Science.gov

Sample records for cross-linked hyaluronan gel

  1. Cross-Linked Hyaluronan Gel Reduces the Acute Rectal Toxicity of Radiotherapy for Prostate Cancer

    SciTech Connect

    Wilder, Richard B.; Barme, Greg A.; Gilbert, Ronald F.; Holevas, Richard E.; Kobashi, Luis I.; Reed, Richard R.; Solomon, Ronald S.; Walter, Nancy L.; Chittenden, Lucy; Mesa, Albert V.; Agustin, Jeffrey; Lizarde, Jessica; Macedo, Jorge; Ravera, John; Tokita, Kenneth M.

    2010-07-01

    Purpose: To prospectively analyze whether cross-linked hyaluronan gel reduces the mean rectal dose and acute rectal toxicity of radiotherapy for prostate cancer. Methods and Materials: Between September 2008 and March 2009, we transperitoneally injected 9mL of cross-linked hyaluronan gel (Hylaform; Genzyme Corporation, Cambridge, MA) into the anterior perirectal fat of 10 early-stage prostate cancer patients to increase the separation between the prostate and rectum by 8 to 18mm at the start of radiotherapy. Patients then underwent high-dose rate brachytherapy to 2,200cGy followed by intensity-modulated radiation therapy to 5,040cGy. We assessed acute rectal toxicity using the National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 grading scheme. Results: Median follow-up was 3 months. The anteroposterior dimensions of Hylaform at the start and end of radiotherapy were 13 {+-} 3mm (mean {+-} SD) and 10 {+-} 4mm, respectively. At the start of intensity-modulated radiation therapy, daily mean rectal doses were 73 {+-} 13cGy with Hylaform vs. 106 {+-} 20cGy without Hylaform (p = 0.005). There was a 0% incidence of National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 Grade 1, 2, or 3 acute diarrhea in 10 patients who received Hylaform vs. a 29.7% incidence (n = 71) in 239 historical controls who did not receive Hylaform (p = 0.04). Conclusions: By increasing the separation between the prostate and rectum, Hylaform decreased the mean rectal dose. This led to a significant reduction in the acute rectal toxicity of radiotherapy for prostate cancer.

  2. Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks.

    PubMed

    Broguiere, Nicolas; Isenmann, Luca; Zenobi-Wong, Marcy

    2016-08-01

    Hyaluronan (HA) is an essential component of the central nervous system's extracellular matrix and its high molecular weight (MW) form has anti-inflammatory and anti-fibrotic properties relevant for regenerative medicine. Here, we introduce a new hydrogel based on high MW HA which is cross-linked using the transglutaminase (TG) activity of the activated blood coagulation factor XIII (FXIIIa). These HA-TG gels have significant advantages for neural tissue engineering compared to previous HA gels. Due to their chemical inertness in the absence of FXIIIa, the material can be stored long-term, is stable in solution, and shows no cytotoxicity. The gelation is completely cell-friendly due to the specificity of the enzyme and the gelation rate can be tuned from seconds to hours at physiological pH and independently of stiffness. The gels are injectable, and attach covalently to fibrinogen and fibrin, two common bioactive components in in vitro tissue engineering, as well as proteins present in vivo, allowing the gels to covalently bind to brain or spinal cord defects. These optimal chemical and bioactive properties of HA-TG gels enabled the formation of 3D neuronal cultures of unprecedented performance, showing fast neurite outgrowth, axonal and dendritic speciation, strong synaptic connectivity in 3D networks, and rapidly-occurring and long-lasting coordinated electrical activity.

  3. Incorporation of Pentraxin 3 into Hyaluronan Matrices Is Tightly Regulated and Promotes Matrix Cross-linking

    PubMed Central

    Baranova, Natalia S.; Inforzato, Antonio; Briggs, David C.; Tilakaratna, Viranga; Enghild, Jan J.; Thakar, Dhruv; Milner, Caroline M.; Day, Anthony J.; Richter, Ralf P.

    2014-01-01

    Mammalian oocytes are surrounded by a highly hydrated hyaluronan (HA)-rich extracellular matrix with embedded cumulus cells, forming the cumulus cell·oocyte complex (COC) matrix. The correct assembly, stability, and mechanical properties of this matrix, which are crucial for successful ovulation, transport of the COC to the oviduct, and its fertilization, depend on the interaction between HA and specific HA-organizing proteins. Although the proteins inter-α-inhibitor (IαI), pentraxin 3 (PTX3), and TNF-stimulated gene-6 (TSG-6) have been identified as being critical for COC matrix formation, its supramolecular organization and the molecular mechanism of COC matrix stabilization remain unknown. Here we used films of end-grafted HA as a model system to investigate the molecular interactions involved in the formation and stabilization of HA matrices containing TSG-6, IαI, and PTX3. We found that PTX3 binds neither to HA alone nor to HA films containing TSG-6. This long pentraxin also failed to bind to products of the interaction between IαI, TSG-6, and HA, among which are the covalent heavy chain (HC)·HA and HC·TSG-6 complexes, despite the fact that both IαI and TSG-6 are ligands of PTX3. Interestingly, prior encounter with IαI was required for effective incorporation of PTX3 into TSG-6-loaded HA films. Moreover, we demonstrated that this ternary protein mixture made of IαI, PTX3, and TSG-6 is sufficient to promote formation of a stable (i.e. cross-linked) yet highly hydrated HA matrix. We propose that this mechanism is essential for correct assembly of the COC matrix and may also have general implications in other inflammatory processes that are associated with HA cross-linking. PMID:25190808

  4. Inter-α-inhibitor Impairs TSG-6-induced Hyaluronan Cross-linking*

    PubMed Central

    Baranova, Natalia S.; Foulcer, Simon J.; Briggs, David C.; Tilakaratna, Viranga; Enghild, Jan J.; Milner, Caroline M.; Day, Anthony J.; Richter, Ralf P.

    2013-01-01

    Under inflammatory conditions and in the matrix of the cumulus-oocyte complex, the polysaccharide hyaluronan (HA) becomes decorated covalently with heavy chains (HCs) of the serum glycoprotein inter-α-inhibitor (IαI). This alters the functional properties of the HA as well as its structural role within extracellular matrices. The covalent transfer of HCs from IαI to HA is catalyzed by TSG-6 (tumor necrosis factor-stimulated gene-6), but TSG-6 is also known as a HA cross-linker that induces condensation of the HA matrix. Here, we investigate the interplay of these two distinct functions of TSG-6 by studying the ternary interactions of IαI and TSG-6 with well defined films of end-grafted HA chains. We demonstrate that TSG-6-mediated cross-linking of HA films is impaired in the presence of IαI and that this effect suppresses the TSG-6-mediated enhancement of HA binding to CD44-positive cells. Furthermore, we find that the interaction of TSG-6 and IαI in the presence of HA gives rise to two types of complexes that independently promote the covalent transfer of heavy chains to HA. One type of complex interacts very weakly with HA and is likely to correspond to the previously reported covalent HC·TSG-6 complexes. The other type of complex is novel and binds stably but noncovalently to HA. Prolonged incubation with TSG-6 and IαI leads to HA films that contain, in addition to covalently HA-bound HCs, several tightly but noncovalently bound molecular species. These findings have important implications for understanding how the biological activities of TSG-6 are regulated, such that the presence or absence of IαI will dictate its function. PMID:24005673

  5. Thermoreversible physical gels of poly(dimethylsiloxane) without cross-links or functionalization.

    PubMed

    Dahan, Elianne; Sundararajan, Pudupadi R

    2013-07-01

    The preparation of gels of poly(dimethylsiloxane) (PDMS) reported in the literature so far involves catalysts and chemical cross-links (chemical gels) or functionalization with organogelators. We report that thermoreversible physical gels of PDMS, without cross-links or functionalization, can be made with propylamine or hexylamine as a solvent. The gels consist of spherical domains as small as 20 nm. We show that these spherical domains are part of a network. Differential scanning calorimetry (DSC), optical microscopy, and rheology show that the gel is thermoreversible. With the DSC experiments, we have devised a procedure to achieve thermoreversibility with very similar gel-sol transition endotherms in the first and second heating cycles. PMID:23799797

  6. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    NASA Technical Reports Server (NTRS)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  7. Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels.

    PubMed

    Machida-Sano, Ikuko; Hirakawa, Makoto; Matsumoto, Hiroki; Kamada, Mitsuki; Ogawa, Sakito; Satoh, Nao; Namiki, Hideo

    2014-04-01

    In this study we investigated differences in the characteristics determining the suitability of five types of ion (Fe(3+), Al(3+), Ca(2+), Ba(2+) and Sr(2+))-cross-linked alginate films as culture substrates for cells. Human dermal fibroblasts were cultured on each alginate film to examine the cell affinity of the alginates. Since cell behavior on the surface of a material is dependent on the proteins adsorbed to it, we investigated the protein adsorption ability and surface features (wettability, morphology and charge) related to the protein adsorption abilities of alginate films. We observed that ferric, aluminum and barium ion-cross-linked alginate films supported better cell growth and adsorbed higher amounts of serum proteins than other types. Surface wettability analysis demonstrated that ferric and aluminum ion-cross-linked alginates had moderate hydrophilic surfaces, while other types showed highly hydrophilic surfaces. The roughness was exhibited only on barium ion-cross-linked alginate surface. Surface charge measurements revealed that alginate films had negatively charged surfaces, and showed little difference among the five types of gel. These results indicate that the critical factors of ionically cross-linked alginate films determining the protein adsorption ability required for their cell compatibility may be surface wettability and morphology. PMID:24496019

  8. The microstructure of collagen type I gel cross-linked with gold nanoparticles

    PubMed Central

    Schuetz, Thomas; Richmond, Nathan; Harmon, Marianne E.; Schuetz, Joseph; Castaneda, Luciano; Slowinska, Katarzyna

    2012-01-01

    Scanning electron microscopy, transmission electron micrsocopy, rheomerty, and electrochemistry were used to provide insight into the microstructure of collagen type I gel (1% w/v) modified with the tiopronin-protected (N-(2-mercaptopropionyl)glycine) gold nanoparticles (TPAu), a multivalent crosslinker. The cross-linking reaction, performed via EDC (1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide) coupling, results in compliant, mechanically stable and continuous gels. The gels contain unusual interconnected collagen-TPAu particles. Electrochemical measurements of 4-hydroxy-(2,2,6,6-tetramethylpiperidine-1-oxyl) (4HT) diffusion within the gel reveal that the gel hindrance is nearly independent of the TPAu concentration. The properties of the collagen-TPAu gel make it suitable for potential biomedical applications, such as delivery of small molecule drugs. PMID:22796781

  9. A gel network constituted by rigid schizophyllan chains and nonpermanent cross-links.

    PubMed

    Fang, Yapeng; Takahashi, Rheo; Nishinari, Katsuyoshi

    2004-01-01

    This work reports a gel network formed by rigid schizophyllan (SPG) chains with Borax as a cross-linking agent. The formed cross-links are non-permanent and somewhat dynamic in nature because the cross-linking reaction is governed by a complexation equilibrium. Gelation processes are traced by dynamic viscoelastic measurements to examine the effects of Borax content, SPG concentration, temperature, salt concentration, salt type, and strain. The first-order kinetic model containing three parameters, t(0) (induction time), 1/tau(c) (gelation rate), and (saturated storage modulus), is successfully applied to describe the gelation of the SPG-Borax system. Gelation occurs faster at higher Borax content, higher SPG concentration, higher salt concentration, or lower temperature. Moreover the gelation is cation-type-specific. Storage modulus is a linear function of both Borax content and SPG concentration. The linear relationship between storage modulus and Borax content can be explained by a modified ideal rubber elasticity theory with a front factor alpha to take into account the presence of ineffective cross-links and the effect of SPG chain rigidity. On the other hand, the linear dependence of storage modulus on SPG concentration could be explained on the basis of chain-chain contacting behavior of extended SPG chains. Apparent activation energy and cross-linking enthalpy are calculated to be -74.5 and -32.4 kJ/mol for the present system. Strain sweep measurements manifest that the elasticity behavior of this gel starts to deviate from Gaussian-chain network at a small strain of 10%.

  10. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel.

    PubMed

    von der Heydt, Alice; Zippelius, Annette

    2015-02-01

    We study analytically the intricate phase behavior of cross-linked AB diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints. Gelation, i.e., spatially random localisation of polymers forming a system-spanning cluster, is driven by increasing the number parameter μ of irreversible, type-selective cross-links between random pairs of A blocks. Self-assembly into a periodic pattern of A/B-rich microdomains (microphase separation) is controlled by the AB incompatibility χ inversely proportional to temperature. Our model aims to capture the system's essential microscopic features, including an ensemble of random networks that reflects spatial correlations at the instant of cross-linking. We identify suitable order parameters and derive a free-energy functional in the spirit of Landau theory that allows us to trace a phase diagram in the plane of μ and χ. Selective cross-links promote microphase separation at higher critical temperatures than in uncross-linked diblock copolymer melts. Microphase separation in the liquid state facilitates gelation, giving rise to a novel gel state whose chemical composition density mirrors the periodic AB pattern. PMID:25662662

  11. Immobilization of Cross-Linked Phenylalanine Ammonia Lyase Aggregates in Microporous Silica Gel

    PubMed Central

    Cui, Jian Dong; Li, Lian Lian; Bian, Hong Jie

    2013-01-01

    A separable and highly-stable enzyme system was developed by adsorption of phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis in amino-functionalized macroporous silica gel and subsequent enzyme crosslinking. This resulted in the formation of cross-linked enzyme aggregates (PAL-CLEAs) into macroporous silica gel (MSG-CLEAs). The effect of adsorptive conditions, type of aggregating agent, its concentration as well as that of cross-linking agent was studied. MSG-CLEAs production was most effective using ammonium sulfate (40%-saturation), followed by cross-linking for 1 h with 1.5% (v/v) glutaraldehyde. The resulting MSG-CLEAs extended the optimal temperature and pH range compared to free PAL and PAL-CLEAs. Moreover, MSG-CLEAs exhibited the excellent stability of the enzyme against various deactivating conditions such as temperature and denaturants, and showed higher storage stability compared to the free PAL and the conventional PAL-CLEAs. Such as, after 6 h incubation at 60°C, the MSG-CLEAs still retained more than 47% of the initial activity whereas PAL-CLEAs only retained 7% of the initial activity. Especially, the MSG-CLEAs exhibited good reusability due to its suitable size and active properties. These results indicated that PAL-CLEAs on MSG might be used as a feasible and efficient solution for improving properties of immobilized enzyme in industrial application. PMID:24260425

  12. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels.

    PubMed

    Yuan, Shaopeng; Hollinger, Martin; Lachowicz-Scroggins, Marrah E; Kerr, Sheena C; Dunican, Eleanor M; Daniel, Brian M; Ghosh, Sudakshina; Erzurum, Serpel C; Willard, Belinda; Hazen, Stanley L; Huang, Xiaozhu; Carrington, Stephen D; Oscarson, Stefan; Fahy, John V

    2015-02-25

    Airway mucus in cystic fibrosis (CF) is highly elastic, but the mechanism behind this pathology is unclear. We hypothesized that the biophysical properties of CF mucus are altered because of neutrophilic oxidative stress. Using confocal imaging, rheology, and biochemical measures of inflammation and oxidation, we found that CF airway mucus gels have a molecular architecture characterized by a core of mucin covered by a web of DNA and a rheological profile characterized by high elasticity that can be normalized by chemical reduction. We also found that high levels of reactive oxygen species in CF mucus correlated positively and significantly with high concentrations of the oxidized products of cysteine (disulfide cross-links). To directly determine whether oxidation can cross-link mucins to increase mucus elasticity, we exposed induced sputum from healthy subjects to oxidizing stimuli and found a marked and thiol-dependent increase in sputum elasticity. Targeting mucin disulfide cross-links using current thiol-amino structures such as N-acetylcysteine (NAC) requires high drug concentrations to have mucolytic effects. We therefore synthesized a thiol-carbohydrate structure (methyl 6-thio-6-deoxy-α-D-galactopyranoside) and found that it had stronger reducing activity than NAC and more potent and fast-acting mucolytic activity in CF sputum. Thus, oxidation arising from airway inflammation or environmental exposure contributes to pathologic mucus gel formation in the lung, which suggests that it can be targeted by thiol-modified carbohydrates. PMID:25717100

  13. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels.

    PubMed

    Yuan, Shaopeng; Hollinger, Martin; Lachowicz-Scroggins, Marrah E; Kerr, Sheena C; Dunican, Eleanor M; Daniel, Brian M; Ghosh, Sudakshina; Erzurum, Serpel C; Willard, Belinda; Hazen, Stanley L; Huang, Xiaozhu; Carrington, Stephen D; Oscarson, Stefan; Fahy, John V

    2015-02-25

    Airway mucus in cystic fibrosis (CF) is highly elastic, but the mechanism behind this pathology is unclear. We hypothesized that the biophysical properties of CF mucus are altered because of neutrophilic oxidative stress. Using confocal imaging, rheology, and biochemical measures of inflammation and oxidation, we found that CF airway mucus gels have a molecular architecture characterized by a core of mucin covered by a web of DNA and a rheological profile characterized by high elasticity that can be normalized by chemical reduction. We also found that high levels of reactive oxygen species in CF mucus correlated positively and significantly with high concentrations of the oxidized products of cysteine (disulfide cross-links). To directly determine whether oxidation can cross-link mucins to increase mucus elasticity, we exposed induced sputum from healthy subjects to oxidizing stimuli and found a marked and thiol-dependent increase in sputum elasticity. Targeting mucin disulfide cross-links using current thiol-amino structures such as N-acetylcysteine (NAC) requires high drug concentrations to have mucolytic effects. We therefore synthesized a thiol-carbohydrate structure (methyl 6-thio-6-deoxy-α-D-galactopyranoside) and found that it had stronger reducing activity than NAC and more potent and fast-acting mucolytic activity in CF sputum. Thus, oxidation arising from airway inflammation or environmental exposure contributes to pathologic mucus gel formation in the lung, which suggests that it can be targeted by thiol-modified carbohydrates.

  14. A covalently cross-linked gel derived from the epidermis of the pilot whale Globicephala melas.

    PubMed

    Baum, C; Fleischer, L-G; Roessner, D; Meyer, W; Siebers, D

    2002-01-01

    The rheological properties of the stratum corneum of the pilot whale (Globicephala melas) were investigated with emphasis on their significance to the self-cleaning abilities of the skin surface smoothed by a jelly material enriched with various hydrolytic enzymes. The gel formation of the collected fluid was monitored by applying periodic-harmonic oscillating loads using a stress-controlled rheometer. In the mechanical spectrum of the gel, the plateau region of the storage modulus G' (<1200 Pa) and the loss modulus G" (>120 Pa) were independent of frequency (omega = 43.98 to 0.13 rad x s(-1), tau = 15 Pa, T = 20 degrees C), indicating high elastic performance of a covalently cross-linked viscoelastic solid. In addition, multi-angle laser light scattering experiments (MALLS) were performed to analyse the potential time-dependent changes in the weight-average molar mass of the samples. The observed increase showed that the gel formation is based on the assembly of covalently cross-linked aggregates. The viscoelastic properties and the shear resistance of the gel assure that the enzyme-containing jelly material smoothing the skin surface is not removed from the stratum corneum by shear regimes during dolphin jumping. The even skin surface is considered to be most important for the self-cleaning abilities of the dolphin skin against biofouling.

  15. A covalently cross-linked gel derived from the epidermis of the pilot whale Globicephala melas.

    PubMed

    Baum, C; Fleischer, L-G; Roessner, D; Meyer, W; Siebers, D

    2002-01-01

    The rheological properties of the stratum corneum of the pilot whale (Globicephala melas) were investigated with emphasis on their significance to the self-cleaning abilities of the skin surface smoothed by a jelly material enriched with various hydrolytic enzymes. The gel formation of the collected fluid was monitored by applying periodic-harmonic oscillating loads using a stress-controlled rheometer. In the mechanical spectrum of the gel, the plateau region of the storage modulus G' (<1200 Pa) and the loss modulus G" (>120 Pa) were independent of frequency (omega = 43.98 to 0.13 rad x s(-1), tau = 15 Pa, T = 20 degrees C), indicating high elastic performance of a covalently cross-linked viscoelastic solid. In addition, multi-angle laser light scattering experiments (MALLS) were performed to analyse the potential time-dependent changes in the weight-average molar mass of the samples. The observed increase showed that the gel formation is based on the assembly of covalently cross-linked aggregates. The viscoelastic properties and the shear resistance of the gel assure that the enzyme-containing jelly material smoothing the skin surface is not removed from the stratum corneum by shear regimes during dolphin jumping. The even skin surface is considered to be most important for the self-cleaning abilities of the dolphin skin against biofouling. PMID:12454437

  16. Citrate cross-linked gels with strain reversibility and viscoelastic behavior accelerate healing of osteochondral defects in a rabbit model.

    PubMed

    Ghosh, Paulomi; Rameshbabu, Arun Prabhu; Dhara, Santanu

    2014-07-22

    Most living tissues are viscoelastic in nature. Self-repair due to the dissipation of energy by reversible bonds prevents the rupture of the molecular backbone in these tissues. Recent studies, therefore, have aimed to synthesize biomaterials that approximate the mechanical performance of biological materials with self-recovery properties. We report an environmentally friendly method for the development of ionotropically cross-linked viscoelastic chitosan gels with a modulus comparable to that of living tissues. The strain recovery property was found to be highest for the gels with the lowest cross-linking density. The force-displacement curve showed significant hysteresis due to the presence of reversible bonds in the cross-linked gels. Nanoindentation studies demonstrated the creep phenomenon for the cross-linked chitosan gels. Creep, hysteresis, and plasticity index confirmed the viscoelastic behavior of the cross-linked gels. The viscoelastic gels were implanted at osteochondral defect sites to assess the tissue regeneration ability. In vivo results demonstrated early cartilage formation and woven bone deposition for defects filled with the gels compared to nontreated defects. PMID:24971647

  17. Enzymatic cross-linking of soy proteins within non-fat set yogurt gel.

    PubMed

    Soleymanpuori, Rana; Madadlou, Ashkan; Zeynali, Fariba; Khosrowshahi, Asghar

    2014-08-01

    Soy proteins as the health-promoting ingredients and candidate fat substitutes in dairy products are good substrates for the cross-linking action of the enzyme transglutaminase. Non-fat set yogurt samples were prepared from the milks enriched with soy protein isolate (SPI) and/or treated with the enzyme transglutaminase. The highest titrable acidity was recorded for the yogurt enriched with SPI and treated with the enzyme throughout the cold storage for 21 d. SPI-enrichment of yogurt milk increased the water holding capacity. Although enrichment with SPI did not influence the count of Streptococcus themophilus, increased that of Lactobacillus bulgaricus ∼3 log cycles. The enzymatic treatment of SPI-enriched milk however, suppressed the bacteria growth-promoting influence of SPI due probably to making the soy proteins inaccessible for Lactobacillus. SPI-enrichment and enzymatic treatment of milk decreased the various organic acids content in yoghurt samples; influence of the former was more significant. The cross-linking of milk proteins to soy proteins was confirmed with the gel electrophoresis results.

  18. Gel-based chemical cross-linking analysis of 20S proteasome subunit-subunit interactions in breast cancer.

    PubMed

    Song, Hai; Xiong, Hua; Che, Jing; Xi, Qing-Song; Huang, Liu; Xiong, Hui-Hua; Zhang, Peng

    2016-08-01

    The ubiquitin-proteasome system plays a pivotal role in breast tumorigenesis by controlling transcription factors, thus promoting cell cycle growth, and degradation of tumor suppressor proteins. However, breast cancer patients have failed to benefit from proteasome inhibitor treatment partially due to proteasome heterogeneity, which is poorly understood in malignant breast neoplasm. Chemical crosslinking is an increasingly important tool for mapping protein three-dimensional structures and proteinprotein interactions. In the present study, two cross-linkers, bis (sulfosuccinimidyl) suberate (BS(3)) and its water-insoluble analog disuccinimidyl suberate (DSS), were used to map the subunit-subunit interactions in 20S proteasome core particle (CP) from MDA-MB-231 cells. Different types of gel electrophoresis technologies were used. In combination with chemical cross-linking and mass spectrometry, we applied these gel electrophoresis technologies to the study of the noncovalent interactions among 20S proteasome subunits. Firstly, the CP subunit isoforms were profiled. Subsequently, using native/SDSPAGE, it was observed that 0.5 mmol/L BS(3) was a relatively optimal cross-linking concentration for CP subunit-subunit interaction study. 2-DE analysis of the cross-linked CP revealed that α1 might preinteract with α2, and α3 might pre-interact with α4. Moreover, there were different subtypes of α1α2 and α3α4 due to proteasome heterogeneity. There was no significant difference in cross-linking pattern for CP subunits between BS(3) and DSS. Taken together, the gel-based characterization in combination with chemical cross-linking could serve as a tool for the study of subunit interactions within a multi-subunit protein complex. The heterogeneity of 20S proteasome subunit observed in breast cancer cells may provide some key information for proteasome inhibition strategy. PMID:27465334

  19. Novel cross-linked alcohol-insoluble solid (CL-AIS) affinity gel from pea pod for pectinesterase purification.

    PubMed

    Wu, Ming-Chang; Lin, Guan-Hui; Wang, Yuh-Tai; Jiang, Chii-Ming; Chang, Hung-Min

    2005-10-01

    Alcohol-insoluble solids (AIS) from pea pod were cross-linked (CL-AIS) and used as an affinity gel matrix to isolate pectin esterases (PEs) from tendril shoots of chayote (TSC) and jelly fig achenes (JFA), and the results were compared with those isolated by ion-exchange chromatography with a commercial resin. CL-AIS gel matrix in a column displayed poor absorption and purification fold of PE; however, highly methoxylated CL-AIS (HM-CL-AIS), by exposing CL-AIS to methanolic sulfuric acid to increase the degree of esterification (DE) to 92%, facilitated the enzyme purification. The purified TSC PE and JFA PE by the HM-CL-AIS column were proofed as a single band on an SDS-PAGE gel, showing that the HM-CL-AIS column was a good matrix for purification of PE, either with alkaline isoelectric point (pI) (TSC PE) or with acidic pI (JFA PE).

  20. Stable Lithium Deposition Generated from Ceramic-Cross-Linked Gel Polymer Electrolytes for Lithium Anode.

    PubMed

    Tsao, Chih-Hao; Hsiao, Yang-Hung; Hsu, Chun-Han; Kuo, Ping-Lin

    2016-06-22

    In this work, a composite gel electrolyte comprising ceramic cross-linker and poly(ethylene oxide) (PEO) matrix is shown to have superior resistance to lithium dendrite growth and be applicable to gel polymer lithium batteries. In contrast to pristine gel electrolyte, these nanocomposite gel electrolytes show good compatibility with liquid electrolytes, wider electrochemical window, and a superior rate and cycling performance. These silica cross-linkers allow the PEO to form the lithium ion pathway and reduce anion mobility. Therefore, the gel not only features lower polarization and interfacial resistance, but also suppresses electrolyte decomposition and lithium corrosion. Further, these nanocomposite gel electrolytes increase the lithium transference number to 0.5, and exhibit superior electrochemical stability up to 5.0 V. Moreover, the lithium cells feature long-term stability and a Coulombic efficiency that can reach 97% after 100 cycles. The SEM image of the lithium metal surface after the cycling test shows that the composite gel electrolyte with 20% silica cross-linker forms a uniform passivation layer on the lithium surface. Accordingly, these features allow this gel polymer electrolyte with ceramic cross-linker to function as a high-performance lithium-ionic conductor and reliable separator for lithium metal batteries.

  1. Stable Lithium Deposition Generated from Ceramic-Cross-Linked Gel Polymer Electrolytes for Lithium Anode.

    PubMed

    Tsao, Chih-Hao; Hsiao, Yang-Hung; Hsu, Chun-Han; Kuo, Ping-Lin

    2016-06-22

    In this work, a composite gel electrolyte comprising ceramic cross-linker and poly(ethylene oxide) (PEO) matrix is shown to have superior resistance to lithium dendrite growth and be applicable to gel polymer lithium batteries. In contrast to pristine gel electrolyte, these nanocomposite gel electrolytes show good compatibility with liquid electrolytes, wider electrochemical window, and a superior rate and cycling performance. These silica cross-linkers allow the PEO to form the lithium ion pathway and reduce anion mobility. Therefore, the gel not only features lower polarization and interfacial resistance, but also suppresses electrolyte decomposition and lithium corrosion. Further, these nanocomposite gel electrolytes increase the lithium transference number to 0.5, and exhibit superior electrochemical stability up to 5.0 V. Moreover, the lithium cells feature long-term stability and a Coulombic efficiency that can reach 97% after 100 cycles. The SEM image of the lithium metal surface after the cycling test shows that the composite gel electrolyte with 20% silica cross-linker forms a uniform passivation layer on the lithium surface. Accordingly, these features allow this gel polymer electrolyte with ceramic cross-linker to function as a high-performance lithium-ionic conductor and reliable separator for lithium metal batteries. PMID:27247991

  2. Optimized RNA gel-shift and UV cross-linking assays for characterization of cytoplasmic RNA-protein interactions.

    PubMed

    Thomson, A M; Rogers, J T; Walker, C E; Staton, J M; Leedman, P J

    1999-11-01

    Considerable interest has recently focused on defining the mechanisms involved in the regulation of gene expression at the level of mRNA stability and translational efficiency. However, the assays used to directly investigate interactions between RNA and cytoplasmic proteins have been difficult to establish, and methods are not widely available. Here, we describe a robust method for RNA electrophoretic mobility shift and UV cross-linking assays that allows rapid detection of cytoplasmic RNA-protein interactions. For added convenience to new investigators, these assays use mini-gels with an electrophoresis time of 15-20 min, enabling a high throughput of samples. The method works successfully with many different probes and cytoplasmic extracts from a variety of cell lines. Furthermore, we provide a system to optimize characterization of the RNA-protein complex and troubleshoot most assay difficulties.

  3. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    PubMed Central

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  4. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    NASA Astrophysics Data System (ADS)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-05-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures.

  5. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries.

    PubMed

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  6. Cross-Linking the Fibers of Supramolecular Gels Formed from a Tripodal Terpyridine Derived Ligand with d-Block Metal Ions.

    PubMed

    Kotova, Oxana; Daly, Ronan; dos Santos, Cidália M G; Kruger, Paul E; Boland, John J; Gunnlaugsson, Thorfinnur

    2015-08-17

    The tripodal terpyridine ligand, L, forms 1D helical supramolecular polymers/gels in H2O-CH3OH solution mediated through hydrogen bonding and π-π interactions. These gels further cross-link into 3D supramolecular metallogels with a range of metal ions (M) such as Fe(II), Ni(II), Cu(II), Zn(II), and Ru(III); the cross-linking resulting in the formation of colored or colorless gels. The fibrous morphology of these gels was confirmed using scanning electron microscopy (SEM); while the self-assembly processes between L and M were investigated by absorbance and emission spectroscopy from which their binding constants were determined by using a nonlinear regression analysis. PMID:26222397

  7. A Study of Cross-linked Regions of Poly(Vinyl Alcohol) Gels by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2011-07-01

    A poly(vinyl alcohol)-borax cross-linked hydrogel has been studied by Small Angle Neutron Scattering as a function of borax concentration in the wave-vector transfer (Q) range of 0.017 Å-1 to 0.36 Å-1. It is found that as the concentration of borax increases, so does the intensity of scattering in this range. Beyond a borax concentration of 2 mg/ml, the increase in cross-linked PVA chains leads to cross-linked units larger than 150 Å as evidenced by a reduction in intensity in the lower Q region.

  8. CO2/light gas separation performance of cross-linked poly(vinylimidazolium) gel membranes as a function of ionic liquid loading and cross-linker content

    SciTech Connect

    Carlisle, TK; Nicodemus, GD; Gin, DL; Noble, RD

    2012-04-15

    A series of cross-linked poly(vinylimidazolium)-RTIL gel membranes was synthesized and evaluated for room-temperature, ideal CO2/N-2, CO2/CH4, and CO2/H-2 separation performance. The membranes were formed by photo-polymerization of oligo(ethylene glycol)-functionalized cross-linking (i.e., di-functional) and non-cross-linking (i.e., mono-functional) vinylimidazolium RTIL monomers with nonpolymerizable, "free RTIL." The effect of free RTIL ([emim][Tf2N]) loading on CO2 separation performance was evaluated by varying RTIL loading at three levels (45, 65, and 75 wt.%). The effect of cross-linker content on CO2 separation performance was also evaluated by varying the copolymer composition of cross-linked membranes from 5 to 100 mol% di-functional monomer. The substituent on the monofunctional RTIL monomer was also varied to investigate the effect of substituent structure and chemistry on CO2 separation performance. CO2 permeability was dramatically increased with higher loading of free RTIL. Increased RTIL loading had no effect on CO2/N-2 or CO2/CH4 permeability selectivity, but significantly improved CO2/H-2 permeability selectivity. Reducing the cross-linking monomer concentration generally improved CO2 permeability. However, anomalous permeability and selectivity behavior was observed below critical concentrations of cross-linker. The effect of the substituent on the monofunctional monomer on CO2 separation performance was minimal compared to the effects of RTIL loading and copolymer composition. (C) 2012 Elsevier B.V. All rights reserved.

  9. Isolation and purification of chemical constituents from the pericarp of Sophora japonica L. by chromatography on a 12% cross-linked agarose gel.

    PubMed

    Liu, Renmin; Qi, Yuanying; Sun, Ailing; Xie, Hongyan

    2007-08-01

    A chromatographic method using 12% cross-linked agarose gel Superose 12 as the separation medium was developed for isolation and purification of the chemical constituents from the pericarp of Sophora japonica L. The mobile phase used for the separation was 2% acetic acid and 7% acetic acid in gradient elution. As a result, eight compounds including four kinds of flavonoids and four kinds of isoflavonoids were obtained in a one-step separation. A straightforward explanation of the separation mechanism of flavonoids and isoflavonoids on Superose 12 is also given. The flavonoids and isoflavonoids are retained on Superose 12 by a combination of hydrogen bonding and hydrophobic interactions between the hydroxyl groups of aglycone and the residues of the cross-linking reagents used in the manufacture of Superose 12. PMID:17638350

  10. Ultraviolet-B radiation induced cross-linking improves physical properties of cold- and warm-water fish gelatin gels and films.

    PubMed

    Otoni, Caio G; Avena-Bustillos, Roberto J; Chiou, Bor-Sen; Bilbao-Sainz, Cristina; Bechtel, Peter J; McHugh, Tara H

    2012-09-01

    Cold- and warm-water fish gelatin granules were exposed to ultraviolet-B radiation for doses up to 29.7 J/cm(2). Solutions and films were prepared from the granules. Gel electrophoresis and refractive index were used to examine changes in molecular weight of the samples. Also, the gel strength and rheological properties of the solutions as well as the tensile and water vapor barrier properties of the films were characterized. SDS-PAGE and refractive index results indicated cross-linking of gelatin chains after exposure to radiation. Interestingly, UV-B treated samples displayed higher gel strengths, with cold- and warm-water fish gelatin having gel strength increases from 1.39 to 2.11 N and from 7.15 to 8.34 N, respectively. In addition, both gelatin samples exhibited an increase in viscosity for higher UV doses. For gelatin films, the cold-water fish gelatin samples made from irradiated granules showed greater tensile strength. In comparison, the warm-water gelatin films made from irradiated granules had lower tensile strength, but better water vapor barrier properties. This might be due to the UV induced cross-linking in warm-water gelatin that disrupted helical structures.

  11. Influence on the physicochemical properties of fish collagen gels using self-assembly and simultaneous cross-linking with the N-hydroxysuccinimide adipic acid derivative.

    PubMed

    Shen, Lirui; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-06-01

    Collagen gels from Southern catfish (Silurus meridionalis Chen) skins were prepared via the self-assembly of collagen molecules and simultaneous cross-linking with the N-hydroxysuccinimide adipic acid derivative (NHS-AA). The doses of NHS-AA were converted to [NHS-AA]/[NH2] ratios (0.025-1.6, calculated by the [active ester group] of NHS-AA and [ε-NH2] of lysine and hydroxylysine residues of collagen). When the ratio < 0.05, collagen gels were formed by collagen molecule self-assembly, resulting in the opalescent appearance of collagen gels and the characteristic D-periodicity of partial collagen fibrils, the collagen gel ([NHS-AA]/[NH2] = 0.05) displayed a small increase in denaturation temperature (Td, 42.8 °C), remaining weight (12.59%), specific water content (SWC 233.7) and elastic modulus (G' 128.4 Pa) compared with uncross-linked collagen gel (39.1 °C, 9.12%, 222.4 and 85.4 Pa, respectively). As the ratio > 0.05, disappearance of D-periodicity and a gradual change in appearance from opalescent to transparent suggested that the inhibition of NHS-AA in the self-assembly of collagen molecules was more obvious. As a result, the collagen gel ([NHS-AA]/[NH2] = 0.2) had the lowest Td (35.8 °C), remaining weight (7.96%), SWC (130.9) and G' (31.9 Pa). When the ratio was 1.6, the collagen molecule self-assembly was markedly suppressed and the formation of collagen gel was predominantly via the covalent cross-linking bonds which led to the transparent appearance, and the maximum values of Td (47.0 °C), remaining weight (45.92%) and G' (420.7 Pa) of collagen gel. These results indicated that collagen gels with different properties can be prepared using different NHS-AA doses.

  12. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior.

    PubMed

    Li, Zhong-Yu; Zhang, Yanyan; Zhang, Chang-Wei; Chen, Li-Jun; Wang, Chao; Tan, Hongwei; Yu, Yihua; Li, Xiaopeng; Yang, Hai-Bo

    2014-06-18

    A new family of discrete hexakis-pillar[5]arene metallacycles with different sizes have been successfully prepared via coordination-driven self-assembly, which presented very few successful examples of preparation of discrete multiple pillar[n]arene derivatives. These newly designed hexakis-pillar[5]arene metallacycles were well characterized with one-dimensional (1-D) multinuclear NMR ((1)H and (31) P NMR), two-dimensional (2-D) (1)H-(1)H COSY and NOESY, ESI-TOF-MS, elemental analysis, and PM6 semiempirical molecular orbital methods. Furthermore, the host-guest complexation of such hexakis-pillar[5]arene hosts with a series of different neutral ditopic guests G1-6 were well investigated. Through host-guest interactions of hexakis-pillar[5]arene metallacycles H2 or H3 with the neutral dinitrile guest G5, the cross-linked supramolecular polymers H2⊃(G5)3 or H3⊃(G5)3 were successfully constructed at the high-concentration region, respectively. Interestingly, these cross-linked supramolecular polymers transformed into the stable supramolecular gels upon increasing the concentrations to a relatively high level. More importantly, by taking advantage of the dynamic nature of metal-ligand bonds and host-guest interactions, the reversible multiple stimuli-responsive gel-sol phase transitions of such polymer gels were successfully realized under different stimuli, such as temperature, halide, and competitive guest, etc. The mechanism of such multiple stimuli-responsive processes was well illustrated by in situ multinuclear NMR investigation. This research not only provides a highly efficient approach to the preparation of discrete multiple pillar[n]arene derivatives but also presents a new family of multiple stimuli-responsive "smart" soft matters.

  13. Isolation and purification of flavonoid and isoflavonoid compounds from the pericarp of Sophora japonica L. by adsorption chromatography on 12% cross-linked agarose gel media.

    PubMed

    Qi, Yuanying; Sun, Ailing; Liu, Renmin; Meng, Zhaoling; Xie, Hongyan

    2007-01-26

    A method for isolation and purification of flavonoid and isoflavonoid compounds in extracts of the pericarp of Sophora japonica L. was established by adsorption chromatography on the 12% cross-linked agarose gel Superose 12. The crude extracts were pre-separated to two parts, sample A and sample B, on a D-101 macroporous resin column by elution with 20% ethanol and 40% ethanol, respectively. Samples A and B were then separated by adsorption chromatography on Superose 12 with 40% methanol as the mobile phase. Eight compounds including four kinds of flavonoids and four kinds of isoflavonoids were obtained by the proposed method. The adsorption mechanisms of flavonoids and isoflavonoids on Superose 12 were also discussed. PMID:17174318

  14. Interfacial Bioorthogonal Cross-Linking

    PubMed Central

    2015-01-01

    Described herein is interfacial bioorthogonal cross-linking, the use of bioorthogonal chemistry to create and pattern biomaterials through diffusion-controlled gelation at the liquid-gel interface. The basis is a rapid (k2 284000 M–1 s–1) reaction between strained trans-cyclooctene (TCO) and tetrazine (Tz) derivatives. Syringe delivery of Tz-functionalized hyaluronic acid (HA-Tz) to a bath of bis-TCO cross-linker instantly creates microspheres with a cross-linked shell through which bis-TCO diffuses freely to introduce further cross-linking at the interface. Tags can be introduced with 3D resolution without external triggers or templates. Water-filled hydrogel channels were prepared by simply reversing the order of addition. Prostate cancer cells encapsulated in the microspheres have 99% viability, proliferate readily, and form aggregated clusters. This process is projected to be useful in the fabrication of cell-instructive matrices for in vitro tissue models. PMID:25177528

  15. Application of NMR spectroscopy and multidimensional imaging to the gelcasting process and in-situ real-time monitoring of cross-linking polyacrylamide gels

    SciTech Connect

    Ahuja, S.; Dieckman, S.L.; Gopalsami, N.

    1995-04-01

    In the gelcasting process, a slurry of ceramic powder in a solution of organic monomers is cast in a mold. The process is different from injection molding in that it separates mold-filling from setting during conversion of the ceramic slurry to a formed green part. In this work, NMR spectroscopy and imaging have been conducted for in-situ monitoring of the gelation process and for mapping the polymerization. {sup 1}H nuclear magnetic resonance spectra have been obtained during polymerization of a premix of soluble reactive methacrylamide (monomer) and N, N`-methylene bisacrylamide (cross-linking molecules). The premix was polymerized by adding ammonium persulfate (initiator) and tetramethyl-ethylene-diamine (accelerator) to form long-chain, cross-linked polymers. The time-varying spin-lattice relaxation times T{sub 1} during polymerization have been studied at 25 and 35{degrees}C, and the variation of spectra and T{sub 1} with respect to extent of polymerization has been determined. To verify homogeneous polymerization, multidimensional NMR imaging was utilized for in-situ monitoring of the process. The intensities from the images are modeled and the correspondence shows a direct extraction of T{sub 1} data from the images.

  16. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2016-01-01

    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  17. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes

    NASA Astrophysics Data System (ADS)

    Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao

    2014-11-01

    Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).

  18. Radiation cross-linked carboxymethyl sago pulp hydrogels loaded with ciprofloxacin: Influence of irradiation on gel fraction, entrapped drug and in vitro release

    NASA Astrophysics Data System (ADS)

    Lam, Yi Lyn; Muniyandy, Saravanan; Kamaruddin, Hashim; Mansor, Ahmad; Janarthanan, Pushpamalar

    2015-01-01

    Carboxymethyl sago pulp (CMSP) with 0.4 DS, viscosity 184 dl/g and molecular weight 76,000 g/mol was synthesized from sago waste. 10 and 20% w/v solutions of CMSP were irradiated at 10-30 kGy to form hydrogels and were characterized by % gel fraction (GF). Irradiation of 20% CMSP using 25 kGy has produced stable hydrogels with the highest % GF and hence loaded with ciprofloxacin HCl. Drug-loaded hydrogels were produced by irradiating the mixture of drug and 20% CMSP solution at 25 kGy. After irradiation, the hydrogels were cut into circular discs with a diameter of 6±1 mm and evaluated for physicochemical properties as well as drug release kinetics. The ciprofloxacin loading in the disc was 14.7%±1 w/w with an entrapment efficiency of 73.5% w/w. The low standard deviation of drug-loaded discs indicated uniform thickness (1.5±0.3 mm). The unloaded discs were thinner (1±0.4 mm) and more brittle than the drug-loaded discs. FESEM, FT-IR, XRD, DSC and TGA analysis revealed the absence of polymer-drug interaction and transformation of crystalline to amorphous form of ciprofloxacin in the discs. The disc sustained the drug release in phosphate buffer pH 7.4 over 36 h in a first-order manner. The mechanism of the drug release was found to be swelling controlled diffusion and matrix erosion. The anti-bacterial effect of ciprofloxacin was retained after irradiation and CMSP disc could be a promising device for ocular drug delivery.

  19. Electrospinning formaldehyde cross-linked zein solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  20. Extreme dryness and DNA-protein cross-links

    NASA Astrophysics Data System (ADS)

    Bieger-Dose, A.; Dose, K.; Meffert, R.; Mehler, M.; Risi, S.

    Exposure of fungal conidia (Aspergillus ochraceus) or spores of Bacillus subtilis to extreme dryness or vacuum induces DNA lesions, including strand breaks and the formation of DNA-protein cross-links. In wet cells only a small amount of protein is bound to DNA, but exposure to conditions of lowered water activity results in an increasing number of cross-links between DNA and proteins. In fungal conidia these cross-links are detected after selective iodination (125J) of the DNA-bound proteins followed by gel electrophoresis and subsequent autoradiography. Another approach is the labelling of DNA with 32p by means of nick translation and the detection of differences in the electrophoretic mobility of DNA before and after digestion with proteinase K of proteins bound to DNA.

  1. Controlled degradation of hydrogels using multi-functional cross-linking molecules.

    PubMed

    Lee, Kuen Yong; Bouhadir, Kamal H; Mooney, David J

    2004-06-01

    Hydrogels, chemically cross-linked or physically entangled, have found a number of applications as novel delivery vehicles of drugs and cells. However, the narrow ranges of degradation rates and mechanical strength currently available from many hydrogels limits their applications. We have hypothesized that utilization of multi-functional cross-linking molecules to form hydrogels could provide a wider range and tighter control over the degradation rates and mechanical stiffness of gels than bi-functional cross-linking molecules. To address the possibility, we isolated alpha-L-guluronate residues of sodium alginate, and oxidized them to prepare poly(aldehyde guluronate) (PAG). Hydrogels were formed with either poly(acrylamide-co-hydrazide) (PAH) as a multi-functional cross-linking molecule or adipic acid dihydrazide (AAD) as a bi-functional cross-linking molecule. The initial properties and degradation behavior of both PAG gel types were monitored. PAG/PAH hydrogels showed higher mechanical stiffness before degradation and degraded more slowly than PAG/AAD gels, at the same concentration of cross-linking functional groups. The enhanced mechanical stiffness and prolonged degradation behavior could be attributed to the multiple attachment points of PAH in the gel at the same concentration of functional groups. This approach to regulating gel properties with multifunctional cross-linking molecules could be broadly used in hydrogels. PMID:14751730

  2. In vitro degradation of covalently cross-linked arabinoxylan hydrogels by bifidobacteria.

    PubMed

    Martínez-López, Ana L; Carvajal-Millan, Elizabeth; Micard, Valérie; Rascón-Chu, Agustín; Brown-Bojorquez, Francisco; Sotelo-Cruz, Norberto; López-Franco, Yolanda L; Lizardi-Mendoza, Jaime

    2016-06-25

    Arabinoxylan gels with different cross-linking densities, swelling ratios, and rheological properties were obtained by increasing the concentration of arabinoxylan from 4 to 6% (w/v) during oxidative gelation by laccase. The degradation of these covalently cross-linked gels by a mixture of two Bifidobacterium strains (Bifidobacterium longum and Bifidobacterium adolescentis) was investigated. The kinetics of the evolution of structural morphology of the arabinoxylan gel, the carbohydrate utilization profiles and the bacterial production of short-acid fatty acid (SCFA) were measured. Scanning electron microscopy analysis of the degraded gels showed multiple cavity structures resulting from the bacterial action. The total SCFA decreased when the degree of cross-linking increased in the gels. A slower fermentation of arabinoxylan chains was obtained for arabinoxylan gels with more dense network structures. These results suggest that the differences in the structural features and properties studied in this work affect the degradation time of the arabinoxylan gels. PMID:27083795

  3. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  4. Hyaluronan in human malignancies

    SciTech Connect

    Sironen, R.K.; Tammi, M.; Tammi, R.; Auvinen, P.K.; Anttila, M.; Kosma, V-M.

    2011-02-15

    Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma-cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial-mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.

  5. Thermo-cross-linked elastomeric opal films.

    PubMed

    Schäfer, Christian G; Viel, Benjamin; Hellmann, Goetz P; Rehahn, Matthias; Gallei, Markus

    2013-11-13

    An efficient and convenient thermal cross-linking protocol in elastomeric opal films leading to fully reversible and stretch-tunable optical materials is reported. In this study, functional monodisperse core-shell particles were arranged in a face-centered cubic (fcc) lattice structure by a melt flow process. A problem up to now was that un-cross-linked films could not be drawn fully reversibly and hence lost their optical and mechanical performance. After thermal cross-linking reaction, the obtained films can be drawn like rubbers and the color of their Bragg reflection changes because of controlled lattice deformation, which makes the cross-linked films mechanochromic sensors. Different techniques were developed for the cross-linking of the films a posteriori, after their preparation in the melt flow process. A photo-cross-linking approach was reported earlier. This study now deals with a very efficient thermo-cross-linking approach based on the chemistry of hydroxyl- and isocyanate-functionalities that form urethane bridges. The focus of the present work is the mechanism and efficiency of this cross-linking process for elastomeric opal films with excellent mechanical and optical properties. PMID:24134322

  6. Porous Cross-Linked Polyimide-Urea Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2015-01-01

    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  7. Characterization of a novel cross-linked lipase: impact of cross-linking on solubility and release from drug product.

    PubMed

    Hetrick, Evan M; Sperry, David C; Nguyen, Hung K; Strege, Mark A

    2014-04-01

    Liprotamase is a novel non-porcine pancreatic enzyme replacement therapy containing purified biotechnology-derived lipase, protease, and amylase together with excipients in a capsule formulation. To preserve the structural integrity and biological activity of lipase (the primary drug substance) through exposure of the drug product to the low-pH gastric environment, the enzyme was processed through the use of cross-linked enzyme crystal (CLEC) technology, making the lipase-CLEC drug substance insoluble under acidic conditions but fully soluble at neutral pH and in alkaline environments. In this report we characterize the degree of cross-linking for lipase-CLEC and demonstrate its impact on lipase-CLEC solubility and release from the drug product under relevant physiological pH conditions. Cross-linked lipase-CLEC was characterized via size exclusion chromatography (SEC) and capillary electrophoresis sodium dodecyl sulfate polyacrylamide gel electrophoresis (CE-SDS-PAGE). A combination of methodologies was developed to understand the impact of cross-linking on drug product release. Dissolution evaluation using USP Apparatus 2 at pH 5.0 with an enzyme activity-based end point demonstrated solubility discrimination based on degree of cross-linking, while full release was demonstrated at pH 6.5. The dissolution of the drug product was also evaluated using a dual-stage test employing a USP Apparatus 4 flow-through system to mimic the changing pH environments experienced in the stomach and intestine to understand the impact of cross-linking on drug product performance. Use of USP Apparatus 4 to characterize the pH-dependent release of lipase-CLEC represents a novel approach compared to the Apparatus 1 test employing an acid-challenge stage outlined in the USP for delayed-release pancrelipase, and the advantages of this approach may prove useful for understanding the pH-dependence of release for other drug products. Collectively, these studies confirmed that degree of

  8. Porous Cross-Linked Polyimide Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)

    2015-01-01

    Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.

  9. The effect of cross-link distributions in axially-ordered, cross-linked networks

    PubMed Central

    Bennett, C. Brad; Kruczek, James; Rabson, D. A.; Matthews, W. Garrett; Pandit, Sagar A.

    2013-01-01

    Cross-linking between the constituent chains of biopolymers has a marked effect on their materials properties. In certain of these materials, such as fibrillar collagen, increases in cross-linking lead to an increase in the melting temperature. Fibrillar collagen is an axially-ordered network of cross-linked polymer chains exhibiting a broadened denaturation transition, which has been explained in terms of the successive denaturation with temperature of multiple species. We model axially-ordered cross-linked materials as stiff chains with distinct arrangements of cross-link-forming sites. Simulations suggest that systems composed of chains with identical arrangements of cross-link-forming sites exhibit critical behavior. In contrast, systems composed of non-identical chains undergo a crossover. This model suggests that the arrangement of cross-link-forming sites may contribute to the broadening of the denaturation transition in fibrillar collagen. PMID:23751928

  10. Modified gum arabic cross-linked gelatin scaffold for biomedical applications.

    PubMed

    Sarika, P R; Cinthya, Kuriakose; Jayakrishnan, A; Anilkumar, P R; James, Nirmala Rachel

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. PMID:25175214

  11. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    PubMed Central

    Kim, Min Hee; Park, Won Ho

    2016-01-01

    In this study, the synthesis of silk fibroin (SF) hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray) irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel irradiated at different doses of γ-rays. The effects of the irradiation dose and SF concentration on the hydrogelation of SF were examined. The chemically cross-linked SF hydrogel was compared with the physically cross-linked one with regard to secondary structure and gel strength. Furthermore, the swelling behavior, crystallinity, and biodegradation of the SF hydrogels were characterized. To assay cell proliferation, the cell viability of human mesenchymal stem cells on the lyophilized SF hydrogel scaffolds was evaluated, and no significant cytotoxicity against human mesenchymal stem cells was observed. PMID:27382283

  12. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  13. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  14. Cross-linking of Newcastle disease virus (NDV) proteins.

    PubMed

    Nagai, Y; Yoshida, T; Hamaguchi, M; Iinuma, M; Maeno, K; Matsumoto, T

    1978-01-01

    The proxomity and spatial relationships of the structural proteins of Newcastle disease virus (NDV) were studied by chemical cross-linking with a series of imidoesters. When the virions were reacted by the cross-linker with a distance 6.1A or longer between the functional groups and analyzed by polyacrylamide gel electrophoresis, remarkable changes were observed in the migration patterns of the viral proteins. The most striking one was the extensive decrease in the intensity of the M protein band, and although not so strikingly, glycoprotein and nucleocapsid protein bands were reduced significantly. Instead, several protein complexes appeared at and near the top of the gels. The protein complexes formed by a reversible cross-linker, dimethyl-3,3'-dithiobispropionimidate (DTBP), were analyzed by two dimensional electrophoresis; the complexes on the first-dimension cylindrical gels were cleaved by reduction with 2-mercaptoethanol and electrophoresed laterally on the second-dimension slab gels. The results indicated that homodimers of glycoprotein, nucleocapsid protein and M protein were generated under the condition of the most gentle cross-linking employed. At the same time, however, trimer and higher homopolymers of M protein were already detectable. Under the more extensive conditions, the bulk of M protein was cross-linked to form a large protein complex with very high molecular weight. Further, small but significant amounts of glycoprotein and nucleocapsid protein were always detected in this complex. These results suggest that M protein may be present in the virion in close enough proximity to interact with each other and may further have some interactions with glycoprotein and nucleocapsid protein. On the basis of these findings possible roles of M protein in virus assembly were discussed.

  15. Cross-linked biopolymer bundles: Cross-link reversibility leads to cooperative binding/unbinding phenomena

    NASA Astrophysics Data System (ADS)

    Vink, Richard L. C.; Heussinger, Claus

    2012-01-01

    We consider a biopolymer bundle consisting of filaments that are cross-linked together. The cross-links are reversible: they can dynamically bind and unbind adjacent filament pairs as controlled by a binding enthalpy. The bundle is subjected to a bending deformation and the corresponding distribution of cross-links is measured. For a bundle consisting of two filaments, upon increasing the bending amplitude, a first-order transition is observed. The transition is from a state where the filaments are tightly coupled by many bound cross-links, to a state of nearly independent filaments with only a few bound cross-links. For a bundle consisting of more than two filaments, a series of first-order transitions is observed. The transitions are connected with the formation of an interface between regions of low and high cross-link densities. Combining umbrella sampling Monte Carlo simulations with analytical calculations, we present a detailed picture of how the competition between cross-link shearing and filament stretching drives the transitions. We also find that, when the cross-links become soft, collective behavior is not observed: the cross-links then unbind one after the other leading to a smooth decrease of the average cross-link density.

  16. Tailoring the properties of gelatin films for drug delivery applications: influence of the chemical cross-linking method.

    PubMed

    Coimbra, P; Gil, M H; Figueiredo, M

    2014-09-01

    Two types of chemically cross-linked gelatin films were prepared and characterized. The first type of films was cross-linked with 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC) under heterogeneous conditions and are named Gel-E. In the second type of films, gelatin was previously functionalized with methacrylamide side groups by the reaction with methacrylic anhydride and for that is named Gel-MA. The modified gelatin was subsequently cross-linked by a photoinitiated radical polymerization. These films were characterized relatively to their degree of cross-linking, buffer uptake capacity, resistance to hydrolytic and proteolytic degradation, and mechanical and thermal properties. Results show that the employed cross-linking method, together with the degree cross-linking, dictate the final properties of the films. Gel-E films have significant lower buffer uptake capacities and higher resistance to collagenase digestion when compared to Gel-MA films. Additionally, Gel-E films exhibit higher values of stress at break and lower strains at break. Moreover, the films properties could be modified by varying the extent of the chemical cross-linking, which in turn could be controlled by varying the concentration of EDC, for the first type of films (Gel-E), or by using gelatins with different degrees of functionalization, in the case of the second type of films (Gel-MA).

  17. Control of dehydrodiferulate cross-linking in pectins from sugar-beet tissues.

    PubMed

    Baydoun, Elias A -H; Pavlencheva, Natalie; Cumming, Carol M; Waldron, Keith W; Brett, Christopher T

    2004-04-01

    Pectins were extracted from roots, petioles and leaves of sugar beet, and cross-linked using hydrogen peroxide and peroxidase. The effects on dehydrodiferulate formation were monitored by HPLC and TLC. Dehydrodimers were formed in different proportions to those found in vivo. There was a net loss of around 50% of the phenolic groups (monomers plus dimers) during dimerisation. Gel filtration showed that root and petiole pectin, but not leaf pectin, increased in molecular weight during cross-linking. The effects of varying the cross-linking conditions were investigated, and it was found that hydrogen peroxide concentration was the most important factor in controlling both the type and amount of dehydrodiferulate formed.

  18. The Effect of Substrate Stiffness, Thickness, and Cross-Linking Density on Osteogenic Cell Behavior

    PubMed Central

    Mullen, Conleth A.; Vaughan, Ted J.; Billiar, Kristen L.; McNamara, Laoise M.

    2015-01-01

    Osteogenic cells respond to mechanical changes in their environment by altering their spread area, morphology, and gene expression profile. In particular, the bulk modulus of the substrate, as well as its microstructure and thickness, can substantially alter the local stiffness experienced by the cell. Although bone tissue regeneration strategies involve culture of bone cells on various biomaterial scaffolds, which are often cross-linked to enhance their physical integrity, it is difficult to ascertain and compare the local stiffness experienced by cells cultured on different biomaterials. In this study, we seek to characterize the local stiffness at the cellular level for MC3T3-E1 cells plated on biomaterial substrates of varying modulus, thickness, and cross-linking concentration. Cells were cultured on flat and wedge-shaped gels made from polyacrylamide or cross-linked collagen. The cross-linking density of the collagen gels was varied to investigate the effect of fiber cross-linking in conjunction with substrate thickness. Cell spread area was used as a measure of osteogenic differentiation. Finite element simulations were used to examine the effects of fiber cross-linking and substrate thickness on the resistance of the gel to cellular forces, corresponding to the equivalent shear stiffness for the gel structure in the region directly surrounding the cell. The results of this study show that MC3T3 cells cultured on a soft fibrous substrate attain the same spread cell area as those cultured on a much higher modulus, but nonfibrous substrate. Finite element simulations predict that a dramatic increase in the equivalent shear stiffness of fibrous collagen gels occurs as cross-linking density is increased, with equivalent stiffness also increasing as gel thickness is decreased. These results provide an insight into the response of osteogenic cells to individual substrate parameters and have the potential to inform future bone tissue regeneration strategies that

  19. Cross-linking reconsidered: binding and cross-linking fields and the cellular response.

    PubMed Central

    Sulzer, B; De Boer, R J; Perelson, A S

    1996-01-01

    We analyze a model for the reversible cross-linking of cell surface receptors by a collection of bivalent ligands with different affinities for the receptor as would be found in a polyclonal anti-receptor serum. We assume that the amount of cross-linking determines, via a monotonic function, the rate at which cells become activated and divide. In addition to the density of receptors on the cell surface, two quantities, the binding field and the cross-linking field, are needed to characterize the cross-linking curve, i.e., the equilibrium concentration of cross-linked receptors plotted as a function of the total ligand site concentration. The binding field is the sum of all ligand site concentrations weighted by their respective binding affinities, and the cross-linking field is the sum of all ligand site concentrations weighted by the product of their respective binding and cross-linking affinity and the total receptor density. Assuming that the cross-linking affinity decreases if the binding affinity decreases, we find that the height of the cross-linking curve decreases, its width narrows, and its center shifts to higher ligand site concentrations as the affinities decrease. Moreover, when we consider cross-linking-induced proliferation, we find that there is a minimum cross-linking affinity that must be surpassed before a clone can expand. We also show that under many circumstances a polyclonal antiserum would be more likely than a monoclonal antibody to lead to cross-linking-induced proliferation. Images FIGURE 1 FIGURE 2 FIGURE 5 PMID:8785275

  20. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.

  1. Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate.

    PubMed

    Carbinatto, Fernanda M; de Castro, Ana Dóris; Cury, Beatriz S F; Magalhães, Alviclér; Evangelista, Raul C

    2012-02-28

    Pectin-high amylose starch mixtures (1:4; 1:1; 4:1) were cross-linked at different degrees and characterized by rheological, thermal, X-ray diffraction and NMR analyses. For comparison, samples without cross-linker addition were also prepared and characterized. Although all samples behaved as gels, the results evidenced that the phosphorylation reaction promotes the network strengthening, resulting in covalent gels (highest critical stress, G' and recovery %). Likewise, cross-linked samples presented the highest thermal stability. However, alkaline treatment without cross-linker allowed a structural reorganization of samples, as they also behaved as covalent gels, but weaker than those gels from cross-linked samples, and presented higher thermal stability than the physical mixtures. X-ray diffractograms also evidenced the occurrence of physical and chemical modifications due to the cross-linking process and indicated that samples without cross-linker underwent some structural reorganization, resulting in a decrease of crystallinity. The chemical shift of resonance signals corroborates the occurrence of structural modifications by both alkaline treatment and cross-linking reaction. PMID:22178896

  2. Arabinosylation Plays a Crucial Role in Extensin Cross-linking In Vitro

    PubMed Central

    Chen, Yuning; Dong, Wen; Tan, Li; Held, Michael A; Kieliszewski, Marcia J

    2015-01-01

    Extensins (EXTs) are hydroxyproline-rich glycoproteins (HRGPs) that are structural components of the plant primary cell wall. They are basic proteins and are highly glycosylated with carbohydrate accounting for >50% of their dry weight. Carbohydrate occurs as monogalactosyl serine and arabinosyl hydroxyproline, with arabinosides ranging in size from ~1 to 4 or 5 residues. Proposed functions of EXT arabinosylation include stabilizing the polyproline II helix structure and facilitating EXT cross-linking. Here, the involvement of arabinosylation in EXT cross-linking was investigated by assaying the initial cross-linking rate and degree of cross-linking of partially or fully de-arabinosylated EXTs using an in vitro cross-linking assay followed by gel permeation chromatography. Our results indicate that EXT arabinosylation is required for EXT cross-linking in vitro and the fourth arabinosyl residue in the tetraarabinoside chain, which is uniquely α-linked, may determine the initial cross-linking rate. Our results also confirm the conserved structure of the oligoarabinosides across species, indicating an evolutionary significance for EXT arabinosylation. PMID:26568683

  3. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  4. Cross-linked structure of network evolution

    SciTech Connect

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  5. Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme

    NASA Technical Reports Server (NTRS)

    Meador, Ann B.; Capadona, Lynn A.

    2008-01-01

    A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.

  6. Mechanically strong triple network hydrogels based on hyaluronan and poly(N,N-dimethylacrylamide).

    PubMed

    Tavsanli, Burak; Can, Volkan; Okay, Oguz

    2015-11-21

    Hyaluronan (HA) is a natural polyelectrolyte with distinctive biological functions. Cross-linking of HA to generate less degradable hydrogels for use in biomedical applications has attracted interest over many years. One limitation of HA hydrogels is that they are very brittle and/or easily dissolve in physiological environments, which limit their use in load-bearing applications. Herein, we describe the preparation of triple-network (TN) hydrogels based on HA and poly(N,N-dimethylacrylamide) (PDMA) of high mechanical strength by sequential gelation reactions. TN hydrogels containing 81-91% water sustain compressive stresses above 20 MPa and exhibit Young's moduli of up to 1 MPa. HA of various degrees of methacrylation was used as a multifunctional macromer for the synthesis of the brittle first-network component, while loosely cross-linked PDMA was used as the ductile, second and third network components of TN hydrogels. By tuning the methacrylation degree of HA, double-network hydrogels with a fracture stress above 10 MPa and a fracture strain of 96% were obtained. Increasing the ratio of ductile-to-brittle components via the TN approach further increases the fracture stress above 20 MPa. Cyclic mechanical tests show that, although TN hydrogels internally fracture even under small strain, the ductile components hinder macroscopic crack propagation by keeping the macroscopic gel samples together.

