Science.gov

Sample records for cross-linked polyvinyl alcohol

  1. Cross-linked polyvinyl alcohol and method of making same

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)

    1981-01-01

    A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

  2. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  3. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  4. Polyvinyl alcohol cross-linked with two aldehydes

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1982-01-01

    A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.

  5. In Situ Cross-Linking of Polyvinyl Alcohol Films

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Shu, L. C.; May, C. E.

    1984-01-01

    Films or impregnated matrices readily made from aqueous polyvinyl alcohol solution. Controlled thickness films made by casting precise quantities of aqueous polymer solution on smooth surface, allowing water to evaporate and then removing film. Composite separators formed in similar fashion by impregnating cloth matrix with polyvinyl alcohol solution and drying composite. Insoluble thin hydrophilic membranes made from aqueous systems, and use of undesirable organic solvents not required.

  6. A Study of Cross-linked Regions of Poly(Vinyl Alcohol) Gels by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2011-07-01

    A poly(vinyl alcohol)-borax cross-linked hydrogel has been studied by Small Angle Neutron Scattering as a function of borax concentration in the wave-vector transfer (Q) range of 0.017 Å-1 to 0.36 Å-1. It is found that as the concentration of borax increases, so does the intensity of scattering in this range. Beyond a borax concentration of 2 mg/ml, the increase in cross-linked PVA chains leads to cross-linked units larger than 150 Å as evidenced by a reduction in intensity in the lower Q region.

  7. In situ self cross-linking of polyvinyl alcohol battery separators

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1979-01-01

    A battery separator was produced from a polyvinyl alcohol sheet structure which was subjected to an in situ, self crosslinking process by selective oxidation of the 1,2 diol units present in the polyvinyl alcohol sheet structure. The 1,2 diol units were cleaved to form aldehyde end groups which subsequently crosslink through acetalization of the 1,3 diol units of the polyvinyl alcohol. Selective oxidation was achieved using a solution of a suitable oxidizing agent such as periodic acid or lead tetraacetate.

  8. Reduction versus cross-linking: how to improve the tensile strength of graphene oxide/polyvinyl alcohol composite film

    NASA Astrophysics Data System (ADS)

    Tao, Cheng-an; Zhang, Hao; Huang, Jian; Zou, Xiaorong; Zhu, Hui; Wang, Jianfang

    2017-08-01

    Both reduction and cross-linking can improve the mechanical performance of graphene/polymer composites. However, few reports exist on the comparison and combination of both methods. Taking graphene oxide/polyvinyl alcohol composite film as its model, this study focuses on the effect of reduction and cross-linking (as well as their order) on the composite film’s tensile strength. GO/PVA composite films were prepared by a simple solution mixing method, then reduced with hydroiodic acid and cross-linked with glutaraldehyde. Both reduction and cross-linking can improve the tensile strength, but the effect of cross-linking is superior. The improvement of tensile strength is cumulative when reduction and cross-linking are used simultaneously or even successively. Moreover, the order in which these two methods are applied also plays a role; reduction first with cross-linking second shows superior results than the reverse. The tensile strength of the obtained composite film peaked at 112.8 MPa, which is over 7 times that of neat PVA.

  9. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Huan, Guan-Sheng; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo; Huang, Fang

    2014-08-13

    Gigaporous polystyrene (PS) microspheres were hydrophilized by in situ polymerization to give a stable cross-linked poly(vinyl alcohol) (PVA) hydrogel coating, which can shield proteins from the hydrophobic PS surface underneath. The amination of microspheres (PS-NH2) was first carried out through acetylization, oximation and reduction, and then 4,4'-azobis (4-cyanovaleric acid) (ACV), a polymerization initiator, was covalently immobilized on PS-NH2 through amide bond formation, and the cross-linked poly(vinyl acetate) (PVAc) was prepared by radical polymerization at the surfaces of ACV-immobilized PS microspheres (PS-ACV). Finally, the cross-linked PVA hydrogel coated gigaporous PS microspheres (PS-PVA) was easily achieved through alcoholysis of PVAc. Results suggested that the PS microspheres were effectively coated with cross-linked PVA hydrogel, where the gigaporrous structure remained under optimal conditions. After hydrophilic modification (PS-PVA), the protein-resistant ability of microspheres was greatly improved. The hydroxyl-rich PS-PVA surface can be easily derivatized by classical chemical methods. Performance advantages of the PS-PVA column in flow experiment include good permeability, low backpressure, and mechanical stability. These results indicated that PS-PVA should be promising in rapid protein chromatography.

  10. In-situ cross linking of polyvinyl alcohol. [application to battery separator films

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1981-01-01

    A method of producing a crosslinked polyvinyl alcohol structure, such as a battery separator membrane or electrode envelope is described. An aqueous solution of a film-forming polyvinyl alcohol is admixed with an aldehyde crosslinking agent a basic pH to inhibit crosslinking. The crosslinking agent, perferably a dialdehyde such as glutaraldehyde, is used in an amount of from about 1/2 to about 20% of the theoretical amount required to crosslink all of the hydroxyl groups of the polymer. The aqueous admixture is formed into a desired physical shape, such as by casting a sheet of the solution. The sheet is then dried to form a self-supporting film. Crosslinking is then effected by immersing the film in aqueous acid solution. The resultant product has excellent properties for use as a battery separator.

  11. Study of poly(3-hexylthiophene)/cross-linked poly(vinyl alcohol) as semiconductor/insulator for application in low voltage organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Benvenho, Adriano R. V.; Machado, Wagner S.; Cruz-Cruz, Isidro; Hümmelgen, Ivo A.

    2013-06-01

    In this work we study the cross-linked poly(vinyl alcohol)/poly(3-hexylthiophene) interfacial properties of an organic field effect transistor. We use cross-linked poly(vinyl alcohol) prepared with different ammonium dichromate:poly(vinyl alcohol) proportions, ranging from 0% to 35%, as insulator. Using admittance spectroscopy, we show that the interfacial properties change when the ammonium dichromate concentration is altered. The interfacial properties and the better insulation are responsible for the improvement of the device performance in these organic field effect transistors, achieving best performance in the blend with ammonium dichromate:poly(vinyl alcohol) proportion of 0.25:1.

  12. Protein-resistant cross-linked poly(vinyl alcohol) micropatterns via photolithography using removable polyoxometalate photocatalyst.

    PubMed

    Pavli, Pagona; Petrou, Panagiota S; Douvas, Antonios M; Dimotikali, Dimitra; Kakabakos, Sotirios E; Argitis, Panagiotis

    2014-10-22

    In the last years, there has been an increasing interest in controlling the protein adsorption properties of surfaces because this control is crucial for the design of biomaterials. On the other hand, controlled immobilization of proteins is also important for their application as solid surfaces in immunodiagnostics and biosensors. Herein we report a new protein patterning method where regions of the substrate are covered by a hydrophilic film that minimizes protein adsorption. Particularly, poly(vinyl alcohol) (PVA) cross-linked structures created by an especially developed photolithographic process are proved to prevent protein physisorption and they are used as a guide for selective protein adsorption on the uncovered areas of a protein adsorbing substrate such as polystyrene. The PVA cross-linking is induced by photo-oxidation using, as a catalyst, polyoxometalate (H3PW12O40 or α-(NH4)6P2W18O62), which is removed using a methyl alcohol/water mixed solvent as the developer. We demonstrate that the polystyrene and the cross-linked PVA exhibit dramatically different performances in terms of protein physisorption. In particular, the polystyrene areas presented up to 130 times higher protein binding capacity than the PVA ones, whereas the patterning resolution could easily reach dimensions of a few micrometers. The proposed approach can be applied on any substrate where PVA films can be coated for controlling protein adsorption onto surface areas custom defined by the user.

  13. Three methods for in situ cross-linking of polyvinyl alcohol films for application as ion-conducting membranes in potassium hydroxide electrolyte. [battery separators

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Hsu, L. C.

    1979-01-01

    Three methods of in situ cross-linking polyvinyl alcohol films are presented. They are: (1) acetalization with a dialdehyde such as glutaraldehyde, (2) acetalization with aldehyde groups formed by selective oxidative cleaving of the few percent of 1,2 diol units present in polyvinyl alcohol, and (3) cross-linking by hydrogen abstraction by reaction with hydrogen atoms and hydroxyl radicals from irradiated water. For the third method, improvement in film conductivity in KOH solution at the expense of mechanical strength is obtained by the presence of polyacrylic acid in the polyvinyl alcohol films. Resistivities in 45 percent KOH are given for in situ cross-linked films prepared by each of the three methods.

  14. Method of cross-linking polyvinyl alcohol and other water soluble resins

    NASA Technical Reports Server (NTRS)

    Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1980-01-01

    A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.

  15. Effects of Molecular Weight upon Irradiation-Cross-Linked Poly(vinyl alcohol)/Clay Aerogel Properties.

    PubMed

    Chen, Hong-Bing; Zhao, Yan; Shen, Peng; Wang, Jun-Sheng; Huang, Wei; Schiraldi, David A

    2015-09-16

    Facile fabrication of mechanically strong poly(vinyl alcohol) (PVOH)/clay aerogel composites through a combination of increasing polymer molecular weights and gamma irradiation-cross-linking is reported herein. The aerogels produced from high polymer molecular weights exhibit significantly increased compressive moduli, similar to the effect of irradiation-induced cross-linking. The required irradiation dose for fabricating strong PVOH composite aerogels with dense microstructure decreased with increasing polymer molecular weight. Neither thermal stability nor flammability was significantly changed by altering the polymer molecular weight or by modest gamma irradiation, but they were highly dependent upon the polymer/clay ratio in the aerogel. Optimization of the mechanical, thermal, and flammability properties of these composite aerogels could therefore be obtained by using relatively low levels of polymer, with very high polymer molecular weight, or lower molecular weight coupled with moderate gamma irradiation. The facile preparation of strong, low flammability aerogels is an alternative to traditional polymer foams in applications where fire safety is important.

  16. Effect of cross-linking on properties and release characteristics of sodium salicylate-loaded electrospun poly(vinyl alcohol) fibre mats

    NASA Astrophysics Data System (ADS)

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2007-05-01

    Cross-linking of electrospun (e-spun) fibre mats (beaded fibre morphology with the average diameter of the fibre segments between beads being ~108 nm) of poly(vinyl alcohol) (PVA) containing sodium salicylate (SS), used as the model drug, was achieved by exposing the fibre mats to the vapour from 5.6 M aqueous solution of either glutaraldehyde or glyoxal for various exposure time intervals, followed by a heat treatment in a vacuum oven. With increasing the exposure time in the cross-linking chamber, the morphology of the e-spun fibre mats gradually changed from a porous to dense structure. Both the degree of swelling and the percentage of weight loss of the cross-linked fibre mats (i.e. ~200-530% and ~15-57%, respectively) were lower than those of the untreated ones (i.e. ~610% and ~67%, respectively). Cross-linking was also responsible for the monotonic increase in the storage moduli of the cross-linked SS-loaded e-spun PVA fibre mats with increasing exposure time in the cross-linking chamber. The release characteristic of the model drug from the SS-loaded e-spun PVA fibre mats both before and after cross-linking was assessed by the transdermal diffusion through a pig skin method. The cumulative release of the drug from these matrices could be divided into two stages: 0-4 and 4-72 h, in which the amount of SS released in the first stage increased very rapidly, while it was much slower in the second stage. Cross-linking slowed down the release of SS from the drug-loaded fibre mats appreciably and both the rate of release and the total amount of the drug released were decreasing functions of the exposure time interval in the cross-linking chamber. Lastly, the cross-linked SS-loaded e-spun PVA fibre mats were non-toxic to normal human dermal fibroblasts.

  17. Single-dose oral toxicity study of a cross-linked sodium polyacrylate/polyvinyl alcohol copolymer in chickens (Gallus domesticus).

    PubMed

    Haselbach, J; Berner, T; Wright, H; Dunlap, E

    2000-12-01

    A single-dose oral toxicity study of a grafted copolymer of cross-linked sodium polyacrylate with polyvinyl alcohol was conducted in chickens (Gallus domesticus) to demonstrate this copolymer's safety for use as a hydration medium in recently hatched poultry chicks. Three experimental groups, each composed of 25 male and 25 female 1-day-old chicks, were administered a one-time dose of 0, 3, or 6 g of the hydrated test article by gavage. All chicks were monitored daily for mortality and morbidity during their typical grow-out period of approximately 8 weeks. Interim sacrifices of one animal of each sex from each treatment group were made at 1, 2, 4, and 6 weeks. All surviving animals were necropsied at the end of the study. A single dose of up to 6 g of hydrated copolymer did not adversely affect these animals during their grow-out period. Mortality was comparable across all experimental groups, as no statistically significant survival differences were found. Body weights were also comparable across the three experimental groups at all time points during the study, and no statistically significant differences were detected in mean terminal body weights among the groups. Finally, lesion frequencies were similar across the three experimental groups, with none of the lesions deemed related to administration of the test article. Thus, the safety of this cross-linked sodium polyacrylate/polyvinyl alcohol copolymer has been demonstrated for its intended use. Copyright 2000 Academic Press.

  18. Poly(vinyl alcohol) and alginate cross-linked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters.

    PubMed

    Lai, Yu-Chen; Chang, Yin-Ru; Chen, Man-Li; Lo, Yu-Kuo; Lai, Juin-Yih; Lee, Duu-Jong

    2016-08-01

    Cesium (Cs) removal from contaminated water bodies is an emerging issue after the disaster at the Fukushima Daiichi Nuclear Power Plant. The Prussian blue (PB) is an effective Cs adsorbent but will release hexacyanoferrate fragments from the adsorbent matrix during adsorption. Alginate is an affordable biopolymer for PB particles immobilization. This study synthesized poly(vinyl alcohol) (PVA) and alginate cross-linked matrix for immobilization of PB nano-sized particles and a surface-modified styrene-ethyl styrene divinyl benzene resin and tested their swelling stability and Cs adsorption performance in fresh water and in seawater. The PVA-alginate granules have high structural stability in both fresh water and seawater, with the Cs adsorption capability higher for the former than the latter. The adopted resin effectively remove released PB fragments from the tested granules. The transport and reaction parameters for the granules and for the sand filter bed were estimated.

  19. Spontaneous stacking of purple membranes during immobilization with physical cross-linked poly(vinyl alcohol) hydrogel with retaining native-like functionality of bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yasunori; Tanaka, Hikaru; Yano, Shunsuke; Takahashi, Hiroshi; Kikukawa, Takashi; Sonoyama, Masashi; Takenaka, Koshi

    2017-05-01

    We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline lattice even after gelation. Time-resolved absorption spectroscopy showed that bR photocycle behaviors in PM/PVA immobilized samples were almost identical to that in suspension. These results suggested that a physically cross-linked PVA hydrogel is appropriate for immobilizing membrane proteins in terms of maintaining their structure and functionality.

  20. Mechanical and structural response of a hybrid hydrogel based on chitosan and poly(vinyl alcohol) cross-linked with epichlorohydrin for potential use in tissue engineering.

    PubMed

    Garnica-Palafox, I M; Sánchez-Arévalo, F M; Velasquillo, C; García-Carvajal, Z Y; García-López, J; Ortega-Sánchez, C; Ibarra, C; Luna-Bárcenas, G; Solís-Arrieta, L

    2014-01-01

    The development and characterization of a hybrid hydrogel based on chitosan (CS) and poly(vinyl alcohol) (PVA) chemically cross-linked with epichlorohydrin (ECH) is presented. The mechanical response of these hydrogels was evaluated by uniaxial tensile tests; in addition, their structural properties such as average molecular weight between cross-link points (Mcrl), mesh size (DN), and volume fraction (v(s)) were determined. This was done using the equivalent polymer network theory in combination with the obtained results from tensile and swelling tests. The films showed Young's modulus values of 11 ± 2 MPa and 9 ± 1 MPa for none irradiated and ultraviolet (UV) irradiated hydrogels, respectively. The cell viability was assessed using Calcein AM and Ethidium homodimer-1 assay and environmental scanning electron microscopy. The 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan thiazolyl blue formazan (MTT Formazan assay) results did not show cytotoxic effects; this was in good agreement with nuclear magnetic resonance and fourier transform infrared spectroscopies; their results did not show traces of ECH. This indicated that after the crosslinking process, there was no free ECH; furthermore, any possibility of ECH release in the construct during cell culture was discarded. The CS-PVA-ECH hybrid hydrogel allowed cell growth and extracellular matrix formation and showed adequate mechanical, structural, and biological properties for potential use in tissue engineering applications.

  1. Cell culture and characterization of cross-linked poly(vinyl alcohol)-g-starch 3D scaffold for tissue engineering.

    PubMed

    Hsieh, Wen-Chuan; Liau, Jiun-Jia

    2013-10-15

    The research goal of this experiment is chemically to cross-link poly(vinyl alcohol) (PVA) and starch to form a 3D scaffold that is effective water absorbent, has a stable structure, and supports cell growth. PVA and starch can be chemically cross-linked to form a PVA-g-starch 3D scaffold polymer, as observed by Fourier transform infrared spectroscopy (FTIR), with an absorbency of up to 800%. Tensile testing reveals that, as the amount of starch increases, the strength of the 3D scaffold strength reaches 4×10(-2) MPa. Scanning electron microscope (SEM) observations of the material reveal that the 3D scaffold is highly porous formed using a homogenizer at 500 rpm. In an enzymatic degradation, the 3D scaffold was degraded by various enzymes at a rate of up to approximately 30-60% in 28 days. In vitro tests revealed that cells proliferate and grow in the 3D scaffold material. Energy dispersive spectrometer (EDS) analysis further verified that the bio-compatibility of this scaffold.

  2. Accelerated wound healing and anti-inflammatory effects of physically cross linked polyvinyl alcohol-chitosan hydrogel containing honey bee venom in diabetic rats.

    PubMed

    Amin, Mohamed A; Abdel-Raheem, Ihab T

    2014-08-01

    Diabetes is one of the leading causes of impaired wound healing. The objective of this study was to develop a bee venom-loaded wound dressing with an enhanced healing and anti-inflammatory effects to be examined in diabetic rats. Different preparations of polyvinyl alcohol (PVA), chitosan (Chit) hydrogel matrix-based wound dressing containing bee venom (BV) were developed using freeze-thawing method. The mechanical properties such as gel fraction, swelling ratio, tensile strength, percentage of elongation and surface pH were determined. The pharmacological activities including wound healing and anti-inflammatory effects in addition to primary skin irritation and microbial penetration tests were evaluated. Moreover, hydroxyproline, glutathione and IL-6 levels were measured in the wound tissues of diabetic rats. The bee venom-loaded wound dressing composed of 10 % PVA, 0.6 % Chit and 4 % BV was more swellable, flexible and elastic than other formulations. Pharmacologically, the bee venom-loaded wound dressing that has the same previous composition showed accelerated healing of wounds made in diabetic rats compared to the control. Moreover, this bee venom-loaded wound dressing exhibited anti-inflammatory effect that is comparable to that of diclofenac gel, the standard anti-inflammatory drug. Simultaneously, wound tissues covered with this preparation displayed higher hydroxyproline and glutathione levels and lower IL-6 levels compared to control. Thus, the bee venom-loaded hydrogel composed of 10 % PVA, 0.6 % Chit and 4 % BV is a promising wound dressing with excellent forming and enhanced wound healing as well as anti-inflammatory activities.

  3. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes

    NASA Astrophysics Data System (ADS)

    Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao

    2014-11-01

    Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).

  4. Gas-Barrier Hybrid Coatings by the Assembly of Novel Poly(vinyl alcohol) and Reduced Graphene Oxide Layers through Cross-Linking with Zirconium Adducts.

    PubMed

    Yan, Ning; Capezzuto, Filomena; Buonocore, Giovanna G; Lavorgna, Marino; Xia, Hesheng; Ambrosio, Luigi

    2015-10-14

    Gas-barrier materials obtained by coating poly(ethylene terephthalate) (PET) substrates have already been studied in the recent literature. However, because of the benefits of using cheaper, biodegradable, and nonpolar polymers, multilayered hybrid coatings consisting of alternate layers of reduced graphene oxide (rGO) nanosheets and a novel high amorphous vinyl alcohol (HAVOH) with zirconium (Zr) adducts as binders were successfully fabricated through a layer-by-layer (LbL) assembly approach. Atomic force microscopy analysis showed that rGO nanoplatelets were uniformly dispersed over the HAVOH polymer substrate. Scanning and transmission electron microscopies revealed that multilayer (HAVOH/Zr/rGO)n hybrid coatings exhibited a brick-wall structure with HAVOH and rGO as buildings blocks. It has been shown that 40 layers of HAVOH/Zr/rGO ultrathin films deposited on PET substrates lead to a decrease of 1 order of magnitude of oxygen permeability with respect to the pristine PET substrate. This is attributed to the effect of zirconium polymeric adducts, which enhance the assembling efficiency of rGO and compact the layers, as confirmed by NMR characterization, resulting in a significant increment of the oxygen-transport pathways. Because of their high barrier properties and high flexibility, these films are promising candidates in a variety of applications such as packaging, selective gas films, and protection of flexible electronics.

  5. Polyvinyl alcohol hydrogels for iontohporesis

    NASA Astrophysics Data System (ADS)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  6. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  7. 75 FR 61175 - Polyvinyl Alcohol From Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... COMMISSION Polyvinyl Alcohol From Taiwan AGENCY: United States International Trade Commission. ACTION... of polyvinyl alcohol, provided for in subheading 3905.30.00 of the Harmonized Tariff Schedule of the... of polyvinyl alcohol from Taiwan are being sold in the United States at less than fair value...

  8. 76 FR 13660 - Polyvinyl Alcohol From Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... COMMISSION Polyvinyl Alcohol From Taiwan Determination On the basis of the record \\1\\ developed in the... United States is materially injured by reason of imports from Taiwan of polyvinyl alcohol, provided for... of a preliminary determination by Commerce that imports of polyvinyl alcohol from Taiwan were...

  9. Radiation-chemical preparation of poly(vinyl alcohol) hydrogels

    NASA Astrophysics Data System (ADS)

    Duflot, Anastasia V.; Kitaeva, Natalia K.; Duflot, Vladimir R.

    2015-02-01

    This work reports the usage of method of radiation-chemical synthesis to prepare cross-linked hydrogels from poly(vinyl alcohol) modified with glycidyl methacrylate. Synthesis kinetics of modified poly(vinyl alcohol) and properties of hydrogels were studied. The gel fraction, swelling, mechanical properties, and water content of the hydrogels were measured. It was found that gel fraction increases with increasing radiation dose, concentration of modified poly(vinyl alcohol), and reaches 60%. It was established by differential scanning calorimetry that a fraction of the "bound" water in hydrogels is 50-70% and independent of gel fraction content. In addition to "bound" and "free" states, water in hydrogels is also present in the intermediate state.

  10. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  11. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  12. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  13. Evaluation of Recycling Technology of Insulation of Cross-linked Polyethylene Insulated Cable using Supercritical Alcohol

    NASA Astrophysics Data System (ADS)

    Goto, Toshiharu; Ashihara, Shingo; Yamazaki, Takanori; Watanabe, Kiyoshi

    The material recycling of the insulation of cross-linked polyethylene cable was studied. We successfully obtained thermoplastic recycled polyethylene from silane cross-linked polyethylene by using chemical reaction in supercritical alcohol. Here, the continuous process for the recycling of silane cross-linked PE using supercritical alcohol was constructed. The mechanical and electrical properties of recycled polyethylene satisfied the requirement of the cable insulation. These results indicate that the cable to cable and wire to wire recycling of silane cross-linked polyethylene will possibly be accomplished by supercritical technology using extruder. Moreover the environmental effect of this technology was evaluated by the amount of the carbon dioxide generated from the continuous process. These results indicate that recycling method using supercritical alcohol was useful for the reduction of the environmental pollution.

  14. Cross-linked polyvinyl pyridine coated glass particle catalyst support and aqueous composition or polyvinyl pyridine adducted microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1981-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  15. Polyvinyl alcohol membranes as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  16. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyvinyl alcohol film. 177.1670 Section 177.1670... Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact..., in accordance with the following prescribed conditions: (a) The polyvinyl alcohol film is...

  17. Effect of Cross-Linking on the Mechanical and Thermal Properties of Poly(amidoamine) Dendrimer/Poly(vinyl alcohol) Hybrid Membranes for CO2 Separation

    PubMed Central

    Duan, Shuhong; Kai, Teruhiko; Saito, Takashi; Yamazaki, Kota; Ikeda, Kenichi

    2014-01-01

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(vinyl alcohol) (PVA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PVA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, three types of organic Ti metal compounds were selected as PVA cross-linkers that were used to prepare PAMAM/cross-linked PVA hybrid membranes. Characterization of the PAMAM/cross-linked PVA hybrid membranes was conducted using nanoindentation and thermogravimetric analyses. The effects of the cross-linker and CO2 partial pressure in the feed gas on CO2 separation performance were discussed. H2O and CO2 sorption of the PAMAM/PVA hybrid membranes were investigated to explain the obtained CO2 separation efficiencies. PMID:24957172

  18. 75 FR 15726 - Polyvinyl Alcohol From Taiwan; Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... COMMISSION Polyvinyl Alcohol From Taiwan; Determination On the basis of the record \\1\\ developed in the... Taiwan of polyvinyl alcohol provided for in subheading 3905.30.00 of the Harmonized Tariff Schedule of... threatened with material injury by reason of allegedly LTFV imports of polyvinyl alcohol from...

  19. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of...

  20. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of...

  1. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of...

  2. 21 CFR 177.1670 - Polyvinyl alcohol film.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of...

  3. 76 FR 13982 - Antidumping Duty Order: Polyvinyl Alcohol From Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... International Trade Administration Antidumping Duty Order: Polyvinyl Alcohol From Taiwan AGENCY: Import... Department is issuing an antidumping duty order on polyvinyl alcohol (PVA) from Taiwan. DATES: Effective Date... value in the antidumping duty investigation of PVA from Taiwan. See Polyvinyl Alcohol From Taiwan:...

  4. Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol).

    PubMed

    Ignatova, Milena; Starbova, Kirilka; Markova, Nadya; Manolova, Nevena; Rashkov, Iliya

    2006-09-04

    Nano-fibres containing quaternised chitosan (QCh) have been successfully prepared by electrospinning of QCh solutions mixed with poly(vinyl alcohol) (PVA). The average fibre diameter is in the range of 60-200 nm. UV irradiation of the composite electrospun nano-fibrous mats containing triethylene glycol diacrylate as cross-linking agent has resulted in stabilising of the nano-fibres against disintegration in water or water vapours. Microbiological screening has demonstrated the antibacterial activity of the photo-cross-linked electrospun mats against Staphylococcus aureus and Escherichia coli. The obtained nano-fibrous electrospun mats are promising for wound-healing applications.

  5. Immobilization of enzyme into poly(vinyl alcohol) membrane

    SciTech Connect

    Imai, K.; Shiomi, T.; Uchida, K.; Miya, M.

    1986-11-01

    Glucoamylase, invertase, and cellulase were entrapped within poly(vinyl alcohol) (PVA) membrane cross-linked by means of irradiation of ultraviolet light. The conditions for immobilization of glucoamylase were examined with respect to enzyme concentration in PVA, sensitizer (sodium benzoate) concentration in PVA, irradiation time, and membrane thickness. Various characteristics of immobilized glucoamylase were evaluated. Among them, the pH activity curve for the immobilized enzyme was superior to that for the native one, and thermal stability was improved by immobilization with bovine albumin. The apparent Km was larger for immobilized glucoamylase than for the native one, while Vmax was smaller for the immobilized enzyme. Also, the apparent Km appeared to be affected by the molecular size of the substrate. Further, immobilized invertase and cellulase showed good stabilities in repeating usage. 9 references.

  6. Poly(vinyl alcohol) hydrogels: their synthesis and steps towards control of electroendosmosis.

    PubMed

    Purss, Helen K; Caulfield, Marcus J; Solomon, David H; Sommer-Knudsen, Jens

    2003-01-01

    Poly(vinyl alcohol) (PVAl) hydrogel networks cross-linked with glutaraldehyde were prepared and their properties as membranes examined using a variety of techniques including preparative electrophoresis. Electroendosmosis (EEO) was observed and shown to be the result of charges on the membrane and of complexation with borate buffer ions. Investigation of "glutaraldehyde" solutions showed acid entities in, or formed in "glutaraldehyde" were responsible for EEO. Techniques for using "glutaraldehyde" which minimize EEO are described.

  7. Green Synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents

    Treesearch

    Qifeng Zheng; Zhiyong Cai; Shaoqin Gong

    2014-01-01

    Cross-linked polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid organic aerogels were prepared using an environmentally friendly freeze-drying process. The resulting PVA/CNF aerogel was rendered both superhydrophobic and superoleophilic after being treated with methyltrichlorosilane via a simple thermal chemical vapor deposition process. Successful silanization...

  8. High-Strength Nanocomposite Aerogels of Ternary Composition: Poly(vinyl alcohol), Clay, and Cellulose Nanofibrils.

    PubMed

    Liu, Andong; Medina, Lilian; Berglund, Lars A

    2017-02-22

    Clay aerogels are foam-like materials with potential to combine high mechanical performance with fire retardancy. However, the compression strength of these aerogels is much lower than theoretically predicted values. High-strength aerogels with more than 95% porosity were prepared from a ternary material system based on poly(vinyl alcohol), montmorillonite clay platelets, and cellulose nanofibrils. A hydrocolloidal suspension of the three components was subjected to freeze-drying so that a low-density aerogel foam was formed. Cell structure was studied by field-emission scanning electron microscopy. Interactions at the molecular scale were observed by X-ray diffraction and Fourier transform infrared spectroscopy. Cross-linking was carried out using glutaraldehyde or borax, and moisture stability was investigated. These biobased ternary aerogels showed compression strength much better than that of previously studied materials and also showed strength higher than that of high-performance sandwich foam cores such as cross-linked polyvinyl chloride foams.

  9. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  10. Quality testing of human albumin by capillary electrophoresis using thermally cross-linked poly(vinyl pyrrolidone)-coated fused-silica capillary.

    PubMed

    Tan, Lin; Zheng, Xiajun; Chen, Lijuan; Wang, Yanmei

    2014-10-01

    To detect the quality of medicinal human albumin by capillary electrophoresis, we produced a fused-silica capillary coated with thermally cross-linked poly(vinyl pyrrolidone) to prohibit protein adsorption. This type of capillary was easily obtained by injecting an aqueous poly(vinyl pyrrolidone) solution into a fused-silica capillary and thermally annealing it at 200°C. Notably, stable and low electro-osmotic flow was obtained in the poly(vinyl pyrrolidone)-coated capillary at pH 2.20-9.00, and the separation of a mixture of four basic proteins indicated that the poly(vinyl pyrrolidone)-coated capillary exhibits excellent repeatability and separation efficiency; moreover, the separation of these four basic proteins could even be achieved at pH 7.00. The protein recovery percentage of human serum albumin in a single-protein solution and a mixed blood proteins solution was determined to be 97.03 and 95.40% in the poly(vinyl pyrrolidone)50-3 (representing the concentration of the capillary-injected poly(vinyl pyrrolidone) aqueous solution, 50 mg/mL, and thermal annealing time, 3 h) capillary, respectively. Based on these results, we used the poly(vinyl pyrrolidone)50-3-coated capillary to quantify the protein content of human albumin, and the results obtained from run to run, day to day and capillary to capillary demonstrated that the coated capillary could be used for quality testing commercially available human albumin. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electron beam irradiation of maltodextrin and cinnamyl alcohol mixtures: influence of glycerol on cross-linking.

    PubMed

    Khandal, Dhriti; Aggarwal, Manjeet; Suri, Gunjan; Coqueret, Xavier

    2015-03-06

    The influence of glycerol on the electron beam-induced changes in maltodextrins-cinnamyl alcohol (CA) blends is examined with respect to its influence on the degree of chain scission, grafting, and cross-linking. The study is relevant to radiation-induced polysaccharide modification, specifically in the perspective of using blended starch as a thermoplastic material, where glycerol is commonly used as a plasticizer. In the absence of CA, glycerol protects maltodextrin from chromophore formation onto the main chain, but also induces more chain scission. The presence of CA provides efficient radiation-protection against scission. Glycerol is shown to affect the interaction between maltodextrin and CA, most likely in the form of an inclusion complex when glycerol is absent. The global behavior under radiation is therefore governed by the physical interactions between the blend constituents rather than on the role of glycerol role as a plasticizer, or as an OH˙ radical scavenger.

  12. Polyvinyl alcohol as photoluminescent conductive polymer

    NASA Astrophysics Data System (ADS)

    Ruiz-Limón, B.; Wetzel, G. B. J.; Olivares-Pérez, A.; Ponce-Lee, E. L.; Hernández-Garay, M. P.; Páez-Trujillo, G.; Toxqui-López, S.; Fuentes-Tapia, I.

    2007-02-01

    We synthesized a photoluminescent conductor polymer composed of polyvinyl alcohol, which was doped with nickel chloride to decrease its resistivity (300 Ωcm) and benzalkonium chloride to obtain photoluminescence properties, when it is radiated with a green laser beam (532 nm). We compared its absorbance curve and its energy emitted curve to observe the amount energy that is taken advantage of this process. Besides we research the photoluminescence behavior when an electric currant is applied in our conductor polymer, obtaining a modulation capacity.

  13. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    NASA Astrophysics Data System (ADS)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  14. Performance analysis of carbon electrode synthesized with poly (vinyl alcohol) and citric acid as cross-linking agent for desalination of NaCl solution in capacitive deionization

    NASA Astrophysics Data System (ADS)

    Nulik, Boby Willem; Endarko

    2017-01-01

    Carbon electrodes have been fabricated with the cross-linking methods at 120°C, using polyvinyl alcohol (PVA) as a binder and citric acid (CA) as a crosslinking agent. The carbon electrodes have been analyzed with Fourier Transform Infra Red Spectroscopy (FTIR) and the bound between PVA and citric acid of these electrodes have been analyzed as well. The surface and structural properties, as well as the electrochemical behaviors of the prepared electrode, were characterized by cyclic voltammetry (CV), and Electrical Impedance Spectroscopy (EIS). The specific capacitance of the carbon electrode and the desalination efficiency of the capacitive deionization (CDI) cell were achieved 15.7 F/g and 49.15%, respectively.

  15. Inkjet-printed Polyvinyl Alcohol Multilayers.

    PubMed

    Salaoru, Iulia; Zhou, Zuoxin; Morris, Peter; Gibbons, Gregory J

    2017-05-11

    Inkjet printing is a modern method for polymer processing, and in this work, we demonstrate that this technology is capable of producing polyvinyl alcohol (PVOH) multilayer structures. A polyvinyl alcohol aqueous solution was formulated. The intrinsic properties of the ink, such as surface tension, viscosity, pH, and time stability, were investigated. The PVOH-based ink was a neutral solution (pH 6.7) with a surface tension of 39.3 mN/m and a viscosity of 7.5 cP. The ink displayed pseudoplastic (non-Newtonian shear thinning) behavior at low shear rates, and overall, it demonstrated good time stability. The wettability of the ink on different substrates was investigated, and glass was identified as the most suitable substrate in this particular case. A proprietary 3D inkjet printer was employed to manufacture polymer multilayer structures. The morphology, surface profile, and thickness uniformity of inkjet-printed multilayers were evaluated via optical microscopy.

