nik) in thymic epithelial cells. Impaired lympho–epithelial cross talk in the absence of the LTβR causes aberrant differentiation and reduced numbers of thymic MECs, leads to the retention of mature T lymphocytes, and is associated with autoimmune phenomena, suggesting an unexpected role for LTβR signaling in central tolerance induction. PMID:12953095

  15. ErbB1-4-dependent EGF/neuregulin signals and their cross talk in the central nervous system: pathological implications in schizophrenia and Parkinson's disease

    PubMed Central

    Iwakura, Yuriko; Nawa, Hiroyuki

    2013-01-01

    Ligands for ErbB1-4 receptor tyrosine kinases, such as epidermal growth factor (EGF) and neuregulins, regulate brain development and function. Thus, abnormalities in their signaling are implicated in the etiology or pathology of schizophrenia and Parkinson's disease. Among the ErbB receptors, ErbB1, and ErbB4 are expressed in dopamine and GABA neurons, while ErbB1, 2, and/or 3 are mainly present in oligodendrocytes, astrocytes, and their precursors. Thus, deficits in ErbB signaling might contribute to the neurological and psychiatric diseases stemming from these cell types. By incorporating the latest cancer molecular biology as well as our recent progress, we discuss signal cross talk between the ErbB1-4 subunits and their neurobiological functions in each cell type. The potential contribution of virus-derived cytokines (virokines) that mimic EGF and neuregulin-1 in brain diseases are also discussed. PMID:23408472

  16. Formation of retinoid X receptor homodimers leads to repression of T3 response: hormonal cross talk by ligand-induced squelching.

    PubMed Central

    Lehmann, J M; Zhang, X K; Graupner, G; Lee, M O; Hermann, T; Hoffmann, B; Pfahl, M

    1993-01-01

    Thyroid hormone receptors (TRs) form heterodimers with retinoid X receptors (RXRs). Heterodimerization is required for efficient TR DNA binding to most response elements and transcriptional activation by thyroid hormone. RXRs also function as auxiliary proteins for several other receptors. In addition, RXR alpha can be induced by specific ligands to form homodimers. Here we report that RXR-specific retinoids that induce RXR homodimers are effective repressors of the T3 response. We provide evidence that this repression by RXR-specific ligands occurs by sequestering of RXR from TR-RXR heterodimers into RXR homodimers. This ligand-induced squelching may represent an important mechanism by which RXR-specific retinoids and 9-cis retinoic acid mediate hormonal cross talk among a subfamily of nuclear receptors activated by structurally unrelated ligands. Images PMID:8246986

  17. The cross-talk between autophagy and endoplasmic reticulum stress in blood-spinal cord barrier disruption after spinal cord injury.

    PubMed

    Zhou, Yulong; Wu, Yanqing; Liu, Yanlong; He, Zili; Zou, Shuang; Wang, Qingqing; Li, Jiawei; Zheng, Zengming; Chen, Jian; Wu, Fenzan; Gong, Fanhua; Zhang, Hongyu; Xu, Huazi; Xiao, Jian

    2017-01-03

    Spinal cord injury induces the disruption of blood-spinal cord barrier and triggers a complex array of tissue responses, including endoplasmic reticulum (ER) stress and autophagy. However, the roles of ER stress and autophagy in blood-spinal cord barrier disruption have not been discussed in acute spinal cord trauma. In the present study, we respectively detected the roles of ER stress and autophagy in blood-spinal cord barrier disruption after spinal cord injury. Besides, we also detected the cross-talking between autophagy and ER stress both in vivo and in vitro. ER stress inhibitor, 4-phenylbutyric acid, and autophagy inhibitor, chloroquine, were respectively or combinedly administrated in the model of acute spinal cord injury rats. At day 1 after spinal cord injury, blood-spinal cord barrier was disrupted and activation of ER stress and autophagy were involved in the rat model of trauma. Inhibition of ER stress by treating with 4-phenylbutyric acid decreased blood-spinal cord barrier permeability, prevented the loss of tight junction (TJ) proteins and reduced autophagy activation after spinal cord injury. On the contrary, inhibition of autophagy by treating with chloroquine exacerbated blood-spinal cord barrier permeability, promoted the loss of TJ proteins and enhanced ER stress after spinal cord injury. When 4-phenylbutyric acid and chloroquine were combinedly administrated in spinal cord injury rats, chloroquine abolished the blood-spinal cord barrier protective effect of 4-phenylbutyric acid by exacerbating ER stress after spinal cord injury, indicating that the cross-talking between autophagy and ER stress may play a central role on blood-spinal cord barrier integrity in acute spinal cord injury. The present study illustrates that ER stress induced by spinal cord injury plays a detrimental role on blood-spinal cord barrier integrity, on the contrary, autophagy induced by spinal cord injury plays a furthersome role in blood-spinal cord barrier integrity in

  18. 24-Epibrassinolide ameliorates salt stress effects in the symbiosis Medicago truncatula-Sinorhizobium meliloti and regulates the nodulation in cross-talk with polyamines.

    PubMed

    López-Gómez, Miguel; Hidalgo-Castellanos, Javier; Lluch, Carmen; Herrera-Cervera, José A

    2016-11-01

    Brassinosteroids (BRs) are steroid plant hormones that have been shown to be involved in the response to salt stress in cross-talk with other plant growth regulators such as polyamines (PAs). In addition, BRs are involved in the regulation of the nodulation in the rhizobium-legume symbiosis through the alteration of the PAs content in leaves. In this work, we have studied the effect of exogenous 24-epibrassinolide (EBL) in the response to salinity of nitrogen fixation in the symbiosis Medicago truncatula-Sinorhizobium meliloti. Foliar spraying of EBL restored the growth of plants subjected to salt stress and provoked an increment of the nitrogenase activity. In general, PAs levels in leaves and nodules decreased by the salt and EBL treatments, however, the co-treatment with NaCl and EBL augmented the foliar spermine (Spm) concentration. This increment of the Spm levels was followed by a reduction of the membrane oxidative damage and a diminution of the proline accumulation. The effect of BRs on the symbiotic interaction was evaluated by the addition of 0.01, 0.1 and 0.5 μM EBL to the growing solution, which provoked a reduction of the nodule number and an increment of the PAs levels in shoot. In conclusion, foliar treatment with EBL had a protective effect against salt stress in the M. truncatula-S. meliloti symbiosis mediated by an increment of the Spm levels. Treatment of roots with EBL incremented PAs levels in shoot and reduced the nodule number which suggests a cross-talk between PAs and BRs in the nodule suppression and the protection against salt stress.

  19. Cross-talk between ER and HER2 regulates c-MYC-mediated glutamine metabolism in aromatase inhibitor resistant breast cancer cells.