  7. Cross-Linking Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a

  8. Complications of Corneal Collagen Cross-Linking

    PubMed Central

    Dhawan, Shikha; Rao, Kavita; Natrajan, Sundaram

    2011-01-01

    Cross-linking of corneal collagen (CXL) is a promising approach for the treatment of keratoconus and secondary ectasia. Several long-term and short-term complications of CXL have been studied and documented. The possibility of a secondary infection after the procedure exists because the patient is subjected to epithelial debridement and the application of a soft contact lens. Formation of temporary corneal haze, permanent scars, endothelial damage, treatment failure, sterile infiltrates, and herpes reactivation are the other reported complications of this procedure. Cross-linking is a low-invasive procedure with low complication and failure rate but it may have direct or primary complications due to incorrect technique application or incorrect patient's inclusion and indirect or secondary complications related to therapeutic soft contact lens, patient's poor hygiene, and undiagnosed concomitant ocular surface diseases. PMID:22254130

  9. Positive tone cross-linked resists based on photoacid inhibition of cross linking

    NASA Astrophysics Data System (ADS)

    Lawson, Richard A.; Chun, Jun Sung; Neisser, Mark; Tolbert, Laren M.; Henderson, Clifford L.

    2014-03-01

    A resist imaging design that utilizes photoacid inhibition of cationic polymerization and cross-linking during a postexposure bake step has been studied. The key to the design approach is the use of two different polymerization catalysts/initiators: (1) a photoacid produced from a photoacid generator (PAG) upon exposure of the resist that can result in polymerization and cross-linking of the resist matrix and (2) a thermal cross-linking catalyst (TCC) designed to thermally catalyze epoxide-phenol cross-linking. The TCC can be chosen from a variety of compounds such as triphenylphosphine (TPP) or imidazole. When only one of these catalysts (e.g TPP or photoacid) is present in an epoxide and phenol containing resist matrix, it will individually catalyze cross-linking. When they are present together, they effectively quench one another and little to no cross-linking occurs. This approach can be used to switch the tone of a resist from negative (photoacid catalyzed) to positive (TCC catalyzed and photoacid inhibited). The effect of the ratio of TCC:PAG was examined and the optimal ratio for positive tone behavior was determined. Resist contrast can be modified by optimization of epoxide:phenol ratio in the formulation. Dual tone behavior with positive tone at low dose and negative tone at higher doses can be observed in certain formulation conditions. Initial EUV patterning shows poor results, but the source of the poor imaging is not yet understood.

  10. Hyaluronan Synthesis and Myogenesis

    PubMed Central

    Hunt, Liam C.; Gorman, Chris; Kintakas, Christopher; McCulloch, Daniel R.; Mackie, Eleanor J.; White, Jason D.

    2013-01-01

    Exogenous hyaluronan is known to alter muscle precursor cell proliferation, migration, and differentiation, ultimately inhibiting myogenesis in vitro. The aim of the current study was to investigate the role of endogenous hyaluronan synthesis during myogenesis. In quantitative PCR studies, the genes responsible for synthesizing hyaluronan were found to be differentially regulated during muscle growth, repair, and pathology. Although all Has genes (Has1, Has2, and Has3) were differentially regulated in these models, only Has2 gene expression consistently associated with myogenic differentiation. During myogenic differentiation in vitro, Has2 was the most highly expressed of the synthases and increased after induction of differentiation. To test whether this association between Has2 expression and myogenesis relates to a role for Has2 in myoblast differentiation and fusion, C2C12 myoblasts were depleted of Has2 by siRNA and induced to differentiate. Depletion of Has2 inhibited differentiation and caused a loss of cell-associated hyaluronan and the hyaluronan-dependent pericellular matrix. The inhibition of differentiation caused by loss of hyaluronan was confirmed with the hyaluronan synthesis inhibitor 4-methylumbelliferone. In hyaluronan synthesis-blocked cultures, restoration of the pericellular matrix could be achieved through the addition of exogenous hyaluronan and the proteoglycan versican, but this was not sufficient to restore differentiation to control levels. These data indicate that intrinsic hyaluronan synthesis is necessary for myoblasts to differentiate and form syncytial muscle cells, but the hyaluronan-dependent pericellular matrix is not sufficient to support differentiation alone; additional hyaluronan-dependent cell functions that are yet unknown may be required for myogenic differentiation. PMID:23493399

  11. Collagen cross-linking in thin corneas

    PubMed Central

    Padmanabhan, Prema; Dave, Abhishek

    2013-01-01

    Collagen cross-linking (CXL) has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA) radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety. PMID:23925328

  12. Enzymatically cross-linked alginic-hyaluronic acid composite hydrogels as cell delivery vehicles.

    PubMed

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V; Nair, Lakshmi S

    2013-04-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The enzymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tyraminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significantly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  13. Enzymatically Cross-linked Alginic-Hyaluronic acid Composite Hydrogels As Cell Delivery Vehicles

    PubMed Central

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V.; Nair, Lakshmi S.

    2013-01-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The ezymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tryaminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significanly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  14. Tuning chemical and physical cross-links in silk electrogels for morphological analysis and mechanical reinforcement.

    PubMed

    Lin, Yinan; Xia, Xiaoxia; Shang, Ke; Elia, Roberto; Huang, Wenwen; Cebe, Peggy; Leisk, Gary; Omenetto, Fiorenzo; Kaplan, David L

    2013-08-12

    Electrochemically controlled, reversible assembly of biopolymers into hydrogel structures is a promising technique for on-demand cell or drug encapsulation and release systems. An electrochemically sol-gel transition has been demonstrated in regenerated Bombyx mori silk fibroin, offering a controllable way to generate biocompatible and reversible adhesives and other biomedical materials. Despite the involvement of an electrochemically triggered electrophoretic migration of the silk molecules, the mechanism of the reversible electrogelation remains unclear. It is, however, known that the freshly prepared silk electrogels (e-gels) adopt a predominantly random coil conformation, indicating a lack of cross-linking as well as thermal, mechanical, and morphological stabilities. In the present work, the tuning of covalent and physical β-sheet cross-links in silk hydrogels was studied for programming the structural properties. Scanning electron microscopy (SEM) revealed delicate morphology, including locally aligned fibrillar structures, in silk e-gels, preserved by combining glutaraldehyde-cross-linking and ethanol dehydration. Fourier transform infrared (FTIR) spectroscopic analysis of either electrogelled, vortex-induced or spontaneously formed silk hydrogels showed that the secondary structure of silk e-gels was tunable between non-β-sheet-dominated and β-sheet-dominated states. Dynamic oscillatory rheology confirmed the mechanical reinforcement of silk e-gels provided by controlled chemical and physical cross-links. The selective incorporation of either chemical or physical or both cross-links into the electrochemically responsive, originally unstructured silk e-gel should help in the design for electrochemically responsive protein polymers. PMID:23859710

  15. Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture.

    PubMed

    Zhao, Jun; Chen, Min; Wang, Xiaoyan; Zhao, Xiaodong; Wang, Zhenwen; Dang, Zhi-Min; Ma, Lan; Hu, Guo-Hua; Chen, Fenghua

    2013-06-26

    In this paper, the triple shape memory effects (SMEs) observed in chemically cross-linked polyethylene (PE)/polypropylene (PP) blends with cocontinuous architecture are systematically investigated. The cocontinuous window of typical immiscible PE/PP blends is the volume fraction of PE (v(PE)) of ca. 30-70 vol %. This architecture can be stabilized by chemical cross-linking. Different initiators, 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane (DHBP), dicumylperoxide (DCP) coupled with divinylbenzene (DVB) (DCP-DVB), and their mixture (DHBP/DCP-DVB), are used for the cross-linking. According to the differential scanning calorimetry (DSC) measurements and gel fraction calculations, DHBP produces the best cross-linking and DCP-DVB the worst, and the mixture, DHBP/DCP-DVB, is in between. The chemical cross-linking causes lower melting temperature (Tm) and smaller melting enthalpy (ΔHm). The prepared triple shape memory polymers (SMPs) by cocontinuous immiscible PE/PP blends with v(PE) of 50 vol % show pronounced triple SMEs in the dynamic mechanical thermal analysis (DMTA) and visual observation. This new strategy of chemically cross-linked immiscible blends with cocontinuous architecture can be used to design and prepare new SMPs with triple SMEs.

  16. Directing the oligomer size distribution of peroxidase-mediated cross-linked bovine alpha-lactalbumin.

    PubMed

    Heijnis, Walter H; Wierenga, Peter A; van Berkel, Willem J H; Gruppen, Harry

    2010-05-12

    Enzymatic protein cross-linking is a powerful tool to change protein functionality. For optimal functionality in gel formation, the size of the cross-linked proteins needs to be controlled, prior to heating. In the current study, we addressed the optimization of the horseradish peroxidase-mediated cross-linking of calcium-depleted bovine alpha-lactalbumin. To characterize the formed products, the molecular weight distribution of the cross-linked protein was determined by size exclusion chromatography. At low ionic strength, more dimers of alpha-lactalbumin are formed than at high ionic strength, while the same conversion of monomers is observed. Similarly, at pH 5.9 more higher oligomers are formed than at pH 6.8. This is proposed to be caused by local changes in apo alpha-lactalbumin conformation as indicated by circular dichroism spectroscopy. A gradual supply of hydrogen peroxide improves the yield of cross-linked products and increases the proportion of higher oligomers. In conclusion, this study shows that the size distribution of peroxidase-mediated cross-linked alpha-lactalbumin can be directed toward the protein oligomers desired.

  17. Covalently Cross-Linked Arabinoxylans Films for Debaryomyces hansenii Entrapment.

    PubMed

    González-Estrada, Ramsés; Calderón-Santoyo, Montserrat; Carvajal-Millan, Elizabeth; Ascencio Valle, Felipe de Jesús; Ragazzo-Sánchez, Juan Arturo; Brown-Bojorquez, Francisco; Rascón-Chu, Agustín

    2015-01-01

    In the present study, wheat water extractable arabinoxylans (WEAX) were isolated and characterized, and their capability to form covalently cross-linked films in presence of Debaryomyces hansenii was evaluated. WEAX presented an arabinose to xylose ratio of 0.60, a ferulic acid and diferulic acid content of 2.1 and 0.04 µg∙mg(-1) WEAX, respectively and a Fourier Transform Infra-Red (FT-IR) spectrum typical of WEAX. The intrinsic viscosity and viscosimetric molecular weight values for WEAX were 3.6 dL∙g(-1) and 440 kDa, respectively. The gelation of WEAX (1% w/v) with and without D. hansenii (1 × 10(7) CFU∙cm(-2)) was rheologically investigated by small amplitude oscillatory shear. The entrapment of D. hansenii decreased gel elasticity from 1.4 to 0.3 Pa, probably by affecting the physical interactions between WEAX chains. Covalently cross-linked WEAX films containing D. hansenii were prepared by casting. Scanning electron microscopy images show that WEAX films containing D. hansenii were porous and consisted of granular-like and fibre microstructures. Average tensile strength, elongation at break and Young's modulus values dropped when D. hansenii was present in the film. Covalently cross-lined WEAX containing D. hansenii could be a suitable as a functional entrapping film. PMID:26102070

  18. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    PubMed

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration.

  19. Formation and properties of hyaluronan/nano Ag and hyaluronan-lecithin/nano Ag films.

    PubMed

    Khachatryan, Gohar; Khachatryan, Karen; Grzyb, Jacek; Fiedorowicz, Maciej

    2016-10-20

    A facile and environmentally friendly method of the preparation of silver nanoparticles embedded in hyaluronan (Hyal/Ag) and hyaluronan-lecithin (Hyal-L/Ag) matrix was developed. Thin, elastic foils were prepared from gels by an in situ synthesis of Ag in an aqueous solution of sodium hyaluronate (Hyal), using aq. d-(+)-xylose solution as a reducing agent. The gels were applied to a clean, smooth, defatted Teflon surface and left for drying in the air. The dry foils were stored in a closed container. UV-vis spectroscopy, transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectra confirmed formation of about 10nm ball-shaped Ag nanoparticles situated within the polysaccharide template. Thermal properties of the composites were characterized involving differential scanning calorimetry (DSC) and thermogravimetric (TGA) analyses, whereas molecular weights of polysaccharide chains of the matrix were estimated with the size exclusion chromatography coupled with multiangle laser light scattering and refractometric detectors (HPSEC-MALLS-RI). An increase in the molecular weight of the hyaluronate after generation of Ag nanoparticles was observed. The foils showed specific properties. The study confirmed that silver nanoparticles can be successfully prepared with environmentally friendly method, using hyaluronan as a stabilizing template. Hyaluronan and hyaluronan-lecithin matrices provide nanocrystals uniform in size and shape. The composites demonstrated a bacteriostatic activity. PMID:27474588

  20. Contraction of cross-linked actomyosin bundles

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Natsuhiko; Marcq, Philippe

    2012-08-01

    Cross-linked actomyosin bundles retract when severed in vivo by laser ablation, or when isolated from the cell and micromanipulated in vitro in the presence of ATP. We identify the timescale for contraction as a viscoelastic time τ, where the viscosity is due to (internal) protein friction. We obtain an estimate of the order of magnitude of the contraction time τ ≈ 10-100 s, consistent with available experimental data for circumferential microfilament bundles and stress fibers. Our results are supported by an exactly solvable, hydrodynamic model of a retracting bundle as a cylinder of isotropic, active matter, from which the order of magnitude of the active stress is estimated.

  1. Sulfhydryl site-specific cross-linking and labeling of monoclonal antibodies by a fluorescent equilibrium transfer alkylation cross-link reagent.

    PubMed

    del Rosario, R B; Wahl, R L; Brocchini, S J; Lawton, R G; Smith, R H

    1990-01-01

    The site-specific intramolecular cross-linking of sulfhydryls of monoclonal antibodies via a new class of "equilibrium transfer alkylation cross-link (ETAC) reagents" is described. Following complete or partial reduction of interchain disulfides with dithiothreitol (DTT), two murine IgG2a monoclonal antibodies, 225.28S and 5G6.4, were reacted with alpha,alpha-bis[(p-tolylsulfonyl)methyl]-m-aminoacetophenone (ETAC 1a) and a fluorescent conjugated derivative, sulforhodamine B m-(alpha,alpha-bis(p-tolysulfonylmethyl)acetyl)anilide derivative (ETAC 1b). Reducing SDS-polyacrylamide gel electrophoresis analysis of the products from 1b indicated the formation of S-ETAC-S interchain heavy and light chain cross-links (approximately 23-34% overall yield by video-camera densitometry) which do not undergo disulfide-thiol exchange with DTT at 100 degrees C. In contrast, no interchain cross-links were observed upon reaction of unreduced or reduced antibody wherein the thiols have been previously alkylated with iodoacetamide. These results indicated site-specific cross-linking of interchain sulfhydryls and places their distance within 3-4 A. Flow cytometry of the ETAC 1b 5G6.4 cross-linked product using 77 IP3 human ovarian carcinoma target cells showed positive binding and retention of immunoreactivity. The in vivo biodistributions of 131I-labeled intact 5G6.4 and 125I-labeled reduced 5G6.4 + ETAC 1a product in rats were essentially identical over a period of 24 h. The present study illustrates the potential applications of labelable ETAC reagents as thiol-specific probes for a wide variety of immunological studies. PMID:2128870

  2. Corneal collagen cross-linking: A review

    PubMed Central

    O’Brart, David P.S.

    2014-01-01

    The aim was to review the published literature on corneal collagen cross-linking. The emphasis was on the seminal publications, systemic reviews, meta-analyses and randomized controlled trials. Where such an evidence did not exist, selective large series cohort studies, case controlled studies and case series with follow-up preferably greater than 12 months were included. Riboflavin/Ultraviolet A (UVA) corneal collagen cross-linking appears to be the first treatment modality to halt the progression of keratoconus and other corneal ectatic disorders with improvement in visual, keratometric and topographic parameters documented by most investigators. Its precise mechanism of action at a molecular level is as yet not fully determined. Follow-up is limited to 4–6 years at present but suggests continued stability and improvement in corneal shape with time. Most published data are with epithelium-off techniques. Epithelium-on studies suggest some efficacy but less than with the epithelium-off procedures and long-term data are not currently available. The use of Riboflavin/UVA CXL for the management of infectious and non-infectious keratitis appears very promising. Its use in the management of bullous keratopathy is equivocal. Investigation of other methodologies for CXL are under investigation. PMID:25000866

  3. The Adhesion and Neurite Outgrowth of Neurons on Poly(D-lysine)/Hyaluronan Multilayer Films.

    PubMed

    Shi, Haifei; Sheng, Guoping

    2016-06-01

    Poly(D-lysine)/hyaluronan (PDL/HA) films were prepared using layer-by-layer assembly technique and chemically cross-linked with a water soluble carbodiimide (EDC) in combination with N-hydroxysuccinimide (NHS) through formation of amide bonds. Quartz crystal microbalance with dissipation (QCM-D) was used to follow the cross-linking reaction. Atomic force measurement, ellipsometry, and Fourier transform infrared (FTIR) spectroscopy were performed to study the chemical structure, topography, thickness and mechanical properties of the cross-linked films. QCM-D and Frictional force study were used to reveal the viscoelasticity of the films after cross-linking treatment. The stability of the films was studied via incubating the films in physiological environment. Finally, the neurons were used to evaluate the interaction between films and cells. The results indicated that the neurons were preferably proliferating and outgrowth neurite on cross-linked films while uncross-linked films are highly cell resistant. PMID:27427590

  4. Gauging and Tuning Cross-Linking Kinetics of Catechol-PEG Adhesives via Catecholamine Functionalization.

    PubMed

    Paez, Julieta I; Ustahüseyin, Oya; Serrano, Cristina; Ton, Xuan-Anh; Shafiq, Zahid; Auernhammer, Günter K; d'Ischia, Marco; del Campo, Aránzazu

    2015-12-14

    The curing time of an adhesive material is determined by the polymerization and cross-linking kinetics of the adhesive formulation and needs to be optimized for the particular application. Here, we explore the possibility of tuning the polymerization kinetics and final mechanical properties of tissue-adhesive PEG gels formed by polymerization of end-functionalized star-PEGs with catecholamines with varying substituents. We show strong differences in cross-linking time and cohesiveness of the final gels among the catecholamine-PEG variants. Installation of an electron-withdrawing but π-electron donating chloro substituent on the catechol ring resulted in faster and more efficient cross-linking, while opposite effects were observed with the strongly electron-withdrawing nitro group. Chain substitution slowed down the kinetics and hindered cross-linking due either to chain breakdown (β-OH group, in norepinephrine) or intramolecular cyclization (α-carboxyl group, in DOPA). Interesting perspectives derive from use of mixtures of catecholamine-PEG precursors offering further opportunities for fine-tuning of the curing parameters. These are interesting properties for the application of catecholamine-PEG gels as tissue glues or biomaterials for cell encapsulation. PMID:26583428

  5. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    NASA Astrophysics Data System (ADS)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  6. Nitrocinnamate-functionalized gelatin: synthesis and "smart"hydrogel formation via photo-cross-linking.

    PubMed

    Gattás-Asfura, Kerim M; Weisman, Eric; Andreopoulos, Fotios M; Micic, Miodrag; Muller, Bill; Sirpal, Sanjeev; Pham, Si M; Leblanc, Roger M

    2005-01-01

    Gelatin having p-nitrocinnamate pendant groups (Gel-NC) was prepared via an efficient one-pot synthesis, yield >87%. (1)H NMR data indicated that 1 mol of gelatin was modified with 18 +/- 6 mol of the photosensitive group. Upon exposure to low-intensity 365 nm UV light and in the absence of photoinitiators or catalysts, Gel-NC cross-linked within minutes into a gelatin-based hydrogel as monitored by UV-vis spectroscopy. The degree of swelling of this biodegradable hydrogel in aqueous solutions responded to changes in Gel-NC concentration levels, the ionic strength of the aqueous solutions, and photo-cross-linking time. Topography changes associated with phase transition resulting from "photocleavage" of the hydrogel network with 254 nm UV light were studied with AFM. Both Gel-NC and its hydrogel expressed low toxicity to human neonatal fibroblast cells. In addition, gelatin-based microgels were prepared via the photo-cross-linking of Gel-NC within inverse micelles. PMID:15877371

  7. [Riboflavin UVA cross-linking for keratoconus].

    PubMed

    Maier, P; Reinhard, T

    2013-09-01

    Keratoconus is a progressive, ectatic disease of the cornea leading to thinning and highly irregular astigmatism. Until recently all treatment options, such as prescription of glasses or contact lenses were symptomatic and neither keratoplasty nor the implantation of intracorneal rings can heal the disease. Riboflavin ultraviolet A (UVA) collagen cross-linking (CXL) cannot heal keratoconus either but promises to halt the progression. The therapeutic principle is a photochemical reaction of riboflavin and UVA light leading to free oxygen radicals in the corneal stroma that induce covalent linking of the collagen fibrils. This stiffening effect should stop the progression. After the first reports at the end of the 1990s the treatment was widely used and many case series show that CXL can be effective in stopping disease progression in some patients. However, randomized, controlled multicenter trials showing high evidence of the treatment effectiveness are rare. This report includes a review of the literature regarding treatment effectiveness, indications and new developments. PMID:23760423

  8. Corneal cross-linking treatment of keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad

    2015-01-01

    Keratoconus as the most common cause of ectasia is one of the leading cause of corneal transplants worldwide. The current available therapies do not modify the underlying pathogenesis of the disease, and none of the available approaches but corneal transplant hinder the ongoing ectasia. Several studies document Crosslink defect between collagen fibrils in the pathogenesis of keratoconus. Collagen cross link is a relatively new approach that with the application of the riboflavin and ultraviolet A, new covalent bands reform. Subjective and objective results following this method seem to be promising. Endothelial damage besides other deep structural injury, which is the major concern of this technique have not yet been reported, when applying the standard method. PMID:26622134

  9. Riboflavin for corneal cross-linking.

    PubMed

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. PMID:27458610

  10. Organization of photosystem I polypeptides examined by chemical cross-linking

    NASA Technical Reports Server (NTRS)

    Armbrust, T. S.; Chitnis, P. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1996-01-01

    Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803 was examined using the chemical cross-linkers glutaraldehyde and N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide to investigate the organization of the polypeptide subunits. Thylakoid membranes and photosystem I, which was isolated by Triton X-100 fractionation, were treated with cross-linking reagents and were resolved using a Tricine/urea low-molecular-weight resolution gel system. Subunit-specific antibodies and western blotting analysis were used to identify the components of cross-linked species. These analyses identified glutaraldehyde-dependent cross-linking products composed of small amounts of PsaD and PsaC, PsaC and PsaE, and PsaE and PsaF. The novel cross-link between PsaE and PsaF was also observed following treatment with N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide. These cross-linking results suggest a structural interaction between PsaE and PsaF and predict a transmembrane topology for PsaF.

  11. Site-specific cross-linking of proteins through tyrosine hexahistidine tags.

    PubMed

    Stayner, R Scott; Min, Dong-Joon; Kiser, Patrick F; Stewart, Russell J

    2005-01-01

    The genetic addition of hexahistidine (H(6)) tags is widely used to isolate recombinant proteins by immobilized metal-affinity chromatography (IMAC). Addition of a tyrosine residue to H(6) tags enabled proteins to be covalently cross-linked under mild conditions in a manner similar to the natural, site-specific cross-linking of tyrosines into dityrosine. A series of seven hexahistidine tags with tyrosines placed in various positions (H(6)Y tags) were added to the amino terminus of the I28 immunoglobulin domain of the human cardiac titin. The H(6)Y-tagged I28 dimerized in the presence of excess Ni(2+) with a K(D) of 200 microM. Treatment of Ni(2+)-dimerized H(6)Y-I28 with an oxidant, monoperoxyphthalic acid (MMPP) or sodium sulfite, resulted in covalent protein multimerization through chelated Ni(2+)-catalyzed cross-linking of the Y residues engineered into the H(6) tag. The protein oligomerization was observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE). The presence of dityrosine in the cross-linked proteins was confirmed by fluorescence emission at 410 nm. Proteins lacking the Y residue in the H(6) tag treated with the same oxidative conditions did not cross-link or exhibit dityrosine fluorescence, despite the presence of an endogenous Y residue. The method may have potential uses in other protein conjugation applications such as protein labeling and interfacial immobilization of proteins on artificial surfaces. PMID:16287262

  12. Improved stability and cell response by intrinsic cross-linking of multilayers from collagen I and oxidized glycosaminoglycans.

    PubMed

    Zhao, Mingyan; Li, Lihua; Zhou, Changren; Heyroth, Frank; Fuhrmann, Bodo; Maeder, Karsten; Groth, Thomas

    2014-11-10

    Stability of surface coatings against environmental stress, such as pH, high ionic strength, mechanical forces, and so forth, is crucial for biomedical application of implants. Here, a novel extracellular-matrix-like polyelectrolyte multilayer (PEM) system composed of collagen I (Col I) and oxidized glycosaminoglycans (oGAGs) was stabilized by intrinsic cross-linking due to formation of imine bonds between aldehydes of oxidized chondroitin sulfate (oCS) or hyaluronan (oHA) and amino groups of Col I. It was also found that Col I contributed significantly more to overall mass in CS-Col I than in HA-Col I multilayer systems and fibrillized particularly in the presence of native and oxidized CS. Adhesion and proliferation studies with murine C3H10T1/2 embryonic fibroblasts demonstrated that covalent cross-linking of oGAG with Col I had no adverse effects on cell behavior. By contrast, it was found that cell size and polarization was more pronounced on oGAG-based multilayer systems, which corresponded also to the higher stiffness of cross-linked multilayers as observed by studies with quartz crystal microbalance (QCM). Overall, PEMs prepared from oGAG and Col I give rise to stable PEM constructs due to intrinsic cross-linking that may be useful for making bioactive coatings of implants and tissue engineering scaffolds.

  13. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    NASA Technical Reports Server (NTRS)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  14. Cross-link guided molecular modeling with ROSETTA.

    PubMed

    Kahraman, Abdullah; Herzog, Franz; Leitner, Alexander; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2013-01-01

    Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods. PMID:24069194

  15. Vitamin C hinders radiation cross-linking in aqueous poly(vinyl alcohol) solutions

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Bodugoz-Senturk, Hatice; Macias, Celia; Muratoglu, Orhun K.

    2007-12-01

    Poly(vinyl alcohol) (PVA) is a promising semi-crystalline material for biomedical applications. It is soluble in water and can be formed into hydrogels by freezing and thawing or crystallizing from an aqueous theta solution such as that of polyethylene glycol (PEG). Radiation cross-linking caused by sterilization or high dose irradiation of concentrated PVA solutions could compromise some properties of these hydrogels. Therefore, we hypothesized that radiation cross-linking of PVA solutions and PVA-PEG theta gels could be prevented by using the antioxidant vitamin C as an anticross-linking agent. Our hypothesis tested positive. Vitamin C concentrations of 0.75 and 4.5 mol/mol of PVA repeating unit could prevent cross-linking in 17.5 wt/v% PVA solutions made with PVA molecular weight of 115,000 g/mol irradiated to 25 and 100 kGy, respectively. Vitamin C also prevented cross-linking in 25 kGy irradiated PVA-PEG theta gels containing up to 5 wt% PEG and decreased the viscosity of those up to 39 wt%.

  16. Corneal Cross-Linking and Safety Issues

    PubMed Central

    Spoerl, Eberhard; Hoyer, Anne; Pillunat, Lutz E; Raiskup, Frederik

    2011-01-01

    Purpose: To compile the safety aspects of the corneal collagen cross-linking (CXL) by means of the riboflavin/UVA (370 nm) approach. Materials and Methodology: Analysis of the current treatment protocol with respect to safety during CXL. Results: The currently used UVA dose density of 5.4 J/cm2 and the corresponding irradiance of 3 mW/cm2 are below the known damage thresholds of UVA for the corneal endothelium, lens, and retina. Regarding the photochemical damages due to the free radicals the damage threshold for endothelial cells is 0.35 mW/cm2. In a 400μm thick corneal stroma saturated with riboflavin, the irradiance at the endothelial level is about 0.18 mW/cm2, which is a factor of 2 smaller than the damage threshold. Conclusion: As long as the corneal stroma treated has a minimal thickness of 400 microns (as recommended), neither corneal endothelium nor deeper structures such as lens and retina will suffer any damages. The light source should provide a homogenous irradiance avoiding hot spots. PMID:21399770

  17. Collagen cross-linking and resorption: effect of glutaraldehyde concentration.

    PubMed

    Roe, S C; Milthorpe, B K; Schindhelm, K

    1990-12-01

    Cross-linked collagen bioprostheses usually are designed to be inert and nonresorbable, resulting in fatigue and wear failure in high-stress environments. Eventual replacement of the implant, although minimizing strength loss during resorption, would result in a graft with reparative ability. Kangaroo tail tendon (KTT) partially cross-linked with glutaraldehyde (GA) was evaluated in vitro for resistance to bacterial collagenase digestion and in vivo for biocompatibility and resorbability in an intramuscular implant assay. Cross-linking was quantified by thermal denaturation studies. Incomplete cross-linking was achieved with concentrations of GA less than 0.1% (w/v). KTT cross-linked in greater than or equal to 0.05% GA were collagenase resistant being incompletely digested after 240 h. Cross-linking of KTT with low concentrations of GA resulted in partial collagenase resistance and slowed resorption. PMID:2126427

  18. Cross-Linking Aromatic Polymers With Ionizing Radiation

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L.; Havens, Stephen J.

    1987-01-01

    Resistance to heat and solvents increased. Certain aromatic polymers containing radiation-sensitive methylene groups cross-linked through methylene groups upon exposure to ionizing radiation. Cross-linked polymers resistant to most organic solvents and generally more resistant to high temperatures, with less tendency to creep under load. No significant embrittlement of parts fabricated from these polymers when degree of cross-linking, as controlled by irradiation dose, kept at moderate level.

  19. Identification of neighbouring protein pairs in the rat liver 40-S ribosomal subunits cross-linked with dimethyl suberimidate.

    PubMed

    Terao, K; Uchiumi, T; Kobayashi, Y; Ogata, K

    1980-01-24

    (1) The 40-S ribosomal subunits of rat liver were treated with a bifunctional cross-linking reagent, dimethyl suberimidate. Cross-linked protein-protein dimers were separated by two-dimensional acrylamide gel electrophoresis. The stained cross-linked complexes within the gel were radioiodinated without the elution of proteins from the gel and were cloven into the original monomeric protein constituents by ammonolysis. The proteins in each dimer were finally identified by two-dimensional acrylamide gel electrophoresis of the cloven monomeric proteins, followed by radioautography of the stained gel. (2) The molecular weights of cross-linked complexes were determined by SDS-polyacrylamide gel electrophoresis and were compared with those of their constituent proteins. (3) The following dimers were proposed from these results: S3-S12 (S3 or S3a-S11), S4-S12 (S3b-S11, S5-S7 (S4-S6), S5-S22 (S4-S23 or S24), S6-S8 (S5-S7), S8-S16 (S7-S18), S17-S21 (S16--S19) and S22A-S22B (S23-S24), designated according to our numbering system [1]. The designations according to the proposed uniform nomenclature [2] are described in parentheses.

  20. Structural Analysis and Mechanical Characterization of Hyaluronic Acid-Based Doubly Cross-Linked Networks

    PubMed Central

    Jha, Amit K.; Hule, Rohan A.; Jiao, Tong; Teller, Sean S.; Clifton, Rodney J.; Duncan, Randall L.; Pochan, Darrin J.; Jia, Xinqiao

    2009-01-01

    We have created a new class of hyaluronic acid (HA)-based hydrogel materials with HA hydrogel particles (HGPs) embedded in and covalently cross-linked to a secondary network. HA HGPs with an average diameter of ∼900 nm and narrow particle size distribution were synthesized using a refined reverse micelle polymerization technique. The average mesh size of the HGPs was estimated to be approximately 5.5 to 7.0 nm by a protein uptake experiment. Sodium periodate oxidation not only introduced aldehyde groups to the particles but also reduced the average particle size. The aldehyde groups generated were used as reactive handles for subsequent cross-linking with an HA derivative containing hydrazide groups. The resulting macroscopic gels contain two distinct hierarchical networks (doubly cross-linked networks, DXNs): one within individual particles and another among different particles. Bulk gels (BGs) formed by direct mixing of HA derivatives with mutually reactive groups were included for comparison. The hydrogel microstructures were collectively characterized by microscopy and neutron scattering techniques. Their viscoelasticity was quantified at low frequencies (0.1−10 Hz) using a controlled stress rheometer and at high frequencies (up to 200 Hz) with a home-built torsional wave apparatus. Both BGs and DXNs are stable elastic gels that become stiffer at higher frequencies. The HA-based DXN offers unique structural hierarchy and mechanical properties that are suitable for soft tissue regeneration. PMID:20046226

  1. X-Ray Diffraction Studies of Cross Linked Chitosan With Different Cross Linking Agents For Waste Water Treatment Application

    NASA Astrophysics Data System (ADS)

    Julkapli, Nurhidayatullaili Muhd; Ahmad, Zulkifli; Akil, Hazizan Md

    2010-01-01

    Chitosan is a polysaccharide derived from N-deacetylation of chitin and receiving increased attention as metal ion absorbent in wastewater treatment application. To improve the performance of chitosan as an absorbent, the cross linking approach was applied. Introduction of cross-linking agent would break the crystal zone in chitosan system, making it less crystal and consequently enhanced the absorption area. Therefore, in this study, cross-linked chitosan were prepared using different of cross-linking agents. The chitosan powder was weighed, dissolved in acetic acid (0.1 M), and dropped slowly into absolute N-methyl pyyrolidone solvent containing cross-linking agent. The cross linking reaction was carried out in N2 environment at 150° C for 6 hours. X-ray diffraction (XRD) analysis was applied to characterize the crystallinity of native and cross linked chitosan. Generally, the XRD patterns of all types of chitosan show two crystalline peaks approximately at 10° and 20° (2θ). However, the cross linked chitosan with longer length of cross linking agents show lower and broader crystalline peaks as compare to those with shorter length. Similarly, the calculated crystalline index (Cr I) also showed this decreasing tendency.

  2. In-vitro digestibility and amino acid composition of soy protein isolate cross-linked with microbial transglutaminase followed by heating with ribose.

    PubMed

    Gan, Chee-Yuen; Cheng, Lai-Hoong; Azahari, Baharin; Easa, Azhar Mat

    2009-01-01

    Cross-linked soy protein isolate (SPI) gels were produced via single-treatment of SPI with microbial transglutaminase (MTG) for 5 h or 24 h, or with ribose for 2 h, or via combined-treatments of SPI with MTG followed by heating with ribose. Assessment of gel strength and solubility concluded that measures which increased protein cross-links resulted in improved gel strength; however, in most cases the digestibility and amino acid content of the gels were reduced. The combined treated gel of SPI/MTG for 24 h/ribose was more easily digested by digestive enzymes and retained higher amounts of amino acids compared with the control Maillard gels of SPI with ribose. MTG consumed lysine and glutamine and reduced the availability of amino acids for the Maillard reaction with ribose. MTG was able to preserve the nutritional value of SPI against the destructive effect of the Maillard reaction and cross-links.

  3. Radiation cross-linked polyolefin-insulated wire

    NASA Astrophysics Data System (ADS)

    Sano, K.; Ishitani, H.

    Because radiation cross-linked polyolefin has excellent mechanical heat resistance, its application limit can be expanded extremely by improving the resistance against heat oxidation and flame. This paper is concerning a halogen free radiation cross-linked polyolefin-insulated wire having excellent heat resistance and flameretardant property, which is used for appliances.

  4. Multi-Scale Modeling of Cross-Linked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Odegard, G. M.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2005-01-01

    The effect of cross-linking single-walled carbon nanotubes on the Young's modulus of a nanotube-reinforced composite is modeled with a multi-scale method. The Young's modulus is predicted as a function of nanotube volume fraction and cross-link density. In this method, the constitutive properties of molecular representative volume elements are determined using molecular dynamics simulation and equivalent-continuum modeling. The Young's modulus is subsequently calculated for cross-linked nanotubes in a matrix which consists of the unreacted cross-linking agent. Two different cross-linking agents are used in this study, one that is short and rigid (Molecule A), and one that is long and flexible (Molecule B). Direct comparisons between the predicted elastic constants are made for the models in which the nanotubes are either covalently bonded or not chemically bonded to the cross-linking agent. At a nanotube volume fraction of 10%, the Young's modulus of Material A is not affected by nanotube crosslinking, while the Young's modulus of Material B is reduced by 64% when the nanotubes are cross-linked relative to the non-cross-linked material with the same matrix.

  5. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  6. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  7. Cross-linked polyvinyl alcohol and method of making same

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)

    1981-01-01

    A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

  8. Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering.

    PubMed

    Guo, Yan; Yuan, Tun; Xiao, Zhanwen; Tang, Pingping; Xiao, Yumei; Fan, Yujiang; Zhang, Xingdong

    2012-09-01

    The network structure of a three-dimensional hydrogel scaffold dominates its performance such as mechanical strength, mass transport capacity, degradation rate and subsequent cellular behavior. The hydrogels scaffolds with interpenetrating polymeric network (IPN) structure have an advantage over the individual component gels and could simulate partly the structure of native extracellular matrix of cartilage tissue. In this study, to develop perfect cartilage tissue engineering scaffolds, IPN hydrogels of collagen/chondroitin sulfate/hyaluronan were prepared via two simultaneous processes of collagen self-assembly and cross linking polymerization of chondroitin sulfate-methacrylate (CSMA) and hyaluronic acid-methacrylate. The degradation rate, swelling performance and compressive modulus of IPN hydrogels could be adjusted by varying the degree of methacrylation of CSMA. The results of proliferation and fluorescence staining of rabbit articular chondrocytes in vitro culture demonstrated that the IPN hydrogels possessed good cytocompatibility. Furthermore, the IPN hydrogels could upregulate cartilage-specific gene expression and promote the chondrocytes secreting glycosaminoglycan and collagen II. These results suggested that IPN hydrogels might serve as promising hydrogel scaffolds for cartilage tissue engineering. PMID:22639153

  9. Hyaluronan (HA) Interacting Proteins RHAMM and Hyaluronidase Impact Prostate Cancer Cell Behavior and Invadopodia Formation in 3D HA-Based Hydrogels

    PubMed Central

    Gurski, Lisa A.; Nguyen, Ngoc T.; Xiao, Longxi; van Golen, Kenneth L.; Jia, Xinqiao; Farach-Carson, Mary C.

    2012-01-01

    To study the individual functions of hyaluronan interacting proteins in prostate cancer (PCa) motility through connective tissues, we developed a novel three-dimensional (3D) hyaluronic acid (HA) hydrogel assay that provides a flexible, quantifiable, and physiologically relevant alternative to current methods. Invasion in this system reflects the prevalence of HA in connective tissues and its role in the promotion of cancer cell motility and tissue invasion, making the system ideal to study invasion through bone marrow or other HA-rich connective tissues. The bio-compatible cross-linking process we used allows for direct encapsulation of cancer cells within the gel where they adopt a distinct, cluster-like morphology. Metastatic PCa cells in these hydrogels develop fingerlike structures, “invadopodia”, consistent with their invasive properties. The number of invadopodia, as well as cluster size, shape, and convergence, can provide a quantifiable measure of invasive potential. Among candidate hyaluronan interacting proteins that could be responsible for the behavior we observed, we found that culture in the HA hydrogel triggers invasive PCa cells to differentially express and localize receptor for hyaluronan mediated motility (RHAMM)/CD168 which, in the absence of CD44, appears to contribute to PCa motility and invasion by interacting with the HA hydrogel components. PCa cell invasion through the HA hydrogel also was found to depend on the activity of hyaluronidases. Studies shown here reveal that while hyaluronidase activity is necessary for invadopodia and inter-connecting cluster formation, activity alone is not sufficient for acquisition of invasiveness to occur. We therefore suggest that development of invasive behavior in 3D HA-based systems requires development of additional cellular features, such as activation of motility associated pathways that regulate formation of invadopodia. Thus, we report development of a 3D system amenable to dissection of

  10. Elasticity of cross-linked semiflexible biopolymers under tension.

    PubMed

    von der Heydt, Alice; Wilkin, Daniel; Benetatos, Panayotis; Zippelius, Annette

    2013-09-01

    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor of 4. The increase in differential stiffness can be as large as 100% for small f or large numbers of cross-links.

  11. Fluorescent cross-linked supramolecular polymers constructed from a novel self-complementary AABB-type heteromultitopic monomer.

    PubMed

    Fang, Le; Hu, Yuanli; Li, Qiang; Xu, Shutao; Dhinakarank, Manivannan Kalavathi; Gong, Weitao; Ning, Guiling

    2016-04-26

    A novel AABB-type heteromultitopic monomer (), having a self-complementary perpendicular structure, could solely self-assemble to fluorescent cross-linked supramolecular polymers. Interestingly, the supramolecular gel film shows a sensitive fluorescence change on exposure to acid and base vapor, endowing this system with a potential application in gas detection. PMID:27005489

  12. Mitochondrial permeability transition as induced by cross-linking of the adenine nucleotide translocase.

    PubMed

    Zazueta, C; Reyes-Vivas, H; Zafra, G; Sánchez, C A; Vera, G; Chávez, E

    1998-04-01

    Mitochondrial permeability transition is caused by the opening of a transmembrane pore whose chemical nature has not been well established yet. The present work was aimed to further contribute to the knowledge of the membrane entity comprised in the formation of the non-specific channel. The increased permeability was established by analyzing the inability of rat kidney mitochondria to take up and accumulate Ca2+, as well as their failure to build up a transmembrane potential, after the cross-linking of membrane proteins by copper plus ortho-phenanthroline. To identify the cross-linked proteins, polyacrylamide gel electrophoresis was performed. The results are representative of at least three separate experiments. It is indicated that 30 microM Cu2+ induced the release of 4.3 nmol Ca2+ per mg protein. However, in the presence of 100 microM ortho-phenanthroline only 2 microM Cu2+ was required to attain the total release of the accumulated Ca2+; it should be noted that such a reaction is not inhibited by cyclosporin. The increased permeability corresponds to cross-linking of membrane proteins in which approximately 4 nmol thiol groups per mg protein appear to be involved. Such a linking process is inhibited by carboxyatractyloside. By using the fluorescent probe eosin-5-maleimide the label was found in a cross-linking 60 kDa dimer of two 30 kDa monomers. From the data presented it is concluded that copper-o-phenanthroline induces the intermolecular cross-linking of the adenine nucleotide translocase which in turn is converted to non-specific pore. PMID:9675885

  13. Thermogelling and Chemoselectively Cross-Linked Hydrogels with Controlled Mechanical Properties and Degradation Behavior.

    PubMed

    Boere, Kristel W M; van den Dikkenberg, Joep; Gao, Yuan; Visser, Jetze; Hennink, Wim E; Vermonden, Tina

    2015-09-14

    Chemoselectively cross-linked hydrogels have recently gained increasing attention for the development of novel, injectable biomaterials given their limited side reactions. In this study, we compared the properties of hydrogels obtained by native chemical ligation (NCL) and its recently described variation termed oxo-ester-mediated native chemical ligation (OMNCL) in combination with temperature-induced physical gelation. Triblock copolymers consisting of cysteine functionalities, thermoresponsive N-isopropylacrylamide (NIPAAm) units and degradable moieties were mixed with functionalized poly(ethylene glycol) (PEG) cross-linkers. Thioester or N-hydroxysuccinimide (NHS) functionalities attached to PEG reacted with cysteine residues of the triblock copolymers via either an NCL or OMNCL pathway. The combined physical and chemical cross-linking resulted in rapid network formation and mechanically strong hydrogels. Stiffness of the hydrogels was highest for thermogels that were covalently linked via OMNCL. Specifically, the storage modulus after 4 h reached a value of 26 kPa, which was over a 100 times higher than hydrogels formed by solely thermal physical interactions. Endothelial cells showed high cell viability of 98 ± 2% in the presence of OMNCL cross-linked hydrogels after 16 h of incubation, in contrast to a low cell viability (13 ± 7%) for hydrogels obtained by NCL cross-linking. Lysozyme was loaded in the gels and after 2 days more than 90% was released, indicating that the cross-linking reaction was indeed chemoselective as the protein was not covalently grafted to the hydrogel network. Moreover, the degradation rates of these hydrogels under physiological conditions could be tailored from 12 days up to 6 months by incorporation of a monomer containing a hydrolyzable lactone ring in the thermosensitive triblock copolymer. These results demonstrate a high tunability of mechanical properties and degradation rates of these in situ forming hydrogels that could be

  14. Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing

    NASA Astrophysics Data System (ADS)

    Wang, Honglong; Xu, Lu; Li, Rong; Hu, Jiangtao; Wang, Mouhua; Wu, Guozhong

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) sheet was cross-linked by γ irradiation in air with a dose of up to 300 kGy at a dose rate of 5 kGy/h and further treated by post-annealing at 120 °C for 4 h in vacuum. Variations in chemical structure, thermostability, crystallinity, creep resistance, and tensile properties were investigated and compared mainly by gel content, TGA, DSC, and creep and tensile measurements. Gel content measurements indicated that cross-linking was predominant over chain scission during irradiation and post-annealing. Radiation cross-linking resulted in an obvious improvement in the creep resistance and tensile properties of UHMWPE. Through cross-linking, the operational temperature and yield strength of the irradiated and subsequently annealed UHMWPE sheet were improved by more than 100 °C and 14%, respectively, at a dose of 300 kGy. Simultaneously, Young's modulus was increased to 1413 MPa, compared with 398 MPa of pristine UHMWPE. Annealing after irradiation further improved the creep resistance and Young's modulus. Highly cross-linked UHMWPE can even be maintained at 250 °C for a long time without any obvious deformation.

  15. Effectiveness of trimethylopropane trimethacrylate for the electron-beam-irradiation-induced cross-linking of polylactic acid

    NASA Astrophysics Data System (ADS)

    Ng, Hon-Meng; Bee, Soo-Tueen; Ratnam, C. T.; Sin, Lee Tin; Phang, Yee-Yao; Tee, Tiam-Ting; Rahmat, A. R.

    2014-01-01

    The purpose of this research was to investigate the effects of various loading levels of trimethylopropane trimethacrylate (TMPTMA) on the properties of polylactic acid (PLA) cross-linked via electron-beam irradiation. PLA was compounded with 3-5 wt.% of TMPTMA to induce cross-linking upon subjection to electron-beam irradiation doses of 25-250 kGy. The physical properties of the PLA samples were characterised by means of X-ray diffraction, gel fraction and scanning electron microscopy analyses on fractured surfaces after tensile tests. The presence of TMPTMA in PLA was found to effectively increase the crystallite size and gel fraction. However, higher loading levels of TMPTMA could compromise the properties of the PLA/TMPTMA samples, indicating that a larger amount of monomer free radicals might promote degradation within the substantially cross-linked amorphous phase. Irradiation-induced cross-linking in the samples could improve the cross-linking density while decreasing the elongation and interfering with the crystallisation. These effects are caused by the intensive irradiation-induced chain scission that is responsible for the deterioration of the mechanical and crystalline properties of the samples.

  16. Hyaluronan and Stone Disease

    NASA Astrophysics Data System (ADS)

    Asselman, Marino

    2008-09-01

    Kidney stones cannot be formed as long as crystals are passed in the urine. However, when crystals are retained it becomes possible for them to aggregate and form a stone. Crystals are expected to be formed not earlier than the distal tubules and collecting ducts. Studies both in vitro and in vivo demonstrate that calcium oxalate monohydrate crystals do not adhere to intact distal epithelium, but only when the epithelium is proliferating or regenerating, so that it possesses dedifferentiated cells expressing hyaluronan, osteopontin (OPN) and their mutual receptor CD44 at the apical cell membrane. The polysaccharide hyaluronan is an excellent crystal binding molecule because of its negative ionic charge. We hypothesized that the risk for crystal retention in the human kidney would be increased when tubular cells express hyaluronan at their apical cell membrane. Two different patient categories in which nephrocalcinosis frequently occurs were studied to test this hypothesis (preterm neonates and kidney transplant patients). Hyaluronan (and OPN) expression at the luminal membrane of tubular cells indeed was observed, which preceded subsequent retention of crystals in the distal tubules. Tubular nephrocalcinosis has been reported to be associated with decline of renal function and thus further studies to extend our knowledge of the mechanisms of retention and accumulation of crystals in the kidney are warranted. Ultimately, this may allow the design of new strategies for the prevention and treatment of both nephrocalcinosis and nephrolithiasis in patients.

  17. Redox-Responsive, Core Cross-Linked Polyester Micelles

    PubMed Central

    Zhang, Zhonghai; Yin, Lichen; Tu, Chunlai; Song, Ziyuan; Zhang, Yanfeng; Xu, Yunxiang; Tong, Rong; Zhou, Qin; Ren, Jie; Cheng, Jianjun

    2013-01-01

    Monomethoxy poly(ethylene glycol)-b-poly(Tyr(alkynyl)-OCA), a biodegradable amphiphilic block copolymer, was synthesized by means of ring-opening polymerization of 5-(4-(prop-2-yn-1-yloxy)benzyl)-1,3-dioxolane-2,4-dione (Tyr(alkynyl)-OCA) and used to prepare core cross-linked polyester micelles via click chemistry. Core cross-linking not only improved the structural stability of the micelles but also allowed controlled release of cargo molecules in response to the reducing reagent. This new class of core cross-linked micelles can potentially be used in controlled release and drug delivery applications. PMID:23536920

  18. Cross-linking with diimidates of glutamine synthetase from Bacillus stearothermophilus.

    PubMed

    Sekiguchi, T; Oshiro, S; Goingo, E M; Nosoh, Y

    1979-08-01

    Glutamine synthetase [EC 6.3.2.1] from Bacillus stearothermophilus was modified with diethyl malonimidate (DEM), dimethyl adipimidate (DMA), and dimethyl suberimidate (DMS). DMA modified most epsilon-amino groups. On modification with DMA, formation of 3 to 4 cross-links/subunit resulted in a large increase in thermostability. The activity, allosteric properties and fluorescence spectrum of the enzyme were not changed on cross-linking. The SDS-polyacrylamide gel electrophoretic profiles of DEM-, DMA-, and DMS-modified enzymes suggested that the interaction berween six subunits in each of the two hexagonal rings of the protein are heterologous and are different from those between the piled subunits on different rings. PMID:39071

  19. Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release.

    PubMed

    Ciolacu, Diana; Rudaz, Cyrielle; Vasilescu, Mihai; Budtova, Tatiana

    2016-10-20

    Porous cellulose matrices were prepared via cellulose dissolution in 8wt% NaOH-water, physical gelation and chemical cross-linking with epichlorohydrin (ECH), coagulation in water and lyophilisation. Cellulose and cross-linker concentration were varied. The behaviour of gels upon coagulation and the swelling of cryogels in water were analysed. An anomalous high swelling at cross-linker concentration around stoichiometric molar ratio with cellulose was observed. Cellulose cryogel morphology, crystallinity and density were studied. The influence of chemical cross-linking on cellulose swelling was explained by suggesting that ECH acts as a spacer preventing cellulose chains tight packing during coagulation. Cellulose was loaded with a model drug, procaine hydrochloride, and the kinetics of its release was investigated. PMID:27474581

  20. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... following prescribed conditions: (a) The cross-linked polyester resins are produced by the condensation of... fiber Polyester fiber produced by the condensation of one or more of the acids listed in paragraph...

  1. Spectral Library Searching To Identify Cross-Linked Peptides.

    PubMed

    Schweppe, Devin K; Chavez, Juan D; Navare, Arti T; Wu, Xia; Ruiz, Bianca; Eng, Jimmy K; Lam, Henry; Bruce, James E

    2016-05-01

    Methods harnessing protein cross-linking and mass spectrometry (XL-MS) offer high-throughput means to identify protein-protein interactions (PPIs) and structural interfaces of protein complexes. Yet, specialized data dependent methods and search algorithms are often required to confidently assign peptide identifications to spectra. To improve the efficiency of matching high confidence spectra, we developed a spectral library based approach to search cross-linked peptide data derived from Protein Interaction Reporter (PIR) methods using the spectral library search algorithm, SpectraST. Spectral library matching of cross-linked peptide data from query spectra increased the absolute number of confident peptide relationships matched to spectra and thereby the number of PPIs identified. By matching library spectra from bona fide, previously established PIR-cross-linked peptide relationships, spectral library searching reduces the need for continued, complex mass spectrometric methods to identify peptide relationships, increases coverage of relationship identifications, and improves the accessibility of XL-MS technologies.

  2. Biotinylated hyaluronan: a versatile and highly sensitive probe capable of detecting nanogram levels of hyaluronan binding proteins (hyaladherins) on electroblots by a novel affinity detection procedure.

    PubMed

    Melrose, J; Numata, Y; Ghosh, P

    1996-01-01

    Hyaluronan influences cellular proliferation and migration in developing, regenerating and remodelling tissues and in tissues undergoing malignant tumour-cell invasion. The widespread occurrence of hyaluronan-binding proteins indicates that the recognition of hyaluronan is important to tissue organisation and the control of cellular behaviour. A number of extracellular matrix and cellular proteins, which have been termed the hyaladherins, have specific affinities for hyaluronan. These include cartilage link-protein, hyaluronectin, neurocan, versican and aggrecan, which all bind to HA within the extracellular matrix. Cellular receptors for hyaluronan such as CD44 and RHAMM (receptor for hyaluronate-mediated motility) have also been identified. In the present study biotinylated hyaluronan (bHA) was prepared by reacting adipic dihydrazide with a 170 kDa hyaluronan sample using the bifunctional reagent 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide. The resultant free amine moeity of the hydrazido-hyaluronan was then reacted with biotin succinimidyl ester (sulfo-NHS-biotin) to prepare the bHA. After 4-20% gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and electroblotting to nitrocellulose membranes, bHA and avidin alkaline phosphatase conjugate could be used in conjunction with nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate substrates to specifically visualise with high sensitivity (> or = 2 ng), bovine nasal cartilage link-protein, aggrecan hyaluronan binding region, and human fibroblast hyaluronan receptors such as CD-44. Conventional Western blotting using specific monoclonal antibodies to these proteins was also used to confirm the identities of these proteins. PMID:8907541

  3. Large Scale Chemical Cross-linking Mass Spectrometry Perspectives.

    PubMed

    Zybailov, Boris L; Glazko, Galina V; Jaiswal, Mihir; Raney, Kevin D

    2013-02-01

    The spectacular heterogeneity of a complex protein mixture from biological samples becomes even more difficult to tackle when one's attention is shifted towards different protein complex topologies, transient interactions, or localization of PPIs. Meticulous protein-by-protein affinity pull-downs and yeast-two-hybrid screens are the two approaches currently used to decipher proteome-wide interaction networks. Another method is to employ chemical cross-linking, which gives not only identities of interactors, but could also provide information on the sites of interactions and interaction interfaces. Despite significant advances in mass spectrometry instrumentation over the last decade, mapping Protein-Protein Interactions (PPIs) using chemical cross-linking remains time consuming and requires substantial expertise, even in the simplest of systems. While robust methodologies and software exist for the analysis of binary PPIs and also for the single protein structure refinement using cross-linking-derived constraints, undertaking a proteome-wide cross-linking study is highly complex. Difficulties include i) identifying cross-linkers of the right length and selectivity that could capture interactions of interest; ii) enrichment of the cross-linked species; iii) identification and validation of the cross-linked peptides and cross-linked sites. In this review we examine existing literature aimed at the large-scale protein cross-linking and discuss possible paths for improvement. We also discuss short-length cross-linkers of broad specificity such as formaldehyde and diazirine-based photo-cross-linkers. These cross-linkers could potentially capture many types of interactions, without strict requirement for a particular amino-acid to be present at a given protein-protein interface. How these shortlength, broad specificity cross-linkers be applied to proteome-wide studies? We will suggest specific advances in methodology, instrumentation and software that are needed to make

  4. Cross-linking and the molecular packing of corneal collagen

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Chandler, G. S.; Tanzawa, H.; Katz, E. P.

    1996-01-01

    We have quantitatively characterized, for the first time, the cross-linking in bovine cornea collagen as a function of age. The major iminium reducible cross-links were dehydro-hydroxylysinonorleucine (deH-HLNL) and dehydro-histidinohydroxymerodesmosine (deH-HHMD). The former rapidly diminished after birth; however, the latter persisted in mature animals at a level of 0.3 - 0.4 moles/mole of collagen. A nonreducible cross-link, histidinohydroxylysinonorleucine (HHL), previously found only in skin, was also found to be a major mature cross-link in cornea. The presence of HHL indicates that cornea fibrils have a molecular packing similar to skin collagen. However, like deH-HHMD, the HHL content in corneal fibrils only reaches a maximum value with time about half that of skin. These data suggest that the corneal fibrils are comprised of discrete filaments that are internally stabilized by HHL and deH-HHMD cross-links. This pattern of intermolecular cross-linking would facilitate the special collagen swelling property required for corneal transparency.

  5. Identification of proteins at the subunit interface of the Escherichia coli ribosome by cross-linking with dimethyl 3,3'-dithiobis(propionimidate).

    PubMed

    Cover, J A; Lambert, J M; Norman, C M; Traut, R R

    1981-05-12

    The 70S ribosomes of Escherichia coli were treated with dimethyl 3,3'-dithiobis(propionimidate). Under conditions where 40% of the lysine epsilon-amino groups became modified, about 50% of the ribosomes became resistant to dissociation into 30S and 50S subunits when analyzed in the absence of reducing agents on sucrose gradients containing low magnesium concentrations. Dissociation took place in the presence of reducing agents, indicating that the bifunctional reagent had reacted with proteins from both subunits. Proteins were extracted from purified cross-linked 70S ribosomes by using conditions to preclude disulfide interchange. Disulfide-linked protein complexes and non-cross-linked proteins were first fractionated by electrophoresis in polyacrylamide/urea gels at pH 5.5. The proteins from sequential slices of the urea gel were analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Monomeric proteins derived from cross-linked dimers appeared below the diagonal of non-cross-linked proteins since the second electrophoresis but not the first is run under reducing conditions to cleave the cross-linked species. Final identification of the constituent proteins in each dimer was made by radioiodination of the cross-linked proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis in the presence of nonradioactive marker 70S protein. The identification of 11 cross-linked protein dimers which contained one protein from each of the two ribosomal subunits is described. We conclude that the proteins in these cross-linked pairs are located in the regions of contact between the two subunits, i.e., at the "subunit interface". PMID:7018568

  6. Coarse-Grained Molecular Dynamics Study of the Curing and Properties of Highly Cross-Linked Epoxy Polymers.

    PubMed

    Aramoon, Amin; Breitzman, Timothy D; Woodward, Christopher; El-Awady, Jaafar A

    2016-09-01

    In this work, a coarse-grained model is developed for highly cross-linked bisphenol A diglycidyl ether epoxy resin with diaminobutane hardener. In this model, all conformationally relevant coarse-grained degrees of freedom are accounted for by sampling over the free-energy surfaces of the atomic structures using quantum mechanical simulations. The interaction potentials between nonbonded coarse-grained particles are optimized to accurately predict the experimentally measured density and glass-transition temperature of the system. In addition, a new curing algorithm is also developed to model the creation of highly cross-linked epoxy networks. In this algorithm, to create a highly cross-linked network, the reactants are redistributed from regions with an excessive number of reactive molecules to regions with a lower number of reactants to increase the chances of cross-linking. This new algorithm also dynamically controls the rate of cross-linking at each local region to ensure uniformity of the resulting network. The curing simulation conducted using this algorithm is able to develop polymeric networks having a higher average degree of cross-linking, which is more uniform throughout the simulation cell as compared to that in the networks cured using other curing algorithms. The predicted gel point from the current curing algorithm is in the acceptable theoretical and experimental range of measured values. Also, the resulting cross-linked microstructure shows a volume shrinkage of 5%, which is close to the experimentally measured volume shrinkage of the cured epoxy. Finally, the thermal expansion coefficients of materials in the glassy and rubbery states show good agreement with the experimental values.

  7. Coarse-Grained Molecular Dynamics Study of the Curing and Properties of Highly Cross-Linked Epoxy Polymers.

    PubMed

    Aramoon, Amin; Breitzman, Timothy D; Woodward, Christopher; El-Awady, Jaafar A

    2016-09-01

    In this work, a coarse-grained model is developed for highly cross-linked bisphenol A diglycidyl ether epoxy resin with diaminobutane hardener. In this model, all conformationally relevant coarse-grained degrees of freedom are accounted for by sampling over the free-energy surfaces of the atomic structures using quantum mechanical simulations. The interaction potentials between nonbonded coarse-grained particles are optimized to accurately predict the experimentally measured density and glass-transition temperature of the system. In addition, a new curing algorithm is also developed to model the creation of highly cross-linked epoxy networks. In this algorithm, to create a highly cross-linked network, the reactants are redistributed from regions with an excessive number of reactive molecules to regions with a lower number of reactants to increase the chances of cross-linking. This new algorithm also dynamically controls the rate of cross-linking at each local region to ensure uniformity of the resulting network. The curing simulation conducted using this algorithm is able to develop polymeric networks having a higher average degree of cross-linking, which is more uniform throughout the simulation cell as compared to that in the networks cured using other curing algorithms. The predicted gel point from the current curing algorithm is in the acceptable theoretical and experimental range of measured values. Also, the resulting cross-linked microstructure shows a volume shrinkage of 5%, which is close to the experimentally measured volume shrinkage of the cured epoxy. Finally, the thermal expansion coefficients of materials in the glassy and rubbery states show good agreement with the experimental values. PMID:27504803

  8. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds.

    PubMed

    Balakrishnan, Biji; Jayakrishnan, A

    2005-06-01

    The injectable polymer scaffolds which are biocompatible and biodegradable are important biomaterials for tissue engineering and drug delivery. Hydrogels derived from natural proteins and polysaccharides are ideal scaffolds for tissue engineering since they resemble the extracellular matrices of the tissue comprised of various amino acids and sugar-based macromolecules. Here, we report a new class of hydrogels derived from oxidized alginate and gelatin. We show that periodate-oxidized sodium alginate having appropriate molecular weight and degree of oxidation rapidly cross-links proteins such as gelatin in the presence of small concentrations of sodium tetraborate (borax) to give injectable systems for tissue engineering, drug delivery and other medical applications. The rapid gelation in the presence of borax is attributed to the slightly alkaline pH of the medium as well as the ability of borax to complex with hydroxyl groups of polysaccharides. The effect of degree of oxidation and concentration of alginate dialdehyde, gelatin and borax on the speed of gelation was examined. As a general rule, the gelling time decreased with increase in concentration of oxidized alginate, gelatin and borax and increase in the degree of oxidation of alginate. Cross-linking parameters of the gel matrix were studied by swelling measurements and trinitrobenzene sulphonic acid (TNBS) assay. In general, the degree of cross-linking was found to increase with increase in the degree of oxidation of alginate, whereas the swelling ratio and the degree of swelling decreased. The gel was found to be biocompatible and biodegradable. The potential of the system as an injectable drug delivery vehicle and as a tissue-engineering scaffold is demonstrated by using primaquine as a model drug and by encapsulation of hepatocytes inside the gel matrix, respectively.

  9. Chemical cross-linking of somatostatin receptors in rat adrenal cortex.

    PubMed

    Srikant, C B; Patel, Y C

    1986-09-14

    Adrenocortical somatostatin receptors have been shown to interact with somatostatin-14 (S-14) and somatostatin-28 (S-28). To determine whether these peptides interact with the same or different receptor proteins, we chemically cross-linked these receptors using disuccinimidyl suberate to radioligands prepared from tyrosinated S-14 and S-28 analogs. Sodium dodecylsulfate-polyacrylamide gel electrophoresis and subsequent autoradiography of [125I-Tyr11] S-14 and [Leu8, D-Trp22, 125I-Tyr25] S-28 cross-linked to their binding sites following solubilization in the presence of 50 mM DTT revealed the presence of a single labelled protein of Mr = 200,000. When the cross-linked material was treated under non-reducing conditions, this band was not observed. Furthermore, addition of excess S-14 and S-28 at the time of binding inhibited the incorporation of both radioligands into the receptor protein. These results demonstrate that adrenocortical membrane receptors for somatostatin contain a single receptor protein sub-unit or sub-units of identical size which interact with both S-14 and S-28.

  10. Characterization of radiation-cross-linked, high-density polyethylene for thermal energy storage

    SciTech Connect

    Whitaker, R.B.; Craven, S.M.; Etter, D.E.; Jendrek, E.F.; Nease, A.B.

    1983-01-01

    Electron beam cross-linked high-density polyethylene (HDPE) pellets (DuPont Alathon, 0.93 MI) have been characterized for potential utility in thermal energy storage applications, before and after up to 500 melt-freeze cycles in ethylene glycol. Up to 95% of the HDPE's initial DSC differential scanning calorimetry ..delta.. H/sub f/ value (44.7 cal/g) (at 1.25/sup 0/C/min cooling rates) was retained up to 9.0 Mrad radiation dosage. Form-stability after 500 melt-freeze cycles was very good at this dosage level. X-ray diffraction measurements showed little difference between irradiated HDPE's and the unirradiated control, indicating that cross-linking occurred primarily in the amorphous regions. FTIR spectroscopy showed the pellets to be uniformly reacted. The ratios of the 965-cm/sup -1/ absorption band (trans RCH=CRH') to the 909-cm/sup -1/ band (RCH=CH/sub 2/) increased with increasing radiation dosage, up to 18 Mrad. Gel contents reached a maximum of 75% at the 13.5 Mrad dosage, indicating that other reactions, in addition to cross-linking, occurred at the highest (18 Mrad) dosage level. 15 references, 5 figures, 4 tables.