  16. Development of active polyvinyl alcohol/β-cyclodextrin composites to scavenge undesirable food components.

    PubMed

    López-de-Dicastillo, Carol; Jordá, María; Catalá, Ramón; Gavara, Rafael; Hernández-Muñoz, Pilar

    2011-10-26

    Active food packaging systems based on the incorporation of agents into polymeric package walls are being designed to purposely release or retain compounds to maintain or even increase food quality. The objective of this work was to develop polyvinyl alcohol (PVOH)/β-cyclodextrin (βCD) composite films that can be applied to reduce undesirable component content such as cholesterol in foods through active retention of the compounds in the package walls during storage. Cyclodextrins were added to PVOH in a proportion of 1:1 and cross-linked with glyoxal under acidic media to reduce its water-soluble character. Three different cross-linking procedures were used: cross-linking of the polymer/polysaccharide mixture in solution and film casting, PVOH. βCD*; cross-linking of the polymer, addition of βCD, and casting of the mixture, PVOH*.CD; and casting of a PVOH film, addition of a βCD/glyoxal solution onto the film, and cross-linking during drying, PVOH.CD*. Characterization studies showed that the PVOH*.CD and PVOH.CD* films provided the best physical characteristics with the lowest release values and the highest barrier properties. As a potential application, materials were tested as potential cholesterol-scavenging films. There was a significant reduction in the cholesterol concentration in milk samples when they were exposed to the materials developed.

  17. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  18. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  19. [Preparation and clinical application of polyvinyl alcohol/drug-loaded chitosan microsphere composite wound dressing].

    PubMed

    Zhang, Xiuju; Lin, Zhidan; Chen, Wenbin; Song, Ying; Li, Zhizhong

    2011-04-01

    In order to prepare and apply the polyvinyl alcohol/drug-loaded chitosan microspheres composite wound dressing, we first prepared chitosan microspheres by emulsion cross-linking method, and then added chitosan microspheres into the reactants during the acetalization of polyvinyl alcohol and formaldehyde. We further studied the morphology, water absorption, swelling degree, mechanical properties and in vitro release of the sponge with different amount of chitosan microspheres. The results showed that polyvinyl alcohol/drug-loaded chitosan composite sponge has porous structure with connectionism. Increasing the amount of chitosan microspheres would make the apertures smaller, so that the water absorption and the swelling of sponge decreased, but the tensile strength and compressive strength increased. With the increase of the amount of chitosan microspheres, the drug absorption of cefradine and the release rate increase, and the release time become longer. With the results of toxicity grade of 0 to 1, this type of composite sponge is non-toxic and meets the requirement of biocompatibility. The observation of rabbit nasal cavity after surgical operation suggested that polyvinyl acetal sponge modified with the chitosan has antiphlogistic, hemostatic and non-adherent characteristic, and can promote the healing and recovering of the nasalmucosa. After using this composite material, best growing surroundings for patients' granulation tissue were provided. Exposed bone and tendon were covered well with granulation tissue.

  20. Effect of borax concentration on the structure of Poly(Vinyl Alcohol) gels

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2012-06-01

    Poly(Vinyl Alcohol) hydrogels cross-linked with varying concentrations of borax have been studied using Small-Angle Neutron Scattering and X-Ray Diffraction. The intensity of scattering increases with borax concentration from 1 mg/ml up to 2 mg/ml and falls thereafter for 4 mg/ml, increasing again for a concentration of 10 mg/ml. The mesoscopic structural changes that cause these trends in the SANS data are in keeping with the variations in the X-ray diffraction patterns pertaining to structures within the PVA chains.

  1. Degradation of polyvinyl alcohol under mechanothermal stretching.

    PubMed

    Cristancho, Dahiyana; Zhou, Yan; Cooper, Rodrigo; Huitink, David; Aksoy, Funda; Liu, Zhi; Liang, Hong; Seminario, Jorge M

    2013-08-01

    Mechanical and thermal properties of polyvinyl alcohol (PVA) are characterized and analyzed using in situ X-ray photoelectron spectroscopy (XPS) and quantum chemistry calculations. It is found that the carbon peaks-commonly used as the reference for spectroscopic analysis-shift under mechanical and thermal stretching. Results also indicate that, at different temperatures and among the various functional groups present in PVA, the carbon in the C-O group is the most stable. Computational calculations showed that Hartree-Fock/10-31G (d) reproduces the binding energy of core carbon electrons with an accuracy of 95%, which is enough to characterize bonds, allowing the results of the spectroscopic analysis to be corroborated.

  2. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization.

    PubMed

    Zhu, Lijing; Song, Haiming; Wang, Jiarong; Xue, Lixin

    2017-05-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility.

  3. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems.

    PubMed

    Abdelgawad, Abdelrahman M; Hudson, Samuel M; Rojas, Orlando J

    2014-01-16

    Novel hybrid nanomaterials have been developed for antimicrobial applications. Here we introduce a green route to produce antibacterial nanofiber mats loaded with silver nanoparticles (Ag-NPs, 25 nm diameter) enveloped in chitosan after reduction with glucose. The nanofiber mats were obtained from colloidal dispersions of chitosan-based Ag-NPs blended with polyvinyl alcohol. Nanofibers (150 nm average diameter and narrow size distribution) were obtained by electrospinning and cross-linked with glutaraldhyde. The effect of crosslinking on the release of silver was studied by atomic absorption spectroscopy. Antimicrobial activity was studied by the viable cell-counting; mats loaded with silver and control samples (chitosan/PVA) with different degrees of cross-linking were compared for their effectiveness in reducing or halting the growth of aerobic bacteria. The results showed superior properties and synergistic antibacterial effects by combining chitosan with Ag-NPs.

  4. Biochemistry of microbial polyvinyl alcohol degradation.

    PubMed

    Kawai, Fusako; Hu, Xiaoping

    2009-08-01

    Effect of minor chemical structures such as 1,2-diol content, ethylene content, tacticity, a degree of polymerization, and a degree of saponification of the main chain on biodegradability of polyvinyl alcohol (PVA) is summarized. Most PVA-degraders are Gram-negative bacteria belonging to the Pseudomonads and Sphingomonads, but Gram-positive bacteria also have PVA-degrading abilities. Several examples show symbiotic degradation of PVA by different mechanisms. Penicillium sp. is the only reported eukaryotic degrader. A vinyl alcohol oligomer-utilizing fungus, Geotrichum fermentans WF9101, has also been reported. Lignolytic fungi have displayed non-specific degradation of PVA. Extensive published studies have established a two-step process for the biodegradation of PVA. Some bacteria excrete extracellular PVA oxidase to yield oxidized PVA, which is partly under spontaneous depolymerization and is further metabolized by the second step enzyme (hydrolase). On the other hand, PVA (whole and depolymerized to some extent) must be taken up into the periplasmic space of some Gram-negative bacteria, where PVA is oxidized by PVA dehydrogenase, coupled to a respiratory chain. The complete pva operon was identified in Sphingopyxis sp. 113P3. Anaerobic biodegradability of PVA has also been suggested.

  5. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride)

    PubMed Central

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2012-01-01

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively. PMID:24958543

  6. The Gelation of Poly(Vinyl Alcohol) with Na2B4O7 10H2O: Killing Slime

    NASA Astrophysics Data System (ADS)

    McLaughlin, K. W.; Wyffels, N. K.; Jentz, A. B.; Keenan, M. V.

    1997-01-01

    The gelation of poly(vinyl alcohol), PVA, with sodium tetraborate decahydrate (borax) to produce "slime" is a popular chemistry demonstration (1). Since the borate serves to cross-link the PVA, the degree of cross-linking can be varied by changing the borate concentration (2). One way of changing the concentration of borate available to hold the PVA chains together is to "disable" the borate by protonation with a strong acid (3, 4). The titration of slime with sulfuric acid (eq 1) allows students to examine the relationship between cross-linking, viscosity, and the onset of gelation. This modification to a popular chemistry demonstration produces an interesting chemistry laboratory experiment designed to introduce students to the relationship between molecular structure and the bulk properties of macromolecules.

  7. Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications.

    PubMed

    Millon, L E; Mohammadi, H; Wan, W K

    2006-11-01

    Polyvinyl alcohol (PVA) is a hydrophilic polymer with various characteristics desired for biomedical applications and can be transformed into a solid hydrogel by physical crosslinking, using a low-temperature thermal cycling process. As with most polymeric materials, the mechanical properties of the resultant PVA are isotropic, as oppose to most soft tissues, which are anisotropic. The objective of this research is to develop a PVA-based hydrogel that not only mimics the nonlinear mechanical properties displayed by cardiovascular tissues, but also their anisotropic behavior. By applying a controlled strain to the PVA samples, while undergoing low-temperature thermal cycling, we were able to create oriented mechanical properties in PVA hydrogels. The oriented stress-strain properties of porcine aorta were matched simultaneously by a PVA hydrogel prepared (10% PVA, cycle 3, 75% initial strain). This novel technique allows the controlled introduction of anisotropy to PVA hydrogel, and gives a broad range of control of its mechanical properties, for specific medical device applications. (c) 2006 Wiley Periodicals, Inc.

  8. Preparation and properties of polyvinyl alcohol microspheres

    SciTech Connect

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.; Ives, B.H.

    1986-06-01

    Polyvinyl alcohol (PVA) microspheres, having a size range of approx.150- to 250-..mu..m diameter with 1- to 5-..mu..m wall thickness, have been fabricated using a solution droplet technique. The spheres were developed for possible use on the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) Program. PVA, a polymer chosen based on earlier survey work carried out at KMS Fusion, Inc., has good strength, low hydrogen permeability, is optically transparent, and water soluble. The latter property makes it safe and easy to use in our droplet generator system. A unique dual-orifice droplet generator was used to prepare the spheres. The droplet generator operating conditions and the column processing parameters were chosen using results from our 1-D model calculations as a guide. The polymer microsphere model is an extension of the model we developed to support the glass sphere production. After preparation, the spheres were physically characterized for surface quality, sphericity, wall thickness (and uniformity), and size. We also determined the buckling pressure for both uncoated and CH-coated spheres. Radiation stability to beta decay (from tritium) was evaluated by exposing the spheres to a 7-keV electron beam. The results from these and other physical property measurements are presented in this report.

  9. Ultrasonic depolymerization of aqueous polyvinyl alcohol.

    PubMed

    Grönroos, A; Pirkonen, P; Heikkinen, J; Ihalainen, J; Mursunen, H; Sekki, H

    2001-07-01

    Ultrasonication has proved to be a highly advantageous method for depolymerizing macromolecules because it reduces their molecular weight simply by splitting the most susceptible chemical bond without causing any changes in the chemical nature of the polymer. Most of the effects involved in controlling molecular weight can be attributed to the large shear gradients and shock waves generated around collapsing cavitation bubbles. In general, for any polymer degradation process to become acceptable to industry, it is necessary to be able to specify the sonication conditions which lead to a particular relative molar mass distribution. This necessitates the identification of the appropriate irradiation power, temperature, concentration and irradiation time. According to the results of this study the reactors constructed worked well in depolymerization and it was possible to degrade aqueous polyvinyl alcohol (PVA) polymer with ultrasound. The most extensive degradation took place at the lowest frequency used in this study, i.e. 23 kHz, when the input power was above the cavitation threshold and at the lowest test concentration of PVA, i.e. 1% (w/w). Thus this study confirms the general assumption that the shear forces generated by the rapid motion of the solvent following cavitational collapse are responsible for the breakage of the chemical bonds within the polymer. The effect of polymer concentration can be interpreted in terms of the increase in viscosity with concentration, causing the molecules to become less mobile in solution and the velocity gradients around the collapsing bubbles to therefore become smaller.

  10. Cytotoxicity associated with electrospun polyvinyl alcohol.

    PubMed

    Pathan, Saif G; Fitzgerald, Lisa M; Ali, Syed M; Damrauer, Scott M; Bide, Martin J; Nelson, David W; Ferran, Christiane; Phaneuf, Tina M; Phaneuf, Matthew D

    2015-11-01

    Polyvinyl alcohol (PVA) is a synthetic, water-soluble polymer, with applications in industries ranging from textiles to biomedical devices. Research on electrospinning of PVA has been targeted toward optimizing or finding novel applications in the biomedical field. However, the effects of electrospinning on PVA biocompatibility have not been thoroughly evaluated. In this study, the cytotoxicity of electrospun PVA (nPVA) which was not crosslinked after electrospinning was assessed. PVA polymers of several molecular weights were dissolved in distilled water and electrospun using the same parameters. Electrospun PVA materials with varying molecular weights were then dissolved in tissue culture medium and directly compared against solutions of nonelectrospun PVA polymer in human coronary artery smooth muscle cells and human coronary artery endothelial cells cultures. All nPVA solutions were cytotoxic at a threshold molar concentration that correlated with the molecular weight of the starting PVA polymer. In contrast, none of the nonelectrospun PVA solutions caused any cytotoxicity, regardless of their concentration in the cell culture. Evaluation of the nPVA material by differential scanning calorimetry confirmed that polymer degradation had occurred after electrospinning. To elucidate the identity of the nPVA component that caused cytotoxicity, nPVA materials were dissolved, fractionated using size exclusion columns, and the different fractions were added to HCASMC and human coronary artery endothelial cells cultures. These studies indicated that the cytotoxic component of the different nPVA solutions were present in the low-molecular-weight fraction. Additionally, the amount of PVA present in the 3-10 kg/mol fraction was approximately sixfold greater than that in the nonelectrospun samples. In conclusion, electrospinning of PVA resulted in small-molecular-weight fractions that were cytotoxic to cells. This result demonstrates that biocompatibility of electrospun

  11. Poly(vinyl alcohol)-Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors.

    PubMed

    Chen, Ya-Nan; Peng, Lufang; Liu, Tianqi; Wang, Yaxin; Shi, Shengjie; Wang, Huiliang

    2016-10-12

    Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA-TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the "permanent" cross-link and the weaker H-bonding between PVA chains as the "temporary" cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA-TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively.

  12. Preliminary characterization of genipin-cross-linked silk sericin/poly(vinyl alcohol) films as two-dimensional wound dressings for the healing of superficial wounds.

    PubMed

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds.

  13. The polyvinyl alcohol sponge model implantation.

    PubMed

    Deskins, Desirae L; Ardestani, Shidrokh; Young, Pampee P

    2012-04-18

    Wound healing is a complicated, multistep process involving many cell types, growth factors and compounds(1-3). Because of this complexity, wound healing studies are most comprehensive when carried out in vivo. There are many in vivo models available to study acute wound healing, including incisional, excisional, dead space, and burns. Dead space models are artificial, porous implants which are used to study tissue formation and the effects of substances on the wound. Some of the commonly used dead space models include polyvinyl alcohol (PVA) sponges, steel wire mesh cylinders, expanded polytetrafluoroethylene (ePTFE) material, and the Cellstick(1,2). Each dead space model has its own limitations based on its material's composition and implantation methods. The steel wire mesh cylinder model has a lag phase of infiltration after implantation and requires a long amount of time before granulation tissue formation begins(1). Later stages of wound healing are best analyzed using the ePTFE model(1,4). The Cellstick is a cellulose sponge inside a silicon tube model which is typically used for studying human surgery wounds and wound fluid(2). The PVA sponge is limited to acute studies because with time it begins to provoke a foreign body response which causes a giant cell reaction in the animal(5). Unlike other materials, PVA sponges are easy to insert and remove, made of inert and non-biodegradable materials and yet are soft enough to be sectioned for histological analysis(2,5). In wound healing the PVA sponge is very useful for analyzing granulation tissue formation, collagen deposition, wound fluid composition, and the effects of substances on the healing process(1,2,5). In addition to its use in studying a wide array of attributes of wound healing, the PVA sponge has also been used in many other types of studies. It has been utilized to investigate tumor angiogenesis, drug delivery and stem cell survival and engraftment(1,2,6,7). With its great alterability, prior

  14. 78 FR 39256 - Polyvinyl Alcohol From Taiwan: Rescission of Antidumping Duty Administrative Review; 2012-2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ...] Polyvinyl Alcohol From Taiwan: Rescission of Antidumping Duty Administrative Review; 2012-2013 AGENCY... on polyvinyl alcohol (PVA) from Taiwan for the period March 1, 2012, through February 28, 2013. DATES... administrative review.\\3\\ \\3\\ See letter from CCPC to the Department, ``Polyvinyl Alcohol from Taiwan:...

  15. 75 FR 38079 - Postponement of Preliminary Determination of Antidumping Duty Investigation: Polyvinyl Alcohol...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ...: Polyvinyl Alcohol From Taiwan AGENCY: Import Administration, International Trade Administration, Department...) initiated the antidumping duty investigation on polyvinyl alcohol from Taiwan. See Initiation of Anti-Dumping Duty Investigation: Polyvinyl Alcohol From Taiwan, 69 FR 59204 (October 4, 2004). On October...

  16. Short cellulose nanofribrils as reinforcement in polyvinyl alcohol fiber

    Treesearch

    Jun Peng; Thomas Ellingham; Ron Sabo; Lih-Sheng Turng; Craig M. Clemons

    2014-01-01

    Short cellulose nanofibrils (SCNF) were investigated as reinforcement for polyvinyl alcohol (PVA) fibers. SCNF were mechanically isolated from hard wood pulp after enzymatic pretreatment. Various levels of SCNF were added to an aqueous PVA solution, which was gel-spun into continuous fibers. The molecular orientation of PVA was affected by a combination of wet drawing...

  17. PIXE investigation of in vitro release of chloramphenicol across polyvinyl alcohol/acrylamide hydrogel

    NASA Astrophysics Data System (ADS)

    Rihawy, M. S.; Alzier, A.; Allaf, A. W.

    2011-09-01

    Hydrogels based on polyvinyl alcohol and different amounts of acrylamide monomer were prepared by thermal cross-linking in the solid state. The hydrogels were investigated for drug delivery system applications. Chloramphenicol was adopted as a model drug to study its release behavior. Particle induced X-ray emission was utilized to study the drug release behavior across the hydrogels and a comparison study with ultraviolet measurements was performed. Fourier Transform Infrared measurements were carried out for molecular characterization. The releasing behavior of the drug exhibits a decrease and a subsequent increase in the release rate, as the acrylamide monomer increases. Characterization of the hydrogels has shown a competitive behavior between crosslinking with AAm acrylamide monomer or oligomerized version, depending on the amount added to prepare the hydrogels.

  18. Anisotropic Poly(Vinyl Alcohol) Hydrogel: Connection Between Structure and Bulk Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Hudson, Stephen; Hutter, Jeffrey; Millon, Leonardo; Wan, Wankei; Nieh, Mu-Ping

    2009-03-01

    Poly(vinyl alcohol) (PVA) hydrogels are formed from PVA solution by creation of physical cross-links during freeze/thaw cycling. By choosing a suitable freeze/thaw protocol and applying a strain during thermal processing, gels with permanent, anisotropic bulk mechanical properties matching those of cardiovascular tissues can be made, making them useful for applications ranging from artificial heart valves to vascular grafts. We have performed small- and ultra small-angle neutron scattering (SANS and USANS) measurements covering length scales from 2 nm to 10 μm, and modeled the structure as interconnected PVA blobs of size 20 to 50 nm arranged in fractal aggregates extending to at least 10 μm. Here, we discuss the relationship between the microstructure and bulk mechanical properties. Strength increases with the number of thermal cycles due to reinforcement of the small-scale gel phase, while anisotropy is due to elongation of the much larger fractal aggregates.

  19. Graphene Oxide/Chitosan/Polyvinyl-Alcohol Composite Sponge as Effective Adsorbent for Dyes.

    PubMed

    Xu, Xiaoqi; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng

    2017-06-01

      Water pollution is one of the most pervasive problems afflicting people. Therefore, seeking highly efficient, low-cost methods to decontaminate water is very much in demand. In this paper, chitosan/polyvinyl-alcohol composite sponges are synthesized via foamed cross-linking method while incorporating different amount of graphene oxide, the resultant graphene oxide/chitosan/polyvinyl-alcohol composite sponges (GCS) are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR), indicating the reasonable dispersion of graphene oxide in the matrix. Furthermore, some physical properties (water absorption, water retention, apparent density, porosity) are also determined; water absorption is high up to 873%, apparent density is lower than 0.25 g/cm3, and porosity could reach 78%. The GCSs also manifest high adsorption ability, as effective adsorbent for Acid Red 37 (AR 37) solution. The relationship between adsorption capacity and independent variables (adsorbent mass, initial dye concentration, and contacting time) is obtained. The optimal adsorption capacity value of AR 37 on GCS could reach 421.5 mg/g.

  20. Rheological and Performance Research on a Regenerable Polyvinyl Alcohol Fracturing Fluid.

    PubMed

    Shang, Xiaosen; Ding, Yunhong; Wang, Yonghui; Yang, Lifeng

    2015-01-01

    A regenerable polyvinyl alcohol/organic boron fracturing fluid system with 1.6 wt% polyvinyl alcohol (PVOH) and 1.2 wt% organic boron (OBT) was studied, and its main regeneration mechanism is the reversible cross-linking reaction between B(OH)4- and hydroxyl groups of PVOH as the change of pH. Results of rheology evaluations show that both the apparent viscosity and the thermal stability of the fracturing fluid decreased with the regeneration number of times increasing. In addition, the apparent viscosity of the fluid which was without regeneration was more sensitive to the shear action compared with that of the fluid with regeneration once or twice. When the fracturing fluid was without regeneration, the elasticity was dominating due to the three-dimensional network structure of the formed gel; the viscosity gradually occupied the advantage when the fracturing fluid was regenerated once or twice. The settling velocity of proppant was accelerated by both the regeneration process and the increasing temperature, but it was decelerated when the proppant ratio increased. Results of core damage tests indicate that less permeability damage was caused by the PVOH/OBT fracturing fluid compared with that caused by the guar gum fracturing fluid after gel breaking.

  1. Rheological and Performance Research on a Regenerable Polyvinyl Alcohol Fracturing Fluid

    PubMed Central

    Shang, Xiaosen; Ding, Yunhong; Wang, Yonghui; Yang, Lifeng

    2015-01-01

    A regenerable polyvinyl alcohol/organic boron fracturing fluid system with 1.6 wt% polyvinyl alcohol (PVOH) and 1.2 wt% organic boron (OBT) was studied, and its main regeneration mechanism is the reversible cross-linking reaction between B(OH)4- and hydroxyl groups of PVOH as the change of pH. Results of rheology evaluations show that both the apparent viscosity and the thermal stability of the fracturing fluid decreased with the regeneration number of times increasing. In addition, the apparent viscosity of the fluid which was without regeneration was more sensitive to the shear action compared with that of the fluid with regeneration once or twice. When the fracturing fluid was without regeneration, the elasticity was dominating due to the three-dimensional network structure of the formed gel; the viscosity gradually occupied the advantage when the fracturing fluid was regenerated once or twice. The settling velocity of proppant was accelerated by both the regeneration process and the increasing temperature, but it was decelerated when the proppant ratio increased. Results of core damage tests indicate that less permeability damage was caused by the PVOH/OBT fracturing fluid compared with that caused by the guar gum fracturing fluid after gel breaking. PMID:26641857

  2. Novel cross-linked alcohol-insoluble solid (CL-AIS) affinity gel from pea pod for pectinesterase purification.

    PubMed

    Wu, Ming-Chang; Lin, Guan-Hui; Wang, Yuh-Tai; Jiang, Chii-Ming; Chang, Hung-Min

    2005-10-05

    Alcohol-insoluble solids (AIS) from pea pod were cross-linked (CL-AIS) and used as an affinity gel matrix to isolate pectin esterases (PEs) from tendril shoots of chayote (TSC) and jelly fig achenes (JFA), and the results were compared with those isolated by ion-exchange chromatography with a commercial resin. CL-AIS gel matrix in a column displayed poor absorption and purification fold of PE; however, highly methoxylated CL-AIS (HM-CL-AIS), by exposing CL-AIS to methanolic sulfuric acid to increase the degree of esterification (DE) to 92%, facilitated the enzyme purification. The purified TSC PE and JFA PE by the HM-CL-AIS column were proofed as a single band on an SDS-PAGE gel, showing that the HM-CL-AIS column was a good matrix for purification of PE, either with alkaline isoelectric point (pI) (TSC PE) or with acidic pI (JFA PE).

  3. Preliminary Characterization of Genipin-Cross-Linked Silk Sericin/Poly(vinyl alcohol) Films as Two-Dimensional Wound Dressings for the Healing of Superficial Wounds

    PubMed Central

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds. PMID:24106722

  4. Borax mediated layer-by-layer self-assembly of neutral poly(vinyl alcohol) and chitosan.

    PubMed

    Manna, Uttam; Patil, Satish

    2009-07-09

    We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be cross-linked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance, scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film on flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 microm) to quantify the process for the preparation of hollow microcapsules. Removal of the core in 0.1 N HCl results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH values to highlight the drug delivery potential of this system.

  5. Stability of polyvinyl alcohol-coated biochar nanoparticles in brine

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher; Daigle, Hugh

    2017-01-01

    This paper reports on the dispersion stability of 150 nm polyvinyl alcohol coated biochar nanoparticles in brine water. Biochar is a renewable, carbon based material that is of significant interest for enhanced oil recovery operations primarily due to its wide ranging surface properties, low cost of synthesis, and low environmental toxicity. Nanoparticles used as stabilizing agents for foams (and emulsions) or in nanofluids have emerged as potential alternatives to surfactants for subsurface applications due to their improved stability at reservoir conditions. If, however, the particles are not properly designed, they are susceptible to aggregation because of the high salinity brines typical of oil and gas reservoirs. Attachment of polymers to the nanoparticle surface, through covalent bonds, provides steric stabilization, and is a necessary step. Our results show that as the graft density of polyvinyl alcohol increases, so too does the stability of nanoparticles in brine solutions. A maximum of 34 wt% of 50,000 Da polyvinyl alcohol was grafted to the particle surface, and the size of the particles was reduced from 3500 nm (no coating) to 350 nm in brine. After 24 h, the particles had a size of 500 nm, and after 48 h completely aggregated. 100,000 Da PVA coated at 24 wt% on the biochar particles were stable in brine for over 1 month with no change in mean particle size of 330 nm.

  6. Characterisation and in vitro stability of low-dose, lidocaine-loaded poly(vinyl alcohol)-tetrahydroxyborate hydrogels.

    PubMed

    Abdelkader, D H; Osman, M A; El-Gizawy, S A; Faheem, A M; McCarron, P A

    2016-03-16

    Poly(vinyl alcohol) hydrogels cross-linked with the tetrahydroxyborate anion possess textural and rheological properties that can be used as novel drug-loaded vehicles for application to traumatic wounds. However, addition of soluble drug substances causes concentration-dependent phase separation and rheological changes. The aim of this work was to investigate the effect of adding a local anaesthetic, but keeping the concentration low in an attempt to prevent these changes. Cross-linked hydrogels prepared from three grades of poly(vinyl alcohol) were characterised rheologically. Temperature sweep studies showed an elevated complex viscosity upon moving from 25°C to 80°C, which remained high for 48 h following completion of the cycle. Adhesion to model dermal surfaces achieved a maximum of 2.62 N cm(-2) and were greater than that observed to epidermal substrates, with a strong dependence on the rate of detachment used during testing. An optimised formulation (6% w/w PVA (31-50; 99) and 2% w/w THB) containing lidocaine hydrochloride loaded to an upper maximum concentration of 1.5% w/w was assessed for phase separation and drug crystallisation. After six months, crystallisation was present in formulations containing 0.7% and 1.5% lidocaine HCl. Changes in pH in response to increases in lidocaine loading were low. Drug release was shown to operate via a non-Fickian process for all three concentrations, with 60% occurring after approximately 24h. It can be concluded that using a low concentration of lidocaine hydrochloride in hydrogels based on poly(vinyl alcohol) will result in crystallisation. Furthermore, these hydrogels are unlikely to induce rapid anaesthesia due to the low loading and slow release kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Formation of Linear Polyenes in Thermal Dehydration of Polyvinyl Alcohol, Catalyzed by Phosphotungstic Acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.

    2015-01-01

    In order to obtain linear polyenes in polyvinyl alcohol films via acid-catalyzed thermal dehydration of the polyvinyl alcohol, we used phosphotungstic acid as the catalyst: a safe and heat-stable solid chemical compound. We established that phosphotungstic acid, introduced as solid nanoparticles into polyvinyl alcohol films, is a more effective dehydration catalyst than hydrochloric acid, since in contrast to HCl it does not evaporate from the film during heat treatment.

  8. The effect of increasing honey concentration on the properties of the honey/polyvinyl alcohol/chitosan nanofibers.

    PubMed

    Sarhan, Wessam A; Azzazy, Hassan M E; El-Sherbiny, Ibrahim M

    2016-10-01

    The effect of increasing honey concentrations from 10% to 30% within the Honey (H)/polyvinyl alcohol (P)/chitosan (CS) nanofibers was investigated. Changes in the electrospun nanofiber diameters, crystallinity, thermal behavior, porosity and antibacterial activity have been assessed using SEM, XRD, DSC, TGA, mercury porosimeter and viable cell count technique. The HPCS nanofibers were cross-linked and tested for their swelling abilities and degradation behavior. The mean diameter of HPCS nanofibers increased from 284±97nm to 464±185nm upon increasing the honey concentration from 10% to 30%. Irrespective the honey concentrations, the nanofibers have demonstrated enhanced porosity. Increasing the honey concentration resulted in a reduction in the swelling of the 1h cross-linked HPCS nanofibers containing 10% and 30% H from 520% to 100%; respectively. Degradation after 30days was reduced in the 3h cross-linked HPCS nanofibers compared to the non-crosslinked HPCS nanofibers. Enhanced antibacterial activity was achieved against both Staphylococcus aureus and Escherichia coli upon increasing the honey concentration. Changing the honey concentration and the extent of nanofiber crosslinking can be used to adjust different parameters of the HPCS nanofibers to suit their applications in wound healing and tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Polyvinyl alcohol doped with nickel chloride hexahydrate as conductor polymer

    NASA Astrophysics Data System (ADS)

    Ruiz-Limon, B.; Olivares-Perez, Arturo; Silva-Andrade, F.; Fuentes-Tapia, I.; Ibarra-Torres, Juan Carlos

    2004-06-01

    Polyvinyl alcohol is a viscous solution, with blue clear appearance, not has odor, when is deposited, as a film dry the appearance is clear transparent and has high flexibility. This polymer no has double link and don not has p orbital that permit the conductivity. However, can be doped with salts as ammonium dichromate and nickel chloride hexahydrate NiCl26H2O constructing a good conductor polymer with a resistivity around 300 ohms cm. Conserving the high flexibility opened new possibilities and applications.

  10. Memristive learning and memory functions in polyvinyl alcohol polymer memristors

    NASA Astrophysics Data System (ADS)

    Lei, Yan; Liu, Yi; Xia, Yidong; Gao, Xu; Xu, Bo; Wang, Suidong; Yin, Jiang; Liu, Zhiguo

    2014-07-01

    Polymer based memristive devices can offer simplicity in fabrication and at the same time promise functionalities for artificial neural applications. In this work, inherent learning and memory functions have been achieved in polymer memristive devices employing Polyvinyl Alcohol. The change in conduction in such polymer devices strongly depends on the pulse amplitude, duration and time interval. Through repetitive stimuli training, temporary short-term memory can transfer into consolidated long-term memory. These behaviors bear remarkable similarities to certain learning and memory functions of biological systems.

  11. 77 FR 14342 - Polyvinyl Alcohol From Taiwan: Correction to Notice of Opportunity To Request Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Polyvinyl Alcohol From Taiwan: Correction to Notice of Opportunity To Request... antidumping duty order on polyvinyl alcohol from Taiwan. See Antidumping or Countervailing Duty Order,...

  12. Mineralization of radiation-crosslinked polyvinyl alcohol/polyvinyl pyrrolidone hydrogels.

    PubMed

    Hill, David J T; Whittaker, Andrew K

    2007-11-01

    A study of the calcification of the polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP) hydrogels during their exposure to a calcium chloride solution or a simulated body fluid has been carried out. On the basis of the experiments, using a two-compartment permeation cell, the diffusion of calcium ions and their subsequent deposition in the hydrogels were elucidated. Steady-batch experiments were also performed to further elaborate the deposition pattern and the types of calcium deposits. It was demonstrated that Fick's second law of diffusion can describe the diffusion of calcium ions through PVA/PVP hydrogels at 310 K. The diffusion coefficient was determined to be (4.4+/-0.1)x10(-10) m2/s and the partition coefficient for the hydrogels was 0.06. Formation of calcium deposits was noticed taking place both on the surface and inside the hydrogels. The deposits formed on the surface have flake morphology, while the deposits inside the hydrogels are more like globular aggregates. Both types of deposits have been characterized as being comprised calcium and hydroxyl ion deficient apatites with chloride ions the most likely substituting species at the hydroxyl sites.

  13. Solute retention and the states of water in polyethylene glycol and poly(vinyl alcohol) gels.

    PubMed

    Baba, Takayuki; Sakamoto, Ryosaku; Shibukawa, Masami; Oguma, Koichi

    2004-06-18

    The states of water sorbed in a cross-linked polyethylene glycol (PEG) gel, TSKgel Ether-250, and cross-linked poly(vinyl alcohol) (PVA) gels of different pore sizes, TSKgel Toyopearl HW-40S, 50S, 55S and 75S, were investigated by means of differential scanning calorimetry (DSC). It was found that there were three types of water in these hydrogels, non-freezing water, freezable bound water and free water. The amount of water that functions as the stationary phase in the column packed with the each gel was also estimated by a liquid chromatographic method. The estimated amount of the stationary phase water is in good agreement with the sum of the amount of non-freezing water and that of freezable bound water for HW-40S, 50S and 55S, while it agrees with the amount of only non-freezing water for HW-75S and Ether-250. This means that the stationary phase water consists of non-freezing water and freezable bound water for HW-40S, 50S and 55S, while only non-freezing water functions as the stationary phase in HW-75S and Ether-250 gels. This result can be attributed to the difference in the structure of the gels; the PVA gels containing PVA at relatively high concentrations, HW-40S, 50S and 55S, have a homogeneous gel phase, whereas HW-75S and Ether-250 have a heterogeneous gel phase consisting hydrated polymer domains and macropores with relatively hydrophobic surface. The freezable bound water in Toyopearl HW-40S, 50S and 55S can be regarded as a component of a homogeneous PVA solution phase, while that in HW-75S and Ether-250 may be water isolated in small pores of the hydrophobic domains. The results obtained by the investigation on the retention selectivity of these hydrogels in aqueous solutions supported our postulated view on the structures of the hydrogels.

  14. 78 FR 37794 - Polyvinyl Alcohol from Taiwan: Final Results of Antidumping Duty Administrative Review; 2010-2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... International Trade Administration Polyvinyl Alcohol from Taiwan: Final Results of Antidumping Duty... results of the administrative review of the antidumping duty order on polyvinyl alcohol (PVA) from Taiwan... February 29, 2012. \\1\\ See Polyvinyl Alcohol From Taiwan: Preliminary Results of Antidumping...