    PubMed

    Chen, Zhike; Wang, Yuanzhong; Warden, Charles; Chen, Shiuan

    2015-05-01

    Resistance to endocrine therapies in hormone receptor (HR)-positive breast cancer is a significant clinical problem for a considerable number of patients. The oncogenic transcription factor c-MYC (hereafter referred to as MYC), which regulates glutamine metabolism in cancer cells, has been linked to endocrine resistance. We were interested in whether MYC-mediated glutamine metabolism is also associated with aromatase inhibitor (AI) resistant breast cancer. We studied the expression and regulation of MYC and the effects of inhibition of MYC expression in both AI sensitive and resistant breast cancer cells. Considering the role of MYC in glutamine metabolism, we evaluated the contribution of glutamine to the proliferation of AI sensitive and resistant cells, and performed RNA-sequencing to investigate mechanisms of MYC-mediated glutamine utilization in AI resistance. We found that glutamine metabolism was independent of estrogen but still required estrogen receptor (ER) in AI resistant breast cancer cells. The expression of MYC oncogene was up-regulated through the cross-talk between ER and human epidermal growth factor receptor 2 (HER2) in AI resistant breast cancer cells. Moreover, the glutamine transporter solute carrier family (SLC) 1A5 was significantly up-regulated in AI resistant breast cancer cells. ER down-regulator fulvestrant inhibited MYC, SLC1A5, glutaminase (GLS) and glutamine consumption in AI resistant breast cancer cells. Inhibition of MYC, SLC1A5 and GLS decreased AI resistant breast cancer cell proliferation. Our study has uncovered that MYC expression is up-regulated by the cross-talk between ER and HER2 in AI resistant breast cancer cells. MYC-mediated glutamine metabolism is associated with AI resistance of breast cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The transcriptional integrator CREB-binding protein mediates positive cross talk between nuclear hormone receptors and the hematopoietic bZip protein p45/NF-E2.

    PubMed Central

    Cheng, X; Reginato, M J; Andrews, N C; Lazar, M A

    1997-01-01

    Thyroid hormone (T3) and retinoic acid (RA) play important roles in erythropoiesis. We found that the hematopoietic cell-specific bZip protein p45/NF-E2 interacts with T3 receptor (TR) and RA receptor (RAR) but not retinoid X receptor. The interaction is between the DNA-binding domain of the nuclear receptor and the leucine zipper region of p45/NF-E2 but is markedly enhanced by cognate ligand. Remarkably, ligand-dependent transactivation by TR and RAR is markedly potentiated by p45/NF-E2. This effect of p45/NF-E2 is prevented by maf-like protein p18, which functions positively as a heterodimer with p45/NF-E2 on DNA. Potentiation of hormone action by p45/NF-E2 requires its activation domain, which interacts strongly with the multifaceted coactivator cyclic AMP response element protein-binding protein (CBP). The region of CBP which interacts with p45/NF-E2 is the same interaction domain that mediates inhibition of hormone-stimulated transcription by AP1 transcription factors. Overexpression of the bZip interaction domain of CBP specifically abolishes the positive cross talk between TR and p45/NF-E2. Thus, positive cross talk between p45/NF-E2 and nuclear hormone receptors requires direct protein-protein interactions between these factors and with CBP, whose integration of positive signals from two transactivation domains provides a novel mechanism for potentiation of hormone action in hematopoietic cells. PMID:9032267

  1. Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways.

    PubMed

    Hidalgo, Pedro I; Ullán, Ricardo V; Albillos, Silvia M; Montero, Olimpio; Fernández-Bodega, María Ángeles; García-Estrada, Carlos; Fernández-Aguado, Marta; Martín, Juan-Francisco

    2014-01-01

    The PR-toxin is a potent mycotoxin produced by Penicillium roqueforti in moulded grains and grass silages and may contaminate blue-veined cheese. The PR-toxin derives from the 15 carbon atoms sesquiterpene aristolochene formed by the aristolochene synthase (encoded by ari1). We have cloned and sequenced a four gene cluster that includes the ari1 gene from P. roqueforti. Gene silencing of each of the four genes (named prx1 to prx4) resulted in a reduction of 65-75% in the production of PR-toxin indicating that the four genes encode enzymes involved in PR-toxin biosynthesis. Interestingly the four silenced mutants overproduce large amounts of mycophenolic acid, an antitumor compound formed by an unrelated pathway suggesting a cross-talk of PR-toxin and mycophenolic acid production. An eleven gene cluster that includes the above mentioned four prx genes and a 14-TMS drug/H(+) antiporter was found in the genome of Penicillium chrysogenum. This eleven gene cluster has been reported to be very poorly expressed in a transcriptomic study of P. chrysogenum genes under conditions of penicillin production (strongly aerated cultures). We found that this apparently silent gene cluster is able to produce PR-toxin in P. chrysogenum under static culture conditions on hydrated rice medium. Noteworthily, the production of PR-toxin was 2.6-fold higher in P. chrysogenum npe10, a strain deleted in the 56.8kb amplifiable region containing the pen gene cluster, than in the parental strain Wisconsin 54-1255 providing another example of cross-talk between secondary metabolite pathways in this fungus. A detailed PR-toxin biosynthesis pathway is proposed based on all available evidence.

  2. RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells.

    PubMed

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Munteanu, Maria Cristina; Dinischiotu, Anca

    2016-01-01

    AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE's proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications.

  3. Light and CO2/cAMP Signal Cross Talk on the Promoter Elements of Chloroplastic β-Carbonic Anhydrase Genes in the Marine Diatom Phaeodactylum tricornutum.

    PubMed

    Tanaka, Atsushi; Ohno, Naoki; Nakajima, Kensuke; Matsuda, Yusuke

    2016-02-01

    Our previous study showed that three CO2/cAMP-responsive elements (CCRE) CCRE1, CCRE2, and CCRE3 in the promoter of the chloroplastic β-carbonic anhydrase 1 gene in the marine diatom Phaeodactylum tricornutum (Pptca1) were critical for the cAMP-mediated transcriptional response to ambient CO2 concentration. Pptca1 was activated under CO2 limitation, but the absence of light partially disabled this low-CO2-triggered transcriptional activation. This suppression effect disappeared when CCRE2 or two of three CCREs were replaced with a NotI restriction site, strongly suggesting that light signal cross-talks with CO2 on the cAMP-signal transduction pathway that targets CCREs. The paralogous chloroplastic carbonic anhydrase gene, ptca2 was also CO2/cAMP-responsive. The upstream truncation assay of the ptca2 promoter (Pptca2) revealed a short sequence of -367 to -333 relative to the transcription-start site to be a critical regulatory region for the CO2 and light responses. This core-regulatory region comprises one CCRE1 and two CCRE2 sequences. Further detailed analysis of Pptca2 clearly indicates that two CCRE2s are the cis-element governing the CO2/light response of Pptca2. The transcriptional activation of two Pptcas in CO2 limitation was evident under illumination with a photosynthetically active light wavelength, and an artificial electron acceptor from the reduction side of PSI efficiently inhibited Pptcas activation, while neither inhibition of the linear electron transport from PSII to PSI nor inhibition of ATP synthesis showed an effect on the promoter activity, strongly suggesting a specific involvement of the redox level of the stromal side of the PSI in the CO2/light cross talk.