  11. Silicification of genipin-cross-linked polypeptide hydrogels toward biohybrid materials and mesoporous oxides.

    PubMed

    Jan, Jeng-Shiung; Chen, Pei-Shan; Hsieh, Ping-Lun; Chen, Bo-Yu

    2012-12-01

    A simple and versatile approach is proposed to use cross-linked polypeptide hydrogels as templates for silica mineralization, allowing the synthesis of polypeptide-silica hybrid hydrogels and mesoporous silica (meso-SiO(2)) by subsequent calcination. The experimental data revealed that the cross-linked polypeptide hydrogels comprised of interconnected, membranous network served as templates for the high-fidelity transcription of silica replicas spanning from nanoscale to microscale, resulting in hybrid network comprised of interpenetrated polypeptide nanodomains and silica. The mechanical properties of these as-prepared polypeptide-silica hybrid hydrogels were found to vary with polypeptide chain length and composition. The synergy between cross-link, hydrophobic interaction, and silica deposition can lead to the enhancement of their mechanical properties. The polypeptide-silica hybrid hydrogel with polypeptide and silica content as low as 1.1 wt% can achieve 114 kN/m(2) of compressive strength. By removing the polypeptide nanodomains, mesoporous silicas with average pore sizes ranged between 2 nm and 6 nm can be obtained, depending on polypeptide chain length and composition. The polypeptide-silica hybrid hydrogels demonstrated good cell compatibility and can support cell attachment/proliferation. With the versatility of polymer chemistry and feasibility of amine-catalyzed sol-gel chemistry, the present method is facile for the synthesis of green nanocomposites and biomaterials.

  12. Thermally Reversible Physically Cross-Linked Hybrid Network Hydrogels Formed by Thermosensitive Hairy Nanoparticles.

    PubMed

    Wright, Roger A E; Henn, Daniel M; Zhao, Bin

    2016-08-18

    This Article reports on thermally induced reversible formation of physically cross-linked, three-dimensional network hydrogels from aqueous dispersions of thermosensitive diblock copolymer brush-grafted silica nanoparticles (hairy NPs). The hairy NPs consisted of a silica core, a water-soluble polyelectrolyte inner block of poly(2-(methacryloyloxy)ethyltrimethylammonium iodide), and a thermosensitive poly(methoxydi(ethylene glycol) methacrylate) (PDEGMMA) outer block synthesized by sequential surface-initiated atom transfer radical polymerizations and postpolymerization quaternization of tertiary amine moieties. Moderately concentrated dispersions of these hairy nanoparticles in water underwent thermally induced reversible transitions between flowing liquids to self-supporting gels upon heating. The gelation was driven by the lower critical solution temperature (LCST) transition of the PDEGMMA outer block, which upon heating self-associated into hydrophobic domains acting as physical cross-linking points for the gel network. Rheological studies showed that the sol-gel transition temperature decreased with increasing hairy NP concentration, and the gelation was achieved at concentrations as low as 3 wt %. PMID:27455167

  13. Textural and cargo release attributes of trisodium citrate cross-linked starch hydrogel.

    PubMed

    Abhari, Negar; Madadlou, Ashkan; Dini, Ali; Hosseini Naveh, Ozra

    2017-01-01

    An alkaline starch suspension was charged with citric acid and incubated for different durations (0, 8.5 or 17h). The suspension was then supplemented with caffeine and gelatinized to fabricate hydrogels which were subsequently stored for varying periods (0, 24 or 48h). Charging of the well-dissolved alkaline starch suspension with citric acid decreased at first both the flow index and consistency coefficient (K); however, starch cross-linking over time by the generated trisodium citrate increased the K value. The latter also inhibited gel syneresis and increased its water-holding capacity. Trisodium citrate did not nonetheless influence the gel hardness except for the sample incubated for maximum duration and stored for the longest period. The amount of the caffeine released from hydrogel decreased by citrate cross-linking and was higher at neutral pH than pH 2.0. Fourier-transform infra-red spectroscopy suggested that caffeine was enclosed within the gel network via non-covalent interactions. PMID:27507442

  14. Enzymatically cross-linked bovine lactoferrin as injectable hydrogel for cell delivery.

    PubMed

    Amini, Ashley A; Kan, Ho-Man; Cui, Zhanwu; Maye, Peter; Nair, Lakshmi S

    2014-11-01

    Lactoferrin (LF), a 78 kDa glycoprotein, has recently been recognized as an effector molecule in the skeleton due to its ability to decrease osteoclastogenesis and increase osteoblast proliferation, survival, and differentiation. The objective of the study is to investigate the feasibility of developing an injectable hydrogel from bovine lactoferrin (bLF) as a cell delivery vehicle. The study demonstrated the feasibility of cross-linking tyramine substituted bLF in the presence of horse radish peroxidase and hydrogen peroxide (H2O2). The gel presented a mild environment to maintain mouse bone marrow-derived stromal cell (mBMSC) viability and proliferation. Stromal cells derived from multiple gene reporter transgenic mouse (Ibsp-Topaz/Dmp1-mCherry) line showed the ability of the cells to undergo osteogenic differentiation in the hydrogel when cultured in mineralization media. The cross-linked gel supported protein phosphorylation/de-phosphorylation in the encapsulated MC3T3-E1 cells. bLF and bLF gel also showed the ability to modulate growth factor production in mBMSCs. PMID:24802947

  15. Photo-induced cross-linking of unmodified proteins (PICUP) applied to amyloidogenic peptides.

    PubMed

    Rahimi, Farid; Maiti, Panchanan; Bitan, Gal

    2009-01-01

    The assembly of amyloidogenic proteins into toxic oligomers is a seminal event in the pathogenesis of protein misfolding diseases, including Alzheimer's, Parkinson's, and Huntington's diseases, hereditary amyotrophic lateral sclerosis, and type 2 diabetes. Owing to the metastable nature of these protein assemblies, it is difficult to assess their oligomer size distribution quantitatively using classical methods, such as electrophoresis, chromatography, fluorescence, or dynamic light scattering. Oligomers of amyloidogenic proteins exist as metastable mixtures, in which the oligomers dissociate into monomers and associate into larger assemblies simultaneously. PICUP stabilizes oligomer populations by covalent cross-linking and when combined with fractionation methods, such as sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) or size-exclusion chromatography (SEC), PICUP provides snapshots of the oligomer size distributions that existed before cross-linking. Hence, PICUP enables visualization and quantitative analysis of metastable protein populations and can be used to monitor assembly and decipher relationships between sequence modifications and oligomerization(1). Mechanistically, PICUP involves photo-oxidation of Ru(2+) in a tris(bipyridyl)Ru(II) complex (RuBpy) to Ru(3+) by irradiation with visible light in the presence of an electron acceptor. Ru(3+) is a strong one-electron oxidizer capable of abstracting an electron from a neighboring protein molecule, generating a protein radical(1,2). Radicals are unstable, highly-reactive species and therefore disappear rapidly through a variety of intra- and intermolecular reactions. A radical may utilize the high energy of an unpaired electron to react with another protein monomer forming a dimeric radical, which subsequently loses a hydrogen atom and forms a stable, covalently-linked dimer. The dimer may then react further through a similar mechanism with monomers or other dimers to form higher

  16. The relative contribution of calcium, zinc and oxidation-based cross-links to the stiffness of Arion subfuscus glue.

    PubMed

    Braun, M; Menges, M; Opoku, F; Smith, A M

    2013-04-15

    Metal ions are present in many different biological materials, and are capable of forming strong cross-links in aqueous environments. The relative contribution of different metal-based cross-links was measured in the defensive glue produced by the terrestrial slug Arion subfuscus. This glue contains calcium, magnesium, zinc, manganese, iron and copper. These metals are essential to the integrity of the glue and to gel stiffening. Removal of all metals caused at least a 15-fold decrease in the storage modulus of the glue. Selectively disrupting cross-links involving hard Lewis acids such as calcium reduced the stiffness of the glue, while disrupting cross-links involving borderline Lewis acids such as zinc did not. Calcium is the most common cation bound to the glue (40 mmol l(-1)), and its charge is balanced primarily by sulphate at 82-84 mmol l(-1). Thus these ions probably play a primary role in bringing polymers together directly. Imine bonds formed as a result of protein oxidation also contribute substantially to the stiffness of the glue. Disrupting these bonds with hydroxylamine caused a 33% decrease in storage modulus of the glue, while stabilizing them by reduction with sodium borohydride increased the storage modulus by 40%. Thus a combination of metal-based bonds operates in this glue. Most likely, cross-links directly involving calcium play a primary role in bringing together and stabilizing the polymer network, followed by imine bond formation and possible iron coordination.

  17. Spectroscopic characterization of collagen cross-links in bone

    NASA Technical Reports Server (NTRS)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  18. Collagen/elastin hydrogels cross-linked by squaric acid.

    PubMed

    Skopinska-Wisniewska, J; Kuderko, J; Bajek, A; Maj, M; Sionkowska, A; Ziegler-Borowska, M

    2016-03-01

    Hydrogels based on collagen and elastin are very valuable materials for medicine and tissue engineering. They are biocompatible; however their mechanical properties and resistance for enzymatic degradation need to be improved by cross-linking. Up to this point many reagents have been tested but more secure reactants are still sought. Squaric acid (SqAc), 3,4-dihydroxy 3-cyclobutene 1,2-dione, is a strong, cyclic acid, which reacts easily with amine groups. The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5%, 10% and 20% of SqAc and neutralized via dialysis against deionized water were tested. Cross-linked, 3-D, transparent hydrogels were created. The cross-linked materials are stiffer and more resistant to enzymatic degradation than those that are unmodified. The pore size, swelling ability and surface polarity are reduced due to 5% and 10% of SqAc addition. At the same time, the cellular response is not significantly affected by the cross-linking. Therefore, squaric acid would be regarded as a safe, effective cross-linking agent.

  19. Self-Consistent Field Approach for Cross-Linked Copolymer Materials

    NASA Astrophysics Data System (ADS)

    Schmid, Friederike

    2013-07-01

    A generalized self-consistent field approach for polymer networks with a fixed topology is developed. It is shown that the theory reproduces the localization of cross-links, which is characteristic for gels. The theory is then used to study the order-disorder transition in regular networks of end-linked diblock copolymers. Compared to diblock copolymer melts, the transition is shifted towards lower values of the incompatibility parameter χ (the Flory- Huggins parameter). Moreover, the transition becomes strongly first order already at the mean-field level. If stress is applied, the transition is further shifted and finally vanishes in a critical point.

  20. Photoaffinity labeling and photoaffinity cross-linking of phosphofructokinase-1 from Saccharomyces cerevisiae by 8-azidoadeninenucleotides.

    PubMed

    Knoche, M; Mönnich, K; Schäfer, H J; Kopperschläger, G

    2001-01-15

    Phosphofructokinase-1 from Saccharomyces cerevisiae is composed of four alpha- and four beta-subunits, each of them carrying catalytic and regulatory bindings sites for MgATP. In this paper, various photoaffinity labels, such as 8-azidoadenosine 5'-triphosphate, 8-azido-1,N6-ethenoadenosine 5'-triphosphate, and 8-N3-3'(2')-O-biotinyl-8-azidoadenosine 5'-triphosphate have been used to study their interaction with the enzyme in the dark and during irradiation. All nucleotidetriphosphates function as phosphate donor forming fructose 1,6-bisphosphate from fructose 6-phosphate. However, the kinetic analysis revealed distinctly differences between them. Photolabeling causes a decrease in enzyme activity to a similar extent, and ATP acts as competitive effector to inactivation. Three bifunctional diazidodiadeninedinucleotides (8-diN3AP4A, monoepsilon-8-diN3AP4A, and diepsilon-8-diN3AP4A) were applied for studying the spatial arrangement of the nucleotide binding sites. No cross-linking of the subunits was obtained by irradiation of the enzyme with 8-diN3AP4A. Photolabeling with diepsilon-8-diN3AP4A resulted in the formation of two alpha-beta cross-links with different mobilities in the SDS-polyacrylamide gel electrophoresis, while monoepsilon-8-diN3AP4A yielded only one alpha-beta cross-link. Because an interfacial location of the catalytic sites between two subunits is less likely, we suggest that the formation of cross-linked subunits may be the result of specific interactions of the bifunctional photolabels with regulatory sites at the interface of both subunits. PMID:11368011

  1. Cross-links between ribosomal proteins of 30S subunits in 70S tight couples and in 30S subunits.

    PubMed

    Lambert, J M; Boileau, G; Cover, J A; Traut, R R

    1983-08-01

    Ribosome 70S tight couples and 30S subunits derived from them were modified with 2-iminothiolane under conditions where about two sulfhydryl groups per protein were added to the ribosomal particles. The 70S and 30S particles were not treated with elevated concentrations of NH4Cl, in contrast to those used in earlier studies. The modified particles were oxidized to promote disulfide bond formation. Proteins were extracted from the cross-linked particles by using conditions to preclude disulfide interchange. Disulfide-linked protein complexes were fractionated on the basis of charge by electrophoresis in polyacrylamide/urea gels at pH 5.5. The proteins from sequential slices of the urea gels were analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Final identification of proteins in cross-linked complexes was made by radioiodination of the proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis. Attention was focused on cross-links between 30S proteins. We report the identification of 27 cross-linked dimers and 2 trimers of 30S proteins, all but one of which were found in both 70S ribosomes and free 30S subunits in similar yield. Seven of the cross-links, S3-S13, S13-S21, S14-S19, S7-S12, S9-S13, S11-S21, and S6-S18-S21, have not been reported previously when 2-iminothiolane was used. Cross-links S3-S13, S13-S21, S7-S12, S11-S21, and S6-S18-S21 are reported for the first time. The identification of the seven new cross-links is illustrated and discussed in detail. Ten of the dimers reported in the earlier studies of Sommer & Traut (1976) [Sommer, A., & Traut, R. R. (1976) J. Mol. Biol. 106, 995-1015], using 30S subunits treated with high salt concentrations, were not found in the experiments reported here.

  2. FTIR Spectroscopic Studies on Cross Linking of SU-8 Photoresist

    NASA Astrophysics Data System (ADS)

    Kalaiselvi, S. M. P.; Tan, T. L.; Rawat, R. S.; Lee, P.; Heussler, S. P.; Breese, M. B. H.

    2013-11-01

    The usage of chemically-amplified, negative tone SU-8 photoresist is numerous, spanning industrial, scientific and medical fields. Hence, in this study, some preliminary studies were conducted to understand the dosage and heat treatment requirements of the SU-8 photoresist essential for pattern generation using X-ray lithography. In this work, using Synchrotron as the X-ray source, SU-8 photoresist was characterized for X-ray lithography in terms of its process parameters such as X-ray exposure dose, post exposure bake (PEB) time and temperature for various photoresist thicknesses which is considered worthwhile in view of applications of SU-8 for the fabrication of very high aspect ratio micro structures. The process parameters were varied and the resultant cross linking of the molecular chains of the photoresist was accurately monitored using a Fourier Transform Infra-Red (FTIR) spectrometer and the results are discussed. The infrared absorption peak at 914 cm-1 in the spectrum of the SU-8 photoresist was found to be a useful indicator for the completion of cross linking in the SU-8 photoresist. Results show that the cross linking of the SU-8 photoresist is at a higher rate from 0 J/cm3 to 30 J/cm3 after which the peak almost saturates regardless of the PEB time. It is a good evidence for the validation of dosage requirement of SU-8 photoresist for effective completion of cross linking, which in turn is a requirement for efficient fabrication of micro and nano structures. An analogous behavior was also observed between the extent of cross linking and the PEB time and temperature. The rate of cross linking declines after a certain period of PEB time regardless of PEB temperature. The obtained results also show a definite relation between variation of the absorbance area of the peak at 914 cm-1 and the X-ray exposure dose.

  3. Enhanced retention of encapsulated ions in cross-linked polymersomes.

    PubMed

    Wang, Guanglin; Hoornweg, Arentien; Wolterbeek, Hubert T; Franken, Linda E; Mendes, Eduardo; Denkova, Antonia G

    2015-03-19

    Polymer vesicles (polymersomes) composed of poly(butadiene-b-poly(ethylene oxide)) (PB-b-PEO) are known for their stability and limited permeability. However, when these vesicles are diluted, substances, such as ions, encapsulated in the aqueous cavity can be released due to vesicle disruption. In previous studies, we have shown that these vesicles can be loaded efficiently with sufficient quantities of radionuclides to allow application in radionuclide therapy and pharmacokinetics evaluation, provided that there is no loss of the encapsulated radionuclides when diluted in the bloodstream. In this paper, in order to stabilize the carriers, we propose to cross-link the hydrophobic part of the polymersome membrane and to investigate whether such cross-linking induced by γ radiation can enhance the retention of ions (radionuclides). Retention of ions encapsulated in the lumen in such cross-linked carriers has not been previously quantitatively evaluated, although it is of ultimate importance in any medical application. Here, we also investigate how cross-linking affects the transport of radionuclides (loading) through the membrane of the vesicles. The integrity of the vesicles as a function of the radiation dose is also investigated, including morphological changes. The results show that cross-linking hinders the transport of ions through the membrane, which also leads to higher retention of ions encapsulated prior to cross-linking in the vesicles. Electron micrographs show that the shape of the polymersomes is not greatly affected by γ radiation when left in the original solvent (phosphate buffered saline (PBS) or Milli-Q water), but when diluted in a good solvent for both blocks, i.e., tetrahydrofuran (THF), disintegration of the vesicles and the appearance of droplet-like structures is observed, which had not been reported previously. The results of the present study help to formulate polymersomes as carriers for radionuclide therapy, demonstrating a way to

  4. Biology and biotechnology of hyaluronan.

    PubMed

    Viola, Manuela; Vigetti, Davide; Karousou, Evgenia; D'Angelo, Maria Luisa; Caon, Ilaria; Moretto, Paola; De Luca, Giancarlo; Passi, Alberto

    2015-05-01

    The hyaluronan (HA) polymer is a critical component of extracellular matrix with a remarkable structure: is a linear and unbranched polymer without sulphate or phosphate groups. It is ubiquitous in mammals showing several biological functions, ranging from cell proliferation and migration to angiogenesis and inflammation. For its critical biological functions the amount of HA in tissues is carefully controlled by different mechanisms including covalent modification of the synthetic enzymes and epigenetic control of their gene expression. The concentration of HA is also critical in several pathologies including cancer, diabetes and inflammation. Beside these biological roles, the structural properties of HA allow it to take advantage of its capacity to form gels even at concentration of 1 % producing scaffolds with very promising applications in regenerative medicine as biocompatible material for advanced therapeutic uses. In this review we highlight the biological aspects of HA addressing the mechanisms controlling the HA content in tissues as well as its role in important human pathologies. In the second part of the review we highlight the different use of HA polymers in the modern biotechnology.

  5. Short-range and long-range cross-linking effects of polygenipin on gelatin-based composite materials.

    PubMed

    Ge, Liming; Xu, Yongbin; Liang, Weijie; Li, Xinying; Li, Defu; Mu, Changdao

    2016-11-01

    Genipin is an ideal cross-linking agent in biomedical applications, which can undergo ring-opening polymerization in alkaline condition. The polygenipin can create short-range and long-range intermolecular cross-linking between protein chains. In this article, the polygenipin with different degree of polymerization was successfully prepared and used to fix gelatin composite materials. The short-range and long-range cross-linking effects of polygenipin were systematically studied. The results show that the composite materials present porous structure with tunable pore sizes in the gel state, which can be easily controlled by adjusting the degree of polymerization of polygenipin. Long-range cross-linking can increase the pore size of the gel. However, during the drying process, the composite films cross-linked by polygenipin with higher degree of polymerization shrank to smaller size to create more compact structure, resulting in the improvement of water resistance properties, thermal stability, tensile strength, and darker color for the composite films. It is interesting that the composite films can partly swell to the original gel structure when in contact with water and saturated water vapor. All the composite films have excellent barrier properties against UV light. However, the compatibility of gelatin and polygenipin is reduced when the degree of polymerization of polygenipin increases to a certain extent, which will result in the formation of phase separation structure. The obtained composite films are ideal candidates for food and pharmaceutical packaging materials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2712-2722, 2016.

  6. Swelling of cross-linked polystyrene spheres in toluene vapor

    SciTech Connect

    Zhang, R.; Graf, K.; Berger, R.

    2006-11-27

    The swelling behavior of individual micron-sized polystyrene (PS) spheres in toluene vapor was studied via mass loading by means of micromechanical cantilever sensors. For 4%-8% cross-linked PS a mass increase of 180% in saturated toluene vapor was measured. The mass of the swollen PS sphere decreases with increasing exposure time to ultraviolet light. In addition, the swelling response is significantly different between the first and the second exposure to toluene vapor. This is attributed to the formation of a cross-linked shell at the surface of the PS spheres. Shape persistent parts were observed for locally irradiated PS spheres.

  7. Cross-Linked Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.

    2004-01-01

    The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.

  8. Specific covalent immobilization of proteins through dityrosine cross-links.

    PubMed

    Endrizzi, Betsy J; Huang, Gang; Kiser, Patrick F; Stewart, Russell J

    2006-12-19

    Dityrosine cross-links are widely observed in nature in structural proteins such as elastin and silk. Natural oxidative cross-linking between tyrosine residues is catalyzed by a diverse group of metalloenzymes. Dityrosine formation is also catalyzed in vitro by metal-peptide complexes such as Gly-Gly-His-Ni(II). On the basis of these observations, a system was developed to specifically and covalently surface immobilize proteins through dityrosine cross-links. Methacrylate monomers of the catalytic peptide Gly-Gly-His-Tyr-OH (GGHY) and the Ni(II)-chelating group nitrilotriacetic acid (NTA) were copolymerized with acrylamide into microbeads. Green fluorescent protein (GFP), as a model protein, was genetically tagged with a tyrosine-modified His6 peptide on its carboxy terminus. GFP-YGH6, specifically associated with the NTA-Ni(II) groups, was covalently coupled to the bead surface through dityrosine bond formation catalyzed by the colocalized GGHY-Ni(II) complex. After extensive washing with EDTA to disrupt metal coordination bonds, we observed that up to 75% of the initially bound GFP-YGH6 remained covalently bound to the bead while retaining its structure and activity. Dityrosine cross-linking was confirmed by quenching the reaction with free tyrosine. The method may find particular utility in the construction and optimization of protein microarrays. PMID:17154619

  9. Potential Effects of Corneal Cross-Linking upon the Limbus

    PubMed Central

    2016-01-01

    Corneal cross-linking is nowadays the most used strategy for the treatment of keratoconus and recently it has been exploited for an increasing number of different corneal pathologies, from other ectatic disorders to keratitis. The safety of this technique has been widely assessed, but clinical complications still occur. The potential effects of cross-linking treatment upon the limbus are incompletely understood; it is important therefore to investigate the effect of UV exposure upon the limbal niche, particularly as UV is known to be mutagenic to cellular DNA and the limbus is where ocular surface tumors can develop. The risk of early induction of ocular surface cancer is undoubtedly rare and has to date not been published other than in one case after cross-linking. Nevertheless it is important to further assess, understand, and reduce where possible any potential risk. The aim of this review is to summarize all the reported cases of a pathological consequence for the limbal cells, possibly induced by cross-linking UV exposure, the studies done in vitro or ex vivo, the theoretical bases for the risks due to UV exposure, and which aspects of the clinical treatment may produce higher risk, along with what possible mechanisms could be utilized to protect the limbus and the delicate stem cells present within it. PMID:27689081

  10. Cross-linking of dithiols by mitomycin C.

    PubMed

    Paz, Manuel M

    2010-08-16

    Upon reduction, the antitumor drug mitomycin C undergoes a cascade of reactions to give a bis-electrophile that alkylates cellular nucleophiles. We recently reported that dithiols activate mitomycin C by reduction, and we report here that dithiols, after executing the reductive activation of mitomycin C, are bis-alkylated by the activated drug to form S,S'-cross-links as the predominant end products. The diastereomeric pair of adducts formed by 1,3-propanedithiol has been fully characterized by UV, HRMS, CD, and NMR experiments. Racemic dithiol (+/-)-dithiothreitol gave four diastereomeric cross-links, and (+/-)-dihydrolipoic acid gave eight cross-links (two regioisomers with four diastereomers each) that were partially characterized by UV and MS. The observed dependence of cross-link formation on dithiol concentration indicated the requirement of a second reduction step by dithiol, prior to the alkylation of the second arm of the dithiol. The existence of unidentified reaction pathways was manifested by the formation of unexpected intermediates during the course of the reaction of mitomycin C with dithiols and by the formation of unsoluble mitosene derivatives in the reaction between equimolar amounts of dithiol and mitomycin C. Mechanistic details of the reaction are addressed in light of these results. Finally, we discuss the potential relevance of our findings for the interaction of mitomycin C with dithiol-containing proteins.

  11. Femtosecond laser collagen cross-linking without traditional photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa

    2015-03-01

    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  12. Citric-acid-derived photo-cross-linked biodegradable elastomers.

    PubMed

    Gyawali, Dipendra; Tran, Richard T; Guleserian, Kristine J; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. Pre-POMC is a low-molecular-mass pre-polymer with an average molecular mass between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation-at-break between 38 and 382%. FT-IR-ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague-Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications.

  13. Citric-Acid-Derived Photo-cross-Linked Biodegradable Elastomers

    PubMed Central

    Gyawali, Dipendra; Tran, Richard T.; Guleserian, Kristine J.; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. POMC is a low-molecular-mass pre-polymer with a molecular mass average between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation at break between 38 and 382%. FT-IR–ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague–Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications. PMID:20557687

  14. Potential Effects of Corneal Cross-Linking upon the Limbus

    PubMed Central

    2016-01-01

    Corneal cross-linking is nowadays the most used strategy for the treatment of keratoconus and recently it has been exploited for an increasing number of different corneal pathologies, from other ectatic disorders to keratitis. The safety of this technique has been widely assessed, but clinical complications still occur. The potential effects of cross-linking treatment upon the limbus are incompletely understood; it is important therefore to investigate the effect of UV exposure upon the limbal niche, particularly as UV is known to be mutagenic to cellular DNA and the limbus is where ocular surface tumors can develop. The risk of early induction of ocular surface cancer is undoubtedly rare and has to date not been published other than in one case after cross-linking. Nevertheless it is important to further assess, understand, and reduce where possible any potential risk. The aim of this review is to summarize all the reported cases of a pathological consequence for the limbal cells, possibly induced by cross-linking UV exposure, the studies done in vitro or ex vivo, the theoretical bases for the risks due to UV exposure, and which aspects of the clinical treatment may produce higher risk, along with what possible mechanisms could be utilized to protect the limbus and the delicate stem cells present within it.

  15. Oxidized pectin cross-linked carboxymethyl chitosan: a new class of hydrogels.

    PubMed

    Fan, Lihong; Sun, Yi; Xie, Weiguo; Zheng, Hua; Liu, Shuhua

    2012-01-01

    Oxidation of pectin was performed with sodium periodate to prepare pectin dialdehyde (PD). In this study we used the cross-linking reaction of the active aldehyde of PD and the amino of carboxymethyl chitosan (CMC) to prepare the hydrogels. By controlling the proportion of pectin dialdehyde and CMC we made different kinds of hydrogels. We systematically studied the characters of the hydrogels using Fourier transform infrared spectroscopy analysis of the pectin dialdehyde, CMC and the hydrogels, and also X-ray diffractometry and scanning electron microscopy analysis of the instrument of the hydrogels. Equilibrium swelling showed that the gels retained about 88-93% water. The water vapor transmission rate (WVTR) and the evaporation of water from gels showed that such hydrogels were optimal for maintaining a moist environment conducive for wound healing. Examination of the hemolytic potential showed that the hydrogels were nonhemolytic in nature. The hydrogels were non-toxic and blood-compatible. This hydrogel prepared from oxidized pectin and CMC without employing any extraneous cross-linking agents is expected to have potential as wound-dressing material.

  16. Stabilization of human prostate acid phosphatase by cross-linking with diimidoesters.

    PubMed

    Wasylewska, E; Dulińska, J; Trubetskoy, V S; Torchilin, V P; Ostrowski, W S

    1987-01-01

    1. Modification of dimeric human prostate acid phosphatase (EC 3.1.3.2) by diimidoesters leads to the formation of water-soluble preparations of high enzymatic activity, resistant to denaturing agents. 2. Monomeric, dimeric, trimeric and tetrameric species were found in SDS-polyacrylamide gel electrophoresis of the phosphatase cross-linked with dimethyl-suberimidate, and dimeric, trimeric and tetrameric enzymatically active species on thin-layer Sephadex 200 gel filtration. This molecular pattern evidenced formation of the inter-subunit covalent linkages. All molecular forms are immunoreactive against the polyclonal rabbit anti-phosphatase antibodies. 3. The catalytic properties of the modified phosphatase are almost the same as those of the native enzyme. Differences in the optical properties between the modified and the native enzymes point to slight conformational transitions in the modified enzyme.

  17. Effect of chemical cross-linking on gelatin membrane solubility with a non-toxic and non-volatile agent: terephthalaldehyde.

    PubMed

    Biscarat, Jennifer; Galea, Benjamin; Sanchez, José; Pochat-Bohatier, Celine

    2015-03-01

    In this paper, terephthalaldehyde (TPA) is proposed as non-toxic and non-volatile gelatin cross-linker. Optimal cross-linking parameters (TPA/gelatin ratio, temperature) were first determined from in situ rheological measurements on gelatin solutions and from chemical tests with 2,4,6-trinitrobenzenesulfonic acid (TNBS assays) on gelatin gel. The highest cross-linking ratio was achieved for a concentration of 0.005 g TPA/g gelatin at 60°C. The impact of TPA cross-linking on gelatin membrane functional properties (water swelling ratio, water vapor sorption and mechanical properties) was measured. TPA cross-linking increased 17 times the liquid water resistance duration of gelatin films, and delayed the entry of vapor water in the polymer matrix for 7 days, indicating that TPA increased the hydrophobic character of the gelatin matrix.

  18. Graft copolymerization onto polybutadiene: Cross-linking and thermal degradation of vinyl polymers and copolymers

    NASA Astrophysics Data System (ADS)

    Jiang, Dayue (David)

    This work consists of three parts. In Part I, the graft copolymerization of methyl methacrylate, methyl acrylate, methacylic acid and acrylic acid onto polybutadiene and its copolymers by benzoyl peroxide, BPO, or 2, 2'azobis(2-methylpropionitrile), AIBN, initiation were explored. The results show that these monomers can be grafted onto butadiene region of butadiene-containing polymers. The extent of both graft copolymerization and homopolymerization are dependent on the time and temperature of the reaction and the concentration of all of the reactants. One must specify the monomer, initiator and solvent for the efficient graft copolymerization. The methyl methacrylate adds directly to the radical sites which are formed on the backbone by the interaction of the polymer and the primary radical form the initiator, while for the other three monomers, the graft copolymerization occurs by addition of macro-radical to the double bonds. In Part II, the cross-linking of polybutadiene, butadiene-styrene copolymers, and polystyrene by irradiation, thermal and chemical processes, and Friedel-Crafts chemistry and the effect of cross-linking on the thermal stability were investigated. The proof of cross-linking of the polymer comes from the insolubility of the product after the cross-linking reaction and is characterized by gel content and swelling ratio. The results show that the thermal stability of the polymer can be improved by cross-linking. In Part III, the thermal degradation of three vinyl polymers, poly(vinylsulfonic acid) and its sodium salt and poly(vinylphosphonic acid) were studied by combination technique: TGA/FTIR. The results show that TGA/FTIR combined with analysis of residues provides an excellent opportunity to understand the degradation pathway of the compounds. The observation of foaming indicates that the char which is formed contains carbon as well as the inorganic salts which have been observed. The carbon is in a partially graphitized form. The salts

  19. INJECTABLE IN SITU CROSS-LINKING HYDROGELS FOR LOCAL ANTIFUNGAL THERAPY

    PubMed Central

    Hudson, Sarah; Langer, Robert; Fink, Gerald R.; Kohane, Daniel S.

    2009-01-01

    Invasive fungal infections can be devastating, particularly in immunocompromised patients, and difficult to treat with systemic drugs. Furthermore, systemic administration of those medications can have severe side effects. We have developed an injectable local antifungal treatment for direct administration into existing or potential sites of fungal infection. Amphotericin B (AmB), a hydrophobic, potent, and broad-spectrum antifungal agent, was rendered water-soluble by conjugation to a dextran-aldehyde polymer. The dextran-aldehyde-AmB conjugate retained antifungal efficacy against C. albicans. Mixing carboxymethylcellulose-hydrazide with dextran-aldehyde formed a gel that cross-linked in situ by formation of hydrazone bonds. The gel provided in vitro release of antifungal activity for 11 days, and contact with the gel killed Candida for three weeks. There was no apparent tissue toxicity in the murine peritoneum and the gel caused no adhesions. Gels produced by entrapment of a suspension of AmB in CMC-dextran without conjugation of drug to polymers did not release fungicidal activity, but did kill on contact. Injectable systems of these types, containing soluble or insoluble drug formulations, could be useful for treatment of local antifungal infections, with or without concurrent systemic therapy. PMID:19942285

  20. Characterization of the somatogenic receptor in rat liver. Hydrodynamic properties and affinity cross-linking

    SciTech Connect

    Husman, B.; Haldosen, L.A.; Andersson, G.; Gustafsson, J.A.

    1988-03-15

    Rat liver somatogenic receptors have been characterized by gel permeation chromatography, sucrose density gradients in H/sub 2/O and D/sub 2/O, and affinity cross-linking using /sup 125/I-bovine growth hormone (bGH) as a specific somatogenic receptor ligand. Cross-linking of /sup 125/I-bovine growth hormone to a Triton X-100-treated low density fraction isolated from livers of late pregnant rats followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis under reducing conditions showed three major binders with Mr 95,000, 86,000, and 43,000 and a minor binder of Mr 55,000, after correction for bound ligand assuming a 1:1 binding ratio of ligand-receptor. The Mr 86,000, 55,000, and 43,000 species were recovered in the detergent-soluble supernatant after high-speed centrifugation, whereas the Mr 95,000 species remained Triton X-100 insoluble. Detergent-soluble /sup 125/I-bGH-receptor complexes were further analyzed by sedimentation into sucrose density gradients. The sedimentation coefficient was S20,w = 5.2 S and the partial specific volume v = 0.72 ml/g. Gel permeation chromatography on a Sepharose S-400 column indicated a Stokes radius of 61 A for the /sup 125/I-bGH-receptor-Triton X-100 complex. Based on these figures, the molecular weight of the complex was calculated as 131,100. The molecular weight of the ligand-free receptor-Triton X-100 complex was calculated as Mr 109,100. Affinity cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the 61 A peak from Sephacryl S-400 chromatography (cf. above) showed two binding entities, one major and one minor with Mr values 86,000 and 43,000, respectively, in the absence of reductant. When electrophoresis was run in the presence of reductant the Mr 43,000 species was the major binding entity.

  1. Model selection for athermal cross-linked fiber networks.

    PubMed

    Shahsavari, A; Picu, R C

    2012-07-01

    Athermal random fiber networks are usually modeled by representing each fiber as a truss, a Euler-Bernoulli or a Timoshenko beam, and, in the case of cross-linked networks, each cross-link as a pinned, rotating, or welded joint. In this work we study the effect of these various modeling options on the dependence of the overall network stiffness on system parameters. We conclude that Timoshenko beams can be used for the entire range of density and beam stiffness parameters, while the Euler-Bernoulli model can be used only at relatively low network densities. In the high density-high bending stiffness range, strain energy is stored predominantly in the axial and shear deformation modes, while in the other extreme range of parameters, the energy is stored in the bending mode. The effect of the model size on the network stiffness is also discussed. PMID:23005468

  2. [Cross-linking and intrastromal corneal ring segment].

    PubMed

    Renesto, Adimara da Candelaria; Sartori, Marta; Campos, Mauro

    2011-01-01

    Corneal cross-linking is a procedure used for stabilizing the cornea in patients with progressive keratoconus by increasing corneal rigidity, and it is also used in corneal inflammatory melting process. The intrastromal corneal ring segments act by flattening the center of the cornea. Originally designed for the correction of mild myopia, the segments are now being used for reduction of keratoconus in order to improve the uncorrected visual acuity, the best spectacle corrected visual acuity, to allow good tolerance to the use of contact lenses and delay the need for corneal grafting procedures. The present text presents a review of corneal cross-linking and insertion of intrastromal corneal ring segments, emphasizing their indications, results and complications related until now. PMID:21670914

  3. Collagen cross-linking: Strengthening the unstable cornea

    PubMed Central

    Tomkins, Oren; Garzozi, Hanna J

    2008-01-01

    Corneal ectasia, a weakening of corneal integrity, occurs both due to acquired and congenital conditions such as keratoconus. It is a progressing condition that affects both visual acuity, and corneal stability. Various methods exist for correcting this impairment, however none address the inherit pathology, an increase laxity of the corneal stroma. Collagen cross-linking, a new, minimally invasive method, aims to strengthen the stroma by inducing cross links between neighboring collagen fibers. This method results in an increase in corneal tensile strength, with no medium term adverse effects on its normal architecture. Clinically, treated patients display improvement in both visual acuity and keratometric readings. This method may provide clinicians with easily accessible tools to stop the progression, and even correct visual deterioration due to corneal ectasia. Here we review the current information regarding this new method, as well as discuss its potential benefits and downfalls. PMID:19668440

  4. Cytokines and growth factors cross-link heparan sulfate

    PubMed Central

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  5. Estimating the Degree of Cross-Linking in Rubber

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1983-01-01

    Degree of cross-linking or network chain concentration of rubber estimated with aid of new method. Quantity is needed in studies of mechanical behavior of rubber. New method is based on finding rubber follows different stress/ strain relationships in extension and retraction. When rubber specimen is stretched to given extension ration and released. Stress-vs-strain curve follows two paths: one for extension and other for retraction.

  6. Optimized Fragmentation Regime for Diazirine Photo-Cross-Linked Peptides

    PubMed Central

    2016-01-01

    Cross-linking/mass spectrometry has evolved into a robust technology that reveals structural insights into proteins and protein complexes. We leverage a new tribrid instrument with improved fragmentation capacities in a systematic comparison to identify which fragmentation method would be best for the identification of cross-linked peptides. Specifically, we explored three fragmentation methods and two combinations: collision-induced dissociation (CID), beam-type CID (HCD), electron-transfer dissociation (ETD), ETciD, and EThcD. Trypsin-digested, SDA-cross-linked human serum albumin (HSA) served as a test sample, yielding over all methods and in triplicate analysis in total 2602 matched PSMs and 1390 linked residue pairs at 5% false discovery rate, as confirmed by the crystal structure. HCD wins in number of matched peptide-spectrum-matches (958 PSMs) and identified links (446). CID is most complementary, increasing the number of identified links by 13% (58 links). HCD wins together with EThcD in cross-link site calling precision, with approximately 62% of sites having adjacent backbone cleavages that unambiguously locate the link in both peptides, without assuming any cross-linker preference for amino acids. Overall quality of spectra, as judged by sequence coverage of both peptides, is best for EThcD for the majority of peptides. Sequence coverage might be of particular importance for complex samples, for which we propose a data dependent decision tree, else HCD is the method of choice. The mass spectrometric raw data has been deposited in PRIDE (PXD003737). PMID:27454319

  7. Newer protocols and future in collagen cross-linking.

    PubMed

    Cummings, Arthur B; McQuaid, Rebecca; Mrochen, Michael

    2013-08-01

    Corneal Cross-Linking (CXL) is an established surgical procedure for the treatment of corneal disorders such as corneal ectasia and keratoconus. This method of treatment stabilises the corneal structure and increases rigidity, reducing the requirement for corneal transplantation. Since its development, many scientific studies have been conducted to investigate ways of improving the procedure. Biomechanical stability of the cornea after exposure to UV-A light, and the effect of shortening procedure time has been some of the many topics explored.

  8. Optimized Fragmentation Regime for Diazirine Photo-Cross-Linked Peptides.

    PubMed

    Giese, Sven H; Belsom, Adam; Rappsilber, Juri

    2016-08-16

    Cross-linking/mass spectrometry has evolved into a robust technology that reveals structural insights into proteins and protein complexes. We leverage a new tribrid instrument with improved fragmentation capacities in a systematic comparison to identify which fragmentation method would be best for the identification of cross-linked peptides. Specifically, we explored three fragmentation methods and two combinations: collision-induced dissociation (CID), beam-type CID (HCD), electron-transfer dissociation (ETD), ETciD, and EThcD. Trypsin-digested, SDA-cross-linked human serum albumin (HSA) served as a test sample, yielding over all methods and in triplicate analysis in total 2602 matched PSMs and 1390 linked residue pairs at 5% false discovery rate, as confirmed by the crystal structure. HCD wins in number of matched peptide-spectrum-matches (958 PSMs) and identified links (446). CID is most complementary, increasing the number of identified links by 13% (58 links). HCD wins together with EThcD in cross-link site calling precision, with approximately 62% of sites having adjacent backbone cleavages that unambiguously locate the link in both peptides, without assuming any cross-linker preference for amino acids. Overall quality of spectra, as judged by sequence coverage of both peptides, is best for EThcD for the majority of peptides. Sequence coverage might be of particular importance for complex samples, for which we propose a data dependent decision tree, else HCD is the method of choice. The mass spectrometric raw data has been deposited in PRIDE (PXD003737). PMID:27454319

  9. Reversible PH Lability of Cross-Linked Vault Nanocapsules

    SciTech Connect

    Yu, M.; Ng, B.C.; Rome, L.H.; Tolbert, S.H.; Monbouquette, H.G.

    2009-05-28

    Vaults are ubiquitous, self-assembled protein nanocapsules with dimension in the sub-100 nm range that are conserved across diverse phyla from worms to humans. Their normal presence in humans at a copy number of over 10 000/cell makes them attractive as potential drug delivery vehicles. Toward this goal, bifunctional amine-reactive reagents are shown to be useful for the reversible cross-linking of recombinant vaults such that they may be closed and opened in a controllable manner.

  10. Electrochemical Characterization of Ultrathin Cross-Linked Metal Nanoparticle Films.

    PubMed

    Han, Chu; Percival, Stephen J; Zhang, Bo

    2016-09-01

    Here we report the preparation, characterization, and electrochemical study of conductive, ultrathin films of cross-linked metal nanoparticles (NPs). Nanoporous films ranging from 40 to 200 nm in thickness composed of gold and platinum NPs of ∼5 nm were fabricated via a powerful layer-by-layer spin coating process. This process allows preparation of uniform NP films as large as 2 × 2 cm(2) with precise control over thickness, structure, and electrochemical and electrocatalytic properties. Gold, platinum, and bimetallic NP films were fabricated and characterized using cyclic voltammetry, scanning electron microscopy, and conductance measurements. Their electrocatalytic activity toward the oxygen reduction reaction (ORR) was investigated. Our results show that the electrochemical activity of such NP films is initially hindered by the presence of dense thiolate cross-linking ligands. Both electrochemical cycling and oxygen plasma cleaning are effective means in restoring their electrochemical activity. Gold NP films have higher electric conductivity than platinum possibly due to more uniform film structure and closer particle-particle distance. The electrochemical and electrocatalytic performance of platinum NP films can be greatly enhanced by the incorporation of gold NPs. This work focuses on electrochemical characterization of cross-linked NP films and demonstrates several unique properties. These include quick and easy preparation, ultrathin and uniform film thickness, tunable structure and composition, and transferability to many other substrates.

  11. Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase.

    PubMed

    Nadar, Shamraja S; Rathod, Virendra K

    2016-02-01

    This work illustrates the preparation of magnetic macromolecular glucoamylase CLEAs using dialdehydic pectin, as a cross linker instead of traditional glutaraldehyde. The effect of precipitators type and amount, cross linker concentration, cross linking time and amount of amino functionalized magnetic nanoparticles (AFMNs) on glucoamylase activity was studied. Glucoamylase magnetic macromolecular CLEAs prepared by precipitation in presence of AFMNs by ammonium sulfate were subsequently cross linked by dialdehydic pectin. After cross-linked by pectin, 95.4% activity recovery was achieved in magnetic macromolecular CLEAs, whereas in case of glutaraldehyde cross linker, 85.3% activity recovery was achieved. Magnetic macromolecular CLEAs showed 2.91 and 1.27 folds higher thermal stability as compared to free and magnetic glutaraldehyde CLEAs. In kinetics study, magnetic macromolecular CLEAs retained same Km values, whereas magnetic glutaraldehyde CLEAs showed higher Km value than free enzyme. The porous structure of magnetic macromolecular CLEAs was not only enhanced mass transfer toward macromolecular substrates, but also showed compression resistance for 5 consecutive cycles which was checked in terms of effectiveness factor. At the end, in reusability study; magnetic macromolecular CLEAs were retained 84% activity after 10(th) cycle without leaching of enzyme which is 22% higher than traditional magnetic CLEAs.

  12. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  13. Homogeneous UVA system for corneal cross-linking treatment

    NASA Astrophysics Data System (ADS)

    Ayres Pereira, Fernando R.; Stefani, Mario A.; Otoboni, José A.; Richter, Eduardo H.; Ventura, Liliane

    2010-02-01

    The treatment of keratoconus and corneal ulcers by collagen cross-linking using ultraviolet type A irradiation, combined with photo-sensitizer Riboflavin (vitamin B2), is a promising technique. The standard protocol suggests instilling Riboflavin in the pre-scratched cornea every 5min for 30min, during the UVA irradiation of the cornea at 3mW/cm2 for 30 min. This process leads to an increase of the biomechanical strength of the cornea, stopping the progression, or sometimes, even reversing Keratoconus. The collagen cross-linking can be achieved by many methods, but the utilization of UVA light, for this purpose, is ideal because of its possibility of a homogeneous treatment leading to an equal result along the treated area. We have developed a system, to be clinically used for treatment of unhealthy corneas using the cross-linking technique, which consists of an UVA emitting delivery device controlled by a closed loop system with high homogeneity. The system is tunable and delivers 3-5 mW/cm2, at 365nm, for three spots (6mm, 8mm and 10mm in diameter). The electronics close loop presents 1% of precision, leading to an overall error, after the calibration, of less than 10% and approximately 96% of homogeneity.

  14. Fiber optic immunosensor for cross-linked fibrin concentration

    NASA Astrophysics Data System (ADS)

    Moskowitz, Samuel E.

    2000-08-01

    Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels <0.1 ng/ml. A capture monoclonal antibody to the antigen soluble cross-linked fibrin is employed. Immobilized at the tip of an optical fiber by avidin-biotin, the captured antigen is detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.

  15. Mechanical Loading Stimulates Expression of Collagen Cross-Linking Associated Enzymes in Periodontal Ligament.

    PubMed

    Kaku, Masaru; Rosales Rocabado, Juan Marcelo; Kitami, Megumi; Ida, Takako; Akiba, Yosuke; Yamauchi, Mitsuo; Uoshima, Katsumi

    2016-04-01

    Type I collagen, a major extracellular component of the periodontal ligament (PDL), is post-translationally modified by a series of specific enzymes. Among the collagen-modifying enzymes, lysyl oxidase (LOX) is essential to initiate collagen cross-linking and lysyl hydroxylases (LHs) to regulate the cross-linking pathways that are important for tissue specific mechanical properties. The purpose of this study was to investigate the effects of mechanical loading on the expression of collagen-modifying enzymes and subsequent tissue changes in PDL. Primary human PDL cells were subjected to mechanical loading in a 3D collagen gel, and gene expression and collagen component were analyzed. Wistar rats were subjected to excessive occlusal loading with or without intra-peritoneal injection of a LOX inhibitor, β-aminopropionitrile (BAPN). Upon mechanical loading, gene expression of LH2 and LOX was significantly elevated, while that of COL1A2 was not affected on hPDL-derived cells. The mechanical loading also elevated formation of collagen α-chain dimers in 3D culture. The numbers of LH2 and LOX positive cells in PDL were significantly increased in an excessive occlusal loading model. Notably, an increase of LH2-positive cells was observed only at the bone-side of PDL. Intensity of picrosirius red staining was increased by excessive occlusal loading, but significantly diminished by BAPN treatment. These results demonstrated that mechanical loading induced collagen maturation in PDL by up-regulating collagen-modifying enzymes and subsequent collagen cross-linking which are important for PDL tissue maintenance. J. Cell. Physiol. 231: 926-933, 2016. © 2015 Wiley Periodicals, Inc. PMID:26381152

  16. Analysis of growth hormone and lactogenic binding sites cross-linked to iodinated human growth hormone

    SciTech Connect

    Hughes, J.P.; Simpson, J.S.; Friesen, H.G.

    1983-06-01

    GH (GHR) and lactogenic receptors were analyzed after use of the cross-linking reagent ethylene glycol bis-(succinimidyl succinate) to attach covalently iodinated human GH (hGH) to binding proteins 1) on intact IM-9 lymphocytes, 2) in a partially purified GHR preparation from rabbit liver, and 3) in crude microsomal fractions from rabbit liver, rabbit mammary gland, and rat liver. The latter two microsomal preparations contain primarily lactogenic receptors, whereas in IM-9 lymphocytes and the rabbit liver preparations, GHR predominate. Cross-linked (125I)hGH-receptor complexes were solubilized, reduced, and separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis of proteins cross-linked to (125I)hGH in the microsomal fraction from rabbit liver showed a specifically labeled complex with an estimated molecular weight (mol wt) of 75K. A slightly lower mol wt (71K) was determined for the complex labeled in the purified GHR preparation. In contrast to the relatively low mol wt complexes in rabbit liver, a complex that migrated with an apparent mol wt of 130K was identified in IM-9 lymphocytes. Labeled complexes were identified at 66K from rat liver and 61K from rabbit mammary gland. If it is assumed that hGH contributes 21K to the mol wt of the radiolabeled complexes, then the approximate mol wts of hGH-binding sites are 50-54K from rabbit liver, 109K from IM-9 lymphocytes, 45K from rat liver, and 40K from rabbit mammary gland.

  17. Enzymatically cross-linked injectable alginate-g-pyrrole hydrogels for neovascularization.

    PubMed

    Devolder, Ross; Antoniadou, Eleni; Kong, Hyunjoon

    2013-11-28

    Microparticles capable of releasing protein drugs are often incorporated into injectable hydrogels to minimize their displacement at an implantation site, reduce initial drug burst, and further control drug release rates over a broader range. However, there is still a need to develop methods for releasing drug molecules over extended periods of time, in order to sustain the bioactivity of drug molecules at an implantation site. In this study, we hypothesized that a hydrogel formed through the cross-linking of pyrrole units linked to a hydrophilic polymer would release protein drugs in a more sustained manner, because of an enhanced association between cross-linked pyrrole groups and the drug molecules. To examine this hypothesis, we prepared hydrogels of alginate substituted with pyrrole groups, alginate-g-pyrrole, through a horse-radish peroxidase (HRP)-activated cross-linking of the pyrrole groups. The hydrogels were encapsulated with poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with vascular endothelial growth factor (VEGF). The resulting hydrogel system released VEGF in a more sustained manner than Ca(2+) alginate or Ca(2+) alginate-g-pyrrole gel systems. Finally, implantations of the VEGF-releasing HRP-activated alginate-g-pyrrole hydrogel system on chicken chorioallantoic membranes resulted in the formation of blood vessels in higher densities and with larger diameters, compared to other control conditions. Overall, the drug releasing system developed in this study will be broadly useful for regulating release rates of a wide array of protein drugs, and further enhance the quality of protein drug-based therapies. PMID:23886705

  18. A Robust Cross-Linking Strategy for Block Copolymer Worms Prepared via Polymerization-Induced Self-Assembly

    PubMed Central

    2016-01-01

    A poly(glycerol monomethacrylate) (PGMA) chain transfer agent is chain-extended by reversible addition–fragmentation chain transfer (RAFT) statistical copolymerization of 2-hydroxypropyl methacrylate (HPMA) with glycidyl methacrylate (GlyMA) in concentrated aqueous solution via polymerization-induced self-assembly (PISA). A series of five free-standing worm gels is prepared by fixing the overall degree of polymerization of the core-forming block at 144 while varying its GlyMA content from 0 to 20 mol %. 1H NMR kinetics indicated that GlyMA is consumed much faster than HPMA, producing a GlyMA-rich sequence close to the PGMA stabilizer block. Temperature-dependent oscillatory rheological studies indicate that increasing the GlyMA content leads to progressively less thermoresponsive worm gels, with no degelation on cooling being observed for worms containing 20 mol % GlyMA. The epoxy groups in the GlyMA residues can be ring-opened using 3-aminopropyltriethoxysilane (APTES) in order to prepare core cross-linked worms via hydrolysis-condensation with the siloxane groups and/or hydroxyl groups on the HPMA residues. Perhaps surprisingly, 1H NMR analysis indicates that the epoxy–amine reaction and the intermolecular cross-linking occur on similar time scales. Cross-linking leads to stiffer worm gels that do not undergo degelation upon cooling. Dynamic light scattering studies and TEM analyses conducted on linear worms exposed to either methanol (a good solvent for both blocks) or anionic surfactant result in immediate worm dissociation. In contrast, cross-linked worms remain intact under such conditions, provided that the worm cores comprise at least 10 mol % GlyMA. PMID:27134311

  19. Cross linking molecular systems to form ultrathin dielectric layers

    NASA Astrophysics Data System (ADS)

    Feng, Danqin

    Dehydrogenation leads to cross linking of polymer or polymer like formation in very different systems: self-assembled monolayers and in closo -carboranes leading to the formation of semiconducting and dielectric boron carbide. We find evidence of intermolecular interactions for a self-assembled monolayer (SAM) formed from a large molecular adsorbate, [1,1';4',1"-terphenyl]-4,4"-dimethanethiol, from the dispersion of the molecular orbitals with changing the wave vector k and from the changes with temperature. With the formation self assembled molecular (SAM) layer, the molecular orbitals hybridize to electronic bands, with indications of significant band dispersion of the unoccupied molecular orbitals. Although organic adsorbates and thin films are generally regarded as "soft" materials, the effective Debye temperature, indicative of the dynamic motion of the lattice normal to the surface, can be very high, e.g. in the multilayer film formed from [1,1'-biphenyl]-4,4'-dimethanethiol (BPDMT). Depending on molecular orientation, the effective Debye temperature can be comparable to that of graphite due to the 'stiffness' of the benzene rings, but follows the expected Debye-Waller behavior for the core level photoemission intensities with temperature. This is not always the case. We find that a monomolecular film formed from [1,1';4',1"-terphenyl]-4,4"-dimethanethiol deviates from Debye-Waller temperature behavior and is likely caused by temperature dependent changes in molecular orientation. We also find evidence for the increase in dielectric character with polymerization (cross-linking) in spite of the decrease in the HOMO-LUMO gap upon irradiation of TPDMT. The changes in the HOMO-LUMO gap, with cross-linking, are roughly consistent with the band dispersion. The decomposition and cross-linking processes are also accompanied by changes in molecular orientation. The energetics of the three isomeric carborane cage compounds [ closo-1,2-orthocarborane, closo-1

  20. Spontaneous Cross-linking for Fabrication of Nanohybrids Embedded with Size-Controllable Particles.

    PubMed

    Kang, Danmiao; Liu, Qinglei; Chen, Min; Gu, Jiajun; Zhang, Di

    2016-01-26

    This paper reports a versatile method to fabricate robust carbon/metal hybrids with ultrasmall particle and highly developed porous structure through a scalable and facile way. Alginate is used as the precursor for it could perform cross-linking reaction with different polyvalent metal ions to form gels. After simple freeze-drying and carbonization of the alginate-derived gels, we obtained the carbon/metal hybrids with fine nanostructure. Eleven kinds of metal ions were introduced to form gels and five kinds of the gels were carbonized to produce the carbon/metal hybrids. By adjusting the reaction condition, we could tune the size of the nanoparticles in the obtained hybrids. The obtained SnO2/C hybrid shows outstanding specific capacity, rate performance, and long cycle life when it is used as the anode materials of lithium ion batteries. The ultrasmall active nanoparticles were uniformly dispersed within an interconnected pore framework. It ensured a short diffusion and transportation distance of electrolyte ions to the surfaces of active nanoparticles. In addition, the robust carbon framework comprises of quasigraphitic carbon layers. It contributed to the high rate performance by providing excellent conductive pathways for electrons within the electrodes. This work provides a general method for fabrication of carbon/metal (oxide) hybrids with fine nanostructure for application in energy storage.

  1. Covalent cross-links in oxygen free radical altered human immunoglobulin G.

    PubMed

    Kleinveld, H A; Hack, C E; Swaak, A J; van Noort, W L; van Eijk, H G; Koster, J F

    1988-01-01

    The damaging effect of an oxygen free radical generating system, i.e. ultraviolet irradiation, on human immunoglobulin G (IgG) was studied. The free radical altered IgG was analysed by a high performance liquid chromatograph equipped with a TSK G 3000 SW-column. Gel filtration of 120 min UV-irradiated IgG resulted in three clearly distinguished peaks corresponding to polymer IgG (MW greater than 500 kD), dimer IgG (MW 300 kD) and monomer IgG (MW 150 kD). Analysis of oxygen free radical altered and aggregated IgG by SDS-PAGE and subsequent silver-staining revealed inter- and intra-molecular reduction (by beta-mercaptoethanol)-resistant cross-links between IgG-molecules were formed. Comparison of amino acid analyses of native IgG with oxygen free radical aggregated polymer IgG showed significant reductions in tyrosine- (7.0%) and histidine- (6.5%) content. These findings suggest that tyrosine and histidine are involved in covalent cross-linking between IgG-molecules caused by oxygen free radicals. These alterations on IgG induced by free radical-activity might render it antigenic, and could initiate the production of rheumatoid factors (RF).

  2. Cross-linked hybrid nanofiltration membrane with antibiofouling properties and self-assembled layered morphology.

    PubMed

    Singh, Ajay K; Prakash, S; Kulshrestha, Vaibhav; Shahi, Vinod K

    2012-03-01

    A new siloxane monomer, 3-(3-(diethoxy(2-(5-(4-(10-ethoxy-4-hydroxy-2,2-dimethyl-11-oxa-2-ammonio-6-aza-10-silatridecan-10-yl)phenyl)-1,3,4-oxadi azol-2-ylthio)ethyl)silyl)propylamino)-2-hydroxy-N,N,N-trimethylpropan-1-aminium chloride (OA), was synthesized by reported 3-((4-(5-(2-((3-aminopropyl) diethoxysilyl)ethylthio)-1,3,4-oxadiazol-2-yl)phenyl) diethoxysilyl)propan-1-amine (APDSMO) and glycidyltrimethylammonium chloride (GDTMAC) by epoxide ring-opening reaction. OA-poly(vinyl alcohol) (PVA) hybrid antibiofouling nanofilter (NF) membranes were prepared by acid-catalyzed sol-gel followed by formal cross-linking. Membranes showed wormlike arrangement and self-assembled layered morphology with varying OA content. Hybrid NF membrane, especially OA-6, showed low surface roughness, high hydrophilic nature, low biofouling, high cross-linking density, thermal and mechanical stablility, solvent- and chlorine-tolerant nature, along with good permeability and salt rejection. Prepared OA-6 hybrid NF membrane can be used efficiently for desalting and purification of water with about 2.0 g/L salt content (groundwater in major part of India). The described method provides novel route for producing antibiofouling membranes of diversified applications. PMID:22360398

  3. Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation.

    PubMed

    Wang, Steven S S; Hsieh, Ping-Lun; Chen, Pei-Shan; Chen, Yu-Tien; Jan, Jeng-Shiung

    2013-11-01

    Genipin-cross-linked hydrogels composed of biodegradable and pH-sensitive cationic poly(L-lysine) (PLL), poly(L-lysine)-block-poly(L-alanine) (PLL-b-PLAla), and poly(L-lysine)-block-polyglycine (PLL-b-PGly) polypeptides were synthesized, characterized, and used as carriers for drug delivery. These polypeptide hydrogels can respond to pH-stimulus and their gelling and mechanical properties, degradation rate, and drug release behavior can be tuned by varying polypeptide composition and cross-linking degree. Comparing with natural polymers, the synthetic polypeptides with well-defined chain length and composition can warrant the preparation of the hydrogels with tunable properties to meet the criteria for specific biomedical applications. These hydrogels composed of natural building blocks exhibited good cell compatibility and enzyme degradability and can support cell attachment/proliferation. The evaluation of these hydrogels for in vitro drug release revealed that the controlled release profile was a biphasic pattern with a mild burst release and a moderate release rate thereafter, suggesting the drug molecules were encapsulated inside the gel matrix. With the versatility of polymer chemistry and conjugation of functional moieties, it is expected these hydrogels can be useful for biomedical applications such as polymer therapeutics and tissue engineering.

  4. Preparation of hyaluronan-DNA matrices and films.

    PubMed

    Chen, Weiliam

    2012-10-01

    Natural carbohydrate is a class of underexplored polymers for gene delivery. The noninflammatory and nonimmunogenic properties of hyaluronan (hyaluronic acid, HA) are important in clinical situations. It has a role in wound repair and has great lubricating ability. Moreover, the presence of hyaluronidase in vivo enables any vehicle fabricated from HA to be degraded by enzyme-mediated erosion. When DNA is entrapped in a cross-linked HA vehicle, HA-DNA fragments are released on digestion by hyaluronidase. These fragments could serve both as microcarriers of DNA and its protective mechanism. This protocol describes preparation of water-insoluble HA-DNA matrices and films designed for clinical applications, and assays for verification of their bioactivities. Plasmid DNA (pDNA) encoding platelet-derived growth factor (PDGF) is coupled to the matrices that could be implanted into chronic wounds to accelerate their healing. pDNA encoding hyaluronan synthase 2 (HAS2) is coupled to the film that could initially serve as a physical barrier and subsequently a pDNA reservoir for sustaining HAS2 transfection. This would lead to continual HA production for preventing postsurgical adhesion.

  5. Doubling the cross-linking interface of a rationally designed beta roll peptide for calcium-dependent proteinaceous hydrogel formation.

    PubMed

    Dooley, Kevin; Bulutoglu, Beyza; Banta, Scott

    2014-10-13

    We have rationally engineered a stimulus-responsive cross-linking domain based on a repeats-in-toxin (RTX) peptide to enable calcium-dependent formation of supramolecular hydrogel networks. The peptide isolated from the RTX domain is intrinsically disordered in the absence of calcium. In calcium rich environments, the peptide binds Ca(2+) ions and folds into a beta roll (β-roll) secondary structure composed to two parallel β-sheet faces. Previously, we mutated one of the faces to contain solvent exposed leucine side chains which are localized only in the calcium-bound β-roll conformation. We demonstrated the ability of this mutant peptide to self-assemble into hydrogels in the presence of calcium with the aid of additional peptide-based cross-linking moieties. Here, we have expanded this approach by engineering both β-roll faces to contain leucine residues, thereby doubling the cross-linking interface for each monomeric building block. These leucine rich surfaces impart a hydrophobic driving force for self-assembly. Extensive characterization was performed on this double-faced mutant to ensure the retention of calcium affinity and subsequent structural rearrangement similar to that of the wild type domain. We genetically fused an α-helical leucine zipper capable of forming tetrameric coiled-coil bundles to the peptide and the resulting chimeric protein self-assembles into a hydrogel only in calcium rich environments. Since this new mutant peptide enables cross-linking on both surfaces simultaneously, a higher oligomerization state was achieved. To further investigate the cross-linking capability, we constructed concatemers of the β-roll with maltose binding protein (MBP), a monomeric globular protein, without the leucine zipper domains. These concatemers show a similar sol-gel transition in response to calcium. Several biophysical techniques were used to probe the structural and mechanical properties of the mutant β-roll domain and the resulting

  6. Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches.

    PubMed

    Majzoobi, Mahsa; Beparva, Paniz

    2014-03-15

    The effects of two common organic acids; lactic and acetic acids (150 mg/kg) on physicochemical properties of native and cross-linked wheat starches were investigated prior and after gelatinization. These acids caused formation of some cracks and spots on the granules. The intrinsic viscosity of both starches decreased in the presence of the acids particularly after gelatinization. Water solubility increased while water absorption reduced after addition of the acids. The acids caused reduction in gelatinization temperature and enthalpy of gelatinization of both starches. The starch gels became softer, less cohesive, elastic and gummy when acids were added. These changes may indicate the degradation of the starch molecules by the acids. Cross-linked wheat starch was more resistant to the acids. However, both starches became more susceptible to the acids after gelatinization. The effect of lactic acid on physicochemical properties of both starches before and after gelatinization was greater than acetic acid.

  7. New Aptes Cross-linked Polymers from Poly(ethylene oxide)s and Cyanuric Chloride for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.