  15. Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2-O2 proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ebenezer, D.; Deshpande, Abhijit P.; Haridoss, Prathap

    2016-02-01

    Proton exchange membrane fuel cell (PEMFC) performance with a cross-linked poly (vinyl alcohol)/sulfosuccinic acid (PVA/SSA) polymer is compared with Nafion® N-115 polymer. In this study, PVA/SSA (≈5 wt. % SSA) polymer membranes are synthesized by a solution casting technique. These cross-linked PVA/SSA polymers and Nafion are used as electrolytes and ionomers in catalyst layers, to fabricate different membrane electrode assemblies (MEAs) for PEMFCs. Properties of each MEA are evaluated using scanning electron microscopy, contact angle measurements, impedance spectroscopy and hydrogen pumping technique. I-V characteristics of each cell are evaluated in a H2-O2 fuel cell testing fixture under different operating conditions. PVA/SSA ionomer causes only an additional ≈4% loss in the anode performance compared to Nafion ionomer. The maximum power density obtained from PVA/SSA based cells range from 99 to 117.4 mW cm-2 with current density range of 247 to 293.4 mA cm-2. Ionic conductivity of PVA/SSA based cells is more sensitive to state of hydration of MEA, while maximum power density obtained is less sensitive to state of hydration of MEA. Maximum power density of cross-linked PVA/SSA membrane based cell is about 35% that of Nafion® N-115 based cell. From these results, cross-linked PVA/SSA polymer is identified as potential candidate for PEMFCs.

  16. Sustained-release oral delivery of theophylline by use of polyvinyl alcohol and polyvinyl alcohol-methyl acrylate polymers.

    PubMed

    DiLuccio, R C; Hussain, M A; Coffin-Beach, D; Torosian, G; Shefter, E; Hurwitz, A R

    1994-01-01

    Crystalline polyvinyl alcohol (PVA) polymer and low-crystallinity polyvinyl alcohol-methyl acrylate copolymer (PVA-MA) were examined as sustained-release tablet excipients with theophylline as a model drug. By blending of different proportions of the crystalline polymer and the low-crystallinity copolymer, it was possible to affect the release characteristics of the tablets. Tablets made with crystalline PVA provided instant release of theophylline in vitro. Tablets made with a larger proportion of PVA-MA relative to PVA provided a very prolonged release profile in vitro. A formulation containing PVA-MA:PVA:theophylline in a ratio of 1:9:10 provided sustained-release profiles in vitro and in vivo in dogs. The dissolution release profile of this PVA-blend tablet formulation in vitro agreed extremely well with the percentage of bioavailable dose absorbed over time in vivo. The formulation provided a plateau of levels in plasma over 16 h. The oral bioavailability of theophylline from this formulation in dogs was approximately 80% and was equivalent to that obtained after administration of Theo-Dur, a marketed extended-release theophylline tablet from Key Pharmaceuticals.

  17. Time-dependence of pervaporation performance for the separation of ethanol/water mixtures through poly(vinyl alcohol) membrane.

    PubMed

    Li, Gewei; Zhang, Wei; Yang, Juping; Wang, Xinping

    2007-02-15

    To clarify the cause of time-dependent separation behavior, the pervaporation performance with operating time through pure poly(vinyl alcohol) (PVA) membrane and glutaraldehyde (GA) cross-linked PVA membranes was investigated. The results showed that the water concentration in the permeate for the air-side surface of the PVA membrane increased dramatically from 92.2 to 95.7% in about 110 min and then remained almost unchanged. However, the water selectivity for the glass-side surface did not change with operating time. Similar results were observed for the GA cross-linked PVA membranes. Furthermore, the contact angle of water on the air-side surfaces of those membranes decreased with the time of contact with the feed. These results revealed that this dynamic pervaporation process was mainly attributable to the reconstruction of hydroxyl groups at the air-side surfaces of PVA membranes in response to the change of their surrounding medium during pervaporation. The reconstruction at the glass-side surface of the membrane did not occur because of the preferential localization of hydroxyl groups at the interface between the membrane and the glass plate during film formation of PVA solution. The above conclusion was further confirmed by the following results. The water concentration in the permeate through PVA membranes with the air-side surface facing the feed reached equilibrium more quickly with increasing operation temperature or decreasing degree of cross-linking, which was consistent with the fact that the rate of surface reconstruction accelerated with the increase of temperature or the decrease of the degree of cross-linking.

  18. Mesoscopic and microscopic investigation on poly(vinyl alcohol) hydrogels in the presence of sodium decylsulfate.

    PubMed

    Mangiapia, Gaetano; Ricciardi, Rosa; Auriemma, Finizia; Rosa, Claudio De; Celso, Fabrizio Lo; Triolo, Roberto; Heenan, Richard K; Radulescu, Aurel; Tedeschi, Anna Maria; D'Errico, Gerardino; Paduano, Luigi

    2007-03-08

    The structure of poly(vinyl alcohol) (PVA) hydrogels formed as a result of freeze/thaw treatments of aqueous solutions of the polymer (11 wt % PVA) in the freshly prepared state is analyzed through the combined use of small (SANS) and ultrasmall (USANS) angle neutron scattering techniques. The structure of these hydrogels may be described in terms of polymer rich regions, with dimensions of the order of 1-2 microm, dispersed in a water rich phase, forming two bicontinuous phases. The PVA chains in the polymer rich phase form a network where the cross-linking points are mainly crystalline aggregates of PVA having average dimensions of approximately 45 A. The structural organization of freeze/thaw PVA hydrogel membranes does not change either after rehydration of dried gels or in the presence of a tensile force. Finally, addition of surfactant micelles inside the gel provides a formulation with both hydrophobic and hydrophilic regions, which demonstrates the potential of the system for drug delivery. Both SANS and EPR measurements show that sodium decylsulfate (C10OS) micelles do not significantly interact with the PVA gel. Variation of the gel structure by the number of freeze/thaw cycles should modulate the rate of release of an active constituent, for example, in a dermal patch.

  19. Electrospinning of porphyrin/polyvinyl alcohol (PVA) nanofibers and their acid vapor sensing capability.

    PubMed

    Jang, Kihun; Baek, Il Woong; Back, Sung Yul; Ahn, Heejoon

    2011-07-01

    Fluorescing 5,10,15,20-terakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP)-embedded and -coated polyvinyl alcohol (PVA) nanofibers were fabricated by using the electrospinning technique. To improve nonpolar solvent solubility of TMPyP/PVA nanofibers, tetraethyl orthosilicate (TEOS) was used as a cross-linking agent. UV-vis spectroscopy showed a strong Q band and two relatively weak Soret bands from the TMPyP/PVA nanofibers, and revealed that the TMPyP molecules were homogeneously loaded to the fibers. Scanning electron microscopy revealed that the electrospun nanofibers had ultrafine structures with an average diameter of ca. 250 nm. X-ray photoelectron spectroscopy confirmed the compositional structure of TMPyP/PVA/TEOS nanofibers and revealed the relative coverage of TMPyP molecules on the surface of TMPyP-embedded and TMPyP-coated PVA/TEOS fibers. For the comparison of the acid vapor sensitivity, TMPyP-embedded PVA/TEOS films, and TMPyP-embedded PVA/TEOS fibers, TMPyP-coated PVA/TEOS fibers were exposed to 1N nitric-acid vapor for 20-60 seconds. Fluorescence microscopy revealed that TMPyP-coated PVA/TEOS nanofibers exhibited better acid-sensing capability than TMPyP-embedded PVA/TEOS nanofibers and films.

  20. Polyvinyl alcohol electrospun nanofibers containing Ag nanoparticles used as sensors for the detection of biogenic amines

    NASA Astrophysics Data System (ADS)

    Marega, Carla; Maculan, Jenny; Rizzi, Gian Andrea; Saini, Roberta; Cavaliere, Emanuele; Gavioli, Luca; Cattelan, Mattia; Giallongo, Giuseppe; Marigo, Antonio; Granozzi, Gaetano

    2015-02-01

    Polyvinyl alcohol (PVA) electrospun nanofibers containing Ag nanoparticles (NPs) have been deposited on glass substrates. The aim of the work was to test the feasibility of this approach for the detection of biogenic amines by using either the Ag localized surface plasmon resonance quenching caused by the adsorption of amines on Ag NPs or by detecting the amines by surface enhanced Raman spectroscopy (SERS) after adsorption, from the gas phase, on the metal NPs. Two different approaches have been adopted. In the first one an ethanol/water solution containing AgNO3 was used directly in the electrospinning apparatus. In this way, a simple heat treatment of the nanofibers mat was sufficient to obtain the formation of Ag NPs inside the nanofibers and a partial cross-link of PVA. In the second procedure, the Ag NPs were deposited on PVA nanofibers by using the supersonic cluster beam deposition method, so that a beam of pure Ag NPs of controlled size was obtained. Exposure of the PVA mat to the beam produced a uniform distribution of the NPs on the nanofibers surface. Ethylendiamine vapors and volatile amines released from fresh shrimp meat were chemisorbed on the nanofibers mats. A SERS spectrum characterized by a diagnostic Ag-N stretching vibration at 230 cm-1 was obtained. The results allow to compare the two different approaches in the detection of ammines.

  1. FAS Grafted Electrospun Poly(vinyl alcohol) Nanofiber Membranes with Robust Superhydrophobicity for Membrane Distillation.

    PubMed

    Dong, Zhe-Qin; Wang, Bao-Juan; Ma, Xiao-hua; Wei, Yong-Ming; Xu, Zhen-Liang

    2015-10-14

    This study develops a novel type of electrospun nanofiber membranes (ENMs) with high permeability and robust superhydrophobicity for membrane distillation (MD) process by mimicking the unique unitary microstructures of ramee leaves. The superhydrophobic ENMs were fabricated by the eletrospinning of poly(vinyl alcohol) (PVA), followed by chemical cross-linking with glutaraldehyde and surface modification via low surface energy fluoroalkylsilane (FAS). The resultant FAS grafted PVA (F-PVA) nanofiber membranes were endowed with self-cleaning properties with water contact angles of 158° and sliding angles of 4° via the modification process, while retaining their high porosities and interconnected open structures. For the first time, the robust superhydrophobicity of the ENMs for MD was confirmed by testing the F-PVA nanofiber membranes under violent ultrasonic treatment and harsh chemical conditions. Furthermore, vacuum membrane distillation experiments illustrated that the F-PVA membranes presented a high and stable permeate flux of 25.2 kg/m2 h, 70% higher than those of the commercial PTFE membranes, with satisfied permeate conductivity (<5 μm/cm) during a continuous test of 16 h (3.5 wt % NaCl as the feed solution, and feed temperature and permeate pressure were set as 333 K and 9 kPa, respectively), suggesting their great potentials in myriad MD processes such as high salinity water desalination and volatile organiccompounds removal.

  2. Development of porous structured polyvinyl alcohol/zeolite/carbon composites as adsorbent

    NASA Astrophysics Data System (ADS)

    Laksmono, J. A.; Sudibandriyo, M.; Saputra, A. H.; Haryono, A.

    2017-05-01

    Adsorption is a separation process that has higher energy efficiency than others. Analyzing the nature of the adsorbate and the selection of suitable adsorbent are key success in adsorption. The performance of the adsorbent can be modified either physically or chemically to obtain the efficiency and effectiveness of the adsorption, this can be facilitated by using a composite adsorbent. In this study, we have conducted the preparation process of a polyvinyl alcohol (PVA)/zeolite/carbon composites. The resulting adsorbent composites are dedicated for ethanol - water dehydration proposes. The composites were prepared using cross-linked polymerization method followed by supercritical fluid extraction (SFE) to obtain the porous structured upon drying process. The characterization of the functional groups and morphology were performed by using Fourier Transform Infra-Red (FTIR) and Scanning Electron Microscopy (SEM), respectively. The FTIR analysis showed that composite prepared by SFE method formed hydrogen bonding confirmed by the appearance of peaks at 2950 - 3000 cm-1 compared to composite without SFE method, whereas, the results of SEM study showed the formation of three layered structures. On basis of the obtained results, it can be shown that PVA/zeolite/carbon has high potential to be develop further as an adsorbent composite.

  3. Polyvinyl alcohol electrospun nanofibers containing Ag nanoparticles used as sensors for the detection of biogenic amines.

    PubMed

    Marega, Carla; Maculan, Jenny; Andrea Rizzi, Gian; Saini, Roberta; Cavaliere, Emanuele; Gavioli, Luca; Cattelan, Mattia; Giallongo, Giuseppe; Marigo, Antonio; Granozzi, Gaetano

    2015-02-20

    Polyvinyl alcohol (PVA) electrospun nanofibers containing Ag nanoparticles (NPs) have been deposited on glass substrates. The aim of the work was to test the feasibility of this approach for the detection of biogenic amines by using either the Ag localized surface plasmon resonance quenching caused by the adsorption of amines on Ag NPs or by detecting the amines by surface enhanced Raman spectroscopy (SERS) after adsorption, from the gas phase, on the metal NPs. Two different approaches have been adopted. In the first one an ethanol/water solution containing AgNO3 was used directly in the electrospinning apparatus. In this way, a simple heat treatment of the nanofibers mat was sufficient to obtain the formation of Ag NPs inside the nanofibers and a partial cross-link of PVA. In the second procedure, the Ag NPs were deposited on PVA nanofibers by using the supersonic cluster beam deposition method, so that a beam of pure Ag NPs of controlled size was obtained. Exposure of the PVA mat to the beam produced a uniform distribution of the NPs on the nanofibers surface. Ethylendiamine vapors and volatile amines released from fresh shrimp meat were chemisorbed on the nanofibers mats. A SERS spectrum characterized by a diagnostic Ag-N stretching vibration at 230 cm(-1) was obtained. The results allow to compare the two different approaches in the detection of ammines.

  4. Evaluation of polyvinyl alcohol composite membranes containing collagen and bone particles.

    PubMed

    Hameed, Nishar; Glattauer, Veronica; Ramshaw, John A M

    2015-08-01

    Composite biomaterials provide alternative materials that improve on the properties of the individual components and can be used to replace or restore damaged or diseased tissues. Typically, a composite biomaterial consists of a matrix, often a polymer, with one or more fillers that can be made up of particles, sheets or fibres. The polymer matrix can be chosen from a wide range of compositions and can be fabricated easily and rapidly into complex shapes and structures. In the present study we have examined three size fractions of collagen-containing particles embedded at up to 60% w/w in a poly(vinyl alcohol) (PVA) matrix. The particles used were bone particles, which are a mineral-collagen composite and demineralised bone, which gives naturally cross-linked collagen particles. SEM showed well dispersed particles in the PVA matrix for all concentrations and sizes of particles, with FTIR suggesting collagen to PVA hydrogen bonding. Tg of membranes shifted to a slightly lower temperature with increasing collagen content, along with a minor amount of melting point depression. The modulus and tensile strength of membranes were improved with the addition of both particles up to 10 wt%, and were clearly strengthened by the addition, although this effect decreased with higher collagen loadings. Elongation at break decreased with collagen content. Cell adhesion to the membranes was observed associated with the collagen particles, indicating a lack of cytotoxicity.

  5. Surface modification of polyamide reverse osmosis membrane with sulfonated polyvinyl alcohol for antifouling

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Wan, Ying; Pan, Guoyuan; Shi, Hongwei; Yan, Hao; Xu, Jian; Guo, Min; Wang, Zhe; Liu, Yiqun

    2017-10-01

    Sulfonated polyvinyl alcohol (SPVA) was synthesized by esterification reaction of PVA and sulfuric acid, and the structure was characterized by FTIR spectrum. Then a series of TFC membranes modified with cross-linked SPVA layer were fabricated by coating method, with glutaraldehyde as the cross-linker. The resulting TFC membranes were characterized by SEM, AFM, ATR-FTIR, XPS, streaming potential as well as static contact angle. The TFC membranes modified with SPVA exhibit decreased water flux and increased NaCl rejection with SPVA content increasing in the coating aqueous solution. The optimal PA-SPVA-0.5 sample exhibits a NaCl rejection of 99.18%, which is higher than the 98.32% of the virgin PA membrane. More importantly, the PA-SPVA-0.5 membrane shows much more improved fouling resistance to BSA and CTAB than virgin PA membrane and the TFC sample modified with PVA (PA-PVA-0.5). PA-SPVA-0.5 membrane loses about 8% of the initial flux after BSA fouling for 12 h, which is much lower than those of virgin PA and PA-PVA-0.5 membranes (28% and 15%, respectively). Furthermore, the flux recovery of the PA-SPVA-0.5 membrane reaches above 95% after cleaning. Thus, the PA-SPVA-0.5 membrane shows potential applications as antifouling RO membrane for desalination and purification.

  6. A new amperometric glucose biosensor based on one-step electrospun poly(vinyl alcohol)/chitosan nanofibers.

    PubMed

    Su, Xiaofang; Wei, Jianfei; Ren, Xiangling; Li, Linlin; Meng, Xianwei; Ren, Jun; Tang, Fangqiong

    2013-10-01

    In this work, a new glucose amperometric biosensor was developed by directly electrospinning poly(vinyl alcohol)/chitostan nanofibers on the surface of the platinum electrode, in which glucose oxidase (GOD) was effectively immobilized in nanofibers by encapsulation. After been cross-linked in glutaraldehyde vapor and modified with a thin nafion film, the nanofibers (PVA/chitosan/GOD)/nafion electrode was used for glucose amperometric measurements. The electrospun nanofibrous enzyme membrane served as a better sensing element than the casing one due to the unique properties of nanofibers such as the special three-dimensional network structure, large pores, high porosity, and large surface to volume ratios. The as-prepared biosensor showed a wide linear calibration range, low detection limit, and low apparent Michaelis-Menten constant in the glucose determination. The stability, reproducibility and anti-interference capability of biosensor were also presented. Furthermore, the new biosensor was successfully applied to detect glucose in human serum samples.

  7. Kinetics of desorption of KCL from polyvinyl alcohol-borate hydrogel in aqueous-alcoholic solvents at different temperatures

    NASA Astrophysics Data System (ADS)

    Saeed, Rehana; Abdeen, Zain Ul

    2015-11-01

    Desorption kinetics of adsorbed KCl from Polyvinyl alcohol borate hydrogel was studied by conductivity method in aqueous system and aqueous binary solvent system using 50% aqueous-methanol, aqueous- ethanol and aqueous-propanol at different temperature ranging from 293 to 313 K. Desorption process follows pseudo first order and intra particle diffusion kinetics was analyzed on the basis of linear regression coefficient R 2 and chi square test χ2 values. The process of desorption of KCl from hydrogel was favorable in aqueous system, the study reveals the fact that the polarity of solvent influenced the kinetics of desorption, on decrement of polarity of solvent rate, rate constant and intra particle rate constant decreases. Based on intra particle kinetic equation fitting it was concluded that desorption was initiated by removal of ions from surface of hydrogel later on ions interacted inside the cross linked unit was also become free. Temperature enhances the rate, rate constant and intra particle rate constant. Thermodynamic parameters attributed towards the fact that the process of desorption of KCl from hydrogel is non-spontaneous in nature.

  8. Polyvinyl alcohol coating of polystyrene inertial confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Annamalai, P.; Lee, M. C.; Crawley, R. L.; Downs, R. L.

    1985-01-01

    An inertial confinement fusion (ICF) target made of polystyrene is first levitated in an acoustic field. The surface of the target is then etched using an appropriate solution (e.g., cyclohexane) to enhance the wetting characteristics. A specially prepared polyvinyl alcohol solution is atomized using an acoustic atomizer and deposited on the surface of the target. The solution is air dried to form a thin coating (2 microns) on the target (outside diameter of about 350-850 microns). Thicker coatings are obtained by repeated applications of the coating solutions. Preliminary results indicate that uniform coatings may be achievable on the targets with a background surface smoothness in the order of 1000 A.

  9. Synthesis and morphology of polyvinyl alcohol /zinc sulfide nanocomposite

    NASA Astrophysics Data System (ADS)

    Sirait, M.; Motlan

    2017-07-01

    Polyvinyl alcohol (PVA) nanocomposites have been synthesized. The nanocomposites which prepared by sol-gel method were mixed to various concentrations of PVA using magnetic stirrer bar of 500 rpm at 80°C. After the solvent evaporates, the white suspensions were casted on to a flat metal and the film-like composites formed. Those samples were characterized including tensile for mechanical test follow ISO-527-2 and melting points for thermal analysis using DSC operated at 20°C/min with the temperature range of 30-300°C. The most homogeny and Young modulus samples were obtained at ratio 98:2 w/w % of PVA/ZnS, and the highest melting point were found at ratio 97:3% of PVA/ZnS.

  10. Optical Fiber Relative-Humidity Sensor with Polyvinyl Alcohol Film

    NASA Astrophysics Data System (ADS)

    Gastón, Ainhoa; Pérez, Fátima; Sevilla, Joaquín

    2004-07-01

    We describe a fiber-optic relative-humidity (RH) sensor comprising a moisture-sensitive overlay on a single-mode side-polished fiber. The hygroscopic polymeric material deposited was polyvinyl alcohol (PVA), which proved to have good adherence and stability. The film reached a fast equilibrium with atmospheric moisture (in less than 1 min), inducing changes in the output optical power of ~10 dB for the 70%-90% RH range. To yield a low-cost device, single-mode standard communication fibers were used; therefore all the components of the sensor can be commercial, mass-produced telecommunication devices. The experimental results obtained are consistent with the expected behavior of the system; the output power decreases because of losses in the polished region of the fiber as the refractive index of its external medium approaches the fiber core value. Because the external medium is PVA film, its refractive index changes in response to its water content.

  11. [Use of polyvinyl alcohol for preparing frozen histological sections].

    PubMed

    Serga, V A; Bykov, L A; Kasatonov, V G

    1982-01-01

    The authors developed a new method for preparation of frozen histological sections. It consists in the use of glycerin-plastified polymer, polyvinyl alcohol, and distilled water for impregnation of tissue pieces and subsequent freezing of them in the same medium. This produces histological sections of high quality. The frozen sections are sufficiently thin (3--5 micrometers). The method excludes cell structure destruction by ice crystals and overfreezing of blocks; the sections do not crumble. Losses of free cell elements, extraction of substances and other artifacts are minimized. The frozen histological sections are firmly glued to the glass without using protein with glycerin. The method saves time and reagents for the preparation of the sections and allows their wide use in morphological and histochemical studies.

  12. Biodesulfurization using Pseudomonas delafieldii in magnetic polyvinyl alcohol beads.

    PubMed

    Guobin, S; Jianmin, X; Chen, G; Huizhou, L; Jiayong, C

    2005-01-01

    To immobilize Pseudomonas delafieldii R-8 cells in magnetic polyvinyl alcohol (PVA) beads for biodesulfurization. Magnetic PVA beads were prepared by a freezing-thawing technique under liquid nitrogen. The beads have distinct super-paramagnetic properties and their saturation magnetization is 8.02 emu g(-1). The desulfurization rate of the immobilized cells could reach 40.2 mmol kg(-1) h(-1). Desulfurization patterns of dibenzothiophene in model oil with the immobilized and free cells were represented by the Michaelis-Menten equation. The Michaelis constant for both immobilized and free cells was 1.3 mmol l(-1). The cells immobilized in magnetic PVA beads could be stably stored and be repeatedly used over 12 times for biodesulfurization. The immobilized cells could be easily separated by magnetic field. Magnetic PVA beads are easy to prepare. The immobilization process in the paper is to increase the efficiency of cells and to decrease the cost of operations.

  13. Optimization of Microencapsulation Composition of Menthol, Vanillin, and Benzyl Acetate inside Polyvinyl Alcohol with Coacervation Method for Application in Perfumery

    NASA Astrophysics Data System (ADS)

    Sahlan, Muhamad; Raihani Rahman, Mohammad

    2017-07-01

    One of many applications of essential oils is as fragrance in perfumery. Menthol, benzyl acetate, and vanillin, each represents olfactive characteristic of peppermint leaves, jasmine flowers, and vanilla beans, are commonly used in perfumery. These components are highly volatile, hence the fragrance components will quickly evaporate resulting in short-lasting scent and low shelf life. In this research, said components have been successfully encapsulated simultaneously inside Polyvinyl Alcohol (PVA) using simple coacervation method to increase its shelf life. Optimization has been done using Central Composite Diagram with 4 independent variables, i.e. composition of menthol, benzyl acetate, vanillin, and tergitol 15-S-9 (as emulsifier). Encapsulation efficiency, loading capacity, and microcapsule size have been measured. In optimized composition of menthol (13.98 %w/w), benzyl acetate (14.75 %w/w), vanillin (17.84 %w/w), and tergitol 15-S-9 (13.4 %w/w) encapsulation efficiency of 97,34% and loading capacity of 46,46% have been achieved. Mean diameter of microcapsule is 20,24 μm and within range of 2,011-36,24 μm. Final product was achieved in the form of cross linked polyvinyl alcohol with hydrogel consistency and orange to yellow in color.

  14. Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation.

    PubMed

    Hwang, Ma-Ro; Kim, Jong Oh; Lee, Jeong Hoon; Kim, Yong Il; Kim, Jeong Hoon; Chang, Sun Woo; Jin, Sung Gju; Kim, Jung Ae; Lyoo, Won Seok; Han, Sung Soo; Ku, Sae Kwang; Yong, Chul Soon; Choi, Han-Gon

    2010-09-01

    To develop a gentamicin-loaded wound dressing, cross-linked hydrogel films were prepared with polyvinyl alcohol (PVA) and dextran using the freezing-thawing method. Their gel properties such as gel fraction, swelling, water vapor transmission test, morphology, tensile strength, and thermal property were investigated. In vitro protein adsorption test, in vivo wound healing test, and histopathology were performed. Dextran decreased the gel fraction, maximum strength, and thermal stability of hydrogels. However, it increased the swelling ability, water vapor transmission rate, elasticity, porosity, and protein adsorption. The drug gave a little positive effect on the gel properties of hydrogels. The gentamicin-loaded wound dressing composed of 2.5% PVA, 1.13% dextran, and 0.1% drug was more swellable, flexible, and elastic than that with only PVA because of its cross-linking interaction with PVA. In particular, it could provide an adequate level of moisture and build up the exudates on the wound area. From the in vivo wound healing and histological results, this gentamicin-loaded wound dressing enhanced the healing effect more compared to conventional product because of the potential healing effect of gentamicin. Thus, this gentamicin-loaded wound dressing would be used as a potential wound dressing with excellent forming and improved healing effect in wound care.

  15. Preparation and characterization of chitosan-polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin.

    PubMed

    Zu, Yuangang; Zhang, Ying; Zhao, Xiuhua; Shan, Chang; Zu, Shuchong; Wang, Kunlun; Li, Yong; Ge, Yunlong

    2012-01-01

    Chitosan (CS)-polyvinyl alcohol (PVA) blend hydrogels were prepared using glutaraldehyde as the cross-linking agent. The obtained hydrogels, which have the advantages of both PVA and CS, can be used as a material for the transdermal drug delivery (TDD) of insulin. The nano-insulin-loaded hydrogels were prepared under the following conditions: 1.2g of polyethylene glycol, 1.5 g of CS, 1.2 g of PVA, 1.2 mL of 1% glutaraldehyde solution, 16 mL of water, and 40 mg of nano-insulin with 12 min of mixing time and 3 min of cross-linking time. The nano-insulin-loaded hydrogels were characterized using scanning electron microscopy, energy dispersive spectrometry, Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and its mechanical properties were analyzed. The results show that all molecules in the hydrogel have good compatibility and they formed a honeycomb-like structure. The hydrogel also showed good mechanical and thermal properties. The in vitro drug release of the hydrogel showed that the nano-insulin accorded with Fick's first law of diffusion and it has a high permeation rate (4.421 μg/(cm(2)h)). These results suggest that the nano-insulin-loaded hydrogels are a promising non-invasive TDD system for diabetes chemotherapy. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Composite films based on biorelated agro-industrial waste and poly(vinyl alcohol). Preparation and mechanical properties characterization.

    PubMed

    Chiellini, E; Cinelli, P; Imam, S H; Mao, L

    2001-01-01

    As a part of an ongoing project on the production of composite materials based on poly(vinyl alcohol) (PVA) and polymeric materials from renewable resources, the present paper reports on the incorporation of agricultural waste materials as organic fillers in a film matrix based on PVA as continuous phase. In this study lignocellulosic fibers byproducts, derived from sugar cane (SC) and apple (AP) and orange (OR) fruit juice extraction, were cast from PVA aqueous solutions. The effect of fiber type and composition on the relative properties of cast films was evaluated and compared. OR resulted to be suitable for blending in higher amounts by weight than SC and AP. Glycerol and urea were added as plasticizing agents and were observed to be effective in giving flexible films. Additionally, cornstarch was added to further increase the composition of polymers from renewable resources in cost-effective and ecoefficient composite film formulations. The prepared films resulted sensitive to moisture and water. To reduce water sensitivity, hexamethoxymethylmelamine (HMMM) was tested as a cross-linking agent for the present composite formulations. Cross-linked films exhibited significant improvement in water-resistance that can be taken as a tuneable structural feature for customized applications. The mechanical properties of the prepared composite films (elongation at break, tensile strength, Young modulus) were found to be dependent upon the nature and content of the filler and on environmental conditions.

  17. Synthesis and Characterization of Cross-linked Polymer Electrolyte Membranes for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Rosi, Memoria; Ekaputra, Muhamad Prama; Abdullah, Mikrajuddin; Khairurrijal

    2010-10-01

    Cross-linked polyvinyl alcohol (PVA) electrolyte membranes have been synthesized by using a solution casting method. In this study, PVA was blended with oxidative cross-linked agent (zinc acetate) and nano-sized silica as filler to stabilize PVA matrix and enhance conductivity. The cross-linked membranes were immersed into lithium hydroxide (LiOH) aqueous solution to increase their ionic conductivity. Two techniques were used to characterize the resulted membranes including Fourier transform infra red (FTIR) and AC impedance spectroscopies. The results showed that absorption peaks of C-O-C group and Si-O-Si are presence in the FTIR spectra attributed to the cross-linking process. Impedance spectra indicated that the contribution of ionic dopant (LiOH) to enhance conductivity is insignificant. The highest conductivity of the studied cross-linked PVA membrane is 1.34×10-3 S cm-1 corresponding to 5% LiOH dopant concentration of cross-linked PVA-zinc acetate-nano silica membrane. The present study also suggested that the solution casting is appropriate for cross-linked membrane synthesis.

  18. Biodesulphurization of gasoline by Rhodococcus erythropolis supported on polyvinyl alcohol.

    PubMed

    Fatahi, A; Sadeghi, S

    2017-05-01

    A new biodesulphurization (BDS) method has been considered using Rhodococcus erythropolis supported on polyvinyl alcohol (PVA) for BDS of thiophene as a gasoline sulphur model compound in n-hexane as the solvent, subsequently this biocatalyst has been applied to BDS of gasoline samples. The obtained results according to UV-Spectrophotometer analysis at 240 nm showed that 97·41% of thiophene at the optimum condition of primary concentration 80 mg l(-1) , pH = 7, by 0·1 g of biocatalyst in 30°C and after 20 h of contact time has been degraded. These optimum conditions have been applied to gasoline BDS and the biodegradation of gasoline thiophenic compounds have been investigated by gas chromatography-mass spectrometry (GC-MS). According to GC-MS, thiophene and its 2-methyl, 3-methyl and 2- ethyl derivatives had acceptable biodegradation efficiencies of about 26·67, 21·03, 23·62% respectively. Also, benzothiophene that has been detected in a gasoline sample had 38·89% biodegradation efficiency at optimum conditions, so biomodification of PVA by R. erythropolis produces biocatalysts with an active metabolism that facilitates the interaction of bacterial strain with gasoline thiophenic compounds. The morphology and surface functional groups of supported R. erythropolis on PVA have been investigated by scanning electron microscope (SEM) and FT-IR spectroscopy respectively. SEM images suggest some regular layered shape for the supported bacteria. FT-IR spectra indicate a desirable interaction between bacterial cells and polymer supports. Also, the recovery of biocatalyst has been investigated and after three times of using in BDS activity, its biocatalytic ability had no significant decreases. The biomodification of polyvinyl alcohol by Rhodococcus erythropolis described herein produces a new biocatalyst which can be used for significantly reducing the thiophenic compounds of gasoline and other fossil fuels. The immobilization process is to increase the

  19. A 'degradable' poly(vinyl alcohol) iron oxide nanoparticle hydrogel.

    PubMed

    Bannerman, A Dawn; Li, Xinyi; Wan, Wankei

    2017-08-01

    Polymeric materials that contain magnetic nanoparticles are extremely useful in many applications including as multifunctional drug carriers, imaging contrast agents, or scaffold material. There is a need for biomaterials with appropriate chemical, mechanical, and magnetic properties that also have the ability to degrade or dissolve over time so they can be eliminated from the body following use. In this work, we explore the use of iron oxide nanoparticle (IONP) formation in poly(vinyl alcohol) (PVA) as a crosslinking method in conjunction with physical crosslinking achieved using low temperature thermal cycling (LTTC). PVA-IONP hydrogels were fabricated and characterized. IONPs contribute to the crosslinking of the PVA-IONP material, and their subsequent removal reduces crosslinking, and therefore stability, of the material, allowing dissolution to occur. Dissolution studies were performed on PVA-IONP hydrogels and dissolution was compared for films in solutions of varying pH, in the presence of iron chelating agents, and in simulated physiological and tumor conditions in cell culture media. Iron release, mass loss, and mechanical testing data was collected. This work demonstrates the ability of this biomaterial to 'degrade' over time, which may be very advantageous for applications such as drug delivery. This importance of this work extends to other areas such as the use of stimuli-responsive hydrogels. This manuscript explores the stability of an iron oxide nanoparticle (IONP)-containing, physically crosslinked poly(vinyl alcohol) (PVA) hydrogel. The PVA-IONP hydrogel's stability is imparted through crosslinks created through a low temperature thermal cycling process and through the IONPs. Subsequent IONP removal reduces crosslinks so material dissolution can occur, resulting in a 'degradable' and multifunctional biomaterial. PVA-IONP films were fabricated, characterized and evaluated in terms of dissolution in solutions of varying pH and in the presence of

  20. Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kihyun; Heo, Pilwon; Ko, Taeyun; Kim, Ki-hyun; Kim, Sung-Kon; Pak, Chanho; Lee, Jong-Chan

    2015-10-01

    Semi-interpenetrating polymer network (semi-IPN) membranes are prepared by in-situ casting and thermal-initiated radical polymerization of vinyl phosphonic acid (VPA) and bis(2-(methacryloyloxy)ethyl) phosphate (BMAEP) in N,N-dimethylacetamide solutions of sulfonated poly(arylene ether sulfone) (SPAES). The incorporation of VPA units into the SPAES membranes improves proton conductivity especially at high temperature and low humidity conditions. In addition the cross-linker, BMAEP, prevents the decrease of the mechanical and chemical stabilities by the aliphatic linear poly(vinyl phosphonic acid) chains in the semi-IPN membranes, and furthermore the phosphonic acid group in BMAEP can prevent the decrease of the proton conductivity by the formation of cross-linked structures. Therefore, the resulting semi-IPN membranes show high proton conductivities up to 15 mS cm-1 at 120 °C and 40% RH. The fuel cell performance (187 mW cm-2 at 120 °C and 40% RH) of membrane-electrode assembly (MEA) from the semi-IPN membrane is found to be superior to that (145 mW cm-2 at 120 °C and 40% RH) of MEA from the SPAES membrane. The durability test result at the operating conditions indicates that the semi-IPN membrane is electrochemically very stable maintaining the low hydrogen cross-over and high power densities.

  1. Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing.