  4. The cross-talk between autophagy and endoplasmic reticulum stress in blood-spinal cord barrier disruption after spinal cord injury

    PubMed Central

    He, Zili; Zou, Shuang; Wang, Qingqing; Li, Jiawei; Zheng, Zengming; Chen, Jian; Wu, Fenzan; Gong, Fanhua; Zhang, Hongyu; Xu, Huazi; Xiao, Jian

    2017-01-01

    Spinal cord injury induces the disruption of blood-spinal cord barrier and triggers a complex array of tissue responses, including endoplasmic reticulum (ER) stress and autophagy. However, the roles of ER stress and autophagy in blood-spinal cord barrier disruption have not been discussed in acute spinal cord trauma. In the present study, we respectively detected the roles of ER stress and autophagy in blood-spinal cord barrier disruption after spinal cord injury. Besides, we also detected the cross-talking between autophagy and ER stress both in vivo and in vitro. ER stress inhibitor, 4-phenylbutyric acid, and autophagy inhibitor, chloroquine, were respectively or combinedly administrated in the model of acute spinal cord injury rats. At day 1 after spinal cord injury, blood-spinal cord barrier was disrupted and activation of ER stress and autophagy were involved in the rat model of trauma. Inhibition of ER stress by treating with 4-phenylbutyric acid decreased blood-spinal cord barrier permeability, prevented the loss of tight junction (TJ) proteins and reduced autophagy activation after spinal cord injury. On the contrary, inhibition of autophagy by treating with chloroquine exacerbated blood-spinal cord barrier permeability, promoted the loss of TJ proteins and enhanced ER stress after spinal cord injury. When 4-phenylbutyric acid and chloroquine were combinedly administrated in spinal cord injury rats, chloroquine abolished the blood-spinal cord barrier protective effect of 4-phenylbutyric acid by exacerbating ER stress after spinal cord injury, indicating that the cross-talking between autophagy and ER stress may play a central role on blood-spinal cord barrier integrity in acute spinal cord injury. The present study illustrates that ER stress induced by spinal cord injury plays a detrimental role on blood-spinal cord barrier integrity, on the contrary, autophagy induced by spinal cord injury plays a furthersome role in blood-spinal cord barrier integrity in

  5. RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells

    PubMed Central

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Munteanu, Maria Cristina; Dinischiotu, Anca

    2016-01-01

    AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE’s proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications. PMID:27015414

  6. Extracellular vesicle mediated intercellular communication at the porcine maternal-fetal interface: A new paradigm for conceptus-endometrial cross-talk

    PubMed Central

    Bidarimath, Mallikarjun; Khalaj, Kasra; Kridli, Rami T.; Kan, Frederick W. K.; Koti, Madhuri; Tayade, Chandrakant

    2017-01-01

    Exosomes and microvesicles are extracellular vesicles released from cells and can contain lipids, miRNAs and proteins that affect cells at distant sites. Recently, microvesicles containing miRNA have been implicated in uterine microenvironment of pigs, a species with unique epitheliochorial (non-invasive) placentation. Here we report a novel role of conceptus-derived exosomes/microvesicles (hereafter referred to as extracellular vesicles; EVs) in embryo-endometrial cross-talk. We also demonstrate the stimulatory effects of EVs (PTr2-Exo) derived from porcine trophectoderm-cells on various biological processes including the proliferation of maternal endothelial cells (PAOEC), potentially promoting angiogenesis. Transmission immuno-electron microscopy confirmed the presence of EVs in tissue biopsies, PTr2-Exo and PAOEC-derived EVs (PAOEC-Exo). RT-PCR detected 14 select miRNAs in CD63 positive EVs in which miR-126-5P, miR-296-5P, miR-16, and miR-17-5P were the most abundant angiogenic miRNAs. Proteomic analysis revealed EV proteins that play a role in angiogenesis. In-vitro experiments, using two representative cell lines of maternal-fetal interface, demonstrated bidirectional EVs shuttling between PTr2 and PAOEC cells. Importantly, these studies support the idea that PTr2-Exo and PAOEC-Exo containing select miRNAs and proteins can be successfully delivered to recipient cells and that they may have a biological role in conceptus-endometrial cross-talk crucial for the pregnancy success. PMID:28079186

  7. Positive cross talk between protein kinase D and β-catenin in intestinal epithelial cells: impact on β-catenin nuclear localization and phosphorylation at Ser552.

    PubMed

    Wang, Jia; Han, Liang; Sinnett-Smith, James; Han, Li-Li; Stevens, Jan V; Rozengurt, Nora; Young, Steven H; Rozengurt, Enrique

    2016-04-01

    Given the fundamental role of β-catenin signaling in intestinal epithelial cell proliferation and the growth-promoting function of protein kinase D1 (PKD1) in these cells, we hypothesized that PKDs mediate cross talk with β-catenin signaling. The results presented here provide several lines of evidence supporting this hypothesis. We found that stimulation of intestinal epithelial IEC-18 cells with the G protein-coupled receptor (GPCR) agonist angiotensin II (ANG II), a potent inducer of PKD activation, promoted endogenous β-catenin nuclear localization in a time-dependent manner. A significant increase was evident within 1 h of ANG II stimulation (P< 0.01), peaked at 4 h (P< 0.001), and declined afterwards. GPCR stimulation also induced a marked increase in β-catenin-regulated genes and phosphorylation at Ser(552) in intestinal epithelial cells. Exposure to preferential inhibitors of the PKD family (CRT006610 or kb NB 142-70) or knockdown of the isoforms of the PKD family prevented the increase in β-catenin nuclear localization and phosphorylation at Ser(552) in response to ANG II. GPCR stimulation also induced the formation of a complex between PKD1 and β-catenin, as shown by coimmunoprecipitation that depended on PKD1 catalytic activation, as it was abrogated by cell treatment with PKD family inhibitors. Using transgenic mice that express elevated PKD1 protein in the intestinal epithelium, we detected a marked increase in the localization of β-catenin in the nucleus of crypt epithelial cells in the ileum of PKD1 transgenic mice, compared with nontransgenic littermates. Collectively, our results identify a novel cross talk between PKD and β-catenin in intestinal epithelial cells, both in vitro and in vivo.

  8. Effects of deficiency and excess of zinc on morphophysiological traits and spatiotemporal regulation of zinc-responsive genes reveal incidence of cross talk between micro- and macronutrients.

    PubMed

    Jain, Ajay; Sinilal, Bhaskaran; Dhandapani, Gurusamy; Meagher, Richard B; Sahi, Shivendra V

    2013-05-21

    Zinc (Zn) is an essential micronutrient which affects plant growth and development in deficiency and can be toxic when present in excess. In Arabidopsis thaliana , different families of cation transporters play pivotal roles in Zn homeostasis. In the present study, we evaluated the effects of Zn in its deficiency (0 μM; Zn-) and excess (75 μM; Zn++) on various morphophysiological and molecular traits. Primary root length was reduced in Zn- seedlings, whereas there were significant increases in the number and length of lateral roots under Zn- and Zn++ conditions, respectively. Concentration of various macro- and microelements showed variations under different Zn regimes and notable among them was the reduced level of iron (Fe) in Zn++ seedlings compared to Zn+. Certain members of the ZIP family (ZIP4, ZIP9, and ZIP12) showed significant induction in roots and shoots of the Zn- seedlings. Their suppression under Zn++ condition indicated their transcriptional regulation by Zn and their roles in the maintenance of its homeostasis. Zn-deficiency-mediated induction of HMA2 in roots and shoots suggested its role in effluxing Zn into xylem for long-distance transport. Attenuation in the expression of Fe-responsive FRO2 and IRT1 in Zn- roots and their induction in Zn++ roots provided empirical evidence toward the prevalence of a cross talk between Zn and Fe homeostasis. Variable effects of Zn- and Zn++ on the expression of subset of genes involved in the homeostasis of phosphate (Pi), potassium (K), and sulfur (S) further highlighted the prevalence of cross talk between the sensing and signaling cascades of Zn and macronutrients. Further, the inducibility of ZIP4 and ZIP12 in response to cadmium (cd) treatment could be harnessed by tailoring them in homologous or heterologous plant system for removing pollutant toxic heavy metals from the environment.

  9. The cardiac maladaptive ATF3-dependent cross-talk between cardiomyocytes and macrophages is mediated by the IFNγ-CXCL10-CXCR3 axis.