  8. Autoclavable highly cross-linked polyurethane networks in ophthalmology.

    PubMed

    Bruin, P; Meeuwsen, E A; van Andel, M V; Worst, J G; Pennings, A J

    1993-11-01

    Highly cross-linked aliphatic polyurethane networks have been prepared by the bulk step reaction of low molecular weight polyols and hexamethylenediisocyanate (HDI). These polyurethane networks are optically transparent, colourless and autoclavable amorphous glassy thermosets, which are suited for use in ophthalmic applications such as intraocular lenses and keratoprostheses. The properties of these glassy polyurethanes, obtained from the reaction of the low molecular weight polyols triisopropanolamine (TIPA) or tetrakis (2-hydroxypropyl)ethylenediamine (Quadrol) and HDI in stoichiometric proportions, have been investigated in more detail. The glassy Quadrol/HDI-based polyurethane exhibits a reduction in ultimate glass transition temperature from 85 to 48 degrees C by uptake of 1% of water, and good ultimate mechanical properties (tensile strength 80-85 MPa, elongation at break ca 15%, modulus ca 1.5 GPa). IR spectra of these hydrophobic polyurethane networks revealed the absence of an isocyanate absorption, indicating that all isocyanates, apparently, had reacted during the cross-linking reaction. The biocompatibility could be increased by grafting tethered polyacrylamide chains onto the surface during network formation. These transparent cross-linked polyurethanes did not transmit UV light up to 400 nm, by incorporation of a small amount of the UV absorbing chromophore Coumarin 102, and could be sterilized simply by autoclaving. They were implanted in rabbit eyes, either in the form of small circular disks or in the form of a keratoprosthesis (artificial cornea). It was shown that the material was well tolerated by the rabbit eyes. Serious opacification of the cornea, a direct result of an adverse reaction to the implant, was never seen. Even 1 yr after implantation of a polyurethane keratoprosthesis the eye was still 'quiet'. PMID:7508760

  9. Newer protocols and future in collagen cross-linking

    PubMed Central

    Cummings, Arthur B; McQuaid, Rebecca; Mrochen, Michael

    2013-01-01

    Corneal Cross-Linking (CXL) is an established surgical procedure for the treatment of corneal disorders such as corneal ectasia and keratoconus. This method of treatment stabilises the corneal structure and increases rigidity, reducing the requirement for corneal transplantation. Since its development, many scientific studies have been conducted to investigate ways of improving the procedure. Biomechanical stability of the cornea after exposure to UV-A light, and the effect of shortening procedure time has been some of the many topics explored PMID:23925329

  10. LET dependence of DNA-protein cross-links

    SciTech Connect

    Blakely, E.A.; Chang, P.Y.; Bjornstad, K.A.

    1995-08-01

    We have preliminary data indicating a fluence-dependent yield of particle-induced protein cross-links (DPC`s) with a dependency on LET and particle residual energy. Our data indicate that the DPC yield for hamster fibroblasts in vitro irradiated at 32 keV/{mu}m is similar to that reported for hamster cells irradiated with cobalt-60 gamma rays. At 100-120 keV/{mu}m there is some evidence for an enhanced DPC yield with increasing particle fluence, but there are differences in the yields that are dependent on particle track structure.

  11. Gelatin hydrogels cross-linked with bis(vinylsulfonyl)methane (BVSM): 1. The chemical networks.

    PubMed

    Hellio-Serughetti, Dominique; Djabourov, Madeleine

    2006-09-26

    This paper deals with chemical gelation of gelatin in the presence of a cross-linker, bis(vinylsulfonyl)methane (BVSM), which is able to create covalent C-N bonds with amine groups. The investigation is performed at 40 degrees C, where no triple helices are present. Gelatin is in random coil conformation. The influence of various parameters (gelatin concentration, cross-linker concentration, and pH (number of reacting sites along the gelatin chain)) was examined. Gel formation was followed by rheological and thermodynamic measurements (microcalorimetry) versus time (kinetic measurements). Furthermore, the storage moduli were compared to the number of links formed in the course of gelation. The experiments show that, within the experimental range investigated, a fully homogeneous network is not reached; the chemical gels, even upon completion of the reactions, are still in the critical domain, near the threshold. A power law behavior was put in evidence for the shear modulus versus the distance to the gel point, expressed as the concentration of links per gelatin chain. The exponent (f = 3.4 +/- 0.3) is close to that expected for the vulcanization of long chains. The storage moduli can be superposed on a single curve where the abscissa is the product of the number of C-N links per unit volume and the gelatin concentration at an exponent equal to -0.76 +/- 0.03. This exponent suggests the role of entanglements for interchain cross-linking. PMID:16981770

  12. Hyaluronan viscosupplementation: state of the art and insight into the novel cooperative hybrid complexes based on high and low molecular weight HA of potential interest in osteoarthritis treatment

    PubMed Central

    Schiraldi, Chiara; Stellavato, Antonietta; de Novellis, Francesca; La Gatta, Annalisa; De Rosa, Mario

    2016-01-01

    Summary Osteoarthritis (OA) represents a group of chronic, painful, disabling conditions affecting synovial joints. It is characterized by degeneration of articular cartilage, alterations of peri-articular and subchondral bone, low-grade synovial inflammation (synovitis). Despite OA is commonly described as a non-inflammatory disease, it is known that its progression and the subsequent increment of symptoms correlate to the production of inflammatory factors that induce the secretion of enzymes responsible for cartilage degradation. In clinical practice, to alleviate pain and stiffness, not only during acute phases but also as maintenance therapy, intra-articular injections of corticosteroids or similar drugs are used, besides it is well diffused the viscosupplementation procedure based on hyaluronan gel. There are many different products containing high molecular weight linear HA or cross-linked derivatives, however the novelty in the field consist in the hybrid cooperative complexes derived from high and low molecular weight HA through a patented processing. This technique permit to double the amount of HA delivered to the injured site without increasing the injected volume, beside in vitro assay on human chondrocytes suggested hybrid complexes as effective in the modulation of several inflammatory cytokines in joints. PMID:27252742

  13. One-step electrospinning of cross-linked chitosan fibers.

    PubMed

    Schiffman, Jessica D; Schauer, Caroline L

    2007-09-01

    Chitin is a nitrogen-rich polysaccharide that is abundant in crustaceans, mollusks, insects, and fungi and is the second most abundant organic material found in nature next to cellulose. Chitosan, the N-deacetylated derivative of chitin, is environmentally friendly, nontoxic, biodegradable, and antibacterial. Fibrous mats are typically used in industries for filter media, catalysis, and sensors. Decreasing fiber diameters within these mats causes many beneficial effects such as increased specific surface area to volume ratios. When the intrinsically beneficial effects of chitosan are combined with the enhanced properties of nanofibrous mats, applications arise in a wide range of fields, including medical, packaging, agricultural, and automotive. This is particularly important as innovative technologies that focus around bio-based materials are currently of high urgency, as they can decrease dependencies on fossil fuels. We have demonstrated that Schiff base cross-linked chitosan fibrous mats can be produced utilizing a one-step electrospinning process that is 25 times faster and, therefore, more economical than a previously reported two-step vapor-cross-linking method. These fibrous mats are insoluble in acidic, basic, and aqueous solutions for 72 h. Additionally, this improved production method results in a decreased average fiber diameter, which measures 128 +/- 40 nm. Chemical and structural analyses were conducted utilizing Fourier transform infrared spectroscopy, solubility studies, and scanning electron microscopy. PMID:17696400

  14. Collagen Cross-Linking: Current Status and Future Directions

    PubMed Central

    Hovakimyan, Marine; Guthoff, Rudolf F.; Stachs, Oliver

    2012-01-01

    Collagen cross-linking (CXL) using UVA light and riboflavin (vitamin B2) was introduced as a clinical application to stabilize the cornea by inducing cross-links within and between collagen fibers. CXL has been investigated extensively and has been shown clinically to arrest the progression of keratoconic or post-LASIK ectasia. With its minimal cost, simplicity, and proven positive clinical outcome, CXL can be regarded as a useful approach to reduce the number of penetrating keratoplasties performed. Small case series have also indicated that CXL is beneficial in corneal edema by reducing stromal swelling behavior and in keratitis by inhibiting pathogen growth. Despite these encouraging results, CXL remains a relatively new method that is potentially associated with complications. Aspects such as side effects and recurrence rates have still to be elucidated. In light of the growing interest in CXL, our paper summarizes present knowledge about this promising approach. We have intentionally endeavored to include the more relevant studies from the recent literature to provide an overview of the current status of CXL. PMID:22288005

  15. Optimization model for UV-Riboflavin corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Schumacher, S.; Wernli, J.; Scherrer, S.; Bueehler, M.; Seiler, T.; Mrochen, M.

    2011-03-01

    Nowadays UV-cross-linking is an established method for the treatment of keraectasia. Currently a standardized protocol is used for the cross-linking treatment. We will now present a theoretical model which predicts the number of induced crosslinks in the corneal tissue, in dependence of the Riboflavin concentration, the radiation intensity, the pre-treatment time and the treatment time. The model is developed by merging the difussion equation, the equation for the light distribution in dependence on the absorbers in the tissue and a rate equation for the polymerization process. A higher concentration of Riboflavin solution as well as a higher irradiation intensity will increase the number of induced crosslinks. However, performed stress-strain experiments which support the model showed that higher Riboflavin concentrations (> 0.125%) do not result in a further increase in stability of the corneal tissue. This is caused by the inhomogeneous distribution of induced crosslinks throughout the cornea due to the uneven absorption of the UV-light. The new model offers the possibility to optimize the treatment individually for every patient depending on their corneal thickness in terms of efficiency, saftey and treatment time.

  16. Thermoset-cross-linked lignocellulose: a moldable plant biomass.

    PubMed

    Karumuri, Sriharsha; Hiziroglu, Salim; Kalkan, A Kaan

    2015-04-01

    The present work demonstrates a high biomass content (i.e., up to 90% by weight) and moldable material by controlled covalent cross-linking of lignocellulosic particles by a thermoset through epoxide-hydroxyl reactions. As an example for lignocellulosic biomass, Eastern redcedar was employed. Using scanning fluorescence microscopy and vibrational spectroscopy, macroscopic to molecular scale interactions of the thermoset with the lignocellulose have been revealed. Impregnation of the polymer resin into the biomass cellular network by capillary action as well as applied pressure results in a self-organizing structure in the form of thermoset microrods in a matrix of lignocellulose. We also infer permeation of the thermoset into the cell walls from the reaction of epoxides with the hydroxyls of the lignin. Compression tests reveal, at 30% thermoset content, thermoset-cross-linked lignocellulose has superior mechanical properties over a commercial wood plastic composite while comparable stiffness and strength to bulk epoxy and wood, respectively. The failure mechanism is understood to be crack propagation along the particle-thermoset interface and/or interparticle thermoset network. PMID:25734539

  17. Effects of processing conditions on the reliability of cross-linked polyethylene cable insulation. Progress report

    SciTech Connect

    Phillips, P.J.

    1981-03-01

    Crystallization and morphology were investigated in cross-linked PE. /sup 13/C NMR was used to quantify the cross-links. Production of cable is being studied. Dielectric constant and loss of cross-linked PE are being measured. (DLC)

  18. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-divinylbenzene resins, cross-linked. 177... resins, cross-linked. Styrene-divinylbenzene cross-linked copolymer resins may be safely used as articles... conditions: (a) The resins are produced by the copolymerization of styrene with divinylbenzene. (b)...

  19. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes.

    PubMed

    Leitner, Alexander; Joachimiak, Lukasz A; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-07-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  20. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes

    PubMed Central

    Leitner, Alexander; Joachimiak, Lukasz A.; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-01-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  1. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-divinylbenzene resins, cross-linked. 177... resins, cross-linked. Styrene-divinylbenzene cross-linked copolymer resins may be safely used as articles... conditions: (a) The resins are produced by the copolymerization of styrene with divinylbenzene. (b)...

  2. Alginate-hyaluronan composite hydrogels accelerate wound healing process.

    PubMed

    Catanzano, O; D'Esposito, V; Acierno, S; Ambrosio, M R; De Caro, C; Avagliano, C; Russo, P; Russo, R; Miro, A; Ungaro, F; Calignano, A; Formisano, P; Quaglia, F

    2015-10-20

    In this paper we propose polysaccharide hydrogels combining alginate (ALG) and hyaluronan (HA) as biofunctional platform for dermal wound repair. Hydrogels produced by internal gelation were homogeneous and easy to handle. Rheological evaluation of gelation kinetics of ALG/HA mixtures at different ratios allowed understanding the HA effect on ALG cross-linking process. Disk-shaped hydrogels, at different ALG/HA ratio, were characterized for morphology, homogeneity and mechanical properties. Results suggest that, although the presence of HA does significantly slow down gelation kinetics, the concentration of cross-links reached at the end of gelation is scarcely affected. The in vitro activity of ALG/HA dressings was tested on adipose derived multipotent adult stem cells (Ad-MSC) and an immortalized keratinocyte cell line (HaCaT). Hydrogels did not interfere with cell viability in both cells lines, but significantly promoted gap closure in a scratch assay at early (1 day) and late (5 days) stages as compared to hydrogels made of ALG alone (p<0.01 and 0.001 for Ad-MSC and HaCaT, respectively). In vivo wound healing studies, conducted on a rat model of excised wound indicated that after 5 days ALG/HA hydrogels significantly promoted wound closure as compared to ALG ones (p<0.001). Overall results demonstrate that the integration of HA in a physically cross-linked ALG hydrogel can be a versatile strategy to promote wound healing that can be easily translated in a clinical setting.

  3. Effect of modified starch and nanoclay particles on biodegradability and mechanical properties of cross-linked poly lactic acid.

    PubMed

    Shayan, M; Azizi, H; Ghasemi, I; Karrabi, M

    2015-06-25

    Mechanical properties and biodegradation of cross-linked poly(lactic acid) (PLA)/maleated thermoplastic starch (MTPS)/montmorillonite (MMT) nanocomposite were studied. Crosslinking was carried out by adding di-cumyl peroxide (DCP) in the presence of triallyl isocyanurate (TAIC) as coagent. At first, MTPS was prepared by grafting maleic anhydride (MA) to thermoplastic starch in internal mixer. Experimental design was performed by using Box-Behnken method at three variables: MTPS, nanoclay and TAIC at three levels. Results showed that increasing TAIC amount substantially increased the gel fraction, enhanced tensile strength, and caused a decrease in elongation at break. Biodegradation was prevented by increasing TAIC amount in nanocomposite. Increasing MTPS amount caused a slight increase in gel fraction and decreased the tensile strength of nanocomposite. Also, MTPS could increase the elongation at break of nanocomposite and improve the biodegradation. Nanoclay had no effect on the gel fraction, but it improved tensile strength. PMID:25839817

  4. Preferential DNA-protein cross-linking by NiCl2 in magnesium-insoluble regions of fractionated Chinese hamster ovary cell chromatin.

    PubMed

    Patierno, S R; Sugiyama, M; Basilion, J P; Costa, M

    1985-11-01

    Intracellular nickel ions (Ni2+) have been shown to cause single-strand breaks in DNA, that were rapidly repaired, and DNA-protein cross-links, that persisted for at least 24 h following removal of extracellular ionic nickel. In this study, we have used the techniques of alkaline elution, chromatin fractionation, and sodium dodecyl sulfate:polyacrylamide gel electrophoresis to examine the DNA-protein cross-linking induced by NiCl2 in Chinese hamster ovary cells. Continuous treatment of logarithmically growing Chinese hamster ovary cells with 2.5 mM NiCl2 in complete medium resulted in DNA single-strand breaks within 1 h, followed by a time-dependent increase in the induction of DNA-protein cross-links at 2, 3, and 6 h. Since the entry of nickel into cells was maximal within 2 h of exposure, the time delay for the formation of DNA-protein cross-links was not limited by metal uptake. The nickel-induced DNA-protein cross-linking appeared to require active cell cycling, since single-strand breaks but no cross-linking could be detected in confluent cells treated with 1, 2.5, or 5 mM NiCl2 for 3 h. DNA-protein cross-linking induced by nickel occurred in late S phase of the cell cycle. High-molecular-weight nonhistone chromatin proteins and possibly histone H1 migrating at the Mr 30,000 range became cross-linked to DNA after treatment of cells with NiCl2. All nickel-cross-linked proteins were concentrated in the magnesium-insoluble regions of fractionated chromatin and were stable to urea, 2-mercaptoethanol, and Nonidet P-40. Some proteins (Mr 48,000, 52,000, 55,000, 70,000, and 95,000), the association of which with DNA was also stable to Sarkosyl, salt, and EDTA, were detectable in DNA rigorously fractionated from untreated cells. Nickel therefore appeared to cause the cross-linking of proteins that normally reside in close association with DNA. Alterations of the normal association of these proteins with DNA by nickel may be an early event in the nickel transformation

  5. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems

    PubMed Central

    Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID

  6. Hyaluronan in Tubular and Interstitial Nephrocalcinosis

    NASA Astrophysics Data System (ADS)

    Verkoelen, Carl F.

    2007-04-01

    Hyaluronan (HA) is the major glycosaminoglycan (GAG) component of the renal medullary interstitium. HA is extremely large (up to 104 kDa) and composed of thousands repeating disaccharides of glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc). HA is synthesized by hyaluronan synthases (HASs) and degraded by hyaluronidases (Hyals). The production of HA by renomedullary interstitial cells is mediated by local osmolality. When excess water needs to be excreted, increased interstitial HA seems to antagonize water reabsorption, while the opposite occurs during water conservation. Hence, papillary interstitial HA is low and Hyal high during anti-diuresis, whereas during diuresis HA is high and Hyal low. The polyanion HA plays a role in the reabsorption of hypotonic fluid by immobilizing cations (Na+) via the carboxylate (COO-) groups of GlcUA. The binding of Ca2+ to anionic HA is probably also responsible for the fact that the papilla does not become a stone despite the extremely high interstitial phosphate and oxalate. HA is also an excellent crystal binding molecule. The expression of HA at the luminal surface of renal tubular cells leads to tubular nephrocalcinosis (tubular NC). Calcium staining methods (Von Kossa, Yasue) demonstrated that crystallization inhibitors cannot avoid the occasional precipitation of calcium phosphate in the papillary interstitium (interstitial NC). These crystals are probably immediately immobilized by the gel-like HA matrix. After ulcerating through the pelvic wall the calcified matrix becomes a Randall's plaque. The attachment of calcium oxalate crystals from the primary urine to plaque may ultimately lead to the development of clinical stones in the renal calyces (nephrolithiasis).

  7. Studies on N-vinylformamide cross-linked copolymers

    NASA Astrophysics Data System (ADS)

    Świder, Joanna; Tąta, Agnieszka; Sokołowska, Katarzyna; Witek, Ewa; Proniewicz, Edyta

    2015-12-01

    Copolymers of N-vinylformamide (NVF) cross-linked with three multifunctional monomers, including divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), and N,N‧-methylenebisacrylamide (MBA) were synthetized by a three-dimensional free radical polymerization in inverse suspension using 2,2‧-azobis(2-methylpropionamide) dihydrochloride (AIBA) as an initiator. Methyl silicon oil was used as the continuous phase during the polymerization processes. Fourier-transform adsorption infrared (FT-IR) spectra revealed the presence of silicone oil traces and suggested that silicone oil strongly interacted with the copolymers surface. Purification procedure allowed to completely remove the silicon oil traces from P(NVF-co-DVB) only. The morphology and the structure of the investigated copolymers were examined by optical microscopy, FT-IR, and FT-Raman (Fourier-transform Raman spectroscopy) methods.

  8. Tough Stretchable Physically-Cross-linked Electrospun Hydrogel Fiber Mats.

    PubMed

    Yang, Yiming; Wang, Chao; Wiener, Clinton G; Hao, Jinkun; Shatas, Sophia; Weiss, R A; Vogt, Bryan D

    2016-09-01

    Nature uses supramolecular interactions and hierarchical structures to produce water-rich materials with combinations of properties that are challenging to obtain in synthetic systems. Here, we demonstrate hierarchical supramolecular hydrogels from electrospun, self-associated copolymers with unprecedented elongation and toughness for high porosity hydrogels. Hydrophobic association of perfluoronated comonomers provides the physical cross-links for these hydrogels based on copolymers of dimethyl acrylamide and 2-(N-ethylperfluorooctane sulfonamido)ethyl methacrylate (FOSM). Intriguingly, the hydrogel fiber mats show an enhancement in toughness in comparison to compression molded bulk hydrogels. This difference is attributed to the size distribution of the hydrophobic aggregates where narrowing the distribution in the electrospun material enhances the toughness of the hydrogel. These hydrogel fiber mats exhibit extensibility more than double that of the bulk hydrogel and a comparable modulus despite the porosity of the fiber mat leading to >25 wt % increase in water content. PMID:27548013

  9. Conventional Versus Cross-Linked Polyethylene for Total Hip Arthroplasty.

    PubMed

    Surace, Michele F; Monestier, Luca; Vulcano, Ettore; Harwin, Steven F; Cherubino, Paolo

    2015-09-01

    The clinical and radiographic outcomes of 88 patients who underwent primary total hip arthroplasty with either conventional polyethylene or cross-linked polyethylene (XLPE) from the same manufacturer were compared. There were no significant differences between the 2 subpopulations regarding average age, gender, side affected, or prosthetic stem and cup size. The average follow-up was 104 months (range, 55 to 131 months). To the authors' knowledge, this is the longest follow-up for this particular insert. Clinical and radiographic evaluations were performed at 1, 3, 6, and 12 months and then annually. Results showed that XLPE has a significantly greater wear reduction than that of standard polyethylene in primary total hip arthroplasty. At the longest available follow-up for these specific inserts, XLPE proved to be effective in reducing wear. PMID:26375527

  10. Protein cross-linking tools for the construction of nanomaterials.

    PubMed

    Domeradzka, Natalia E; Werten, Marc Wt; Wolf, Frits A de; de Vries, Renko

    2016-06-01

    Across bioengineering there is a need to couple proteins to other proteins, or to peptides. Although traditional chemical conjugations have dominated in the past, more and more highly specific coupling strategies are becoming available that are based on protein engineering. Here we review the use of protein modification approaches such as enzymatic and autocatalytic protein-protein coupling, as well as the use of hetero-dimerizing (or hetero-oligomerizing) modules, applied to the specific case of linking together de novo designed recombinant polypeptides into precisely structured nanomaterials. Such polypeptides are increasingly being investigated for biomedical and other applications. In this review, we describe the protein-engineering based cross-linking strategies that dramatically expand the repertoire of possible molecular structures and, hence, the range of materials that can be produced from them. PMID:26871735

  11. Structure-Property Relationships in Porous 3-D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Capadona, Lynn A.; McCorkle, Linda; Padadopoulos, Demetrios S.; Leventis, Nicholas

    2007-01-01

    Sol-gel derived silica aerogels are attractive candidates for many unique thermal, optical, catalytic, and chemical applications because of their low density and high mesoporosity. However, their inherent fragility has restricted use of aerogel monoliths to applications where they are not subject to any load. We have previously reported cross-linking the mesoporous silica structure of aerogels with di-isocyanates, styrenes or epoxies reacting with amine decorated silica surfaces. These approaches have been shown to significantly increase the strength of aerogels with only a small effect on density or porosity. Though density is a prime predictor of properties such as strength and thermal conductivity for aerogels, it is becoming clear from previous studies that varying the silica backbone and size of the polymer cross-link independently can give rise to combinations of properties which cannot be predicted from density alone. Herein, we examine the effects of four processing parameters for producing this type of polymer cross-linked aerogel on properties of the resulting monoliths. We focus on the results of C-13 CP-MAS NMR which gives insight to the size and structure of polymer cross-link present in the monoliths, and relates the size of the cross-links to microstructure, mechanical properties and other characteristics of the materials obtained.

  12. Structure-Property Relationships in Porous 3-D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Capadona, Lynn A.; McCorkle, Linda; Papadopoulos, Demetrios S.; Leventis, Nicholas

    2007-01-01

    Sol-gel derived silica aerogels are attractive candidates for many unique thermal, optical, catalytic, and chemical applications because of their low density and high mesoporosity. However, their inherent fragility has restricted use of aerogel monoliths to applications where they are not subject to any load. We have previously reported cross-linking the mesoporous silica structure of aerogels with di-isocyanates, styrenes or epoxies reacting with amine decorated silica surfaces. These approaches have been shown to significantly increase the strength of aerogels with only a small effect on density or porosity. Though density is a prime predictor of properties such as strength and thermal conductivity for aerogels, it is becoming clear from previous studies that varying the silica backbone and size of the polymer cross-link independently can give rise to combinations of properties which cannot be predicted from density alone. Herein, we examine the effects of four processing parameters for producing this type of polymer cross-linked aerogel on properties of the resulting monoliths. We focus on the results of 13C CP-MAS NMR which gives insight to the size and structure of polymer cross-link present in the monoliths, and relates the size of the cross-links to microstructure, mechanical properties and other characteristics of the materials obtained.

  13. Synthesis of poly(N-isopropylacrylamide) hydrogels by radiation polymerization and cross-linking

    SciTech Connect

    Nagaoka, Noriyasu; Kubota, Hitoshi; Katakai, Ryoichi; Safranj, Agneza; Yoshida, Masaru; Omichi, Hideki

    1993-12-20

    Poly(N-isopropylacrylamide) [poly(NIPAAm)] shows a typical thermal reversibility of phase transition in aqueous solutions. That is, it precipitates from solution above a critical temperature called the lower critical solution temperature (LCST) and dissolves below this temperature. When it is cross-linked, the obtained hydrogel collapses above LCST, while it swells and expands below LCST. This hydrogel has received much attention recently and has been used as a model system to demonstrate the validity of theories describing the coil-globule transition, swelling of networks, and folding and unfolding of biopolymers. It has also been proposed for various applications ranging from controlled drug delivery to solute separation. Poly(NIPAAm) hydrogel is usually synthesized at room temperature from an aqueous solution of the monomer by using a redox initiator composed of ammonium persulfate and N,N,N{prime},N{prime}-tetramethylethylenediamine in the presence of N,N{prime}-methylenebisacrylamide as a cross-linker. Since the LCST of poly(NIPAAm) is around 32 C, the polymerization at room temperature proceeds in a homogeneous solution. Recently, poly(NIPAAm) hydrogels were synthesized by starting the polymerization below the LCST and then elevating the temperature above it, by which method macroporous gels with fast temperature response were obtained. The idea is to apply a radiation--induced polymerization method for the synthesis of poly(NIPAAm) hydrogels. This method offers unique advantages for synthesis: it is a simple and additive-free process at all temperatures, and the degree of cross-linking can be easily controlled by irradiation conditions. Therefore, radiation methods are especially attractive for the synthesis of hydrogels with potential biomedical application where the residual chemical initiators may contaminate the product. It is possible to combine into one step the synthesis and sterilization of the product, and it is economically competitive.

  14. An Investigation of Siloxane Cross-linked Hydroxyapatite-Gelatin/Copolymer Composites for Potential Orthopedic Applications†

    PubMed Central

    Dyke, Jason Christopher; Knight, Kelly Jane; Zhou, Huaxing; Chiu, Chi-Kai; Ko, Ching-Chang; You, Wei

    2012-01-01

    Causes of bone deficiency are numerous, but biomimetic alloplastic grafts provide an alternative to repair tissue naturally. Previously, a hydroxyapatite-gelatin modified siloxane (HAp-Gemosil) composite was prepared by cross-linking (N, N′-bis[(3-trimethoxysilyl)propyl]ethylene diamine (enTMOS) around the HAp-Gel nanocomposite particles, to mimic the natural composition and properties of bone. However, the tensile strength remained too low for many orthopedic applications. It was hypothesized that incorporating a polymer chain into the composite could help improve long range interaction. Furthermore, designing this polymer to interact with the enTMOS siloxane cross-linked matrix would provide improved adhesion between the polymer and the ceramic composite, and improve mechanical properties. To this end, copolymers of L-Lactide (LLA), and a novel alkyne derivatized trimethylene carbonate, propargyl carbonate (PC), were synthesized. Incorporation of PC during copolymerization affects properties of copolymers such as molecular weight, Tg, and % PC incorporation. More importantly, PC monomers bear a synthetic handle, allowing copolymers to undergo post-polymerization functionalization with graft monomers to specifically tailor the properties of the final composite. For our investigation, P(LLA-co-PC) copolymers were functionalized by an azido-silane (AS) via copper catalyzed azide-alkyne cycloaddition (CuAAC) through terminal alkyne on PC monomers. The new functionalized polymer, P(LLA-co-PC)(AS) was blended with HAp-Gemosil, with the azido-silane linking the copolymer to the silsesquioxane matrix within the final composite. These HAp-Gemosil/P(LLA-co-PC)(AS) composites were subjected to mechanical and biological testing, and the results were compared with those from the HAp-Gemosil composites. This study revealed that incorporating a cross-linkable polymer served to increase the flexural strength of the composite by 50%, while maintaining the biocompatibility of

  15. Melamine/formaldehyde cross-linking of polymers for profile control

    SciTech Connect

    Mitchell, T.O.

    1988-11-29

    This patent describes a process for closing pores in a more permeable zone of a hydrocarbonaceous fluid bearing formation to obtain improved sweep efficiency prior to a waterflood oil recovery operation wherein the process comprises injecting into the formation of a gelable composition comprising: (a) water; (b) 0.2 to 5.0 wt. percent of a cross-linkable polymer having at least one functional group selected from a member of the group consisting of an amine, an amide, a hydroxyl, or a thiol group; and (c) 0.1 to 5.0 wt. percent of a methylol containing aminoplast resin which cross links with the polymer, thereby forming a gel of a size and strength sufficient to close pores in one or more permeable zones of the formation, the resin having amine and aldehyde in a critical mole ratio of from about 1:6 to about 1:30 respectively, which ratios are sufficient to form substantially improved stable gels for utilization in a subterranean formation during the recovery of hydrocarbonaceous fluids.

  16. Tailoring Elastic Properties of Silica Aerogels Cross-Linked with Polystyrene

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Meador, Mary Ann B.; Tousley, Marissa E.; Shonkwiler, Brian; McCorkle, Linda; Scheiman, Daniel A.; Palczer, Anna

    2009-01-01

    The effect of incorporating an organic linking group, 1,6-bis(trimethoxysilyl)hexane (BTMSH), into the underlying silica structure of a styrene cross-linked silica aerogel is examined. Vinyltrimethoxysilane (VTMS) is used to provide a reactive site on the silica backbone for styrene polymerization. Replacement of up to 88 mol 1 of the silicon from tetramethoxyorthosilicate with silicon derived from BTMSH and VTMS during the making of silica gels improves the elastic behavior in some formulations of the crosslinked aerogels, as evidenced by measurement of the recovered length after compression of samples to 251 strain. This is especially true for some higher density formulations, which recover nearly 100% of their length after compression to 251 strain twice. The compressive modulus of the more elastic monoliths ranged from 0.2 to 3 MPa. Although some of these monoliths had greatly reduced surface areas, changing the solvent used to produce the gels from methanol to ethanol increased the surface area in one instance from 6 to 220 sq m2/g with little affect on the modulus, elastic recovery, porosity, or density.

  17. A simple, nondestructive assay for bound hyaluronan.

    PubMed

    Johnston, J B

    2000-01-01

    A simple, convenient, nondestructive method is described for the quantitative determination of bound hyaluronan. The method is based on the binding of the cationic dye Toluidine Blue O to the D-glucuronate component of the hyaluronan repeat disaccharide. Quantification is accomplished without interference by the dye's metachromatic properties. The method is easily adapted to hyaluronan coated medical devices and should be useful to developers and manufacturers of such devices and coatings.

  18. Standard versus trans-epithelial collagen cross-linking in keratoconus patients suitable for standard collagen cross-linking

    PubMed Central

    Rossi, S; Orrico, A; Santamaria, C; Romano, V; De Rosa, L; Simonelli, F; De Rosa, G

    2015-01-01

    Purpose Evaluating the clinical results of trans-epithelial collagen cross-linking (CXL) and standard CXL in patients with progressive keratoconus. Methods This prospective study comprised 20 eyes of 20 patients with progressive keratoconus. Ten eyes were treated by standard CXL and ten by trans-epithelial cross-linking (TE-CXL, epithelium on) with 1 year of follow-up. All patients underwent complete ophthalmologic testing that included pre- and postoperative uncorrected visual acuity, corrected visual acuity, spherical error, spherical equivalent, corneal astigmatism, simulated maximum, minimum, and average keratometry, coma and spherical aberration, optical pachymetry, and endothelial cell density. Intra-and postoperative complications were recorded. The solution used for standard CXL comprised riboflavin 0.1% and dextran 20.0% (Ricrolin), while the solution for TE-CXL (Ricrolin, TE) comprised riboflavin 0.1%, dextran 15.0%, trometamol (Tris), and ethylenediaminetetraacetic acid. Ultraviolet-A treatment was performed with UV-X System at 3 mW/cm2. Results In both the standard CXL group (ten patients, ten eyes; mean age, 30.4±7.3 years) and the TE-CXL group (ten patients, ten eyes; mean age, 28±3.8 years), uncorrected visual acuity and corrected visual acuity improved significantly after treatment. Furthermore, a significant improvement in topographic outcomes, spherical error, and spherical equivalent was observed in both groups at month 12 posttreatment. No significant variations were recorded in other parameters. No complications were noted. Conclusion A 1-year follow-up showed stability of clinical and refractive outcomes after standard CXL and TE-CXL. PMID:25834386

  19. Tuning nanoscale viscoelasticity of polyelectrolyte complexes with multiple types of cross-links

    NASA Astrophysics Data System (ADS)

    Ma, Tianzhu; Han, Biao; Lee, Daeyeon; Han, Lin

    Mechanical properties of hydrogels are manifestation of cross-link type and density, fixed charges and water-polymer interactions. In this study, we revealed how different types of cross-links regulate the nanoscale viscoelasticity of polyelectrolyte networks. Ionically cross-linked PAH/PAA layer-by-layer complexes were modified to include covalent cross-links using EDC. AFM-nanoindentation and force relaxation were performed at various ionic strength (0.01-1M) and pH (1.5-5.5). As-assembled networks, held only by ionic cross-links, underwent >95% relaxation, dominated by cross-link breaking and re-formation. Addition of covalent cross-links increased the instantaneous modulus by 1.6-fold and attenuated relaxation to ~80% of net neutral states (pH >=3.5), as covalent cross-links provide additional elastic components. The network remained stabilized when all ionic cross-links were dissociated at pH <=1.5, whereby further attenuation to 31% in relaxation could be due to viscoelastic polymer conformational changes and fluid flow-induced poroelasticity. Taken together, this study demonstrates the potential of using multiple cross-linking types to tune the viscoelastic mechanisms in polyelectrolyte complexes.

  20. Cross-linking of fibrinogen and fibrin by fibrin-stablizing factor (factor XIIIa).

    PubMed

    Kanaide, H; Shainoff, J R

    1975-04-01

    Factor XIIIa catalyzed intermolecular cross-linking of fibrinogen at initial rates that varied in direct (first order) proportion to the fibrinogen concentration, which differed from the well known zero order relationship in fibrin cross-linking. Preferential cross-linking of gamma-chains occurred with both substrates. The differences in rates and order of reaction were attributed mainly to effect of self-alignment of the gamma-chains in fibrin which enabled the cross-linking enzyme to interact with paired chains as a single rather than two independent entities. Studies on mixtures of fibrinogen and fibrin indicated factor XIIIa had near equal affinities for the two substrates. At low concentrations with which cross-linking of fibrinogen proceeded sluggishly compared to fibrin, fibrinogen inhibited stabilization of fibrin clots by competitively partitioning factor XIIIa away from the fribin. Additional inhibition arose from cross-linking of fibrin in soluble combination with fibrinogen in mixtures containing fibrinogen in large excess over fibrin. The observations demonstrate ways in which fibrinogen normally helps to suppress both polymerization and cross-linking of small amounts of fibrin produced within the circulation. At very high concentrations above 30 mg. per milliliter, fibrinogen underwent cross-linking at faster initial rates than the cross-linking of fibrin. Rapid cross-linking of concentrated fibrogen raises the possibility that filtration enrichment may be a factor contributing to abnormal formation of the highly insoluble fibrinogen deposits occurring in atheromatous tissue.

  1. Reactive electrospinning and biodegradation of cross-linked methacrylated polycarbonate nanofibers.

    PubMed

    Wu, Ruizhi; Zhang, Jian-Feng; Fan, Yuwei; Stoute, Diana; Lallier, Thomas; Xu, Xiaoming

    2011-06-01

    The objectives of this study were to fabricate cross-linked biodegradable polycarbonate nanofibers and to investigate their biodegradability by different enzymes. Poly(2,3-dihydroxycarbonate) was synthesized from naturally occurring l-tartaric acid. The hydroxyl groups on the functional polycarbonate were converted to methacrylate groups to enable the polymer to cross-link under UV irradiation. Smooth cross-linked methacrylated polycarbonate nanofibers (300-1800 nm) were fabricated by a reactive electrospinning process with in situ UV radiation from a mixed solution of linear methacrylated polycarbonate (MPC) and poly(ethylene oxide) (PEO) (MPC:PEO = 9:1) in methanol/chloroform (50/50). These cross-linked nanofibers have shown excellent solvent resistance and their solubility decreases with increasing degree of cross-linking. The thermal properties of linear and cross-linked polycarbonate nanofibers were investigated by differential scanning calorimetry and thermogravimetric analysis. The cross-linked polycarbonate nanofibers show no melting point below 200 °C and their decomposition temperature increases with increasing cross-linking degree. Their biodegradation products by five different enzymes were analyzed using liquid chromatography-mass spectrometry (LC-MS). The biodegradability of the polycarbonate nanofibers decreases with increasing cross-linking degree. These nanofibers were found to support human fibroblast survival and to promote cell attachment. This study demonstrates that cross-linked biodegradable polycarbonate nanofibers with different chemical properties and biodegradability can be fabricated using the novel reactive electrospinning technology to meet the needs of different biomedical applications.

  2. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore.

    PubMed

    Zhang, Xinyue; Price, Nathan E; Fang, Xi; Yang, Zhiyu; Gu, Li-Qun; Gates, Kent S

    2015-12-22

    Nanopore-based sensors have been studied extensively as potential tools for DNA sequencing, characterization of epigenetic modifications such as 5-methylcytosine, and detection of microRNA biomarkers. In the studies described here, the α-hemolysin protein nanopore embedded in a lipid bilayer was used for the detection and characterization of interstrand cross-links in duplex DNA. Interstrand cross-links are important lesions in medicinal chemistry and toxicology because they prevent the strand separation that is required for read-out of genetic information from DNA in cells. In addition, interstrand cross-links are used for the stabilization of duplex DNA in structural biology and materials science. Cross-linked DNA fragments produced unmistakable current signatures in the nanopore experiment. Some cross-linked substrates gave irreversible current blocks of >10 min, while others produced long current blocks (10-100 s) before the double-stranded DNA cross-link translocated through the α-hemolysin channel in a voltage-driven manner. The duration of the current block for the different cross-linked substrates examined here may be dictated by the stability of the duplex region left in the vestibule of the nanopore following partial unzipping of the cross-linked DNA. Construction of calibration curves measuring the frequency of cross-link blocking events (1/τon) as a function of cross-link concentration enabled quantitative determination of the amounts of cross-linked DNA present in samples. The unique current signatures generated by cross-linked DNA in the α-HL nanopore may enable the detection and characterization of DNA cross-links that are important in toxicology, medicine, and materials science.

  3. Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes.

    PubMed

    Kao, Athit; Chiu, Chi-li; Vellucci, Danielle; Yang, Yingying; Patel, Vishal R; Guan, Shenheng; Randall, Arlo; Baldi, Pierre; Rychnovsky, Scott D; Huang, Lan

    2011-01-01

    Knowledge of elaborate structures of protein complexes is fundamental for understanding their functions and regulations. Although cross-linking coupled with mass spectrometry (MS) has been presented as a feasible strategy for structural elucidation of large multisubunit protein complexes, this method has proven challenging because of technical difficulties in unambiguous identification of cross-linked peptides and determination of cross-linked sites by MS analysis. In this work, we developed a novel cross-linking strategy using a newly designed MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). DSSO contains two symmetric collision-induced dissociation (CID)-cleavable sites that allow effective identification of DSSO-cross-linked peptides based on their distinct fragmentation patterns unique to cross-linking types (i.e. interlink, intralink, and dead end). The CID-induced separation of interlinked peptides in MS/MS permits MS(3) analysis of single peptide chain fragment ions with defined modifications (due to DSSO remnants) for easy interpretation and unambiguous identification using existing database searching tools. Integration of data analyses from three generated data sets (MS, MS/MS, and MS(3)) allows high confidence identification of DSSO cross-linked peptides. The efficacy of the newly developed DSSO-based cross-linking strategy was demonstrated using model peptides and proteins. In addition, this method was successfully used for structural characterization of the yeast 20 S proteasome complex. In total, 13 non-redundant interlinked peptides of the 20 S proteasome were identified, representing the first application of an MS-cleavable cross-linker for the characterization of a multisubunit protein complex. Given its effectiveness and simplicity, this cross-linking strategy can find a broad range of applications in elucidating the structural topology of proteins and protein complexes.

  4. Riboflavin-Ultraviolet A Corneal Cross-linking for Keratoconus

    PubMed Central

    El-Raggal, Tamer M.

    2009-01-01

    Purpose: To evaluate the safety, efficacy of riboflavin-ultraviolet A irradiation (UVA) corneal cross-linking and present refractive changes induced by the treatment in cases of keratoconus. Materials and Methods: The study includes 15 eyes of 9 patients with keratoconus with an average keratometric (K) reading less than 54 D and minimal corneal thickness greater than 420 microns. The corneal epithelium was removed manually within the central 8.5 mm diameter area and the cornea was soaked with riboflavin eye drops (0.1% in 20% dextran τ-500) for 30 minutes followed by exposure to UVA radiation (365 nm, 3 mW/cm2) for 30 minutes. During the follow-up period, uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest refraction, slit lamp examination and topographic changes were recorded at the first week, first month, 3 and 6 months. Results: There was statistically significant improvement of UCVA from a preoperative mean of 0.11 ± 0.07 (range 0.05–0.3) to a postoperative mean of 0.15 ± 0.06 (range 0.1–0.3) (P < 0.05). None of the eyes lost lines of preoperative UCVA but 1 eye lost 1 line of preoperative BSCVA. The preoperative mean K of 49.97 ± 2.81 D (range 47.20–51.75) changed to 48.34 ± 2.64 D (range 45.75–50.40). This decrease in K readings was statistically significant (P < 0.05). All eyes developed minimal faint stromal haze that cleared in 14 eyes within 1 month. In only 1 eye, this resulted in a very faint corneal scar. Other sight threatening complications were not encountered in this series. Progression of the original disease was not seen in any of the treated eyes within 6 months of follow-up. Conclusion: Riboflavin-UVA corneal cross-linking is a safe and promising method for keratoconus. Larger studies with longer follow up are recommended. PMID:20404993

  5. Zinc cross-linked hydroxamated alginates for pulsed drug release

    PubMed Central

    Raut, Neha S; Deshmukh, Prasad R; Umekar, Milind J; Kotagale, Nandkishor R

    2013-01-01

    Introduction: Alginates can be tailored chemically to improve solubility, physicochemical, and biological properties and its complexation with metal ion is useful for controlling the drug release. Materials And Methods: Synthesized N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were subsequently complexed with zinc to form beads. Hydroxamation of sodium alginate was confirmed by Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC). Results: The synthesized polymeric material exhibited reduced aqueous, HCl and NaOH solubility. The hydroxamated derivatives demonstrated pulsed release where change in pH of the dissolution medium stimulated the atenolol release. Conclusion: Atenolol loaded Zn cross-linked polymeric beads demonstrated the sustained the plasma drug levels with increased half-life. Although the synthesized derivatives greatly altered the aqueous solubility of sodium alginate, no significant differences in in vitro and in vivo atenolol release behavior amongst the N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were observed. PMID:24350039

  6. Pyridinium cross-links in heritable disorders of collagen

    SciTech Connect

    Pasquali, M.; Still, M.J.; Dembure, P.P.

    1995-12-01

    Ehlers-Danlos syndrome (EDS) is a heterogeneous group of inherited disorders of collagen that is characterized by skin fragility, skin hyperextensibility, and joint hypermobility. EDS type VI is caused by impaired collagen lysyl hydroxylase (procollagen-lysine, 2-oxoglutarate 5-dioxygenase; E.C.1.14.11.4), the ascorbate-dependent enzyme that hydroxylates lysyl residues on collagen neopeptides. Different alterations in the gene for collagen lysyl hydroxylase have been reported in families with EDS type VI. In EDS type VI, impairment of collagen lysyl hydroxylase results in a low hydroxylysine content in mature collagen. Hydroxylysine is a precursor of the stable, covalent, intermolecular cross-links of collagen, pyridinoline (Pyr), and deoxypyridinoline (Dpyr). Elsewhere we reported in preliminary form that patients with EDS type VI had a distinctive alteration in the urinary excretion of Pyr and Dpyr. In the present study, we confirm that the increased Dpyr/Pyr ratio is specific for EDS type VI and is not observed in other inherited or acquired collagen disorders. In addition, we find that skin from patients with EDS type VI has reduced Pyr and increased Dpyr, which could account for the organ pathology. 19 refs., 1 tab.

  7. Cross-links between stereocilia in the guinea pig cochlea.

    PubMed

    Furness, D N; Hackney, C M

    1985-05-01

    Cross-links between stereocilia on guinea pig cochlear hair cells have been examined using high resolution scanning (SEM) and transmission electron microscopy (TEM), confirming recent descriptions of these structures. Links from the tips of shorter stereocilia to the sides of the adjacent taller stereocilia (upward-pointing links), between stereocilia of the same row (side-to-side links) and between adjacent rows (row-to-row links), have been observed on inner and outer hair cells. These links have been seen in material fixed using (1) glutaraldehyde only, (2) glutaraldehyde/osmium and (3) glutaraldehyde/osmium/thiocarbohydrazide (a technique which makes gold coating unnecessary). Upward-pointing links were seen less frequently, and the surfaces of stereocilia and microvilli were smoother after fixation (3) compared with fixations (1) and (2) in which they were usually roughened in appearance. In TEM, side-to-side and row-to-row links form a regular lattice between stereocilia, and consist of a number of strands. Upward-pointing links consist of a single strand, the ends of which are associated with electron-dense material. This lies between the stereociliary membrane and the actin filament bundle, at the tip of the shorter stereocilium and the side of the taller stereocilium.

  8. Enzymatic cross-linking of carboxymethylpullulan grafted with ferulic acid.

    PubMed

    Dulong, Virginie; Hadrich, Ahdi; Picton, Luc; Le Cerf, Didier

    2016-10-20

    Carboxymethylpullulan (CMP) has been modified in a two-step grafting reaction of ferulic acid (FA). Acid adipic dihydrazyde (ADH) was first reacted with FA activated with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC). Then the product of this first reaction was reacted with CMP (activated with EDC). Grafted polysaccharides structure was confirmed by FTIR and (1)H NMR spectroscopy. Analyses by size-exclusion chromatography (SEC) coupling on-line with a multi-angle light scattering detector (MALS), a viscometer and a differential refractive index detector (DRI) (SEC/MALS/DRI/Visco) showed that associations between FA moieties occurred due to hydrophobic interactions. The grafting rates of FA were determined by the Folin-Ciocalteu method and were found between 1.0% and 11.2% (mol/mol anhydroglucose unit). The CMP-FA were then enzymatically cross-linked with laccase from Pleurotus ostreatus. The crosslinking reactions were followed by rheological measurements, demonstrating the influence of laccase concentration on kinetics. Elastic modulus and swelling rates of hydrogels depends on FA content only for low values. PMID:27474545

  9. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    SciTech Connect

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-15

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  10. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-01

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young's modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ṡ g33) for a more typical d33 value of 400 pC/N is about 11.2 GPa-1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  11. An Open Data Format for Visualization and Analysis of Cross-Linked Mass Spectrometry Results

    NASA Astrophysics Data System (ADS)

    Hoopmann, Michael R.; Mendoza, Luis; Deutsch, Eric W.; Shteynberg, David; Moritz, Robert L.

    2016-11-01

    Protein-protein interactions are an important element in the understanding of protein function, and chemical cross-linking shotgun mass spectrometry is rapidly becoming a routine approach to identify these specific interfaces and topographical interactions. Protein cross-link data analysis is aided by dozens of algorithm choices, but hindered by a lack of a common format for representing results. Consequently, interoperability between algorithms and pipelines utilizing chemical cross-linking remains a challenge. pepXML is an open, widely-used format for representing spectral search algorithm results that has facilitated information exchange and pipeline development for typical shotgun mass spectrometry analyses. We describe an extension of this format to incorporate cross-linking spectral search results. We demonstrate application of the extension by representing results of multiple cross-linking search algorithms. In addition, we demonstrate adapting existing pepXML-supporting software pipelines to analyze protein cross-linking results formatted in pepXML.

  12. Effect of glucose content on thermally cross-linked fibrous gelatin scaffolds for tissue engineering.

    PubMed

    Siimon, Kaido; Reemann, Paula; Põder, Annika; Pook, Martin; Kangur, Triin; Kingo, Külli; Jaks, Viljar; Mäeorg, Uno; Järvekülg, Martin

    2014-09-01

    Thermally cross-linked glucose-containing electrospun gelatin meshes were studied as possible cell substrate materials. FTIR analysis was used to study the effect of glucose on cross-linking reactions. It was found that the presence of glucose increases the extent of cross-linking of fibrous gelatin scaffolds, which in return determines scaffold properties and their usability in tissue engineering applications. Easy to handle fabric-like scaffolds were obtained from blends containing up to 15% glucose. Maximum extent of cross-linking was reached at nearly 20% glucose content. Cross-linking effectively resulted in decreased solubility and increased resistance to enzymatic degradation. Preliminary short-term cell culture experiments indicate that such thermally cross-linked gelatin-glucose scaffolds are suitable for tissue engineering applications. PMID:25063151

  13. Characterization of the Deoxyguanosine–Lysine Cross-Link of Methylglyoxal

    PubMed Central

    2015-01-01

    Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA–protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement. PMID:24801980

  14. Peroxidase induced oligo-tyrosine cross-links during polymerization of α-lactalbumin.

    PubMed

    Dhayal, Surender Kumar; Sforza, Stefano; Wierenga, Peter A; Gruppen, Harry

    2015-12-01

    Horseradish peroxidase (HRP) induced cross-linking of proteins has been reported to proceed through formation of di-tyrosine cross-links. In the case of low molar mass phenolic substrates, the enzymatic oxidation is reported to lead to polymerization of the phenols. The aim of this work was to investigate if during oxidative cross-linking of proteins oligo-tyrosine cross-links are formed in addition to dityrosine. To this end, α-lactalbumin (α-LA) was cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H₂O₂). The reaction products were acid hydrolysed, after which the cross-linked amino acids were investigated by LC-MS and MALDI-MS. To test the effect of the size of the substrate, the cross-linking reaction was also performed with L-tyrosine, N-acetyl L-tyrosinamide and angiotensin. These products were analyzed by LC-MS directly, as well as after acid hydrolysis. In the acid hydrolysates of all samples oligo-tyrosine (Yn, n=3-8) was found in addition to di-tyrosine (Y2). Two stages of cross-linking of α-LA were identified: a) 1-2 cross-links were formed per monomer until the monomers were converted into oligomers, and b) subsequent cross-linking of oligomers formed in the first stage to form nanoparticles containing 3-4 cross-links per monomer. The transition from first stage to the second stage coincided with the point where di-tyrosine started to decrease and more oligo-tyrosines were formed. In conclusion, extensive polymerization of α-LA using HRP via oligo-tyrosine cross-links is possible, as is the case for low molar mass tyrosine containing substrates. PMID:26282909

  15. Self-beating artificial cells: design of cross-linked polymersomes showing self-oscillating motion.

    PubMed

    Tamate, Ryota; Ueki, Takeshi; Yoshida, Ryo

    2015-02-01

    Biomimetic cross-linked polymersomes that exhibit a self-beating motion without any on-off switching are developed. The polymersomes are made from a well-defined synthetic thermoresponsive diblock copolymer, and the thermoresponsive segment includes ruthenium catalysts for the oscillatory chemical reaction and vinylidene groups to cross-link the polymersomes. Autonomous volume and shape oscillations of the cross-linked polymersomes are realized following redox changes of the catalysts.

  16. Effect of radiation cross-linking on the abrasive wear behaviour of polyethylenes

    NASA Astrophysics Data System (ADS)

    Gul, Rizwan M.; Khan, Tahir I.

    2014-06-01

    This study explores the differences in the dry abrasive wear behavior of different polyethylenes, and compares the effect of radiation cross-linking on the wear behavior. Four different types of polyethylenes: LDPE, LLDPE, HDPE and UHMWPE were studied. Cross-linking was carried out by high energy electron beam with radiation dose of 200 kGy. The results show that in unirradiated state UHMWPE has excellent wear resistance, with HDPE showing comparable wear properties; both LDPE and LLDPE exhibit high wear rate. Cross-linking improves wear rate of LDPE and UHMWPE, however, the wear rate of HDPE and LLDPE increases with cross-linking.

  17. Method for the manufacture of cross-linked and optionally foamed polypropylene

    SciTech Connect

    Lohmar, E.; Wenneis, W.

    1984-04-10

    Disclosed herein is a process for producing cross-linked polypropylene by subjecting a homogenous mixture of a polypropylene with from about 2 to about 20 weight percent, based upon the weight of the polypropylene, of polybutadiene with a molecular weight of from about 500 to about 10,000 to conditions sufficient to effect cross-linking, for example, through the use of cross-linking agents and/or irradiation. In addition, the process disclosed herein may be utilized to produce cross-linked and foamed polypropylenes.

  18. Methylglyoxal-induced DNA-protein cross-links and cytotoxicity in Chinese hamster ovary cells.

    PubMed

    Brambilla, G; Sciabà, L; Faggin, P; Finollo, R; Bassi, A M; Ferro, M; Marinari, U M

    1985-05-01

    The technique of alkaline elution was applied to study the capacity of methylglyoxal to induce DNA damage and repair in Chinese hamster ovary cells. DNA cross-linking was observed after a 90-min exposure to a subtoxic dose (1.5 mM), and the cross-links were fully repaired by 24 h. The cross-linking appeared to be DNA-protein in nature, since proteinase treatment removed the effect. When the same cells were exposed to methylglyoxal in the presence of a rat liver metabolic system, both cytotoxicity and cross-linking frequency were significantly reduced.

  19. Covalent cross-links in polyampholytic chitosan fibers enhances bone regeneration in a rabbit model.

    PubMed

    Ghosh, Paulomi; Rameshbabu, Arun Prabhu; Das, Dipankar; Francis, Nimmy K; Pawar, Harpreet Singh; Subramanian, Bhuvaneshwaran; Pal, Sagar; Dhara, Santanu

    2015-01-01

    Chitosan fibers were prepared in citric acid bath, pH 7.4 and NaOH solution at pH 13, to form ionotropically cross-linked and uncross-linked fibers, respectively. The fibers formed in citric acid bath were further cross-linked via carbodiimide chemistry; wherein the pendant carboxyl moieties of citric acid were used for new amide bond formation. Moreover, upon covalent cross-linking in the ionically gelled citrate-chitosan fibers, incomplete conversion of the ion pairs to amide linkages took place resulting in the formation of a dual network structure. The dual cross-linked fibers displayed improved mechanical property, higher stability against enzymatic degradation, hydrophobicity and superior bio-mineralization compared to the uncross-linked and native citrate cross-linked fibers. Additionally, upon cyclic loading, the ion pairs in the dual cross-linked fibers dissociated by dissipating energy and reformed during the relaxation period. The twin property of elasticity and energy dissipation mechanism makes the dual cross-linked fiber unique under dynamic mechanical conditions. The differences in the physico-chemical characteristics were reflected in protein adsorption, which in turn influenced the cellular activities on the fibers. Compared to the uncross-linked and ionotropically cross-linked fibers, the dual cross-linked fibers demonstrated higher proliferation and osteogenic differentiation of the MSCs in vitro as well as better osseous tissue regeneration in a rabbit model. PMID:25483844

  20. Controlled sparse and percolating cross-linking in waterborne soft adhesives.

    PubMed

    Deplace, F; Carelli, C; Langenfeld, A; Rabjohns, M A; Foster, A B; Lovell, P A; Creton, C

    2009-09-01

    The effect of low levels of cross-linking on the adhesive and mechanical properties of waterborne pressure-sensitive adhesives was investigated. We have taken advantage of a core-shell latex particle morphology obtained by emulsion polymerization to create a heterogeneous structure of cross-links without major modification of the monomer composition. The latex particles comprise a shell containing cross-linkable diacetone acrylamide (DAAM) repeat units localized on the periphery of a slightly softer core copolymer of very similar composition. Adipic acid dihydrazide was added to the latex prior to film formation to react with DAAM repeat units and affect interfacial cross-linking between particles in the adhesive films. The honeycomb-like structure obtained after drying of the latex results in a good balance between the dissipative properties required for adhesion and the resistance to creep. The characterization of the mechanical properties of the films shows that the chosen cross-linking method creates a percolating lightly cross-linked network, swollen with a nearly un-cross-linked component. With this cross-linking method, the linear viscoelastic properties of the soft films are nearly unaffected by the cross-linking while the nonlinear tensile properties are greatly modified. As a result, the long-term shear resistance of the adhesive film improves very significantly while the peel force remains nearly the same. A simple rheological model is used to interpret qualitatively the changes in the material parameters induced by cross-linking. PMID:20355828

  1. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  2. Synthesis of borate cross-linked rhamnogalacturonan II.

    PubMed

    Funakawa, Hiroya; Miwa, Kyoko

    2015-01-01

    In the present review, we describe current knowledge about synthesis of borate crosslinked rhamnogalacturonan II (RG-II) and it physiological roles. RG-II is a portion of pectic polysaccharide with high complexity, present in primary cell wall. It is composed of homogalacturonan backbone and four distinct side chains (A-D). Borate forms ester bonds with the apiosyl residues of side chain A of two RG-II monomers to generate borate dimerized RG-II, contributing for the formation of networks of pectic polysaccharides. In plant cell walls, more than 90% of RG-II are dimerized by borate under boron (B) sufficient conditions. Borate crosslinking of RG-II in primary cell walls, to our knowledge, is the only experimentally proven molecular function of B, an essential trace-element. Although abundance of RG-II and B is quite small in cell wall polysaccharides, increasing evidence supports that RG-II and its borate crosslinking are critical for plant growth and development. Significant advancement was made recently on the location and the mechanisms of RG-II synthesis and borate cross-linking. Molecular genetic studies have successfully identified key enzymes for RG-II synthesis and regulators including B transporters required for efficient formation of RG-II crosslinking and consequent normal plant growth. The present article focuses recent advances on (i) RG-II polysaccharide synthesis, (ii) occurrence of borate crosslinking and (iii) B transport for borate supply to RG-II. Molecular mechanisms underlying formation of borate RG-II crosslinking and the physiological impacts are discussed. PMID:25954281

  3. The theory and art of corneal cross-linking.

    PubMed

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-08-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma. PMID:23925326

  4. Integrated Cryogenic Satellite Communications Cross-Link Receiver Experiment

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Bhasin, K. B.; Downey, A. N.; Jackson, C. J.; Silver, A. H.; Javadi, H. H. S.

    1995-01-01

    An experiment has been devised which will validate, in space, a miniature, high-performance receiver. The receiver blends three complementary technologies; high temperature superconductivity (HTS), pseudomorphic high electron mobility transistor (PHEMT) monolithic microwave integrated circuits (MMIC), and a miniature pulse tube cryogenic cooler. Specifically, an HTS band pass filter, InP MMIC low noise amplifier, HTS-sapphire resonator stabilized local oscillator (LO), and a miniature pulse tube cooler will be integrated into a complete 20 GHz receiver downconverter. This cooled downconverter will be interfaced with customized signal processing electronics and integrated onto the space shuttle's 'HitchHiker' carrier. A pseudorandom data sequence will be transmitted to the receiver, which is in low Earth orbit (LEO), via the Advanced Communication Technology Satellite (ACTS) on a 20 GHz carrier. The modulation format is QPSK and the data rate is 2.048 Mbps. The bit error rate (BER) will be measured in situ. The receiver is also equipped with a radiometer mode so that experiment success is not totally contingent upon the BER measurement. In this mode, the receiver uses the Earth and deep space as a hot and cold calibration source, respectively. The experiment closely simulates an actual cross-link scenario. Since the receiver performance depends on channel conditions, its true characteristics would be masked in a terrestrial measurement by atmospheric absorption and background radiation. Furthermore, the receiver's performance depends on its physical temperature, which is a sensitive function of platform environment, thermal design, and cryocooler performance. This empirical data is important for building confidence in the technology.

  5. Corneal cross-linking in 9 horses with ulcerative keratitis

    PubMed Central

    2013-01-01

    Background Corneal ulcers are one of the most common eye problems in the horse and can cause varying degrees of visual impairment. Secondary infection and protease activity causing melting of the corneal stroma are always concerns in patients with corneal ulcers. Corneal collagen cross-linking (CXL), induced by illumination of the corneal stroma with ultraviolet light (UVA) after instillation of riboflavin (vitamin B2) eye drops, introduces crosslinks which stabilize melting corneas, and has been used to successfully treat infectious ulcerative keratitis in human patients. Therefore we decided to study if CXL can be performed in sedated, standing horses with ulcerative keratitis with or without stromal melting. Results Nine horses, aged 1 month to 16 years (median 5 years) were treated with a combination of CXL and medical therapy. Two horses were diagnosed with mycotic, 5 with bacterial and 2 with aseptic ulcerative keratitis. A modified Dresden-protocol for CXL could readily be performed in all 9 horses after sedation. Stromal melting, diagnosed in 4 horses, stopped within 24 h. Eight of nine eyes became fluorescein negative in 13.5 days (median time; range 4–26 days) days after CXL. One horse developed a bacterial conjunctivitis the day after CXL, which was successfully treated with topical antibiotics. One horse with fungal ulcerative keratitis and severe uveitis was enucleated 4 days after treatment due to panophthalmitis. Conclusions CXL can be performed in standing, sedated horses. We did not observe any deleterious effects attributed to riboflavin or UVA irradiation per se during the follow-up, neither in horses with infectious nor aseptic ulcerative keratitis. These data support that CXL can be performed in the standing horse, but further studies are required to compare CXL to conventional medical treatment in equine keratitis and to optimize the CXL protocol in this species. PMID:23803176

  6. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas

    PubMed Central

    Spadea, Leopoldo; Mencucci, Rita

    2012-01-01

    Background The purpose of this paper was to report the results of transepithelial corneal collagen cross-linking (CXL) with modified riboflavin and ultraviolet A irradiation in patients affected by keratoconus, each with thinnest pachymetry values of less than 400 μm (with epithelium) and not treatable using standard de-epithelialization techniques. Methods Sixteen patients affected by progressive keratoconus with thinnest pachymetry values ranging from 331 μm to 389 μm underwent transepithelial CXL in one eye using a riboflavin 0.1% solution in 15% Dextran T500 containing ethylenediamine tetra-acetic acid 0.01% and trometamol to enhance epithelial penetration. The patients underwent complete ophthalmological examination, including endothelial cell density measurements and computerized videokeratography, before CXL and at one day, one week, and one, 6, and 12 months thereafter. Results Epithelial healing was complete in all patients after one day of use of a soft bandage contact lens. No side effects or damage to the limbal region was observed during the follow-up period. All patients showed slightly improved uncorrected and spectacle-corrected visual acuity; keratometric astigmatism showed reductions (up to 5.3 D) and apical ectasia power decreased (Kmax values reduced up to 4.3 D). Endothelial cell density was unchanged. Conclusion Application of transepithelial CXL using riboflavin with substances added to enhance epithelial permeability was safe, seemed to be moderately effective in keratoconic eyes with ultrathin corneas, and applications of the procedure could be extended to patients with advanced keratoconus. PMID:23152657

  7. The theory and art of corneal cross-linking.

    PubMed

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-08-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  8. Transglutaminases: Widespread Cross-linking Enzymes in Plants

    PubMed Central

    Serafini-Fracassini, Donatella; Del Duca, Stefano

    2008-01-01

    Background Transglutaminases have been studied in plants since 1987 in investigations aimed at interpreting some of the molecular mechanisms by which polyamines affect growth and differentiation. Transglutaminases are a widely distributed enzyme family catalysing a myriad of biological reactions in animals. In plants, the post-translational modification of proteins by polyamines forming inter- or intra-molecular cross-links has been the main transglutaminase reaction studied. Characteristics of Plant Transglutaminases The few plant transglutaminases sequenced so far have little sequence homology with the best-known animal enzymes, except for the catalytic triad; however, they share a possible structural homology. Proofs of their catalytic activity are: (a) their ability to produce glutamyl-polyamine derivatives; (b) their recognition by animal transglutaminase antibodies; and (c) biochemical features such as calcium-dependency, etc. However, many of their fundamental biochemical and physiological properties still remain elusive. Transglutaminase Activity is Ubiquitous It has been detected in algae and in angiosperms in different organs and sub-cellular compartments, chloroplasts being the best-studied organelles. Possible Roles Possible roles concern the structural modification of specific protein substrates. In chloroplasts, transglutaminases appear to stabilize the photosynthetic complexes and Rubisco, being regulated by light and other factors, and possibly exerting a positive effect on photosynthesis and photo-protection. In the cytosol, they modify cytoskeletal proteins. Preliminary reports suggest an involvement in the cell wall construction/organization. Other roles appear to be related to fertilization, abiotic and biotic stresses, senescence and programmed cell death, including the hypersensitive reaction. Conclusions The widespread occurrence of transglutaminases activity in all organs and cell compartments studied suggests a relevance for their still

  9. The theory and art of corneal cross-linking

    PubMed Central

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-01-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma. PMID:23925326

  10. Stimulation of small proteoglycan synthesis by the hyaluronan synthesis inhibitor 4-methylumbelliferone in human skin fibroblasts.