    PubMed

    Charernsriwilaiwat, Natthan; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2014-04-01

    Chitosan (CS) aqueous salt blended with polyvinyl alcohol (PVA) nanofibre mats was prepared by electrospinning. CS was dissolved with hydroxybenzotriazole (HOBt), thiamine pyrophosphate (TPP) and ethylenediaminetetraacetic acid (EDTA) in distilled water without the use of toxic or hazardous solvents. The CS aqueous salts were blended with PVA at different weight ratios, and the effect of the solution ratios was investigated. The morphologies and mechanical and swelling properties of the generated fibres were analysed. Indirect cytotoxicity studies indicated that the CS/PVA nanofibre mats were non-toxic to normal human fibroblast cells. The CS-HOBt/PVA and CS-EDTA/PVA nanofibre mats demonstrated satisfactory antibacterial activity against both gram-positive and gram-negative bacteria, and an in vivo wound healing test showed that the CS-EDTA/PVA nanofibre mats performed better than gauze in decreasing acute wound size during the first week after tissue damage. In conclusion, the biodegradable, biocompatible and antibacterial CS-EDTA/PVA nanofibre mats have potential for use as wound dressing materials.

  2. End-of-life of starch-polyvinyl alcohol biopolymers.

    PubMed

    Guo, M; Stuckey, D C; Murphy, R J

    2013-01-01

    This study presents a life cycle assessment (LCA) model comparing the waste management options for starch-polyvinyl alcohol (PVOH) biopolymers including landfill, anaerobic digestion (AD), industrial composting and home composting. The ranking of biological treatment routes for starch-PVOH biopolymer wastes depended on their chemical compositions. AD represents the optimum choice for starch-PVOH biopolymer containing N and S elements in global warming potential (GWP(100)), acidification and eutrophication but not on the remaining impact categories, where home composting was shown to be a better option due to its low energy and resource inputs. For those starch-PVOH biopolymers with zero N and S contents home composting delivered the best environmental performance amongst biological treatment routes in most impact categories (except for GWP(100)). The landfill scenario performed generally well due largely to the 100-year time horizon and efficient energy recovery system modeled but this good performance is highly sensitive to assumptions adopted in landfill model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Self Nucleation and Crystallization of Poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Thomas, David; Cebe, Peggy

    Polyvinyl alcohol (PVA) is a hydrophilic, biodegradable, semi-crystalline polymer with uses ranging from textiles to medicine. Film samples of PVA were investigated to assess crystallization and melting behavior during self-nucleation experiments, and thermal degradation, using differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis, respectively. TG results show that degradation occurred at temperatures close to the observed peak melting temperature of 223 C. Using conventional DSC, PVA was heated at a rate of 10 C/min to various self-nucleation temperatures, Ts, within its melting range, briefly annealed, cooled and reheated. Three distinct crystallization regimes were observed upon cooling, depending upon self nucleation temperature. At low values of Ts, below 227 C, PVA only partially melts; residual crystal anneals while new, less perfect crystals form during cooling. Between 228 C and 234 C, PVA was found to crystallize exclusively by self-nucleation. For Ts above 235 C the PVA melts completely. Fast scanning chip-based calorimetry was used to heat and cool at 2000 K/s, to prevent degradation. Results of self nucleation experiments using fast scanning and conventional DSC will be compared. NSF DMR-1206010.

  4. Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel.

    PubMed

    Lee, Jung Min; Sultan, Md Tipu; Kim, Soon Hee; Kumar, Vijay; Yeon, Yeung Kyu; Lee, Ok Joo; Park, Chan Hum

    2017-08-04

    Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel. We constructed different hydrogels with various ratios of SF and PVA by using salt leaching, silicone mold casting, and freeze-thawing methods. We characterized each of the hydrogels in terms of the swelling ratio, tensile strength, pore size, thermal properties, morphologies, and chemical properties. Based on the cell viability results, we found a blended hydrogel composed of 50% PVA and 50% SF (P50/S50) to be the best hydrogel among the fabricated hydrogels. An intact 3D ear-shaped auricular cartilage formed six weeks after the subcutaneous implantation of a chondrocyte-seeded 3D ear-shaped P50/S50 hydrogel in rats. We observed mature cartilage with a typical lacunar structure both in vitro and in vivo via histological analysis. This study may have potential applications in auricular tissue engineering with a human ear-shaped hydrogel.

  5. UV-responsive polyvinyl alcohol nanofibers prepared by electrospinning

    NASA Astrophysics Data System (ADS)

    Khatri, Zeeshan; Ali, Shamshad; Khatri, Imran; Mayakrishnan, Gopiraman; Kim, Seong Hun; Kim, Ick-Soo

    2015-07-01

    We report UV-responsive polyvinyl alcohol (PVA) nanofibers for potential application for recording and erasing quick response (QR) codes. We incorporate 1‧-3‧-dihydro-8-methoxy-1‧,3‧,3‧-trimethyl-6-nitrospiro [2H-1-benzopyran-2,2‧-(2H)-indole] (indole) and,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3‧-[3H] phenanthr [9,10-b] (1,4) oxazine] (oxazine) into PVA polymer matrix via electrospinning technique. The resultant nanofibers were measured for recording-erasing, photo-coloration and thermal reversibility. The rate of photo-coloration of PVA-indole nanofibers was five times higher than the PVA-oxazine nanofibers, whereas the thermal reversibility found to be more than twice as fast as PVA-oxazine nanofibers. Results showed that the resultant nanofibers have very good capability of recording QR codes multiple times. The FTIR spectroscopy and SEM were employed to characterize the electrospun nanofibers. The UV-responsive PVA nanofibers have great potentials as a light-driven nanomaterials incorporated within sensors, sensitive displays and in optical devices such as erasable and rewritable optical storage.

  6. Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites.

    PubMed

    Voronova, Marina I; Surov, Oleg V; Guseinov, Sabir S; Barannikov, Vladimir P; Zakharov, Anatoly G

    2015-10-05

    Thermal stability of polyvinyl alcohol/cellulose nanocrystals (PVA/CNCs) composites prepared with solution casting technique was studied. The PVA/CNCs composites were characterized by Fourier transform infrared spectrometry, X-ray diffraction, differential scanning calorimeter (DSC) and thermogravimetric (TG) analysis. Due to the presence of CNCs nanoparticles, thermal degradation of the composites occurs at much higher temperatures compared to that of the neat PVA. Thermal stability of the PVA/CNCs composites is maximally enhanced with CNCs content of 8-12 wt%. Some thermal degradation products of the PVA/CNCs composites were identified by mass spectrometric analysis. TG measurements with synchronous recording of mass spectra revealed that the thermal degradation of both CNCs and PVA in the composites with CNCs content of 8-12 wt% occurs simultaneously at a much higher temperature than that of CNCs or the neat PVA. However, with increasing CNCs content more than 12 wt% the thermal stability of the composites decreases. In this case, the degradation of CNCs comes first followed by the degradation of PVA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Structural insights into enzymatic degradation of oxidized polyvinyl alcohol.

    PubMed

    Yang, Yu; Ko, Tzu-Ping; Liu, Long; Li, Jianghua; Huang, Chun-Hsiang; Chan, Hsiu-Chien; Ren, Feifei; Jia, Dongxu; Wang, Andrew H-J; Guo, Rey-Ting; Chen, Jian; Du, Guocheng

    2014-09-05

    The ever-increasing production and use of polyvinyl alcohol (PVA) threaten our environment. Yet PVA can be assimilated by microbes in two steps: oxidation and cleavage. Here we report novel α/β-hydrolase structures of oxidized PVA hydrolase (OPH) from two known PVA-degrading organisms, Sphingopyxis sp. 113P3 and Pseudomonas sp. VM15C, including complexes with substrate analogues, acetylacetone and caprylate. The active site is covered by a lid-like β-ribbon. Unlike other esterase and amidase, OPH is unique in cleaving the CC bond of β-diketone, although it has a catalytic triad similar to that of most α/β-hydrolases. Analysis of the crystal structures suggests a double-oxyanion-hole mechanism, previously only found in thiolase cleaving β-ketoacyl-CoA. Three mutations in the lid region showed enhanced activity, with potential in industrial applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modification of polyvinyl alcohol surface properties by ion implantation

    NASA Astrophysics Data System (ADS)

    Pukhova, I. V.; Kurzina, I. A.; Savkin, K. P.; Laput, O. A.; Oks, E. M.

    2017-05-01

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ion/cm2 and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (sbnd Cdbnd O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  9. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G.; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  10. Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes

    PubMed Central

    Dias, Luisa L.S.; Mansur, Herman S.; Donnici, Claudio Luis; Pereira, Marivalda M.

    2011-01-01

    The tissue engineering strategy is a new approach for the regeneration of cementum, which is essential for the regeneration of the periodontal tissue. This strategy involves the cell cultures present in this tissue, called cementoblasts, and located on an appropriate substrate for posterior implantation in the regeneration site. Prior studies from our research group have shown that the proliferation and viability of cementoblasts increase in the presence of the ionic dissolution products of bioactive glass particles. Therefore, one possible approach to obtaining adequate substrates for cementoblast cultures is the development of composite membranes containing bioactive glass. In the present study, composite films of chitosan-polyvinyl alcohol-bioactive glass containing different glass contents were developed. Glutaraldehyde was also added to allow for the formation of cross-links and changes in the degradation rate. The glass phase was introduced in the material by a sol-gel route, leading to an organic-inorganic hybrid. The films were characterized by Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with electron dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Bioactivity tests were also conducted by immersion of the films in simulated body fluid (SBF). Films containing up to 30% glass phase could be obtained. The formation of calcium phosphate was observed after the immersion of the films. A calcium phosphate layer formed more quickly on materials containing higher bioactive glass contents. In the hybrid containing 23% bioactive glass, a complete layer was formed after 24 h immersion, showing the high bioactivity of this material. However, despite the higher in vitro bioactivity, the film with 23% glass showed lower mechanical properties compared with films containing up to 17% glass. PMID:23507733

  11. Cross-linking of sites involved with alcohol action between transmembrane segments 1 and 3 of the glycine receptor following activation

    PubMed Central

    Lobo, Ingrid A.; Harris, R. Adron; Trudell, James R.

    2008-01-01

    The glycine receptor is a member of the Cys-loop, ligand-gated ion channel family and is responsible for inhibition in the CNS. We examined the orientation of amino acids I229 in transmembrane 1 (TM1) and A288 in TM3, which are both critical for alcohol and volatile anesthetic action. We mutated these two amino acids to cysteines either singly or in double mutants and expressed the receptors in Xenopus laevis oocytes. We tested whether disulfide bonds could form between A288C in TM3 paired with M227C, Y228C, I229C, or S231C in TM1. Application of cross-linking (mercuric chloride) or oxidizing (iodine) agents had no significant effect on the glycine response of wild-type receptors or the single mutants. In contrast, the glycine response of the I229C/A288C double mutant was diminished after application of either mercuric chloride or iodine only in the presence of glycine, indicating that channel gating causes I229C and A288C to fluctuate to be within 6 Å apart and form a disulfide bond. Molecular modeling was used to thread the glycine receptor sequence onto a nicotinic acetylcholine receptor template, further demonstrating that I229 and A288 are near-neighbors that can cross-link and providing evidence that these residues contribute to a single binding cavity. PMID:18036150

  12. DIELECTRIC PROPERTIES OF POLYVINYL ALCOHOL, POLY(METHYL METHACRYLATE), POLYVINYL BUTYRAL RESIN AND POLYIMIDE AT LOW TEMPERATURES

    SciTech Connect

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R

    2008-01-01

    Performance of materials and their compatibility determine the size of the electrical insulation in power equipment. For this reason dielectric properties of electrical insulation materials are needed for low temperature power applications. In this work we report the dielectric properties of four polymers: polyvinyl alcohol (PVA), poly(methyl methacrylate) (PMMA), polyvinyl butyral resin (PVB), and polyimide (PI--Kapton\\textregistered). The dielectric measurements are performed with an electrical impedance analyzer in the frequency domain. The impedances are recorded in a cryocooler in the temperature range from 45K to 350K. The dielectric breakdown characteristics of the polymers are measured in a liquid nitrogen bath at atmospheric pressure. It is observed that PI and \\pmma\\ dissolved in toluene have the lowest dielectric losses for temperatures lower than $100\\ \\kelvin$. \\Blx\\ and PI have the smallest spread in their breakdown strength data.

  13. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    SciTech Connect

    Hsu, L.C.; Philipp, W.H.; Sheibley, D.W.; Gonzalez-Sanabria, O.D.

    1981-07-01

    A battery separator for an alkaline battery separator comprises a crosslinked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The crosslinked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. A polyaldehyde crosslinking agent is preferred.

  14. Passive approach for the improved dispersion of polyvinyl alcohol-based functionalized multi-walled carbon nanotubes/Nafion membranes for polymer electrolyte membrane fuel cells.

    PubMed

    Abu Sayeed, M D; Talukdar, Krishan; Kim, Hee Jin; Park, Younjin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2014-12-01

    Multi-walled carbon nanotubes (MWCNTs) are regarded as ideal fillers for Nafion polymer electrolyte membranes (PEMs) for fuel cell applications. The highly aggregated properties of MWCNTs can be overcome by the successful cross-linking with polyvinyl alcohol (PVA) into the MWCNTs/Nafion membrane. In this study, a series of nanocomposite membranes were fabricated with the PVA-influenced functionalized MWCNTs reinforced into the Nafion polymer matrix by a solution casting method. Several different PVA contents were blended to f-MWCNTs/Nafion nanocomposite membranes followed by successful cross-linking by annealing. The surface morphologies and the inner structures of the resulting PVA-MWCNTs/Nafion nanocomposite membranes were then observed by optical microscopy and scanning electron microscopy (SEM) to investigate the dispersion of MWCNTs into the PVA/Nafion composite membranes. After that, the nanocomposite membranes were characterized by thermo-gravimetric analysis (TGA) to observe the thermal enhancement caused by effective cross-linking between the f-MWCNTs with the composite polymer matrixes. Improved water uptake with reduced methanol uptake revealed the successful fabrication of PVA-blended f-MWCNTs/Nafion membranes. In addition, the ion exchange capacity (IEC) was evaluated for PEM fuel cell (PEMFC) applications.

  15. High-flow priapism treated with superselective transcatheter embolization using polyvinyl alcohol particles

    PubMed Central

    Sánchez-López, Sebastián; González-Gómez, Silvia; Di lizio-Miele, Katyna; González-Gómez, Joaquín

    2017-01-01

    Objectives: Priapism is a persistent erection of the penis not associated with sexual stimulation. High-flow priapism is caused by unregulated arterial inflow, usually preceded by perineal or penile blunt trauma and formation of an arterial-lacunar fistula. We present a case of high-flow priapism in a 13-year-old patient managed with polyvinyl alcohol particles. Methods: After obtaining informed consent of the parents of the minor, diagnosis was made with penile Color Doppler Ultrasound and confirmed with flush angiography. Selective arterial embolization was performed with the use of polyvinyl alcohol particles. Results: Complete detumescence was achieved without compromising the patient’s erectile function. Conclusions: The use of permanent occlusive agents like polyvinyl alcohol particles for embolization shows good occlusion rates compared to temporary agents. More studies are needed to find the safer and better agent for the treatment of high flow priapism without compromising erectile function. PMID:28255447

  16. Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing.

    PubMed

    Zhang, Di; Zhou, Wei; Wei, Bing; Wang, Xin; Tang, Rupei; Nie, Jiemin; Wang, Jun

    2015-07-10

    The objective of this study was to develop a novel carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. To prepare the crosslinked hydrogels, poly(vinyl alcohol) (PVA) was grafted with succinate acid to yield carboxyl-modified poly(vinyl alcohol) (PVA-COOH). Hydrogel films based on PVA-COOH and chitosan (CS) at different concentrations were crosslinked through the formation of amide linkages. The mechanical properties of these crosslinked hydrogel films in dry and swollen state were greatly improved with high swelling ratio. Water vapor and oxygen permeability evaluations indicated that crosslinked hydrogel films could maintain a moist environment over wound bed. Biocompatibility test showed the crosslinked hydrogels had no cytotoxicity and hemolytic potential. Gentamicin sulfate-loaded crosslinked hydrogel films showed sustained drug release profile, and could effectively suppress bacterial proliferation and protect wound from infection.

  17. Preparing oxidized fractions of polyvinyl alcohol of a given molecular mass

    NASA Astrophysics Data System (ADS)

    Zimin, Yu. S.; Kutlugil'dina, G. G.; Mustafin, A. G.

    2016-10-01

    The effect of two oxidizers (an oxygen-ozone mixture and hydrogen peroxide) on the kinetics of the oxidative degradation of polyvinyl alcohol in aqueous solutions is studied. Degradation of the polymer is proved not only by a reduction in the weight of oxidized fractions, but in the intrinsic viscosity of their aqueous solutions as well (and thus the average molecular weight of the resulting fractions). It is shown that the degree of the destructive reactions of polyvinyl alcohol grows along with the duration of the process, increasing the initial concentrations of H2O2 and raising the temperature. These results can be used in obtaining oxidized fractions of polyvinyl alcohol that have predetermined molecular weights.

  18. Structural and electronic properties of poly(vinyl alcohol) using density functional theory

    SciTech Connect

    Dabhi, Shweta Jha, Prafulla K.

    2014-04-24

    The first principles calculations have been carried out to investigate the structural, electronic band structure density of states along with the projected density of states for poly(vinyl alcohol). Our structural calculation suggests that the poly(vinyl alcohol) exhibits monoclinic structure. The calculated structural lattice parameters are in excellent agreement with available experimental values. The band structure calculations reveal that the direct and indirect band gaps are 5.55 eV and 5.363 eV respectively in accordance with experimental values.

  19. Delayed spontaneous perforation of polyvinyl alcohol membrane-Covered atrial septal defect closure devices.

    PubMed

    Labombarda, Fabien; Roule, Vincent; Beygui, Farzin

    2017-03-01

    Percutaneous device closure has become the first choice for secundum atrial septal defect (ASD) closure when feasible in case of favorable anatomy. The Ultrasept II ASD occluder® device (Cardia Inc, Eagan, MN) is made of two nitinol disc frames covered with polyvinyl alcohol membranes, a synthetic polymer with a large application in the biomedical field. Four relatively early malfunctions of the polyvinyl alcohol membrane were observed in a series of six consecutive patients treated with ASD Ultrasept II closure device in our institution. Operators have to be aware of this apparently rare complication that is likely to be underestimated, associated with such devices. © 2016 Wiley Periodicals, Inc.

  20. Carbonized properties of iodine-incorporated poly(vinyl alcohol) composite films prepared by gelation/crystallization from solution.

    PubMed

    Nakano, Yumiko; Matsuo, Masaru

    2010-02-16

    Poly(vinyl alcohol) (PVA) and titanium dioxide (TiO(2)) composite films were prepared by gelation/crystallization from a dispersed solution containing different TiO(2) contents against PVA. Iodine was incorporated into the composites, and the iodine-incorporated composites were carbonized under argon gas in the temperature range of 700-1600 degrees C. Under the carbonization process, the incorporation of iodine into composites ensured tough films without cracks. This indicated that iodine incorporation played an important role as a catalyst to promote the formation of cross links between amorphous carbon chains through the resultant Ti-C structure that occurs by hydration. Surprisingly, X-ray diffraction intensity measurements revealed that the coagulated TiO(2) powders in the composite film carbonized at 1200 degrees C remained predominantly anatase type, which has generally been known as photocatalytic activity. The perfect transition to the rutile-type structure dramatically occurred at 1600 degrees C. Judging from the carbon coating on the TiO(2) particle surface as detected by ESCA, no disruption of the composite was found to be due to the appearances of Ti(2)O(3) groups and the Ti-C structure performing cross linking between neighboring amorphous carbon chains. The characteristics of anatase-type TiO(2) crystallites and amorphous carbon structures were analyzed using the para-crystalline theory concerning the distance fluctuation between graphene sheets. The electrical conductivity of the carbonized composite was ca. 0.01 S/cm and was independent of the TiO(2) admixed in the carbon matrix.

  1. Graphite oxide incorporated crosslinked polyvinyl alcohol and sulfonated styrene nanocomposite membrane as separating barrier in single chambered microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Rudra, Ruchira; Kumar, Vikash; Pramanik, Nilkamal; Kundu, Patit Paban

    2017-02-01

    Different membranes with varied molar concentrations of graphite oxide (GO), 'in situ' polymerized sulfonated polystyrene (SS) and glutaraldehyde (GA) cross linked polyvinyl alcohol (PVA), have been analyzed as an effective and low cost nanocomposite barrier in single chambered microbial fuel cells (MFCs). The synthesized composite membranes, namely GO0.2, GO0.4 and GO0.6 exhibited comparatively better results with reduced water uptake (WU) and swelling ratios (SR) over the native PVA. The variation in properties is illustrated with membrane analyses, where GO0.4 showed an increased proton conductivity (PC) and ion exchange capacity (IEC) of 0.128 S cm-1 and 0.33 meq g-1 amongst all of the used membranes. In comparison, reduced oxygen diffusivity with lower water uptake showed a two-fold decrease in GO0.4 over pure PVA membrane (∼2.09 × 10-4 cm s-1). A maximum power density of 193.6 mW m-2 (773.33 mW m-3) with a current density of 803.33 mA m-2 were observed with GO0.4 fitted MFC, where ∼81.89% of chemical oxygen demand (COD) was removed using mixed firmicutes, as biocatalyst, in 25 days operation. In effect, the efficacy of GO incorporated crosslinked PVA and SS nanocomposite membrane has been evaluated as a polymer electrolyte membrane for harnessing bio-energy from single chambered MFCs.

  2. Horseradish peroxidase-catalyzed formation of hydrogels from chitosan and poly(vinyl alcohol) derivatives both possessing phenolic hydroxyl groups.

    PubMed

    Sakai, Shinji; Khanmohammadi, Mehdi; Khoshfetrat, Ali Baradar; Taya, Masahito

    2014-10-13

    Horseradish peroxidase-catalyzed cross-linking was applied to prepare hydrogels from aqueous solutions containing chitosan and poly(vinyl alcohol) derivatives both possessing phenolic hydroxyl groups (denoted as Ph-chitosan and Ph-PVA, respectively). Comparing the hydrogels prepared from the solution of 1.0% (w/v) Ph-chitosan and 3.0% (w/v) Ph-PVA and that of 3.0% (w/v) Ph-chitosan and 1.0% (w/v) Ph-PVA, the gelation time of the former hydrogel was 47 s, while was 10s longer than that of the latter one. The breaking point for the former hydrogel under stretching (114% strain) was approximately twice larger than that for the latter one. The swelling ratio of the former hydrogel in saline was about half of the latter one. Fibroblastic cells did not adhere on the former hydrogel but adhered and spread on the latter one. The growth of Escherichia coli cells was fully suppressed on the latter hydrogel during 48 h cultivation.

  3. Structure, corrosion behavior and mechanical property of a novel poly(vinyl alcohol) composite in simulated body fluid.

    PubMed

    Li, Juan; Suo, Jinping; Zou, Peng; Jia, Lintao; Wang, Shifang

    2010-01-01

    The data for long-term drug-delivery systems are scarce compared to the short-term systems because the required research efforts are more time-consuming. In this study, we report a novel cross-linked composite based on poly(vinyl alcohol) (PVA) containing cupric ions for long-term delivery, which is helpful for contraception and trace element balance in the human body. The composition, corrosion products, crystal structure, chemical structure and mechanical stability of the composite, after being immersed in simulated body fluid (SBF) for one year, were studied by X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR) and mechanical testing. The results show that no other new elements, such as P, Cl and Ca, appear on the surface of the composite and no Cu(2)O was formed after immersion in SBF for one year. The effectiveness of copper can be greatly improved and the side-effects caused by these compounds might also be eliminated. Furthermore, this novel composite exhibits long-term mechanical stability in SBF. The present in vitro long-term data suggest that this novel copper-containing composite may serve as a substitute for conventional materials of copper-containing intrauterine devices (Cu-IUDs) and as a carrier for controlled-release material in a variety of other applications.

  4. Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly(vinyl alcohol).

    PubMed

    Sekhavat Pour, Zahra; Makvandi, Pooyan; Ghaemy, Mousa

    2015-09-01

    There has been a growing interest in developing antibacterial polymeric materials. In the present work, novel antibacterial cross-linked blend films were prepared based on polyvinyl alcohol (PVA) and quaternary ammonium starch (ST-GTMAC) using citric acid (CA) as plasticizer and glutaraldehyde (GA) as cross-linker. The ST-GTMAC was successfully synthesized from reaction between water-soluble oxidized starch and glycidyltrimethylammonium chloride (GTMAC). The effect of ST-GTMAC, CA and GA contents on the swelling, solubility, mechanical and thermal properties of the films was investigated. It was found that incorporation of ST-GTMAC reduced UV-transmittance and provided antibacterial properties, increasing GA content increased tensile strength and decreased solubility and swelling degree of the films, while CA acted as plasticizer when its concentration was above 10 wt%. The results showed that ST-GTMAC/PVA/CA/GA film has fair antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. These results suggest that the prepared film might be used as potential antibacterial material in medical and packaging applications.

  5. A novel approach for fabricating highly tunable and fluffy bioinspired 3D poly(vinyl alcohol) (PVA) fiber scaffolds.

    PubMed

    Roy, Sunanda; Kuddannaya, Shreyas; Das, Tanya; Lee, Heng Yeong; Lim, Jacob; Hu, Xiao 'Matthew'; Chee Yoon, Yue; Kim, Jaehwan

    2017-06-01

    The excellent biocompatibility, biodegradability and chemo-thermal stability of poly(vinyl alcohol) (PVA) have been harnessed in diverse practical applications. These properties have motivated the fabrication of high performance PVA based nanofibers with adequate control over the micro and nano-architectures and surface chemical interactions. However, the high water solubility and hydrophilicity of the PVA polymer limits the application of the electrospun PVA nanofibers in aqueous environments owing to instantaneous dissolution. In this work, we report a novel yet facile concept for fabricating extremely light, fluffy, insoluble and stable three dimensional (3D) PVA fibrous scaffolds with/without coating for multifunctional purposes. While the solubility, morphology, fiber density and mechanical properties of nanofibers could be tuned by optimizing the cross-linking conditions, the surface chemical reactivity could be readily enhanced by coating with a polydopamine (pDA) bioinspired polymer without compromising the stability and innate properties of the native PVA fiber. The 3D pDA-PVA scaffolds exhibited super dye adsorption and constructive synergistic cell-material interactions by promoting healthy adhesion and viability of the human mesenchymal stem cells (hMSCs) within 3D micro-niches. We foresee the application of tunable PVA 3D as a highly adsorbent material and a scaffold material for tissue regeneration and drug delivery with close consideration of realistic in vivo parameters.

  6. Pineapple peel carboxymethyl cellulose/polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization.

    PubMed

    Dai, Hongjie; Ou, Shiyi; Liu, Zhijun; Huang, Huihua

    2017-08-01

    Hydrogel composites based on pineapple peel carboxymethyl cellulose, polyvinyl alcohol and mesoporous silica SBA-15 were synthesized by an eco-friendly method of repeated freeze-thaw cycles for the application of papain immobilization. The experiment was optimized to obtain an efficient papain immobilization carrier. Simultaneously the immobilization conditions, including enzyme concentration, pH, crosslinker concentration and cross-linking time were optimized. The immobilized papain had maximum activity at low reaction temperature of 40°C and showed pH-sensitivity by exhibiting a rapid decrease of activity within a narrow range from pH 7.0 to pH 7.5. Compared with the free papain, the immobilized papain revealed enhanced pH, thermal and storage stability. After 2h incubation at 80°C, the immobilized papain retained 56% of its initial activity while the free papain only retained 16%. After 10days of storage, 79% of the initial activity was retained for the immobilized papain while only 27% for the free papain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Therapeutic-Ultrasound-Triggered Shape Memory of a Melamine-Enhanced Poly(vinyl alcohol) Physical Hydrogel.

    PubMed

    Li, Guo; Yan, Qiang; Xia, Hesheng; Zhao, Yue

    2015-06-10

    Therapeutic-ultrasound-triggered shape memory was demonstrated for the first time with a melamine-enhanced poly(vinyl alcohol) (PVA) physical hydrogel. The addition of a small amount of melamine (up to 1.5 wt %) in PVA results in a strong hydrogel due to the multiple H-bonding between the two constituents. A temporary shape of the hydrogel can be obtained by deformation of the hydrogel (∼65 wt % water) at room temperature, followed by fixation of the deformation by freezing/thawing the hydrogel under strain, which induces crystallization of PVA. We show that the ultrasound delivered by a commercially available device designed for the patient's pain relief could trigger the shape recovery process as a result of ultrasound-induced local heating in the hydrogel that melts the crystallized PVA cross-linking. This hydrogel is thus interesting for potential applications because it combines many desirable properties, being mechanically strong, biocompatible, and self-healable and displaying the shape memory capability triggered by a physiological stimulus.

  8. FOAMED ARTICLES BASED ON POTATO STARCH, CORN AND WHEAT FIBRE, AND POLY(VINYL ALCOHOL)

    USDA-ARS?s Scientific Manuscript database

    Continued research cooperation between USDA Laboratories (USA) and the University of Pisa, Italy, has yielded several composites based on blends of poly(vinyl alcohol) (PVA) and either corn or wheat fibres, co-product of the corn-wheat wet-milling process. Foam trays were prepared by baking the blen...

  9. Films from spruce galactoglucomannan blended with poly(vinyl alcohol), corn arabinoxylan and konjac glucomannan

    USDA-ARS?s Scientific Manuscript database

    The improvement of mechanical properties of spruce galactoglucomannan (GGM)-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and konjac glucomannan (KGM). The blend ratios were 3:1, 1:1, and 1:3(w/w), and in addition films were made from each o...

  10. Compatibility of Polyvinyl Alcohol with the 241-F/H Tank Farm Liquid Waste

    SciTech Connect

    Oji, L.N.

    1998-11-25

    This report describes results from laboratory-scale oxidative mineralization of polyvinyl alcohol (PVA), and the evaluation of the F/H Tank Farms as a storage/disposal option for PVA waste solution generated in the Canyons and B-line decontamination operations.

  11. Oxidative Mineralization and Characterization of Polyvinyl Alcohol Solutions for Wastewater Treatment

    SciTech Connect

    Oji, L.N.

    1999-08-31

    The principal objectives of this study are to identify an appropriate polyvinyl alcohol (PVA) oxidative mineralization technique, perform compatibility and evaporation fate tests for neat and mineralized PVA, and determine potential for PVA chemical interferences which may affect ion exchange utilization for radioactive wastewater processing in the nuclear industry.

  12. Controlling the color of Lippmann holograms recorded in dichromated gelatin polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Cai, Tiequan; Tang, Yixing; Wang, Hui; Dai, Chaoming; Guo, Lurong

    1993-03-01

    The polyvinyl alcohol and several other organic materials are mixed into the aqueous gelatin while the film is coated. This thin solid film is sensitized by aqueous ammonium dichromate, so it is called a dichromated gelatin polyvinyl alcohol (DC-GPVA) holographic recording material. DC-GPVA not only possesses the same excellent holographic properties as the conventional dichromated gelatin (DCG) but also obviously improves its environmental stability. Experimental results have shown that the reconstruction wavelength of a Lippman hologram recorded in DC-GPVA can be shifted to longer or shorter wavelengths and freely controlled to a certain extent by varying the ratio of the gelatin and the polyvinyl alcohol and relative organic materials, or hardeners and its quantity, or heated temperature and heated time exerted on the drying films, or thickness of them. After the films are sensitized, they can be exposed by He-Cd or Ar+ laser (441.6 nm or 488.0 nm) and developed by the regular post processed method. Initial discussions are also presented about the functions and mechanisms of the polyvinyl alcohol and relative organic materials added into DC-GPVA.

  13. Linear Dichroism of Cyanine Dyes in Stretched Polyvinyl Alcohol Films: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Natarajan, L. V.; And Others

    1983-01-01

    Provides background information, procedures, and results of an undergraduate physical chemistry experiment on the polarization of absorption spectra of cyanine dyes in stretched polyvinyl alcohol films. The experiment gives a simple demonstration of the concept of linear dichromism and the validity of the TEM method used in the analyses. (JN)

  14. Oxidative mineralization and characterization of polyvinyl alcohol for compatibility with tank farm processing chemistry

    SciTech Connect

    Oji, L.N.

    2000-01-04

    Polyvinyl alcohol (PVA) material has been evaluated for use as a cost-effective substitute for conventional cellulose-based disposal materials (decontamination mops and wipes), plastic bags, and disposable personal protection clothing, that are currently used at Savannah River Site. This study also provides process design criteria for ultraviolet/ultrasonic/hydrogen peroxide PVA reactor system.

  15. Linear Dichroism of Cyanine Dyes in Stretched Polyvinyl Alcohol Films: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Natarajan, L. V.; And Others

    1983-01-01

    Provides background information, procedures, and results of an undergraduate physical chemistry experiment on the polarization of absorption spectra of cyanine dyes in stretched polyvinyl alcohol films. The experiment gives a simple demonstration of the concept of linear dichromism and the validity of the TEM method used in the analyses. (JN)

  16. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications

    PubMed Central

    Nadeem, Muhammad; Ahmad, Munir; Akhtar, Muhammad Saeed; Shaari, Amiruddin; Riaz, Saira; Naseem, Shahzad; Masood, Misbah; Saeed, M. A.

    2016-01-01

    The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs) and impact of hydrophilic polymer polyvinyl alcohol (PVA) coating concentration as well as anticancer drug doxorubicin (DOX) loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4) structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery. PMID:27348436

  17. Mechanical properties and biocompatibility of co-axially electrospun polyvinyl alcohol/maghemite.

    PubMed

    Ngadiman, Nor Hasrul Akhmal; Mohd Yusof, Noordin; Idris, Ani; Kurniawan, Denni

    2016-08-01

    Electrospinning is a simple and efficient process in producing nanofibers. To fabricate nanofibers made of a blend of two constituent materials, co-axial electrospinning method is an option. In this method, the constituent materials contained in separate barrels are simultaneously injected using two syringe nozzles arranged co-axially and the materials mix during the spraying process forming core and shell of the nanofibers. In this study, co-axial electrospinning method is used to fabricate nanofibers made of polyvinyl alcohol and maghemite (γ-Fe2O3). The concentration of polyvinyl alcohol and amount of maghemite nanoparticle loading were varied, at 5 and 10 w/v% and at 1-10 v/v%, respectively. The mechanical properties (strength and Young's modulus), porosity, and biocompatibility properties (contact angle and cell viability) of the electrospun mats were evaluated, with the same mats fabricated by regular single-nozzle electrospinning method as the control. The co-axial electrospinning method is able to fabricate the expected polyvinyl alcohol/maghemite nanofiber mats. It was noticed that the polyvinyl alcohol/maghemite electrospun mats have lower mechanical properties (i.e. strength and stiffness) and porosity, more hydrophilicity (i.e. lower contact angle), and similar cell viability compared to the mats fabricated by single-nozzle electrospinning method.

  18. The Rheological Properties of Poly(Vinyl Alcohol) Gels from Rotational Viscometry

    ERIC Educational Resources Information Center

    Hurst, Glenn A.; Bella, Malika; Salzmann, Christoph G.