    PubMed

    Koren, L; Barash, U; Zohar, Y; Karin, N; Aronheim, A

    2017-02-01

    Pressure overload induces adaptive and maladaptive cardiac remodeling processes in the heart. Part of the maladaptive process is the cross-talk between cardiomyocytes and macrophages which is dependent on the function of the Activating Transcription Factor 3, ATF3. Yet, the molecular mechanism involved in cardiomyocytes-macrophages communication leading to macrophages recruitment to the heart and cardiac maladaptive remodeling is currently unknown. Isolated peritoneal macrophages from either wild type or ATF3-KO mice were cultured in serum free medium to collect conditioned medium (CM). CM was used to probe an antibody cytokine/chemokine array. The interferon γ induced protein 10kDa, CXCL10, was found to be enriched in wild type macrophages CM. Wild type cardiomyocytes treated with CXCL10 in vitro, resulted in significant increase in cell volume as compared to ATF3-KO cardiomyocytes. In vivo, pressure overload was induced by phenylephrine (PE) infusion using micro-osmotic pumps. Consistently, CXCL11 (CXCL10 competitive agonist) and CXCL10 receptor antagonist (AMG487) attenuated PE-dependent maladaptive cardiac remodeling. Significantly, we show that the expression of the CXCL10 receptor, CXCR3, is suppressed in cardiomyocytes and macrophages derived from ATF3-KO mice. CXCR3 is positively regulated by ATF3 through an ATF3 transcription response element found in its proximal promoter. Finally, mice lacking CXCR3 display a significant reduction of cardiac remodeling processes following PE infusion. Chronic PE infusion results in a unique cardiomyocytes-macrophages cross-talk that is mediated by IFNγ. Subsequently, macrophages that are recruited to the heart secrete CXCL10 resulting in maladaptive cardiac remodeling mediated by the CXCR3 receptor. ATF3-KO mice escape from PE-dependent maladaptive cardiac remodeling by suppressing the IFNγ-CXCL10-CXCR3 axis at multiple levels. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. The Impact of Intramammary Escherichia coli Challenge on Liver and Mammary Transcriptome and Cross-Talk in Dairy Cows during Early Lactation Using RNAseq

    PubMed Central

    Moyes, K. M.; Sørensen, P.; Bionaz, M.

    2016-01-01

    Our objective was to identify the biological response and the cross-talk between liver and mammary tissue after intramammary infection (IMI) with Escherichia coli (E. coli) using RNAseq technology. Sixteen cows were inoculated with live E. coli into one mammary quarter at ~4–6 weeks in lactation. For all cows, biopsies were performed at -144, 12 and 24 h relative to IMI in liver and at 24 h post-IMI in infected and non-infected (control) mammary quarters. For a subset of cows (n = 6), RNA was extracted from both liver and mammary tissue and sequenced using a 100 bp paired-end approach. Ingenuity Pathway Analysis and the Dynamic Impact Approach analysis of differentially expressed genes (overall effect False Discovery Rate≤0.05) indicated that IMI induced an overall activation of inflammation at 12 h post-IMI and a strong inhibition of metabolism, especially related to lipid, glucose, and xenobiotics at 24 h post-IMI in liver. The data indicated in mammary tissue an overall induction of inflammatory response with little effect on metabolism at 24 h post-IMI. We identified a large number of up-stream regulators potentially involved in the response to IMI in both tissues but a relatively small core network of transcription factors controlling the response to IMI for liver whereas a large network in mammary tissue. Transcriptomic results in liver and mammary tissue were supported by changes in inflammatory and metabolic mediators in blood and milk. The analysis of potential cross-talk between the two tissues during IMI uncovered a large communication from the mammary tissue to the liver to coordinate the inflammatory response but a relatively small communication from the liver to the mammary tissue. Our results indicate a strong induction of the inflammatory response in mammary tissue and impairment of liver metabolism 24h post-IMI partly driven by the signaling from infected mammary tissue. PMID:27336699

  11. The impact of physical activity and nutrition on inflammatory bowel disease: the potential role of cross talk between adipose tissue and skeletal muscle.

    PubMed

    Bilski, J; Mazur-Bialy, A I; Wierdak, M; Brzozowski, T

    2013-04-01

    Crohn's disease and ulcerative colitis are both chronic inflammatory bowel diseases (IBDs) characterized by a cyclical nature, which alternates between active and quiescent states, ultimately impairing a patients' quality of life. The etiology of IBD is not known but it likely involves a combination of genetic predisposition and environmental risk factors. Physical exercise has been suggested to provide protection against the onset of IBD, but there are inconsistencies in the findings of the published literature. Current research recommends exercise to help counteract some IBD-specific complications and preliminary studies suggest that physical activity may be beneficial in reducing the symptoms of IBD. Obesity is becoming more prevalent in patients diagnosed with IBD and may be associated with higher disease activity. There is evidence that adipokines are involved in the inflammatory and metabolic pathways. Hypertrophy of the mesenteric white adipose tissue has been long recognized as a characteristic feature of Crohn's disease; however its importance is unknown. Recent data suggest that dysregulation of adipokine secretion by white adipose tissue is involved in the pathogenesis of Crohn's disease. Skeletal muscle was shown to produce biologically active myokines, which could be a important contributor to the beneficial effects of exercise. There is mounting evidence for the bi-directional endocrine cross talk between adipose tissue and skeletal muscle. The objective of the present review is to explore the role of exercise and its impact on IBD. Also, we discuss how current discoveries regarding the importance of adipokines and myokines and their cross talk expand our view of the pathological changes and the therapeutic options for IBD.

  12. Positive cross talk between protein kinase D and β-catenin in intestinal epithelial cells: impact on β-catenin nuclear localization and phosphorylation at Ser552

    PubMed Central

    Wang, Jia; Han, Liang; Sinnett-Smith, James; Han, Li-Li; Stevens, Jan V.; Young, Steven H.; Rozengurt, Enrique

    2016-01-01

    Given the fundamental role of β-catenin signaling in intestinal epithelial cell proliferation and the growth-promoting function of protein kinase D1 (PKD1) in these cells, we hypothesized that PKDs mediate cross talk with β-catenin signaling. The results presented here provide several lines of evidence supporting this hypothesis. We found that stimulation of intestinal epithelial IEC-18 cells with the G protein-coupled receptor (GPCR) agonist angiotensin II (ANG II), a potent inducer of PKD activation, promoted endogenous β-catenin nuclear localization in a time-dependent manner. A significant increase was evident within 1 h of ANG II stimulation (P < 0.01), peaked at 4 h (P < 0.001), and declined afterwards. GPCR stimulation also induced a marked increase in β-catenin-regulated genes and phosphorylation at Ser552 in intestinal epithelial cells. Exposure to preferential inhibitors of the PKD family (CRT006610 or kb NB 142-70) or knockdown of the isoforms of the PKD family prevented the increase in β-catenin nuclear localization and phosphorylation at Ser552 in response to ANG II. GPCR stimulation also induced the formation of a complex between PKD1 and β-catenin, as shown by coimmunoprecipitation that depended on PKD1 catalytic activation, as it was abrogated by cell treatment with PKD family inhibitors. Using transgenic mice that express elevated PKD1 protein in the intestinal epithelium, we detected a marked increase in the localization of β-catenin in the nucleus of crypt epithelial cells in the ileum of PKD1 transgenic mice, compared with nontransgenic littermates. Collectively, our results identify a novel cross talk between PKD and β-catenin in intestinal epithelial cells, both in vitro and in vivo. PMID:26739494

  13. The Impact of Intramammary Escherichia coli Challenge on Liver and Mammary Transcriptome and Cross-Talk in Dairy Cows during Early Lactation Using RNAseq.