    PubMed

    Funahashi, Masaru; Nakamura, Toshiya; Kakizaki, Ikuko; Mizunuma, Hideki; Endo, Masahiko

    2009-01-01

    Human skin fibroblasts cultured with 4-methylumbelliferone (MU), a hyaluronan synthesis inhibitor, produce a hyaluronan-deficient extracellular matrix (See [9]). Our present study investigated the effects of MU on proteoglycan, which is the other main component of the extracellular matrix, and interacts with hyaluronan. Proteoglycans isolated from culture medium in the presence or absence of MU were characterized by gel-filtration chromatography, ion-exchange HPLC, electrophoresis, and immunoblotting. We found that MU had only a negligible effect on the synthesis of large proteoglycan but increased the production of small proteoglycan in comparison with cultures lacking MU. This small proteoglycan was identified by immunoblotting as decorin. The structures of decorin synthesized in the presence and absence of MU were compared by gel-filtration chromatography, and the data indicated that cells incubated with MU produced a larger decorin molecule than cells incubated without MU. Furthermore, the two decorins had galactosaminoglycan chains of different sizes. These results suggest that MU inhibits the synthesis of hyaluronan and accelerates production of the larger decorin in the extracellular matrix.

  11. Matching cross-linked peptide spectra: only as good as the worse identification.

    PubMed

    Trnka, Michael J; Baker, Peter R; Robinson, Philip J J; Burlingame, A L; Chalkley, Robert J

    2014-02-01

    Chemical cross-linking mass spectrometry identifies interacting surfaces within a protein assembly through labeling with bifunctional reagents and identifying the covalently modified peptides. These yield distance constraints that provide a powerful means to model the three-dimensional structure of the assembly. Bioinformatic analysis of cross-linked data resulting from large protein assemblies is challenging because each cross-linked product contains two covalently linked peptides, each of which must be correctly identified from a complex matrix of potential confounders. Protein Prospector addresses these issues through a complementary mass modification strategy in which each peptide is searched and identified separately. We demonstrate this strategy with an analysis of RNA polymerase II. False discovery rates (FDRs) are assessed via comparison of cross-linking data to crystal structure, as well as by using a decoy database strategy. Parameters that are most useful for positive identification of cross-linked spectra are explored. We find that fragmentation spectra generally contain more product ions from one of the two peptides constituting the cross-link. Hence, metrics reflecting the quality of the spectral match to the less confident peptide provide the most discriminatory power between correct and incorrect matches. A support vector machine model was built to further improve classification of cross-linked peptide hits. Furthermore, the frequency with which peptides cross-linked via common acylating reagents fragment to produce diagnostic, cross-linker-specific ions is assessed. The threshold for successful identification of the cross-linked peptide product depends upon the complexity of the sample under investigation. Protein Prospector, by focusing the reliability assessment on the least confident peptide, is better able to control the FDR for results as larger complexes and databases are analyzed. In addition, when FDR thresholds are calculated separately

  12. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli

    PubMed Central

    Holten-Andersen, Niels; Harrington, Matthew J.; Birkedal, Henrik; Lee, Bruce P.; Messersmith, Phillip B.; Lee, Ka Yee C.; Waite, J. Herbert

    2011-01-01

    Growing evidence supports a critical role of metal-ligand coordination in many attributes of biological materials including adhesion, self-assembly, toughness, and hardness without mineralization [Rubin DJ, Miserez A, Waite JH (2010) Advances in Insect Physiology: Insect Integument and Color, eds Jérôme C, Stephen JS (Academic Press, London), pp 75–133]. Coordination between Fe and catechol ligands has recently been correlated to the hardness and high extensibility of the cuticle of mussel byssal threads and proposed to endow self-healing properties [Harrington MJ, Masic A, Holten-Andersen N, Waite JH, Fratzl P (2010) Science 328:216–220]. Inspired by the pH jump experienced by proteins during maturation of a mussel byssus secretion, we have developed a simple method to control catechol-Fe3+ interpolymer cross-linking via pH. The resonance Raman signature of catechol-Fe3+ cross-linked polymer gels at high pH was similar to that from native mussel thread cuticle and the gels displayed elastic moduli (G′) that approach covalently cross-linked gels as well as self-healing properties. PMID:21278337

  13. Oxidation-induced unfolding facilitates Myosin cross-linking in myofibrillar protein by microbial transglutaminase.

    PubMed

    Li, Chunqiang; Xiong, Youling L; Chen, Jie

    2012-08-15

    Myofibrillar protein from pork Longissimus muscle was oxidatively stressed for 2 and 24 h at 4 °C with mixed 10 μM FeCl(3)/100 μM ascorbic acid/1, 5, or 10 mM H(2)O(2) (which produces hydroxyl radicals) and then treated with microbial transglutaminase (MTG) (E:S = 1:20) for 2 h at 4 °C. Oxidation induced significant protein structural changes (P < 0.05) as evidenced by suppressed K-ATPase activity, elevated Ca-ATPase activity, increased carbonyl and disulfide contents, and reduced conformational stability, all in a H(2)O(2) dose-dependent manner. The structural alterations, notably with mild oxidation, led to stronger MTG catalysis. More substantial amine reductions (19.8-27.6%) at 1 mM H(2)O(2) occurred as compared to 11.6% in nonoxidized samples (P < 0.05) after MTG treatment. This coincided with more pronounced losses of myosin in oxidized samples (up to 33.2%) as compared to 21.1% in nonoxidized (P < 0.05), which was attributed to glutamine-lysine cross-linking as suggested by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PMID:22809283

  14. Three Dimensional Stress Maps of Dynamic Hydraulic Fracture within Heavily Cross-Linked Hydrogels

    NASA Astrophysics Data System (ADS)

    Steinhardt, W.; Rubinstein, S.; Weitz, D.

    2014-12-01

    Hydraulic fractures (HFs) of oil and gas shales occur miles underground, below complex, layered heterogeneous rocks making any measurements of their dynamics, extent, or structure difficult to impossible. As such, model lab systems such as blocks of PMMA or rocks fractured with air or fluid (Bunger et al [2013], Alpern et al [2012]) are studied in order to understand the intricacies of HFs. However, due to the extreme energies necessary to fracture these materials the experiments are difficult, have little flexibility in the materials, and offer little no measure of the dynamics of the fracture. Heavily cross-linked hydrogels have been shown to be a good model to study brittle fracture (Livne et al [2004]). I will discuss a new system, which we have developed to study HFs within tough hydrogels which have the benefits of having highly tunable rheology, being optically clear, and having slower fracture speeds and breakdown pressures. By embedding fluorescent tracer particles within the gel together with laser sheet microscopy, we obtain the three dimensional stress and strain maps of the zone surrounding a hydraulic fracture tip.

  15. Response of biopolymer networks governed by the physical properties of cross-linking molecules.

    PubMed

    Wei, Xi; Zhu, Qian; Qian, Jin; Lin, Yuan; Shenoy, V B

    2016-03-01

    In this study, we examine how the physical properties of cross-linking molecules affect the bulk response of bio-filament networks, an outstanding question in the study of biological gels and the cytoskeleton. We show that the stress-strain relationship of such networks typically undergoes linear increase - strain hardening - stress serration - total fracture transitions due to the interplay between the bending and stretching of individual filaments and the deformation and breakage of cross-linkers. Interestingly, the apparent network modulus is found to scale with the linear and rotational stiffness of the crosslinks to a power exponent of 0.78 and 0.13, respectively. In addition, the network fracture energy will reach its minimum at intermediate rotational compliance values, reflecting the fact that most of the strain energy will be stored in the distorted filaments with rigid cross-linkers while the imposed deformation will be "evenly" distributed among significantly more crosslinking molecules with high rotational compliance. PMID:26760315

  16. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  17. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  18. Ionically Cross-Linked Polymer Networks for the Multiple-Month Release of Small Molecules.

    PubMed

    Lawrence, Patrick G; Patil, Pritam S; Leipzig, Nic D; Lapitsky, Yakov

    2016-02-01

    Long-term (multiple-week or -month) release of small, water-soluble molecules from hydrogels remains a significant pharmaceutical challenge, which is typically overcome at the expense of more-complicated drug carrier designs. Such approaches are payload-specific and include covalent conjugation of drugs to base materials or incorporation of micro- and nanoparticles. As a simpler alternative, here we report a mild and simple method for achieving multiple-month release of small molecules from gel-like polymer networks. Densely cross-linked matrices were prepared through ionotropic gelation of poly(allylamine hydrochloride) (PAH) with either pyrophosphate (PPi) or tripolyphosphate (TPP), all of which are commonly available commercial molecules. The loading of model small molecules (Fast Green FCF and Rhodamine B dyes) within these polymer networks increases with the payload/network binding strength and with the PAH and payload concentrations used during encapsulation. Once loaded into the PAH/PPi and PAH/TPP ionic networks, only a few percent of the payload is released over multiple months. This extended release is achieved regardless of the payload/network binding strength and likely reflects the small hydrodynamic mesh size within the gel-like matrices. Furthermore, the PAH/TPP networks show promising in vitro cytocompatibility with model cells (human dermal fibroblasts), though slight cytotoxic effects were exhibited by the PAH/PPi networks. Taken together, the above findings suggest that PAH/PPi and (especially) PAH/TPP networks might be attractive materials for the multiple-month delivery of drugs and other active molecules (e.g., fragrances or disinfectants).

  19. Ionically Cross-Linked Polymer Networks for the Multiple-Month Release of Small Molecules.

    PubMed

    Lawrence, Patrick G; Patil, Pritam S; Leipzig, Nic D; Lapitsky, Yakov

    2016-02-01

    Long-term (multiple-week or -month) release of small, water-soluble molecules from hydrogels remains a significant pharmaceutical challenge, which is typically overcome at the expense of more-complicated drug carrier designs. Such approaches are payload-specific and include covalent conjugation of drugs to base materials or incorporation of micro- and nanoparticles. As a simpler alternative, here we report a mild and simple method for achieving multiple-month release of small molecules from gel-like polymer networks. Densely cross-linked matrices were prepared through ionotropic gelation of poly(allylamine hydrochloride) (PAH) with either pyrophosphate (PPi) or tripolyphosphate (TPP), all of which are commonly available commercial molecules. The loading of model small molecules (Fast Green FCF and Rhodamine B dyes) within these polymer networks increases with the payload/network binding strength and with the PAH and payload concentrations used during encapsulation. Once loaded into the PAH/PPi and PAH/TPP ionic networks, only a few percent of the payload is released over multiple months. This extended release is achieved regardless of the payload/network binding strength and likely reflects the small hydrodynamic mesh size within the gel-like matrices. Furthermore, the PAH/TPP networks show promising in vitro cytocompatibility with model cells (human dermal fibroblasts), though slight cytotoxic effects were exhibited by the PAH/PPi networks. Taken together, the above findings suggest that PAH/PPi and (especially) PAH/TPP networks might be attractive materials for the multiple-month delivery of drugs and other active molecules (e.g., fragrances or disinfectants). PMID:26811936

  20. Investigation of anisotropic thermal transport in cross-linked polymers

    NASA Astrophysics Data System (ADS)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  1. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  2. Analysis of protein-RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry.

    PubMed

    Sharma, Kundan; Hrle, Ajla; Kramer, Katharina; Sachsenberg, Timo; Staals, Raymond H J; Randau, Lennart; Marchfelder, Anita; van der Oost, John; Kohlbacher, Oliver; Conti, Elena; Urlaub, Henning

    2015-11-01

    Ribonucleoprotein (RNP) complexes play important roles in the cell by mediating basic cellular processes, including gene expression and its regulation. Understanding the molecular details of these processes requires the identification and characterization of protein-RNA interactions. Over the years various approaches have been used to investigate these interactions, including computational analyses to look for RNA binding domains, gel-shift mobility assays on recombinant and mutant proteins as well as co-crystallization and NMR studies for structure elucidation. Here we report a more specialized and direct approach using UV-induced cross-linking coupled with mass spectrometry. This approach permits the identification of cross-linked peptides and RNA moieties and can also pin-point exact RNA contact sites within the protein. The power of this method is illustrated by the application to different single- and multi-subunit RNP complexes belonging to the prokaryotic adaptive immune system, CRISPR-Cas (CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated). In particular, we identified the RNA-binding sites within three Cas7 protein homologs and mapped the cross-linking results to reveal structurally conserved Cas7 - RNA binding interfaces. These results demonstrate the strong potential of UV-induced cross-linking coupled with mass spectrometry analysis to identify RNA interaction sites on the RNA binding proteins. PMID:26071038

  3. Analysis of protein-RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry.

    PubMed

    Sharma, Kundan; Hrle, Ajla; Kramer, Katharina; Sachsenberg, Timo; Staals, Raymond H J; Randau, Lennart; Marchfelder, Anita; van der Oost, John; Kohlbacher, Oliver; Conti, Elena; Urlaub, Henning

    2015-11-01

    Ribonucleoprotein (RNP) complexes play important roles in the cell by mediating basic cellular processes, including gene expression and its regulation. Understanding the molecular details of these processes requires the identification and characterization of protein-RNA interactions. Over the years various approaches have been used to investigate these interactions, including computational analyses to look for RNA binding domains, gel-shift mobility assays on recombinant and mutant proteins as well as co-crystallization and NMR studies for structure elucidation. Here we report a more specialized and direct approach using UV-induced cross-linking coupled with mass spectrometry. This approach permits the identification of cross-linked peptides and RNA moieties and can also pin-point exact RNA contact sites within the protein. The power of this method is illustrated by the application to different single- and multi-subunit RNP complexes belonging to the prokaryotic adaptive immune system, CRISPR-Cas (CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated). In particular, we identified the RNA-binding sites within three Cas7 protein homologs and mapped the cross-linking results to reveal structurally conserved Cas7 - RNA binding interfaces. These results demonstrate the strong potential of UV-induced cross-linking coupled with mass spectrometry analysis to identify RNA interaction sites on the RNA binding proteins.

  4. Facile synthesis of core-shell/hollow anisotropic particles via control of cross-linking during one-pot dispersion polymerization.

    PubMed

    Liu, Yanan; Ma, Yuhong; Liu, Lianying; Yang, Wantai

    2015-05-01

    Preparation of anisotropic particles based on seed phase separation involves multiple processes, and asymmetrical structures and surfaces cannot be produced when anisotropic shapes emerge. In conventional one-pot dispersion polymerization (Dis.P) using cross-linker, only spherical particles are prepared due to rapid and high cross-linking. Herein, monodisperse snowman-like particles with core-shell/hollow structures and partially rough surface were synthesized straightforward by a modified one-pot Dis.P, in which ethylene glycol and water (6/4, vol.) were used as medium, and ammonium persulfate (APS) aqueous solution, vinyl acetate (VA) and/or acrylic acid (AA), divinylbenzene (DVB) and styrene (St) were added at 6h. The cross-linking of growing particles was confined to exterior (forming cross-linked shell), and gel contents were low, leading to phase separation. Asymmetrical morphologies, structures, sizes and surface roughness were flexibly tuned by varying amounts of APS, VA and/or AA, water and DVB, and DVB adding speed. At low APS contents or high DVB amounts, the inhomogeneous cross-linking of head enabled its phase to separate, producing elongated head. With addition of VA and AA, phase separations inside head and body were induced, generating hollow structure. Adding DVB very slowly, nonlinear growth of third compartment occurred, forming bowed head. PMID:25626132

  5. On the Formation and Properties of Interstrand DNA-DNA Cross-links Forged by Reaction of an Abasic Site With the Opposing Guanine Residue of 5′-CAp Sequences in Duplex DNA

    PubMed Central

    Johnson, Kevin M.; Price, Nathan E.; Wang, Jin; Fekry, Mostafa I.; Dutta, Sanjay; Seiner, Derrick R.; Wang, Yinsheng; Gates, Kent S.

    2014-01-01

    We recently reported that the aldehyde residue of an abasic (Ap) site in duplex DNA can generate an interstrand cross-link via reaction with a guanine residue on the opposing strand. This finding is intriguing because the highly deleterious nature of interstrand cross-links suggests that even small amounts of Ap-derived cross-links could make a significant contribution to the biological consequences stemming from the generation of Ap sites in cellular DNA. Incubation of 21-bp duplexes containing a central 5′-CAp sequence under conditions of reductive amination (NaCNBH3, pH 5.2) generated much higher yields of cross-linked DNA than reported previously. At pH 7, in the absence of reducing agents, these Ap-containing duplexes also produced cross-linked duplexes that were readily detected on denaturing polyacrylamide gels. Cross-link formation was not highly sensitive to reaction conditions and, once formed, the cross-link was stable to a variety of work-up conditions. Results of multiple experiments including MALDI-TOF mass spectrometry, gel mobility, methoxyamine capping of the Ap aldehyde, inosine-for-guanine replacement, hydroxyl radical footprinting, and LCMS/MS were consistent with a cross-linking mechanism involving reversible reaction of the Ap aldehyde residue with the N2-amino group of the opposing guanine residue in 5′-CAp sequences to generate hemiaminal, imine, or cyclic hemiaminal cross-links (7-10) that were irreversibly converted under conditions of reductive amination (NaCNBH3/pH 5.2) to a stable amine linkage. Further support for the importance of the exocyclic N2-amino group in this reaction was provided by an experiment showing that installation of a 2-aminopurine-thymine base pair at the cross-linking site produced high yields (15-30%) of a cross-linked duplex at neutral pH, in the absence of NaCNBH3. PMID:23215239

  6. Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Ono, S.; Yamauchi, M.

    1992-01-01

    Collagen cross-links of skin tissue (left upper arm) from 11 patients with amyotrophic lateral sclerosis (ALS) and 9 age-matched control subjects were quantified. It was found that patients with ALS had a significant reduction in the content of an age-related, stable cross-link, histidinohydroxylysinonorleucine, that was negatively correlated with the duration of illness. The contents of sodium borohydride-reducible labile cross-links, dehydro-hydroxylysinonorleucine and dehydro-histidinohydroxymerodesmosine, were significantly increased and were positively associated with the duration of illness (r = 0.703, p less than 0.05 and r = 0.684, p less than 0.05, respectively). The results clearly indicate that during the course of ALS, the cross-linking pathway of skin collagen runs counter to its normal aging, resulting in a "rejuvenation" phenomenon of skin collagen. Thus, cross-linking of skin collagen is affected in ALS.

  7. Gamma-irradiated cross-linked LDPE foams: Characteristics and properties

    NASA Astrophysics Data System (ADS)

    Cardoso, E. C. L.; Scagliusi, S. R.; Parra, D. F.; Lugão, A. B.

    2013-03-01

    Foamed polymers are future materials, as they are increasingly considered "green materials" due to their interesting properties at very low consumption of raw materials. They can be used to improve appearance of insulation structures, thermal and acoustic insulation, core materials for sandwich panels, fabrication of furniture and flotation materials or to reduce costs involving materials. Low-density polyethylene is widely used because of its excellent properties, such as softness, elasticity, processibility and insulation. In general, cross-linking is often applied to improve the thermal and mechanical properties of polyethylene products, due to the formation of a three-dimensional network. In particular for the production of PE foams, cross-linking is applied prior the expansion to control bubble formation, cell characteristics and final properties of the foam. However, the usual production process of PE foams is a process in which a gaseous blowing agent is injected into a melted thermoplastic polymer, under pressure, to form a solution between blowing agent and melted polymer. An extrusion system is provided for foaming the polymer, supplied to an extruder and moving through a rotating screw. The pressure must be high enough to keep the gas blowing agent (or foaming agent) in the solution with the melt. The foaming agent is then diffused and dissolved in the molten material to form a single-phase solution. In the present work carbon dioxide was used as the bowing agent, a chemically stable and non-toxic gas, with good diffusion coefficient; gas pressure used varied within a 20-40 bar range. Some requirements for physical foaming are required, as low friction heat generation, homogeneous melt temperature distribution, melt temperature at die exit just above crystallization temperature (die) and high melt strength during expansion. This work studied foams properties gamma-irradiated within 0, 10, 15, 20, 25, and 30 kGy, from a LDPE exhibiting 2.6 g/10 min Melt

  8. Characterization of the bombesin receptor on mouse pancreatic acini by chemical cross-linking

    SciTech Connect

    Huang, S.C.; Yu, D.H.; Wank, S.A.; Gardner, J.D.; Jensen, R.T. )

    1990-11-01

    Bombesin (BN), gastrin-releasing peptide (GRP) and GRP(18-27) (neuromedin C) were equipotent and 30-fold more potent than neuromedin B (NMB) in inhibiting binding of {sup 125}I-GRP to and in stimulating amylase release from mouse pancreatic acini. In the present study we used {sup 125}I-GRP and chemical cross-linking techniques to characterize the mouse pancreatic BN receptor. After binding of {sup 125}I-GRP to membranes, and incubation with various chemical cross-linking agents, cross-linked radioactivity was analyzed by SDS-PAG electrophoresis and autoradiography. With each of 4 different chemical cross-linking agents, there was a single broad polypeptide band of Mr 80,000. Cross-linking did not occur in the absence of the cross-linking agent. Cross-linking was inhibited only by peptides that interact with the BN receptor such as GRP, NMB, GRP(18-27) or BN. Dose-inhibition curves for the ability of BN or NMB to inhibit binding of {sup 125}I-GRP to membranes or cross-linking to the 80,000 polypeptide demonstrated for both that BN was 15-fold more potent than NMB. The apparent molecular weight of the cross-linked polypeptide was unchanged by adding dithiothreitol. N-Glycanase treatment reduced the molecular weight of the cross-linked peptide to 40,000. The present results indicate that the BN receptor on mouse pancreatic acinar cell membranes resembles that recently described on various tumor cells in being a single glycoprotein with a molecular weight of 76,000. Because dithiothreitol had no effect, this glycoprotein is not a subunit of a larger disulfide-linked structure.

  9. A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*

    PubMed Central

    Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri

    2016-01-01

    Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564

  10. Hyaluronan: from biomimetic to industrial business strategy.

    PubMed

    Murano, Erminio; Perin, Danilo; Khan, Riaz; Bergamin, Massimo

    2011-04-01

    Hyaluronan (hyaluronic acid) is a naturally occurring polysaccharide of a linear repeating disaccharide unit consisting of beta-(1-->4)-linked D-glucopyranuronic acid and beta-(1-->3)-linked 2-acetamido-2-deoxy-D-glucopyranose, which is present in extracellular matrices, the synovial fluid of joints, and scaffolding that comprises cartilage. In its mechanism of synthesis, its size, and its physico-chemical properties, hyaluronan is unique amongst other glycosaminoglycans. The network-forming, viscoelastic and its charge characteristics are important to many biochemical properties of living tissues. It is an important pericellular and cell surface constituent; its interaction with other macromolecules such as proteins, participates in regulating cell behavior during numerous morphogenic, restorative, and pathological processes in the body. The knowledge of HA in diseases such as various forms of cancers, arthritis and osteoporosis has led to new impetus in research and development in the preparation of biomaterials for surgical implants and drug conjugates for targeted delivery. A concise and focused review on hyaluronan is timely. This review will cover the following important aspects of hyaluronan: (i) biological functions and synthesis in nature; (ii) current industrial production and potential biosynthetic processes of hyaluronan; (iii) chemical modifications of hyaluronan leading to products of commercial significance; and (iv) and the global market position and manufacturers of hyaluronan.

  11. Structure of beef heart mitochondrial F1-ATPase. Arrangement of subunits as disclosed by cross-linking reagents and selective labeling by radioactive ligands.

    PubMed

    Klein, M S; Vignais, P V; Satre, M

    1976-11-26

    1. The following bifunctional reagents, dimethylsuberimidiate, dimethyladipimidate, methylmercaptobutyrimidate have been used to produce dimers between the neighboring subunits of beef heart F1-ATPase. 2. Treatment of beef heart F1-ATPase with dimethylsuberimidate or dimethyladipimidate resulted in the formation of four cross-linked products. Their molecular weights determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 11 500, 105 000, 95 000 and 80 000, respectively. The products of molecular weight 115 000 and 105 000 were predominant and could be detected at the early stage of the cross-linking reaction. Treatment of beef heart F1-ATPase with methylmercaptobutyrimidate resulted in the accumulation of the product of molecular weight 115 000 and in traces of products of lower molecular weight. When the cross-linked products obtained with methylmercaptobutyrimidate were cleaved by beta-mercaptoethanol, the original gel electrophoresis pattern was restored. 3. Cross-linking of beef heart F1-ATPase by dimethylsuberimidate, dimethyladipimidate and methylmercaptobutyrimidate was accompanied by a loss of the ATPase activity. Cleavage of the cross-linked products obtained with methylmercaptobutyrimidate did not restore the original ATPase activity. 4. Identification of subunits A and B in the products of molecular weight 115 000 and 105 000 was achieved by specific labeling of subunit A with N-[14C]ethylmaleimide and of subunit B by chloronitro [14C]benzooxodiazole. Both products were able to bind N-[14C]ethylmaleimide; only the 105 000 dalton product was able to bind chloronitro [14C]benzooxodiazole. 5. The product of molecular weight 115 000 obtained by treatment of beef heart ATPase with methylmercaptobutyrimidate could bind N-[14C]ethylmaleimide. Its cleavage, following N-[14C]ethylmaleimide binding, yielded one labeled peptide identified with subunit A by polyacrylamide gel electrophoresis. 6. The above results indicate that the product of

  12. Antisense inhibition of hyaluronan synthase-2 in human osteosarcoma cells inhibits hyaluronan retention and tumorigenicity

    SciTech Connect

    Nishida, Yoshihiro . E-mail: ynishida@med.nagoya-u.ac.jp; Knudson, Warren; Knudson, Cheryl B.; Ishiguro, Naoki

    2005-07-01

    Osteosarcoma is a common malignant bone tumor associated with childhood and adolescence. The results of numerous studies have suggested that hyaluronan plays an important role in regulating the aggressive behavior of various types of cancer cells. However, no studies have addressed hyaluronan with respect to osteosarcomas. In this investigation, the mRNA expression copy number of three mammalian hyaluronan synthases (HAS) was determined using competitive RT-PCR in the osteoblastic osteosarcoma cell line, MG-63. MG-63 are highly malignant osteosarcoma cells with an abundant hyaluronan-rich matrix. The results demonstrated that HAS-2 is the predominant HAS in MG-63. Accumulation of intracellular hyaluronan increased in association with the proliferative phase of these cells. The selective inhibition of HAS-2 mRNA in MG-63 cells by antisense phosphorothioate oligonucleotides resulted in reduced hyaluronan accumulation by these cells. As expected, the reduction in hyaluronan disrupted the assembly of cell-associated matrices. However, of most interest, coincident with the reduction in hyaluronan, there was a substantial decrease in cell proliferation, a decrease in cell motility and a decrease in cell invasiveness. These data suggest that hyaluronan synthesized by HAS-2 in MG-63 plays a crucial role in osteosarcoma cell proliferation, motility, and invasion.

  13. Determination of protein conformation by isotopically labelled cross-linking and dedicated software

    NASA Astrophysics Data System (ADS)

    Nielsen, Tina; Thaysen-Andersen, Morten; Larsen, Nanna; Jørgensen, Flemming S.; Houen, Gunnar; Højrup, Peter

    2007-12-01

    Chemical cross-linking in conjunction with mass spectrometry (MS) can be used for sensitive and rapid investigation of the three-dimensional structure of proteins at low resolution. However, the resulting data are very complex, and on the bioinformatic side, there still exists an urgent need for improving computer software for (semi-) automated cross-linking data analysis. In this study, we have developed dedicated software for rapid and confident identification and validation of cross-linked species using an isotopic labelled cross-linker approach in combination with MS. Deuterated (+4 Da) and non-deuterated (+0 Da) bis(sulfosuccinimidyl)suberate, BS3, was used as homobifunctional cross-linker to tag the cross-linked regions. Peptides generated from proteolysis were separated using high performance liquid chromatography, and peptide mass fingerprinting was obtained for the individual fractions using matrix-assisted laser-desorption ionisation time-of-flight (MALDI TOF) MS. The resulting peptide mass lists were combined and transferred to the program, ProteinXXX, which generated the theoretical mass values of all combinations of cross-linked peptides and dead-end cross-links and compared this to the obtained mass lists. In addition, screening for 4 Da-separated signals aided the identification of potential cross-linked species. Sequence information of these candidates was then obtained using MALDI TOF TOF. The cross-linked peptides could then be validated based on the match of the fragmentation pattern and the theoretical values produced by ProteinXXX. This semi-automated interpretation provided a high analysis speed of cross-linking data, with efficient and confident identification of cross-linked species. Four experiments using different conditions showed a high degree of reproducibility as only 1 and 2 cross-links out of 36 identified was not observed in two experiments. The method was tested using human placenta calreticulin (CRT). Based on the identified cross-links

  14. Highly efficient copper(II) ion sorbents obtained by calcium carbonate mineralization on functionalized cross-linked copolymers.

    PubMed

    Mihai, Marcela; Bunia, Ion; Doroftei, Florica; Varganici, Cristian-Dragos; Simionescu, Bogdan C

    2015-03-23

    A new type of Cu(II) ion sorbents is presented. These are obtained by CaCO3 mineralization from supersaturated solutions on gel-like cross-linked polymeric beads as insoluble templates. A divinylbenzene-ethylacrylate-acrylonitrile cross-linked copolymer functionalized with weakly acidic, basic, or amphoteric functional groups has been used, as well as different initial inorganic concentrations and addition procedures for CaCO3 crystal growth. The morphology of the new composites was investigated by SEM and compared to that of the unmodified beads, and the polymorph content was established by X-ray diffraction. The beads, before and after CaCO3 mineralization, were tested as sorbents for Cu(II) ions. The newly formed patterns on the bead surface after Cu(II) sorption were observed by SEM, and the elemental distribution on the composites and the chemical structure of crystals after interaction with Cu(II) were investigated by EDAX elemental mapping and by FTIR-ATR spectroscopy, respectively. The sorption capacity increased significantly after CaCO3 crystals growth on the weak anionic bead surface (up to 1041.5 mg Cu(II) /g sample) compared to that of unmodified beads (491.5 mg Cu(II) /g sample). PMID:25675892

  15. The RecQ helicase RECQL5 participates in psoralen-induced interstrand cross-link repair.

    PubMed

    Ramamoorthy, Mahesh; May, Alfred; Tadokoro, Takashi; Popuri, Venkateswarlu; Seidman, Michael M; Croteau, Deborah L; Bohr, Vilhelm A

    2013-10-01

    Interstrand cross-links (ICLs) are very severe lesions as they are absolute blocks of replication and transcription. This property of interstrand cross-linking agents has been exploited clinically for the treatment of cancers and other diseases. ICLs are repaired in human cells by specialized DNA repair pathways including components of the nucleotide excision repair pathway, double-strand break repair pathway and the Fanconi anemia pathway. In this report, we identify the role of RECQL5, a member of the RecQ family of helicases, in the repair of ICLs. Using laser-directed confocal microscopy, we demonstrate that RECQL5 is recruited to ICLs formed by trioxalen (a psoralen-derived compound) and ultraviolet irradiation A. Using single-cell gel electrophoresis and proliferation assays, we identify the role of RECQL5 in the repair of ICL lesions. The domain of RECQL5 that recruits to the site of ICL was mapped to the KIX region between amino acids 500 and 650. Inhibition of transcription and of topoisomerases did not affect recruitment, which was inhibited by DNA-intercalating agents, suggesting that the DNA structure itself may be responsible for the recruitment of RECQL5 to the sites of ICLs.

  16. Characterization of striped bass growth hormone receptors by disulfide-bond reduction and cross-linking studies.

    PubMed

    Gray, E S; Tsai, R W

    1994-05-01

    Growth hormone (GH) receptors were analyzed in striped bass (Morone saxatilis) by addition of disulfide-bond reducing agents to radioreceptor assays and by cross-linking both striped bass and coho salmon (Oncorhynchus kisutch) crude membrane preparations to radiolabeled hormone. Dithiothreitol (DTT) caused a dose-dependent increase in specific binding of 125I-tilapia (Oreochromis mossambicus) GH to striped bass membrane preparations. Maximal enhancement of 3.4-fold was obtained with 1 mM DTT and 0.03 trypsin inhibitor units/ml of aprotinin. Addition of N-ethylmaleimide (NEM), which binds covalently to free sulfhydryl groups, decreased specific binding. Scatchard analysis of striped bass membrane preparations indicated a single class of GH receptors. Addition of DTT with aprotinin increased GH-binding site concentration from 278 to 507 fmol/mg, while the dissociation constant of 0.56 nM remained unchanged. Cross-linking 125I-tilapia GH to striped bass hepatic membrane preparations and 125I-salmon GH to coho salmon membrane preparations yielded two to three specifically labeled proteins on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Endoglycosidase H treatment was without effect on specifically labeled proteins from either species. Following digestion with N-glycosidase F, relative molecular weights of specifically labeled 125I-GH complexes were reduced, suggesting that hepatic GH-binding proteins in striped bass and salmon are N-linked glycoproteins.

  17. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density. PMID:26388182

  18. Electrospun gelatin nanofibers: a facile cross-linking approach using oxidized sucrose.

    PubMed

    Jalaja, K; James, Nirmala R

    2015-02-01

    Gelatin nanofibers were fabricated via electrospinning with minimal toxicity from solvents and cross-linking agents. Electrospinning was carried out using a solvent system based on water and acetic acid (8:2, v/v). Acetic acid concentration was kept as minimum as possible to reduce the toxic effects. Electrospun gelatin nanofibers were cross-linked with oxidized sucrose. Sucrose was oxidized by periodate oxidation to introduce aldehyde functionality. Cross-linking with oxidized sucrose could be achieved without compromising the nanofibrous architecture. Cross-linked gelatin nanofibers maintained the fibrous morphology even after keeping in contact with aqueous medium. The morphology of the cross-linked nanofibrous mats was examined by scanning electron microscopy (SEM). Oxidized sucrose cross-linked gelatin nanofibers exhibited improved thermal and mechanical properties. The nanofibrous mats were evaluated for cytotoxicity and cell viability using L-929 fibroblast cells. The results confirmed that oxidized sucrose cross-linked gelatin nanofibers were non-cytotoxic towards L-929 cells with good cell viability.

  19. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma.

    PubMed

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S; Watanabe, Takeshi; Kim, Min P; Blackmon, Shanda H; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I; Minelli, Rosalba; Scott, Kenneth L; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R; Creighton, Chad J; Martinez, Elisabeth D; Zal, Tomasz; Grande-Allen, K Jane; Yamauchi, Mitsuo; Kurie, Jonathan M

    2015-03-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  20. Chemical and thermal cross-linking of collagen and elastin hydrolysates.

    PubMed

    Sionkowska, A; Skopinska-Wisniewska, J; Gawron, M; Kozlowska, J; Planecka, A

    2010-11-01

    Chemical and thermal cross-linking of collagen soluble in acetic acid and elastin hydrolysates soluble in water have been studied. Solutions of collagen and elastin hydrolysates were treated using variable concentrations of 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Moreover, diepoxypropylether (DEPE) has been used as cross-linking agent. Films made of collagen and elastin hydrolysates were also treated with temperature at 60°C and 100°C to get additional cross-links. The effect of cross-linking has been studied using FTIR spectroscopy, thermal analysis, AFM and SEM microscopy. Mechanical and surface properties of materials have been studied after cross-linking. It was found that thermal and mechanical properties of collagen and elastin materials have been altered after thermal treatment and after the reactions with EDC/NHS and/or DEPE. Surface properties of collagen materials after chemical cross-linking have been modified. Thermal and chemical cross-linking of collagen films lead to alteration of polarity of the surface.

  1. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde.

    PubMed

    Chang, Myung Chul; Tanaka, Junzo

    2002-12-01

    FT-IR analysis was performed for the hydroxyapatite (HAp)/collagen (COL) nanocomposite cross-linked by glutaraldehyde (GA). The amide bands I, II and III from COL matrix, and phosphate and carbonate bands from HAp were identified. The amide B band arising from C-H stretching mode showed a sensitive conformation by the degree of cross-linking. The amide I band showed a complicate conformational change by the degree of cross-linking. The characteristic amide I band at 1685 cm(-1), which is known as an aging parameter in the biological bone, did not show a monotonous tendency by the degree of cross-linking. The relative contents of the organics in the cross-linked HAp/COL nanocomposite were evaluated as an integration ratio between the amide I band at 1600-1700 cm(-1) and PO(4)(3-) band at 900-1200 cm(-1). The increase of the organics content by the cross-linking is enabled by the further organization of Ca(2+) ions of HAp crystals in HAp/COL nanocomposite. The complicate conformational behavior in the amide I, II and III bands seems to be affected by the cross-linking induced directional arrangement of HAp/COL nanocomposite fibrils.

  2. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma.

    PubMed

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S; Watanabe, Takeshi; Kim, Min P; Blackmon, Shanda H; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I; Minelli, Rosalba; Scott, Kenneth L; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R; Creighton, Chad J; Martinez, Elisabeth D; Zal, Tomasz; Grande-Allen, K Jane; Yamauchi, Mitsuo; Kurie, Jonathan M

    2015-03-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma.

  3. Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent.

    PubMed

    Khan, Avik; Salmieri, Stéphane; Fraschini, Carole; Bouchard, Jean; Riedl, Bernard; Lacroix, Monique

    2014-09-10

    Cellulose nanocrystal (CNC) reinforced chitosan based antimicrobial films were prepared by immobilizing nisin on the surface of the films. Nanocomposite films containing 18.65 μg/cm(2) of nisin reduced the count of L. monocytogenes by 6.73 log CFU/g, compared to the control meat samples (8.54 log CFU/g) during storage at 4 °C in a Ready-To-Eat (RTE) meat system. Film formulations containing 9.33 μg/cm(2) of nisin increased the lag phase of L. monocytogenes on meat by more than 21 days, whereas formulations with 18.65 μg/cm(2) completely inhibited the growth of L. monocytogenes during storage. Genipin was used to cross-link and protect the activity of nisin during storage. Nanocomposite films cross-linked with 0.05% w/v genipin exhibited the highest bioactivity (10.89 μg/cm(2)) during the storage experiment, as compared to that of the un-cross-linked films (7.23 μg/cm(2)). Genipin cross-linked films were able to reduce the growth rate of L. monocytogenes on ham samples by 21% as compared to the un-cross-linked films. Spectroscopic analysis confirmed the formation of genipin-nisin-chitosan heterocyclic cross-linked network. Genipin cross-linked films also improved the swelling, water solubility, and mechanical properties of the nanocomposite films. PMID:25140839

  4. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density.

  5. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S.; Watanabe, Takeshi; Kim, Min P.; Blackmon, Shanda H.; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Minelli, Rosalba; Scott, Kenneth L.; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R.; Creighton, Chad J.; Martinez, Elisabeth D.; Zal, Tomasz; Grande-Allen, K. Jane; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  6. XLSearch: a Probabilistic Database Search Algorithm for Identifying Cross-Linked Peptides.

    PubMed

    Ji, Chao; Li, Sujun; Reilly, James P; Radivojac, Predrag; Tang, Haixu

    2016-06-01

    Chemical cross-linking combined with mass spectrometric analysis has become an important technique for probing protein three-dimensional structure and protein-protein interactions. A key step in this process is the accurate identification and validation of cross-linked peptides from tandem mass spectra. The identification of cross-linked peptides, however, presents challenges related to the expanded nature of the search space (all pairs of peptides in a sequence database) and the fact that some peptide-spectrum matches (PSMs) contain one correct and one incorrect peptide but often receive scores that are comparable to those in which both peptides are correctly identified. To address these problems and improve detection of cross-linked peptides, we propose a new database search algorithm, XLSearch, for identifying cross-linked peptides. Our approach is based on a data-driven scoring scheme that independently estimates the probability of correctly identifying each individual peptide in the cross-link given knowledge of the correct or incorrect identification of the other peptide. These conditional probabilities are subsequently used to estimate the joint posterior probability that both peptides are correctly identified. Using the data from two previous cross-link studies, we show the effectiveness of this scoring scheme, particularly in distinguishing between true identifications and those containing one incorrect peptide. We also provide evidence that XLSearch achieves more identifications than two alternative methods at the same false discovery rate (availability: https://github.com/COL-IU/XLSearch ). PMID:27068484

  7. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma

    PubMed Central

    Hayes, Sally; Boote, Craig; Kamma-Lorger, Christina S.; Rajan, Madhavan S.; Harris, Jonathan; Dooley, Erin; Hawksworth, Nicholas; Hiller, Jennifer; Terill, Nick J.; Hafezi, Farhad; Brahma, Arun K.; Quantock, Andrew J.; Meek, Keith M.

    2011-01-01

    Purpose To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas. Methods Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen) and four below (unswollen)) and two post-transplant keratoconus corneal buttons (one swollen; one unswollen), before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin). Results Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (p<0.001); an increase in fibril diameter was also seen in two out of four unswollen normal corneas and one unswollen keratoconus cornea (p<0.001). Iso-osmolar cross-linking resulted in a decrease in tissue hydration in the swollen normal corneas only. Although there was no consistent treatment-induced change in hydration in the unswollen normal samples, iso-osmolar cross-linking of these corneas did result in a compaction of collagen fibrils and a reduced fibril diameter (p<0.001); these changes were not seen in the swollen normal corneas. Collagen D-periodicity was not affected by either treatment. Conclusion The observed structural changes following Ultraviolet-A cross-linking with hypo-osmolar or iso-osmolar riboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking. PMID:21850225

  8. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    NASA Astrophysics Data System (ADS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  9. Chitosan-cross-linked osmium polymer composites as an efficient platform for electrochemical biosensors.

    PubMed

    Jirimali, Harishchandra Digambar; Nagarale, Rajaram Krishna; Lee, Jong Myung; Saravanakumar, Durai; Shin, Woonsup

    2013-07-22

    A new family of chitosan-cross-linked osmium polymer composites was prepared and its electrochemical properties were examined. The composites were prepared by quaternization of the poly(4-vinylpyridine) osmium bipyridyl polymer (PVP-Os) which was then cross-linked with chitosan, yielding PVP-Os/chitosan. Films made of the composites showed improved mass and electron transport owing to the porous and hydrophilic structure which is derived from the cross-links between the Os polymer and chitosan. The rate for glucose oxidation was enhanced four times when glucose oxidase (GOx) was immobilized on PVP-Os/chitosan compared immobilization on PVP-Os.

  10. Isocyanate Cross-Linked Silica: Structurally Strong Aerogels

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Sotiriou-Leventis, Chariklia; Zhang, Guo-Hui; Rawashdeh, Abdel-Monem M.

    2002-01-01

    Molecular-level synergism between the silica nanoparticles of pre-formed monoliths and molecular cross-linkers inverts the relative host-guest roles in glass-polymer composites, leading to new strong low-density materials. Attempts to load gels with variable amounts of polyurethane precursors such as di-ISO and diol end-capped polybutylene adipate followed by heat treatment, washing, and supercritical drying led to opaque materials, somewhat stronger than silica but still quite brittle and much inferior to the materials described above. Direct mixing of a diisocyanate and an alcohol-free sol has been attempted recently by Yim et al. Reportedly, that procedure leads to week-long gelation times and requires an at least equally long aging period. In our attempt to add various amounts of di-ISO in a base-catalyzed sol in PC, we also noticed a week-long gelation time. The resulting aerogels were translucent but no less brittle than native silica. According to more recent studies, if propylene carbonate is replaced with acetone, it leads not only to shorter processing times, but also to much stronger gels that can tolerate loads in excess of 40 kg in the arrangement presented. We attribute that behavior to the lower viscosity of acetone, that allows faster diffusion of the di-ISO solution within the pores before di-ISO has time to react with the surface of silica. Further studies are underway to vary the chemical identity of the diisocyanate, as well as the composition and density of silica.

  11. Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins.

    PubMed

    Davies, G E; Stark, G R

    1970-07-01

    Amidination of aldolase, glyceraldehyde-3-phosphate dehydrogenase, tryptophan synthetase B protein, L-arabinose isomerase, and the catalytic subunit of E. coli aspartate transcarbamylase with the bifunctional reagent dimethyl suberimidate produces cross-linked proteins, with reaction predominating within oligomers. Disc electrophoresis of a modified protein on polyacrylamide gel in the presence of sodium dodecyl sulfate resolves a set of species with molecular weights equal to integral multiples of the protomer molecular weight. For oligomers composed of identical protomers, the number of principal species observed is identical to the number of protomers in the oligomer. Application of the method to two proteins composed of dissimilar protomers, native aspartate transcarbamylase and tryptophan synthetase alpha(2)beta(2) complex of E. coli, revealed differences in the reactivities of the different kinds of protomer within each oligomer.

  12. Multistimuli-Responsive, Moldable Supramolecular Hydrogels Cross-Linked by Ultrafast Complexation of Metal Ions and Biopolymers.

    PubMed

    Sun, Zhifang; Lv, Fucong; Cao, Lujie; Liu, Lin; Zhang, Yi; Lu, Zhouguang

    2015-06-26

    A new type of multistimuli-responsive hydrogels cross-linked by metal ions and biopolymers is reported. By mixing the biopolymer chitosan (CS) with a variety of metal ions at the appropriate pH values, we obtained a series of transparent and stable hydrogels within a few seconds through supramolecular complexation. In particular, the CS-Ag hydrogel was chosen as the model and the gelation mechanism was revealed by various measurements. It was found that the facile association of Ag(+) ions with amino and hydroxy groups in CS chains promoted rapid gel-network formation. Interestingly, the CS-Ag hydrogel exhibits sharp phase transitions in response to multiple external stimuli, including pH value, chemical redox reactions, cations, anions, and neutral species. Furthermore, this soft matter showed a remarkable moldability to form shape-persistent, free-standing objects by a fast in situ gelation procedure.

  13. Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus.

    PubMed

    Benz, Marcel; Chen, Nianhuan; Israelachvili, Jacob

    2004-10-01

    Hyaluronan is believed to have an important function in the boundary biolubrication of articular cartilage. Using a Surface Forces Apparatus, we tested the tribological properties of surface bound, rather than "free" hyaluronan. The grafting process of the polyelectrolyte included either a biological route via an HA-binding protein or a chemical reaction to covalently bind the polymer to a lipid bilayer coated surface. In another reaction, we constructed a surface with covalently grafted hylan (crosslinked hyaluronan). We studied the normal and shear forces between these surfaces. None of the systems demonstrated comparable lubrication to that found between cartilage surfaces except at very low loads. Both grafted hyaluronan and hylan generated coefficients of friction between 0.15 and 0.3. Thus, the polysaccharide, which is a constituent of the lamina splendens (outermost cartilage layer), is not expected to be the responsible molecule for the great lubricity of cartilage; however, it may contribute to the load bearing and wear protection of these surfaces. This was concluded from the results with hylan, where a thin gel layer was sufficient to shield the underlying surfaces from damage even at applied pressures of over 200 atmospheres during shear. Our study shows that a low coefficient of friction is not a requirement for, or necessarily a measure of, wear protection. PMID:15368250

  14. Proteins of rough microsomal membranes related to ribosome binding. II. Cross-linking of bound ribosomes to specific membrane proteins exposed at the binding sites

    PubMed Central

    1978-01-01

    Two proteins (ribophorins I and II), which are integral components of rough microsomal membranes and appear to be related to the bound ribosomes, were shown to be exposed on the surface of rat liver rough microsomes (RM) and to be in close proximity to the bound ribosomes. Both proteins were labeled when intact RM were incubated with a lactoperoxidase iodinating system, but only ribophorin I was digested during mild trypsinization of intact RM. Ribophorin II (63,000 daltons) was only proteolyzed when the luminal face of the microsomal vesicles was made accessible to trypsin by the addition of sublytical detergent concentrations. Only 30--40% of the bound ribosomes were released during trypsinization on intact RM, but ribosome release was almost complete in the presence of low detergent concentrations. Very low glutaraldehyde concentrations (0.005--0.02%) led to the preferential cross-linking of large ribosomal subunits of bound ribosomes to the microsomal membranes. This cross-linking prevented the release of subunits caused by puromycin in media of high ionic strength, but not the incorporation of [3H]puromycin into nascent polypeptide chains. SDS- acrylamide gel electrophoresis of cross-linked samples a preferential reduction in the intensity of the bands representing the ribophorins and the formation of aggregates which did not penetrate into the gels. At low methyl-4-mercaptobutyrimidate (MMB) concentrations (0.26 mg/ml) only 30% of the ribosomes were cross-linked to the microsomal membranes, as shown by the puromycin-KCl test, but membranes could still be solubilized with 1% DOC. This allowed the isolation of the ribophorins together with the sedimentable ribosomes, as was shown by electrophoresis of the sediments after disruption of the cross-links by reduction. Experiments with RM which contained only inactive ribosomes showed that the presence of nascent chains was not necessary for the reversible cross-linking of ribosomes to the membranes. These

  15. Physiologically relevant oxidative degradation of oligo(proline) cross-linked polymeric scaffolds.

    PubMed

    Yu, Shann S; Koblin, Rachel L; Zachman, Angela L; Perrien, Daniel S; Hofmeister, Lucas H; Giorgio, Todd D; Sung, Hak-Joon

    2011-12-12

    Chronic inflammation-mediated oxidative stress is a common mechanism of implant rejection and failure. Therefore, polymer scaffolds that can degrade slowly in response to this environment may provide a viable platform for implant site-specific, sustained release of immunomodulatory agents over a long time period. In this work, proline oligomers of varying lengths (P(n)) were synthesized and exposed to oxidative environments, and their accelerated degradation under oxidative conditions was verified via high performance liquid chromatography and gel permeation chromatography. Next, diblock copolymers of poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) were carboxylated to form 100 kDa terpolymers of 4%PEG-86%PCL-10%cPCL (cPCL = poly(carboxyl-ε-caprolactone); i% indicates molar ratio). The polymers were then cross-linked with biaminated PEG-P(n)-PEG chains, where P(n) indicates the length of the proline oligomer flanked by PEG chains. Salt-leaching of the polymeric matrices created scaffolds of macroporous and microporous architecture, as observed by scanning electron microscopy. The degradation of scaffolds was accelerated under oxidative conditions, as evidenced by mass loss and differential scanning calorimetry measurements. Immortalized murine bone-marrow-derived macrophages were then seeded on the scaffolds and activated through the addition of γ-interferon and lipopolysaccharide throughout the 9-day study period. This treatment promoted the release of H(2)O(2) by the macrophages and the degradation of proline-containing scaffolds compared to the control scaffolds. The accelerated degradation was evidenced by increased scaffold porosity, as visualized through scanning electron microscopy and X-ray microtomography imaging. The current study provides insight into the development of scaffolds that respond to oxidative environments through gradual degradation for the controlled release of therapeutics targeted to diseases that feature chronic

  16. Chemosensitivity of primary human fibroblasts with defective unhooking of DNA interstrand cross-links.

    PubMed

    Clingen, Peter H; Arlett, Colin F; Hartley, John A; Parris, Christopher N

    2007-02-15

    Xeroderma pigmentosum (XP) is characterised by defects in nucleotide excision repair, ultraviolet (UV) radiation sensitivity and increased skin carcinoma. Compared to other complementation groups, XP-F patients show relatively mild cutaneous symptoms. DNA interstrand cross-linking agents are a highly cytotoxic class of DNA damage induced by common cancer chemotherapeutics such as cisplatin and nitrogen mustards. Although the XPF-ERCC1 structure-specific endonuclease is required for the repair of ICLs cellular sensitivity of primary human XP-F cells has not been established. In clonogenic survival assays, primary fibroblasts from XP-F patients were moderately sensitive to both UVC and HN2 compared to normal cells (2- to 3-fold and 3- to 5-fold, respectively). XP-A fibroblasts were considerably more sensitive to UVC (10- to 12-fold) but not sensitive to HN2. The sensitivity of XP-F fibroblasts to HN2 correlated with the defective incision or 'unhooking' step of ICL repair. Using the comet assay, XP-F cells exhibited only 20% residual unhooking activity over 24 h. Over the same time, normal and XP-A cells unhooked greater than 95% and 62% of ICLs, respectively. After HN2 treatment, ICL-associated DNA double-strand breaks (DSBs) are detected by pulse field gel electrophoresis in dividing cells. Induction and repair of DNA DSBs was normal in XP-F fibroblasts. These findings demonstrate that in primary human fibroblasts, XPF is required for the unhooking of ICLs and not for the induction or repair of ICL-associated DNA DSBs induced by HN2. In terms of cancer chemotherapy, people with mild DNA repair defects affecting ICL repair may be more prevalent in the general population than expected. Since cellular sensitivity of primary human fibroblasts usually reflects clinical sensitivity such patients with cancer would be at risk of increased toxicity. PMID:17188678

  17. Protein cross-linking and oligomerization through dityrosine formation upon exposure to ozone

    NASA Astrophysics Data System (ADS)

    Liu, Fobang; Kampf, Christopher; Reinmuth-Selzle, Kathrin; Berkemeier, Thomas; Shiraiwa, Manabu; Pöschl, Ulrich

    2015-04-01

    Air pollution is a potential factor for the increasing prevalence of allergic diseases. Airborne allergenic proteins can be directly exposed to air pollution promoting post-translational modifications, which can enhance the allergenic potential of proteins. The formation of dimers or oligomers of allergenic proteins has been reported to result in an enhanced allergenicity. However, the oligomerization process for proteins at atmospherically relevant concentration of O3 is still largely unknown. In this study, the kinetics and reaction mechanism of protein oligomerization upon ozone exposure were studied at atmospherically relevant ozone concentrations and relative humidity (RH) in coated-wall flow tube experiments. Bovine Serum Albumin (BSA) was used as a model protein. Protein ozone exposure was studied for different protein phase-states, i.e. amorphous solid (45% RH experiments), semi-solid (96% RH experiments) and liquid (bulk solution experiments) to account for the differences of phase in atmospheric particulates, e.g., aerosol particles and cloud droplets. Product analysis was performed using a size exclusion chromatography-high performance liquid chromatography-diode array detector (SEC-HPLC-DAD). We demonstrate that protein cross-linking upon ozone exposure can be attributed to the formation of covalent intermolecular dityrosine species by gel electrophoretic and fluorescence spectroscopic methods. The exposure experiments indicate that in addition to ozone concentration, the oligomerization process was depending on the phase-state of protein. In liquid-phase experiments, dimer formation was significantly enhanced, thus indicating a potential relevance of in-cloud processes for protein oligomerization. The reactive turnover is higher at 96% RH compared to 45% RH, indicating a higher bulk diffusion coefficient at high RH, which is explicitly resolved by kinetic modeling. Further, the reactive turnover showed a strong correlation to particle surface

  18. Chemosensitivity of primary human fibroblasts with defective unhooking of DNA interstrand cross-links

    SciTech Connect

    Clingen, Peter H. . E-mail: p.clingen@ucl.ac.uk; Arlett, Colin F.; Hartley, John A.; Parris, Christopher N.

    2007-02-15

    Xeroderma pigmentosum (XP) is characterised by defects in nucleotide excision repair, ultraviolet (UV) radiation sensitivity and increased skin carcinoma. Compared to other complementation groups, XP-F patients show relatively mild cutaneous symptoms. DNA interstrand cross-linking agents are a highly cytotoxic class of DNA damage induced by common cancer chemotherapeutics such as cisplatin and nitrogen mustards. Although the XPF-ERCC1 structure-specific endonuclease is required for the repair of ICLs cellular sensitivity of primary human XP-F cells has not been established. In clonogenic survival assays, primary fibroblasts from XP-F patients were moderately sensitive to both UVC and HN2 compared to normal cells (2- to 3-fold and 3- to 5-fold, respectively). XP-A fibroblasts were considerably more sensitive to UVC (10- to 12-fold) but not sensitive to HN2. The sensitivity of XP-F fibroblasts to HN2 correlated with the defective incision or 'unhooking' step of ICL repair. Using the comet assay, XP-F cells exhibited only 20% residual unhooking activity over 24 h. Over the same time, normal and XP-A cells unhooked greater than 95% and 62% of ICLs, respectively. After HN2 treatment, ICL-associated DNA double-strand breaks (DSBs) are detected by pulse field gel electrophoresis in dividing cells. Induction and repair of DNA DSBs was normal in XP-F fibroblasts. These findings demonstrate that in primary human fibroblasts, XPF is required for the unhooking of ICLs and not for the induction or repair of ICL-associated DNA DSBs induced by HN2. In terms of cancer chemotherapy, people with mild DNA repair defects affecting ICL repair may be more prevalent in the general population than expected. Since cellular sensitivity of primary human fibroblasts usually reflects clinical sensitivity such patients with cancer would be at risk of increased toxicity.

  19. DNA melting properties of the dityrosine cross-linked dimer of Ribonuclease A.

    PubMed

    Dinda, Amit Kumar; Chattaraj, Saparya; Ghosh, Sudeshna; Tripathy, Debi Ranjan; Dasgupta, Swagata

    2016-09-01

    Several DNA binding proteins exist in dimeric form when bound with DNA to be able to exhibit various biological processes such as DNA repair, DNA replication and gene expression. Various dimeric forms of Ribonuclease A (RNase A) and other members of the ribonuclease A superfamily are endowed with a multitude of biological activities such as antitumor and antiviral activity. In the present study, we have compared the DNA binding properties between the RNase A monomer and the dityrosine (DT) cross-linked RNase A dimer, and checked the inhibitory effect of DNA on the ribonucleolytic activity of the dimeric protein. An agarose gel based assay shows that like the monomer, the dimer also binds with DNA. The number of nucleotides bound per monomer unit of the dimer is higher than the number of nucleotides that bind with the each monomer. From fluorescence measurements, the association constant (Ka) values for complexation of the monomer and the dimer with ct-DNA are (4.95±0.45)×10(4)M(-1) and (1.29±0.05)×10(6)M(-1) respectively. Binding constant (Kb) values for the binding of the monomer and the dimer with ct-DNA were determined using UV-vis spectroscopy and were found to be (4.96±1.67)×10(4)M(-1) and (4.32±0.31)×10(5)M(-1) respectively. Circular dichroism studies shows that the dimer possesses significant effect on DNA conformation. The melting profile for the ct-DNA-dimer indicated that the melting temperature (Tm) for the ct-DNA-dimer complex is lower compared to the ct-DNA-monomer complex. The ribonucleolytic activity of the dimer, like the monomer, diminishes upon binding with DNA. PMID:27475778

  20. Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia. Relationship to pentosidine cross-links.

    PubMed

    Richard, S; Tamas, C; Sell, D R; Monnier, V M

    1991-08-01

    Chronic experimental hyperglycemia mediated by galactose has been shown to induce browning and cross-linking of rat tail tendon collagen that could be duplicated in vitro by nonenzymatic galactosylation. To investigate the nature of these changes, Sprague-Dawley rats were placed on a 33% galactose diet without and with sorbinil for 6 and 12 mo. Collagen-linked fluorescence and pentosidine cross-links increased with age and galactosemia in tail tendons (P less than 0.001) and skin but were essentially unresponsive to aldose reductase inhibition (ARI). In contrast, tendon breaking time in urea, a likely parameter of cross-linking, was markedly improved (P less than 0.001) by ARI. Fluorescence that was inhibited by sorbinil treatment was increased in pepsin and proteinase K digest of aortic tissue from galactosemic rats (P less than 0.001), but impaired enzymatic digestibility was not observed. Systolic blood pressure as potential consequence of aortic stiffening was not increased in galactosemia. These data suggest that fluorescence in skin and tendon might be in part due to advanced glycosylation and pentosidine formation because these were not decreased by ARI. However, they also suggest that nonfluorescent cross-links may also be forming because, in contrast to fluorescence, tail tendon breaking time was partly corrected by ARI. Thus, it appears that extracellular matrix changes in chronic galactosemia are complex, being partly attributable to advanced glycosylation and partly to polyol-pathway activation.

  1. Cross-Linked Conjugated Polymer Fibrils: Robust Nanowires from Functional Polythiophene Diblock Copolymers

    SciTech Connect

    Hammer, Brenton A. G.; Bokel, Felicia A.; Hayward, Ryan C.; Emrick, Todd

    2011-09-27

    A series of poly(3-hexyl thiophene) (P3HT)-based diblock copolymers were prepared and examined in solution for their assembly into fibrils, and post-assembly cross-linking into robust nanowire structures. P3HT-b-poly(3-methanol thiophene) (P3MT), and P3HT-b-poly(3-aminopropyloxymethyl thiophene) (P3AmT) diblock copolymers were synthesized using Grignard metathesis (GRIM) polymerization. Fibrils formed from solution assembly of these copolymers are thus decorated with hydroxyl and amine functionality, and cross-linking is achieved by reaction of diisocyanates with the hydroxyl and amine groups. A variety of cross-linked structures, characterized by transmission electron microscopy (TEM), were produced by this method, including dense fibrillar sheets, fibril bundles, or predominately individual fibrils, depending on the chosen reaction conditions. In solution, the cross-linked fibrils maintained their characteristic vibronic structure in solvents that would normally disrupt (dissolve) the structures.

  2. Determination of the cross-linking effect of adipic acid dihydrazide on glycoconjugate preparation.

    PubMed

    Bystrický, S; Machová, E; Malovíková, A; Kogan, G

    1999-11-01

    The cross-linking effect of adipic acid dihydrazide (ADH) on polysaccharide derivatization can be evaluated by applying combination of elemental analysis and colorimetric assay. Elemental analysis is used for estimation of total ADH bound to polysaccharide and a colorimetric trinitrobenzene sulfonic acid assay is used to determine the part of ADH not involved in cross-linking. The difference of values expressed as molar ratios (per repeating unit) provides information on the amount of ADH involved in cross-linking the polysaccharides. Carboxymethylated polysaccharides were derivatized with different amounts of ADH to test the procedure. Analytical results showed that excess of ADH in the reaction only slightly decreased the cross-linking. The number of carboxyl groups remained unmodified even at high excess of ADH and high concentration of carbodiimide (EDC) coupling reagent. PMID:11003553

  3. Collagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites.

    PubMed Central

    Diab, M; Wu, J J; Eyre, D R

    1996-01-01

    Type IX collagen, a quantitatively minor collagenous component of cartilage, is known to be associated with and covalently cross-linked to type II collagen fibrils in chick and bovine cartilage. Type IX collagen molecules have also been shown to form covalent cross-links with each other in bovine cartilage. In the present study we demonstrate by structural analysis and location of cross-linking sites that, in human cartilage, type IX collagen is covalently cross-linked to type II collagen and to other molecules of type IX collagen. We also present evidence that, if the proteoglycan form of type IX collagen is present in human cartilage, it can only be a minor component of the matrix, similar to findings with bovine cartilage. PMID:8660302

  4. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer

    PubMed Central

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H.; Nevosad, Andreas; Teichert, Christian; S. White, Matthew.; S. Sariciftci, Niyazi.; Scharber, Markus C.

    2014-01-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  5. Vapor deposition of cross-linked fluoropolymer barrier coatings onto pre-assembled microfluidic devices.

    PubMed

    Riche, Carson T; Marin, Brandon C; Malmstadt, Noah; Gupta, Malancha

    2011-09-21

    The interior surfaces of pre-assembled poly(dimethylsiloxane) (PDMS) microfluidic devices were modified with a cross-linked fluoropolymer barrier coating that significantly increased the chemical compatibility of the devices. PMID:21850298

  6. Activation energies control the macroscopic properties of physically cross-linked materials.

    PubMed

    Appel, Eric A; Forster, Rebecca A; Koutsioubas, Alexandros; Toprakcioglu, Chris; Scherman, Oren A

    2014-09-15

    Here we show the preparation of a series of water-based physically cross-linked polymeric materials utilizing cucurbit[8]uril (CB[8]) ternary complexes displaying a range of binding, and therefore cross-linking, dynamics. We determined that the mechanical strength of these materials is correlated directly with a high energetic barrier for the dissociation of the CB[8] ternary complex cross-links, whereas facile and rapid self-healing requires a low energetic barrier to ternary complex association. The versatile CB[8] ternary complex has, therefore, proven to be a powerful asset for improving our understanding of challenging property-structure relationships in supramolecular systems and their associated influence on the bulk behavior of dynamically cross-linked materials.