    2015-01-01

    A laboratory experiment was developed to follow the gelation of a polyvinyl alcohol (PVA) solution upon addition of borax by using rotational viscometry. The rheological properties of the gel were examined, measuring the dependence of viscosity and shear stress on the shear rate. Time-dependent studies were also conducted in which the viscosity of…

  19. Disk Refining and Ultrasonication Treated Sugarcane Bagasse Residues for Poly(Vinyl Alcohol) Bio-composites

    Treesearch

    Qingzheng Cheng; Zhaohui Tong; Luisa Dempere; Lonnie Ingram; Letian Wang; J.Y. Zhu

    2013-01-01

    Disk refining and ultrasonication treated sugarcane bagasse residues reclaimed from the waste stream of a simplified bioethanol process after fermentation were used to fabricate biobased composites with poly(vinyl alcohol) (PVA) by film casting. The morphologies and the size distributions of residue particles were characterized by scanning electronic microscopy and...

  20. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    USDA-ARS?s Scientific Manuscript database

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase (33% by weight) and lignocellulosic fillers, derived from sugarcane bagasse, apple and orange waste (22% by weight) were molded in a carver press in the presence of water and glycerol such as platicizers agents. Cor...

  1. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    USDA-ARS?s Scientific Manuscript database

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase and lignocellulosic fibres, derived from sugarcane bagasse, apple and orange waste were moulded in a carver press in the presence of water and glycerol such as platicizers agents. Corn starch was introduced as a bio...

  2. Electrospun nanofibers of poly(vinyl alcohol)reinforced with cellulose nanofibrils

    USDA-ARS?s Scientific Manuscript database

    In this work, nanofibers of poly(vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on mor...

  3. Metronidazole loaded carboxymethyl tamarind kernel polysaccharide-polyvinyl alcohol cryogels: preparation and characterization.

    PubMed

    Meenakshi; Ahuja, Munish

    2015-01-01

    The purpose of present study was to prepare composite hydrogels of carboxymethyl tamarind kernel polysaccharide and polyvinyl alcohol employing freeze thaw-treatment and evaluate them for release behavior. The effect of concentrations of carboxymethyl tamarind kernel polysaccharide, polyvinyl alcohol, and freeze-thaw cycles on the % release of metronidazole was studied employing central composite experimental design. The result of the study revealed that the concentration of carboxymethyl tamarind kernel polysaccharide and interaction effect of concentrations of carboxymethyl tamarind kernel polysaccharide and polyvinyl alcohol influenced the release of metronidazole significantly. The optimal calculated parameters were concentration of carboxymethyl tamarind kernel polysaccharide-6.0% (w/v), concentration of polyvinyl alcohol-8.53% (w/v) and freeze-thaw cycles-4, which provided cryogels with a release of 75.77% over a period of 6h. The formation of cryogels was confirmed by Fourier-transformed infrared spectroscopy and X-ray diffraction studies. Thermal studies revealed higher thermal stability of cryogel.

  4. Physical characterization of biodegradable films based on chitosan, polyvinyl alcohol and Opuntia mucilage

    USDA-ARS?s Scientific Manuscript database

    This study aimed to develop and characterize biodegradable films containing mucilage, chitosan and polyvinyl alcohol (PVA) in different concentrations. The films were prepared by casting on glass plates using glycerol as plasticizer. Mechanical properties, water vapor and oxygen barrier, as well as ...

  5. Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming

    Treesearch

    Yottha Srithep; Lih-Sheng Turng; Ronald Sabo; Craig Clemons

    2012-01-01

    Polyvinyl alcohol (PVOH) and its nanofibrillated cellulose (NFC) reinforced nanocomposites were produced and foamed and its properties-such as the dynamic mechanical properties, crystallization behavior, and solubility of carbon dioxide (CO2)were evaluated. PVOH was mixed with an NFC fiber suspension in water followed by casting. Transmission...

  6. The Rheological Properties of Poly(Vinyl Alcohol) Gels from Rotational Viscometry

    ERIC Educational Resources Information Center

    Hurst, Glenn A.; Bella, Malika; Salzmann, Christoph G.

    2015-01-01

    A laboratory experiment was developed to follow the gelation of a polyvinyl alcohol (PVA) solution upon addition of borax by using rotational viscometry. The rheological properties of the gel were examined, measuring the dependence of viscosity and shear stress on the shear rate. Time-dependent studies were also conducted in which the viscosity of…

  7. Encapsulation of cobalt nanoparticles in cross-linked-polymer cages

    NASA Astrophysics Data System (ADS)

    Hatamie, Shadie; Dhole, S. D.; Ding, J.; Kale, S. N.

    2009-07-01

    Nanoparticles embedded in polymeric cages give rise to interesting applications ranging from nanocatalysis to drug-delivery systems. In this context, we report on synthesis of cobalt (Co) nanoparticles trapped in polyvinyl alcohol (PVA) matrix to yield self-supporting magnetic films in PVA slime. A 20 nm, Co formed in FCC geometry encapsulated with a weak citrate coat when caged in PVA matrix exhibited persistence of magnetism and good radio-frequency response. Cross-linking of PVA chains to form cage-like structures to arrest Co nanoparticles therein, is believed to be the reason for oxide-free nature of Co, promising applications in biomedicine as well as in radio-frequency shielding.

  8. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan.

    PubMed

    Sung, Jung Hoon; Hwang, Ma-Ro; Kim, Jong Oh; Lee, Jeong Hoon; Kim, Yong Il; Kim, Jeong Hoon; Chang, Sun Woo; Jin, Sung Giu; Kim, Jung Ae; Lyoo, Won Seok; Han, Sung Soo; Ku, Sae Kwang; Yong, Chul Soon; Choi, Han-Gon

    2010-06-15

    The purpose of this study was to develop a minocycline-loaded wound dressing with an enhanced healing effect. The cross-linked hydrogel films were prepared with polyvinyl alcohol (PVA) and chitosan using the freeze-thawing method. Their gel properties, in vitro protein adsorption, release, in vivo wound healing effect and histopathology were then evaluated. Chitosan decreased the gel fraction, maximum strength and thermal stability of PVA hydrogel, while it increased the swelling ability, water vapour transmission rate, elasticity and porosity of PVA hydrogel. Incorporation of minocycline (0.25%) did not affect the gel properties, and chitosan hardly affected drug release and protein adsorption. Furthermore, the minocycline-loaded wound dressing composed of 5% PVA, 0.75% chitosan and 0.25% drug was more swellable, flexible and elastic than PVA alone because of relatively weak cross-linking interaction of chitosan with PVA. In wound healing test, this minocycline-loaded PVA-chitosan hydrogel showed faster healing of the wound made in rat dorsum than the conventional product or the control (sterile gauze) due to antifungal activity of chitosan. In particular, from the histological examination, the healing effect of minocycline-loaded hydrogel was greater than that of the drug-loaded hydrogel, indicating the potential healing effect of minocycline. Thus, the minocycline-loaded wound dressing composed of 5% PVA, 0.75% chitosan and 0.25% drug is a potential wound dressing with excellent forming and enhanced wound healing.

  9. Reversible energy transfer between monomers and fluorescent dimers of rhodamine S in polyvinyl alcohol films

    NASA Astrophysics Data System (ADS)

    Synak, A.; Kułak, L.; Rangełowa-Jankowska, S.; Grobelna, B.; Kubicki, A.; Bojarski, P.

    2011-04-01

    Nonradiative energy transfer and excitation trapping are studied for rhodamine S in polyvinyl alcohol (PVA) films. It occurs that fluorescent dimers of rhodamine S can play a role of imperfect traps for the excitation energy. At highest dye concentrations experimental data of fluorescence quantum yield and emission anisotropy cannot be described by the model of energy transfer neglecting the possibility of excitation return to the monomers. However, the agreement between experimental data and the results of computations can be much improved, if the reverse energy transfer is taken into account. Based on the quantitative analysis it is possible to estimate selected characteristics of rhodamine S dimer in polyvinyl alcohol matrix. The experiments and corresponding analysis are made both at room and elevated temperature.

  10. Radiation-chemical synthesis of poly(vinyl alcohol) hydrogel containing dicyclohexano-18-crown-6

    NASA Astrophysics Data System (ADS)

    Zakurdaeva, O. A.; Nesterov, S. V.; Shmakova, N. A.; Semenova, G. K.; Sozontova, E. O.; Feldman, V. I.

    2007-12-01

    Radiation-chemical synthesis of poly(vinyl alcohol) hydrogels containing physically immobilized dicyclohexano-18-crown-6 was carried out. Remarkable gel fraction of 40-70% was observed at absorbed dose of about 5 kGy. Increasing degree of poly(vinyl alcohol) crosslinking led to growth of the efficiency of crown ether immobilization. Post-irradiation thermal annealing of the hydrogel samples at 120 °C for 0.5-5 h resulted in an increase of crown ether retention as compared with non-annealed samples by approximately 20% at the same absorbed dose. Preliminary results on a sorption behavior of the crown-containing hydrogels with respect to Sr 2+ cations in 2.4 M HNO 3 solution are presented.

  11. Synthesis and characterization of polyvinyl alcohol based multiwalled carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Malikov, E. Y.; Muradov, M. B.; Akperov, O. H.; Eyvazova, G. M.; Puskás, R.; Madarász, D.; Nagy, L.; Kukovecz, Á.; Kónya, Z.

    2014-07-01

    Multiwalled carbon nanotubes were synthesized by chemical vapor deposition over an Fe-Co/alumina catalyst. Nanotubes were then oxidized and grafted with polyvinyl alcohol (PVA). The obtained nanostructure was characterized by Raman spectroscopy, XRD, FTIR, EDX, SEM, TEM and TGA methods. FTIR confirmed the presence of the characteristic peaks of the anticipated ester group. The formation of polymer nanocomposites based on polyvinyl alcohol and multiwalled carbon nanotubes was confirmed by SEM and TEM. High resolution electron micrographs revealed that the primary binding sites for PVA grafting are the sidewall defects of the nanotubes. The novelty of this work is the use of the Fischer esterification reaction for creating the permanent link between the nanotubes and the PVA matrix.

  12. Performance and diversity of polyvinyl alcohol-degrading bacteria under aerobic and anaerobic conditions.

    PubMed

    Huang, Jianping; Yang, Shisu; Zhang, Siqi

    2016-11-01

    To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions. An anaerobic-aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors. The anaerobic-aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.

  13. Fe-Co metal-carbon nanocomposite based on IR pyrolized polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Vasil'ev, A. A.; Dzidziguri, E. L.; Muratov, D. G.; Karpacheva, G. P.

    2017-05-01

    Powders of metal-carbon nanocomposites consisting of nanosized bimetallic Fe-Co particles dispersed in a carbon matrix are obtained via the IR pyrolysis of a precursor based on polyvinyl alcohol and metal-containing compounds. The obtained samples are investigated by X-ray diffraction and transmission and scanning electron microscopy. The morphology and dispersity of FeCo nanoparticles are studied, depending on the intensity of IR annealing.

  14. Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings.

    PubMed

    Márquez, Andrés; Neipp, Cristian; Beléndez, Augusto; Gallego, Sergi; Ortuño, Manuel; Pascual, Inmaculada

    2003-09-01

    We demonstrate edge-enhanced imaging produced by volume phase gratings recorded on a polyvinyl alcohol/acrylamide photopolymer. Bragg diffraction, exhibited by volume gratings, modifies the impulse response of the imaging system, facilitating spatial filtering operations with no need for a physical Fourier plane. We demonstrate that Kogelnik's coupled-wave theory can be used to calculate the transfer function for the transmitted and the diffracted orders. The experimental and simulated results agree, and they demonstrate the feasibility of our proposal.

  15. Development of a Hypertrophic Ovarian Artery After Uterine Artery Embolization with Polyvinyl Alcohol Particles

    SciTech Connect

    Kim, Hyun S. Paxton, Ben E.

    2007-09-15

    Uterine artery embolization (UAE) for the treatment of symptomatic leiomyomata has shown excellent short-term clinical efficacy and minimal complications, yet recurrences after successful treatments at mid- and long-term follow-up have been reported. Exact etiologies for such recurrences have not been fully understood. We present a case of symptom recurrence with the development of a hypertrophic ovarian artery after successful UAE with polyvinyl alcohol particles, successfully treated with ovarian and repeat UAEs.

  16. Characterisation of poly(vinyl alcohol) by liquid chromatography techniques

    SciTech Connect

    Meehan, E.; Warner, F.P.; Patterson, M.

    1995-12-01

    The molecular weight distribution of poly (vinyl alcohol) can be measured by aqueous size exclusion chromatography methods but the choice of eluent is critical in eliminating non size exclusion behavior. Aqueous size exclusion experiments have been carried out using a number of eluents including standard electrolytes and surfactants. The most favorable molecular size separation was obtained using 0.25% w/v sodium lauryl sulphate as eluent. Compositional distributions in copolymer systems can be assessed using high performance liquid chromatography employing a reverse phase separation mechanism. For poly (vinyl alcohol) gradient elution with water/tetrahydrofuran was found to produce a separation according to composition. Fast gradient elution (>10% tetrahydrofuran/minute) suggested abroad distribution of composition which was verified using a column packed with non-porous beads. Slower gradient elution (<1% tetrahydrofuran/minute) suggested that this was not due to a gradual composition change but rather discrete fractions of similarly hydrophobic material.

  17. Properties of iopamidol-incorporated poly(vinyl alcohol) microparticle as an X-ray imaging flow tracer.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-02-10

    We have recently reported on poly(vinyl alcohol) microparticles containing X-ray contrast agent, iopamidol, designed as a flow tracer working in synchrotron X-ray imaging ( Biosens. Bioelectron. 2010 , 25 , 1571 ). Although iopamidol is physically encapsulated in the microparticles, it displays a great contrast enhancement and stable feasibility in in vitro human blood pool. Nonetheless, a direct relation between the absolute amount of incorporated iopamidol and the enhancement in imaging efficiency was not observed. In this study, physical properties of the designed microparticle are systematically investigated experimentally with theoretical interpretation to correlate an enhancement in X-ray imaging efficiency. The compositional ratio of X-ray contrast agent in polymeric microparticle is controlled as 1/1 and 10/1 [contrast agent/polymer microparticle (w/w)] with changed degree of cross-linkings. Flory-Huggins interaction parameter (χ), retractive force (τ) and degree of swelling of the designed polymeric microparticles are investigated. In addition, the hydrodynamic size (D(H)) and ζ-potential are evaluated in terms of environment responsiveness. The physical properties of the designed flow tracer microparticles under a given condition are observed to be strongly related with the X-ray absorption efficiency, which are also supported by the Beer-Lambert-Bouguer law. The designed microparticles are almost nontoxic with a reasonable concentration and time period, enough to be utilized as a flow tracer in various biomedical applications. This study would contribute to the basic understanding on the physical property connected with the imaging efficiency of contrast agents.

  18. Poly(vinyl alcohol)/poly(vinyl chloride) composite polymer membranes for secondary zinc electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Yang, Jen Ming; Wu, Cheng-Yeou

    A microporous composite polymer membrane composed of poly(vinyl alcohol) (PVA) and poly(vinyl chloride) (PVC), was prepared by a solution casting method and a partial dissolution process. The characteristic properties of microporous PVA/PVC composite polymer membranes containing 2.5-10 wt.% PVC polymers as fillers were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), capillary flow porometry (CFP), micro-Raman spectroscopy, dynamic mechanical analyzer (DMA) and the AC impedance method. The electrochemical properties of a secondary Zn electrode with the PVA/PVC composite polymer membrane were studied using the galvanostatic charge/discharge method. The PVA/PVC composite polymer membrane showed good thermal, mechanical and electrochemical properties. As a result, the PVA/PVC composite polymer membrane appears to be a good candidate for use on the secondary Zn electrodes.

  19. Cross-linked polyvinyl polymers versus polyureas as designed supports for catalytically active M(0) nanoclusters. Part III. Nanometer scale structure of the cross-linked polyurea support EnCat 30 and of the Pd(II)/EnCat 30 and Pd(0)/EnCat 30NP catalysts.

    PubMed

    Centomo, P; Zecca, M; Zoleo, A; Maniero, A L; Canton, P; Jerábek, K; Corain, B

    2009-05-28

    The cross-linked polyurea support EnCat 30, its related macromolecular complex Pd(II)/EnCat 30 and its related Pd(0)/EnCat 30NP nanocomposite are thoroughly investigated with SEM, TEM, ISEC and ESR in the solid state (SEM and TEM) and swollen state in THF (ISEC and ESR). Pd(II)/EnCat 30 and its related Pd(0)/EnCat 30NP are obtained by microencapsulation of palladium acetate in a polyurea framework, which is formed upon hydrolysis/condensation of mixtures of multi-functional oligo-arylisocyanates in dichloroethane. Most remarkably, both Pd(II)/EnCat and Pd(0)/EnCat 30NP turn out to be far more (nano)porous and swellable materials than the blank polyurea matrix (EnCat 30). It is proposed that there is a strong nanostructural effect exerted by Pd(II) species due to its interaction with functional groups (amines stemming from the hydrolysis of the isocyanato groups or ureido groups belonging to the polymer chains) during the growth of the cross-linked polymer framework. As a consequence, the catalytic species in both Pd(II)/EnCat 30 and Pd(0)/EnCat 30NP are much more accessible to molecules diffusing from liquid phases in contact with the materials and, hence, are better catalysts than expected from the morphology of blank polyurea EnCat 30.

  20. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No. 166164-74-5); or (2) 2-propenoic acid, polymer with 2-ethyl-2-(((1-oxo...

  1. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No. 166164-74-5); or (2) 2-propenoic acid, polymer with 2-ethyl-2-(((1-oxo...

  2. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No...-propanediyl di-2-propenoate and sodium 2-propenoate (CAS Reg. No. 76774-25-9). (b) Adjuvants. The copolymers...

  3. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No. 166164-74-5); or (2) 2-propenoic acid, polymer with 2-ethyl-2-(((1-oxo...

  4. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No. 166164-74-5); or (2) 2-propenoic acid, polymer with 2-ethyl-2-(((1-oxo...

  5. An evaluation of the thermal and mechanical properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application.

    PubMed

    Curley, Colin; Hayes, Jennifer C; Rowan, Neil J; Kennedy, James E

    2014-12-01

    The treatment of irreparable knee meniscus tears remains a major challenge for the orthopaedic community. The main purpose of this research was to analyse the mechanical properties and thermal behaviour of a salt-modified polyvinyl alcohol hydrogel, in order to assess its potential for use as an artificial meniscal implant. Aqueous poly vinyl alcohol was treated with a sodium sulphate solution to precipitate out the polyvinyl alcohol resulting in a pliable hydrogel. The freeze-thaw process, a strictly physical method of crosslinking, was employed to crosslink the hydrogel. Physical crosslinks in the form of crystalline regions were induced within the hydrogel structure which resulted in a large increase in mechanical resistance. Results showed that the optimal sodium sulphate addition of 6.6% (w/v) Na2SO4 in 8.33% (w/v) PVA causes the PVA to precipitate out of its solution. The effect of multiple freeze thaw cycles was also investigated. Investigation comprised of a variety of well-established characterisation techniques such as differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), mechanical analysis, rheometry and swelling studies. DSC analysis showed that samples cross-linked using the freeze thaw process display a thermal shift due to increased crosslink density. FTIR analysis confirmed crystallisation is present at 1142cm(-1) and also showed that no chemical alteration occurs when PVA is treated with sodium sulphate. Swelling studies indicated that that PVA/sodium sulphate hydrogels absorb less water than untreated hydrogels due to increased amounts of PVA present. Compressive strength analysis of PVA/sodium sulphate hydrogels prepared at -80°C displayed average maximum loads of 2472N, 2482.4N and 2476N of over 1, 3 and 5 freeze thaw cycles respectively. Mechanical analysis of the hydrogel indicated that the material is thermally stable and resistant to breakdown by compressive force. These properties are crucial for

  6. High-Strength, Tough, Fatigue Resistant, and Self-Healing Hydrogel Based on Dual Physically Cross-Linked Network.

    PubMed

    Gong, Zhengyu; Zhang, Guoping; Zeng, Xiaoliang; Li, Jinhui; Li, Gang; Huang, Wangping; Sun, Rong; Wong, Chingping

    2016-09-14

    Hydrogels usually suffer from low mechanical strength, which largely limit their application in many fields. In this Research Article, we prepared a dual physically cross-linked hydrogel composed of poly(acrylamide-co-acrylic acid) (PAM-co-PAA) and poly(vinyl alcohol) (PVA) by simple two-steps methods of copolymerization and freezing/thawing. The hydrogen bond-associated entanglement of copolymer chains formed as cross-linking points to construct the first network. After being subjected to the freezing/thawing treatment, PVA crystalline domains were formed to serve as knots of the second network. The hydrogels were demonstrated to integrate strength and toughness (1230 ± 90 kPa and 1250 ± 50 kJ/m(3)) by the introduction of second physically cross-linked network. What̀s more, the hydrogels exhibited rapid recovery, excellent fatigue resistance, and self-healing property. The dynamic property of the dual physically cross-linked network contributes to the excellent energy dissipation and self-healing property. Therefore, this work provides a new route to understand the toughness mechanism of dual physically cross-linked hydrogels, hopefully promoting current hydrogel research and expanding their applications.

  7. Supercritical water oxidation of polyvinyl alcohol and desizing wastewater: influence of NaOH on the organic decomposition.

    PubMed

    Zhang, Jie; Wang, Shuzhong; Guo, Yang; Xu, Donghai; Gong, Yanmeng; Tang, Xingying

    2013-08-01

    Polyvinyl alcohol is a refractory compound widely used in industry. Here we report supercritical water oxidation of polyvinyl alcohol solution and desizing wastewater with and without sodium hydroxide addition. However, it is difficult to implement complete degradation of organics even though polyvinyl alcohol can readily crack under supercritical water treatment. Sodium hydroxide had a significant catalytic effect during the supercritical water oxidation of polyvinyl alcohol. It appears that the OH- ion participated in the C-C bond cleavage of polyvinyl alcohol molecules, the CO2-capture reaction and the neutralization of intermediate organic acids, promoting the overall reactions moving in the forward direction. Acetaldehyde was a typical intermediate product during reaction. For supercritical water oxidation of desizing wastewater, a high destruction rate (98.25%) based on total organic carbon was achieved. In addition, cases where initial wastewater was alkaline were favorable for supercritical water oxidation treatment, but salt precipitation and blockage issues arising during the process need to be taken into account seriously.

  8. MICROWAVE-ASSISTED SYNTHESIS OF CROSSLINKED POLY(VINYL ALCOHOL) NANOCOMPOSITES COMPRISING SINGLE-WALLED CARBON NANOTUBES, MULTI-WALLED CARBON NANOTUBES AND BUCKMINSTERFULLERENE

    EPA Science Inventory

    We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...

  9. MICROWAVE-ASSISTED SYNTHESIS OF CROSSLINKED POLY(VINYL ALCOHOL) NANOCOMPOSITES COMPRISING SINGLE-WALLED CARBON NANOTUBES, MULTI-WALLED CARBON NANOTUBES AND BUCKMINSTERFULLERENE

    EPA Science Inventory

    We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...

  10. Catechol-derivatized poly(vinyl alcohol) as a coating molecule for magnetic nanoclusters

    NASA Astrophysics Data System (ADS)

    Burnand, David; Monnier, Christophe A.; Redjem, Anthony; Schaefer, Mark; Rothen-Rutishauser, Barbara; Kilbinger, Andreas; Petri-Fink, Alke

    2015-04-01

    Surface functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) remains indispensable in promoting colloidal stability and biocompatibility. We propose a well-defined and characterized synthesis of a new catechol-functionalized RAFT (reversible addition-fragmentation chain transfer) poly(vinyl alcohol) polymer, which can be anchored onto hydrophobic SPIONs via a one-pot emulsion ligand exchange process. Both single and clustered nanoparticles are obtained and can be separated from each other. As clustered SPIONs are receiving increasing attention, this new macroligand might be of considerable interest for both basic and applied sciences.

  11. Low voltage vertical organic field-effect transistor with polyvinyl alcohol as gate insulator

    NASA Astrophysics Data System (ADS)

    Rossi, Lucieli; Seidel, Keli F.; Machado, Wagner S.; Hümmelgen, Ivo A.

    2011-11-01

    We report the preparation of low gate leakage current organic field effect transistors in vertical architecture using polyvinyl alcohol as gate insulator and C60 fullerene as n-type semiconductor in devices with gate, source, and drain electrodes of Al. Intermediate electrode and top electrode operate, respectively, as source and drain, or vice-versa, depending on polarity. In these devices the intermediate electrode (source or drain) is permeable to the electric field produced by the gate so that increased drain current is obtained at either increasingly negative gate voltage when the source is the intermediate electrode or increasingly positive gate voltage when the drain is the intermediate electrode.

  12. Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning

    NASA Astrophysics Data System (ADS)

    Barzegar, Farshad; Bello, Abdulhakeem; Fabiane, Mopeli; Khamlich, Saleh; Momodu, Damilola; Taghizadeh, Fatemeh; Dangbegnon, Julien; Manyala, Ncholu

    2015-02-01

    We report on the synthesis and characterization of electrospun polyvinyl alcohol (PVA)/graphene nanofibers. The samples produced were characterized by Raman spectroscopy for structural and defect density analysis, scanning electron microscopy (SEM) for morphological analysis, and thermogravimetric (TGA) for thermal analysis. SEM measurements show uniform hollow PVA fibers formation and excellent graphene dispersion within the fibers, while TGA measurements show the improved thermal stability of PVA in the presence of graphene. The synthesized polymer reinforced nanofibers have potential to serve in many different applications such as thermal management, supercapacitor electrodes and biomedical materials for drug delivery.

  13. Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels.

    PubMed

    Javadi, Alireza; Zheng, Qifeng; Payen, Francois; Javadi, Abdolreza; Altin, Yasin; Cai, Zhiyong; Sabo, Ronald; Gong, Shaoqin

    2013-07-10

    Hybrid organic aerogels consisting of polyvinyl alcohol (PVA), cellulose nanofibrils (CNFs), and graphene oxide nanosheets (GONSs) were prepared using an environmentally friendly freeze-drying process. The material properties of these fabricated aerogels were measured and analyzed using various characterization techniques including compression testing, scanning electron microscopy, thermogravimetric (TGA) analysis, Brunauer-Emmet-Teller (BET) surface area analysis, and contact angle measurements. These environmentally friendly, biobased hybrid organic aerogels exhibited a series of desirable properties including a high specific compressive strength and compressive failure strain, ultralow density and thermal conductivity, good thermal stability, and moisture resistance, making them potentially useful for a broad range of applications including thermal insulation.

  14. Monitoring of temperature fatigue failure mechanism for polyvinyl alcohol fiber concrete using acoustic emission sensors.

    PubMed

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed.

  15. Photochromic and microstructural properties of methyl orange doped poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Bhajantri, R. F.; Sali, Renuka; Ravindrachary, V.; Pujari, P. K.; Sheela, T.; Rathod, Sunil G.

    2013-02-01

    The effect of Methyl Orange (MO) dye on microstructural, optical and fluorescence properties of the polymer Poly(vinyl alcohol) (PVA) is studied. The FTIR study shows the appearance of new peaks indicates the interaction of MO with PVA. The UV-Vis study shows three absorption regions with the first two shows red shift and the third one shows blue shift and hence correspondingly three optical energy band gaps. In fluorescence study, it is observed that the intensity increases with increasing wavelength. These results are understood by invoking the hydrogen bonding and hydrophobic interaction between PVA and MO, forms the charge transfer complex (CTC).

  16. Physical properties of gamma irradiated poly(vinyl alcohol) hydrogel preparations

    NASA Astrophysics Data System (ADS)

    Mondino, A. V.; González, M. E.; Romero, G. R.; Smolko, E. E.

    1999-08-01

    Poly(vinyl alcohol) films from 15% w/w aqueous solutions and a thickness of 0.2 mm were selected for this study. The films were first humidified and then acetalized and/or gamma irradiated. Then, their physical properties were tested. Tensile strength of the hydrogel films reached its maximum value in samples irradiated with a 80 kGy dose, in the case of acetalized films the dose necessary for maximum tensile strength was only 40 kGy. The combination of acetalization with formaldehyde and gamma radiation produced an elastic hydrogel with good tackiness and excellent mechanical and thermal strength.

  17. Study of polyvinyl alcohol nanofibrous membrane by electrospinning as a magnetic nanoparticle delivery approach

    NASA Astrophysics Data System (ADS)

    Ger, Tzong-Rong; Huang, Hao-Ting; Huang, Chen-Yu; Hu, Keng-Shiang; Lai, Jun-Yang; Chen, Jiann-Yeu; Lai, Mei-Feng

    2014-05-01

    Electrospinning technique was used to fabricate polyvinyl alcohol (PVA)-based magnetic biodegradable nanofibers. PVA solution was mixed with ferrofluid or magnetic nanoparticles (MNPs) powder and formed two individual nanofibrous membranes (PVA/ferrofluid and PVA/MNPs powder) by electrospinning. The surface morphology of the nanofibrous membrane was characterized by scanning electron microscopy and the magnetic properties were measured by vibrating sample magnetometer. Macrophages (RAW 264.7) were co-cultured with the nanofibrous membranes for 12, 24, and 48 h and exhibited good cell viability (>95%). Results showed that the PVA fibers would be degraded and the embedded Fe3O4 nanoparticles would be released and delivered to cells.

  18. Composition dependent structural modulations in transparent poly(vinyl alcohol) hydrogels.

    PubMed

    Gupta, Siddhi; Pramanik, Ashit Kumar; Kailath, Ansu; Mishra, Trilochan; Guha, Avijit; Nayar, Suprabha; Sinha, Arvind

    2009-11-01

    Transparent and stable Poly(vinyl alcohol) hydrogels were synthesized from polymer aqueous solution without resorting to a mixed solvent such as dimethyl sulfoxide and water. Contrary to the reported methods involving hydrogen bond induced physical crosslinking by repeated freeze-thawing at -20 degrees C, the present process demonstrates the gelation taking place at relatively higher temperature, i.e. 0 degrees C. While maintaining transparency in all the synthesized hydrogels, the present paper reports systematic structural and morphological variations in the hydrogels as a function of polymer concentration.

  19. Preparation and Characterization of Palm Leaf Incorporated Polyvinyl Alcohol Bio Composites

    NASA Astrophysics Data System (ADS)

    Patel, Arunendra Kumar; Bajpai, Rakesh; Keller, J. M.; Saha, Abhijit

    2011-12-01

    The Bio Composites of palm leaf (PL) incorporated polyvinyl alcohol (PVA) has been prepared using solution cast technique. Structural and microhardness properties of pure PVA and PL filled PVA Bio Composites has been determined by using FTIR and Vicker's indentation techniquque respectively. The FTIR analysis reveals the presence of PL moieties in PVA, which indicates the good compatibility between PL and PVA. The values of microhardness increases in all composition of PL incorporated PVA films as compared to the pure PVA. This increment in the microhardness is attributed to the excellent binding of PL into PVA.

  20. Multiplexed holographic data page storage on a polyvinyl alcohol/acrylamide photopolymer memory.

    PubMed

    Fernández, Elena; Ortuño, Manuel; Gallego, Sergi; Márquez, Andrés; García, Celia; Beléndez, Augusto; Pascual, Inmaculada

    2008-09-01

    Holographic data pages were multiplexed in different thickness layers of a polyvinyl alcohol/acrylamide photopolymer. This material is formed of acrylamide photopolymers, which are considered interesting materials for recording holographic memories. A liquid crystal device was used to modify the object beam and store the data pages. A peristrophic multiplexing method is used to store a large number of data pages in the same spot in the material. The bit error rate was calculated fitting the histograms of the images to determine what parameters improve the quality of the images.

  1. Suppression of instability by double ablation in tungsten doped polyvinyl alcohol foils

    NASA Astrophysics Data System (ADS)

    Peedikakkandy, Leshma; Chaurasia, S.

    2012-07-01

    In Inertial fusion Energy (IFE) research stable acceleration of fusion targets is a significant problem due to hydrodynamic instabilities. This paper presents the results of the experiments done to investigate the effects of doping 20% of Tungsten (W) (by weight) in Polyvinyl Alcohol (PVA) polymer foils for suppression of instability during laser ablative acceleration. A 20J, 1.060μm, 900ps, Nd: Glass laser system with a focusable intensity of 3 to 9.6×1013W/cm2 was used in the experiment. It is observed that the doped PVA targets yielded stable and enhanced foil acceleration as compared to the undoped PVA foils.

  2. Monitoring of Temperature Fatigue Failure Mechanism for Polyvinyl Alcohol Fiber Concrete Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed. PMID:23012555

  3. Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films.

    PubMed

    Mandal, Arup; Chakrabarty, Debabrata

    2015-12-10

    Semi-interpenetrating polymer network (semi-IPN) of poly(vinyl alcohol)/polyacrylamide was reinforced with various doses of nanocellulose. The different composite films thus prepared were characterized with respect to their mechanical, thermal, morphological and barrier properties. The composite film containing 5 wt.% of nanocellulose showed the highest tensile strength. The semi-interpenetrating polymer network of poly(vinyl alcohol)/polyacrylamide; and its various composites with nanocellulose were almost identical in their thermal stability. Each of the composites however exhibited much superior stability with respect to the linear poly(vinyl alcohol) and crosslinked polyacrylamide. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited phase separated morphology where agglomerates of nanocellulose were found to be dispersed in the matrix of the semi-IPN. The moisture vapor transmission rate (MVTR) was the lowest for the film containing 5 wt.% of nanocellulose.

  4. Fabrication and characterization of methylene-blue-doped polyvinyl alcohol-polyacrylic acid blend for holographic recording.

    PubMed

    Ushamani, Mythili; Sreekumar, Krishnapillai; Kartha, Cheranellore S; Joseph, Rani

    2004-06-20

    A methylene-blue-sensitized polymer blend of polyvinyl alcohol and polyacrylic acid is fabricated and tested for holographic recording. It was found to have good characteristics such as high sensitivity, storage stability, ease of fabrication, and environmental stability. Optimization of the ratio of polyvinyl alcohol/polyacrylic acid, the sensitizer concentration, pH, energy, diffraction efficiency measurements, etc., have been done. pH is found to have a great influence on the recovery of the dye in this matrix. The results of experimental investigations into the properties of this new material are reported.