    PubMed

    Moyes, K M; Sørensen, P; Bionaz, M

    2016-01-01

    Our objective was to identify the biological response and the cross-talk between liver and mammary tissue after intramammary infection (IMI) with Escherichia coli (E. coli) using RNAseq technology. Sixteen cows were inoculated with live E. coli into one mammary quarter at ~4-6 weeks in lactation. For all cows, biopsies were performed at -144, 12 and 24 h relative to IMI in liver and at 24 h post-IMI in infected and non-infected (control) mammary quarters. For a subset of cows (n = 6), RNA was extracted from both liver and mammary tissue and sequenced using a 100 bp paired-end approach. Ingenuity Pathway Analysis and the Dynamic Impact Approach analysis of differentially expressed genes (overall effect False Discovery Rate≤0.05) indicated that IMI induced an overall activation of inflammation at 12 h post-IMI and a strong inhibition of metabolism, especially related to lipid, glucose, and xenobiotics at 24 h post-IMI in liver. The data indicated in mammary tissue an overall induction of inflammatory response with little effect on metabolism at 24 h post-IMI. We identified a large number of up-stream regulators potentially involved in the response to IMI in both tissues but a relatively small core network of transcription factors controlling the response to IMI for liver whereas a large network in mammary tissue. Transcriptomic results in liver and mammary tissue were supported by changes in inflammatory and metabolic mediators in blood and milk. The analysis of potential cross-talk between the two tissues during IMI uncovered a large communication from the mammary tissue to the liver to coordinate the inflammatory response but a relatively small communication from the liver to the mammary tissue. Our results indicate a strong induction of the inflammatory response in mammary tissue and impairment of liver metabolism 24h post-IMI partly driven by the signaling from infected mammary tissue.

  14. Slit Effect of Common Ground Patterns in Affecting Cross-Talk Noise between Two Parallel Signal Traces on Printed Circuit Boards

    NASA Astrophysics Data System (ADS)

    Maeno, Tsuyoshi; Sakurai, Yukihiko; Unou, Takanori; Ichikawa, Kouji; Fujiwara, Osamu

    It is well-known that electromagnetic (EM) disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns with slits. To evaluate the noise current outflows from the PCBs of this kind, we previously measured noise current outflows from four types of simple three-layer PCBs having two perpendicular signal traces and different ground patterns with/without slits, and showed that slits on a ground pattern allow conducted noise currents to flow out from PCBs, while the levels for the symmetric slits ground type are smaller compared to the case for two asymmetric slits ground types. In the present study, to further investigate the above finding, we fabricated six types of simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits, and measured the cross-talk noise between the traces. As a result, we found that the ground patterns with the slits perpendicular to the traces increase the cross-talk noise levels, which are larger by 19-42 dB than those for the ground pattern with no slits, while the ground patterns with the slits in parallel with the traces can suppress the noise levels, which are slightly smaller by 2.5-4.5 dB compared to the case for the no-slit ground pattern. These results were confirmed by the FDTD simulation, and were also qualitatively explained from an equivalent bridge circuit model we previously proposed.

  15. Cluster of differentiation 147 is a key molecule during hepatocellular carcinoma cell-hepatic stellate cell cross-talk in the rat liver.

    PubMed

    Ma, Tianyou; Wang, Zhilun; Yang, Zhantian; Chen, Jinghong

    2015-07-01

    The cross-talk between hepatocellular carcinoma (HCC) cells and activated hepatic stellate cells (HSCs) is considered to be important for modulating the biological behavior of tumor cells. However, the molecular links between inflammation and cancer in the activation of HSCs remain to be elucidated. The present study demonstrated that cluster of differentiation (CD)147 is a key molecule involved in the interaction between HCC cells and HSCs. The effects of conditioned medium from human HCC cells on the activation of the human HSC line, LX-2, were assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blotting, RT-qPCR and gelatin zymography were also used to investigate the effects of CD147 on the activation of LX-2. The expression levels of α-smooth muscle actin (α-SMA) and CD147 were assessed in a co-culture system of LX-2 and FHCC-98 cells by immunofluorescence staining and immunoblotting. In hepatic tissues from a rat model of fibrosis, immunohistochemistry and immunoblotting were performed to detect the expression levels of α-SMA and CD147. Tumor-conditioned medium and CD147 promoted cell proliferation, activated LX-2 cells, increased the expression levels of α-SMA, collagen I and tissue inhibitor of metalloproteinase-1 (TIMP-1), and increased the secretion of matrix metalloproteinase (MMP)-2. The HSCs, which were induced in the co-culture system of HCC cells and HSCs exhibited marked expression levels of CD147. In the hepatic tissue of rat models of fibrosis induced by CCl4, marked expression levels of CD147 were observed in the activated HSCs. Therefore, CD147 promoted the activation of HSCs and was a key molecule during HCC cell-HSC cross-talk in the rat liver.

  16. The cross-talk between canonical and non-canonical Wnt-dependent pathways regulates P-glycoprotein expression in human blood–brain barrier cells

    PubMed Central

    Pinzón-Daza, Martha L; Salaroglio, Iris C; Kopecka, Joanna; Garzòn, Ruth; Couraud, Pierre-Olivier; Ghigo, Dario; Riganti, Chiara

    2014-01-01

    In this work, we investigate if and how transducers of the ‘canonical' Wnt pathway, i.e., Wnt/glycogen synthase kinase 3 (GSK3)/β-catenin, and transducers of the ‘non-canonical' Wnt pathway, i.e., Wnt/RhoA/RhoA kinase (RhoAK), cooperate to control the expression of P-glycoprotein (Pgp) in blood–brain barrier (BBB) cells. By analyzing human primary brain microvascular endothelial cells constitutively activated for RhoA, silenced for RhoA or treated with the RhoAK inhibitor Y27632, we found that RhoAK phosphorylated and activated the protein tyrosine phosphatase 1B (PTP1B), which dephosphorylated tyrosine 216 of GSK3, decreasing the GSK3-mediated inhibition of β-catenin. By contrast, the inhibition of RhoA/RhoAK axis prevented the activation of PTP1B, enhanced the GSK3-induced phosphorylation and ubiquitination of β-catenin, and reduced the β-catenin-driven transcription of Pgp. The RhoAK inhibition increased the delivery of Pgp substrates like doxorubicin across the BBB and improved the doxorubicin efficacy against glioblastoma cells co-cultured under a BBB monolayer. Our data demonstrate that in human BBB cells the expression of Pgp is controlled by a cross-talk between canonical and non-canonical Wnt pathways. The disruption of this cross-talk, e.g., by inhibiting RhoAK, downregulates Pgp and increases the delivery of Pgp substrates across the BBB. PMID:24896565