  7. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    DOE PAGES

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J. Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De -en; et al

    2015-01-01

    The development of high performance materials for CO2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ~ 6800 Barrer and CO2/N2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, which provides lightly cross-linked membranes.more » By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  8. A Review of Collagen Cross-Linking in Cornea and Sclera

    PubMed Central

    Zhang, Xiao; Tao, Xiang-chen; Zhang, Jian; Li, Zhi-wei; Xu, Yan-yun; Wang, Yu-meng; Zhang, Chun-xiao; Mu, Guo-ying

    2015-01-01

    Riboflavin/UVA cross-linking is a technique introduced in the past decades for the treatment of keratoconus, keratectasia, and infectious keratitis. Its efficacy and safety have been investigated with clinical and laboratory studies since its first clinical application by Wollensak for the treatment of keratoconus. Although its complications are encountered during clinical practice, such as infection inducing risk, minimal invasion merits a further investigation on its future application in clinical practice. Recently, collagen cross-linking in sclera shows a promising prospect. In present study, we summarized the representative studies describing the clinical and laboratory application of collagen cross-linking published in past decades and provided our opinion on the positive and negative results of cross-linking in the treatment of ophthalmic disorders. PMID:25922758

  9. In Vivo Oxidative Stability Changes of Highly Cross-Linked Polyethylene Bearings: An Ex Vivo Investigation.

    PubMed

    Rowell, Shannon L; Reyes, Christopher R; Malchau, Henrik; Muratoglu, Orhun K

    2015-10-01

    The development of highly cross-linked UHMWPEs focused on stabilizing radiation-induced free radicals as the sole precursor to oxidative degradation. However, secondary in vivo oxidation mechanisms have been discovered. After a preliminary post-operative analysis, we subjected highly cross-linked retrievals with 1-4 years in vivo durations and never-implanted controls to accelerated aging to predict the extent to which their oxidative stability was compromised in vivo. Lipid absorption, oxidation, and hydroperoxides were measured using infrared spectroscopy. Gravimetric swelling was used to measure cross-link density. After aging, all retrievals, except vitamin E-stabilized components, regardless of initial lipid levels or oxidation, showed significant oxidative degradation, demonstrated by subsurface oxidative peaks, increased hydroperoxides and decreased cross-link density, compared to their post-operative material properties and never-implanted counterparts, confirming oxidative stability changes.

  10. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, N.M.; Chen, J.

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme. No Drawings

  11. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, Nenad M.; Chen, Jian

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme.

  12. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    SciTech Connect

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J. Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De -en; Long, Brian; Mays, Jimmy; Sokolov, Alexei; Saito, Tomonori

    2015-01-01

    The development of high performance materials for CO2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ~ 6800 Barrer and CO2/N2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.

  13. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer.

    PubMed

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H; Nevosad, Andreas; Teichert, Christian; S White, Matthew; S Sariciftci, Niyazi; Scharber, Markus C

    2014-05-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium-tin-oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor-acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  14. Effect of Cross-Link Density on Carbon Dioxide Separation in Polydimethylsiloxane-Norbornene Membranes.

    PubMed

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De-en; Long, Brian; Mays, Jimmy; Sokolov, Alexei; Saito, Tomonori

    2015-11-01

    The development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethyl-terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability≈6800 Barrer; CO2 /N2 selectivity≈14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.

  15. Biological relevance and consequences of chemical- or metal-induced DNA cross-linking

    SciTech Connect

    Paustenbach, D.J.; Finley, B.L.

    1996-03-01

    A vast number of chemicals are known to induce mutagenesis and/or carcinogenesis in mammals. Although disruption of cellular nuclear material resulting ultimately in mutagenesis/carcinogenesis can be accomplished by various mechanisms, the search for biomarkers of chemical-induced toxicity continues. This review focuses on the ability of certain metals or chemicals to bind to DNA in a cross-link fashion in whole animal as well as under in vitro conditions. The methodologies currently used to determine DNA cross-linking are described. The biological relevance of the presence of chemical- or metal-induced DNA cross-linking as a measure of carcinogenesis in humans is still under debate, as there is no clear correlation between the disease and the DNA cross-link reaction. 62 refs., 3 tabs.

  16. Enhanced mechanical properties and blood compatibility of PDMS/liquid crystal cross-linked membrane materials.

    PubMed

    Rao, Huaxin; Zhang, Ziyong; Liu, Fanna

    2013-04-01

    A novel polydimethylsiloxane/liquid crystal cross-linked membrane (PDMS/LC) was prepared by using PDMS containing vinyl groups and LCs containing unsaturated linkages as matrix materials. Mechanical properties, liquid crystalline performance and blood compatibility of the PDMS/LC cross-linked membrane containing different LC contents and LC groups were investigated, respectively. The results showed that mechanical properties of the membrane increased more significantly than those of pure PDMS membranes. The PDMS/LC cross-linked membrane also possessed better membrane-forming ability, lower hemolysis rate, less platelets adhesion and more favorable anti-coagulant properties. Additionally, mechanical properties and blood compatibility of the membrane can be enhanced simultaneously and obviously due to the introduction of the cholesteric liquid crystals and the application of the preferred cross-linked reaction without byproducts.

  17. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer.

    PubMed

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H; Nevosad, Andreas; Teichert, Christian; S White, Matthew; S Sariciftci, Niyazi; Scharber, Markus C

    2014-05-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium-tin-oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor-acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process.

  18. Molybdate sorption by cross-linked chitosan beads: Dynamic studies

    SciTech Connect

    Guibal, E.; Milot, C.; Roussy, J.

    1999-01-01

    Recent trends in environmental monitoring have induced increasing development of new wastewater treatment techniques. Membrane processes, electrochemical techniques, or ion-exchange systems are widely used, but biosorption has been recognized in the last 30 years as a promising way to reduce the contamination of surface water issued from industrial effluent. Chitosan, a biopolymer extracted from crustacean shells, exhibits high sorption capacities for metal ion recovery. Sorption efficiency and removal rates are controlled by several diffusion mechanisms. Chitosan gel beads have been prepared and have shown enhanced sorption performance in batch systems. This study shows that, in continuous systems, sorption capacities can reach 700 mg/g, a level close to that obtained in batch studies. The effects of metal concentration, flow velocity, and column size are investigated and demonstrate that, because of diffusion mechanisms, the optimum concentration range is approximately 50 to 100 mg/L. In column systems, the Biot number, though greater than 1, is lower than the Biot number obtained in batch systems, indicating that external mass transfer influences mass transfer at the low superficial velocity investigated in this work.

  19. DNA-protein cross-links produced by various chemicals in cultured human lymphoma cells.

    PubMed

    Costa, M; Zhitkovich, A; Harris, M; Paustenbach, D; Gargas, M

    1997-04-11

    Chemicals such as cis-platinum, formaldehyde, chromate, copper, and certain arsenic compounds have been shown to produce DNA-protein cross-links in human in vitro cell systems at high doses, such as those in the cytotoxic range. Thus far there have only been a limited number of other chemicals evaluated for their ability to produce cross-links. The purpose of the work described here was to evaluate whether select industrial chemicals can form DNA-protein cross-links in human cells in vitro. We evaluated acetaldehyde, acrolein, diepoxybutane, paraformaldehyde, 2-furaldehyde, propionaldehyde, chloroacetaldehyde, sodium arsenite, and a deodorant tablet [Mega Blue; hazardous component listed as tris(hydroxymethyl)nitromethane]. Short- and long-term cytotoxicity was evaluated and used to select appropriate doses for in vitro testing. DNA-protein cross-linking was evaluated at no fewer than three doses and two cell lysate washing temperatures (45 and 65 degrees C) in Epstein-Barr virus (EBV) human Burkitt's lymphoma cells. The two washing temperatures were used to assess the heat stability of the DNA-protein cross-link, 2-Furaldehyde, acetaldehyde, and propionaldehyde produced statistically significant increases in DNA-protein cross-links at washing temperatures of 45 degrees C, but not 65 degrees C, and at or above concentrations of 5, 17.5, and 75 mM, respectively. Acrolein, diepoxybutane, paraformaldehyde, and Mega Blue produced statistically significant increases in DNA-protein cross-links washed at 45 and 65 degrees C at or above concentrations of 0.15 mM, 12.5 mM, 0.003%, and 0.1%, respectively. Sodium arsenite and chloroacetaldehyde did not produce significantly increased DNA-protein cross-links at either temperature nor at any dose tested. Excluding paraformaldehyde and 2-furaldehyde treatments, significant increases in DNA-protein cross-links were observed only at doses that resulted in complete cell death within 4 d following dosing. This work demonstrates that

  20. Intra-molecular cross-linking of acidic residues for protein structure studies.

    SciTech Connect

    Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr; Schoeniger, Joseph S.

    2005-03-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of the lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural information

  1. False discovery rate estimation for cross-linked peptides identified by mass spectrometry.

    PubMed

    Walzthoeni, Thomas; Claassen, Manfred; Leitner, Alexander; Herzog, Franz; Bohn, Stefan; Förster, Friedrich; Beck, Martin; Aebersold, Ruedi

    2012-09-01

    The mass spectrometric identification of chemically cross-linked peptides (CXMS) specifies spatial restraints of protein complexes; these values complement data obtained from common structure-determination techniques. Generic methods for determining false discovery rates of cross-linked peptide assignments are currently lacking, thus making data sets from CXMS studies inherently incomparable. Here we describe an automated target-decoy strategy and the software tool xProphet, which solve this problem for large multicomponent protein complexes.

  2. Porphyrin-induced photodynamic cross-linking of hepatic heme-binding proteins.

    PubMed

    Vincent, S H; Holeman, B; Cully, B C; Muller-Eberhard, U

    1986-01-27

    Three types of hepatic proteins, a heme-binding Z protein, a mixture of the glutathione S-transferases and a cytochrome P450 isozyme, were shown to be susceptible to photodynamic cross-linking and loss in antigenicity by naturally occurring porphyrins. At 50 microM, uroporphyrin caused the most and protoporphyrin the least photodecomposition. Hemopexin, a specific serum heme carrier, was photodecomposed but no cross-linking was detected. Heme and scavengers of singlet oxygen partially prevented protein photodecomposition.

  3. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    PubMed

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia.

  4. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology

    SciTech Connect

    Lacevic, N; Gee, R; Saab, A; Maxwell, R

    2008-04-24

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octa-functional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a net-like distribution that spans the network. Such a distribution may form a structural network 'holding' the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  5. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology.

    PubMed

    Lacevic, Naida; Gee, Richard H; Saab, Andrew; Maxwell, Robert

    2008-09-28

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octafunctional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a netlike distribution that spans the network. Such a distribution may form a structural network "holding" the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties. PMID:19045061

  6. Elucidation of protein-protein interactions using chemical cross-linking or label transfer techniques.

    PubMed

    Fancy, D A

    2000-02-01

    Understanding the architectures of multiprotein complexes is a central problem in biology. Of the many chemical methods available, label transfer and cross-linking are becoming more popular. Recently, label transfer has been applied to very large protein complexes with great success, and new oxidative methods for protein cross-linking have been developed that are fast and highly efficient. Advances in these techniques should increase the understanding of biological structures and mechanisms.

  7. Reversible and irreversible cross-linking of immunoglobulin heavy chains through their carbohydrate residues.

    PubMed Central

    Heimgartner, U; Kozulić, B; Mosbach, K

    1990-01-01

    After periodate oxidation and incubation with a dihydrazide, cross-linking of the two heavy chains of immunoglobulins G from several species proceeds specifically through their oligosaccharides. We have used malonic acid dihydrazide, adipic acid dihydrazide and dithiodipropionic acid dihydrazide. The last compound is introduced in this work as a cleavable-carbohydrate-specific cross-linker. It was found that in rabbit and human immunoglobulins the degree of cross-linking was strongly dependent on the oxidation conditions but only very weakly dependent on the concentration and size of the dihydrazides. Papain cleavage of the cross-linked rabbit IgG indicated that the cross-linking occurred predominantly, if not exclusively, in the Fc region, probably through the two glycans linked to Asn-297 in the CH2 domain of each of the two heavy chains. The immunoglobulins from sheep, pig, goat and guinea pig show a comparable cross-linking pattern, indicating that the sugar chains from these immunoglobulins have a spatial structure closely related to that of rabbit and human IgG. When dithiodipropionic acid dihydrazide was used as the cross-linker, the cross-link could be cleaved by mercaptoethanol. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2111130

  8. Food-contact epoxy resin: co-variation between migration and degree of cross-linking.

    PubMed

    Lambert, C; Larroque, M; Lebrun, J C; Gérard, J F

    1997-01-01

    In order to predict the behaviour towards foodstuffs of an epoxy resin composed of bisphenol A diglycidyl ether (BADGE), 4,4'-methylenedianiline (MDA) and additives (plasticizers: dibutylphthalate (DBP), dioctylphthalate (DOP); accelerator: salicylic acid; inorganic fillers), a co-variation was established between the parameters evaluating the degree of cross-linking of the three-dimensional network and the migration of constituent molecules into various food simulants (distilled water, distilled water/ethanol/acetic acid, distilled water/ethanol). Varied degrees of cross-linking were obtained by subjecting the resin to different curing temperatures: respectively, 5 degrees C, 20 degrees C, 50 degrees C and 90 degrees C for 7 days. Irrespective of the food stimulant tested, specific migrations (DBP, DOP, salicylic acid, primary aromatic amines) diminished greatly as the curing temperature increased. At the same time, the degree of cross-linking increased with curing temperature, as indicated by the increase in glass transition temperature, the decrease in residual reaction exotherms and increased stability of the rubber storage modulus E'rub (increase in cross-link nodes), the fall in relaxation enthalpies (reduction in physical ageing) and the decreased amplitude of the loss-factor, tan delta (reduction in chain mobility). Maximum cross-linking was obtained in the resin cured at 90 degrees C (temperature above Tg infinity). In contrast to the degree of cross-linking, evaporation contributed little to the reduction of migration due to the elevation of curing temperature.

  9. Synchrotron Small-Angle X-ray Scattering Study of Cross-Linked Polymeric Micelles.

    PubMed

    Kim, Hyun-Chul; Jin, Kyeong Sik; Lee, Se Guen; Kim, Eunjoo; Lee, Sung Jun; Jeong, Sang Won; Lee, Seung Woo; Kim, Kwang-Woo

    2016-06-01

    Polymeric micelles of methoxypoly(ethylene glycol)-b-poly(lactide) containing lysine units (mPEG-PLA-Lys4) were cross-linked by reacting of lysine moieties with a bifunctional bis(N-hydroxy-succinimide ester). The micelles were characterized in aqueous solution using dynamic light scattering, transmission electron microscopy, and synchrotron small-angle X-ray scattering. The mPEG-PLA-Lys4 was synthesized through the ring-opening polymerization of N6-carbobenzyloxy-L-lysine N-carboxyanhydride with amine-terminated mPEG-PLA and subsequent deprotection. The polymeric micelles showed enhanced micelle stability after cross-linking, which was confirmed by adding sodium dodecyl sulfate as a destabilizing agent. The average diameters measured via dynamic light scattering were 19.1 nm and 29.2 nm for non-cross-linked polymeric micelles (NCPMs) and cross-linked polymeric micelles (CPMs), respectively. The transmission electron microscopy images showed that the size of the polymeric micelles increased slightly due to cross-linking, which was in good agreement with the DLS measurements. The overall structures and internal structural changes of NCPMs and CPMs in aqueous solution were studied in detail using synchrotron X-ray scattering method. According to the structural parameters of X-ray scattering analysis, CPMs with a more densely packed core structure were formed by reacting bifunctional cross-linking agents with lysine amino groups located in the innermost core of the polymeric micelles. PMID:27427731

  10. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy.

    PubMed

    Dharunya, G; Duraipandy, N; Lakra, Rachita; Korapatti, Purna Sai; Jayavel, R; Kiran, Manikantan Syamala

    2016-01-01

    This paper elucidates the development of a curcumin cross-linked collagen aerogel system with controlled anti-proteolytic activity and pro-angiogenic efficacy. The results of this study showed that in situ cross-linking of curcumin with collagen leads to the development of aerogels with enhanced physical and mechanical properties. The integrity of collagen after cross-linking with curcumin was studied via FTIR spectroscopy. The results confirmed that the cross-linking with curcumin did not induce any structural changes in the collagen. The curcumin cross-linked collagen aerogels exhibited potent anti-proteolytic and anti-microbial activity. Scanning electron and atomic force microscopic analysis of curcumin cross-linked collagen aerogels showed a 3D microstructure that enhanced the adhesion and proliferation of cells. The highly organized geometry of collagen-curcumin aerogels enhanced the permeability and water-retaining ability required for the diffusion of nutrients that aid cellular growth. The pro-angiogenic properties of collagen-curcumin aerogels were ascribed to the cumulative effect of the nutraceutical and the collagen molecule, which augmented the restoration of damaged tissue. Further, these aerogels exhibited controlled anti-proteolytic activity, which makes them suitable 3D scaffolds for biomedical applications. This study provides scope for the development of biocompatible and bioresorbable collagen aerogel systems that use a nutraceutical as a cross-linker for biomedical applications. PMID:27509047

  11. Dual-Cross-Linked Methacrylated Alginate Sub-Microspheres for Intracellular Chemotherapeutic Delivery.

    PubMed

    Fenn, Spencer L; Miao, Tianxin; Scherrer, Ryan M; Oldinski, Rachael A

    2016-07-20

    Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently cross-linked sub-microspheres were formed via exposure to green light, in order to investigate effects of cross-linking on drug release and cell internalization, compared to traditional techniques, such as ultraviolet (UV) light irradiation. Cross-linking was performed using light exposure alone or in combination with ionic cross-linking using calcium chloride (CaCl2). Alg-MA sub-microsphere diameters were between 88 and 617 nm, and ζ-potentials were between -20 and -37 mV. Using human lung epithelial carcinoma cells (A549) as a model, cellular internalization was confirmed using flow cytometry; different sub-microsphere formulations varied the efficiency of internalization, with UV-cross-linked sub-microspheres achieving the highest internalization percentages. While blank (nonloaded) Alg-MA submicrospheres were noncytotoxic to A549 cells, DOX-loaded sub-microspheres significantly reduced mitochondrial activity after 5 days of culture. Photo-cross-linked Alg-MA sub-microspheres may be a potential chemotherapeutic delivery system for cancer treatment.

  12. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase*

    PubMed Central

    Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W.

    2016-01-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites. PMID:26893379

  13. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase.

    PubMed

    Kalamajski, Sebastian; Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W

    2016-04-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.

  14. Cross-linked chitosan improves the mechanical properties of calcium phosphate-chitosan cement

    PubMed Central

    Aryaei, Ashkan; Liu, Jason; Jayatissa, Ahalapitiya. H.; Jayasuriya, A. Champa

    2015-01-01

    Calcium phosphate (CaP) cements are highly applicable and valuable materials for filling bone defects by minimally invasive procedures. Chitosan (CS) biopolymer is also considered as one of the promising biomaterial candidates in bone tissue engineering. In the present study, some key features of CaP-CS were significantly improved by developing a novel CaP-CS composite. For this purpose, CS was the first cross-linked with tripolyphosphate (TPP) and then mixed with CaP matrix. A group of CaP-CS samples without cross-linking was also prepared. Samples were fabricated and tested based on the known standards. Additionally, the effect of different powder (P) to liquid (L) ratios was also investigated. Both cross-linked and uncross-linked CaP-CS samples showed excellent washout resistance. The most significant effects were observed on Young's modulus and compressive strength in wet condition as well as surface hardness. In dry conditions, the Young's modulus of cross-linked samples were slightly improved. Based on the presented results, cross-linking does not have significant effect on porosity. As expected, by increasing the P/L ratio of sample, ductility and injectabilty were decreased. However, in the most cases, mechanical properties were enhanced. The results have shown that cross-linking can be improved the mechanical properties of CaP-CS and hence it can be used for bone tissue engineering applications. PMID:26046262

  15. xComb: a cross-linked peptide database approach to protein-protein interaction analysis

    PubMed Central

    Panchaud, Alexandre; Singh, Pragya; Shaffer, Scott A.; Goodlett, David R.

    2010-01-01

    We developed an informatic method to identify tandem mass spectra composed of chemically cross-linked peptides from those of linear peptides and to assign sequence to each of the two unique peptide sequences. For a given set of proteins the key software tool, xComb, combs through all theoretically feasible cross-linked peptides to create a database consisting of a subset of all combinations represented as peptide FASTA files. The xComb library of select theoretical cross-linked peptides may then be used as a database that is examined by a standard proteomic search engine to match tandem mass spectral datasets to identify cross-linked peptides. The database search may be conducted against as many as 50 proteins with a number of common proteomic search engines, e.g. Phenyx, Sequest, OMSSA, Mascot and X!Tandem. By searching against a peptide library of linearized, cross-linked peptides, rather than a linearized protein library, search times are decreased and the process is decoupled from any specific search engine. A further benefit of decoupling from the search engine is that protein cross-linking studies may be conducted with readily available informatics tools for which scoring routines already exist within the proteomic community. PMID:20302351

  16. Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.

    PubMed

    Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

    2014-06-01

    Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. PMID:24768266

  17. Collagen Cross-Linking Using Riboflavin and Ultraviolet-A for Corneal Thinning Disorders

    PubMed Central

    Pron, G; Ieraci, L; Kaulback, K

    2011-01-01

    Executive Summary Objective The main objectives for this evidence-based analysis were to determine the safety and effectiveness of photochemical corneal collagen cross-linking with riboflavin (vitamin B2) and ultraviolet-A radiation, referred to as CXL, for the management of corneal thinning disease conditions. The comparative safety and effectiveness of corneal cross-linking with other minimally invasive treatments such as intrastromal corneal rings was also reviewed. The Medical Advisory Secretariat (MAS) evidence-based analysis was performed to support public financing decisions. Subject of the Evidence-Based Analysis The primary treatment objective for corneal cross-linking is to increase the strength of the corneal stroma, thereby stabilizing the underlying disease process. At the present time, it is the only procedure that treats the underlying disease condition. The proposed advantages for corneal cross-linking are that the procedure is minimally invasive, safe and effective, and it can potentially delay or defer the need for a corneal transplant. In addition, corneal cross-linking does not adversely affect subsequent surgical approaches, if they are necessary, or interfere with corneal transplants. The evidence for these claims for corneal cross-linking in the management of corneal thinning disorders such as keratoconus will be the focus of this review. The specific research questions for the evidence review were as follows: Technical: How technically demanding is corneal cross-linking and what are the operative risks? Safety: What is known about the broader safety profile of corneal cross-linking? Effectiveness - Corneal Surface Topographic Affects: What are the corneal surface remodeling effects of corneal cross-linking? Do these changes interfere with subsequent interventions, particularly corneal transplant known as penetrating keratoplasty (PKP)? Effectiveness -Visual Acuity: What impacts does the remodeling have on visual acuity? Are these impacts

  18. Multiple phases of protien gels

    NASA Astrophysics Data System (ADS)

    Annaka, Masahiko; Tanaka, Toyoichi

    1994-03-01

    A multiple phase transition was observed in gels made by covalently cross-linking proteins in either native or denatured state. The enzymatic activity of the gels prepared from native α-chymotrypsin was determined for each of the multiple phases. The reversibility of the swelling degrees and the enzymatic reaction rates upon phase transition suggests that the protein is at a free energy minimum and thus in a phase.

  19. Immunofluoresence of rabbit corneas following collagen cross-linking treatment with Riboflavin and Ultraviolet A

    PubMed Central

    Esquenazi, Salomon; He, Jiucheng; Li, Na; Bazan, Haydee E.P.

    2009-01-01

    Purpose To assess ultrastructural modifications in keratocytes and inflammatory cell response in rabbit corneas after riboflavin and ultraviolet A (UVA) exposure using immunoflurescence microscopy. Methods Twenty adult New Zealand albino rabbits weighing 2.0 to 3.0 kg were used in this study. Two rabbits served as controls. The animals had their epithelia removed and were cross-linked with riboflavin 0.1% solution (10mgs riboflavin-5-phosphate in 10ml 20% dextran-T-500) applied every 3 minutes for 30 minutes, and exposed to UVA (360 nm, 3 mW/cm2) for 30 minutes. Four rabbits were humanely euthanized at each time point of 1, 3 and 11 days and at 3 and 5 weeks after the procedure. Immunohistochemestry studies of thin sections of each cornea were performed using TUNEL staining, Alpha smooth muscle actin (α-SMA), CD-3, myeloperoxidase (MPO) antibodies and DAPI counterstaining. In another experiment six additional rabbits were treated as above, and after 10 days of cross-linking, 5 μl of lipopolysaccharide (LPS) endotoxin (1μg/ml) was injected in the mid stroma. Results Cross-linked corneas showed early stromal edema. By 5 weeks, complete resolution of the edema and a pronounced highly organized anterior 200 μm fluorescent zone was observed. TUNEL staining showed keratocyte death by both necrosis and apoptosis between day 1 and 3 after cross-linking. At day 1 the limbal area close to the cross linking zone showed some inflammatory cells as well as α-SMA positive cells, indicative of the presence of myofibroblasts. By day 3 some myofibroblasts had migrated to the area beneath the cross linked stroma. Between day 3 and 5 weeks there was an increase in α-SMA staining in the area surrounding the cross linked stroma. The area of cross linking remained acellular up to 5 weeks. Conclusions Collagen cross-linking results in early edema, keratocyte apoptosis and necrosis, appearance of inflammatory cells in the surrounding area of treatment and transformation of

  20. Intra-molecular cross-linking of acidic residues for protein structure studies.

    PubMed

    Novak, Petr; Kruppa, Gary H

    2008-01-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would help to develop structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine (lysine, the amino terminus) selective reagents. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution and solvent accessibility of the lysines in the protein sequence. To overcome these limitations, we have investigated the use of cross-linking reagents that can react with other reactive side chains in proteins. We used 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E) and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO side chains can react to form "zero-length" cross-links with nearby primary amine containing residues, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO side chains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker arm of variable length. Using these reagents, we have found three new "zero-length" cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18 and K63-E64). Using the dihydrazide cross-linkers, we have identified two new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 A. These results show that additional structural information can be obtained by exploiting new cross-linker chemistry

  1. Immune Focusing and Enhanced Neutralization Induced by HIV-1 gp140 Chemical Cross-Linking

    PubMed Central

    Schiffner, T.; Kong, L.; Duncan, C. J. A.; Back, J. W.; Benschop, J. J.; Shen, X.; Huang, P. S.; Stewart-Jones, G. B.; DeStefano, J.; Seaman, M. S.; Tomaras, G. D.; Montefiori, D. C.; Schief, W. R.

    2013-01-01

    Experimental vaccine antigens based upon the HIV-1 envelope glycoproteins (Env) have failed to induce neutralizing antibodies (NAbs) against the majority of circulating viral strains as a result of antibody evasion mechanisms, including amino acid variability and conformational instability. A potential vaccine design strategy is to stabilize Env, thereby focusing antibody responses on constitutively exposed, conserved surfaces, such as the CD4 binding site (CD4bs). Here, we show that a largely trimeric form of soluble Env can be stably cross-linked with glutaraldehyde (GLA) without global modification of antigenicity. Cross-linking largely conserved binding of all potent broadly neutralizing antibodies (bNAbs) tested, including CD4bs-specific VRC01 and HJ16, but reduced binding of several non- or weakly neutralizing antibodies and soluble CD4 (sCD4). Adjuvanted administration of cross-linked or unmodified gp140 to rabbits generated indistinguishable total gp140-specific serum IgG binding titers. However, sera from animals receiving cross-linked gp140 showed significantly increased CD4bs-specific antibody binding compared to animals receiving unmodified gp140. Moreover, peptide mapping of sera from animals receiving cross-linked gp140 revealed increased binding to gp120 C1 and V1V2 regions. Finally, neutralization titers were significantly elevated in sera from animals receiving cross-linked gp140 rather than unmodified gp140. We conclude that cross-linking favors antigen stability, imparts antigenic modifications that selectively refocus antibody specificity and improves induction of NAbs, and might be a useful strategy for future vaccine design. PMID:23843636

  2. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives.

    PubMed

    Hu, Jianqing; Peng, Kaimei; Guo, Jinshan; Shan, Dingying; Kim, Gloria B; Li, Qiyao; Gerhard, Ethan; Zhu, Liang; Tu, Weiping; Lv, Weizhong; Hickner, Michael A; Yang, Jian

    2016-07-13

    Waterborne polymers, including waterborne polyurethanes (WPU), polyester dispersions (PED), and polyacrylate emulsions (PAE), are employed as environmentally friendly water-based coatings and adhesives. An efficient, fast, stable, and safe cross-linking strategy is always desirable to impart waterborne polymers with improved mechanical properties and water/solvent/thermal and abrasion resistance. For the first time, click chemistry was introduced into waterborne polymer systems as a cross-linking strategy. Click cross-linking rendered waterborne polymer films with significantly improved tensile strength, hardness, adhesion strength, and water/solvent resistance compared to traditional waterborne polymer films. For example, click cross-linked WPU (WPU-click) has dramatically improved the mechanical strength (tensile strength increased from 0.43 to 6.47 MPa, and Young's modulus increased from 3 to 40 MPa), hardness (increased from 59 to 73.1 MPa), and water resistance (water absorption percentage dropped from 200% to less than 20%); click cross-linked PED (PED-click) film also possessed more than 3 times higher tensile strength (∼28 MPa) than that of normal PED (∼8 MPa). The adhesion strength of click cross-linked PAE (PAE-click) to polypropylene (PP) was also improved (from 3 to 5.5 MPa). In addition, extra click groups can be preserved after click cross-linking for further functionalization of the waterborne polymeric coatings/adhesives. In this work, we have demonstrated that click modification could serve as a convenient and powerful approach to significantly improve the performance of a variety of traditional coatings and adhesives. PMID:27326894

  3. Mesoscopic simulations of hydrophilic cross-linked polycarbonate polyurethane networks: structure and morphology.

    PubMed

    Iype, E; Esteves, A C C; de With, G

    2016-06-14

    Polyurethane (PU) cross-linked networks are frequently used in biomedical and marine applications, e.g., as hydrophilic polymer coatings with antifouling or low-friction properties and have been reported to exhibit characteristic phase separation between soft and hard segments. Understanding this phase-separation behavior is critical to design novel hydrophilic polymer coatings. However, most of the studies on the structure and morphology of cross-linked coatings are experimental, which only assess the phase separation via indirect methods. Herein we present a mesoscopic simulation study of the network characteristics of model hydrophilic polymer networks, consisting of PU with and without methyl-polyethylene glycol (mPEG) dangling chains. The systems are analyzed using a number of tools, such as the radial distribution function, the cross-link point density distribution and the Voronoi volume distribution (of the cross-linking points). The combined results show that the cross-linked networks without dangling chains are rather homogeneous but contain a small amount of clustering of cross-linker molecules. A clear phase separation is observed when introducing the dangling chains. In spite of that, the amount of cross-linker molecules connected to dangling chains only, i.e., not connected to the main network, is relatively small, leading to about 3 wt% extractables. Thus, these cross-linked polymers consist of a phase-separated, yet highly connected network. This study provides valuable guidelines towards new self-healing hydrophilic coatings based on the molecular design of cross-linked networks in direct contact with water or aqueous fluids, e.g., as anti-fouling self-repairing coatings for marine applications. PMID:27174657

  4. Conformational Transitions of the Cross-linking Domains of Elastin during Self-assembly*

    PubMed Central

    Reichheld, Sean E.; Muiznieks, Lisa D.; Stahl, Richard; Simonetti, Karen; Sharpe, Simon; Keeley, Fred W.

    2014-01-01

    Elastin is the intrinsically disordered polymeric protein imparting the exceptional properties of extension and elastic recoil to the extracellular matrix of most vertebrates. The monomeric precursor of elastin, tropoelastin, as well as polypeptides containing smaller subsets of the tropoelastin sequence, can self-assemble through a colloidal phase separation process called coacervation. Present understanding suggests that self-assembly is promoted by association of hydrophobic domains contained within the tropoelastin sequence, whereas polymerization is achieved by covalent joining of lysine side chains within distinct alanine-rich, α-helical cross-linking domains. In this study, model elastin polypeptides were used to determine the structure of cross-linking domains during the assembly process and the effect of sequence alterations in these domains on assembly and structure. CD temperature melts indicated that partial α-helical structure in cross-linking domains at lower temperatures was absent at physiological temperature. Solid-state NMR demonstrated that β-strand structure of the cross-linking domains dominated in the coacervate state, although α-helix was predominant after subsequent cross-linking of lysine side chains with genipin. Mutation of lysine residues to hydrophobic amino acids, tyrosine or alanine, leads to increased propensity for β-structure and the formation of amyloid-like fibrils, characterized by thioflavin-T binding and transmission electron microscopy. These findings indicate that cross-linking domains are structurally labile during assembly, adapting to changes in their environment and aggregated state. Furthermore, the sequence of cross-linking domains has a dramatic effect on self-assembly properties of elastin-like polypeptides, and the presence of lysine residues in these domains may serve to prevent inappropriate ordered aggregation. PMID:24550393

  5. Pharmacologic Alternatives to Riboflavin Photochemical Corneal Cross-Linking: A Comparison Study of Cell Toxicity Thresholds

    PubMed Central

    Kim, MiJung; Takaoka, Anna; Hoang, Quan V.; Trokel, Stephen L.; Paik, David C.

    2014-01-01

    Purpose. The efficacy of therapeutic cross-linking of the cornea using riboflavin photochemistry (commonly abbreviated as CXL) has caused its use to become widespread. Because there are known chemical agents that cross-link collagenous tissues, it may be possible to cross-link tissue pharmacologically. The present study was undertaken to compare the cell toxicity of such agents. Methods. Nine topical cross-linking agents (five nitroalcohols, glyceraldehyde [GLYC], genipin [GP], paraformaldehyde [FA], and glutaraldehyde [GLUT]) were tested with four different cell lines (immortalized human corneal epithelial cells, human skin fibroblasts, primary bovine corneal endothelial cells, and immortalized human retinal pigment epithelial cells [ARPE-19]). The cells were grown in planar culture and exposed to each agent in a range of concentrations (0.001 mM to 10 mM) for 24 hours followed by a 48-hour recovery phase. Toxicity thresholds were determined by using the trypan blue exclusion method. Results. A semiquantitative analysis using five categories of toxicity/fixation was carried out, based on plate attachment, uptake of trypan blue stain, and cellular fixation. The toxicity levels varied by a factor of 103 with the least toxic being mononitroalcohols and GLYC, intermediate toxicity for a nitrodiol and nitrotriol, and the most toxic being GLUT, FA, GP, and bronopol, a brominated nitrodiol. When comparing toxicity between different cell lines, the levels were generally in agreement. Conclusions. There are significant differences in cell toxicity among potential topical cross-linking compounds. The balance between cross-linking of tissue and cell toxicity should be borne in mind as compounds and strategies to improve mechanical tissue properties through therapeutic tissue cross-linking continue to develop. PMID:24722697

  6. Mesoscopic simulations of hydrophilic cross-linked polycarbonate polyurethane networks: structure and morphology.

    PubMed

    Iype, E; Esteves, A C C; de With, G

    2016-06-14

    Polyurethane (PU) cross-linked networks are frequently used in biomedical and marine applications, e.g., as hydrophilic polymer coatings with antifouling or low-friction properties and have been reported to exhibit characteristic phase separation between soft and hard segments. Understanding this phase-separation behavior is critical to design novel hydrophilic polymer coatings. However, most of the studies on the structure and morphology of cross-linked coatings are experimental, which only assess the phase separation via indirect methods. Herein we present a mesoscopic simulation study of the network characteristics of model hydrophilic polymer networks, consisting of PU with and without methyl-polyethylene glycol (mPEG) dangling chains. The systems are analyzed using a number of tools, such as the radial distribution function, the cross-link point density distribution and the Voronoi volume distribution (of the cross-linking points). The combined results show that the cross-linked networks without dangling chains are rather homogeneous but contain a small amount of clustering of cross-linker molecules. A clear phase separation is observed when introducing the dangling chains. In spite of that, the amount of cross-linker molecules connected to dangling chains only, i.e., not connected to the main network, is relatively small, leading to about 3 wt% extractables. Thus, these cross-linked polymers consist of a phase-separated, yet highly connected network. This study provides valuable guidelines towards new self-healing hydrophilic coatings based on the molecular design of cross-linked networks in direct contact with water or aqueous fluids, e.g., as anti-fouling self-repairing coatings for marine applications.

  7. Hyaluronan and chondroitin sulfate proteoglycans in the supramolecular organization of the mammalian vitreous body.

    PubMed

    Theocharis, Dimitrios A; Skandalis, Spyros S; Noulas, Argiris V; Papageorgakopoulou, Nickoletta; Theocharis, Achilleas D; Karamanos, Nikos K

    2008-01-01

    The mammalian vitreous gel is a specialized type of highly hydrated extracellular matrix, which is composed of interwoven networks of uronic acid-containing polyanionic macromolecules, (i.e., hyaluronan, versican, and IX collagen) and collagen fibrils. Hyaluronan comprises the vast majority of the uronic acid-containing molecules, which contributes to structure and function of vitreous in at least two ways: its unique biophysical and hydrodynamic properties influence the vitreous homeostasis and biomechanics; it is also a template for assembly of other extracellular macromolecules, for example, versican. The other uronic acid-containing molecules namely versican and IX collagen--two chondroitin sulfate (CS) proteoglycans--occur in the vitreous without significant quantitative variations among different mammalians but with some marked variations on the molecular size and sulfation pattern of their chondroitin sulfate side chains. The contribution of versican and IX collagen (through their protein and their CS side chains) to the supramolecular organization of the vitreous gel is poorly understood. However, versican having the ability to bind hyaluronan via its N-terminal and other binding partners via its C-terminal region can play a crucial role on the structural stability and functionality of the vitreous.

  8. Characterization of the Enzymatic Activity of the Actin Cross-Linking Domain from the Vibrio cholerae MARTXVc Toxin

    PubMed Central

    Kudryashov, Dmitri S.; Cordero, Christina L.; Reisler, Emil; Fullner Satchell, Karla J.

    2008-01-01

    Vibrio cholerae is a Gram-negative bacterial pathogen that exports enterotoxins which alter host cells through a number of mechanisms resulting in diarrheal disease. Among the secreted toxins is the multifunctional, autoprocessing RTX toxin (MARTXVc), which disrupts actin cytoskeleton by covalently cross-linking actin monomers into oligomers. The region of the toxin responsible for cross-linking activity is the actin cross-linking domain (ACD). In this study, we demonstrate unambiguously that ACD utilizes G- and not F-actin as a substrate for the cross-linking reaction and hydrolyzes one molecule of ATP per cross-linking event. Furthermore, major actin binding proteins that regulate actin cytoskeleton in vivo do not block the cross-linking reaction in vitro. Cofilin inhibits the cross-linking of G- and F-actin at high mole ratio to actin, but accelerates F-actin cross-linking at low mole ratios. DNase I blocks completely the cross-linking of actin, likely due to steric hindrance with one of the cross-linking sites on actin. In the context of the holotoxin, the inhibition of Rho by the Rho-inactivating domain of MARTXVc (Sheahan, K.L., Satchell, K.J.F. 2007 Cellular Microbiology 9:1324-1335) would accelerate F-actin depolymerization and provide G-actin, alone or in complex with actin binding proteins, for cross-linking by ACD, ultimately leading to the observed rapid cell rounding. PMID:17951576

  9. Protein oxidation at different salt concentrations affects the cross-linking and gelation of pork myofibrillar protein catalyzed by microbial transglutaminase.

    PubMed

    Li, Chunqiang; Xiong, Youling L; Chen, Jie

    2013-06-01

    In a fabricated then restructured meat product, protein gelation plays an essential role in producing desirable binding and fat-immobilization properties. In the present study, myofibrillar protein (MFP) suspended in 0.15, 0.45, and 0.6 M NaCl was subjected to hydroxyl radical stress for 2 or 24 h and then treated with microbial transglutaminase (MTGase) in 0.6 M NaCl (E : S = 1 : 20) at 4 and 15 °C for 2 h. Protein cross-linking and dynamic rheological tests were performed to assess the efficacy of MTGase for mediating the gelation of oxidized MFP. MTGase treatments affected more remarkable polymerization of myosin in oxidized MFP than in nonoxidized, especially for samples oxidized at 0.6 M NaCl. Notably, the extent of MTGase-induced myosin cross-linking at 15 °C in oxidized MFP improved up to 46.8%, compared to 31.6% in nonoxidized MFP. MTGase treatment at 4 °C for MFP oxidized in 0.6 M NaCl, but not MFP oxidized in 0.15 M NaCl, produced stronger gels than nonoxidized MFP (P < 0.05). The final (75 °C) storage modulus (G') of oxidized MFP gels was significantly greater than that of nonoxidized, although the G' of the transient peak (∼44.5 °C) showed the opposite trend. Overall, oxidation at high salt concentrations significantly improved MTGase-mediated myosin cross-linking and MFP gelation. This might be because under this condition, MTGase had an increased accessibility to glutamine and lysine residues to effectively initiate protein-protein interactions and gel network formation. PMID:23627930

  10. Gel barrier formation in unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Kim, Meejeong; Corapcioglu, M. Yavuz

    2002-05-01

    The gel barrier formation by a gelling liquid (Colloidal Silica) injection in an unsaturated porous medium is investigated by developing a mathematical model and conducting numerical simulations. Gelation process is initiated by adding electrolytes such as NaCl, and the gel phase consisting of cross-linked colloidal silica particles grows as the gelation process proceeds. The mathematical model describing the transport and gelation of Colloidal Silica (CS) is based on coupled mass balance equations for the gel mixture (the sol phase plus the gel phase), gel phase (cross-linked colloidal silica particles plus water captured between cross-linked particles), and colloidal silica particles (discrete and cross-linked) and NaCl in the sol (suspension of discrete colloidal silica particles in water) and gel phases. The solutions in terms of volumetric fraction of the gel phase yield the gel mixture viscosity via the dependency on the volumetric fraction of gel phase. This dependency is determined from a kinetic gelation model with time-normalized viscosity curves. The proposed model is verified by comparing experimentally and numerically determined hydraulic conductivities of gel-treated soil columns at different CS injection volumes. The numerical experiments indicate that an impermeable gel layer is formed within the time period twice the gel-point in a one-dimensional flow system. At the same normalized time corresponding to twice the gel-point, the CS solutions with lower NaCl concentrations result in further migration and poor performance in plugging the pore space. The viscosity computation proposed in this study is compared with another method available in the literature. It is observed that the other method estimates the viscosity at the mixing zone higher than the one proposed by the authors. The proposed model can simulate realistic injection scenarios with various combinations of operating parameters such as NaCl concentration and NaCl mixing time, and thus

  11. Gel barrier formation in unsaturated porous media.

    PubMed

    Kim, Meejeong; Corapcioglu, M Yavuz

    2002-05-01

    The gel barrier formation by a gelling liquid (Colloidal Silica) injection in an unsaturated porous medium is investigated by developing a mathematical model and conducting numerical simulations. Gelation process is initiated by adding electrolytes such as NaCl, and the gel phase consisting of cross-linked colloidal silica particles grows as the gelation process proceeds. The mathematical model describing the transport and gelation of Colloidal Silica (CS) is based on coupled mass balance equations for the gel mixture (the sol phase plus the gel phase), gel phase (cross-linked colloidal silica particles plus water captured between cross-linked particles), and colloidal silica particles (discrete and cross-linked) and NaCl in the sol (suspension of discrete colloidal silica particles in water) and gel phases. The solutions in terms of volumetric fraction of the gel phase yield the gel mixture viscosity via the dependency on the volumetric fraction of gel phase. This dependency is determined from a kinetic gelation model with time-normalized viscosity curves. The proposed model is verified by comparing experimentally and numerically determined hydraulic conductivities of gel-treated soil columns at different CS injection volumes. The numerical experiments indicate that an impermeable gel layer is formed within the time period twice the gel-point in a one-dimensional flow system. At the same normalized time corresponding to twice the gel-point, the CS solutions with lower NaCl concentrations result in further migration and poor performance in plugging the pore space. The viscosity computation proposed in this study is compared with another method available in the literature. It is observed that the other method estimates the viscosity at the mixing zone higher than the one proposed by the authors. The proposed model can simulate realistic injection scenarios with various combinations of operating parameters such as NaCl concentration and NaCl mixing time, and thus

  12. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo.

    PubMed

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H; Cakmak, Selami; Nielsen, G Petur; Muratoglu, Orhun K

    2014-09-01

    Recent in vitro findings suggest that UHMWPE wear particles containing vitamin E (VE) may have reduced biologic activity and decreased osteolytic potential. We hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE would cause less osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between virgin (12.2%±8%) and VE-UHMWPE (3%±1.4%) groups in regards to bone resorption (P=0.005) and inflammatory fibrous tissue overlaying the calvaria (0.48 vs. 0.20, P<0.0001). These results suggest that VE-UHMWPE particles have reduced osteolytic potential in vivo when compared to virgin UHMWPE.

  13. Identification of neighboring protein pairs cross-linked with dimethyl 3,3'-dithiobispropionimidate in rat liver 40S ribosomal subunits.

    PubMed

    Uchiumi, T; Terao, K; Ogata, K

    1981-07-01

    Rat liver 40S ribosomal subunits were treated with a bifunctional imidoester, dimethyl 3,3'-dithiobispropionimidate (DTP), and the neighboring protein pairs were identified. The cross-linked proteins were analyzed by acrylamide/SDS diagonal gel electrophoresis (Sommer & Traut (1974) Proc. Natl. Acad. Sci. U.S. 71, 3946-3950). The cross-linked components that fell off the diagonal upon adding 2-mercaptoethanol in the second dimension were labeled with 125I in the acrylamide gel and identified by two-dimensional acrylamide/urea gel electrophoresis, followed by radioautography. Considering these results and the molecular weights, we propose the following ten pairs, according to our numbering system (Terao & Ogata (1975) Biochim. Biophys. Acta 402, 219-229): S3-S5 (S3/S3a-S4), S3-S14 (S3/S3a-S14), S3-S17 (S3/S3a-S16), S5-S22 (S4-S23/S24), S10-S12 (S8-S11), S9-S16 (S9-S18), S9-S22 (S9-S23/S24), S6-S23 (S5-S25), S17-S21 (S16-S19), and S16-S26 (S18-S27). The designation according to the proposed uniform nomenclature (McConkey et al. (1979) Mol. Gen. Genet. 169, 1-6) are given in parentheses.

  14. [Cross-linking and neurodermitis: prolonged re-epithelisation with severe corneal vascularisation after cross-linking in a patient with neurodermitis and keratoconus].

    PubMed

    Görsch, I C; Steinberg, J; Richard, G; Katz, T; Linke, S

    2014-06-01

    This case report describes a patient with keratoconus and neurodermitis suffering from a significantly prolonged postoperative time interval to re-epithelisation after corneal cross-linking. The development of corneal calcifications and vascularisations additionally inhibited proper re-epithelisation. Therefore the patient received four subsequent subconjunctival injections of Bevacizumab and an additional keratectomy to remove the calcifications. This therapeutic scheme led to a significant reduction of corneal vascularisation and finally a full rehabilitation of the epithelium. PMID:24788604

  15. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation.

    PubMed

    Zhang, Xiujie; Chen, Xueying; Yang, Ting; Zhang, Naili; Dong, Li; Ma, Shaoying; Liu, Xiaoming; Zhou, Mo; Li, Baoxing

    2014-12-01

    The purpose of this paper is to analyze the properties of fabricating rat tail type I collagen scaffolds cross-linked with genipin under different conditions. The porous genipin cross-linked scaffolds are obtained through a two step freeze-drying process. To find out the optimal cross-link condition, we used different genipin concentrations and various cross-linked temperatures to prepare the scaffolds in this study. The morphologies of the scaffolds were characterized by scanning electron microscope, and the mechanical properties of the scaffolds were evaluated under dynamic compression. Additionally, the cross-linking degree was assessed by ninhydrin assay. To investigate the swelling ratio and the in vitro degradation of the collagen scaffold, the tests were also carried out by immersion of the scaffolds in a PBS solution or digestion in a type I collagenase respectively. The morphologies of the non-cross-linked scaffolds presented a lattice-like structure while the cross-linked ones displayed a sheet-like framework. The morphology of the genipin cross-linked scaffolds could be significantly changed by either increasing genipin concentration or the temperature. The swelling ratio of each cross-linked scaffold was much lower than that of the control (non-cross-linked).The ninhydrin assay demonstrated that the higher temperature and genipin concentration could obviously increase the cross-linking efficiency. The in vitro degradation studies indicated that genipin cross-linking can effectively elevate the biostability of the scaffolds. The biocompatibility and cytotoxicity of the scaffolds was evaluated by culturing rat chondrocytes on the scaffold in vitro and by MTT. The results of MTT and the fact that the chondrocytes adhered well to the scaffolds demonstrated that genipin cross-linked scaffolds possessed an excellent biocompatibility and low cytotoxicity. Based on these results, 0.3 % genipin concentrations and 37 °C cross-linked temperatures are

  16. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure.

    PubMed

    Wang, Kaiqiang; Luo, Shuizhong; Cai, Jing; Sun, Qiaoqiao; Zhao, Yanyan; Zhong, Xiyang; Jiang, Shaotong; Zheng, Zhi

    2016-04-15

    The rheological behavior and thermal properties of wheat gluten following partial hydrolysis using Alcalase and subsequent microbial transglutaminase (MTGase) cross-linking were investigated. The wheat gluten storage modulus (G') and thermal denaturation temperature (Tg) were significantly increased from 2.26 kPa and 54.43°C to 7.76 kPa and 57.69°C, respectively, by the combined action of partial hydrolysis (DH 0.187%) and cross-linking. The free SH content, surface hydrophobicity, and secondary structure analysis suggested that an appropriate degree of Alcalase-based hydrolysis allowed the compact wheat gluten structure to unfold, increasing the β-sheet content and surface hydrophobicity. This improved its molecular flexibility and exposed additional glutamine sites for MTGase cross-linking. SEM images showed that a compact 3D network formed, while SDS-PAGE profiles revealed that excessive hydrolysis resulted in high-molecular-weight subunits degrading to smaller peptides, unsuitable for cross-linking. It was also demonstrated that the combination of Alcalase-based partial hydrolysis with MTGase cross-linking might be an effective method for modifying wheat gluten rheological behavior and thermal properties.

  17. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    PubMed

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved. PMID:26594874

  18. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde

    PubMed Central

    Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang

    2013-01-01

    This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug. PMID:23670533

  19. Lignin cross-links with cysteine- and tyrosine-containing peptides under biomimetic conditions.

    PubMed

    Diehl, Brett G; Brown, Nicole R

    2014-10-22

    The work presented here investigates the cross-linking of various nucleophilic amino acids with lignin under aqueous conditions, thus providing insight as to which amino acids might cross-link with lignin in planta. Lignin dehydrogenation polymer (DHP) was prepared in aqueous solutions that contained tripeptides with the general structure XGG, where X represents an amino acid with a nucleophilic side chain. Fourier-transform infrared spectroscopy and energy dispersive X-ray spectroscopy showed that peptides containing cysteine and tyrosine were incorporated into the DHP to form DHP-CGG and DHP-YGG adducts, whereas peptides containing other nucleophilic amino acids were not incorporated. Scanning electron microscopy showed that the physical morphology of DHP was altered by the presence of peptides in the aqueous solution, regardless of peptide incorporation into the DHP. Nuclear magnetic resonance (NMR) spectroscopy showed that cysteine-containing peptide cross-linked with lignin at the lignin α-position, whereas in the case of the lignin-tyrosine adduct the exact cross-linking pathway could not be determined. This is the first study to use NMR to confirm cross-linking between lignin and peptides under biomimetic conditions. The results of this study may indicate the potential for lignin-protein linkage formation in planta, particularly between lignin and cysteine- and/or tyrosine-rich proteins. PMID:25275918

  20. Genipin cross-linked decellularized tracheal tubular matrix for tracheal tissue engineering applications

    PubMed Central

    Sun, Fei; Jiang, Yuan; Xu, Yanfei; Shi, Hongcan; Zhang, Siquan; Liu, Xingchen; Pan, Shu; Ye, Gang; Zhang, Weidong; Zhang, Fangbiao; Zhong, Chonghao

    2016-01-01

    Decellularization techniques have been widely used as an alternative strategy for organ reconstruction. This study investigated the mechanical, pro-angiogenic and in vivo biocompatibility properties of decellularized airway matrices cross-linked with genipin. New Zealand rabbit tracheae were decellularized and cross-linked with genipin, a naturally derived agent. The results demonstrated that, a significant (p < 0.05) increase in the secant modulus was computed for the cross-linked tracheae, compared to the decellularized samples. Angiogenic assays demonstrated that decellularized tracheal scaffolds and cross-linked tracheae treated with 1% genipin induce strong in vivo angiogenic responses (CAM analysis). Seven, 15 and 30 days after implantation, decreased (p < 0.01) inflammatory reactions were observed in the xenograft models for the genipin cross-linked tracheae matrices compared with control tracheae, and no increase in the IgM or IgG content was observed in rats. In conclusion, treatment with genipin improves the mechanical properties of decellularized airway matrices without altering the pro-angiogenic properties or eliciting an in vivo inflammatory response. PMID:27080716

  1. Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing.

    PubMed

    Kirk, James F; Ritter, Gregg; Finger, Isaac; Sankar, Dhyana; Reddy, Joseph D; Talton, James D; Nataraj, Chandra; Narisawa, Sonoko; Millán, José Luis; Cobb, Ronald R

    2013-01-01

    Collagen scaffolds have been widely employed as a dermal equivalent to induce fibroblast infiltrations and dermal regeneration in the treatment of chronic wounds and diabetic foot ulcers. Cross-linking methods have been developed to address the disadvantages of the rapid degradation associated with collagen-based scaffolds. To eliminate the potential drawbacks associated with glutaraldehyde cross-linking, methods using a water soluble carbodiimide have been developed. In the present study, the glycosaminoglycan (GAG) hyaluronic acid (HA), was covalently attached to an equine tendon derived collagen scaffold using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) to create ntSPONGE The HA was shown to be homogeneously distributed throughout the collagen matrix. In vitro analyses of the scaffold indicated that the cross-linking enhanced the biological stability by decreasing the enzymatic degradation and increasing the thermal denaturation temperature. The material was shown to support the attachment and proliferation of mouse L929 fibroblast cells. In addition, the cross-linking decreased the resorption rate of the collagen as measured in an intramuscular implant model in rabbits. The material was also shown to be biocompatible in a variety of in vitro and in vivo assays. These results indicate that this cross-linked collagen-HA scaffold, ntSPONGE has the potential for use in chronic wound healing.

  2. F actin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling

    PubMed Central

    1995-01-01

    Transverse sections though Drosophila bristles reveal 7-11 nearly round, plasma membrane-associated bundles of actin filaments. These filaments are hexagonally packed and in a longitudinal section they show a 12-nm periodicity in both the 1.1 and 1.0 views. From earlier studies this periodicity is attributable to cross-links and indicates that the filaments are maximally cross-linked, singed mutants also have 7-11 bundles, but the bundles are smaller, flattened, and the filaments within the bundles are randomly packed (not hexagonal); no periodicity can be detected in longitudinal sections. Another mutant, forked (f36a), also has 7-11 bundles but even though the bundles are very small, the filaments within them are hexagonally packed and display a 12-nm periodicity in longitudinal section. The singed-forked double mutant lacks filament bundles. Thus there are at least two species of cross-links between adjacent actin filaments. Hints of why two species of cross-links are necessary can be gleaned by studying bristle formation. Bristles sprout with only microtubules within them. A little later in development actin filaments appear. At early stages the filaments in the bundles are randomly packed. Later the filaments in the bundles become hexagonally packed and maximally cross-linked. We consider that the forked proteins may be necessary early in development to tie the filaments together in a bundle so that they can be subsequently zippered together by fascin (the singed gene product). PMID:7622563

  3. Cross-linking connectivity in bone collagen fibrils: the COOH-terminal locus of free aldehyde

    NASA Technical Reports Server (NTRS)

    Otsubo, K.; Katz, E. P.; Mechanic, G. L.; Yamauchi, M.

    1992-01-01

    Quantitative analyses of the chemical state of the 16c residue of the alpha 1 chain of bone collagen were performed on samples from fetal (4-6-month embryo) and mature (2-3 year old) bovine animals. All of this residue could be accounted for in terms of three chemical states, in relative amounts which depended upon the age of the animal. Most of the residue was incorporated into either bifunctional or trifunctional cross-links. Some of it, however, was present as free aldehyde, and the content increased with maturation. This was established by isolating and characterizing the aldehyde-containing peptides generated by tryptic digestion of NaB3H4-reduced mature bone collagen. We have concluded that the connectivity of COOH-terminal cross-linking in bone collagen fibrils changes with maturation in the following way: at first, each 16c residue in each of the two alpha 1 chains of the collagen molecule is incorporated into a sheet-like pattern of intermolecular iminium cross-links, which stabilizes the young, nonmineralized fibril as a whole. In time, some of these labile cross-links maturate into pyridinoline while others dissociate back to their precursor form. The latter is likely due to changes in the molecular packing brought about by the mineralization of the collagen fibrils. The resultant reduction in cross-linking connectivity may provide a mechanism for enhancing certain mechanical characteristics of the skeleton of a mature animal.

  4. Orientation birefringence of cross-linked rubber containing low-mass compound

    NASA Astrophysics Data System (ADS)

    Kiyama, Ayumi; Nobukawa, Shogo; Yamauchi, Masayuki

    2015-05-01

    Molecular orientation of low-mass compounds (LMCs) in a cross-linked rubber is studied in order to obtain the basic information on the dynamics of LMC molecules in a polymer beyond the glass transition temperature. A small amount of LMCs such as 4-cyano-4'-pentylbiphenyl (5CB), tricresylphosphate (TCP), and styrene-based tackifier (TF) is added into polybutadiene rubber (BR). After cross-linking reaction, the sheet samples are used to evaluate the orientation birefringence during stretching and stress relaxation. The rectangular films, cut out from the cross-linked sheets, are set in a uniaxial stretching machine equipped with an optical system to measure both birefringence and tensile stress simultaneously. It is confirmed that orientation birefringence is proportional to the stress for not only pure cross-linked BR, but also cross-linked BR containing an LMC in a wide range of strain. Even after stretching, the birefringence does not change as far as the sample is kept at a constant strain. The results suggest that the LMC molecules are forced to orient with polymer chains by the strong intermolecular orientation correlation. Because of the LMC orientation, the stress-optical coefficient CR is enhanced by the addition of 5CB and TCP, but depressed by TF. Therefore, the LMC doping can be used to control the birefringence of a retardation film.

  5. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus

    PubMed Central

    Raffa, Paolo; Rosati, Marianna

    2016-01-01

    In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999) comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72 ± 1.20 D (P = 0.01); in addition, corrected distance visual acuity improved significantly (P = 0.08) and spherical equivalent refraction was significantly less myopic (P = 0.02) 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus. PMID:27597895

  6. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Raffa, Paolo; Rosati, Marianna; Lombardo, Giuseppe

    2016-01-01

    In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999) comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72 ± 1.20 D (P = 0.01); in addition, corrected distance visual acuity improved significantly (P = 0.08) and spherical equivalent refraction was significantly less myopic (P = 0.02) 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus. PMID:27597895

  7. Knee-simulator testing of conventional and cross-linked polyethylene tibial inserts.

    PubMed

    Muratoglu, Orhun K; Bragdon, Charles R; Jasty, Murali; O'Connor, Daniel O; Von Knoch, Rebecca S; Harris, William H

    2004-10-01

    We compared the resistance to delamination and to adhesive/abrasive wear of conventional and highly cross-linked polyethylene tibial inserts of a cruciate-retaining total knee design using a knee simulator. Both groups were tested after aggressive, accelerated aging, and 1 set of conventional inserts was studied without aging. Aging oxidized the conventional, but not the highly cross-linked, inserts. The simulated normal gait testing lasted for 5 and 10 million cycles for the conventional and highly cross-linked inserts, respectively. Aged conventional inserts showed delaminations, whereas none were observed in the unaged conventional and aged cross-linked inserts. Wear rates measured by the gravimetric method were 9 +/- 2 mm3, 10 +/- 4 mm3, and 1 +/- 0 mm3 per million cycles; by the metrologic method, they were 8 +/- 1 mm3, 9 +/- 2 mm3, and 3 +/- 0 mm3 for the unaged conventional, aged conventional, and aged highly crosslinked inserts, respectively. In the test model used, oxidation led to delamination, whereas increased cross-link density resulted in reduced adhesive/abrasive wear of tibial inserts.

  8. Preparation of cross-linked hen-egg white lysozyme crystals free of cracks

    PubMed Central

    Yan, Er-Kai; Lu, Qin-Qin; Zhang, Chen-Yan; Liu, Ya-Li; He, Jin; Chen, Da; Wang, Bo; Zhou, Ren-Bin; Wu, Ping; Yin, Da-Chuan

    2016-01-01

    Cross-linked protein crystals (CLPCs) are very useful materials in applications such as biosensors, catalysis, and X-ray crystallography. Hence, preparation of CLPCs is an important research direction. During the preparation of CLPCs, an often encountered problem is that cracks may appear in the crystals, which may finally lead to shattering of the crystals into small pieces and cause problem in practical applications. To avoid cross-link induced cracking, it is necessary to study the cracking phenomenon in the preparation process. In this paper, we present an investigation on how to avoid cracking during preparation of CLPCs. An orthogonal experiment was designed to study the phenomenon of cross-link induced cracking of hen-egg white lysozyme (HEWL) crystals against five parameters (temperature, solution pH, crystal growth time, glutaraldehyde concentration, and cross-linking time). The experimental results showed that, the solution pH and crystal growth time can significantly affect cross-link induced cracking. The possible mechanism was studied, and optimized conditions for obtaining crack-free CLPCs were obtained and experimentally verified. PMID:27703210

  9. Lipid Cross-Linking of Nanolipoprotein Particles Substantially Enhances Serum Stability and Cellular Uptake.

    PubMed

    Gilmore, Sean F; Blanchette, Craig D; Scharadin, Tiffany M; Hura, Greg L; Rasley, Amy; Corzett, Michele; Pan, Chong-Xian; Fischer, Nicholas O; Henderson, Paul T

    2016-08-17

    Nanolipoprotein particles (NLPs) consist of a discoidal phospholipid lipid bilayer confined by an apolipoprotein belt. NLPs are a promising platform for a variety of biomedical applications due to their biocompatibility, size, definable composition, and amphipathic characteristics. However, poor serum stability hampers the use of NLPs for in vivo applications such as drug formulation. In this study, NLP stability was enhanced upon the incorporation and subsequent UV-mediated intermolecular cross-linking of photoactive DiynePC phospholipids in the lipid bilayer, forming cross-linked nanoparticles (X-NLPs). Both the concentration of DiynePC in the bilayer and UV exposure time significantly affected the resulting X-NLP stability in 100% serum, as assessed by size exclusion chromatography (SEC) of fluorescently labeled particles. Cross-linking did not significantly impact the size of X-NLPs as determined by dynamic light scattering and SEC. X-NLPs had essentially no degradation over 48 h in 100% serum, which is a drastic improvement compared to non-cross-linked NLPs (50% degradation by ∼10 min). X-NLPs had greater uptake into the human ATCC 5637 bladder cancer cell line compared to non-cross-linked particles, indicating their potential utility for targeted drug delivery. X-NLPs also exhibited enhanced stability following intravenous administration in mice. These results collectively support the potential utility of X-NLPs for a variety of in vivo applications. PMID:27411034

  10. Availability of fluorescence spectroscopic in the accompaniment of formation of corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Costa, M. M.; Kurachi, C.; Bagnato, V. S.; Faria e Sousa, S. J.; Ventura, L.

    2010-02-01

    The corneal cross-linking is a method that associates riboflavin and ultraviolet light to induce a larger mechanical resistance at cornea. This method has been used for the treatment of Keratoconus. Since cross-linking is recent as treatment, there is a need to verify the effectiveness of the method. Therefore, the viability of the fluorescence spectroscopy technique to follow the cross-linking formation at cornea was studied. Corneas were divided in two measuring procedures: M1 (cornea + riboflavin), and M2 (cornea + riboflavina + light irradiation, 365nm). For fluorescence measurements, a spectrofluorimeter was used, where several wavelengths were selected (between 320nm and 370nm) for cornea excitation. Several fluorescence spectra were collected, at 10 min-interval, during 60 min. Spectra allowed one to observe two very well defined bands of fluorescence: the first one at 400nm (collagen), and the second one at 520nm (riboflavin). After spectra analyses, a decrease of collagen fluorescence was observed for both groups. For riboflavin, on the other hand, there was a fluorescence increase for M1, and a decrease for M2. Thus, it is possible to conclude that it this technique is sensitive for the detection of tissue structural changes during cross-linking treatment, encouraging subsequent studies on quantification of cross-linking promotion in tissue.

  11. Usage of polarization-sensitive optical coherence tomography for investigation of collagen cross-linking

    NASA Astrophysics Data System (ADS)

    Ju, Myeong Jin; Tang, Shuo

    2015-04-01

    To investigate morphological alternation in corneal stroma induced by collagen cross-linking (CXL) treatment, polarization-sensitive optical coherence tomography (PS-OCT) capable of providing scattering, phase retardation, and degree of polarization uniformity (DOPU) images were employed on fresh bovine cornea. Significant corneal thickness reduction was observed after the CXL procedure, and its variation was quantitatively analyzed. From the scattering contrast, a hyperscattering region was observed in the anterior of the cornea immediately after the CXL procedure and its range increased with time. Within the scattering region, a slow increase was observed in the phase retardation image, and a discriminable characteristic was found in the DOPU image. A global threshold value was empirically determined from the averaged DOPU depth profile in order to locate the effective cross-linking depth. In addition to the standard protocol, an accelerated CXL procedure shortening the treatment time with higher intensity of ultraviolet-A (UV-)A power was also performed. From the measurement results after the two different CXL protocols, different cross-linking aspects were found and their difference was discussed in terms of the effectiveness of cross-linking. Based on this study, we believe that PS-OCT could be a promising optical imaging modality to evaluate the progression and effectiveness of the riboflavin/UV-A induced corneal collagen cross-linking.