  5. Evaluation of the Antimicrobial Effect of Chitosan/Polyvinyl Alcohol Electrospun Nanofibers Containing Mafenide Acetate

    PubMed Central

    Abbaspour, Mohammadreza; Sharif Makhmalzadeh, Behzad; Rezaee, Behjat; Shoja, Saeed; Ahangari, Zohreh

    2015-01-01

    Background: Chitosan, an important biodegradable and biocompatible polymer, has demonstrated wound-healing and antimicrobial properties. Objectives: This study aimed to evaluate the antimicrobial properties of mafenide acetate-loaded nanofibrous films, prepared by the electrospinning technique, using chitosan and polyvinyl alcohol (PVA). Materials and Methods: A 32 full factorial design was used for formulating electrospinning solutions. The chitosan percentage in chitosan/PVA solutions (0%, 10%, and 30%) and the drug content (0%, 20%, and 40%) were chosen as independent variables. The release rate of mafenide acetate from nanofibrous films and their microbial penetration were evaluated. The antimicrobial activity of different nanofibrous film formulations against Staphylococcus aureus and Pseudomonas aeruginosa was studied. Results: The results indicated that all nanofibrous films, with and without drug, can prevent bacterial penetration. Incorporation of mafenide acetate into chitosan/PVA nanofibers enhanced their antimicrobial activity against P. aeruginosa and S. aureus. Conclusions: Overall, the results showed that chitosan/polyvinyl alcohol (PVA) nanofibrous films are applicable for use as a wound dressing with protective, healing, and antimicrobial effects. PMID:26587214

  6. Analysis of polyvinyl alcohol microbubbles in human blood plasma using capillary electrophoresis.

    PubMed

    Josefsson, Leila; Larsson, Malin K; Bjällmark, Anna; Emmer, Åsa

    2016-04-01

    Recently, a new type of ultrasound contrast agent that consists of air-filled microbubbles stabilized with a shell of polyvinyl alcohol was developed. When superparamagnetic nanoparticles of iron oxide are incorporated in the polymer shell, a multimodal contrast agent can be obtained. The biodistribution and elimination pathways of the polyvinyl alcohol microbubbles are essential to investigate, which is limited with today's techniques. The aim of the present study was, therefore, to develop a method for qualitative and quantitative analysis of microbubbles in biological samples using capillary electrophoresis with ultraviolet detection. The analysis parameters were optimized to a wavelength at 260 nm and pH of the background electrolyte ranging between 11.9 and 12. Studies with high-intensity ultrasonication degraded microbubbles in water showed that degraded products and intact microbubbles could be distinguished, thus it was possible to quantify the intact microbubbles solely. Analysis of human blood plasma spiked with either plain microbubbles or microbubbles with nanoparticles demonstrated that it is possible to separate them from biological components like proteins in these kinds of samples.

  7. Wound healing modulation by a latex protein-containing polyvinyl alcohol biomembrane.

    PubMed

    Ramos, Márcio V; de Alencar, Nylane Maria N; de Oliveira, Raquel S B; Freitas, Lyara B N; Aragão, Karoline S; de Andrade, Thiago Antônio M; Frade, Marco Andrey C; Brito, Gerly Anne C; de Figueiredo, Ingrid Samantha T

    2016-07-01

    In a previous study, we performed the chemical characterization of a polyvinyl alcohol (PVA) membrane supplemented with latex proteins (LP) displaying wound healing activity, and its efficacy as a delivery system was demonstrated. Here, we report on aspects of the mechanism underlying the performance of the PVA-latex protein biomembrane on wound healing. LP-PVA, but not PVA, induced more intense leukocyte (neutrophil) migration and mast cell degranulation during the inflammatory phase of the cicatricial process. Likewise, LP-PVA induced an increase in key markers and mediators of the inflammatory response (myeloperoxidase activity, nitric oxide, TNF, and IL-1β). These results demonstrated that LP-PVA significantly accelerates the early phase of the inflammatory process by upregulating cytokine release. This remarkable effect improves the subsequent phases of the healing process. The polyvinyl alcohol membrane was fully absorbed as an inert support while LP was shown to be active. It is therefore concluded that the LP-PVA is a suitable bioresource for biomedical engineering.

  8. Water resistance and thermal properties of polyvinyl alcohol-starch fiber blend film

    NASA Astrophysics Data System (ADS)

    Salleh, M. S. N.; Nor, N. N. Mohamed; Mohd, N.; Draman, S. F. Syed

    2017-02-01

    The growing attention of starch fiber (SF) has led to the innovation of Polyvinyl Alcohol-SF (PVA-SF) blends. This blend is regarded as the biodegradable material which aims to reduce the accumulation of synthetic polymer solid waste derived from petroleum. In this study, the thermal blending characterizations of PVA-SF were investigated by differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The water resistance of the blend was also evaluated to study the polarity of the blends. The blend was prepared by plasticizing the polyvinyl alcohol with glycerol and distilled water with the addition of starch fiber. The incorporation of SF to the blends was at 10 wt% to 50 wt% composition. Based on the thermal analysis, PVA-SF blends were suitable for processing at high temperatures, which can be seen by the shifted onset degradation temperature to a higher temperature. This is because cyclic hemiacetals which were provided by SF can act to prevent the thermal attacks. Conversely, increasing the starch fiber proportion to the film blend reduce the endothermic peak amplitude in the DSC thermogram. It was found that PVA-SF blend at the higher composition of SF had the highest water resistance. This may be attributed to the content of fibre in SF which is hydrophilic.

  9. Effects of nanoscale dispersion in the dielectric properties of poly(vinyl alcohol)-bentonite nanocomposites.

    PubMed

    Hernández, María C; Suárez, N; Martínez, Luis A; Feijoo, José L; Lo Mónaco, Salvador; Salazar, Norkys

    2008-05-01

    We investigate the effects of clay proportion and nanoscale dispersion in the dielectric response of poly(vinyl alcohol)-bentonite nanocomposites. The dielectric study was performed using the thermally stimulated depolarization current technique, covering the temperature range of the secondary and high-temperature relaxation processes. Important changes in the secondary relaxations are observed at low clay contents in comparison with neat poly(vinyl alcohol) (PVA). The high-temperature processes show a complex peak, which is a combination of the glass-rubber transition and the space-charge relaxations. The analysis of these processes shows the existence of two segmental relaxations for the nanocomposites. Dielectric results were complemented by calorimetric experiments using differential scanning calorimetry. Morphologic characterization was performed by x-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM and XRD results show a mixture of intercalated and exfoliated clay dispersion in a trend that promotes the exfoliated phase as the bentonite content diminishes. Dielectric and morphological results indicate the existence of polymer-clay interactions through the formation of hydrogen bounds and promoted by the exfoliated dispersion of the clay. These interactions affect not only the segmental dynamics, but also the secondary local dynamics of PVA.

  10. Development and characterisation of an agar--polyvinyl alcohol blend hydrogel.

    PubMed

    Lyons, John G; Geever, Luke M; Nugent, Michael J D; Kennedy, James E; Higginbotham, Clement L

    2009-10-01

    Numerous authors have reported on hydrogel technologies providing products suitable for applications in biomedical, personal care as well as in nano-sensor applications. Hydrogels fabricated from single polymers have been extensively investigated. However, in many cases a single polymer alone cannot meet divergent demands in terms of both properties and performance. In this work, hydrogels were prepared by physically blending the natural polymer agar with polyvinyl alcohol in varying ratios to produce a new biosynthetic polymer applicable for a variety of purposes. Hydrogen bonding was observed to take place between the polyvinyl alcohol and the agar molecules in the composite materials leading to changes in the thermal, mechanical and swelling characteristics of the composite hydrogels. The composite hydrogels exhibited a slightly higher melting temperature than pure agar (116.81 degrees C). Irreversible compressive damage was found to occur at lower strain levels during compression testing of the dehydrated samples consisting of higher PVOH concentrations. Rheological analysis of hydrated sample revealed G' values of between 5000 and 10,000 Pa for the composite blends, with gels containing higher PVOH percentages exhibiting poorer mechanical strength.

  11. Band gap energy and optical transitions in polyenes formed by thermal decomposition of polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Kulak, A. I.; Bondarava, G. V.; Shchurevich, O. A.

    2013-07-01

    The band gap of the ensemble of oligoene clusters formed by thermocatalytic decomposition of polyvinyl alcohol is parametrized using optical absorption spectra. A band gap energy of E gm =1.53 ± 0.02 eV at the end of an infinite polyene chain is found by extrapolating the energies of π → π* transitions in clusters with a number of double bonds varying from 4 to 12. This value is close to the band gap of trans-polyacetylene and the lower bound for the Tauc energy E gT =1.50 eV, which characterizes the minimum interband transition energy. E gT is essentially independent of the concentration of oligoene clusters, which is determined by the concentration of the AlCl3 thermal decomposition catalyst. The Urbach energy determined from the long wavelength edge of the spectrum falls from 2.21 to 0.66 eV as the AlCl3 concentration is raised from 11.1 to 41.7 mmol per mol of polyvinyl alcohol structural units.

  12. Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging

    NASA Astrophysics Data System (ADS)

    Surry, K. J. M.; Austin, H. J. B.; Fenster, A.; Peters, T. M.

    2004-12-01

    Poly(vinyl alcohol) cryogel, PVA-C, is presented as a tissue-mimicking material, suitable for application in magnetic resonance (MR) imaging and ultrasound imaging. A 10% by weight poly(vinyl alcohol) in water solution was used to form PVA-C, which is solidified through a freeze-thaw process. The number of freeze-thaw cycles affects the properties of the material. The ultrasound and MR imaging characteristics were investigated using cylindrical samples of PVA-C. The speed of sound was found to range from 1520 to 1540 m s-1, and the attenuation coefficients were in the range of 0.075-0.28 dB (cm MHz)-1. T1 and T2 relaxation values were found to be 718-1034 ms and 108-175 ms, respectively. We also present applications of this material in an anthropomorphic brain phantom, a multi-volume stenosed vessel phantom and breast biopsy phantoms. Some suggestions are made for how best to handle this material in the phantom design and development process.

  13. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release.

    PubMed

    Jalvandi, Javid; White, Max; Gao, Yuan; Truong, Yen Bach; Padhye, Rajiv; Kyratzis, Ilias Louis

    2017-04-01

    A range of biodegradable drug-nanofibres composite mats have been reported as drug delivery systems. However, their main disadvantage is the rapid release of the drug immediately after application. This paper reports an improved system based on the incorporation of drug conjugated-chitosan into polyvinyl alcohol (PVA) nanofibers. The results showed that controlled release of levofloxacin (LVF) could be achieved by covalently binding LVF to low molecular weight chitosan (CS) via a cleavable amide bond and then blending the conjugated CS with polyvinyl alcohol (PVA) nanofibres prior to electrospinning. PVA/LVF and PVA-CS/LVF nanofibres were fabricated as controls. The conjugated CS-LVF was characterized by FTIR, DSC, TGA and (1)H NMR. Scanning electron microscopy (SEM) showed that the blended CS-PVA nanofibres had a reduced fibre diameter compared to the controls. Drug release profiles showed that burst release was decreased from 90% in the control PVA/LVF electrospun mats to 27% in the PVA/conjugated CS-LVF mats after 8h in phosphate buffer at 37°C. This slower release is due to the cleavable bond between LVF and CS that slowly hydrolysed over time at neutral pH. The results indicate that conjugation of the drug to the polymer backbone is an effective way of minimizing burst release behaviour and achieving sustained release of the drug, LVF. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Deep ultraviolet photoresist based on tungsten polyoxometalates and poly(vinyl alcohol) for bilayer photolithography

    SciTech Connect

    Carls, J.C.; Argitis, P.; Heller, A. )

    1992-03-01

    In this paper a negative tone deep ultraviolet resist, a mixture of phosphotungstic acid and poly(vinyl alcohol) is described. This resist has {lt}100 mJ cm{sup {minus}2} sensitivity and resolves {le}0.3 {mu}m features. Even though the photochemistry involves chemical amplification, the exposed patterns are stable and the process tolerates hours between the exposure and the post-bake steps. The resist is spun from an aqueous solutio, and its wet processing is also aqueous. This resist is used in a bilayer scheme, where advantage is taken of both the resistance of the tungsten oxide to oxygen plasmas and its easy stripping in fluorine-containing plasmas. Because poly(vinyl alcohol) is intrisincally a wetting agent, pinhole-free resist films of {approximately}1000 {Angstrom} thickness can be spun. These thin coatings provide sufficient oxygen plasma etch resistance to allow patterning of a thick 1.5 {mu}m novolac planarizing layer underneath the resist.

  15. Luminescent Poly(vinyl alcohol)/Carbon Quantum Dots Composites with Tunable Water-Induced Shape Memory Behavior in Different pH and Temperature Environments.

    PubMed

    Yang, Guanghui; Wan, Xuejuan; Liu, Yijin; Li, Rui; Su, Yikun; Zeng, Xierong; Tang, Jiaoning

    2016-12-21

    Luminescent water-induced shape memory polymer (SMP) composites with tunable shape recovery rate are developed by blending poly(vinyl alcohol) (PVA) and carbon quantum dots (CQDs). The oxygen and active hydrogen-rich CQDs can serve as extra physical cross-linking points in PVA via strong hydrogen bonding interaction, which largely improves the shape memory performances of PVA. At room temperature, water can successfully actuate the shape recovery of deformed PVA/CQDs composite. It is demonstrated that this water-induced shape recovery is mainly attributed to the plasticizing effect of water and its competitive hydrogen bonding. Furthermore, a quantitative bending test suggests that the shape recovery time of this water-induced SMP is tunable by altering the environmental pH value and temperature, and a relatively large shape recovery time window (from 20 to 200 s) can be achieved. In addition, the introduction of CQDs endows the PVA/CQDs SMP composites with excellent luminescent property, which makes the shape change of SMP visible under UV light. It should be noted that the mild stimulus condition and tunable shape recovery performances make the luminescent visible PVA/CQDs SMP feasible for diverse biological applications in smart medical devices, stimuli-responsive drug-release, and intelligent sensors in vivo and in vitro.

  16. VALIDATION OF AN EPA METHOD FOR THE ION CHROMATOGRAPHIC DETERMINATION OF PERCHLORATE IN FERTILIZERS USING A POLYVINYL ALCOHOL GEL RESIN.

    EPA Science Inventory

    This paper summarizes the key points of a joint study between the EPA and Metrohm-Peak, Inc., on the use of polyvinyl alcohol [PVA] columns for the ion chromatographic determination of percholorate in aqueous leachates or solutions of fertilizers. A series of fertilizer samples ...

  17. Rheological characterization of solutions and thin films made from amylose-hexadecylammonium chloride inclusion complexes and polyvinyl alcohol

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of aqueous solutions and films made from blends of polyvinyl alcohol (PVOH) and amylose-hexadecylammonium chloride inclusion complexes (Hex-Am) were investigated to better understand the polymer interactions and processing parameters. Aqueous solutions of Hex-Am displayed ...

  18. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions

    USDA-ARS?s Scientific Manuscript database

    This work aims to extract and characterize fibrous, rod-like and spherical cellulose nanoparticles (CNs) from cottonseed hull and to investigate the structure-morphology-rheology relationships. The rheological behavior of poly(vinyl alcohol) (PVA)/CNs suspensions was also examined to guide the solve...

  19. Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels.

    PubMed

    Beckwith, Kai M; Sikorski, Pawel

    2013-12-01

    Live cell arrays are an emerging tool that expand traditional 2D in vitro cell culture, increasing experimental precision and throughput. A patterned cell system was developed by combining the cell-repellent properties of polyvinyl alcohol hydrogels with the cell adhesive properties of self-assembled films of dopamine (polydopamine). It was shown that polydopamine could be patterned onto spin-cast polyvinyl alcohol hydrogels by microcontact printing, which in turn effectively patterned the growth of several cell types (HeLa, human embryonic kidney, human umbilical vein endothelial cells (HUVEC) and prostate cancer). The cells could be patterned in geometries down to single-cell confinement, and it was demonstrated that cell patterns could be maintained for at least 3 weeks. Furthermore, polydopamine could be used to modify poly(vinyl alcohol) in situ using a cell-compatible deposition buffer (1 mg mL(-1) dopamine in 25 mM tris with a physiological salt balance). The treatment switched the PVA hydrogel from cell repellent to cell adhesive. Finally, by combining microcontact printing and in situ deposition of polydopamine, patterned co-cultures of the same cell type (HeLa/HeLa) and dissimilar cell types (HeLa/HUVEC) were realized through simple chemistry and could be studied over time. The combination of polyvinyl alcohol and polydopamine was shown to be an attractive route to versatile, patterned cell culture experiments with minimal infrastructure requirements and low complexity.

  20. Poly(vinyl alcohol) composite films with high percent elongation prepared from amylose-fatty ammonium salt inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Amylose inclusion complexes prepared from cationic fatty ammonium salts and jet-cooked high amylose starch were combined with poly(vinyl alcohol) (PVOH) to form glycerol-plasticized films. Their tensile properties were compared with similar films prepared previously with analogous anionic fatty acid...

  1. VALIDATION OF AN EPA METHOD FOR THE ION CHROMATOGRAPHIC DETERMINATION OF PERCHLORATE IN FERTILIZERS USING A POLYVINYL ALCOHOL GEL RESIN.

    EPA Science Inventory

    This paper summarizes the key points of a joint study between the EPA and Metrohm-Peak, Inc., on the use of polyvinyl alcohol [PVA] columns for the ion chromatographic determination of percholorate in aqueous leachates or solutions of fertilizers. A series of fertilizer samples ...

  2. Poly(vinyl alcohol)/cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane

    Treesearch

    Tianliang Zhai; Qifeng Zheng; Zhiyong Cai; Lih-Sheng Turng; Hesheng Xia; Shaoqin Gong

    2015-01-01

    Superhydrophobic poly(vinyl alcohol) (PVA)/ cellulose nanofibril (CNF) aerogels with a unidirectionally aligned microtubular porous structure were prepared using a unidirectional freeze-drying process, followed by the thermal chemical vapor deposition of methyltrichlorosilane. The silanized aerogels were characterized using various techniques including scanning...

  3. How To Learn and Have Fun with Poly(Vinyl Alcohol) and White Glue

    NASA Astrophysics Data System (ADS)

    de Zea Bermudez, V.; Passos de Almeida, P.; Féria Seita, J.

    1998-11-01

    The general behavior of Newtonian, shear-thinning, shear-thickening, thixotropic, negative thixotropic, and viscoelastic fluids is characterized and briefly discussed in terms of existing theoretical models. Whenever possible, examples of these types of fluids taken from everyday life are given for better understanding. This theoretical introduction is the basis for same, simple, and inexpensive laboratory work employing no special glassware and generally done by pairs of students. The work involves the synthesis of two well-known viscoelastic materials displaying unique properties: poly(vinyl alcohol) (PVA) and white glue, a poly(vinyl acetate)-based emulsion. The students are asked to perform a series of representative mechanical tests on both gels and to describe their observations in full detail. In particular, they are expected to recognize and identify the origin of the intriguing behaviors found (elasticity, spinability, self-siphoning effect, die-swell effect, Weissenberg effect). The tests include the preparation of fibers by extrusion, introducing concepts such as water solubility, hydrogen bonding, and glass transition temperature. The long list of questions, which ideally should be answered at the end of the laboratory work, allows the students to apply the new concepts acquired.

  4. Polyvinyl alcohol-based hydrophilic monoliths from water-in-oil high internal phase emulsion template.

    PubMed

    Meng, Xiao; Zeng, Ni; Zhang, Jin; Jiang, Long; Dan, Yi

    2017-07-01

    Herein, we report a new approach to fabricate polyvinyl alcohol (PVA) based hydrophilic monoliths by alcoholysis of porous emulsion-templated polyvinyl acetate (PVAc). The precursory PVAc-based monolith is obtained by polymerization of a W/O high internal phase emulsion (HIPE) containing vinyl acetate as the external phase while water as the internal phase. As an alcoholysis-stable tri-functional commonomer, triallyl isocyanurate is chosen as the crosslinking agent to prevent possible collapse of the polymeric skeleton and the consequent losses in mechanical properties during the alcoholysis step. By alcoholysis of the resulting PVAc-based monolith, the PVA-based monoliths are successful prepared as confirmed by FTIR analysis. BET analysis and SEM observation confirm the formation of open-cell and highly interconnected porous structures of PVA-based monoliths with surface areas of around 16m(2)/g. Stemming from the intrinsic hydrophilicity of hydroxyl and morphology, PVA-based monoliths exhibit great enhancement in hydrophilicity with a much lower water contact angles than that of PVAc-based monoliths. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Bioinspired fully physically cross-linked double network hydrogels with a robust, tough and self-healing structure.

    PubMed

    Sabzi, Mohammad; Samadi, Navid; Abbasi, Farhang; Mahdavinia, Gholam Reza; Babaahmadi, Masoud

    2017-05-01

    The conventional covalently cross-linked double network (DN) hydrogels with high stiffness often show low toughness and self-healing property due to the irreversible bond breakages in their networks. Therefore, scarcity of hydrogels that possess simultaneous features of stiffness, toughness, and autonomous self-healing properties at the same time remains a great challenge and seriously limits their biomedical applications. While, many natural materials acquire these features from their dynamic sacrificial bonds. Inspired by biomaterials, herein we propose a novel strategy to design stiff, tough and self-healing DN gels by substitution of both covalently cross-linked networks with strong, dynamic hydrogen bond cross-linked networks. The prepared fully physically cross-linked DN gels composed of strong agar biopolymer gel as the first network and tough polyvinyl alcohol (PVA) biopolymer gel as the second network. The DN gels demonstrated multiple-energy dissipating mechanisms with a high modulus up to 2200kPa, toughness up to 2111kJm(-3), and ability to self-heal quickly and autonomously with regaining 67% of original strength only after 10min. The developed DN gels will open a new avenue to hydrogel research and holds high potential for diverse biomedical applications, such as scaffold, cartilage, tendon and muscle.

  6. Study of polyvinyl alcohol nanofibrous membrane by electrospinning as a magnetic nanoparticle delivery approach

    SciTech Connect

    Ger, Tzong-Rong; Huang, Hao-Ting; Hu, Keng-Shiang; Huang, Chen-Yu; Lai, Jun-Yang; Chen, Jiann-Yeu; Lai, Mei-Feng

    2014-05-07

    Electrospinning technique was used to fabricate polyvinyl alcohol (PVA)-based magnetic biodegradable nanofibers. PVA solution was mixed with ferrofluid or magnetic nanoparticles (MNPs) powder and formed two individual nanofibrous membranes (PVA/ferrofluid and PVA/MNPs powder) by electrospinning. The surface morphology of the nanofibrous membrane was characterized by scanning electron microscopy and the magnetic properties were measured by vibrating sample magnetometer. Macrophages (RAW 264.7) were co-cultured with the nanofibrous membranes for 12, 24, and 48 h and exhibited good cell viability (>95%). Results showed that the PVA fibers would be degraded and the embedded Fe{sub 3}O{sub 4} nanoparticles would be released and delivered to cells.

  7. Characterization and application of zeolitic imidazolate framework-8@polyvinyl alcohol nanofibers mats prepared by electrospinning

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoxiao; Yu, Linling; Li, Lianghao; Yang, Cao; Wen, Junjie; Ye, Xiaokun; Cheng, Jianhua; Hu, Yongyou

    2017-02-01

    In this study, Zeolitic imidazolate framework-8@polyvinyl alcohol (ZIF-8@PVA) nanofibers were creatively fabricated by electrospinning technique, and the nanofibers membranes were characterized by SEM, TEM, XRD, FTIR, TG, DSC, DTA, BET. Its thermal stability, mechanical property, water stability and adsorption nature were also performed. The optimized fabrication parameter of the ZIF-8@PVA was 10 wt% and the uniform diameters of the nanofibers has been obtained. In addition, the ZIF-8@PVA nanofibers displayed unique properties such as a water stable and flexible structure. The adsorption test for Congo red treatment revealed that the nanofibers had a great adsorption performance. The results indicated that the nonwoven fiber mats had a great potential as a new type of membrane adsorbents in wastewater purification. The possible mechanism of CR adsorption onto ZIF-8@PVA was researched.

  8. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review.

    PubMed

    Rafique, Ammara; Mahmood Zia, Khalid; Zuber, Mohammad; Tabasum, Shazia; Rehman, Saima

    2016-06-01

    Chitin and chitosan are amino polysaccharides having multidimensional properties, such as biocompatibility, biodegradability, antibacterial properties and non-toxicity, muco-adhesivity, adsorption properties, etc., and thus they can be widely used in variety of areas. Although human history mainly relies on the biopolymers, however synthetic materials like polyvinyl alcohol (PVA) have good mechanical, chemical and physical properties. Functionalization of PVA with chitin and chitosan is considered very appropriate for the development of well-designed biomaterials such as biodegradable films, for membrane separation, for tissue engineering, for food packaging, for wound healing and dressing, hydro gels formation, gels formation, etc. Considering versatile properties of the chitin and chitosan, and wide industrial and biomedical applications of PVA, this review sheds a light on chitin and chitosan based PVA materials with their potential applications especially focusing the bio-medical field. All the technical scientific issues have been addressed highlighting the recent advancement.

  9. Relaxation phenomena in poly(vinyl alcohol)/fumed silica affected by interfacial water.

    PubMed

    Gun'ko, V M; Pissis, P; Spanoudaki, A; Zarko, V I; Nychiporuk, Y M; Andriyko, L S; Goncharuk, E V; Leboda, R; Skubiszewska-Zieba, J; Osovskii, V D; Ptushinskii, Y G

    2007-08-15

    Interaction of poly(vinyl alcohol) (PVA) with fumed silica was investigated in the gas phase and aqueous media using adsorption, broadband dielectric relaxation spectroscopy (DRS), thermally stimulated depolarization current (TSDC), infrared spectroscopy, thermal analysis, and one-pass temperature-programmed desorption (OPTPD) mass-spectrometry (MS) methods. PVA monolayer formation leads to certain textural changes in the system (after suspension and drying) because of strong hydrogen bonding of the polymer molecules to silica nanoparticles preventing strong interaction between silica particles themselves. This strong interaction promotes associative desorption of water molecules at lower temperatures than in the case of silica alone. Interaction of PVA with silica and residual water leads to depression of glass transition temperature (T(g)). There are three types of dipolar relaxations at temperatures lower and higher than the T(g) value. A small amount of adsorbed water leads to significant conductivity with elevating temperature.

  10. Spectroelectrochemical Studies on Quinacridone by Using Poly(vinyl alcohol) Coating as Protection Layer

    PubMed Central

    Enengl, Sandra; Enengl, Christina; Stadler, Philipp; Neugebauer, Helmut; Sariciftci, Niyazi Serdar

    2015-01-01

    Spectroscopic measurements in the infrared range combined with electrochemistry are a powerful technique for investigation of organic semiconductors to track changes during oxidation and reduction (p- and n-doping) processes. For these measurements it is important that the studied material, mostly deposited as a thin film on an internal reflection element, does not dissolve during this characterization. In this study we introduce a technique that allows infrared spectroelectrochemical characterization of films of these materials for the first time. In many cases so far this has been impossible, due to solubility in the oxidized and/or reduced form. This novel technique is shown on thin films of quinacridone by adding a protection layer of poly(vinyl alcohol) (PVA). PMID:26013836

  11. Asymmetric Polymer Particles with Anisotropic Curvatures by Annealing Polystyrene Microspheres on Poly(vinyl alcohol) Films.

    PubMed

    Tseng, Hsiao-Fan; Cheng, Ming-Hsiang; Jeng, Kai-Sheng; Li, Jia-Wei; Chen, Jiun-Tai

    2016-09-09

    Anisotropic polymer particles such as Janus particles have attracted significant attention in recent years because of their unique properties and unusual self-assembly behavior. Most anisotropic polymer particles synthesized so far, however, only have different chemical regions compartmentalized on the particles. It remains a great challenge to fabricate anisotropic polymer particles with different shapes within a single particle. A novel approach is developed to prepare anisotropic polymer particles that contain two hemispheres with different curvatures by annealing polystyrene microspheres on poly(vinyl alcohol) films. During the annealing process, the polymer microspheres gradually sink into the polymer films and transform to asymmetric polymer particles, driven by the surface and interfacial tensions of the polymers. Selective removal techniques are also used to confirm the morphologies of the asymmetric particles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The effect of electron beam irradiation on preparation of sago starch/polyvinyl alcohol foams

    NASA Astrophysics Data System (ADS)

    Wongsuban, Benchamaporn; Muhammad, Kharidah; Ghazali, Zulkafli; Hashim, Kamaruddin; Ali Hassan, Muhammad

    2003-10-01

    Blends of sago starch (SS)/polyvinyl alcohol (PVA) were irradiated with doses ranging from 10 to 30 kGy. Foams were then produced from these irradiated blends using a microwave. Changes in the degree of crosslinking, gel strength, thermal stability morphology of blends and linear expansion of foam with increasing irradiation doses were subsequently investigated. It was observed that the degree of crosslinking was important in maximizing the positive effect on foams produced. The gel strength of SS/PVA blends was affected by the irradiation. The crosslinking by the irradiation enhanced the thermal stability of SS/PVA blends. The results also revealed that the highest linear expansion of foams could be produced by irradiation blends at 15 kGy. Changes in blend morphology were observed upon irradiation.

  13. Copper-containing polyvinyl alcohol composite systems: Preparation, characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Reza Hajipour, Abdol; Mohammadsaleh, Fatemeh; Reza Sabzalian, Mohammad

    2015-08-01

    The present investigation reports, the complex formation of Cu(II) with polyvinyl alcohol (PVA) and the synthesis of PVA-stabilized Cu2O particles. This PVA-Cu2O composite has been prepared via chemical reduction method using PVA-Cu(II) complex as precursor. At first, Cu(II) ions were stabilized in PVA matrix via complex formation with OH groups; subsequently, this PVA-Cu(II) macromolecular complex as precursor reacted with ascorbic acid as reducing agent at pH=12 to prepare PVA-Cu2O composite. The products were characterized by FTIR, XRD, FE-SEM, HRTEM, Visible Spectroscopy and atomic absorption. In the following, the antibacterial properties of as-prepared composites were examined against Gram-positive (Bacillus thuringiensis) and Gram-negative bacteria (Escherichia coli), and the results showed excellent antibacterial activity of these materials.

  14. Lipogels: surface-adherent composite hydrogels assembled from poly(vinyl alcohol) and liposomes.

    PubMed

    Jensen, Bettina E B; Hosta-Rigau, Leticia; Spycher, Philipp R; Reimhult, Erik; Städler, Brigitte; Zelikin, Alexander N

    2013-08-07

    Drug-eluting engineered surface coatings are of paramount importance for many biomedical applications from implantable devices to tissue engineering. Herein, we present the assembly of lipogels, composite physical hydrogels assembled from poly(vinyl alcohol) and liposomes using thiol-disulfide exchange between end group modified PVA and thiocholesterol containing liposomes, and the response of adhering cells to these coatings. We demonstrate the controlled loading of liposomes into the polymer matrix and the preserved mechanical properties of the lipogels. Furthermore, the lipogels are successfully rendered cell adhesive by incorporation of poly(l-lysine) into the PVA polymer matrix or by poly(dopamine) coating of the lipogels. The successful lipid uptake from the lipogels by macrophages, hepatocytes, and myoblasts was monitored by flow cytometry. Finally, the delivery of active cargo, paclitaxel, to adherent myoblasts is shown, thus illustrating the potential of the lipogels as a drug eluting interface for biomedical applications.

  15. Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial.

    PubMed

    Alves, Marie-Helene; Jensen, Bettina E B; Smith, Anton A A; Zelikin, Alexander N

    2011-10-10

    Poly(vinyl alcohol), PVA, and physical hydrogels derived thereof have an excellent safety profile and a successful history of biomedical applications. However, these materials are hardly in the focus of biomedical research, largely due to poor opportunities in nano- and micro-scale design associated with PVA hydrogels in their current form. In this review we aim to demonstrate that with PVA, a (sub)molecular control over polymer chemistry translates into fine-tuned supramolecular association of chains and this, in turn, defines macroscopic properties of the material. This nano- to micro- to macro- translation of control is unique for PVA and can now be accomplished using modern tools of macromolecular design. We believe that this strategy affords functionalized PVA physical hydrogels which meet the demands of modern nanobiotechnology and have a potential to become an indispensable tool in the design of biomaterials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fabrication and Characterization of Graphene/Graphene Oxide-Based Poly(vinyl alcohol) Nanocomposite Membranes

    NASA Astrophysics Data System (ADS)

    Hieu, Nguyen Huu; Long, Nguyen Huynh Bach Son; Kieu, Dang Thi Minh; Nhiem, Ly Tan

    2016-05-01

    Graphene (GE)- or graphene oxide (GO)-based poly(vinyl alcohol) (PVA) nanocomposite membranes have been prepared by the solution blending method. Raman spectra and atomic force microscopy images confirmed that GE and GO were synthesized with average thickness of 0.901 nm and 0.997 nm, respectively. X-ray diffraction patterns indicated good exfoliation of GE or GO in the PVA matrix. Fourier-transform infrared spectra revealed the chemical fractions of the nanocomposite membranes. Differential scanning calorimetry results proved that the thermal stability of the nanocomposite membranes was enhanced compared with neat PVA membrane. Transmission electron microscopy images revealed good dispersion of GE or GO sheets in the PVA matrix with thickness in the range of 19 nm to 39 nm. As a result, good compatibility between GE or GO and PVA was obtained at 0.5 wt.% filler content.

  17. Effects of PVA(Polyvinyl Alcohol) on Supercooling Phenomena of Water

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Saito, Akio; Okawa, Seiji; Takizawa, Hiroshi

    In this paper, effects of polymer additive on supercooling of water were investigated experimentally. Poly-vinyl alcohol (PVA) were used as the polymer, and the samples were prepared by dissolving PVA in ultra pure water. Concentration, degree of polymerization and saponification of PVA were varied as the experimental parameters. The sample was cooled, and the temperature at the instant when ice appears was measured. Since freezing of supercooled water is statistical phenomenon, many experiments were carried out and average degrees of supercooling were obtained for each experimental condition. As the result, it was found that PVA affects nucleation of supercooling and the degree of supercooling increases by adding the PVA. Especially, it is found that the average degree of supercooling increases and the standard deviation of average degree of supercooling decreases with increase of degree of saponification of PVA. However, the average degree of supercooling are independent of the degree of polymerization of PVA in the range of this study.

  18. Effect of polyvinyl alcohol on electrochemically deposited ZnO thin films for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.

    2017-05-01

    Nanostructures of zinc oxide (ZnO) thin film are electrochemically deposited in the absence and presence of polyvinyl alcohol (PVA) on fluorine doped tin oxide (FTO) substrate. X-ray diffraction (XRD) patterns and Raman spectroscopy confirmed the formation of hexagonal structure of ZnO. The film prepared in the presence of PVA showed a better crystallinity and its crystalline growth along the (002) plane orientation. Field emission scanning electron microscope (FE-SEM) images display nanowire arrays (NWAs) and sponge like morphology for films prepared in the absence and presence of PVA, respectively. Photoluminescence (PL) spectra depict the film prepared in the presence PVA having less atomic defects with good crystal quality compared with other film. Dye sensitized solar cell (DSSC) is constructed using low cost eosin yellow dye and current-voltage (J-V) curve is recorded for optimized sponge like morphology based solar cell.

  19. Thermal and electrical transport properties of polyvinyl alcohol and bismuth ferrite nanocomposites film

    NASA Astrophysics Data System (ADS)

    Rana, Dhiraj Kumar; Kundu, Shovan Kumar; Basu, Soumen

    2017-05-01

    The pure phase Bismuth ferrite (BFO) nanomaterial calcined at 500°C for 2hr. is synthesized by sol-gel method. From the TEM micrograph analysis the average particle size of BFO is calculated as 37nm. The polyvinyl alcohol (PVA) and PVA-BFO (2wt%) composites films are synthesized by drop casting method. The thermal stability of the composites films is increased with adding BFO 2wt% in PVA matrix and which is observed by TGA curve analysis. The variation of real part of dielectric constant and the ac electrical conductivity with frequency range 20Hz to 1MHz at different temperature range from 30°C to 130°C is measured. The electrical transport properties shows the correlated barrier hopping (CBH) model and it is well fitted with the experimental data which is measured from the ac conductivity plot.