  17. A Robust Cross-Linking Strategy for Block Copolymer Worms Prepared via Polymerization-Induced Self-Assembly

    PubMed Central

    2016-01-01

    A poly(glycerol monomethacrylate) (PGMA) chain transfer agent is chain-extended by reversible addition–fragmentation chain transfer (RAFT) statistical copolymerization of 2-hydroxypropyl methacrylate (HPMA) with glycidyl methacrylate (GlyMA) in concentrated aqueous solution via polymerization-induced self-assembly (PISA). A series of five free-standing worm gels is prepared by fixing the overall degree of polymerization of the core-forming block at 144 while varying its GlyMA content from 0 to 20 mol %. 1H NMR kinetics indicated that GlyMA is consumed much faster than HPMA, producing a GlyMA-rich sequence close to the PGMA stabilizer block. Temperature-dependent oscillatory rheological studies indicate that increasing the GlyMA content leads to progressively less thermoresponsive worm gels, with no degelation on cooling being observed for worms containing 20 mol % GlyMA. The epoxy groups in the GlyMA residues can be ring-opened using 3-aminopropyltriethoxysilane (APTES) in order to prepare core cross-linked worms via hydrolysis-condensation with the siloxane groups and/or hydroxyl groups on the HPMA residues. Perhaps surprisingly, 1H NMR analysis indicates that the epoxy–amine reaction and the intermolecular cross-linking occur on similar time scales. Cross-linking leads to stiffer worm gels that do not undergo degelation upon cooling. Dynamic light scattering studies and TEM analyses conducted on linear worms exposed to either methanol (a good solvent for both blocks) or anionic surfactant result in immediate worm dissociation. In contrast, cross-linked worms remain intact under such conditions, provided that the worm cores comprise at least 10 mol % GlyMA. PMID:27134311

  18. Modulation of human neutrophil responses to CD32 cross-linking by serine/threonine phosphatase inhibitors: cross-talk between serine/threonine and tyrosine phosphorylation.

    PubMed

    Rollet-Labelle, E; Gilbert, C; Naccache, P H

    2000-01-15

    The interplay between serine/threonine and tyrosine phosphorylation was studied in human neutrophils. The direct effects of calyculin and okadaic acid, potent inhibitors of PP1 and PP2A serine/threonine phosphatases, on the patterns of neutrophil phosphorylation, and their effects on the responses of neutrophils to CD32 cross-linking were monitored. After a 2-min incubation with 10-6 M calyculin, a transient tyrosine phosphorylation of a subset of proteins, among which Cbl and Syk, was observed. After a longer incubation (>5 min) with calyculin, concomitant with an accumulation of serine and threonine phosphorylation, neutrophil responses to CD32 cross-linking were selectively altered. Tyrosine phosphorylation of Cbl in response to CD32 cross-linking was inhibited by calyculin, and this inhibition was linked with a slower electrophoretic mobility of Cbl as a consequence of its phosphorylation on serine/threonine residues. However, tyrosine phosphorylation of Syk and of the receptor itself were not affected. Furthermore, the mobilization of intracellular calcium stimulated by CD32 cross-linking was totally abrogated by calyculin. Finally, the stimulation of superoxide production observed in response to CD32 cross-linking was enhanced in calyculin-treated cells. These results suggest that serine/threonine phosphorylation events regulate the signaling pathways activated by CD32 cross-linking in neutrophils and identify a novel mechanism of modulation of the functional responsiveness of human neutrophils to CD32 cross-linking.

  19. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    SciTech Connect

    O'Neill, Peter; Anderson, Jennifer

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  20. A gene block causing cross-incompatibility hidden in wild and cultivated rice.

    PubMed Central

    Matsubara, Kazuki; Khin-Thidar; Sano, Yoshio

    2003-01-01

    Unidirectional cross-incompatibility was detected in advanced generations of backcrossing between wild (Oryza rufipogon) and cultivated (O. sativa) rice strains. The near-isogenic line (NIL) of T65wx (Japonica type) carrying an alien segment of chromosome 6 from a wild strain gave a reduced seed setting only when crossed with T65wx as the male. Cytological observations showed that abortion of hybrid seeds occurred as a consequence of a failure of early endosperm development followed by abnormalities in embryo development. The genetic basis of cross-incompatibility reactions in the female and male was investigated by testcrosses using recombinant inbred lines (RILs) that were established through dissecting the introgressed segments of wild and cultivated (Indica type) strains. The results revealed that the cross-incompatibility reaction was controlled by Cif in the female and by cim in the male. When the female plant with Cif was crossed with the male plant with cim, a failure of early endosperm development was observed in the hybrid zygotes. Among cultivars of O. sativa, cim was distributed predominantly in the Japonica type but not in the Indica type. In addition, a dominant suppressor, Su-Cif, which changes the reaction in the female from incompatible to compatible was proposed to present near the centromere of chromosome 6 of the Indica type. Further, the death of young F(1) zygotes was controlled by the parental genotypes rather than by the genotype of the hybrid zygote itself since all three genes acted sporophytically, which strongly suggests an involvement of parent-of-origin effects. We discuss the results in relation to the origin of a crossing barrier as well as their maintenance within the primary gene pool. PMID:14504241

  1. Talking Science

    ERIC Educational Resources Information Center

    Eley, Alison

    2011-01-01

    The Talking Science project initially involved three secondary schools and eight of their feeder primary schools in the London Borough of Richmond Upon Thames. The project created, trialled and evaluated a set of key stage 2/3 transition materials for children moving from primary to secondary school, using argument as a teaching and learning…

  2. Talking Race

    ERIC Educational Resources Information Center

    Darden, Jenee

    2009-01-01

    In many classrooms across America, race and ethnicity are very much on the table. Teachers dream of seeing their students discuss difference in a constructive way. Some educators actively encourage their classes to get outside their comfort zones and confront the country's racial history, but in many faculty rooms, there's little to no talk about…

  3. Talking Leadership.

    ERIC Educational Resources Information Center

    Gunter, Helen; Brodie, Dave; Carter, David; Close, Toby; Farrar, Maggie; Haynes, Sandra; Henry, Jim; Hollins, Kevin; Nicholson, Liz; Nicholson, Sara; Walker, Gill

    2003-01-01

    Presents 10 short accounts of Birmingham, England, administrators each talking about an area of professional practices, such as senior management teams in transition, managing change, professional development of middle managers. Includes critical analysis of these accounts. (Contains 42 references.)(PKP)

  4. Talking Race

    ERIC Educational Resources Information Center

    Darden, Jenee

    2009-01-01

    In many classrooms across America, race and ethnicity are very much on the table. Teachers dream of seeing their students discuss difference in a constructive way. Some educators actively encourage their classes to get outside their comfort zones and confront the country's racial history, but in many faculty rooms, there's little to no talk about…

  5. Different Lepidopteran Elicitors Account for Cross-Talk in Herbivory-Induced Phytohormone Signaling1[W][OA

    PubMed Central

    Diezel, Celia; von Dahl, Caroline C.; Gaquerel, Emmanuel; Baldwin, Ian T.

    2009-01-01

    Salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and their interactions mediate plant responses to pathogen and herbivore attack. JA-SA and JA-ET cross-signaling are well studied, but little is known about SA-ET cross-signaling in plant-herbivore interactions. When the specialist herbivore tobacco hornworm (Manduca sexta) attacks Nicotiana attenuata, rapid and transient JA and ET bursts are elicited without significantly altering wound-induced SA levels. In contrast, attack from the generalist beet armyworm (Spodoptera exigua) results in comparatively lower JA and ET bursts, but amplified SA bursts. These phytohormone responses are mimicked when the species' larval oral secretions (OSSe and OSMs) are added to puncture wounds. Fatty acid-amino acid conjugates elicit the JA and ET bursts, but not the SA burst. OSSe had enhanced glucose oxidase activity (but not β-glucosidase activity), which was sufficient to elicit the SA burst and attenuate the JA and ET levels. It is known that SA antagonizes JA; glucose oxidase activity and associated hydrogen peroxide also antagonizes the ET burst. We examined the OSMs-elicited SA burst in plants impaired in their ability to elicit JA (antisense [as]-lox3) and ET (inverted repeat [ir]-aco) bursts and perceive ET (35s-etr1b) after fatty acid-amino acid conjugate elicitation, which revealed that both ET and JA bursts antagonize the SA burst. Treating wild-type plants with ethephone and 1-methylcyclopropane confirmed these results and demonstrated the central role of the ET burst in suppressing the OSMs-elicited SA burst. By suppressing the SA burst, the ET burst likely facilitates unfettered JA-mediated defense activation in response to herbivores that otherwise would elicit SA. PMID:19458114

  6. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants.