  12. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    PubMed

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved.

  13. Biodegradable Chitosan-Based Ambroxol Hydrochloride Microspheres: Effect of Cross-Linking Agents

    PubMed Central

    Gangurde, HH; Chavan, NV; Mundada, AS; Derle, DV; Tamizharasi, S

    2011-01-01

    The objective of this study was to investigate the influence of type of cross-linking method used on the properties of ambroxol hydrochloride microspheres such as encapsulation efficiency, particle size, and drug release. Microspheres were prepared by solvent evaporation technique using chitosan as a matrix-forming agent and cross-linked using formaldehyde and heat treatment. Morphological and physicochemical properties of microspheres were then investigated by scanning electron microscopy (SEM), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR) spectroscopy. The cross-linking of chitosan takes place at the free amino group because of formation of imine bond as evidenced by FTIR. The DSC, XRD, and FTIR analysis showed that chitosan microspheres cross linked by heating were superior in properties and performance as compared to the microspheres cross-linked using formaldehyde. SEM results revealed that heat-treated microspheres were spherical, discrete having smooth, and porous structure. The particle size and encapsulation efficiencies of the prepared chitosan microspheres ranged between 10.83–24.11 μm and 39.73μ80.56%, respectively. The drug release was extended up to 12 h, and the kinetics of the drug release was obeying Higuchi kinetic proving diffusion-controlled drug release. PMID:21607049

  14. Structure and pasting properties of alkaline-treated phosphorylated cross-linked waxy maize starches.

    PubMed

    Shukri, Radhiah; Shi, Yong-Cheng

    2017-01-01

    The objectives of this study were to determine the stability of cross-linked bonds of starch at different pH values and their effects on the pasting property of waxy maize starch cross-linked by 0.05% and 3% sodium trimetaphosphate/sodium tripolyphosphate. The cross-linked waxy maize starch (CLWMS) was slurried (40%, w/w) and subjected to alkali treatments of pH 9, 10, 11, and 12 at 40°C for 4h. The phosphorus in 3% CLWMS decreased with increasing pH and remained unchanged in 0.05% CLWMS for all pH treatments. Decreased settling volumes indicated the reduction of swelling power for the alkali-treated CLWMS at pH 11 and 12. The (31)P NMR spectra of 3% CLWMS at pH 12 showed decreased cyclic monostarch phosphate, monostarch monophosphate, and monostarch diphosphate, but significantly increased distarch monophosphate. Alkali treatments of phosphorylated cross-linked starches offer a way to manipulate the rheological properties of cross-linked starch for desired food applications. PMID:27507452

  15. Characterization of polyelectrolyte behavior of the polysaccharides chitosan, heparin, and hyaluronan, by light scattering and viscometry.

    NASA Astrophysics Data System (ADS)

    Boddohi, Soheil; Yonemura, Susan; Kipper, Matt

    2008-03-01

    This study on the polyelectrolyte behavior of polysaccharides in solution is motivated by our recent work in development of nanostructured polysaccharide-based surface coatings. Chitosan behaves as a weak polycation, and hyaluronan behaves as a weak polyanion, while heparin behaves as a strong polyanion. The ability to control the conformation of these polysaccharides in solution, by changing the solution ionic strength and pH may offer the opportunity to further tune the nanoscale features of polysaccharide-based surface coatings assembled from solution. In the work reported here, the solution conformation of these polymers is determined from gel permeation chromatography coupled to differential refractive index, light scattering, and viscometry detection. These results are related to the nanostructure of chitosan-heparin and chitosan-hyaluronan surface coatings based on polyelectrolyte multilayers.

  16. Hyaluronan as an Immune Regulator in Human Diseases

    PubMed Central

    NOBLE, PAUL W.; LIANG, JIURONG; JIANG, DIANHUA

    2010-01-01

    Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on a variety of cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage by interacting with TLR2 and TLR4 on these parenchymal cells. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and stem cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases. PMID:21248167

  17. Well-defined liquid crystal gels from telechelic polymers.

    PubMed

    Xia, Yan; Verduzco, Rafael; Grubbs, Robert H; Kornfield, Julia A

    2008-02-01

    Well-defined liquid crystal networks with controlled molecular weight between cross-links and cross-link functionality were prepared by "click" cross-linking of telechelic polymers produced by ring-opening metathesis polymerization (ROMP). The networks readily swell in a small molecule liquid crystal, 5CB, to form LC gels with high swelling ratios. These gels exhibit fast, reversible, and low-threshold optic switching under applied electric fields when they are unconstrained between electrodes. For a given electric field, the LC gels prepared from shorter telechelic polymers showed a reduced degree of switching than their counterparts made from longer polymer strands. The reported approach provides control over important parameters for LC networks, such as the length of the network strands between cross-links, cross-linker functionality, and mesogen density. Therefore, it allows a detailed study of relationships between molecular structure and macroscopic properties of these scientifically and technologically interesting networks. PMID:18197667

  18. Effects of zoledronate on irradiated bone in vivo: analysis of the collagen types I, V and their cross-links lysylpyridinoline, hydroxylysylpyridinoline and hydroxyproline.

    PubMed

    Açil, Yahya; Gierloff, Matthias; Behrens, Carolin; Möller, Björn; Gassling, Volker; Niehoff, Peter; Wiltfang, Jörg; Simon, Maciej

    2013-03-01

    Radiotherapy can lead to a reduction of bone density with an increased risk of pathological fractures. Bisphosphonates may represent a preventive treatment option by increasing the density of anorganic bone mineral. Yet it is unknown how bisphosphonates act on irradiated collagen cross-links, which play an essential role for the mechanical stability of bone. The aim of this study was to evaluate the effects of zoledronate on bone collagens and their cross-links after irradiation. The right femur of 37 rats was irradiated with a single dose of 9.5 Gy at a high dose rate using an afterloading machine. Half of the rats (n=18) received additionally a single dose zoledronate (0.1 mg/kg body weight). Fourteen and 100 days after irradiation the femora were collected for histologic evaluation and determination of the collagen cross-links lysylpyridinoline, hydroxylysylpyridinoline, and hydroxyproline. The collagen types were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Fourteen days after treatment the lysylpyridinoline levels of all treatment groups were significantly lower compared to the untreated control. After 100 days, in the combined radiotherapy+zoledronate group significantly lower lysylpyridinoline values were determined (p=0.009). Radiotherapy and/or zoledronate did not change significantly the level of hydroxylysylpyridinoline. The concentration of hydroxyproline was 14 days after irradiation significantly higher in the combined treatment group compared to the control. No significant differences were observed 100 days after treatment. Zoledronate does not have the ability to restore the physiological bone collagen cross-link levels after radiotherapy. However, this would be necessary for regaining the physiological mechanical stability of bone after irradiation and therefore to prevent effectively radiation-induced fractures.

  19. Reactive electrospinning of composite nanofibers of carboxymethyl chitosan cross-linked by alginate dialdehyde with the aid of polyethylene oxide.

    PubMed

    Zhao, Xiujuan; Chen, Si; Lin, Zifeng; Du, Chang

    2016-09-01

    We have prepared carboxymethyl chitosan-alginate dialdehyde (CMCS-ADA) nanofibers via a reactive electrospinning process with the aid of polyethylene oxide (PEO). The presence of PEO delayed the gelation of CMCS and ADA, thus providing ease of use to adjust the mixing of CMCS-PEO and ADA-PEO blended solution. The mixed solution can be adjusted to come out from the needle before the gel formation or when the gel was just about to form. Defect-free CMCS-ADA-PEO nanofibers with average diameters ranging from 100nm to 900nm were obtained using water as a solvent. The in situ cross-linked CMCS-ADA nanofibers were then obtained following the extraction of water-soluble PEO. After immersion in phosphate-buffered saline (PBS) at a pH of 7.4 for up to 15days, the as-spun CMCS-ADA-PEO composite nanofibers maintained structural integrity, confirming the success of the crosslinking. The PEO-extracted CMCS-ADA nanofibers promoted the adhesion, proliferation and alkaline phosphatase activity of bone marrow stromal cells. PMID:27185120

  20. Ingested hyaluronan moisturizes dry skin

    PubMed Central

    2014-01-01

    Hyaluronan (HA) is present in many tissues of the body and is essential to maintain moistness in the skin tissues, which contain approximately half the body’s HA mass. Due to its viscosity and moisturizing effect, HA is widely distributed as a medicine, cosmetic, food, and, recently marketed in Japan as a popular dietary supplement to promote skin moisture. In a randomized, double-blind, placebo-controlled clinical study it was found that ingested HA increased skin moisture and improved treatment outcomes for patients with dry skin. HA is also reported to be absorbed by the body distributed, in part, to the skin. Ingested HA contributes to the increased synthesis of HA and promotes cell proliferation in fibroblasts. These effects show that ingestion of HA moisturizes the skin and is expected to improve the quality of life for people who suffer from dry skin. This review examines the moisturizing effects of dry skin by ingested HA and summarizes the series of mechanisms from absorption to pharmacological action. PMID:25014997

  1. Colour stability, opacity and cross-link density of composites submitted to accelerated artificial aging.

    PubMed

    Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Garcia, Lucas da Fonseca Roberti; Consani, Simonides

    2010-06-01

    The study evaluated the influence of accelerated artificial aging on colour stability, opacity and cross-link density of resin-based composites (RBCs). Seven specimens were obtained of five RBCs (Heliomolar, 4 Seasons, Tetric Evo Ceram, SR Adoro), which were submitted to colour stability and opacity analysis and cross-link density evaluation. All tests were performed before and after aging. After statistical analysis (one-way ANOVA; Tukey; p<0.05), it was observed that QuiXfil and SR Adoro presented colour alteration values above those that are clinically acceptable (deltaE=5.77 and 4.34 respectively) and the variation in opacity was lowest for SR Adoro. There was an increase in the cross-link density of all studied materials after aging.

  2. Laccase-catalyzed cross-linking of amino acids and peptides with dihydroxylated aromatic compounds.

    PubMed

    Mikolasch, Annett; Hahn, Veronika; Manda, Katrin; Pump, Judith; Illas, Nicole; Gördes, Dirk; Lalk, Michael; Gesell Salazar, Manuela; Hammer, Elke; Jülich, Wolf-Dieter; Rawer, Stephan; Thurow, Kerstin; Lindequist, Ulrike; Schauer, Frieder

    2010-08-01

    In order to design potential biomaterials, we investigated the laccase-catalyzed cross-linking between L-lysine or lysine-containing peptides and dihydroxylated aromatics. L-Lysine is one of the major components of naturally occurring mussel adhesive proteins (MAPs). Dihydroxylated aromatics are structurally related to 3,4-dihydroxyphenyl-L-alanine, another main component of MAPs. Mass spectrometry and nuclear magnetic resonance analyses show that the epsilon-amino group of L-lysine is able to cross-link dihydroxylated aromatics. Additional oligomer and polymer cross-linked products were obtained from di- and oligopeptides containing L-lysine. Potential applications in medicine or industry for biomaterials synthesised via the three component system consisting of the oligopeptide [Tyr-Lys]10, dihydroxylated aromatics and laccase are discussed.

  3. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    PubMed

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use.

  4. xiNET: Cross-link Network Maps With Residue Resolution*

    PubMed Central

    Combe, Colin W.; Fischer, Lutz; Rappsilber, Juri

    2015-01-01

    xiNET is a visualization tool for exploring cross-linking/mass spectrometry results. The interactive maps of the cross-link network that it generates are a type of node-link diagram. In these maps xiNET displays: (1) residue resolution positional information including linkage sites and linked peptides; (2) all types of cross-linking reaction product; (3) ambiguous results; and, (4) additional sequence information such as domains. xiNET runs in a browser and exports vector graphics which can be edited in common drawing packages to create publication quality figures. Availability: xiNET is open source, released under the Apache version 2 license. Results can be viewed by uploading data to http://crosslinkviewer.org/ or by downloading the software from http://github.com/colin-combe/crosslink-viewer and running it locally. PMID:25648531

  5. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  6. Fracture Behavior of High-Toughness, Ionically Cross-linked Triblock Copolymer Hydrogels

    NASA Astrophysics Data System (ADS)

    Henderson, Kevin; Otim, Kathryn; Shull, Kenneth

    2011-03-01

    Mechanisms for enhancing energy dissipation and hence toughness are important for the generation of robust synthetic soft materials for biomedical applications. Ionic cross-linking in particular has been explored in triblock copolymer hydrogels and affords a remarkable change in mechanical performance comparable to non-cross-linked analogs. Here we employ a physically associated base triblock copolymer network composed of hydrophobic poly(methyl methacrylate) endblocks and a hydrophilic poly(methacrylic acid) midblock capable of complexing with divalent cations. Increases in stiffness and strength have previously been reported, with the extent dependent upon the identity, concentration, and pH of a cross-linking cation solution. We delineate the measured toughness in such systems using tensile tear tests and relate the mechanical performance to a damage zone model reminiscent of loading behavior observed in double network hydrogels.

  7. Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films

    NASA Astrophysics Data System (ADS)

    Süske, Erik; Scharf, Thorsten; Krebs, Hans-Ulrich; Panchenko, Elena; Junkers, Thomas; Egorov, Mark; Buback, Michael; Kijewski, Harald

    2005-03-01

    The chemical composition, amount of cross-linking and its influence on the mechanical properties of poly(methyl methacrylate) (PMMA) thin films produced by pulsed laser deposition (PLD) at a wavelength of 248nm under ultrahigh vacuum were investigated by infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, thermogravimetric analysis, and nanoindentation experiments. The films consist of two components, one fraction with a molecular weight well below that of the target material and a second fraction, which is cross-linked. Compared to bulk material, the Young's modulus of the film is increased. The amount of cross-linking in the film can be tuned by the applied laser fluence leading to changes of the mechanical properties.

  8. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    NASA Astrophysics Data System (ADS)

    He, Kongduo; Liu, Yang; Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan; Liang, Rongqing; Ou, Qiongrong

    2016-09-01

    Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  9. Three-dimensional multimodal microscopy of rabbit cornea after cross-linking treatment

    NASA Astrophysics Data System (ADS)

    Krüger, A.; Hovakimyan, M.; Ramírez, D. F.; Lorbeer, R.-A.; Kröger, M.; Stachs, O.; Wree, A.; Guthoff, R. F.; Lubatschowski, H.; Heisterkamp, A.

    2010-02-01

    Cross-linking of stromal collagen with Riboflavin and UVA radiation is an alternative treatment of keratoconus. After the cross-linking a wound healing process starts with the regeneration of the abraded epithelial layer and the stromal keratocyte-network. To clarify possible side effects by visualization we established an imaging platform for the multimodal three-dimensional imaging of the cornea and looked for differences between normal and cross-linked rabbit corneae. The microscopy system utilizes femtosecond laser light for two photon excitation of autofluorescent metabolic compounds, second harmonic imaging in forward and backward direction for the study of stromal collagen-I structure and confocal detection of the backscattered femtosecond laser light for cell detection. Preliminary results show signatures of treatment 5 weeks after the intervention in all imaging modalities.

  10. Localization of the dominant non-enzymatic intermolecular cross-linking sites on fibrous collagen.

    PubMed

    Chiue, Hiroko; Yamazoye, Tsutako; Matsumura, Sueo

    2015-06-01

    Previous studies have shown that fibrous collagen undergoes intermolecular cross-linking at multiple sites of the elongated triple-helical regions among adjacent juxtaposed collagen molecules on incubation with a very high concentration of reducing sugar such as 200 mM ribose, and the similarity of the changes in its physicochemical properties to that of senescent collagen aged in vivo has been emphasized. In the present study, however, it was found that when incubated with less than 30 mM ribose, fibrous collagen underwent intermolecular cross-linking primarily between the telopeptide region of a collagen molecule and the triple-helical region of another adjacent collagen molecule, and intermolecular cross-linking between the triple-helical regions of adjacent collagen molecules was very small. Physiological significance of the previous studies thus needs to be reevaluated.

  11. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    PubMed

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. PMID:27542447

  12. Preparation of cross-linked maize (Zea mays L.) starch in different reaction media.

    PubMed

    Hong, Jung Sun; Gomand, Sara V; Delcour, Jan A

    2015-06-25

    Granular normal maize starch was reacted with sodium trimetaphosphate in deionized water ( [Formula: see text] ), aqueous sodium sulfate solution ( [Formula: see text] ), aqueous ethanol (MSethanol) or aqueous acetone (MSacetone) under otherwise identical reaction conditions. Analysis of the resultant starches by Rapid Visco Analysis (RVA) showed that the starch was cross-linked to a higher degree in aqueous ethanol or aqueous acetone than in water or sodium sulfate solution, and with minimal starch leaching. While MSacetone and MSethanol had incorporated similar levels of phosphorous, RVA analysis and microscopic analysis showed that MSacetone granules were more effectively stabilized by cross-linking than MSethanol granules. Cross-linking in aqueous acetone is believed to either contain the greater numbers of distarch monophosphate (versus monostarch monophosphate), or occur more intensively at the granule outer layers than that in aqueous ethanol and, at the same time, to account for the greater granular strength of MSethanol than that of MSacetone. PMID:25839824

  13. Optimizing end-group cross-linking polymer electrolytes for fuel cell applications

    SciTech Connect

    Kim, Yu Seung; Lee, Kwan Soo; Jeong, Myung - Hwan; Lee, Jae - Suk

    2009-01-01

    This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

  14. Chloroacetamide-Linked Nucleotides and DNA for Cross-Linking with Peptides and Proteins.

    PubMed

    Olszewska, Agata; Pohl, Radek; Brázdová, Marie; Fojta, Miroslav; Hocek, Michal

    2016-09-21

    Nucleotides, 2'-deoxyribonucleoside triphosphates (dNTPs), and DNA probes bearing reactive chloroacetamido group linked to nucleobase (cytosine or 7-deazadaenine) through a propargyl tether were prepared and tested in cross-linking with cysteine- or histidine-containing peptides and proteins. The chloroacetamide-modifed dNTPs proved to be good substrates for DNA polymerases in the enzymatic synthesis of modified DNA probes. Modified nucleotides and DNA reacted efficiently with cysteine and cysteine-containing peptides, whereas the reaction with histidine was sluggish and low yielding. The modified DNA efficiently cross-linked with p53 protein through alkylation of cysteine and showed potential for cross-linking with histidine (in C277H mutant of p53).

  15. Comparison of Wear and Oxidation in Retrieved Conventional and Highly Cross-Linked UHMWPE Tibial Inserts.

    PubMed

    Currier, Barbara H; Currier, John H; Franklin, Katherine J; Mayor, Michael B; Reinitz, Steven D; Van Citters, Douglas W

    2015-12-01

    Two groups of retrieved tibial inserts from one manufacturer's knee system were analyzed to evaluate the effect of a highly cross-linked bearing surface on wear and in vivo oxidation. The two groups ((1) conventional gamma-inert sterilized and (2) highly cross-linked, coupled with the same rough (Ra=0.25) Ti-6Al-4V tray) were matched with statistically similar in vivo duration and patient variables. The retrieved inserts were analyzed for ketone oxidation and wear in the form of dimensional change. The difference in oxidation rate between highly cross-linked and conventional gamma-inert sterilized inserts did not reach statistical significance. Observations suggest that the majority of wear can be accounted for by the backside interface with the rough Ti-6Al-4V tray; however, wear measured by thickness-change rate was statistically indistinguishable between the two bearing materials.

  16. Cross-linked block copolymer templated assembly of nanoparticle arrays with high density and position selectivity

    NASA Astrophysics Data System (ADS)

    Liu, Zhicheng; Chang, Tongxin; Huang, Haiying; Bai, Lu

    2016-10-01

    Patterning ordered nanoparticle arrays is crucial for the fascinating collective properties of nanoparticles. Block copolymer template provides us a platform for the simple and efficient assembly of nanoparticle arrays. In this work, cylinder-forming poly(styrene-block-2-vinylpyridine) thin film was firstly plasma-etched to expose poly(2-vinylpyridine) cylinders. Then the templates were cross-linked by small molecules so as to access gold nanoparticle arrays with both high density and excellent position selectivity. The cross-linking process significantly restrains the unfavorable surface reconstruction of the thin film. It is demonstrated that the quality of the nanoparticle array was affected by the degree of the cross-linking and the immersion time in nanoparticle solution. The highly ordered gold nanoparticle arrays are promising in several fields such as optics and surface enhanced Raman scattering (SERS).

  17. Isolation of a novel bone glycosylated phosphoprotein with disulphide cross-links to osteonectin.

    PubMed Central

    Zhou, H Y; Salih, E; Glimcher, M J

    1998-01-01

    An 80 kDa protein was purified from calf bone by HCl-demineralization followed by 0.5 M EDTA/1.0 M NaCl extraction and sequential chromatography on DE-52, hydroxyapatite, and TSK-gel G3000SW HPLC columns. From the DE-52 column the protein was eluted at three different fractions, of which one further separated into two fractions on the hydroxyapatite column, indicating that the protein is present in four different molecular forms designated as 80 k-I-1, k-I-2, k-II, k-III. The N-terminal sequence analysis of all four forms gave the same sequence, SEQYNQEPNNV. Several tryptic internal peptides were also generated, purified and sequenced, leading to the identification of several repeat sequences, IFLGXXEI. Homology searching of the N-terminal and internal sequences indicates that this is a novel protein. Both 80 k-I-2 and k-III had similar amino acid composition with high contents of Asx, Glx and Leu and contained 7 and 16 phosphoserines per 1000 total amino acids, respectively. The 80 k-I-1 and 80 k-II forms were stained with Rhodamine B specific for phosphoproteins. The four forms contained different contents of neutral sugars ranging from 5.5 to 26% (w/w protein) and approximately 1.7% sialic acid. These data indicated that the 80 kDa protein exists in four isomeric forms, at least based on the different post-translational modifications. The evaluation of the 80 kDa glycosylated phosphoprotein under alkylating, reducing and non-reducing conditions indicated that this protein undergoes polymerization through intermolecular disulphide bonds. Furthermore, the 80 kDa protein and osteonectin (ON), both of which are cysteine-rich proteins, can cross-link with each other via disulphide bonds, and this process can be induced to take place in vitro under experimental conditions. The occurrence of such a phenomenon in vivo was confirmed from the presence of similar high Mr components containing both 80 kDa and ON in the same SDS/PAGE bands, detected by the respective

  18. Proteomic analysis of DNA-protein cross-linking by antitumor nitrogen mustards.

    PubMed

    Loeber, Rachel L; Michaelson-Richie, Erin D; Codreanu, Simona G; Liebler, Daniel C; Campbell, Colin R; Tretyakova, Natalia Y

    2009-06-01

    Nitrogen mustards are antitumor agents used clinically for the treatment of a variety of neoplastic conditions. The biological activity of these compounds is typically attributed to their ability to induce DNA-DNA cross-links. However, nitrogen mustards are able to produce a variety of other lesions, including DNA-protein cross-links (DPCs). DPCs induced by nitrogen mustards are not well-characterized because of their structural complexity and the insufficient specificity and sensitivity of previously available experimental methodologies. In the present work, affinity capture methodology in combination with mass spectrometry-based proteomics was employed to identify mammalian proteins that form covalent cross-links to DNA in the presence of a simple nitrogen mustard, mechlorethamine. Following incubation of 5'-biotinylated DNA duplexes with nuclear protein extracts, DPCs were isolated by affinity capture on streptavidin beads, and the cross-linked proteins were identified by high-performance liquid chromatography-electrospray tandem mass spectrometry of tryptic peptides. Mechlorethamine treatment resulted in the formation of DPCs with nuclear proteins involved in chromatin regulation, DNA replication and repair, cell cycle control, transcriptional regulation, and cell architecture. Western blot analysis was employed to confirm protein identification and to quantify the extent of drug-mediated cross-linking. Mass spectrometry of amino acid-nucleobase conjugates found in total proteolytic digests revealed that mechlorethamine-induced DPCs are formed via alkylation of the N7 position of guanine in duplex DNA and cysteine thiols within the proteins to give N-[2-[S-cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]methylamine lesions. The results described herein suggest that cellular exposure to nitrogen mustards leads to cross-linking of a large spectrum of nuclear proteins to chromosomal DNA, potentially contributing to the cytotoxic and mutagenic effects of these drugs.

  19. Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering.

    PubMed

    Bozzini, Sabrina; Giuliano, Liliana; Altomare, Lina; Petrini, Paola; Bandiera, Antonella; Conconi, Maria Teresa; Farè, Silvia; Tanzi, Maria Cristina

    2011-12-01

    The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1-7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.

  20. Cross-linked Compared with Historical Polyethylene in THA: An 8-year Clinical Study

    PubMed Central

    Grimm, Bernd; Vencken, Wendy; Heyligers, Ide C.; Tonino, Alphons J.

    2008-01-01

    Wear particle-induced osteolysis is a major cause of aseptic loosening in THA. Increasing wear resistance of polyethylene (PE) occurs by increasing the cross-link density and early reports document low wear rates with such implants. To confirm longer-term reductions in wear we compared cross-linked polyethylene (irradiation in nitrogen, annealing) with historical polyethylene (irradiation in air) in a prospective, randomized clinical study involving 48 patients who underwent THAs with a minimum followup of 7 years (mean, 8 years; range, 7–9 years). The insert material was the only variable. The Harris hip score, radiographic signs of osteolysis, and polyethylene wear were recorded annually. Twenty-three historical and 17 moderately cross-linked polyethylene inserts were analyzed (five patients died, three were lost to followup). At 8 years, the wear rate was lower for cross-linked polyethylene (0.088 ± 0.03 mm/year) than for the historical polyethylene (0.142 ± 0.07 mm/year). This reduction (38%) did not diminish with time (33% at 5 years). Acetabular cyst formation was less frequent (39% versus 12%), affected fewer DeLee and Charnley zones (17% versus 4%), and was less severe for the cross-linked polyethylene. The only revision was for an aseptically loose cup in the historical polyethylene group. Moderately cross-linked polyethylene maintained its wear advantage with time and produced less osteolysis, showing no signs of aging at mid-term followup. Level of Evidence: Level I, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence. PMID:19030941

  1. Chemical and structural characterization of interstrand cross-links formed between abasic sites and adenine residues in duplex DNA

    PubMed Central

    Price, Nathan E.; Catalano, Michael J.; Liu, Shuo; Wang, Yinsheng; Gates, Kent S.

    2015-01-01

    A new type of interstrand DNA–DNA cross-link between abasic (Ap) sites and 2′-deoxyadenosine (dA) residues was recently reported, but the chemical structure and properties of this lesion were not rigorously established. Here we characterized the nucleoside cross-link remnant released by enzymatic digestion of duplex DNA containing the dA-Ap cross-link. A synthetic standard was prepared for the putative nucleoside cross-link remnant 6 in which the anomeric carbon of the 2-deoxyribose residue was connected to the exocyclic N6-amino group of dA. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the synthetic material 6 matched the authentic cross-link remnant released by enzymatic digestion of cross-linked DNA. These findings establish the chemical structure of the dA-Ap cross-link released from duplex DNA and may provide methods for the detection of this lesion in cellular DNA. Both the nucleoside cross-link remnant 6 and the cross-link in duplex DNA were quite stable at pH 7 and 37°C, suggesting that the dA-Ap cross-link could be a persistent lesion with the potential to block the action of various DNA processing enzymes. PMID:25779045

  2. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  3. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  4. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  5. Multilayer structured polymer light emitting diodes with cross-linked polymer matrices

    NASA Astrophysics Data System (ADS)

    Zhou, Zhang-Lin; Sheng, Xia; Nauka, K.; Zhao, Lihua; Gibson, Gary; Lam, Sity; Yang, Chung Ching; Brug, James; Elder, Rich

    2010-01-01

    Currently, there is great interest in manufacturing multilayer polymer light emitting diode (PLED) structures via low-cost solution-based spin-casting or printing methods. The difficulty with this approach is that solvent from freshly deposited films often dissolves the underlying layers. This letter demonstrates that fully operational multilayer PLED structures can be fabricated via a solution process by embedding the hole transport material in cross-linked inert polymer matrices that protect the functional material while subsequent layers are deposited using the same solvent. The resulting devices exhibited greatly improved quantum efficiency compared with devices that did not employ cross-linked polymer matrices.

  6. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    PubMed

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications. PMID:24621374

  7. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    PubMed

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications.

  8. Durability of highly cross-linked polyethylene in total hip and total knee arthroplasty.

    PubMed

    Dion, Neil T; Bragdon, Charles; Muratoglu, Orhun; Freiberg, Andrew A

    2015-07-01

    This article reviews the history of the development of highly cross-linked polyethylene and provides an in-depth review of the clinical results regarding the durability of highly cross-linked polyethylene (HXLPE) used in total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of polyethylene as a bearing surface has contributed to the success of THA and TKA; however, polyethylene wear and osteolysis can lead to failure. Ongoing clinical and retrieval studies are required to analyze outcomes at longer-term follow-up.

  9. Cross-linking and modification of cytochrome c with redox-active metal complexes

    SciTech Connect

    Lukes, A.

    1991-05-02

    This thesis consists of two parts. The first part shows that a redox-active trinuclear metal cluster may be used as a cross-linking reagent for proteins. Electron transfer is observed in the protein oligomers. The second part involves labelling the cysteine residue of baker's yeast cytochrome c with chloromercuriferrocene. Chloromercuriferrocene reacts with cytochrome c in two interesting ways. Symmetrization produces two products; two proteins cross-linked with mercury and diferrocenylmercury. Simple substitution of FeHgCl onto the protein followed by the addition of a proton by electrophilic substitution affords ferrocene and the mercuric chloride modified protein. 16 refs., 3 figs.

  10. Photoinduced intermolecular cross-linking of gas phase triacylglycerol lipid ions.

    PubMed

    Nie, Shuai; Pham, Huong T; Blanksby, Stephen J; Reid, Gavin E

    2015-01-01

    Complex mixtures of plant derived triglycerol (TG) lipids are commonly used as feedstock components for the production of industrial polymers. However, there remains a need for the development of analytical strategies to investigate the intrinsic intermolecular cross-linking reactivity of individual TG molecules within these mixtures as a function of their structures and physicochemical properties, and for the characterization of the resultant products. Here, to address this need, we describe a novel multistage tandem mass spectrometry based method for intermolecular cross-linking and subsequent structural characterization of TG lipid ions in the gas phase. Cross-linking reactions were initiated using 266 nm ultraviolet photodissociation tandem mass spectrometry (UVPD-MS/MS) of saturated or unsaturated TG dimers introduced via electrospray ionization into a linear ion trap mass spectrometer as noncovalent complexes with protonated 3,4-, 2,4- or 3,5- diiodoaniline (diIA). UVPD resulted in the initial formation of an anilinyl biradical via the sequential loss of two iodine radicals, which underwent further reaction to yield multiple cross-linked TG products along with competing noncross-linking processes. These chemistries are proposed to occur via sequential combinations of hydrogen abstraction (H-abstraction), radical addition and radical recombination. Multistage collision induced dissociation tandem mass spectrometry (CID-MS(n)) was used to obtain evidence for the structures and mechanisms of formation for these products, as a function of both the TG lipid and diIA ion structures. The efficiency of the UVPD reaction was shown to be dependent on the number of unsaturation sites present within the TG lipids. However, when unsaturation sites were present, formation of the cross-linked and noncross-linked product ions via H-abstraction and radical addition mechanisms was found to be competitive. Finally, the identity of the anilinyl biradical (e.g., 3,4- versus 2

  11. Chemical cross-linking of polypropylenes towards new shape memory polymers.

    PubMed

    Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C

    2015-04-01

    In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals.

  12. Durability of highly cross-linked polyethylene in total hip and total knee arthroplasty.

    PubMed

    Dion, Neil T; Bragdon, Charles; Muratoglu, Orhun; Freiberg, Andrew A

    2015-07-01

    This article reviews the history of the development of highly cross-linked polyethylene and provides an in-depth review of the clinical results regarding the durability of highly cross-linked polyethylene (HXLPE) used in total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of polyethylene as a bearing surface has contributed to the success of THA and TKA; however, polyethylene wear and osteolysis can lead to failure. Ongoing clinical and retrieval studies are required to analyze outcomes at longer-term follow-up. PMID:26043046

  13. Sulfur-Containing Organic-Inorganic Hybrid Gel Compositions and Aerogels

    NASA Technical Reports Server (NTRS)

    Evans, Owen R. (Inventor); Dong, Wenting (Inventor); Deshpande, Kiranmayi (Inventor)

    2015-01-01

    Methods and materials are described for preparing organic-inorganic hybrid gel compositions where a sulfur-containing cross-linking agent covalently links the organic and inorganic components. The gel compositions are further dried to provide porous gel compositions and aerogels. The mechanical and thermal properties of the dried gel compositions are also disclosed.

  14. Use of Proteinase K Nonspecific Digestion for Selective and Comprehensive Identification of Interpeptide Cross-links: Application to Prion Proteins*

    PubMed Central

    Petrotchenko, Evgeniy V.; Serpa, Jason J.; Hardie, Darryl B.; Berjanskii, Mark; Suriyamongkol, Bow P.; Wishart, David S.; Borchers, Christoph H.

    2012-01-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a “family” of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrPC) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrPC and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90–124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein

  15. Use of proteinase K nonspecific digestion for selective and comprehensive identification of interpeptide cross-links: application to prion proteins.

    PubMed

    Petrotchenko, Evgeniy V; Serpa, Jason J; Hardie, Darryl B; Berjanskii, Mark; Suriyamongkol, Bow P; Wishart, David S; Borchers, Christoph H

    2012-07-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a "family" of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrP(C)) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrP(C) and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90-124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including

  16. Cytotoxicity and internalization of Pluronic micelles stabilized by core cross-linking.

    PubMed

    Arranja, Alexandra; Schroder, André P; Schmutz, Marc; Waton, Gilles; Schosseler, François; Mendes, Eduardo

    2014-12-28

    A UV-cross-linkable agent was incorporated and polymerized in Pluronic micelle core to create an interpenetrating polymer network (IPN) of poly(pentaerythritol tetraacrylate). This stabilization prevented micelle disruption below the critical micelle temperature (CMT) and concentration (CMC), while maintaining the integrity of the PEO corona and the hydrophobic properties of the PPO core. The prepared stabilized spherical micelles of Pluronic P94 and F127 presented hydrodynamic diameters ranging from 40 to 50 nm. The stability of cross-linked Pluronic micelles at 37 °C in the presence of serum proteins was studied and no aggregation of the micelles was observed, revealing the colloidal stability of the system. Cytotoxicity experiments in NIH/3T3 mouse fibroblasts revealed that the presence of the cross-linking agent did not induce any further toxicity in comparison to the respective pure polymer solutions. Furthermore, stabilized micelles of Pluronic P94 were shown to be less toxic than the polymer itself. A hydrophobic fluorescent probe (Nile red) was absorbed in the cross-linked core of pre-stabilized micelles to mimic the incorporation of a poorly water-soluble drug, and the internalization and intracellular localization of Nile red was studied by confocal microscopy at different incubation times. Overall, the results indicate that Pluronic micelles stabilized by core cross-linking are capable of delivering hydrophobic components physically entrapped in the micelles, thus making them a potential candidate as a delivery platform for imaging or therapy of cancer.

  17. Effect of the cross-linking density on the thermoresponsive behavior of hollow PNIPAM microgels.

    PubMed

    Contreras-Cáceres, Rafael; Schellkopf, Leonard; Fernández-López, Cristina; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge; Stamm, Manfred

    2015-01-27

    We report on the fabrication of thermally responsive hollow pNIPAM particles through the oxidation of the metal core in an Au@pNIPAM system. The selective oxidation of the Au core is achieved by addition of AuCl4(-) to an aqueous dispersion of Au@pNIPAM particles in the presence of cetyltrimethylammonium bromide (CTAB). We fabricate hollow pNIPAM particles with three cross-linking densities (N,N'-methylenebis(acrylamide), BA, at 5%, 10%, and 17.5%). The study of the effect of the amount of BA within the microgel network was performed by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM), showing its key role in determining the final hollow structure and thermal response. While the thermal responsiveness is largely achieved at low cross-linking densities, the hollow structure only remains at larger cross-linking densities. This was further confirmed by cryo-TEM analysis of hollow pNIPAM particles below and above the volume phase transition temperature (VPTT). Thus, it clearly shows (i) the shrinking of particle size with the temperature at low cross-linking density and (ii) the dependence of particle size on the amount of cross-linker for the final hollow pNIPAM structure. Observed differences in the hollow pNIPAM structure are attributed to different elastic contributions (Π(elas)), showing higher elasticity for microgels synthesized at lower amount of BA.

  18. Direct Patterning of Organic Functional Polymers through Conventional Photolithography and Noninvasive Cross-Link Agents.

    PubMed

    Squillaci, Marco A; Qiu, Feng; Aliprandi, Alessandro; Zhang, Fan; Feng, Xinliang; Samorì, Paolo

    2016-07-01

    A new technique for direct patterning of functional organic polymers using commercial photolithography setups with a minimal loss of the materials' performances is reported. This result is achieved through novel cross-link agents made by boron- and fluorine-containing heterocycles that can react between themselves upon UV- and white-light exposure.

  19. Cross-linking oppositely charged oil-in-water emulsions to enhance heteroaggregate stability.

    PubMed

    Maier, Christiane; Oechsle, Anja M; Weiss, Jochen

    2015-11-01

    The formation and subsequent enzymatic and chemical cross-linking of heteroaggregates from oppositely charged oil-in-water (O/W) emulsions was investigated. For this purpose, 10% (w/w) oil-in-water emulsions (d43<1 μm) were prepared at pH 4 using a positively charged emulsifier (Nα-lauroyl-L-arginine ethyl ester (LAE), cold water fish gelatin, or whey protein isolate) or a negatively charged one (sugar beet pectin or Quillaja saponins). The oppositely charged emulsions were then combined at a volume ratio of 1:1 and treated with laccase or glutaraldehyde in order to further stabilize the electrostatically attached aggregates by covalently cross-linking the oppositely charged membranes. Emulsions and heteroaggregates were characterized by their rheological properties, their surface charge, particle size distribution, and microstructure using dynamic and static light scattering as well as confocal laser scanning microscopy. Prior to cross-linking, the emulsifiers' stabilization mechanism were found to greatly influence the formation of heteroaggregates. Laccase treatment (1.34 mU/mL) increased aggregate expansion by ca. 30% for the combined emulsions stabilized by Quillaja saponins/whey protein isolate, while combined Quillaja saponins/fish gelatin stabilized emulsions remained unaffected. When combined emulsions were treated with 50mM glutaraldehyde, aggregate size significantly increased 2- and 3-fold, respectively. Thus, our study provides novel insights into the enzymatic and chemical cross-linking of heteroaggregates composed of oppositely charged O/W emulsions.

  20. The counterbend phenomenon in flagellar axonemes and cross-linked filament bundles.

    PubMed

    Gadêlha, Hermes; Gaffney, Eamonn A; Goriely, Alain

    2013-07-23

    Recent observations of flagellar counterbend in sea urchin sperm show that the mechanical induction of curvature in one part of a passive flagellum induces a compensatory countercurvature elsewhere. This apparent paradoxical effect cannot be explained using the standard elastic rod theory of Euler and Bernoulli, or even the more general Cosserat theory of rods. Here, we develop a geometrically exact mechanical model to describe the statics of microtubule bundles that is capable of predicting the curvature reversal events observed in eukaryotic flagella. This is achieved by allowing the interaction of deformations in different material directions, by accounting not only for structural bending, but also for the elastic forces originating from the internal cross-linking mechanics. Large-amplitude static configurations can be described analytically, and an excellent match between the model and the observed counterbend deformation was found. This allowed a simultaneous estimation of multiple sperm flagellum material parameters, namely the cross-linking sliding resistance, the bending stiffness, and the sperm head junction compliance ratio. We further show that small variations on the empirical conditions may induce discrepancies for the evaluation of the flagellar material quantities, so that caution is required when interpreting experiments. Finally, our analysis demonstrates that the counterbend emerges as a fundamental property of sliding resistance in cross-linked filamentous polymer bundles, which also suggests that cross-linking proteins may contribute to the regulation of the flagellar waveform in swimming sperm via counterbend mechanics. PMID:23824293

  1. Stabilization of soybean oil bodies by enzyme (laccase) cross-linking of adsorbed beet pectin coatings.

    PubMed

    Chen, Bingcan; McClements, David Julian; Gray, David A; Decker, Eric Andrew

    2010-08-25

    Soybean oil bodies are naturally coated by a layer of phospholipids and oleosin proteins, which protect them from in vivo environmental stresses. When oil bodies are incorporated into food products, they encounter new environmental stresses such as changes in pH, ionic strength, and temperature. Consequently, additional protection mechanisms are often needed to stabilize them. The purpose of this study was to determine whether soybean oil bodies could be stabilized by coating them with a layer of cross-linked anionic polysaccharide (beet pectin). The beet pectin layer was cross-linked via its ferulic acid groups using laccase (an enzyme that catalyzes the oxidation of phenolic groups). Oil body suspensions were prepared that contained 1 wt % oil and 0.06 wt % beet pectin at pH 7 and were then adjusted to pH 4.5 to promote electrostatic deposition of the beet pectin molecules onto the surfaces of the oil bodies. Laccase was then added to promote cross-linking of the adsorbed beet pectin layer. Cross-linked pectin-coated oil bodies had similar or better stability than uncoated oil bodies to pH changes (3 to 7), NaCl addition (0 to 500 mM), and freeze-thaw cycling (-20 °C for 22 h; +40 °C for 2 h). These pectin-coated oil bodies may provide a convenient means of incorporating soybean oil into food and other products.

  2. Endogenous and enhanced oxidative cross-linking in wheat flour mill streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oxidative cross-linking of arabinoxylan and protein polymers is partially responsible for variation in end-use quality of wheat flour; specifically, differences in batter viscosity as well as variation in bread and cookie quality. A better understanding of the variation in oxidative cross-linkin...

  3. Baking Performance of Phosphorylated Cross-Linked Resistant Starch in Low-Moisture Bakery Goods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorylated cross-linked resistant starch (RS) is a type 4 RS, which can be used for enhancing the benefits of dietary fiber. The baking performance of the RS was explored using wire-cut cookie baking and benchtop chemically-leavened cracker baking methods to produce low-moisture baked goods (coo...

  4. A minimal model for stabilization of biomolecules by hydrocarbon cross-linking.

    PubMed

    Hamacher, K; Hübsch, A; McCammon, J A

    2006-04-28

    Programmed cell death regulating protein motifs play an essential role in the development of an organism, its immune response, and disease-related cellular mechanisms. Among those motifs the BH3 domain of the BCL-2 family is found to be of crucial importance. Recent experiments showed how the isolated, otherwise unstructured BH3 peptide can be modified by a hydrocarbon linkage to regain function. We parametrized a reduced, dynamic model for the stability effects of such covalent cross-linking and confirmed that the model reproduces the reinforcement of the structural stability of the BH3 motif by cross-linking. We show that an analytically solvable model for thermostability around the native state is not capable of reproducing the stabilization effect. This points to the crucial importance of the peptide dynamics and the fluctuations neglected in the analytic model for the cross-linking system to function properly. This conclusion is supported by a thorough analysis of a simulated Go model. The resulting model is suitable for rational design of generic cross-linking systems in silicio.

  5. Is dialdehyde starch a valuable cross-linking agent for collagen/elastin based materials?

    PubMed

    Skopinska-Wisniewska, J; Wegrzynowska-Drzymalska, K; Bajek, A; Maj, M; Sionkowska, A

    2016-04-01

    Collagen and elastin are the main structural proteins in mammal bodies. They provide mechanical support, strength, and elasticity to various organs and tissues, e.g. skin, tendons, arteries, and bones. They are readily available, biodegradable, biocompatible and they stimulate cell growth. The physicochemical properties of collagen and elastin-based materials can be modified by cross-linking. Glutaraldehyde is one of the most efficient cross-linking agents. However, the unreacted molecules can be released from the material and cause cytotoxic reactions. Thus, the aim of our work was to investigate the influence of a safer, macromolecular cross-linking agent--dialdehyde starch (DAS). The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5 and 10% of DAS and neutralized via dialysis against deionized water were tested. The homogenous, transparent, stiff hydrogels were obtained. The DAS addition causes the formation of intermolecular cross-linking bonds but does not affect the secondary structure of the proteins. As a result, the thermal stability, mechanical strength, and, surprisingly, swelling ability increased. At the same time, the surface properties test and in vitro study show that the materials are attractive for 3T3 cells. Moreover, the materials containing 10% of DAS are more resistant to enzymatic degradation.

  6. Cross-linking carbon nanotubes by glycidyl azide polymer via click chemistry.

    PubMed

    Wei, Zhong; Du, Liang; Wang, Lin

    2012-01-01

    Functionalization and cross linking of carbon nanotubes was necessary to fabricate nanotube composites with good interfacial properties and mechanical performance. Glycidyl azide polymer was used as cross-linker of carbon nanotubes via a simple clickable one step reaction initiated by decomposition of azide groups. Both heating and UV irradiation were used to carry out the reaction. FTIR and Raman spectra confirmed the decomposition of azide groups and the anchoring of glycidyl azide polymer onto the surface of carbon nanotubes. Thermal gravity analysis showed that the polymer anchored onto carbon nanotubes was about 10% of the total mass in the solid product, but the efficiency of the reaction was low. The result of tensile test using bulky paper infiltrated with 10% GAP showed that cross linking could bring forth a higher strength, about 4 times higher than the not cross linked. The success of cross linking carbon nanotubes by glycidyl azide polymer paves a new way to fabrication of ultra strong carbon nanotube composites.

  7. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    NASA Astrophysics Data System (ADS)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  8. Cross-Linked Nanoporous Materials from Reactive and Multifunctional Block Polymers

    SciTech Connect

    Seo, Myungeun; Amendt, Mark A.; Hillmyer, Marc A.

    2012-10-10

    Polylactide-b-poly(styrene-co-2-hydroxyethylmethacrylate) (PLA-b-P(S-co-HEMA)) and polylactide-b-poly(styrene-co-2-hydroxyethylacrylate) (PLA-b-P(S-co-HEA)) were synthesized by combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. {sup 1}H nuclear magnetic resonance spectroscopy and size exclusion chromatography data indicated that the polymerizations were controlled and that hydroxyl groups were successfully incorporated into the block polymers. The polymers were reacted with 4,4{prime}-methylenebis(phenyl isocyanate) (MDI) to form the corresponding cross-linked materials. The materials were annealed at 150 C to complete the coupling reaction. Robust nanoporous materials were obtained from the cross-linked polymers by treatment with aqueous base to hydrolyze the PLA phase. Small-angle X-ray scattering study combined with scanning electron microscopy showed that MDI-cross-linked PLA-b-P(S-co-HEMA)/PLA-b-P(S-co-HEA) can adopt lamellar, hexagonally perforated lamellar, and hexagonally packed cylindrical morphologies after annealing. In particular, the HPL morphology was found to evolve from lamellae due to increase in volume fraction of PS phase as MDI reacted with hydroxyl groups. The reaction also kinetically trapped the morphology by cross-linking. Bicontinuous morphologies were also observed when dibutyltin dilaurate was added to accelerate reaction between the polymer and MDI.

  9. Surface fabrication of hollow microspheres from N-methylated chitosan cross-linked with glutaraldehyde.

    PubMed

    Peng, Xianghong; Zhang, Lina

    2005-02-01

    We have successfully prepared biocompatible and biodegradable hollow microspheres with sizes between 2 and 5 mum using cyclohexane droplets as a template and the N-methylated chitosan (NMC) cross-linked with glutaraldehyde (GA) as the shell. The structure, morphology, and formation process of the hollow microspheres were characterized by FT-IR, (1)H and (13)C NMR, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results revealed that the microspheres exhibited a very smooth and hollow structure. This work confirmed that the hollow microspheres were accomplished by fabricating on the basis of chemical cross-linking on the surface of the emulsion droplets and by removing cyclohexane as core. The results from SEM and TEM indicated that the emulsion droplets covered with cross-linked NMC in the oil-in-water system aggregated together to form a precipitate of microspheres by coagulating with acetone. Moreover, the cross-linked NMC on the surface of the microspheres continuously cured to form the tight shell, whereas the inner area became a cavity with increase of the aging time, leading to the hollow microspheres. In addition, an anti-infective drug, ofloxacin (Floxin), encapsulated in the microspheres more rapidly released to reach 90 wt % at pH 7.4 within 8 h than at pH 1.2.

  10. Aggressive wear testing of a cross-linked polyethylene in total knee arthroplasty.

    PubMed

    Muratoglu, Orhun K; Bragdon, Charles R; O'Connor, Daniel O; Perinchief, Rebecca S; Jasty, Murali; Harris, William H

    2002-11-01

    Recently, highly cross-linked polyethylenes with high wear and oxidation resistance have been developed. These materials may improve the in vivo performance of polyethylene components used in total knee arthroplasty. To date, the in vitro knee wear testing of these new polyethylenes has been done under conditions of normal gait. However, their critical assessment also must include aggressive in vitro fatigue and wear testing. In the current study, an aggressive in vitro knee wear and device fatigue model simulating a tight posterior cruciate ligament balance during stair climbing was developed and used to assess the performance of one type of highly cross-linked polyethylene tibial knee insert in comparison with conventional polyethylene. The highly cross-linked inserts and one group of conventional inserts were tested after sterilization. One additional group of conventional inserts was subjected to accelerated aging before testing. The articular surfaces of the inserts were inspected visually for surface delamination, cracking, and pitting at regular intervals during the test. The aged conventional polyethylene inserts showed extensive delamination and cracking as early as 50,000 cycles. In contrast, the unaged conventional and highly cross-linked polyethylene inserts did not show any subsurface cracking or delamination at 0.5 million cycles. The appearance and location of delamination that occurred in the aged conventional inserts tested with the current model previously have been observed in vivo with posterior cruciate-sparing design knee arthroplasties with a tight posterior cruciate ligament.

  11. Dynamic Heterogeneity in Highly Cross-linked Epoxy in the Vicinity of Glass Transition

    NASA Astrophysics Data System (ADS)

    Lin, Po-Han; Khare, Rajesh

    2010-03-01

    Cross-linked epoxy has been widely used in aerospace and electronics industries. The highly cross-linked nature of these systems leads to different chain dynamics as compared to the linear polymeric systems. In this work, we have used molecular dynamics (MD) simulations to study the dynamic heterogeneity in cross-linked epoxy near the glass transition temperature. Well-relaxed atomistic models of cross-linked epoxy were first created by employing the simulated annealing polymerization approach. The specific epoxy system studied consisted of diglycidyl ether of bisphenol-A (DGEBA) as the epoxy monomer and trimethylene glycol di-p-aminobenzoate (TMAB) as the cross-linker. The glass transition temperature of these model structures was determined from MD simulation by monitoring their volume-temperature behaviour in a stepwise cooling run. The chain dynamics of these systems were characterized by their local translational and orientational mobility. Furthermore, dynamic heterogeneity was studied by analyzing the spatial distribution of the mobile and immobile atoms in the system near the glass transition temperature.

  12. Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: A thermodynamic study

    PubMed Central

    Collier, Thomas A.; Nash, Anthony; Birch, Helen L.; de Leeuw, Nora H.

    2015-01-01

    The extracellular matrix (ECM) undergoes progressive age-related stiffening and loss of proteolytic digestibility due to an increase in concentration of advanced glycation end products (AGEs). The most abundant AGE, glucosepane, accumulates in collagen with concentrations over 100 times greater than all other AGEs. Detrimental collagen stiffening properties are believed to play a significant role in several age-related diseases such as osteoporosis and cardiovascular disease. Currently little is known of the potential location of covalently cross-linked glucosepane formation within collagen molecules; neither are there reports on how the respective cross-link sites affect the physical and biochemical properties of collagen. Using fully atomistic molecular dynamics simulations (MD) we have identified six sites where the formation of a covalent intra-molecular glucosepane cross-link within a single collagen molecule in a fibrillar environment is energetically favourable. Identification of these favourable sites enables us to align collagen cross-linking with experimentally observed changes to the ECM. For example, formation of glucosepane was found to be energetically favourable within close proximity of the Matrix Metalloproteinase-1 (MMP1) binding site, which could potentially disrupt collagen degradation. PMID:26049074

  13. Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin.

    PubMed

    Cui, Li; Jia, Junfang; Guo, Yi; Liu, Yun; Zhu, Ping

    2014-01-01

    The interpenetrating polymer networks (IPN) hydrogels based on chitosan and gelatin using genipin as the cross-linker were prepared and characterized. The IPN formation of the genipin-cross-linked chitosan/gelatin hydrogel was confirmed by means of the instrinsic viscosity measurement, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the ninhydrin assays. The instrinsic viscosity measurement, FT-IR and SEM suggested that chitosan and gelatin were miscible in the molecular level. The miscibility leads to the formation of IPN after cross-linking. FT-IR also examined the cross-linking mechanism of genipin with primary amino groups. The degree of cross-linking increased with increase genipin concentration. Swelling results revealed that the IPN hydrogels are pH-sensitive, exhibiting reversibility and rather rapidly response in swelling to pH changes. It is expected this IPN hydrogel has potential as controlled drug delivery system or as alternative sorbents for biomedical and environmental use as pH altered. PMID:24274476

  14. Spine fusion cross-link causing delayed dural erosion and CSF leak: case report.

    PubMed

    Rahmathulla, Gazanfar; Deen, H Gordon

    2015-04-01

    The past 2 decades have seen a considerable increase in the number of lumbar spinal fusion surgeries. To enhance spinal stabilization and fusion, make the construct resistant to or stiffer for axial stress loading, lateral bending, and torsional stresses, cross-links and connectors were designed and included in a rod-screw construct. The authors present the case of a 49-year-old woman who presented 11 years after undergoing an L4-5 decompression and fusion in which a pedicle screw-rod construct with an integrated cross-link was designed to attach onto the pedicle screws. The patient's response at the time to the initial surgery was excellent; however, at the time of presentation 11 years later, she had significant postural headaches, severe neurogenic claudication, and radiculopathy. Imaging revealed canal compression across the instrumented levels and a possible thickened adherent filum terminale. Reexploration of the level revealed a large erosive dural defect with a CSF leak, spinal canal compression, and a thickened filum at the level of the cross-link. To the author's knowledge, such complications have not been reported in literature. The authors discuss this rare complication of spinal fusion and the need to avoid dural compression when cross-links are used. PMID:25635637

  15. Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels.

    PubMed

    Solan, Amy; Dahl, Shannon L M; Niklason, Laura E

    2009-01-01

    It has been shown that mechanical stimulation affects the physical properties of multiple types of engineered tissues. However, the optimum regimen for applying cyclic radial stretch to engineered arteries is not well understood. To this end, the effect of mechanical stretch on the development of engineered blood vessels was analyzed in constructs grown from porcine vascular smooth muscle cells. Cyclic radial distension was applied during vessel culture at three rates: 0 beats per minute (bpm), 90 bpm, and 165 bpm. At the end of the 7-week culture period, harvested vessels were analyzed with respect to physical characteristics. Importantly, mechanical stretch at 165 bpm resulted in a significant increase in rupture strength in engineered constructs over nonstretched controls. Stress-strain data and maximal elastic moduli from vessels grown at the three stretch rates indicate enhanced physical properties with increasing pulse rate. In order to investigate the role of collagen cross-linking in the improved mechanical characteristics, collagen cross-link density was quantified by HPLC. Vessels grown with mechanical stretch had somewhat more collagen and higher burst pressures than nonpulsed control vessels. Pulsation did not increase collagen cross-link density. Thus, increased wall thickness and somewhat elevated collagen concentrations, but not collagen cross-link density, appeared to be responsible for increased burst strength.

  16. Experimental scleral cross-linking increases glaucoma damage in a mouse model

    PubMed Central

    Kimball, Elizabeth C.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary E.; Oglesby, Ericka N.; Oveson, Brian C.; Quigley, Harry A.

    2014-01-01

    The purpose of this study was to assess the effect of a scleral cross-linking agent on susceptibility to glaucoma damage in a mouse model. CD1 mice underwent 3 subconjunctival injections of 0.5 M glyceraldehyde (GA) in 1 week, then had elevated intraocular pressure (IOP) induced by bead injection. Degree of cross-linking was measured by enzyme-linked immunosorbent assay (ELISA), scleral permeability was measured by fluorescence recovery after photobleaching (FRAP), and the mechanical effects of GA exposure were measured by inflation testing. Control mice had buffer injection or no injection in 2 separate glaucoma experiments. IOP was monitored by Tonolab and retinal ganglion cell (RGC) loss was measured by histological axon counting. To rule out undesirable effects of GA, we performed electroretinography and detailed histology of the retina. GA exposure had no detectable effects on RGC number, retinal structure or function either histologically or electrophysiologically. GA increased cross-linking of sclera by 37% in an ELISA assay, decreased scleral permeability (FRAP, p = 0.001), and produced a steeper pressure—strain behavior by in vitro inflation testing. In two experimental glaucoma experiments, GA-treated eyes had greater RGC axon loss from elevated IOP than either buffer-injected or control eyes, controlling for level of IOP exposure over time (p = 0.01, and 0.049, multivariable regression analyses). This is the first report that experimental alteration of the sclera, by cross-linking, increases susceptibility to RGC damage in mice. PMID:25285424

  17. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    PubMed

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability. PMID:26876854

  18. Design of phosphated cross-linked microspheres of bael fruit gum as a biodegradable carrier.

    PubMed

    Mahammed, Nawaz; Gowda, D V; Deshpande, Rohan D; Thirumaleshwar, Shailesh

    2015-01-01

    Present work was aimed at designing of phosphated cross-linked microspheres of bael fruit gum (BFG) by emulsification method using sodium-tri-meta phosphate as a cross-linking agent for treatment of colon cancer using 5-fluorouracil as model drug. Stirring speed was found to be 1,000 rpm for about 5 h to be optimal to obtain reproducible microspheres. It was found that there is an increase in particle size as polymer concentration is increased whereas a reduction in particle size was observed as there is increase in stirring speed. Cross-linked BFG microspheres were successfully prepared by emulsification method. Optimum surfactant concentration was found to be 2 % w/w. Scanning electron microscopy studies showed that the drug-loaded microspheres were non-aggregated and in spherical shape. Differential scanning calorimetry and Fourier transform infrared-spectroscopy studies showed that drug and excipients are compatible. Release studies showed that drug release was more profound in cecal medium induced with enzymes causing degradation of the cross linked BFG than that of the release showed in simulated intestinal fluid. Stability studies showed that there were no significant changes in the drug content and physical appearance of microspheres.

  19. Is dialdehyde starch a valuable cross-linking agent for collagen/elastin based materials?

    PubMed

    Skopinska-Wisniewska, J; Wegrzynowska-Drzymalska, K; Bajek, A; Maj, M; Sionkowska, A

    2016-04-01

    Collagen and elastin are the main structural proteins in mammal bodies. They provide mechanical support, strength, and elasticity to various organs and tissues, e.g. skin, tendons, arteries, and bones. They are readily available, biodegradable, biocompatible and they stimulate cell growth. The physicochemical properties of collagen and elastin-based materials can be modified by cross-linking. Glutaraldehyde is one of the most efficient cross-linking agents. However, the unreacted molecules can be released from the material and cause cytotoxic reactions. Thus, the aim of our work was to investigate the influence of a safer, macromolecular cross-linking agent--dialdehyde starch (DAS). The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5 and 10% of DAS and neutralized via dialysis against deionized water were tested. The homogenous, transparent, stiff hydrogels were obtained. The DAS addition causes the formation of intermolecular cross-linking bonds but does not affect the secondary structure of the proteins. As a result, the thermal stability, mechanical strength, and, surprisingly, swelling ability increased. At the same time, the surface properties test and in vitro study show that the materials are attractive for 3T3 cells. Moreover, the materials containing 10% of DAS are more resistant to enzymatic degradation. PMID:26886815

  20. Cross-linking oppositely charged oil-in-water emulsions to enhance heteroaggregate stability.

    PubMed

    Maier, Christiane; Oechsle, Anja M; Weiss, Jochen

    2015-11-01

    The formation and subsequent enzymatic and chemical cross-linking of heteroaggregates from oppositely charged oil-in-water (O/W) emulsions was investigated. For this purpose, 10% (w/w) oil-in-water emulsions (d43<1 μm) were prepared at pH 4 using a positively charged emulsifier (Nα-lauroyl-L-arginine ethyl ester (LAE), cold water fish gelatin, or whey protein isolate) or a negatively charged one (sugar beet pectin or Quillaja saponins). The oppositely charged emulsions were then combined at a volume ratio of 1:1 and treated with laccase or glutaraldehyde in order to further stabilize the electrostatically attached aggregates by covalently cross-linking the oppositely charged membranes. Emulsions and heteroaggregates were characterized by their rheological properties, their surface charge, particle size distribution, and microstructure using dynamic and static light scattering as well as confocal laser scanning microscopy. Prior to cross-linking, the emulsifiers' stabilization mechanism were found to greatly influence the formation of heteroaggregates. Laccase treatment (1.34 mU/mL) increased aggregate expansion by ca. 30% for the combined emulsions stabilized by Quillaja saponins/whey protein isolate, while combined Quillaja saponins/fish gelatin stabilized emulsions remained unaffected. When combined emulsions were treated with 50mM glutaraldehyde, aggregate size significantly increased 2- and 3-fold, respectively. Thus, our study provides novel insights into the enzymatic and chemical cross-linking of heteroaggregates composed of oppositely charged O/W emulsions. PMID:26298085

  1. Effect of different cross-linking methods and processing parameters on drug release from hydrogel beads.

    PubMed

    Mitra, Shataneek; Maity, Siddhartha; Sa, Biswanath

    2015-03-01

    The purpose of this work was to evaluate different methods of cross-linking for developing diltiazem-resin complex loaded carboxymethyl xanthan gum (CMXG) hydrogel beads to achieve highest possible drug entrapment and extended release for effective cardio-protection. The hydrogel beads were prepared by ionic cross-linking and dual cross-linking using simultaneous (SIM) and sequential (SEQ) methods. Among the three methods, SEQ method produced smaller sized beads having higher drug entrapment efficacy and prolonged release characteristics as evidenced from mean dissolution time and diffusion coefficient of drug. Keeping the concentration of ionic cross-linker constant, increase in the amount of covalent cross-linker and cross-linking time decreased the drug release. Higher release of the drug in acid solution was attributed to the higher solubility of the basic drug and higher swelling of the matrices in acid solution. Comparison of FTIR spectra, drug content and dissolution profiles indicated that the drug was stable in the beads when kept under stress condition up to 3 months. In conclusion, the sequential method was found superior for producing CMXG hydrogel beads as a prolonged release delivery device in cardiovascular diseases. PMID:25576745

  2. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    SciTech Connect

    Khabaz, Fardin Khare, Ketan S. Khare, Rajesh

    2014-05-15

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.

  3. Hierarchically porous polymers from hyper-cross-linked block polymer precursors.

    PubMed

    Seo, Myungeun; Kim, Soobin; Oh, Jaehoon; Kim, Sun-Jung; Hillmyer, Marc A

    2015-01-21

    We report synthesis of hierarchically porous polymers (HPPs) consisting of micropores and well-defined 3D continuous mesopores by combination of hyper-cross-linking and block polymer self-assembly. Copolymerization of 4-vinylbenzyl chloride (VBzCl) with divinylbenzene (DVB) in the presence of polylactide (PLA) macro-chain-transfer agent produced a cross-linked block polymer precursor PLA-b-P(VBzCl-co-DVB) via reversible addition-fragmentation chain transfer polymerization. A nanoscopic bicontinuous morphology containing PLA and P(VBzCl-co-DVB) microdomains was obtained as a result of polymerization-induced microphase separation. While a basic treatment of the precursor selectively removed PLA to yield a reticulated mesoporous polymer, hyper-cross-linking of the precursor by FeCl3 generated micropores in the P(VBzCl-co-DVB) microdomain via Friedel-Crafts alkylation and simultaneously degraded PLA to produce the HPP containing micropores in the mesoporous framework. The mesopore size of the HPP could be precisely controlled from 6 to 15 nm by controlling the molar mass of PLA. We demonstrate acceleration in adsorption rate in the HPP compared to a hyper-cross-linked microporous polymer. PMID:25551291

  4. A minimal model for stabilization of biomolecules by hydrocarbon cross-linking

    NASA Astrophysics Data System (ADS)

    Hamacher, K.; Hübsch, A.; McCammon, J. A.

    2006-04-01

    Programmed cell death regulating protein motifs play an essential role in the development of an organism, its immune response, and disease-related cellular mechanisms. Among those motifs the BH3 domain of the BCL-2 family is found to be of crucial importance. Recent experiments showed how the isolated, otherwise unstructured BH3 peptide can be modified by a hydrocarbon linkage to regain function. We parametrized a reduced, dynamic model for the stability effects of such covalent cross-linking and confirmed that the model reproduces the reinforcement of the structural stability of the BH3 motif by cross-linking. We show that an analytically solvable model for thermostability around the native state is not capable of reproducing the stabilization effect. This points to the crucial importance of the peptide dynamics and the fluctuations neglected in the analytic model for the cross-linking system to function properly. This conclusion is supported by a thorough analysis of a simulated Gō model. The resulting model is suitable for rational design of generic cross-linking systems in silicio.