  20. Non-isothermal crystallization kinetics of eucalyptus lignosulfonate/polyvinyl alcohol composite.

    PubMed

    Ye, De-Zhan; Zhang, Xi; Gu, Shaojin; Zhou, Yingshan; Xu, Weilin

    2017-04-01

    The nonisothermal crystallinization kinetic was performed on Polyvinyl alcohol (PVA) mixed with eucalyptus lignosulfonate calcuim (HLS) as the biobased thermal stabilizer, which was systematically analyzed based on Jeziorny model, Ozawa equation and the Mo method. The results indicated that the entire crystallization process took place through two main stages involving the primary and secondary crystallization processes. The Mo method described nonisothermal crystallization behavior well. Based on the results of the half time for completing crystallization, kc value in Jeziorny model, F(T) value in Mo method and crystallization activation energy, it was concluded that low loading of HLS accelerated PVA crystallization process, however, the growth rate of PVA crystallization was impeded at high content of HLS. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Novel polyvinyl alcohol-bioglass 45S5 based composite nanofibrous membranes as bone scaffolds.

    PubMed

    Shankhwar, Nisha; Kumar, Manishekhar; Mandal, Biman B; Srinivasan, A

    2016-12-01

    Composite nanofibrous membranes based on sol-gel derived 45SiO2 24.5CaO 24.5 Na2O 6 P2O5 (bioglass, BG) and 43SiO2 24.5CaO 24.5 Na2O 6 P2O5 2Fe2O3 (magnetic bioglass, MBG) blended with polyvinyl alcohol (PVA) have been electrospun. These low cost membranes were mostly amorphous in structure with minor crystalline (sodium calcium phosphate) precipitates. All membranes were biodegradable. Among these, the composites exhibited higher tensile strength, better proliferation of human osteosarcoma MG63 cells and higher alkaline phosphatase enzyme activity than the bare PVA membrane, indicating their potential in bone tissue engineering. The magnetic PVA-MBG scaffold was also found to be a promising candidate for magnetic hyperthermia application.

  2. High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-polyvinyl alcohol blends.

    PubMed

    Nair, Sandeep S; Sharma, Sudhir; Pu, Yunqiao; Sun, Qining; Pan, Shaobo; Zhu, J Y; Deng, Yulin; Ragauskas, Art J

    2014-12-01

    A new method to prepare nanolignin using a simple high shear homogenizer is presented. The kraft lignin particles with a broad distribution ranging from large micron- to nano-sized particles were completely homogenized to nanolignin particles with sizes less than 100 nm after 4 h of mechanical shearing. The (13) C nuclear magnetic resonance (NMR) and (31) P NMR analysis showed that there were no major changes in the chemical composition between the starting kraft lignin particles and the nanolignin obtained after 4 h of mechanical treatment. The nanolignin particles did not show any change in molecular weight distribution and polydispersity compared to the original lignin particles. The nanolignin particles when used with polyvinyl alcohol (PVA) increased the thermal stability of nanolignin/PVA blends more effectively compared to the original lignin/PVA blends. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Stiffness- and wettability-dependent myoblast cell compatibility of transparent poly(vinyl alcohol) hydrogels.

    PubMed

    Gupta, Siddhi; T, Greeshma; Basu, Bikramjit; Goswami, Sudipta; Sinha, Arvind

    2013-02-01

    This study reports the in vitro compatibility of muscle cells (C2C12 mouse myoblast cell line) with the transparent poly(vinyl alcohol) (PVA) hydrogels and the results are explained on the basis of surface wettability, crystallinity, and nanoscale elastic stiffness property. Nanoindentation was carried out with a maximum load of 100 μN for all the hydrogel compositions and the properties such as elastic stiffness, hardness and total work done during indentation were computed. The difference in cell viability as well as adhesion of cultured myoblast cells on the investigated hydrogel substrates were discussed in reference to the difference in the nanoscale elastic properties, crystallinity, and surface wettability. An important result has been that both elastic stiffness and surface wettability synergistically influence myoblast viability/adhesion on PVA hydrogels. Copyright © 2012 Wiley Periodicals, Inc.

  4. Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning

    NASA Astrophysics Data System (ADS)

    Junkasem, Jirawut; Rujiravanit, Ratana; Supaphol, Pitt

    2006-09-01

    The present contribution reports, for the first time, the successful fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) (PVA) nanocomposite nanofibres by electrospinning. The α-chitin whiskers were prepared from α-chitin flakes from shrimp shells by acid hydrolysis. The as-prepared chitin whiskers exhibited lengths in the range 231-969 nm and widths in the range 12-65 nm, with the average length and width being about 549 and 31 nm, respectively. Successful incorporation of the chitin whiskers within the as-spun PVA/chitin whisker nanocomposite nanofibres was verified by infrared spectroscopic and thermogravimetric methods. The incorporation of chitin whiskers within the as-spun nanocomposite fibre mats increased the Young's modulus by about 4-8 times over that of the neat as-spun PVA fibre mat.

  5. Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol) carbon nanotube composite films

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tao, Xiaoming; Xue, Pu; Cheng, Xiaoyin

    2005-12-01

    Tensile tests were carried out on free-standing composite films of poly(vinyl alcohol) (PVA) and multiwall carbon nanotubes (MWNTs) for different loading levels. Results show that overall mechanical properties of the composite were greatly improved as compared to the neat PVA film. For PVA-based materials at significant high loading level such as 9.1 wt.% MWNTs, considerable increases in Young's modulus, tensile strength and toughness by factors of 4.5, 2.7 and 4.1, respectively, were achieved. Raman, SEM, TEM, and DSC techniques were used to evaluate the PVA/MWNTs composite system. Strong acid-modification of the pristine MWNTs and the subsequent ultrasonication processing allowed good distribution of the nanotubes in the matrix. SEM together with DSC result shows apparent good wetting of the nanotubes by the PVA matrix, which are supportive of good interfacial bonding between the modified carbon nanotubes and the hosting polymer matrix.

  6. Antimicrobial-coated polypropylene films with polyvinyl alcohol in packaging of fresh beef.

    PubMed

    Han, Chunyang; Wang, Jianqing; Li, Yang; Lu, Fei; Cui, Yan

    2014-02-01

    The utility of packaging films consisting of cast polypropylene/polyvinyl alcohol with rhubarb ethanolic extracts (REE) and cinnamon essential oil (CEO) in maintaining fresh beef quality was investigated. Fresh beefsteaks were packed with antimicrobial films containing different concentrations of REE and CEO. Beef characteristics, including pH, total viable counts, instrumentally measured color, weight loss, total volatile base nitrogen (TVB-N) and sensory quality were determined. All experimental films significantly inhibited bacterial growth (p<0.05) and maintained the pH and TVB-N of beefsteaks. Three of four experimental films significantly reduced instrumental color loss (p<0.05). Antimicrobial packaging films efficiently maintained the quality of fresh beefsteaks during storage. © 2013.

  7. Optical Properties of Neodymium Oxide Nanoparticle-Doped Polyvinyl Alcohol Film

    NASA Astrophysics Data System (ADS)

    Keikhaei, Mansoureh; Motevalizadeh, Leili; Attaran-Kakhki, Ebrahim

    2016-04-01

    The structural and optical characteristics of polyvinyl alcohol (PVA) doped with different concentration of Nd2O3 nanoparticles to use an active media for polymer laser were studied. The PVA polymer was considered as the host and Nd2O3 nanoparticles as the active element. The media as a thin film was prepared using spin coating technique. Structural properties of layers were investigated by X-ray diffraction (XRD) pattern and atomic force microscope (AFM) technique. The effect of the concentrations of the neodymium source on the optical properties of Nd2O3/PVA thin films was investigated through UV-Vis absorption spectroscopy and their optical band gap was evaluated. Also, the FTIR and fluorescence spectra of the samples were detected. The fluorescence spectra of films showed that the maximum wavelength occurred at 568nm with no significant shift.

  8. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Udayabhaskar, R.; Hariharan, S.

    2016-07-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  9. Activation of Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol) using a Supramolecular Trigger†

    PubMed Central

    Phillips, Daniel J.; Congdon, Thomas R.; Gibson, Matthew I.

    2016-01-01

    Antifreeze (glyco)proteins (AF(G)Ps) have potent ice recrystallisation inhibition (IRI) activity – a desirable phenomenon in applications such as cryopreservation, frozen food and more. In Nature AF(G)P activity is regulated by protein expression levels in response to an environmental stimulus; temperature. However, this level of regulation is not possible in synthetic systems. Here, a synthetic macromolecular mimic is introduced, using supramolecular assembly to regulate activity. Catechol-terminated poly(vinyl alcohol) was synthesised by RAFT polymerization. Upon addition of Fe3+, larger supramolecular star polymers form by assembly with two or three catechols. This increase in molecular weight effectively ‘switches on’ the IRI activity and is the first example of external control over the function of AFP mimetics. This provides a simple but elegant solution to the challenge of external control of AFP-mimetic function. PMID:28003855

  10. Poly(vinyl alcohol) Physical Hydrogels: Matrix-Mediated Drug Delivery Using Spontaneously Eroding Substrate

    PubMed Central

    2016-01-01

    Poly(vinyl alcohol) hydrogels have a long and successful history of applications in biomedicine. Historically, these matrices were developed to be nondegradable—limiting their utility to applications as permanent implants. For tissue engineering and drug delivery, herein we develop spontaneously eroding physical hydrogels based on PVA. We characterize in detail a mild, noncryogenic method of producing PVA physical hydrogels using poly(ethylene glycol) as a gelating agent, and investigate PVA molar mass as a means to define the kinetics of erosion of these biomaterials. PVA hydrogels are characterized for associated inflammatory response in adhering macrophages, antiproliferative effects mediated through delivery of cytotoxic drugs to myoblasts, and pro-proliferative activity achieved via presentation of conjugated growth factors to endothelial cells. Together, these data present a multiangle characterization of these novel multifunctional matrices for applications in tissue engineering and drug delivery mediated by implantable biomaterials. PMID:26958864

  11. Dielectric response of poly(vinyl alcohol)–zinc selenide nanocomposite film

    NASA Astrophysics Data System (ADS)

    Sinha, Subhojyoti; Das, Amit Kumar; Basu, Soumen; Meikap, Ajit Kumar

    2017-10-01

    Poly(vinyl alcohol)–zinc selenide (PVA–ZnSe) nanocomposite films have been prepared, which offer higher effective permittivity than pure PVA. There is an about 2.5-fold increase (at 420 K) in the effective permittivity at 100 kHz for the 4 wt % ZnSe nanostructure impregnated PVA film as calculated from the dielectric reinforcement function. Prevailing relaxation mechanisms in the nanocomposite films, within the frequency range of 100 Hz ≤ f ≤ 1 MHz and in the temperature range of 298 ≤ T ≤ 420 K, have been discussed on the basis of available theoretical approaches in the literature. AC conductivity behavior reveals that correlated barrier hopping is the ac charge transport mechanism for the nanocomposite films, and the maximum barrier heights vary inversely with the weight percent inclusion of ZnSe nanostructures.

  12. Electrochemical properties of poly(vinyl alcohol) and graphene oxide composite for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Theophile, Niyitanga; Jeong, Hae Kyung

    2017-02-01

    Poly(vinyl alcohol), PVA, polymer was successfully combined with graphene oxide (GO) and thermally reduced graphene oxide (RGO), respectively, to make composites and characterized for supercapacitor applications. PVA-RGO composite shows excellent electrochemical properties compared to PVA-GO composite. The capacitance of 190 Fg-1 is obtained from PVA-RGO composite which is larger than that (13 Fg-1) of PVA-GO composite. Electrochemical impedance of PVA-RGO is more than ten times smaller than that of PVA-GO at 20 kHz, demonstrating that PVA-RGO composite has a great advantage for supercapacitor applications compared to PVA, GO, RGO, and PVA-GO composite.

  13. Nanofibrillated Cellulose and Copper Nanoparticles Embedded in Polyvinyl Alcohol Films for Antimicrobial Applications

    PubMed Central

    Zhong, Tuhua; Oporto, Gloria S.; Jaczynski, Jacek; Jiang, Changle

    2015-01-01

    Our long-term goal is to develop a hybrid cellulose-copper nanoparticle material as a functional nanofiller to be incorporated in thermoplastic resins for efficiently improving their antimicrobial properties. In this study, copper nanoparticles were first synthesized through chemical reduction of cupric ions on TEMPO nanofibrillated cellulose (TNFC) template using borohydride as a copper reducing agent. The resulting hybrid material was embedded into a polyvinyl alcohol (PVA) matrix using a solvent casting method. The morphology of TNFC-copper nanoparticles was analyzed by transmission electron microscopy (TEM); spherical copper nanoparticles with average size of 9.2 ± 2.0 nm were determined. Thermogravimetric analysis and antimicrobial performance of the films were evaluated. Slight variations in thermal properties between the nanocomposite films and PVA resin were observed. Antimicrobial analysis demonstrated that one-week exposure of nonpathogenic Escherichia coli DH5α to the nanocomposite films results in up to 5-log microbial reduction. PMID:26137482

  14. Lignosulfonate as reinforcement in polyvinyl alcohol film: Mechanical properties and interaction analysis.

    PubMed

    Ye, De-zhan; Jiang, Li; Hu, Xiao-qin; Zhang, Ming-hua; Zhang, Xi

    2016-02-01

    Recently, there has been a growing research interest on renewable composite due to sustainability concerns. This work demonstrated the possibility of using eucalyptus lignosulfonate calcium (HLS) particles as reinforcement in polyvinyl alcohol (PVA) matrix. 41% and 384.7% improvement of pure PVA tensile strength and Young's modulus were achieved with incorporation of 5 wt% HLS. The above results were ascribed to specific intermolecular interactions between HLS and PVA, suggested by the increasing PVA glass transition and crystalline relaxations temperature, depression of melting point with HLS incorporation. Moreover, this interaction was quantitatively determined by q value of -62.4±10.0 in Kwei equation. Additionally, the remarkable red shift of wavenumber corresponding to hydroxyl group also indicated the formation of strong hydrogen bond in HLS/PVA blend. SEM characterization confirmed that HLS/PVA blends are at least miscible.

  15. Yeast Extract Promotes Cell Growth and Induces Production of Polyvinyl Alcohol-Degrading Enzymes

    PubMed Central

    Li, Min; Liao, Xianyan; Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2011-01-01

    Polyvinyl alcohol-degrading enzymes (PVAases) have a great potential in bio-desizing processes for its low environmental impact and low energy consumption. In this study, the effect of yeast extract on PVAases production was investigated. A strategy of four-point yeast extract addition was developed and applied to maximize cell growth and PVAases production. As a result, the maximum dry cell weight achieved was 1.48 g/L and the corresponding PVAases activity was 2.99 U/mL, which are 46.5% and 176.8% higher than the control, respectively. Applying this strategy in a 7 L fermentor increased PVAases activity to 3.41 U/mL. Three amino acids (glycine, serine, and tyrosine) in yeast extract play a central role in the production of PVAases. These results suggest that the new strategy of four-point yeast extract addition could benefit PVAases production. PMID:21977311

  16. Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix

    NASA Astrophysics Data System (ADS)

    Kumar, Manmohan; Varshney, Lalit; Francis, Sanju

    2005-05-01

    Ag+ ions, in aqueous polyvinyl alcohol (PVA) solution and in PVA hydrogel matrix have been gamma radiolytically reduced to produce Ag clusters. UV-visible absorption spectral characteristics of Ag clusters obtained under different gamma dose, Ag+ concentration, PVA concentration and crosslinking density of the gel used have been studied. The effect of Ag+ ions on the radiation crosslinking of the PVA chains, have also been investigated by viscosity measurements. The radiation-induced Ag+ ion reduction was followed by crosslinking of the PVA chains. PVA was found to be a very efficient stabilizer to prevent aggregation of Ag clusters. The clusters produced in the hydrogel matrix were expected to be smaller than the pore size (∼2-20 nm) of the gels used in the study. These Ag clusters were unable to reduce methyl viologen (MV2+) chloride and were stable in air.

  17. Stability of latanoprost in an ophthalmic lipid emulsion using polyvinyl alcohol.

    PubMed

    Sakai, Yusuke; Yasueda, Shin-Ichi; Ohtori, Akira

    2005-11-23

    Latanoprost in water is not stable against heat stress due to hydrolysis of the isopropyl ester in the latanoprost molecule. Therefore, the storage condition of latanoprost ophthalmic solution, Xalatan brand, was in a low temperature (2-8 degrees C). We formulated a favorable ophthalmic lipid emulsion of latanoprost using polyvinyl alcohol as emulsifier which showed a good heat stability. The assays of the latanoprost ophthalmic lipid emulsions adjusted to pH 5.0, 6.0 and 7.0 were 100.4%, 100.7% and 99.2% after storage for 4 weeks at 60 degrees C, respectively. The possibility of room temperature storage for the latanoprost ophthalmic lipid emulsion was demonstrated.

  18. Biodegradation of polyvinyl alcohol by Flammulina velutipes in an unsubmerged culture.

    PubMed

    Tsujiyama, Sho-ichi; Nitta, Tomoko; Maoka, Takashi

    2011-07-01

    To examine the biodegradation of polyvinyl alcohol (PVA), Flammulina velutipes (Enokitake) was cultivated in both liquid and quartz sand cultures. After incubation, discoloration of an iodide solution was observed in the filtrate recovered from the quartz sand culture, whereas discoloration was not observed in the filtrate recovered from the liquid culture. Gel permeation chromatography showed that the PVA recovered from the quartz sand culture was depolymerized and yielded low-molecular-weight portions. Infrared and ultraviolet spectrometry indicated that there was formation of carbonyl groups, and NMR analysis showed that the syndiotactic portions of PVA were preferably attacked. Based on these results, an unsubmerged cultivation of F. velutipes was considered suitable for the biodegradation of PVA, probably because the mycelium was sufficiently developed to produce PVA-degrading enzymes. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Intensity-modulated relative humidity sensing with polyvinyl alcohol coating and optical fiber gratings.

    PubMed

    Yang, Jingyi; Dong, Xinyong; Ni, Kai; Chan, Chi Chu; Shun, Perry Ping

    2015-04-01

    A relative humidity (RH) sensor in reflection mode is proposed and experimentally demonstrated by using a polyvinyl alcohol (PVA)-coated tilted-fiber Bragg grating (TFBG) cascaded by a reflection-band-matched chirped-fiber Bragg grating (CFBG). The sensing principle is based on the RH-dependent refractive index of the PVA coating, which modulates the transmission function of the TFBG. The CFBG is properly designed to reflect a broadband of light spectrally suited at the cladding mode resonance region of the TFBG, thus the reflected optical signal passes through and is modulated by the TFBG again. As a result, RH measurements with enhanced sensitivity of ∼1.80  μW/%RH are realized and demodulated in the range from 20% RH to 85% RH.

  20. Structure-property relationships in Sterculia urens/polyvinyl alcohol electrospun composite nanofibres.

    PubMed

    Patra, Niranjan; Martinová, Lenka; Stuchlik, Martin; Černík, Miroslav

    2015-04-20

    Sterculia urens (Gum Karaya) based polyvinyl alcohol (PVA) composite nanofibres have been successfully electrospun after chemical modification of S. urens to increase its solubility. The effect of deacetylated S. urens (DGK) on the morphology, structure, crystallization behaviour and thermal stability was studied for spuned fibres before and after spinning post treatment. An apparent increase in the PVA crystallinity were observed in the PVA-DGK composite nanofibres indicating S. urens induced crystallization of PVA. The pure PVA nanofibre and the nanofibres of PVA-DGK composites were introduced to post electrospinning heat treatment at 150°C for 15 min. The presence of sterculia gum reduced the fibre diameter and distribution of the nanofibres due to the increased stretching of the fibres during spinning. Switching of the thermal behaviour occurs due to post spinning heat treatments.

  1. Anaerobic digestion of starch-polyvinyl alcohol biopolymer packaging: biodegradability and environmental impact assessment.

    PubMed

    Guo, M; Trzcinski, A P; Stuckey, D C; Murphy, R J

    2011-12-01

    The digestibility of a starch-polyvinyl alcohol (PVOH) biopolymer insulated cardboard coolbox was investigated under a defined anaerobic digestion (AD) system with key parameters characterized. Laboratory results were combined with industrial operational data to develop a site-specific life cycle assessment (LCA) model. Inoculated with active bacterial trophic groups, the anaerobic biodegradability of three starch-PVOH biopolymers achieved 58-62%. The LCA modeling showed that the environmental burdens of the starch-PVOH biopolymer packaging under AD conditions on acidification, eutrophication, global warming and photochemical oxidation potential were dominated by atmospheric emissions released from substrate degradation and fuel combustion, whereas energy consumption and infrastructure requirements were the causes of abiotic depletion, ozone depletion and toxic impacts. Nevertheless, for this bio-packaging, AD of the starch-PVOH biopolymer combined with recycling of the cardboard emerged as the environmentally superior option and optimization of the energy utilization system could bring further environmental benefits to the AD process.

  2. Hybrid Polyvinyl Alcohol and Cellulose Fiber Pulp Instead of Asbestos Fibers in Cement-Based Composites

    NASA Astrophysics Data System (ADS)

    Shokrieh, M. M.; Mahmoudi, A.; Shadkam, H. R.

    2015-05-01

    The Taguchi method was used to determine the optimum content of a four-parameters cellulose fiber pulp, polyvinyl alcohol (PVA) fibers, a silica fume, and bentonite for cement-based composite sheets. Then cement composite sheets from the hybrid of PVA and the cellulose fiber pulp were manufactured, and their moduli of rapture were determined experimentally. The result obtained showed that cement composites with a hybrid of PVA and cellulose fiber pulp had a higher flexural strength than cellulose-fiber- reinforced cement ones, but this strength was rather similar to that of asbestos-fiber-reinforced cement composites. Also, using the results of flexural tests and an analytical method, the tensile and compressive moduli of the hybrid of PVA and cement sheet were calculated. The hybrid of PVA and cellulose fiber pulp is proposed as an appropriate alternative for substituting asbestos in the Hatschek process.

  3. Simple but Strong: A Mussel-Inspired Hot Curing Adhesive Based on Polyvinyl Alcohol Backbone.

    PubMed

    Mu, Youbing; Wan, Xiaobo

    2016-03-01

    The strong adhesion ability of mussel foot-byssal proteins (Mfps) has inspired scientists to develop novel materials for strong and reversible adhesion, coating, antifouling, and many other applications. However, in many cases, the high costs and the tedious preparation steps of such bioinspired materials hamper the process to push them into practical application. Here a simple but effective way (one step) is presented to synthesize a mussel-inspired glue from two cheap commercially available materials: polyvinyl alcohol (PVA) and 3,4-dihydroxybenzaldehyde (DBA). This bioinspired hot curing adhesive exhibits a strong bonding ability as high as 17.3 MPa on stainless steel surfaces, which surpasses most of the commercially available adhesives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A stimuli-responsive and bioactive film based on blended polyvinyl alcohol and cashew gum polysaccharide.

    PubMed

    Silva, Fábio E F; Batista, Karla A; Di-Medeiros, Maria C B; Silva, Cassio N S; Moreira, Bruna R; Fernandes, Kátia F

    2016-01-01

    In this study, a stimuli-responsive, biodegradable and bioactive film was produced by blending cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA). The film presented malleability and mechanical properties enabling an easy handling. Wetting the film changed the optical property from opacity to levels of transparency higher than 70% and resulted in up to 2-fold increase in its superficial area. Different swelling indexes were obtained varying the pH of solvent, which allows classifying the CGP/PVA film as pH sensitive stimuli-responsive material. The bioactivity was achieved through covalent immobilization of papain, which remained active after storage of CGP/PVA-papain film for 24h in the presence of buffer or in a dry form. These results evidenced that CGP/PVA-papain film is a very promising material for biomedical applications.

  5. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    SciTech Connect

    Karthikeyan, B. Hariharan, S.; Udayabhaskar, R.

    2016-07-11

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  6. Reverse osmosis performance of modified polyvinyl alcohol thin-film composite membranes

    SciTech Connect

    Lang, K.; Chowdhury, G.; Matsuura, T.; Sourirajan, S. )

    1994-08-01

    Membrane separation characteristics in the nanofiltration (NF) and reverse osmosis (RO) regions of the filtration spectrum are governed by a complex combination of both steric hindrance and surface force interactions. NF and RO membranes having surface charges show unusual selectivity behavior not predicted on the basis of physical pore size alone. Hence, practical characterizations should employ techniques to gain insight on membrane function. In this work, the separation characteristics of an anionically charged modified polyvinyl alcohol (PVA) thin-film composite membrane under different operating pressures were investigated. A qualitative measurement of the surface force interactions between solutes and membrane polymer was conducted using liquid chromatography technique. An attempt was also made to study the chlorine resistance of the composite membrane.

  7. Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells

    NASA Astrophysics Data System (ADS)

    Song, Wei; Markel, David C.; Wang, Sunxi; Shi, Tong; Mao, Guangzhao; Ren, Weiping

    2012-03-01

    The failure of prosthesis after total joint replacement is due to the lack of early implant osseointegration. In this study polyvinyl alcohol-collagen-hydroxyapatite (PVA-Col-HA) electrospun nanofibrous meshes were fabricated as a biomimetic bone-like extracellular matrix for the modification of orthopedic prosthetic surfaces. In order to reinforce the PVA nanofibers, HA nanorods and Type I collagen were incorporated into the nanofibers. We investigated the morphology, biodegradability, mechanical properties and biocompatibility of the prepared nanofibers. Our results showed these inorganic-organic blended nanofibers to be degradable in vitro. The encapsulated nano-HA and collagen interacted with the PVA content, reinforcing the hydrolytic resistance and mechanical properties of nanofibers that provided longer lasting stability. The encapsulated nano-HA and collagen also enhanced the adhesion and proliferation of murine bone cells (MC3T3) in vitro. We propose the PVA-Col-HA nanofibers might be promising modifying materials on implant surfaces for orthopedic applications.

  8. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization

    SciTech Connect

    Jia Xin; Li Yanfeng Zhang Bo; Cheng Qiong; Zhang Shujiang

    2008-03-04

    Poly(vinyl alcohol)/kaolinite intercalated nanocomposites (Kao-PVA) were prepared via in situ intercalation radical polymerization. Vinyl acetate (VAc) was intercalated into kaolinite by a displacement method using dimethyl sulfoxide/kaolinite (Kao-DMSO) as the intermediate. Then, PVAc/kaolinite (Kao-PVAc) was obtained via radical polymerization with benzoyl peroxide (BPO) as initiator. Last, PVAc/kaolinite was saponified via direct-hydrolysis with NaOH solution in order to obtain PVA/kaolinite nanocomposites, which was characterized by Fourier-Transformation spectroscopy (FTIR), wide X-ray diffraction (WXRD) and transmission electron microscopy (TEM). Their differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results of the obtained PVA/kaolinite suggested that the thermal properties had an obvious improvement.

  9. All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Hsu, Sung-Ting; Chien, Wen-Chen

    Solid-state electrochemical double-layer capacitors (ELDCs) based on alkaline polyvinyl alcohol (PVA) solid polymer electrolytes (SPEs) are prepared. Electrochemical capacitance performance of these capacitors is studied by cyclic voltammetry, galvanostatic charge-discharge testing, and ac impedance spectroscopy. For comparison, two types of EDLC cells are constructed and tested. It is found that an EDLC with a PVA polymer electrolyte exhibits much higher capacitance and longer cycle-life than one with the PP/PE separator. The specific capacitance for the EDLC with the PVA-based SPE is in the range of 100-112 F g -1, and depends on the scan rate or the charge-discharge current rates. The results also indicate that the solid-state EDLC shows a relatively stable specific capacitance of 100 F g -1 after 1000 cycles. The findings suggest that the PVA-based SPE is a promising material for use in EDLCs.

  10. Dynamic mechanical properties of photopolymerizable poly(vinyl alcohol)-acrylate monomer blends

    SciTech Connect

    Koshiba, M.; Yamaoka, T.; Tsunoda, T.

    1983-10-01

    Dynamic mechanical properties of photopolymerizable poly(vinyl alcohol) (PVA)-monoacrylate blends were investigated by measuring dynamic shear modulus G' and loss tangent, tan delta. The dynamic mechanical properties of the blends before being exposed to UV irradiation were governed by the weight percent of the monomers which act as plasticizers. On the other hand, the UV-irradiated blends seemed to be typical two-phase materials since they revealed two tan delta maxima whose positions were independent of the monomer content. Those two maxima were assigned to PVA and photopolymerized acrylates with reference to the dynamic mechanical data of PVA and a PVA-polyacrylamide polyblend. Those dynamic mechanical data suggested that insolubilization of the blend type photopolymers should be caused by a decrease in solubility due to graft polymerization of acrylate monomers onto PVA. 9 figures, 3 tables.

  11. Synthesis and characterization of polyvinyl alcohol- carboxymethyl tamarind gum based composite films.

    PubMed

    Yadav, Indu; Rathnam, V S Sharan; Yogalakshmi, Yamini; Chakraborty, Subhabrata; Banerjee, Indranil; Anis, Arfat; Pal, Kunal

    2017-06-01

    The present study delineates the synthesis of novel composite films using polyvinyl alcohol and carboxymethyl tamarind gum. The microscopic study results confirmed the formation of composite matrices. FTIR spectroscopy suggested the occurrence of hydrogen-bonding amongst the components of the films. The extent of hydrogen bonding was composition-dependent which reached a critical higher limit at a particular composition. At the critical composition, the instantaneous and the intermediate polymer relaxation time were longer. All the films were found to be viscoelastic in nature. The melting endotherm was also highest for the composition described above. Ciprofloxacin loaded films showed excellent antimicrobial property against E. coli, suggesting that the drug was released in its active form. Cell proliferation study using human keratinocytes suggested better cell proliferation in the CMT containing films as compared to the control (PVA only) film. In gist, the developed films can be explored for skin tissue engineering and drug delivery applications.

  12. Negative pressure wound treatment with polyvinyl alcohol foam and polyhexanide antiseptic solution instillation in posttraumatic osteomyelitis.

    PubMed

    Timmers, Michael S; Graafland, Niels; Bernards, Alexandra T; Nelissen, Rob G H H; van Dissel, Jaap T; Jukema, Gerrolt N

    2009-01-01

    In a retrospective, case-control cohort study an assessment was made of the clinical outcome of patients with osteomyelitis treated with a new modality of negative pressure wound therapy, so called negative pressure instillation therapy. In this approach, after surgical debridement, a site of osteomyelitis is treated with negative pressure of at least 300 mmHg applied through polyvinyl alcohol dressing. The polyvinyl alcohol foam is irrigated through the tubes three times a day with a polyhexanide antiseptic solution. In 30 patients (14 males; mean age 52 [range, 26-81]) admitted between 1999 and 2003 with osteomyelitis of the pelvis or lower extremity, we assessed time to wound closure, number of surgical procedures and rate of recurrence of infection as well as need for rehospitalizations. For comparison, a control group of 94 patients (males, 58; mean age 47 [range, 9-85]), matched for site and severity of osteomyelitis, was identified in hospital records between 1982 and 2002. These patients underwent standard surgical debridement, implantation of gentamicin polymethylmethacrylate beads and long-term intravenous antibiotics. In the Instillation group the rate of recurrence of infection was 3/30 (10%), whereas 55/93 (58.5%) of the controls had a recurrence (p<0.0001). Moreover, in those treated with instillation the total duration of hospital stay was shorter and number of surgical procedures smaller as compared with the controls (all p<0.0001). We conclude that in posttraumatic osteomyelitis negative pressure instillation therapy reduces the need for repeated surgical interventions in comparison with the present standard approach.

  13. Polyvinyl alcohol {gamma}-ray grafted nylon 4 membrane for pervaporation and evapomeation

    SciTech Connect

    Lai, J.Y.; Chen, R.Y.; Lee, K.R

    1993-05-01

    Nylon 4, which possesses high mechanical strength and good affinity for water, can be considered as a liquid separation membrane. To improve the hydrophilicity of a Nylon 4 membrane for pervaporation and evapomeation processes, and to overcome the hydrolysis of polyvinyl alcohol (PVA), this study attempts to prepare a PVA-g-Nylon 4 membrane by {gamma}-ray irradiation grafting of vinyl acetate (VAc) onto Nylon 4 membrane, followed by hydrolysis treatment. The effects of down-stream pressure, irradiation dose, VAc monomer concentration, degree of grafting, feed composition, and size of alcohols on the separation of water-alcohol mixtures were studied. The surface properties of the prepared membrane were characterized by FTIR, ESCA, and a contact angle meter. A separation factor of 13.8 and a permeation rate of 0.352 kg/m{sup 2}-h can be obtained for a PVA-g-Nylon 4 membrane with a degree of grafting of 21.2% for a 90-wt% ethanol feed concentration. Compared to the pervaporation process, the evapomeation process has a significantly increased separation factor with a decreased permeation rate for the same PVA-g-Nylon 4 membrane. 24 refs., 9 figs., 4 tabs.

  14. Amperometric ethanol biosensor based on poly(vinyl alcohol)-multiwalled carbon nanotube-alcohol dehydrogenase biocomposite.

    PubMed

    Tsai, Yu-Chen; Huang, Jing-Dae; Chiu, Chian-Cheng

    2007-06-15

    A novel amperometric ethanol biosensor was constructed using alcohol dehydrogenase (ADH) physically immobilized within poly(vinyl alcohol)-multiwalled carbon nanotube (PVA-MWCNT) composite obtained by a freezing-thawing process. It comprises a MWCNT conduit, a PVA binder, and an ADH function. The measurement of ethanol is based on the signal produced by beta-nicotinamide adenine dinucleotide (NADH), the product of the enzymatic reaction. The homogeneity of the resulting biocomposite film was characterized by atomic force microscopy (AFM). The performance of the PVA-MWCNT-ADH biocomposite modified glassy carbon electrode was evaluated using cyclic voltammetry and amperometry in the presence of NADH and in the presence of ethanol. The ethanol content in standard solutions was determined and a sensitivity of 196 nA mM(-1), a linear range up to 1.5mM, and a response time of about 8s were obtained. These characteristics allowed its application for direct detection of ethanol in alcoholic beverages: beer, red wine, and spirit.

  15. Functional polymer laminates from hyperthermal hydrogen induced cross-linking.

    PubMed

    Thompson, David B; Trebicky, Tomas; Crewdson, Patrick; McEachran, Matthew J; Stojcevic, Goran; Arsenault, Gilles; Lau, Woon M; Gillies, Elizabeth R

    2011-12-20

    The use of a hyperthermal hydrogen induced cross-linking process to prepare laminates comprising polypropylene, poly(isobutylene-co-isoprene), and poly(vinyl acetate) is described. In this new, milder alternative to conventional plasma techniques, neutral molecular hydrogen projectiles were used to create carbon radicals on impacted surfaces by collision-induced dissociation of C-H bonds, and this process was used to cross-link polymers on a polypropylene surface. It was demonstrated that multiple layers of cross-linked materials could be added, creating polymer laminates with each layer introducing new functionalities and properties. In particular, the present work shows that the process is largely nondestructive toward ester functionalities. First, the esters were grafted to become nonleachable. Then, the esters were subsequently hydrolyzed to convert the surface from hydrophobic to hydrophilic. Afterward, the esters could be recovered by simple esterification demonstrating that further chemical transformations were possible.