    PubMed

    Sang, Jianrong; Zhang, Aying; Lin, Fan; Tan, Mingpu; Jiang, Mingyi

    2008-05-01

    Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H(2)O(2)), calcium (Ca(2+))-calmodulin (CaM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H(2)O(2), and CaCl(2) induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca(2+) inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca(2+)-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca(2+) in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca(2+) inhibitors and CaM antagonists. Our results suggest that Ca(2+)-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H(2)O(2)-induced antioxidant defense in leaves of maize plants.

  7. Cross talk among PMCA, calcineurin and NFAT transcription factors in control of calmodulin gene expression in differentiating PC12 cells.

    PubMed

    Boczek, Tomasz; Lisek, Malwina; Ferenc, Bozena; Zylinska, Ludmila

    2017-04-01

    Brain aging is characterized by progressive loss of plasma membrane calcium pump (PMCA) and its activator - calmodulin (CaM), but the mechanism of this phenomenon remains unresolved. CaM encoded by three genes Calm1, Calm2, Calm3, works to translate Ca(2+) signal into changes in frequently opposite cellular activities. This unique function allows CaM to affect gene expression via stimulation of calcineurin (CaN) and its downstream target - nuclear factor of activated T-cells (NFAT) and to terminate Ca(2+) signal by stimulation of its extrusion. PMCA, which exists in four isoforms PMCA1-4, may in turn shape the pattern of Ca(2+) transients and control CaN activity by its direct binding. Therefore, the interplay between PMCA, CaM and CaN/NFAT is highly plausible. To verify that, we used differentiated PC12 cells with reduced expression of PMCA2 or PMCA3 to mimic the potential changes in aged brain. Manipulation in PMCAs level decreased CaM protein in PMCA2 or PMCA3-reduced lines that was accompanied by down-regulation of Calm1 and Calm2 in both lines, but Calm3 only in PMCA2-reduced cells. Further studies showed substantially higher NFATc2 nuclear accumulation and increased NFAT transcriptional activity. Blocking of CaN/NFAT signalling resulted in almost full CaM recovery, mainly due to up-regulation of Calm2 and Calm3 genes. Moreover, higher occupancy of Calm2 and Calm3 promoters by NFATc2 and increased expression of these genes in response to NFATc2 silencing were demonstrated in PMCA2 and PMCA3-reduced lines. Our results indicate that decrease in CaM level in response to PMCAs downregulation can be driven by CaN/NFAT pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Determination of Importance Evaluation for the ESF Enhanced Charcterization of the Repository Block Cross Drift

    SciTech Connect

    S. Goodin

    2002-01-09

    The objective of this DIE is to determine whether the ECRB-Cross-Drift-related activities, as identified in Section 6.0, could potentially impact (1) Yucca Mountain Site Characterization Project (YMP) testing or (2) the waste isolation capabilities of a potential repository at the Yucca Mountain site. Any controls necessary to limit such potential impacts are also identified herein.

  9. c-Met Overexpression Contributes to the Acquired Apoptotic Resistance of Nonadherent Ovarian Cancer Cells through a Cross Talk Mediated by Phosphatidylinositol 3-Kinase and Extracellular Signal-Regulated Kinase 1/212

    PubMed Central

    Tang, Maggie K S; Zhou, Hong Y; Yam, Judy W P; Wong, Alice S T

    2010-01-01

    Ovarian cancer is the most lethal gynecologic cancer mainly because of widespread peritoneal dissemination and malignant ascites. Key to this is the capacity of tumor cells to escape suspension-induced apoptosis (anoikis), which also underlies their resistance to chemotherapy. Here, we used a nonadherent cell culture model to investigate the molecular mechanisms of apoptotic resistance of ovarian cancer cells that may mimic the chemoresistance found in solid tumors. We found that ovarian cancer cells acquired a remarkable resistance to anoikis and apoptosis induced by exposure to clinically relevant doses of two front-line chemotherapeutic drugs cisplatin and paclitaxel when grown in three-dimensional than monolayer cultures. Inhibition of the hepatocyte growth factor (HGF) receptor c-Met, which is frequently overexpressed in ovarian cancer, by a specific inhibitor or small interfering RNA blocked the acquired anoikis resistance and restored chemosensitivity in three-dimensional not in two-dimensional cultures. These effects were found to be dependent on both phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) 1/2 signaling pathways. Inhibitors of PI3K/Akt abrogated ERK1/2 activation and its associated anoikis resistance in response to HGF, suggesting a signaling relay between these two pathways. Furthermore, we identified a central role of Ras as a mechanism of this cross talk. Interestingly, Ras did not lie upstream of PI3K/Akt, whereas PI3K/Akt signaling to ERK1/2 involved Ras. These findings shed new light on the apoptotic resistance mechanism of nonadherent ovarian cancer ascites cells and may have important clinical implications. PMID:20126471

  10. ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling.

    PubMed

    Gelsomino, Luca; Gu, Guowei; Rechoum, Yassine; Beyer, Amanda R; Pejerrey, Sasha M; Tsimelzon, Anna; Wang, Tao; Huffman, Kenneth; Ludlow, Andrew; Andò, Sebastiano; Fuqua, Suzanne A W

    2016-06-01

    The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam.

  11. Ectopic cross-talk between thyroid and retinoic acid signaling: A possible etiology for spinal neural tube defects.

    PubMed

    Li, Huili; Bai, Baoling; Zhang, Qin; Bao, Yihua; Guo, Jin; Chen, Shuyuan; Miao, Chunyue; Liu, Xiaozhen; Zhang, Ting

    2015-12-01

    Previous studies have highlighted the connections between neural tube defects (NTDs) and both thyroid hormones (TH) and vitamin A. However, whether the two hormonal signaling pathways interact in NTDs has remained unclear. We measured the expression levels of TH signaling genes in human fetuses with spinal NTDs associated with maternal hyperthyroidism as well as levels of retinoic acid (RA) signaling genes in mouse fetuses exposed to an overdose of RA using NanoString or real-time PCR on spinal cord tissues. Interactions between the two signaling pathways were detected by ChIP assays. The data revealed attenuated DIO2/DIO3 switching in fetuses with NTDs born to hyperthyroid mothers. The promoters of the RA signaling genes CRABP1 and RARB were ectopically occupied by increased RXRG and RXRB but displayed decreased levels of inhibitory histone modifications, suggesting that elevated TH signaling abnormally stimulates RA signaling genes. Conversely, in the mouse model, the observed decrease in Dio3 expression could be explained by increased levels of inhibitory histone modifications in the Dio3 promoter region, suggesting that overactive RA signaling may ectopically derepress TH signaling. This study thus raises in vivo a possible abnormal cross-promotion between two different hormonal signals through their common RXRs and the subsequent recruitment of histone modifications, prompting further investigation into their involvement in the etiology of spinal NTDs.