  5. Can para-aryl-dithiols cross-link two plasmonic noble nanoparticles as monolayer dithiolate spacers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Para-aryl-dithiols (PADTs, HS-(C6H4)n-SH, n = 1, 2, and 3) have been used extensively in molecular electronics, surface-enhanced Raman spectroscopy (SERS), and quantum electron tunneling between two gold or silver nanoparticles (AuNPs and AgNPs). One popular belief is that these dithiols cross-link ...

  6. Reversible Inter- and Intra-Microgel Cross-Linking using Disulfides

    PubMed Central

    Gaulding, Jeffrey C.; Smith, Michael H.; Hyatt, John S.; Fernandez-Nieves, Alberto; Lyon, L. Andrew

    2012-01-01

    Thermoresponsive hydrogel nanoparticles composed of poly(N-isopropylmethacrylamide) (pNIPMAm) and the disulfide-based cross-linker N,N’-bis(acryloyl)cystamine (BAC) have been prepared using a redox-initiated, aqueous precipitation polymerization approach, leading to improved stability of the disulfide bond compared to traditional thermally-initiated methods. The resultant particles demonstrate complete erosion in response to reducing conditions or thiol competition. This stands in contrast to the behavior of thermally-initiated particles, which retain a cross-linked network following disulfide cleavage due to uncontrolled chain-branching and self-cross-linking side reactions. The synthetic strategy has also been combined with the non-degradable cross-linker N,N-methylenebisacrylamide (BIS) to generate “co-cross-linked” pNIPMAm-BAC-BIS microgels. These particles are redox-responsive, swell upon BAC cross-link scission and present reactive thiols. This pendant thiol functionality was demonstrated to be useful for conjugation of thiol-reactive probes and in reversible network formation by assembling particles cross-linked by disulfide linkages. PMID:22287810

  7. Polymers and Cross-Linking: A CORE Experiment to Help Students Think on the Submicroscopic Level

    ERIC Educational Resources Information Center

    Bruce, Mitchell R. M.; Bruce, Alice E.; Avargil, Shirly; Amar, Francois G.; Wemyss, Thomas M.; Flood, Virginia J.

    2016-01-01

    The Polymers and Cross-Linking experiment is presented via a new three phase learning cycle: CORE (Chemical Observations, Representations, Experimentation), which is designed to model productive chemical inquiry and to promote a deeper understanding about the chemistry operating at the submicroscopic level. The experiment is built on two familiar…

  8. Identification of disulfide cross-linked tau dimer responsible for tau propagation

    PubMed Central

    Kim, Dohee; Lim, Sungsu; Haque, Md. Mamunul; Ryoo, Nayeon; Hong, Hyun Seok; Rhim, Hyewhon; Lee, Dong-Eun; Chang, Young-Tae; Lee, Jun-Seok; Cheong, Eunji; Kim, Dong Jin; Kim, Yun Kyung

    2015-01-01

    Recent evidence suggests that tau aggregates are not only neurotoxic, but also propagate in neurons acting as a seed for native tau aggregation. Prion-like tau transmission is now considered as an important pathogenic mechanism driving the progression of tau pathology in the brain. However, prion-like tau species have not been clearly characterized. To identify infectious tau conformers, here we prepared diverse tau aggregates and evaluated the effect on inducing intracellular tau-aggregation. Among tested, tau dimer containing P301L-mutation is identified as the most infectious form to induce tau pathology. Biochemical analysis reveals that P301L-tau dimer is covalently cross-linked with a disulfide bond. The relatively small and covalently cross-linked tau dimer induced tau pathology efficiently in primary neurons and also in tau-transgenic mice. So far, the importance of tau disulfide cross-linking has been overlooked in the study of tau pathology. Here our results suggested that tau disulfide cross-linking might play critical role in tau propagation by producing structurally stable and small tau conformers. PMID:26470054

  9. Design of phosphated cross-linked microspheres of bael fruit gum as a biodegradable carrier.

    PubMed

    Mahammed, Nawaz; Gowda, D V; Deshpande, Rohan D; Thirumaleshwar, Shailesh

    2015-01-01

    Present work was aimed at designing of phosphated cross-linked microspheres of bael fruit gum (BFG) by emulsification method using sodium-tri-meta phosphate as a cross-linking agent for treatment of colon cancer using 5-fluorouracil as model drug. Stirring speed was found to be 1,000 rpm for about 5 h to be optimal to obtain reproducible microspheres. It was found that there is an increase in particle size as polymer concentration is increased whereas a reduction in particle size was observed as there is increase in stirring speed. Cross-linked BFG microspheres were successfully prepared by emulsification method. Optimum surfactant concentration was found to be 2 % w/w. Scanning electron microscopy studies showed that the drug-loaded microspheres were non-aggregated and in spherical shape. Differential scanning calorimetry and Fourier transform infrared-spectroscopy studies showed that drug and excipients are compatible. Release studies showed that drug release was more profound in cecal medium induced with enzymes causing degradation of the cross linked BFG than that of the release showed in simulated intestinal fluid. Stability studies showed that there were no significant changes in the drug content and physical appearance of microspheres. PMID:24668152

  10. Light-scattering thermal cross-linking material using morphology of nanoparticle free polymer blends

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi

    2015-03-01

    A newly light-scattering thermal cross-linking material based on self-assembly for forming the morphology of nanoparticle free polymer blends was reported. The material design concept to use light-scattering thermal cross-linking material with high uniformity of light on display panel from LED for high quality such as brightness and evenness, mechanical properties, and gas and water barrier properties. The high light scattering rate of 8 % at 350-450 nm of wavelength, fast cure film at 140 ºC and 120 s, and thermal stability at 190 ºC in bake condition for high productivity were indicated in the light-scattering thermal cross-linking material using the nanoparticle free polymers with carboxylic acid functional groups. These novel system using morphology of nanoparticle free polymer blends in light-scattering package material for a LCD using LED was a valuable approach to the design of material formulations for newly light-scattering thermal cross-linking material.

  11. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking

    NASA Astrophysics Data System (ADS)

    Chen, I.-Wen Peter; Liang, Richard; Zhao, Haibo; Wang, Ben; Zhang, Chuck

    2011-12-01

    Carbon nanotube (CNT) sheets or buckypapers have demonstrated promising electrical conductivity and mechanical performance. However, their electrical conductivity is still far below the requirements for engineering applications, such as using as a substitute for copper mesh, which is currently used in composite aircraft structures for lightning strike protection. In this study, different CNT buckypapers were stretched to increase their alignment, and then subjected to conjugational cross-linking via chemical functionalization. The conjugationally cross-linked buckypapers (CCL-BPs) demonstrated higher electrical conductivity of up to 6200 S cm - 1, which is more than one order increase compared to the pristine buckypapers. The CCL-BPs also showed excellent doping stability in over 300 h in atmosphere and were resistant to degradation at elevated temperatures. The tensile strength of the stretched CCL-BPs reached 220 MPa, which is about three times that of pristine buckypapers. We attribute these property improvements to the effective and stable conjugational cross-links of CNTs, which can simultaneously improve the electrical conductivity, doping stability and mechanical properties. Specifically, the electrical conductivity increase resulted from improving the CNT alignment and inter-tube electron transport capability. The conjugational cross-links provide effective 3D conductive paths to increase the mobility of electrons among individual nanotubes. The stable covalent bonding also enhances the thermal stability and load transfer. The significant electrical and mechanical property improvement renders buckypaper a multifunctional material for various applications, such as conducting composites, battery electrodes, capacitors, etc.

  12. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    PubMed

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability.

  13. ChIP bias as a function of cross-linking time.

    PubMed

    Baranello, Laura; Kouzine, Fedor; Sanford, Suzanne; Levens, David

    2016-05-01

    The chromatin immunoprecipitation (ChIP) assay is widely used to capture interactions between chromatin and regulatory proteins in vivo. Formaldehyde cross-linking of DNA and proteins is a critical step required to trap their interactions inside the cells before immunoprecipitation and analysis. Yet insufficient attention has been given to variables that might give rise to artifacts in this procedure, such as the duration of cross-linking. We analyzed the dependence of the ChIP signal on the duration of formaldehyde cross-linking time for two proteins: DNA topoisomerase 1 (Top1) that is functionally associated with the double helix in vivo, especially with active chromatin, and green fluorescent protein (GFP) that has no known bona fide interactions with DNA. With short time of formaldehyde fixation, only Top1 immunoprecipation efficiently recovered DNA from active promoters, whereas prolonged fixation augmented non-specific recovery of GFP dramatizing the need to optimize ChIP protocols to minimize the time of cross-linking, especially for abundant nuclear proteins. Thus, ChIP is a powerful approach to study the localization of protein on the genome when care is taken to manage potential artifacts. PMID:26685864

  14. An unprecedented single platform via cross-linking of zeolite and MOFs.

    PubMed

    Lim, Dae-Woon; Lee, Heeju; Kim, Sungjune; Cho, In Hwa; Yoon, Minyoung; Choi, Yong Nam

    2016-05-21

    The unprecedented ternary nanocomposites have been synthesized as a single platform via cross-linking of two nanoporous materials, MOFs and Pt nanoparticle (NP) loaded zeolite. The heterojunction of the novel nanocomposites is anticipated to work as a chemical platform for size selective catalytic hydrogenation or deuteration of small molecules. PMID:27086901

  15. Membrane Ig cross-linking regulates phosphatidylinositol 3-kinase in B lymphocytes.

    PubMed

    Gold, M R; Chan, V W; Turck, C W; DeFranco, A L

    1992-04-01

    Cross-linking of the B cell AgR results in activation of mature B cells and tolerization of immature B cells. The initial signaling events stimulated by membrane immunoglobulin (mIg) cross-linking are tyrosine phosphorylation of a number of proteins. Among the targets of mIg-induced tyrosine phosphorylation are the tyrosine kinases encoded by the lyn, blk, fyn, and syk genes, the mIg-associated proteins MB-1 and Ig-beta, phospholipase C-gamma 1 and -gamma 2, as well as many unidentified proteins. In this report we show that mIg cross-linking also regulates phosphatidylinositol 3-kinase (PtdIns 3-kinase), an enzyme that phosphorylates inositol phospholipids and plays a key role in mediating the effects of tyrosine kinases on growth control in fibroblasts. Cross-linking mIg on B lymphocytes greatly increased the amount of PtdIns 3-kinase activity which could be immunoprecipitated with anti-phosphotyrosine (anti-tyr(P) antibodies. This response was observed after mIg cross-linking in mIgM- and mIgG-bearing B cell lines and after cross-linking either mIgM or mIgD in murine splenic B cells. Thus, regulation of PtdIns 3-kinase is a common feature of signaling by several different isotypes of mIg. This response was rapid and peaked 2 to 3 min after the addition of anti-Ig antibodies. The anti-Ig-stimulated increase in PtdIns 3-kinase activity associated with anti-Tyr(P) immunoprecipitates could reflect increased tyrosine phosphorylation of PtdIns 3-kinase, increased activity of the enzyme, or both. In favor of the first possibility, the tyrosine kinase inhibitor herbimycin A blocked the increase in ant-Tyr(P)-immunoprecipitated PtdIns 3-kinase activity as well as the anti-Ig-induced tyrosine phosphorylation. Moreover, this response was not secondary to phospholipase C activation but rather seemed to be a direct consequence of mIg-induced tyrosine phosphorylation. Activation of the phosphoinositide pathway by a transfected M1 muscarinic acetylcholine receptor expressed in

  16. Initial Studies Using Aliphatic β-Nitro Alcohols for Therapeutic Corneal Cross-Linking

    PubMed Central

    Paik, David C.; Wen, Quan; Braunstein, Richard E.; Airiani, Suzanna; Trokel, Stephen L.

    2009-01-01

    Purpose Corneal collagen cross-linking through UVA-riboflavin photochemistry (UVAR) has been shown to be an effective treatment for keratoconus and related keratectasias. In recent studies using sclera, the authors observed that short-chain aliphatic β-nitro alcohols can cross-link collagenous tissue under physiologic conditions. Thus, this study was undertaken to evaluate these agents as potential pharmacologic alternatives to UVAR. Methods Porcine corneal strips (8 × 4 mm) and corneoscleral complexes were cross-linked using 1 to 100 mM 2-nitroethanol (2ne), 2-nitro-1-propanol (2nprop), and 3-nitro-2-pentanol (3n2pent) at pH 7.4, 34°C. Cross-linking by UVAR was carried out for comparison. Thermal shrinkage temperature analysis was used to evaluate cross-linking effects, and changes in corneal light transmission were determined with a fiber-optic spectrophotometer. Results At 10 and 100 mM for 96 hours, initial shrinkage temperature (Ti) was shifted by 3.3°C (P < 0.001) and 9.8°C (P < 0.001) for 2ne, 2.9°C (P = 0.008) and 4.9°C (P < 0.001) for 2nprop, and 3.8°C (P = 0.003) and 4.9°C (P < 0.001) for 3n2pent. Reacting at 1 mM through daily exchange of fluid over 7 days shifted Ti by 3.8°C (P < 0.001), 4.4°C (P = 0.002), and 3.2°C (P = 0.005), for 2ne, 2nprop, and 3n2pent, respectively. These shifts were greater than cross-linking using UVAR (Ti = 1.9°C; P = 0.012). In the blue light region (400−500 nm), transmission was decreased by 5.6% (P = 0.003), 2.1% (P = 0.260), and 0% (P = 0.428) for 2ne, 2nprop, and 3n2pent, respectively. Conclusions β-Nitro alcohols can induce corneal cross-linking in vitro better than the UVAR technique and can induce negligible effects on light transmission. These early results suggest that such compounds could be used as topical stiffening agents for keratoconus and related disorders. PMID:18836172

  17. Monitoring the internal structure of poly(N-vinylcaprolactam) microgels with variable cross-link concentration.

    PubMed

    Schneider, Florian; Balaceanu, Andreea; Feoktystov, Artem; Pipich, Vitaliy; Wu, Yaodong; Allgaier, Jürgen; Pyckhout-Hintzen, Wim; Pich, Andrij; Schneider, Gerald J

    2014-12-23

    The combination of a set of complementary techniques allows us to construct an unprecedented and comprehensive picture of the internal structure, temperature dependent swelling behavior, and the dependence of these properties on the cross-linker concentration of microgel particles based on N-vinylcaprolactam (VCL). The microgels were synthesized by precipitation polymerization using different amounts of cross-linking agent. Characterization was performed by small-angle neutron scattering (SANS) using two complementary neutron instruments to cover a uniquely broad Q-range with one probe. Additionally we used dynamic light scattering (DLS), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Previously obtained nuclear magnetic resonance spectroscopy (NMR) results on the same PVCL particles are utilized to round the picture off. Our study shows that both the particle radius and the cross-link density and therefore also the stiffness of the microgels rises with increasing cross-linker content. Hence, more cross-linker reduces the swelling capability distinctly. These findings are supported by SANS and AFM measurements. Independent DLS experiments also found the increase in particle size but suggest an unchanged cross-link density. The reason for the apparent contradiction is the indirect extraction of the parameters via a model in the evaluation of DLS measurements. The more direct approach in AFM by evaluating the cross section profiles of observed microgel particles gives evidence of significantly softer and more deformable particles at lower cross-linker concentrations and therefore verifies the change in cross-link density. DSC data indicate a minor but unexpected shift of the volume phase transition temperature (VPTT) to higher temperatures and exposes a more heterogeneous internal structure of the microgels with increasing cross-link density. Moreover, a change in the total energy transfer during the VPT gives evidence that the strength

  18. Cross-linking of glycoprotein oligomers during herpes simplex virus type 1 entry.

    PubMed

    Handler, C G; Cohen, G H; Eisenberg, R J

    1996-09-01

    Herpes simplex virus (HSV) has 10 glycoproteins in its envelope. Glycoprotein B (gB), gC, gD, gH, and gL have been implicated in virus entry. We previously used chemical cross-linking to show that these five glycoproteins were close enough to each other to be cross-linked into homodimeric and hetero-oligomeric forms; hetero-oligomers of gB-gC, gC-gD, gD-gB, gH-gL, gC-gL and gD-gL were found in purified virions. To better understand the roles of these glycoproteins in viral entry, we have modified a standard HSV penetration assay to include cross-linkers. This allowed us to examine changes in associations of viral glycoproteins during the entry process. HSV-1(KOS) was adsorbed at 4 degrees C to human neuroblastoma cells (SY5Y). The temperature was raised to 37 degrees C and cells were treated with cross-linker at various times after the temperature shift. Cytoplasmic extracts were examined by Western blotting (immunoblotting) for viral glycoproteins. We found that (i) as in virus alone, the length and concentration of the cross-linking agent affected the number of specific complexes isolated; (ii) the same glycoprotein patterns found in purified virions were also present after attachment of virions to cells; and (iii) the ability to cross-link HSV glycoproteins changed as virus penetration proceeded, e.g., gB and gD complexes which were present during attachment disappeared with increasing time, and their disappearance paralleled the kinetics of penetration. However, this phenomenon appeared to be selective since it was not observed with gC oligomers. In addition, we examined the cross-linking patterns of gB and gD in null viruses K082 and KOSgD beta. Neither of these mutants, which attach but cannot penetrate, showed changes in glycoprotein cross-linking over time. We speculate that these changes are due to conformational changes which preclude cross-linking or spatial alterations which dissociate the glycoprotein interactions during the penetration events. PMID

  19. Tissue-specific distribution of cross-linked somatostatin receptor proteins in the rat.

    PubMed

    Srikant, C B; Murthy, K K; Patel, Y C

    1992-03-01

    Pharmacological studies have suggested that the somatostatin (SS) receptor is heterogeneous and exhibits SS-14-and SS-28-selective subtypes. Whether such subtypes arise from molecular heterogeneity of the receptor protein has not been definitively established. Previous reports characterizing the molecular properties of the SS receptor by the cross-linking approach have yielded divergent size estimates ranging from 27 kDa to 200 kDa. In order to resolve this discrepancy, as well as to determine whether SS-14 and SS-28 interact with specific receptor proteins, we have cross-linked radioiodinated derivatives of [125I-Tyr11]SS-14 (T*-SS-14) and [Leu8,D-Trp22,125I-Tyr25]SS-28 (LTT*-SS-28) to membrane SS receptors in rat brain, pituitary, exocrine pancreas and adrenal cortex using a number of chemical and photoaffinity cross-linking agents. The labelled cross-linked receptor proteins were analysed by SDS/PAGE under reducing conditions followed by autoradiography. Our findings indicate that the pattern of specifically labelled cross-linked SS receptor proteins is sensitive to the concentration of chemical cross-linking agents such as disuccinimidyl suberate and dithiobis-(succinimidyl propionate). Labelled high-molecular-mass complexes of cross-linked receptor-ligand proteins were observed only when high concentrations of these cross-linkers were employed. Using optimized low concentrations of cross-linkers, however, two major labelled bands of 58 +/- 3 kDa and 27 +/- 2 kDa were detected. These two bands were identified as specifically labelled SS receptor proteins subsequent to cross-linking with a number of photoaffinity cross-linking agents as well. We demonstrate here that the 58 kDa protein is the major SS receptor protein in the rat pituitary, adrenal and exocrine pancreas, whereas the 27 kDa moiety represents the principal form in the brain. Additionally, the presence of a minor specifically labelled band of 32 kDa was detected uniquely in the brain, and a minor

  20. Tissue-specific distribution of cross-linked somatostatin receptor proteins in the rat.

    PubMed Central

    Srikant, C B; Murthy, K K; Patel, Y C

    1992-01-01

    Pharmacological studies have suggested that the somatostatin (SS) receptor is heterogeneous and exhibits SS-14-and SS-28-selective subtypes. Whether such subtypes arise from molecular heterogeneity of the receptor protein has not been definitively established. Previous reports characterizing the molecular properties of the SS receptor by the cross-linking approach have yielded divergent size estimates ranging from 27 kDa to 200 kDa. In order to resolve this discrepancy, as well as to determine whether SS-14 and SS-28 interact with specific receptor proteins, we have cross-linked radioiodinated derivatives of [125I-Tyr11]SS-14 (T*-SS-14) and [Leu8,D-Trp22,125I-Tyr25]SS-28 (LTT*-SS-28) to membrane SS receptors in rat brain, pituitary, exocrine pancreas and adrenal cortex using a number of chemical and photoaffinity cross-linking agents. The labelled cross-linked receptor proteins were analysed by SDS/PAGE under reducing conditions followed by autoradiography. Our findings indicate that the pattern of specifically labelled cross-linked SS receptor proteins is sensitive to the concentration of chemical cross-linking agents such as disuccinimidyl suberate and dithiobis-(succinimidyl propionate). Labelled high-molecular-mass complexes of cross-linked receptor-ligand proteins were observed only when high concentrations of these cross-linkers were employed. Using optimized low concentrations of cross-linkers, however, two major labelled bands of 58 +/- 3 kDa and 27 +/- 2 kDa were detected. These two bands were identified as specifically labelled SS receptor proteins subsequent to cross-linking with a number of photoaffinity cross-linking agents as well. We demonstrate here that the 58 kDa protein is the major SS receptor protein in the rat pituitary, adrenal and exocrine pancreas, whereas the 27 kDa moiety represents the principal form in the brain. Additionally, the presence of a minor specifically labelled band of 32 kDa was detected uniquely in the brain, and a minor

  1. Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model

    PubMed Central

    McNerny, Erin M. B.; Gong, Bo; Morris, Michael D.; Kohn, David H.

    2014-01-01

    Collagen cross-linking is altered in many diseases of bone, and enzymatic collagen cross-links are important to bone quality as evidenced by losses of strength following lysyl oxidase inhibition (lathyrism). We hypothesized that cross-links also contribute directly to bone fracture toughness. A mouse model of lathyrism using subcutaneous injection of up to 500mg/kg β-aminopropionitrile (BAPN) was developed and characterized (60 animals across 4 dosage groups). Three weeks of 150 or 350 mg/kg BAPN treatment in young growing mice significantly reduced cortical bone fracture toughness, strength, and pyridinoline cross-link content. Ratios reflecting relative cross-link maturity were positive regressors of fracture toughness (HP/[DHLNL+HLNL] r2=0.208, p<0.05; [HP+LP]/[DHNL+HLNL] r2=0.196, p<0.1), whereas quantities of mature pyridinoline cross-links were significant positive regressors of tissue strength (lysyl pyridinoline r2=0.159, p=0.014; hydroxylysyl pyridinoline r2=0.112, p<0.05). Immature and pyrrole cross-links, which were not significantly reduced by BAPN, did not correlate with mechanical properties. The effect of BAPN treatment on mechanical properties was dose specific, with the greatest impact found at the intermediate (350mg/kg) dose. Calcein labeling was used to define locations of new bone formation, allowing for the identification of regions of normally cross-linked (preexisting) and BAPN treated (newly formed, cross-link-deficient) bone. Raman spectroscopy revealed spatial differences due to relative tissue age and effects of cross-link inhibition. Newly deposited tissues had lower mineral/matrix, carbonate/phosphate and Amide I cross-link (matrix maturity) ratios compared to preexisting tissues. BAPN treatment did not affect mineral measures, but significantly increased the cross-link (matrix maturity) ratio compared to newly formed control tissue. Our study reveals that spatially localized effects of short term BAPN cross-link inhibition can alter

  2. Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia.

    PubMed

    Wang, Zhijie; Chesler, Naomi C

    2012-01-01

    Chronic hypoxic pulmonary hypertension (HPH) is associated with large pulmonary artery (PA) stiffening, which is correlated with collagen accumulation. However, the mechanisms by which collagen contributes to PA stiffening remain largely unexplored. Moreover, HPH may alter mechanical properties other than stiffness, such as pulse damping capacity, which also affects ventricular workload but is rarely quantified. We hypothesized that collagen content and cross-linking differentially regulate the stiffness and damping capacity of large PAs during HPH progression. The hypothesis was tested with transgenic mice that synthesize collagen type I resistant to collagenase degradation (Col1a1(R/R)). These mice and littermate controls (Col1a1(+/+)) were exposed to hypoxia for 10 days; some were treated with β-aminopropionitrile (BAPN), which prevents new cross-link formation. Isolated PA dynamic mechanical tests were performed, and collagen content and cross-linking were measured. In Col1a1(+/+) mice, HPH increased both collagen content and cross-linking, and BAPN treatment prevented these increases. Similar trends were observed in Col1a1(R/R) mice except that collagen content further increased with BAPN treatment. Mechanical tests showed that in Col1a1(+/+) mice, HPH increased PA stiffness and damping capacity, and these increases were impeded by BAPN treatment. In Col1a1(R/R) mice, HPH led to a smaller but significant increase in PA stiffness and a decrease in damping capacity. These mechanical changes were not affected by BAPN treatment. Vessel-specific correlations for each strain showed that the stiffness and damping capacity were correlated with the total content rather than cross-linking of collagen. Our results suggest that collagen total content is critical to extralobar PA stiffening during HPH. PMID:21538012

  3. Probabilistic cross-link analysis and experiment planning for high-throughput elucidation of protein structure.

    PubMed

    Ye, Xiaoduan; O'Neil, Patrick K; Foster, Adrienne N; Gajda, Michal J; Kosinski, Jan; Kurowski, Michal A; Bujnicki, Janusz M; Friedman, Alan M; Bailey-Kellogg, Chris

    2004-12-01

    Emerging high-throughput techniques for the characterization of protein and protein-complex structures yield noisy data with sparse information content, placing a significant burden on computation to properly interpret the experimental data. One such technique uses cross-linking (chemical or by cysteine oxidation) to confirm or select among proposed structural models (e.g., from fold recognition, ab initio prediction, or docking) by testing the consistency between cross-linking data and model geometry. This paper develops a probabilistic framework for analyzing the information content in cross-linking experiments, accounting for anticipated experimental error. This framework supports a mechanism for planning experiments to optimize the information gained. We evaluate potential experiment plans using explicit trade-offs among key properties of practical importance: discriminability, coverage, balance, ambiguity, and cost. We devise a greedy algorithm that considers those properties and, from a large number of combinatorial possibilities, rapidly selects sets of experiments expected to discriminate pairs of models efficiently. In an application to residue-specific chemical cross-linking, we demonstrate the ability of our approach to plan experiments effectively involving combinations of cross-linkers and introduced mutations. We also describe an experiment plan for the bacteriophage lambda Tfa chaperone protein in which we plan dicysteine mutants for discriminating threading models by disulfide formation. Preliminary results from a subset of the planned experiments are consistent and demonstrate the practicality of planning. Our methods provide the experimenter with a valuable tool (available from the authors) for understanding and optimizing cross-linking experiments. PMID:15557270

  4. Collagen cross-linking treatment effects on corneal dynamic biomechanical properties.

    PubMed

    Hatami-Marbini, Hamed; Rahimi, Abdolrasol

    2015-06-01

    Cornea is a soft tissue with the principal function of transmitting and refracting light rays. The objective of the current study was to characterize possible effects of the riboflavin/UVA collagen cross-linking on corneal dynamic properties. The original corneal cross-linking protocol was used to induce cross-links in the anterior portion of the bovine cornea. A DMA machine was used to conduct mechanical tensile experiments at different levels of tensile strains. The samples were divided into a control group (n = 5) and a treated group (n = 5). All specimens were first stretched to a strain of 5% and allowed to relax for twenty minutes. After completion of the stress-relaxation experiment, a frequency sweep test with oscillations ranging from 0.01 to 10 Hz was performed. The same procedure was repeated to obtain the stress-relaxation and dynamic properties at 10% strain. It was observed that the collagen cross-linking therapy significantly increased the immediate and equilibrium tensile behavior of the bovine cornea (P < 0.05). Furthermore, for all samples in control and treated groups and throughout the whole range of frequencies, a significantly larger tensile storage modulus was measured at an axial strain of 10% compared to what was obtained at a tensile strain of 5%. Finally, it was noted that although this treatment procedure resulted in a significant increase in the storage and loss modulus at any axial strain and frequency (P < 0.05), it significantly reduced the ratio of the dissipated and stored energy during a single cycle of deformation. Therefore, it was concluded that while the riboflavin/UVA collagen cross-linking increased significantly corneal stiffness, it decreased significantly its damping capability and deformability. This reduced damping ability might adversely interfere with corneal mechanical performance.

  5. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking

    PubMed Central

    Makris, Eleftherios A.; Responte, Donald J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    The inability to recapitulate native tissue biomechanics, especially tensile properties, hinders progress in regenerative medicine. To address this problem, strategies have focused on enhancing collagen production. However, manipulating collagen cross-links, ubiquitous throughout all tissues and conferring mechanical integrity, has been underinvestigated. A series of studies examined the effects of lysyl oxidase (LOX), the enzyme responsible for the formation of collagen cross-links. Hypoxia-induced endogenous LOX was applied in multiple musculoskeletal tissues (i.e., cartilage, meniscus, tendons, ligaments). Results of these studies showed that both native and engineered tissues are enhanced by invoking a mechanism of hypoxia-induced pyridinoline (PYR) cross-links via intermediaries like LOX. Hypoxia was shown to enhance PYR cross-linking 1.4- to 6.4-fold and, concomitantly, to increase the tensile properties of collagen-rich tissues 1.3- to 2.2-fold. Direct administration of exogenous LOX was applied in native cartilage and neocartilage generated using a scaffold-free, self-assembling process of primary chondrocytes. Exogenous LOX was found to enhance native tissue tensile properties 1.9-fold. LOX concentration- and time-dependent increases in PYR content (∼16-fold compared with controls) and tensile properties (approximately fivefold compared with controls) of neocartilage were also detected, resulting in properties on par with native tissue. Finally, in vivo subcutaneous implantation of LOX-treated neocartilage in nude mice promoted further maturation of the neotissue, enhancing tensile and PYR content approximately threefold and 14-fold, respectively, compared with in vitro controls. Collectively, these results provide the first report, to our knowledge, of endogenous (hypoxia-induced) and exogenous LOX applications for promoting collagen cross-linking and improving the tensile properties of a spectrum of native and engineered tissues both in vitro and in

  6. Vitamin C status and collagen cross-link ratios in Gambian children.

    PubMed

    Munday, K; Fulford, A; Bates, C J

    2005-04-01

    Vitamin C (ascorbate) is essential for hydroxylation of prolyl and lysyl residues in nascent collagen, the failure of which leads to connective tissue lesions of scurvy. Of the pyridinium-type cross-links in mature collagen, pyridinoline requires more hydroxylysyl residues than does deoxypyridinoline. Our study tested the hypothesis that pyridinoline:deoxypyridinoline ratios in urinary degradation products may vary with ascorbate status in man. These ratios were compared between British and Gambian prepubertal boys, mean age 8.3 years, and in Gambian boys between two seasons with contrasting ascorbate availability. The mean cross-links ratio in 216 British boys was 4.36 (SD 0.71), significantly greater (P<0.0001) than in sixty-two Gambian boys: 3.83 (SD 0.52). In the Gambians the cross-links ratio was significantly higher in the dry season (with high ascorbate intake and status) than in the rains (with low intake and status). A 7-week controlled intervention was carried out in Gambian boys during the rainy season (the 'hungry' season, when vitamin C-containing foods are virtually unavailable): 100 mg ascorbate/d was given to one group of thirty-two Gambian boys and placebo to another group. The intervention did not, however, significantly alter the cross-link ratio, possibly because the response time and/or intervention-response delay is >7 weeks. If confirmed, the putative association between ascorbate and collagen cross-link ratios in man could become the basis for a functional test for adequacy of ascorbate status.

  7. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking.

    PubMed

    Makris, Eleftherios A; Responte, Donald J; Paschos, Nikolaos K; Hu, Jerry C; Athanasiou, Kyriacos A

    2014-11-11

    The inability to recapitulate native tissue biomechanics, especially tensile properties, hinders progress in regenerative medicine. To address this problem, strategies have focused on enhancing collagen production. However, manipulating collagen cross-links, ubiquitous throughout all tissues and conferring mechanical integrity, has been underinvestigated. A series of studies examined the effects of lysyl oxidase (LOX), the enzyme responsible for the formation of collagen cross-links. Hypoxia-induced endogenous LOX was applied in multiple musculoskeletal tissues (i.e., cartilage, meniscus, tendons, ligaments). Results of these studies showed that both native and engineered tissues are enhanced by invoking a mechanism of hypoxia-induced pyridinoline (PYR) cross-links via intermediaries like LOX. Hypoxia was shown to enhance PYR cross-linking 1.4- to 6.4-fold and, concomitantly, to increase the tensile properties of collagen-rich tissues 1.3- to 2.2-fold. Direct administration of exogenous LOX was applied in native cartilage and neocartilage generated using a scaffold-free, self-assembling process of primary chondrocytes. Exogenous LOX was found to enhance native tissue tensile properties 1.9-fold. LOX concentration- and time-dependent increases in PYR content (∼ 16-fold compared with controls) and tensile properties (approximately fivefold compared with controls) of neocartilage were also detected, resulting in properties on par with native tissue. Finally, in vivo subcutaneous implantation of LOX-treated neocartilage in nude mice promoted further maturation of the neotissue, enhancing tensile and PYR content approximately threefold and 14-fold, respectively, compared with in vitro controls. Collectively, these results provide the first report, to our knowledge, of endogenous (hypoxia-induced) and exogenous LOX applications for promoting collagen cross-linking and improving the tensile properties of a spectrum of native and engineered tissues both in vitro and in

  8. Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia

    PubMed Central

    Wang, Zhijie; Chesler, Naomi C.

    2011-01-01

    Chronic hypoxic pulmonary hypertension (HPH) is associated with large pulmonary artery (PA) stiffening, which is correlated with collagen accumulation. However, the mechanisms by which collagen contributes to PA stiffening remain largely unexplored. Moreover, HPH may alter mechanical properties other than stiffness, such as pulse damping capacity, which also affects ventricular workload but is rarely quantified. We hypothesized that collagen content and cross-linking differentially regulate the stiffness and damping capacity of large PAs during HPH progression. The hypothesis was tested with transgenic mice that synthesize collagen type I resistant to collagenase degradation (Col1a1R/R). These mice and littermate controls (Col1a1+/+) were exposed to hypoxia for 10 days; some were treated with β-animopropionitrile (BAPN), which prevents new cross-link formation. Isolated PA dynamic mechanical tests were performed and collagen content and cross-linking were measured. In Col1a1+/+ mice, HPH increased both collagen content and cross-linking and BAPN treatment prevented these increases. Similar trends were observed in Col1a1R/R mice except that collagen content further increased with BAPN treatment. Mechanical tests showed that in Col1a1+/+ mice, HPH increased PA stiffness and damping capacity and these increases were impeded by BAPN treatment. In Col1a1R/R mice, HPH led to a smaller but significant increase in PA stiffness and a decrease in damping capacity. These mechanical changes were not affected by BAPN treatment. Vessel-specific correlations for each strain showed that the stiffness and damping capacity were correlated with the total content rather than cross-linking of collagen. Our results suggest that collagen total content is critical to extralobar PA stiffening during HPH. PMID:21538012

  9. Evaluation of the Efficacy of Excimer Laser Ablation of Cross-Linked Porcine Cornea

    PubMed Central

    Chen, Shihao; Li, Yini; Stojanovic, Aleksander; Zhang, Jia; Wang, Yibo; Wang, Qinmei; Seiler, Theo

    2012-01-01

    Background Combination of riboflavin/UVA cross-linking (CXL) and excimer laser ablation is a promising therapy for treating corneal ectasia. The cornea is strengthened by cross-linking, while the irregular astigmatism is reduced by laser ablation. This study aims to compare the efficacy of excimer laser ablation on porcine corneas with and without cross-linking. Methods and Findings The porcine cornea was de-epithelialized and treated with 0.1% riboflavin solution for 30 minutes. A half of the cornea was exposed to UVA-radiation for another 30 minutes while the controlled half of the cornea was protected from the UVA using a metal shield. Photo therapeutic keratectomy (PTK) was then performed on the central cornea. Corneal thickness of 5 paired locations on the horizontal line, ±0.5, ±1.0, ±1.5, ±2.0, and ±2.5 mm from the central spot, were measured using optical coherence tomography prior to and after PTK. The ablation depth was then determined by the corneal thickness. There was a 9% difference (P<0.001) in the overall ablation depth between the CXL-half corneas (158±22 µm) and the control-half corneas (174±26 µm). The ablation depths of all 5 correspondent locations on the CXL-half were significantly smaller (P<0.001). Conclusion The efficacy of the laser ablation seems to be lower in cross-linked cornea. Current ablation algorithms may need to be modified for cross-linked corneas. PMID:23056269

  10. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    PubMed

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs. PMID:27434096

  11. Wear measurement of highly cross-linked UHMWPE using a 7Be tracer implantation technique.

    PubMed

    Wimmer, Markus A; Laurent, Michel P; Dwiwedi, Yasha; Gallardo, Luis A; Chipps, Kelly A; Blackmon, Jeffery C; Kozub, Raymond L; Bardayan, Daniel W; Gross, Carl J; Stracener, Daniel W; Smith, Michael S; Nesaraja, Caroline D; Erikson, Luke; Patel, Nidhi; Rehm, Karl E; Ahmad, Irshad; Greene, John P; Greife, Uwe

    2013-04-01

    The very low wear rates achieved with the current highly cross-linked ultrahigh molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer methods are therefore being explored. The purpose of this study was to perform a proof-of-concept experiment on the use of the radioactive tracer beryllium-7 ((7)Be) for the determination of in vitro wear in a highly cross-linked orthopedic UHMWPE. Three cross-linked and four conventional UHMWPE pins made from compression-molded GUR 1050, were activated with 10(9) to 10(10) (7)Be nuclei using a new implantation setup that produced a homogenous distribution of implanted nuclei up to 8.5 μm below the surface. The pins were tested for wear in a six-station pin-on-flat apparatus for up to 7.1 million cycles (178 km). A Germanium gamma detector was employed to determine activity loss of the UHMWPE pins at preset intervals during the wear test. The wear of the cross-linked UHMWPE pins was readily detected and estimated to be 17 ± 3 μg per million cycles. The conventional-to-cross-linked ratio of the wear rates was 13.1 ± 0.8, in the expected range for these materials. Oxidative degradation damage from implantation was negligible; however, a weak dependence of wear on implantation dose was observed limiting the number of radioactive tracer atoms that can be introduced. Future applications of this tracer technology may include the analysis of location-specific wear, such as loss of material in the post or backside of a tibial insert.

  12. The boundary lubrication of chemically grafted and cross-linked hyaluronic acid in phosphate buffered saline and lipid solutions measured by the surface forces apparatus.

    PubMed

    Yu, Jing; Banquy, Xavier; Greene, George W; Lowrey, Daniel D; Israelachvili, Jacob N

    2012-01-31

    High molecular weight hyaluronic acid (HA) is present in articular joints and synovial fluid at high concentrations; yet despite numerous studies, the role of HA in joint lubrication is still not clear. Free HA in solution does not appear to be a good lubricant, being negatively charged and therefore repelled from most biological, including cartilage, surfaces. Recent enzymatic experiments suggested that mechanically or physically (rather than chemically) trapped HA could function as an "adaptive" or "emergency" boundary lubricant to eliminate wear damage in shearing cartilage surfaces. In this work, HA was chemically grafted to a layer of self-assembled amino-propyl-triethoxy-silane (APTES) on mica and then cross-linked. The boundary lubrication behavior of APTES and of chemically grafted and cross-linked HA in both electrolyte and lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) solutions was tested with a surface forces apparatus (SFA). Despite the high coefficient of friction (COF) of μ ≈ 0.50, the chemically grafted HA gel significantly improved the lubrication behavior of HA, particularly the wear resistance, in comparison to free HA. Adding more DOPC lipid to the solution did not improve the lubrication of the chemically grafted and cross-linked HA layer. Damage of the underlying mica surface became visible at higher loads (pressure >2 MPa) after prolonged sliding times. It has generally been assumed that damage caused by or during sliding, also known as "abrasive friction", which is the main biomedical/clinical/morphological manifestation of arthritis, is due to a high friction force and, therefore, a large COF, and that to prevent surface damage or wear (abrasion) one should therefore aim to reduce the COF, which has been the traditional focus of basic research in biolubrication, particularly in cartilage and joint lubrication. Here we combine our results with previous ones on grafted and cross-linked HA on lipid bilayers, and lubricin

  13. ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data

    PubMed Central

    2016-01-01

    ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app. PMID:27302480

  14. ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data.

    PubMed

    Riffle, Michael; Jaschob, Daniel; Zelter, Alex; Davis, Trisha N

    2016-08-01

    ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app . PMID:27302480

  15. Randomized, evaluator-blind, split-face comparison study of single cross-linked versus double cross-linked hyaluronic acid in the treatment of glabellar lines.

    PubMed

    Kono, Taro; Kinney, Brian M; Groff, William Frederick; Chan, Henry H; Ercocen, Ali Riza; Nozaki, Motohiro

    2008-06-01

    BACKGROUND At present, various hyaluronic acids are being used to rejuvenate facial skin. There is no comparative study of single cross-linked hyaluronic acid (SCHA) versus double cross-linked hyaluronic acid (DCHA). The objective of our study is to compare the effectiveness and complications of SCHA versus DCHA in the treatment of glabellar lines. METHODS Ten female patients were enrolled in this randomized, evaluator-blind study. One side (left vs. right) of each patient's glabellar lines was treated with SCHA and the other side was treated with DCHA. Two independent blinded observers reviewed the clinical photographs at 3, 6, 9, and 12 months after the treatment and assessed for degree of improvement as well as complications. RESULTS The two products were equally effective in producing an optimal cosmetic result, although at 6, 9, and 12 months posttreatment, a higher proportion of patients showed over 50% improvement with DCHA than with SCHA. At 12 months posttreatment, DCHA was considered superior in 70% of patients, whereas SCHA was superior in 10% of patients. CONCLUSIONS Both SCHA and DCHA are equally effective in producing an optimal cosmetic result. DCHA provides a more durable esthetic improvement when compared to SCHA in the treatment of glabellar lines.

  16. Binding of Hyaluronan to the Native Lymphatic Vessel Endothelial Receptor LYVE-1 Is Critically Dependent on Receptor Clustering and Hyaluronan Organization*

    PubMed Central

    Lawrance, William; Banerji, Suneale; Day, Anthony J.; Bhattacharjee, Shaumick; Jackson, David G.

    2016-01-01

    The lymphatic endothelial receptor LYVE-1 has been implicated in both uptake of hyaluronan (HA) from tissue matrix and in facilitating transit of leukocytes and tumor cells through lymphatic vessels based largely on in vitro studies with recombinant receptor in transfected fibroblasts. Curiously, however, LYVE-1 in lymphatic endothelium displays little if any binding to HA in vitro, and this has led to the conclusion that the native receptor is functionally silenced, a feature that is difficult to reconcile with its proposed in vivo functions. Nonetheless, as we reported recently, LYVE-1 can function as a receptor for HA-encapsulated Group A streptococci and mediate lymphatic dissemination in mice. Here we resolve these paradoxical findings and show that the capacity of LYVE-1 to bind HA is strictly dependent on avidity, demanding appropriate receptor self-association and/or HA multimerization. In particular, we demonstrate the prerequisite of a critical LYVE-1 threshold density and show that HA binding may be elicited in lymphatic endothelium by surface clustering with divalent LYVE-1 mAbs. In addition, we show that cross-linking of biotinylated HA in streptavidin multimers or supramolecular complexes with the inflammation-induced protein TSG-6 enables binding even in the absence of LYVE-1 cross-linking. Finally, we show that endogenous HA on the surface of macrophages can engage LYVE-1, facilitating their adhesion and transit across lymphatic endothelium. These results reveal LYVE-1 as a low affinity receptor tuned to discriminate between different HA configurations through avidity and establish a new mechanistic basis for the functions ascribed to LYVE-1 in matrix HA binding and leukocyte trafficking in vivo. PMID:26823460

  17. Static and dynamic properties of model elastomer with various cross-linking densities: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Cao, Dapeng; Zhang, Liqun

    2009-07-01

    The effects of the cross-linking density on the static and dynamic properties of polymer networks are examined by using a molecular dynamics simulation based on a simple elastomer model. Simulation results indicate that the introduced cross-linking junctions show almost no effect on the static structure factor. The glass transition temperature Tg increases slightly with the cross-linking density. By analyzing the mean square displacement of the monomers, the chain diffusion, and the incoherent intermediate dynamic structure factor ϕqs(t) at the chain and segmental length scales, it is found that the mobilities of the monomers and chains are retarded and the relaxation behavior is hindered by the cross linking of polymers. Furthermore, the spatial localization of the monomers is also observed at a long time period for a highly cross-linked system. For the cross-linked system, the time-temperature superposition principle is valid at the segmental length scale but breaks down at the chain length scale. The effect of the cross-linking density on the terminal relaxation is investigated by the end-to-end vector correlation, which is well fitted to the Kohlrauch-William-Watts (KWW) or modified KWW functions. The characteristic relaxation time shows an approximately linear relationship with the cross-linking density. It is demonstrated that the relaxation behavior tends to broaden, attributed to the stronger intermolecular coupling or cooperativity induced by the cross linking, suggesting that the system with a higher cross-linking degree becomes more fragile. For the dynamic properties, the bond orientation and the end-to-end distance along the deformed direction, which is an indicator of the entropic change, and the nonbonded energy are examined during the deformation and relaxation processes, respectively. The results explore the molecular mechanism accounting for the residual stress in the stress relaxation of cross-linked elastomer networks.

  18. Static and dynamic properties of model elastomer with various cross-linking densities: a molecular dynamics study.

    PubMed

    Liu, Jun; Cao, Dapeng; Zhang, Liqun

    2009-07-21

    The effects of the cross-linking density on the static and dynamic properties of polymer networks are examined by using a molecular dynamics simulation based on a simple elastomer model. Simulation results indicate that the introduced cross-linking junctions show almost no effect on the static structure factor. The glass transition temperature T(g) increases slightly with the cross-linking density. By analyzing the mean square displacement of the monomers, the chain diffusion, and the incoherent intermediate dynamic structure factor phi(q)(s)(t) at the chain and segmental length scales, it is found that the mobilities of the monomers and chains are retarded and the relaxation behavior is hindered by the cross linking of polymers. Furthermore, the spatial localization of the monomers is also observed at a long time period for a highly cross-linked system. For the cross-linked system, the time-temperature superposition principle is valid at the segmental length scale but breaks down at the chain length scale. The effect of the cross-linking density on the terminal relaxation is investigated by the end-to-end vector correlation, which is well fitted to the Kohlrauch-William-Watts (KWW) or modified KWW functions. The characteristic relaxation time shows an approximately linear relationship with the cross-linking density. It is demonstrated that the relaxation behavior tends to broaden, attributed to the stronger intermolecular coupling or cooperativity induced by the cross linking, suggesting that the system with a higher cross-linking degree becomes more fragile. For the dynamic properties, the bond orientation and the end-to-end distance along the deformed direction, which is an indicator of the entropic change, and the nonbonded energy are examined during the deformation and relaxation processes, respectively. The results explore the molecular mechanism accounting for the residual stress in the stress relaxation of cross-linked elastomer networks. PMID:19624229

  19. Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems.

    PubMed

    Rodríguez, Rosalía; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2003-01-17

    The cross-linking process of two cationic hydroxyethylcelluloses of different hydroxyethyl and ammonium group contents, polyquaternium-4 (PQ-4) and polyquaternium-10 (PQ-10), with ethylenglycol diglycidylether (EGDE) was characterized and optimized through rheometric analysis of the forming network. The influence of NaOH concentration, temperature, and EGDE concentration on the cross-linking rate were studied. The evolution of the elastic (G') and viscous (G") moduli, recorded in time-sweep experiments carried out at a fixed angular frequency, showed that the cross-linker requires a minimum of 0.05 M NaOH and 30 degrees C to be active. The increase in G' and G" followed first order kinetics, the slopes of G' being higher than those corresponding to G". The gel time, i.e. the time at which the crossover of G' and G" occurs, decreases exponentially when temperature increases from 30 to 60 degrees C. Apparent activation energies, estimated from the gel times, ranged between 70 and 90 kJ/mol. The cross-linking rate was greater in PQ-4 than in PQ-10 owing to the initial lower viscosity and higher content in hydroxyethyl groups of the former. However, IR spectra of the final hydrogels suggest the formation of a similar number of cross-linking junctions in both polymer systems. The optimum conditions for hydrogel preparation were 60 degrees C in 0.10 M NaOH medium, and no depolymerization was observed. Such hydrogels were transparent, presented a smooth, continuous surface, and were superabsorbent in water. After drying in an oven, the degree of swelling was lower than that of freshly prepared hydrogels; the behavior of water uptake being Fickian. The hydrogels presented a significant loading capacity of diclofenac sodium, with which they interact through ionic and hydrophobic bonding. The affinity is kept at an acidic pH, preventing drug release. In contrast, at pH 8 the interactions are broken and the release process is sustained for more than 4 h. The results also

  20. Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens

    PubMed Central

    Schiffner, Torben; de Val, Natalia; Russell, Rebecca A.; de Taeye, Steven W.; de la Peña, Alba Torrents; Ozorowski, Gabriel; Kim, Helen J.; Nieusma, Travis; Brod, Florian; Cupo, Albert; Sanders, Rogier W.; Moore, John P.; Ward, Andrew B.

    2015-01-01

    ABSTRACT Major neutralizing antibody immune evasion strategies of the HIV-1 envelope glycoprotein (Env) trimer include conformational and structural instability. Stabilized soluble trimers such as BG505 SOSIP.664 mimic the structure of virion-associated Env but nevertheless sample different conformational states. Here we demonstrate that treating BG505 SOSIP.664 trimers with glutaraldehyde or a heterobifunctional cross-linker introduces additional stability with relatively modest effects on antigenicity. Thus, most broadly neutralizing antibody (bNAb) epitopes were preserved after cross-linking, whereas the binding of most weakly or nonneutralizing antibodies (non-NAb) was reduced. Cross-linking stabilized all Env conformers present within a mixed population, and individual conformers could be isolated by bNAb affinity chromatography. Both positive selection of cross-linked conformers using the quaternary epitope-specific bNAbs PGT145, PGT151, and 3BC315 and negative selection with non-NAbs against the V3 region enriched for trimer populations with improved antigenicity for bNAbs. Similar results were obtained using the clade B B41 SOSIP.664 trimer. The cross-linking method may, therefore, be useful for countering the natural conformational heterogeneity of some HIV-1 Env proteins and, by extrapolation, also vaccine immunogens from other pathogens. IMPORTANCE The development of a vaccine to induce protective antibodies against HIV-1 is of primary public health importance. Recent advances in immunogen design have provided soluble recombinant envelope glycoprotein trimers with near-native morphology and antigenicity. However, these trimers are conformationally flexible, potentially reducing B-cell recognition of neutralizing antibody epitopes. Here we show that chemical cross-linking increases trimer stability, reducing binding of nonneutralizing antibodies while largely maintaining neutralizing antibody binding. Cross-linking followed by positive or negative

  1. Oegylated and cross-linking carbazole dendrons and dendrimers: Synthesis, characterization, assembly and thin film fabrication

    NASA Astrophysics Data System (ADS)

    Felipe, Mary Jane Legaspi

    2011-12-01

    Dendrimers and dendrons (fractional dendrimers) are macromolecular structures that have well-defined molecular weights and precise number of functional groups. Tailoring these structures has provided designer molecules that can be used for various applications including drug delivery, sensors, and anti-biofouling surfaces. Overall, this dissertation provides novel protocols for the understanding of molecular design, synthesis, and structure-property relationship of OEGylated and conjugated carbazole dendrons and dendrimers. In this design, the use of oligo(ethylene glycol) (OEG) allows for the fabrication of biocompatible materials and imparts hydrophilicity on the structure while the carbazole functionality allows the cross-linking of these designer molecules. Such fine-tuning of macromolecular structures leading to the fabrication of anti-biofouling thin films, nanostructuring at the air-water interface, and assembly into supramolecular superstructures are considered in this dissertation. Chapter 2 details the synthesis, characterization, and electrochemical cross-linking of OEGylated linear dendrons and "Janus-type" dendrimers. Cross-linking the carbazole moieties enables the deposition of these films on Au, indium tin oxide-coated glass, and doped silicon through cyclic voltammetry and provides films with secondary level of organization imparted by the inter- and intra-molecular interaction among the carbazole units. Chapter 3 describes the fabrication of nonspecific protein adsorption resistant surfaces through electrochemical grafting of three different dendrons on SAM carbazole-coated gold substrates. The predictable shape of each dendron and the ability to cross-link the carbazole units have enabled parametrization of OEG conformation and density on these interfaces. Chapter 4 demonstrates the fundamental architectural requirements for obtaining stable films with OEGylated linear dendron molecules providing a new architectural design of nanostructuring

  2. Preparation and characterization of highly cross-linked polyimide aerogels based on polyimide containing trimethoxysilane side groups.

    PubMed

    Pei, Xueliang; Zhai, Wentao; Zheng, Wenge

    2014-11-11

    In this study, highly cross-linked and completely imidized polyimide aerogels were prepared from polyimide containing trimethoxysilane side groups, which was obtained as the condensation product of polyimide containing acid chloride side groups and 3-aminopropyltrimethoxysilane. After adding water and acid catalyst, the trimethoxysilane side groups hydrolyzed and condensed one another, and a continuous increase in the complex viscosities of the polyimide solutions with time was observed. The formed polyimide gels were dried by freeze-drying from tert-butyl alcohol to obtain polyimide aerogels, which consisted of a three-dimensional network of polyimide fibers tangled together. By varying the solution concentration of the polyimide containing trimethoxysilane side groups, polyimide aerogels with different densities (ranging from 0.19 to 0.42 g/cm(3)) were obtained. The resulting polyimide aerogels had small pore diameter (ranging from 20.7 to 58.3 nm), high surface area (ranging from 310 to 344 m(2)/g), high 5% weight loss temperature in air (at about 440 °C), and an excellent mechanical property. In addition, the glass transition temperature (349 °C) of the polyimide aerogels was much higher than that (210 °C) of the corresponding linear polyimide. So, even after being heated at 300 °C for 30 min, the porous structure of the polyimide aerogels was not completely destroyed. PMID:25340747

  3. Properties of Poly(ethylene glycol) Hydrogels Cross-Linked via Strain-Promoted Alkyne-Azide Cycloaddition (SPAAC).

    PubMed

    Hodgson, Sabrina M; Bakaic, Emilia; Stewart, S Alison; Hoare, Todd; Adronov, Alex

    2016-03-14

    A series of poly(ethylene glycol) (PEG) hydrogels was synthesized using strain-promoted alkyne-azide cycloaddition (SPAAC) between PEG chains terminated with either aza-dibenzocyclooctynes or azide functionalities. The gelation process was found to occur rapidly upon mixing the two components in aqueous solution without the need for external stimuli or catalysts, making the system a candidate for use as an injectable hydrogel. The mechanical and rheological properties of these hydrogels were found to be tunable by varying the polymer molecular weight and the number of cross-linking groups per chain. The gelation times of these hydrogels ranged from 10 to 60 s at room temperature. The mass-based swelling ratios varied from 45 to 76 at maximum swelling (relative to the dry state), while the weight percent of polymer in these hydrogels ranged from 1.31 to 2.05%, demonstrating the variations in amount of polymer required to maintain the structural integrity of the gel. Each hydrogel degraded at a different rate in PBS at pH = 7.4, with degradation times ranging from 1 to 35 days. By changing the composition of the two starting components, it was found that the Young's modulus of each hydrogel could be varied from 1 to 18 kPa. Hydrogel incubation with bovine serum albumin showed minimal protein adsorption. Finally, a cell cytotoxicity study of the precursor polymers with 3T3 fibroblasts demonstrated that the azide- and strained alkyne-functionalized PEGs are noncytotoxic. PMID:26842783

  4. Immobilization of Quantum Dots in the Photo-Cross-Linked Poly(ethylene glycol)-Based Hydrogel

    SciTech Connect

    Gattas-Asfura, Kerim M.; Zheng, Yujun; Micic, Miodrag ); Snedaker, Michael J.; Ji, Xiaojun; Sui, Guodong; Orbulescu, Jhony; Andreopoulos, Fotios M.; Pham, Si M.; Wang, Chong M. )

    2003-09-25

    An inorganic/organic composite hybrid nano-system has been successfully synthesized in which nanocrystalline quantum dots (QDs) were effectively immobilized within a photo-cross-linked poly(ethylene glycol) hydrogel. Organometallic synthesis of CdTe and CdSe QDs was accomplished with a trioctylphosphine oxide (TOPO) cap. Replacing the TOPO cap with mercaptoacetic acid groups further yielded modified water-soluble nanocrystals. The immobilization of these functionalized CdTe and CdSe QDs within PEG hydrogel network has been shown to be effective through utilization of physical trapping. The CdTe and CdSe QDs had a particle diameter of 4.5 and 2.5-6.0 nm, respectively. The most efficiently trapped QDs had a size of 4.5 nm or larger. Particle size determination was derived from spectroscopic (absorption and photoluminescence) and high-resolution transmission electron microscopic techniques. These QD-immobilized gel systems demonstrated photoluminescence characteristics unique to semiconductor QD nanocrystals. The authors have envisioned the utilization of the unique photophysical properties of this material as a convenient signal transducer for in vivo biosensing. The most promising application of the described QD/PEG-NC hybrid system is in the fields of in vivo fluorescence microscopy and as a monitoring system for drug delivery and wound healing.

  5. Enhanced apoptotic effects of dihydroartemisinin-aggregated gelatin and hyaluronan nanoparticles on human lung cancer cells.

    PubMed

    Sun, Qian; Teong, Benjamin; Chen, I-Fen; Chang, Shwu Jen; Gao, Jimin; Kuo, Shyh-Ming

    2014-04-01

    Recent studies suggest that dihydroartemisinin (DHA), a derivative of artemisinin isolated from the traditional Chinese herb Artemisia annua L., has anticancer properties. Due to poor water solubility, poor oral activity, and a short plasma half-life, large doses of DHA have to be injected to achieve the necessary bioavailability. This study examined increasing DHA bioavailability by encapsulating DHA within gelatin (GEL) or hyaluronan (HA) nanoparticles via an electrostatic field system. Observations from transmission electron microscopy show that DHA in GEL and HA nanoparticles formed GEL/DHA and HA/DHA aggregates that were approximately 30-40 nm in diameter. The entrapment efficiencies for DHA were approximately 13 and 35% for the GEL/DHA and HA/DHA aggregates, respectively. The proliferation of A549 cells was inhibited by the GEL/DHA and HA/DHA aggregates. Fluorescent annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) staining displayed low background staining with annexin V-FITC or PI on DHA-untreated cells. In contrast, annexin V-FITC and PI stains dramatically increased when the cells were incubated with GEL/DHA and HA/DHA aggregates. These results suggest that DHA-aggregated GEL and HA nanoparticles exhibit higher anticancer proliferation activities than DHA alone in A549 cells most likely due to the greater aqueous dispersion after hydrophilic GEL or HA nanoparticles aggregation. These results demonstrate that DHA can aggregate with nanoparticles in an electrostatic field environment to form DHA nanosized aggregates. PMID:24039154

  6. Quantitative Cross-linking/Mass Spectrometry Using Isotope-labeled Cross-linkers and MaxQuant.

    PubMed

    Chen, Zhuo A; Fischer, Lutz; Cox, Jürgen; Rappsilber, Juri

    2016-08-01

    The conceptually simple step from cross-linking/mass spectrometry (CLMS) to quantitative cross-linking/mass spectrometry (QCLMS) is compounded by technical challenges. Currently, quantitative proteomics software is tightly integrated with the protein identification workflow. This prevents automatically quantifying other m/z features in a targeted manner including those associated with cross-linked peptides. Here we present a new release of MaxQuant that permits starting the quantification process from an m/z feature list. Comparing the automated quantification to a carefully manually curated test set of cross-linked peptides obtained by cross-linking C3 and C3b with BS(3) and isotope-labeled BS(3)-d4 revealed a number of observations: (1) Fully automated process using MaxQuant can quantify cross-links in our reference data set with 68% recall rate and 88% accuracy. (2) Hidden quantification errors can be converted into exposed failures by label-swap replica, which makes label-swap replica an essential part of QCLMS. (3) Cross-links that failed during automated quantification can be recovered by semi-automated re-quantification. The integrated workflow of MaxQuant and semi-automated assessment provides the maximum of quantified cross-links. In contrast, work on larger data sets or by less experienced users will benefit from full automation in MaxQuant. PMID:27302889

  7. Polymer-additive extraction via pressurized fluids and organic solvents of variously cross-linked poly(methylmethacrylates).

    PubMed

    Nazem, N; Taylor, L T

    2002-04-01

    Variously cross-linked poly(methylmethacrylates) (PMMAs) are synthesized with three additives incorporated at theoretically 1000 microg of the additive per gram of prepared polymer. The additives are Irganox 1010, Irganox 1076, and Irgafos 168. The in-house" synthesized polyacrylates are then subjected to supercritical fluid extraction (SFE) to determine if additive recovery is a function of percent cross-linking. Although considerable work in this regard has been performed with non-cross-linked polyolefins, the literature is lacking regarding polyacrylates. Some additive degradation apparently occurs during the synthesis, as judged by the increased complexity of the extract high-performance liquid chromatographic trace and the low percent recoveries observed especially for the Irganoxes. For low polymer cross-linking (1%), it appears that both PMMA synthetic reproducibility and readily observed polymer swelling during SFE are serious issues that adversely affect additive percent recovery and precision of results. Higher percent cross-linking yields more consistent analytical data than low percent cross-linking, even though the amount of additive extracted in all PMMA samples (regardless of cross-linking percentage) is essentially the same whether the extraction is via SFE or liquid-solid extraction with methylene chloride. Results for comparably cross-linked poly(ethylmethacrylate) and poly(butylmethacrylate) are similar to PMMA.

  8. Quantitative Cross-linking/Mass Spectrometry Using Isotope-labeled Cross-linkers and MaxQuant*

    PubMed Central

    Cox, Jürgen

    2016-01-01

    The conceptually simple step from cross-linking/mass spectrometry (CLMS) to quantitative cross-linking/mass spectrometry (QCLMS) is compounded by technical challenges. Currently, quantitative proteomics software is tightly integrated with the protein identification workflow. This prevents automatically quantifying other m/z features in a targeted manner including those associated with cross-linked peptides. Here we present a new release of MaxQuant that permits starting the quantification process from an m/z feature list. Comparing the automated quantification to a carefully manually curated test set of cross-linked peptides obtained by cross-linking C3 and C3b with BS3 and isotope-labeled BS3-d4 revealed a number of observations: (1) Fully automated process using MaxQuant can quantify cross-links in our reference data set with 68% recall rate and 88% accuracy. (2) Hidden quantification errors can be converted into exposed failures by label-swap replica, which makes label-swap replica an essential part of QCLMS. (3) Cross-links that failed during automated quantification can be recovered by semi-automated re-quantification. The integrated workflow of MaxQuant and semi-automated assessment provides the maximum of quantified cross-links. In contrast, work on larger data sets or by less experienced users will benefit from full automation in MaxQuant. PMID:27302889

  9. S-peptide as a potent peptidyl linker for protein cross-linking by microbial transglutaminase from Streptomyces mobaraensis.

    PubMed

    Kamiya, Noriho; Tanaka, Tsutomu; Suzuki, Tsutomu; Takazawa, Takeshi; Takeda, Shuji; Watanabe, Kimitsuna; Nagamune, Teruyuki

    2003-01-01

    We have found that ribonuclease S-peptide can work as a novel peptidyl substrate in protein cross-linking reactions catalyzed by microbial transglutaminase (MTG) from Streptomyces mobaraensis. Enhanced green fluorescent protein tethered to S-peptide at its N-terminus (S-tag-EGFP) appeared to be efficiently cross-linked by MTG. As wild-type EGFP was not susceptible to cross-linking, the S-peptide moiety is likely to be responsible for the cross-linking. A site-directed mutation study assigned Gln15 in the S-peptide sequence as the sole acyl donor. Mass spectrometric analysis showed that two Lys residues (Lys5 and Lys11) in the S-peptide sequence functioned as acyl acceptors. We also succeeded in direct monitoring of the cross-linking process by virtue of fluorescence resonance energy transfer (FRET) between S-tag-EGFP and its blue fluorescent color variant (S-tag-EBFP). The protein cross-linking was tunable by either engineering S-peptide sequence or capping the S-peptide moiety with S-protein, the partner protein of S-peptide for the formation of ribonuclease A. The latter indicates that S-protein can be used as a specific inhibitor of S-peptide-directed protein cross-linking by MTG. The controllable protein cross-linking of S-peptide as a potent substrate of MTG will shed new light on biomolecule conjugation. PMID:12643745

  10. A versatile, highly reactive, cross-linking reagent: 2,2'-sulfonylbis[3-methoxy-(E,E)-2-propenenitrile].

    PubMed

    Hosmane, R S; Bertha, C M

    1990-01-30

    Adequate aqueous stability and cross-linking ability of the novel title reagent, recently discovered in this laboratory, have been demonstrated by comparison of its rate of hydrolysis with the rate of reaction with an amine nucleophile and by cross-linking deoxy- and oxyhemoglobins, as an example.

  11. Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation.

    PubMed

    Uragami, Tadashi; Banno, Masashi; Miyata, Takashi

    2015-12-10

    To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail.

  12. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    PubMed

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels. PMID:27230478