  12. Pathway Model of the Kinetics of the TGFbeta Antagonist Smad7 and Cross-Talk with the ATM and WNT Pathways

    NASA Technical Reports Server (NTRS)

    Carra, Claudio; Wang, Minli; Huff, Janice L.; Hada, Megumi; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    Signal transduction controls cellular and tissue responses to radiation. Transforming growth factor beta (TGFbeta) is an important regulator of cell growth and differentiation and tissue homeostasis, and is often dis-regulated in tumor formation. Mathematical models of signal transduction pathways can be used to elucidate how signal transduction varies with radiation quality, and dose and dose-rate. Furthermore, modeling of tissue specific responses can be considered through mechanistic based modeling. We developed a mathematical model of the negative feedback regulation by Smad7 in TGFbeta-Smad signaling and are exploring possible connections to the WNT/beta -catenin, and ATM/ATF2 signaling pathways. A pathway model of TGFbeta-Smad signaling that includes Smad7 kinetics based on data in the scientific literature is described. Kinetic terms included are TGFbeta/Smad transcriptional regulation of Smad7 through the Smad3-Smad4 complex, Smad7-Smurf1 translocation from nucleus to cytoplasm, and Smad7 negative feedback regulation of the TGFO receptor through direct binding to the TGFO receptor complex. The negative feedback controls operating in this pathway suggests non-linear responses in signal transduction, which are described mathematically. We then explored possibilities for cross-talk mediated by Smad7 between DNA damage responses mediated by ATM, and with the WNT pathway and consider the design of experiments to test model driven hypothesis. Numerical comparisons of the mathematical model to experiments and representative predictions are described.

  13. The emerging role of constitutive androstane receptor and its cross talk with liver X receptors and peroxisome proliferator-activated receptor A in lipid metabolism.

    PubMed

    Xiao, Lei; Wang, Jing; Jiang, Mengxi; Xie, Wen; Zhai, Yonggong

    2013-01-01

    The regulation of lipid metabolism is central to energy homeostasis in higher multicellular organisms. Lipid homeostasis depends on factors that are able to transduce metabolic parameters into regulatory events representing the fundamental components of the general control system. Nuclear receptors form a superfamily of ligand-activated transcription factors implicated in various physiological functions including energy metabolism. The constitutive androstane receptor (CAR, NR1I3), initially identified as a xenobiotic-sensing receptor, may also have roles in lipid homeostasis. The nuclear receptors liver X receptors (LXRs, NR1H2/3) and peroxisome proliferator-activated receptors (PPARs, NR1C) have been known for their roles in lipid metabolism. LXR is a sterol sensor that promotes lipogenesis, whereas PPARα controls a variety of genes in several pathways of lipid metabolism. This chapter focuses primarily on the role of CAR in lipid metabolism directly or through its cross talk with LXRs and PPARα. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Integrated mRNA and miRNA transcriptome reveal a cross-talk between developing response and hormone signaling for the seed kernels of Siberian apricot

    PubMed Central

    Niu, Jun; Wang, Jia; An, Jiyong; Liu, Lili; Lin, Zixin; Wang, Rui; Wang, Libing; Ma, Chao; Shi, Lingling; Lin, Shanzhi

    2016-01-01

    Recently, our transcriptomic analysis has identified some functional genes responsible for oil biosynthesis in developing SASK, yet miRNA-mediated regulation for SASK development and oil accumulation is poorly understood. Here, 3 representative periods of 10, 30 and 60 DAF were selected for sRNA sequencing based on the dynamic patterns of growth tendency and oil content of developing SASK. By miRNA transcriptomic analysis, we characterized 296 known and 44 novel miRNAs in developing SASK, among which 36 known and 6 novel miRNAs respond specifically to developing SASK. Importantly, we performed an integrated analysis of mRNA and miRNA transcriptome as well as qRT-PCR detection to identify some key miRNAs and their targets (miR156-SPL, miR160-ARF18, miR164-NAC1, miR171h-SCL6, miR172-AP2, miR395-AUX22B, miR530-P2C37, miR393h-TIR1/AFB2 and psi-miRn5-SnRK2A) potentially involved in developing response and hormone signaling of SASK. Our results provide new insights into the important regulatory function of cross-talk between development response and hormone signaling for SASK oil accumulation. PMID:27762296

  15. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    PubMed Central

    Riquier, Hélène; Abel, Denis; Wera, Anne-Catherine; Heuskin, Anne-Catherine; Genard, Géraldine; Lucas, Stéphane; Michiels, Carine

    2015-01-01

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results. PMID:25794049

  16. JIP1 binding to RBP-Jk mediates cross-talk between the Notch1 and JIP1-JNK signaling pathway.

    PubMed

    Kim, M-Y; Ann, E-J; Mo, J-S; Dajas-Bailador, F; Seo, M-S; Hong, J-A; Jung, J; Choi, Y-H; Yoon, J-H; Kim, S-M; Choi, E-J; Hoe, H-S; Whitmarsh, A J; Park, H-S

    2010-11-01

    Notch1 signaling has a critical function in maintaining a balance among cell proliferation, differentiation, and apoptosis. Our earlier work showed that the Notch1 intracellular domain interferes with the scaffolding function of c-Jun N-terminal kinase (JNK)-interacting protein-1 (JIP1), yet the effect of JIP1 for Notch1-recombining binding protein suppressor of hairless (RBP-Jk) signaling remains unknown. Here, we show that JIP1 suppresses Notch1 activity. JIP1 was found to physically associate with either intracellular domain of Notch1 or RBP-Jk and interfere with the interaction between them. Furthermore, we ascertained that JIP1 caused the cytoplasmic retention of RBP-Jk through an interaction between the C-terminal region of JIP1 including Src homology 3 domain and the proline-rich domain of RBP-Jk. We also found that RBP-Jk inhibits JIP1-mediated activation of the JNK1 signaling cascade and cell death. Our results suggest that direct protein-protein interactions coordinate cross-talk between the Notch1-RBP-Jk and JIP1-JNK pathways.

  17. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.).

    PubMed

    Li, Ji; Wu, Zhe; Cui, Li; Zhang, Tinglin; Guo, Qinwei; Xu, Jian; Jia, Li; Lou, Qunfeng; Huang, Sanwen; Li, Zhengguo; Chen, Jinfeng

    2014-07-01

    Parthenocarpy is an important trait determining yield and quality of fruit crops. However, the understanding of the mechanisms underlying parthenocarpy induction is limited. Cucumber (Cucumis sativus L.) is abundant in parthenocarpic germplasm resources and is an excellent model organism for parthenocarpy studies. In this study, the transcriptome of cucumber fruits was studied using RNA sequencing (RNA-Seq). Differentially expressed genes (DEGs) of set fruits were compared against aborted fruits. Distinctive features of parthenocarpic and pollinated fruits were revealed by combining the analysis of the transcriptome together with cytomorphological and physiological analysis. Cell division and the transcription of cell division genes were found to be more active in parthenocarpic fruit. The study also indicated that parthenocarpic fruit set is a high sugar-consuming process which is achieved via enhanced carbohydrate degradation through transcription of genes that lead to the breakdown of carbohydrates. Furthermore, the evidence provided by this work supports a hypothesis that parthenocarpic fruit set is induced by mimicking the processes of pollination/fertilization at the transcriptional level, i.e. by performing the same transcriptional patterns of genes inducing pollination and gametophyte development as in pollinated fruit. Based on the RNA-Seq and ovary transient expression results, 14 genes were predicted as putative parthenocarpic genes. The transcription analysis of these candidate genes revealed auxin, cytokinin and gibberellin cross-talk at the transcriptional level during parthenocarpic fruit set.

  18. Cross-talk modulation between ABA and ethylene by transcription factor SlZFP2 during fruit development and ripening in tomato.