  16. Char characterization-thermal decomposition chemistry of poly(vinyl alcohol)

    SciTech Connect

    Gilman, J.W.; VanderHart, D.L.; Kashiwagi, Takashi

    1995-12-01

    Currently, due to concerns over the environmental effects of halogenated compound, there is an international demand for the control of polymer flammability without the use of halogenated additives. An alternative to the use of halogenated fire retardants, which control flammability primarily in the gas phase, is to control polymer flammability by manipulating the condensed phase chemistry. Our approach is to increase the amount of char that forms during polymer combustion. Char formation reduces, through crosslinking reactions, the amount of small volatile polymer pyrolysis fragments, or fuel, available for burning in the gas phase; this, in turn reduces the amount of heat feedback to the polymer surface. The char also insulates the underlying virgin polymer. The polymer we chose to investigate was polyvinyl alcohol, PVA, because it is one of the few linear, non-halogenated, aliphatic, polymers with a measurable (approximately 4%) char yield. We report the CP/MAS {sup 13}C NMR characterization of the fundamental condensed phase processes and structures which lead to char formation during the pyrolysis of poly (vinyl-alcohol), PVA, and PVA with nonhalogenated additives.

  17. Unusual Morphologies of Poly(vinyl alcohol) Thin Films Adsorbed on Poly(dimethylsiloxane) Substrates.

    PubMed

    Karki, Akchheta; Nguyen, Lien; Sharma, Bhanushee; Yan, Yan; Chen, Wei

    2016-04-05

    Adsorption of poly(vinyl alcohol) (PVOH), 99% and 88% hydrolyzed poly(vinyl acetate), to poly(dimethylsiloxane) (PDMS) substrates was studied. The substrates were prepared by covalently attaching linear PDMS polymers of 2, 9, 17, 49, and 116 kDa onto silicon wafers. As the PDMS molecular weight/thickness increases, the adsorbed PVOH thin films progressively transition from continuous to discontinuous morphologies, including honeycomb and fractal/droplet. The structures are the result of thin film dewetting that occurs upon exposure to air. The PVOH film thickness does not vary significantly on these PDMS substrates, implicating the PDMS thickness as the cause for the morphology differences. The adsorbed PVOH thin films are less stable and have a stronger tendency to dewet on thicker, more liquid-like PDMS layers. When PVOH(99%) and PVOH(88%) thin films are compared, fractal and droplet morphologies are observed on high molecular weight PDMS substrates, respectively. The formation of the unique fractal features in the PVOH(99%) thin films as well as other crystalline and semicrystalline thin films is most likely driven by crystallization during the dehydration process in a diffusion-limited aggregation fashion. The only significant enhancement in hydrophilicity via PVOH adsorption was obtained on PDMS(2k), which is completely covered with a PVOH thin film. To mimic the lower receding contact angle and less liquid-like character of the PDMS(2k) substrate, light plasma treatment of the higher molecular weight PDMS substrates was carried out. On the treated PDMS substrates, the adsorbed PVOH thin films are in the more continuous honeycomb morphology, giving rise to significantly enhanced wettability. Furthermore, hydrophobic recovery of the hydrophilized PDMS substrates was not observed during a 1 week period. Thus, light plasma oxidation and subsequent PVOH adsorption can be utilized as a means to effectively hydrophilize conventional PDMS substrates. This study

  18. Effect of Poly(Vinyl Alcohol) Addition on the Properties of Hydrothermal Derived Calcium Phosphate Cement for Bone Filling Materials

    NASA Astrophysics Data System (ADS)

    Razali, N. N.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.; Singh, R.

    2017-06-01

    The effect of addition of poly(vinyl alcohol) on hydrothermal derived calcium phosphate cement has been studied. The precursors used to prepare the cement were calcium oxide (CaO) and ammonium dihydrogen phosphate (NH4H2PO4); the reaction was conducted in water at 80-100°C. To improve properties of CPC, poly(vinyl alcohol) (PVA) of 1wt% and 2wt% was added to the liquid phase of CPC and the results were compared to CPC without PVA addition. The addition of PVA was proved to bring remarkable effects on cohesion, setting time and mechanical strength of CPC which make it suitable physically for injectable bone filler applications.

  19. Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: release characteristics and antioxidant activity.

    PubMed

    Thanyacharoen, T; Chuysinuan, P; Techasakul, S; Nooeaid, P; Ummartyotin, S

    2017-09-01

    The physico-chemical properties of a chitosan and polyvinyl alcohol (CS/PVA)-based hydrogel composite were investigated. Tetraethyl orthosilicate (TEOS) was employed as a crosslinking agent. The results indicated that the chitosan-based composite presented a thermal resistance up to 200°C. The structural properties, which were evaluated using FTIR and DSC, showed good miscibility between chitosan and polyvinyl alcohol. SEM presented a compact and homogeneous structure. The release profile of the chitosan-based hydrogel composite was investigated using gallic acid (GA). It showed high antioxidant activities, which were monitored using DPPH radical scavenging. Diffusion of water into the chitosan-based hydrogel was assumed to be pseudo-Fickian in PBS solution. The CS/PVA-based hydrogel composite exhibited good properties as a drug delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Novel hydrogels of chitosan and poly(vinyl alcohol)-g-glycolic acid copolymer with enhanced rheological properties.

    PubMed

    Lejardi, A; Hernández, R; Criado, M; Santos, Jose I; Etxeberria, A; Sarasua, J R; Mijangos, C

    2014-03-15

    Poly(vinyl alcohol) (PVA) has been grafted with glycolic acid (GL), a biodegradable hydroxyl acid to yield modified poly(vinyl alcohol) (PVAGL). The formation of hydrogels at pH = 6.8 and physiological temperature through blending chitosan (CS) and PVAGL at different concentrations has been investigated. FTIR, DOSY NMR and oscillatory rheology measurements have been carried out on CS/PVAGL hydrogels and the results have been compared to those obtained for CS/PVA hydrogels prepared under the same conditions. The experimental results point to an increase in the number of interactions between chitosan and PVAGL in polymer hydrogels prepared with modified PVA. The resulting materials with enhanced elastic properties and thixotropic behavior are potential candidates to be employed as injectable materials for biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Low temperature cross linking polyimides

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P. (Inventor)

    1982-01-01

    A polyimide is formed by cross linking a prepolymer formed by reacting a polyfunctional ester, a polyfunctional amine, and an end-capping unit. By providing an end-capping unit, the prepolymer is curable at a relatively low temperature of about 175 to 245 C.

  2. Lipogels: surface-adherent composite hydrogels assembled from poly(vinyl alcohol) and liposomes

    NASA Astrophysics Data System (ADS)

    Jensen, Bettina E. B.; Hosta-Rigau, Leticia; Spycher, Philipp R.; Reimhult, Erik; Städler, Brigitte; Zelikin, Alexander N.

    2013-07-01

    Drug-eluting engineered surface coatings are of paramount importance for many biomedical applications from implantable devices to tissue engineering. Herein, we present the assembly of lipogels, composite physical hydrogels assembled from poly(vinyl alcohol) and liposomes using thiol-disulfide exchange between end group modified PVA and thiocholesterol containing liposomes, and the response of adhering cells to these coatings. We demonstrate the controlled loading of liposomes into the polymer matrix and the preserved mechanical properties of the lipogels. Furthermore, the lipogels are successfully rendered cell adhesive by incorporation of poly(l-lysine) into the PVA polymer matrix or by poly(dopamine) coating of the lipogels. The successful lipid uptake from the lipogels by macrophages, hepatocytes, and myoblasts was monitored by flow cytometry. Finally, the delivery of active cargo, paclitaxel, to adherent myoblasts is shown, thus illustrating the potential of the lipogels as a drug eluting interface for biomedical applications.Drug-eluting engineered surface coatings are of paramount importance for many biomedical applications from implantable devices to tissue engineering. Herein, we present the assembly of lipogels, composite physical hydrogels assembled from poly(vinyl alcohol) and liposomes using thiol-disulfide exchange between end group modified PVA and thiocholesterol containing liposomes, and the response of adhering cells to these coatings. We demonstrate the controlled loading of liposomes into the polymer matrix and the preserved mechanical properties of the lipogels. Furthermore, the lipogels are successfully rendered cell adhesive by incorporation of poly(l-lysine) into the PVA polymer matrix or by poly(dopamine) coating of the lipogels. The successful lipid uptake from the lipogels by macrophages, hepatocytes, and myoblasts was monitored by flow cytometry. Finally, the delivery of active cargo, paclitaxel, to adherent myoblasts is shown, thus

  3. Development of structure in natural silk spinning and poly(vinyl alcohol) hydrogel formation

    NASA Astrophysics Data System (ADS)

    Willcox, Patricia Jeanene

    This research involves the characterization of structure and structure formation in aqueous systems. Particularly, these studies investigate the effect of various processing variables on the structure formation that occurs upon conversion from aqueous solution to fiber or hydrogel. The two processes studied include natural silk fiber spinning and physical gelation of poly(vinyl alcohol), PVOH, in water. The techniques employed combine cryogenic technology for sample preparation and direct observation by transmission electron microscopy with electron diffraction, atomic force microscopy, optical rheometry, X-ray scattering and optical microscopy. In order to explore the full range of structure formation in natural silk spinning, studies are conducted in vivo and in vitro. In vivo structural investigations are accomplished through the cryogenic quenching and subsequent microtoming of live silk-spinning animals, Nephila clavipes (spider) and Bombyx mori (silkworm). Observations made using transmission electron microscopy, electron diffraction and atomic force microscopy indicate a cholesteric liquid crystalline mesophase of aqueous silk fibroin in both species. The mechanism of structure formation in solution is studied in vitro using optical rheometry on aqueous solutions made from regenerated Bombyx mori cocoon silk. Concentrated solutions exhibit birefringence under flow, with a wormlike conformation of the silk molecules in concentrated salt solution. Changes in salt concentration and pH of the aqueous silk solutions result in differing degrees of alignment and aggregation. These results suggest that structural control in the natural silk spinning process is accomplished by chemical manipulation of the electrostatic interactions and hydrogen bonding between chains. Application of cryogenic methods in transmission electron microscopy also provides a unique look at hydration-dependent structures in gels of poly(vinyl alcohol) produced by freeze-thaw processing

  4. [Biosensors based on the luminous bacteria Photobaterium phosphoreum immobilized in polyvinyl alcohol cryogel for the monitoring of ecotoxicants].

    PubMed

    Efremenko, E N; Sen'ko, O V; Aleskerova, L É; Alenina, K A; Mazhul', M M; Ismailov, A D

    2014-01-01

    Immobilization of Photobacterium phosphoreum bacteria in polyvinyl alcohol cryogel was performed in order to develop biosensors used for ecotoxicant biomonitoring. The immobilization procedure, storage, and application of the immobilized cells for biomonitoring were optimized. It was shown that the immobilized cells demonstrate significantly higher stability and a longer duration of light emission than free bacteria. A discrete analysis of heavy metals and chlorophenols was conducted using the obtained biosensor samples.

  5. Polyvinyl alcohol (PVA)-cellulose nanofibril (CNF)-multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties

    Treesearch

    Qifeng Zheng; Alireza Javadi; Ronald Sabo; Zhiyong Cai; Shaoqin Gong

    2013-01-01

    Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels were prepared using an environmentally friendly freeze-drying process with renewable materials. The material properties of these “green” hybrid aerogels were characterized extensively using various techniques. It was found that adding a small amount of CNFs...

  6. Biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel for knee meniscus applications, including comparison with human donor samples.

    PubMed

    Hayes, Jennifer C; Curley, Colin; Tierney, Paul; Kennedy, James E

    2016-03-01

    The primary objective of this research was the biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel, in order to assess its potential for use as an artificial meniscal implant. Aqueous polyvinyl alcohol (PVA) was treated with a sodium sulphate (Na2SO4) solution to precipitate out the polyvinyl alcohol resulting in a pliable hydrogel. The freeze-thaw process, a strictly physical method of crosslinking, was employed to crosslink the hydrogel. Development of a meniscal shaped mould and sample housing unit allowed the production of meniscal shaped hydrogels for direct comparison to human meniscal tissue. Results obtained show that compressive responses were slightly higher in PVA/Na2SO4 menisci, displaying maximum compressive loads of 2472N, 2482N and 2476N for samples having undergone 1, 3 and 5 freeze-thaw cycles respectively. When compared to the human meniscal tissue tested under the same conditions, an average maximum load of 2467.5N was observed. This suggests that the PVA/Na2SO4 menisci are mechanically comparable to the human meniscus. Biocompatibility analysis of PVA/Na2SO4 hydrogels revealed no acute cytotoxicity. The work described herein has innovative potential in load bearing applications, specifically as an alternative to meniscectomy as replacement of critically damaged meniscal tissue in the knee joint where repair is not viable.

  7. Influence of Block Copolymerization on the Antifreeze Protein Mimetic Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol).

    PubMed

    Congdon, Thomas R; Notman, Rebecca; Gibson, Matthew I

    2016-09-12

    Antifreeze (glyco) proteins are produced by many cold-acclimatized species to enable them to survive subzero temperatures. These proteins have multiple macroscopic effects on ice crystal growth which makes them appealing for low-temperature applications-from cellular cryopreservation to food storage. Poly(vinyl alcohol) has remarkable ice recrystallization inhibition activity, but its mode of action is uncertain as is the extent at which it can be incorporated into other high-order structures. Here the synthesis and characterization of well-defined block copolymers containing poly(vinyl alcohol) and poly(vinylpyrrolidone) by RAFT/MADIX polymerization is reported, as new antifreeze protein mimetics. The effect of adding a large second hydrophilic block is studied across a range of compositions, and it is found to be a passive component in ice recrystallization inhibition assays, enabling retention of all activity. In the extreme case, a block copolymer with only 10% poly(vinyl alcohol) was found to retain all activity, where statistical copolymers of PVA lose all activity with very minor changes to composition. These findings present a new method to increase the complexity of antifreeze protein mimetic materials, while retaining activity, and also to help understand the underlying mechanisms of action.

  8. Comparison of polyvinyl alcohol and tris-acryl gelatin microsphere materials in embolization for symptomatic leiomyomas: a systematic review.

    PubMed

    Jiang, Wenxiao; Shen, Zhaojun; Luo, Hui; Hu, Xiaoli; Zhu, Xueqiong

    2016-12-01

    Use systematic reviews and meta-analyses to assess the effect of polyvinyl alcohol and tris-acryl gelatin microsphere materials in leiomyoma embolization for symptomatic leiomyomas. We included randomised controlled studies published before January 2015 comparing polyvinyl alcohol and tris-acryl gelatin microsphere materials in uterine leiomyoma embolization for women with symptomatic leiomyomas. The main outcome measures included change of overall quality of life, change of overall symptom severity, changes of uterine and leiomyoma volumes, leiomyoma infarction rate, treatment failure and complications. A total of six randomized controlled studies from 335 studies accounting for 351 women with leiomyomas were identified in this meta-analysis. Compared to polyvinyl alcohol, tris-acryl gelatin microsphere showed a significant benefit in improving the overall quality of life and in reducing uterine volume at three and six months, in reducing overall symptom severity at 6 and 12 months, and furthermore in reducing treatment failure. In addition, tris-acryl gelatin microsphere could significantly reduce leiomyoma volume and decrease <90% complete leiomyoma infarction rate at three months. There were no differences in pain severity, other post-procedural symptoms or medication use in the two groups. A better effect of tris-acryl gelatin microsphere in leiomyoma embolization for patients with symptomatic leiomyoma.

  9. Enabling thermal processing of ritonavir-polyvinyl alcohol amorphous solid dispersions by KinetiSol® Dispersing.

    PubMed

    LaFountaine, Justin S; Jermain, Scott V; Prasad, Leena Kumari; Brough, Chris; Miller, Dave A; Lubda, Dieter; McGinity, James W; Williams, Robert O

    2016-04-01

    Polyvinyl alcohol has received little attention as a matrix polymer in amorphous solid dispersions (ASDs) due to its thermal and rheological limitations in extrusion processing and limited organic solubility in spray drying applications. Additionally, in extrusion processing, the high temperatures required to process often exclude thermally labile APIs. The purpose of this study was to evaluate the feasibility of processing polyvinyl alcohol amorphous solid dispersions utilizing the model compound ritonavir with KinetiSol® Dispersing (KSD) technology. The effects of KSD rotor speed and ejection temperature on the physicochemical properties of the processed material were evaluated. Powder X-ray diffraction and modulated differential scanning calorimetry were used to confirm amorphous conversion. Liquid chromatography-mass spectroscopy was used to characterize and identify degradation pathways of ritonavir during KSD processing and (13)C nuclear magnetic resonance spectroscopy was used to investigate polymer stability. An optimal range of processing conditions was found that resulted in amorphous product and minimal to no drug and polymer degradation. Drug release of the ASD produced from the optimal processing conditions was evaluated using a non-sink, pH-shift dissolution test. The ability to process amorphous solid dispersions with polyvinyl alcohol as a matrix polymer will enable further investigations of the polymer's performance in amorphous systems for poorly water-soluble compounds.

  10. Influence of Block Copolymerization on the Antifreeze Protein Mimetic Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol)

    PubMed Central

    2016-01-01

    Antifreeze (glyco) proteins are produced by many cold-acclimatized species to enable them to survive subzero temperatures. These proteins have multiple macroscopic effects on ice crystal growth which makes them appealing for low-temperature applications—from cellular cryopreservation to food storage. Poly(vinyl alcohol) has remarkable ice recrystallization inhibition activity, but its mode of action is uncertain as is the extent at which it can be incorporated into other high-order structures. Here the synthesis and characterization of well-defined block copolymers containing poly(vinyl alcohol) and poly(vinylpyrrolidone) by RAFT/MADIX polymerization is reported, as new antifreeze protein mimetics. The effect of adding a large second hydrophilic block is studied across a range of compositions, and it is found to be a passive component in ice recrystallization inhibition assays, enabling retention of all activity. In the extreme case, a block copolymer with only 10% poly(vinyl alcohol) was found to retain all activity, where statistical copolymers of PVA lose all activity with very minor changes to composition. These findings present a new method to increase the complexity of antifreeze protein mimetic materials, while retaining activity, and also to help understand the underlying mechanisms of action. PMID:27476873

  11. Adsorption properties of polyvinyl-alcohol-grafted particles toward genistein driven by hydrogen-bond interaction.

    PubMed

    Zhang, Yanyan; Gao, Baojiao; Xu, Zeqing

    2013-05-09

    The adsorption properties of polyvinyl alcohol (PVA)-grafted silica gel particles PVA/SiO2 toward genistein are researched in this paper. The effects of the main factors on the adsorption properties are investigated, the adsorption mechanism is explored in depth, and the adsorption thermodynamics is researched. The experimental results show that the conventional hydrogen bond is formed between the hydroxyl groups with high density on the surfaces of PVA/SiO2 and the phenolic hydroxyl groups in genistein, while π-type hydrogen bond is formed between the hydroxyl groups of PVA/SiO2 and the conjugated aromatic rings. It is the two types of hydrogen bond that make the functional composite particles PVA/SiO2 produce very strong physical adsorption toward genistein. The competitive adsorption of the solvent can have severe negative impact on the adsorption capacity of genistein. Increasing temperature will weaken the hydrogen-bond interaction between PVA/SiO2 particles and genistein. The existence of electrolytes in the protic solvent will affect the adsorption negatively. The adsorption process of PVA/SiO2 particles toward genistein is exothermic and driven by enthalpy. The adsorption isotherm data matches the Langmuir model.

  12. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    PubMed

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  13. Dehydration of dioxane by pervaporation using filled blend membranes of polyvinyl alcohol and sodium alginate.

    PubMed

    Kuila, Sunil Baran; Ray, Samit Kumar

    2014-01-30

    Pervaporation membranes were made by solution blending of polyvinyl alcohol (PVA) and sodium alginate (SA). Accordingly, five different blends with PVA:SA weight ratio of 75:25, 50:50, 25:75, 20:80 and 10:90 designated as PS1, PS2, PS3, PS4 and PS5, respectively, were prepared. Each of these blends was crosslinked with 2, 4 and 6 wt% glutaraldehyde and the resulting fifteen (5 × 3) membranes were used for pervaporative separation of 90 wt% dioxane in water. The membranes made from PS4 and PS5 were not stable during pervaporation experiments. Among the stable membranes PS3 membrane crosslinked with 2 wt% glutaraldehyde showed the best results for flux and selectivity. Thus, it was filled with nano size sodium montmorillonite filler and used for separation of dioxane-water mixtures over the entire concentration range of 80-99.5 wt% dioxane in water. The membranes were also characterized by mechanical properties, FTIR, SEM, DTA-TGA and XRD.

  14. Characterization of a polyvinyl alcohol-hydrogel artificial articular cartilage prepared by injection molding.

    PubMed

    Kobayashi, Masanori; Oka, Masanori

    2004-01-01

    We have developed a hip hemi-arthroplasty using polyvinyl alcohol-hydrogel (PVA-H) as the treatment for hip joint disorders in which the lesion is limited to the joint surface. In previous studies, we characterized the biocompatibility and the mechanical properties of PVA-H as an arthroplasty material. To fix PVA-H firmly to the bone, we have devised an implant composed of PVA-H and porous titanium fiber mesh (TFM). However, because of poor infiltration of the PVA solution into the pores of the TFM when using the low temperature crystallization method, the strength of the PVA-H-TFM interface was insufficient. Consequently, the infiltration method was improved by adopting high-pressure injection molding. With this improved method, the bonding strength of the interface increased remarkably. However, as this injection molding requires high temperature, various mechanical properties of the PVA-H might change with this treatment in comparison with the previous method. The purpose of this study was to investigate the effect of high temperature treatment on the mechanical properties of PVA-H as artificial articular cartilage, the tensile test and friction test were performed about new PVA-H. The results showed no significant mechanical deterioration of the PVA-H. This certified that the injection-molding method did not induce the change of the mechanical properties of PVA-H and indicated the potential of hemi-arthroplasty using PVA-H by this method in the future.

  15. Recording of diffraction gratings in polyvinyl alcohol/acrylamide photopolymers by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Garcia, Celia; Costela, Angel; Fimia, Antonio; Garcia-Moreno, Inmaculada; Pascual, Inmaculada V.; Sastre, Roberto

    2001-06-01

    In this communication we present the experimental results obtained when diffraction gratings are stored using pulsed exposure in polyvinyl alcohol/acrylamide photopolymer deposited in a dry film. The influence of the energy of the irradiation pulse was studied and the number of pulses needed to reach maximum diffraction efficiency was obtained. The recording was performed using a n holographic copying process. The original patten employed was a gratin of 1000 lines/mm processed according to sliver halide sensitized gelatin, with a beam ratio of 1:2 and transmittance of 75 percent. We exposed the samples by recording holograms with as collimated beam from a frequency-doubled Nd:YAG Q- switched laser. The pulse duration was approximately 8 ns and the frequency of repetition varied between 2 and 10 Hz. The pulse fluence was increased from 0.07 mJ/cm2 to 6.7 mJ/cm2. Our initial results show that it is possible to obtain diffraction gratings with a diffraction efficiency of 60 percent. The energetic sensitivities achieved are close to those obtained when working with the same material and continuous irradiation, without processing of the gratings.

  16. [Characterization of collagen/polyvinyl alcohol complex membrane crosslinked by UV-riboflavin].

    PubMed

    Zhao, Hongbin; Ma, Hui; Zeng, Ping; Lin, Yang; Zhang, Quanwei

    2013-10-01

    The objective of this investigation was to study the characteristics and biocompatibility of collagen/polyvinyl alcohol (PVA) membrane crosslinked by UV-riboflavin. Membranes that were made into complex ones with different mass ratios of collagen to PVA (1:1 and 2:1) were synthesized, and crosslinked with UV-riboflavin. The surface characteristics were analyzed using the omnipotent materials instrument, IR, SEM, water absorption test, gas permeability test, and degradation test, respectively. The biocompatibility of membrane complex and rat bone marrow mesenchymal stem cells (BMSCs) was evaluated after 7 d and 14 d, respectively. The collagen/PVA complex membranes showed good homogeneity, mechanical property, degradation ratio, water absorption, gas permeability, etc. The biocompatibility of the collagen/PVA (2:1) complex membrane crosslinked with UV-Riboflavin was higher than that of without crosslinking and collagen/PVA (1:1) membrane. It could be well concluded that collagen/PVA complex membranes crosslinked with UV-riboflavin would have a potential application in biomedicine.

  17. Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity.

    PubMed

    Tian, Huafeng; Yan, Jiaan; Rajulu, A Varada; Xiang, Aimin; Luo, Xiaogang

    2017-03-01

    In this work, starch/polyvinyl alcohol (PVA) blend films with different compositions were prepared by melt processing. The effect of the composition and relative humidity (RH) on the structure and properties of the resulting blends were investigated. OH groups on starch and PVA formed hydrogen bonding interactions, which could improve the compatibility of the two components. With the increase of starch, the degree of crystallinity of PVA component decreased. The fracture surface of the blend films exhibited rough surface, suggesting the tough fracture. With the increase of starch, the water uptake at equilibrium decreased. With the increase of RH, the water uptake at equilibrium of the resulting blends increased. The tensile strength, elongation at break and Young's modulus decreased with increasing content of starch. However, at 50% starch content, the flexibility of the blend films was still high, with the elongation at break more than 1000% and tensile strength of 9MPa, which was superior to the commonly LDPE package films. The tensile strength and Young's modulus decreased with the increase of RH, while the elongation at break was enhanced dramatically, indicating the improved flexibility. Therefore, these kinds of blend films exhibited wide application potentials as packaging materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol-silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. H.

    2015-03-01

    Silver nanoparticles (Ag NPs) were synthesized by chemical reduction of silver salt (AgNO3) through sodium borohydride. The characteristic surface plasmon resonance band located at around 400 nm in the UV-Visible absorption spectrum confirmed the formation of Ag nanoparticles. Polyvinyl alcohol-silver (PVA-Ag) nanocomposite films were prepared by the casting technique. The morphology and interaction of PVA with Ag NPs were examined by transmission electron microscopy and FTIR spectroscopy. Optical studies show that PVA exhibited indirect allowed optical transition with optical energy gap of 4.8 eV, which reduced to 4.45 eV under addition of Ag NPs. Optical parameters such as refractive index, complex dielectric constant and their dispersions have been analyzed using Wemple and DiDomenco model. Color properties of the nanocomposites are discussed in the framework of CIE L∗u∗v∗ color space. The antimicrobial activity of the nanocomposite samples was tested against Gram positive bacteria (Staphylococcus aureus NCTC 7447 &Bacillus subtillis NCIB 3610), Gram negative bacteria (Escherichia coli, NTC10416 &Pseudomonas aeruginosa NCIB 9016) and fungi (Aspergillus niger Ferm - BAM C-21) using the agar diffusion technique. The antimicrobial study showed that PVA has moderate antibacterial activity against B. subtillis and the 0.04 wt% Ag NPs composite sample effect was strong against S. aureus.

  19. Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature

    NASA Astrophysics Data System (ADS)

    Chakraborty, G.; Gupta, K.; Meikap, A. K.; Babu, R.; Blau, W. J.

    2011-02-01

    The dc and ac electrical transport property of polyvinyl alcohol-multiwall carbon nanotubes composites has been investigated within a temperature range 77≤T≤300 K and in the frequency range 20 Hz-1 MHz in presence as well as in absence of a transverse magnetic field up to 1 T. The dc conductivity follows variable range hopping model. The magnetoconductivity of the samples changes a sign from positive to negative with an increase in temperature which can be interpreted by the dominancy of the quantum interference effect over the wave function shrinkage effect. The ac conductivity follows a power law whereas the temperature dependence of frequency exponent s can be explained by correlated barrier hopping model. The dielectric behavior of the samples has been governed by the grain and grain boundary resistance and capacitance. The ac conductivity reduces with the application of magnetic field. Although the theoretical model to explain it, is still lacking, we may conclude that this is due to the increase in grain and grain boundary resistance by the application of magnetic field.

  20. Nonlinear optical characterization of the Ag nanoparticles doped in polyvinyl alcohol films

    NASA Astrophysics Data System (ADS)

    Ghanipour, Mahshad; Dorranian, Davoud

    2015-06-01

    The effect of silver nanoparticles doped in polyvinyl alcohol (PVA) on the nonlinear optical properties of composite films is studied experimentally. Samples are PVA films of 0.14 mm thickness doped with different concentrations of silver nanoparticles. Nonlinear optical properties of doped polymer films are studied experimentally employing Z-scan techniques. Experiments are performed using the second harmonic of a continuous Nd-Yag laser beam at 532 nm wavelength and 45 mW power. The effect of nonlinear refractive index of samples is obtained by measuring the profile of propagated beam through the samples and their nonlinear refractive index is found to be negative. The nonlinear absorption coefficient is calculated using open aperture Z-scan data while its nonlinear refractive index is measured using the closed aperture Z-scan data, leads to measuring the third order susceptibility |χ(3)|. Real and imaginary parts of the third-order nonlinear optical susceptibility |χ(3)| are decrease with increasing the concentration of Ag nanoparticles in the films. The values of thermo-optic coefficient are determined at different concentrations of silver nanoparticles for samples.

  1. Dual functions of polyvinyl alcohol (PVA): fabricating particles and electrospinning nanofibers applied in controlled drug release

    NASA Astrophysics Data System (ADS)

    Qin, Xiao-Hong; Wu, De-Qun; Chu, Chih-Chang

    2013-01-01

    The fabrication of submicron size microsphere from 8-Phe-4 poly(ester amide) (PEA) using polyvinyl alcohol (PVA) as the emulsion was reported. The biodegradable microspheres were prepared by an oil-in-water emulsion/solvent evaporation technique, and PVA was used as the emulsion. Furthermore, the emulsion PVA was electrospun into nanofibrous mats, and 8-Phe-4 PEA microspheres were entrapped in the resultant mats. The dual functions of PVA to fabricate ideal nanofibrous mats which can entrap microspheres in them and to obtain 8-Phe-4 microspheres as emulsion in their potential application were demonstrated. The anti-cancer drug doxorubicin (DOX) was encapsulated in the 8-Phe-4 amino acid-based PEA microspheres and the entrapment efficiency is almost 100 %. At the same time, the DOX can be controlled released in PBS solution and in α-chymotrypsin solution. The cytotoxicity of PVA, PVA mats-entrapped 8-Phe-4 microspheres and PVA mats-entrapped DOX-loaded 8-Phe-4 microspheres, was investigated. Hela cells were used to test the cytotoxicity of the DOX that released from the PVA mats-entrapped DOX-loaded 8-Phe-4 microspheres for 2 days, and the cell viability is below 30 % when the 8-Phe-4 microspheres concentration is 1 mg/mL. It demonstrated that the PVA mats-entrapped DOX-loaded 8-Phe-4 microspheres have a potential biomedical application.

  2. Biocompatible poly(vinyl alcohol) nanoparticle-based binary blends for oil spill control.

    PubMed

    Fouad, Rasha Refaat; Aljohani, Hind Abdullah; Shoueir, Kamel Rizq

    2016-11-15

    In the current study, biocompatible and biodegradable blends based on poly(vinyl alcohol) nanoparticles - PVAn mixed with either chitosan (Ch) or starch (St) - were prepared and investigated as nanoabsorbents for oil elimination from wastewater. The use of water/dimethyl sulfoxide (DMSO) as a mixed solvent is the key factor for preparing aggregated PVAn, which is further mixed with Ch or St. Nanoblends were applied as oil absorbents, and the results showed that PVAn/St possess high adsorption capacity than PVAn/Ch and PVAn. The maximum sorption capacities (qg/g) of the PVAn/Ch sorbents for hydraulic oil, kerosene, and toluene were 33.6, 73.96, and 93.1g/g, respectively. The absorbed oil could be rapidly recovered by simple mechanical squeezing and reused without any other modification. The blends showed excellent reusability and could be reused for at least 10 times with minimal losses. The current study demonstrates the application of these blends as an ideal alternative sorbent for oil spillage cleanup. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.

    PubMed

    Karimi, A; Navidbakhsh, M; Faghihi, S

    2014-05-01

    Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering.

  4. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Belmonte, Guilherme Kretzmann; Charles, German; Strumia, Miriam Cristina; Weibel, Daniel Eduardo

    2016-09-01

    Polypropylene (PP) and Poly(vinyl alcohol) (PVA) both synthetics polymers but one of them biodegradable, were surface modified by vacuum ultraviolet (VUV) irradiation. After VUV irradiation in an inert nitrogen atmosphere, the films were exposed to oxygen gas. The treated films were characterized by water contact angle measurements (WCA), optical profilometry, FTIR-ATR, XPS, UPS and NEXAFS techniques. PP and PVA VUV-treated films reached superhydrophilic conditions (WCAs <10°) in about 30 min of irradiation under our experimental conditions. It was observed that when the WCAs reached about 35-40° the hydrophilicity was permanent in both polymers. These results contrasted with typical plasma treatments were a rapid hydrophobic recovery with aging time is usually observed. UPS and XPS data showed the presence of new functionalities on the PP and PVA surfaces that were assigned to COO, Cdbnd O, Csbnd O and Cdbnd C functional groups. Finally, grafting of styrene (ST) as a typical monomer was tested on PP films. It was confirmed that only in the VUV irradiated region an efficient grafting of ST or polymerized ST was found. Outside the irradiated regions no ST grafted was observed. Our results showed the potential use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region.

  5. Poly(vinyl alcohol) hydrogel as a biocompatible viscoelastic mimetic for articular cartilage.

    PubMed

    Grant, Colin; Twigg, Pete; Egan, Alex; Moody, Alexandra; Smith, Annie; Eagland, Donald; Crowther, Nicholas; Britland, Steve

    2006-01-01

    The prevalence of suboptimal outcome for surgical interventions in the treatment of full-thickness articular cartilage damage suggests that there is scope for a materials-based strategy to deliver a more durable repair. Given that the superficial layer of articular cartilage creates and sustains the tribological function of synovial joints, it is logical that candidate materials should have surface viscoelastic properties that mimic native articular cartilage. The present paper describes force spectroscopy analysis by nano-indentation to measure the elastic modulus of the surface of a novel poly(vinyl alcohol) hydrogel with therapeutic potential as a joint implant. More than 1 order of magnitude decrease in the elastic modulus was detected after adsorption of a hyaluronic acid layer onto the hydrogel, bringing it very close to previously reported values for articular cartilage. Covalent derivatization of the hydrogel surface with fibronectin facilitated the adhesion and growth of cultured rat tibial condyle chondrocytes as evidenced morphologically and by the observance of metachromatic staining with toluidine blue dye. The present results indicate that hydrogel materials with potential therapeutic benefit for injured and diseased joints can be engineered with surfaces with biomechanical properties similar to those of native tissue and are accepted as such by their constituent cell type.

  6. Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Shaohua; Ma, Wujun; Xiang, Hengxue; Cheng, Yanhua; Yang, Shengyuan; Weng, Wei; Zhu, Meifang

    2016-07-01

    Graphene fibers based flexible supercapacitors have great potential as wearable power sources for textile electronics. However, their electrochemical performance is limited by the serious stacking of graphene sheets and their hydrophobicity in aqueous electrolytes. Meanwhile, their brittleness is unfavorable for practical application. Incorporation of nanofillers into graphene fibers has been proved effective for enhancing their capacitance, whereas often leading to deteriorated mechanical strength. Herein we demonstrate that the strength, toughness and capacitive performance of graphene-based fibers can be significantly enhanced simultaneously, simply by incorporating hydrophilic poly(vinyl alcohol) (PVA) into a non-liquid-crystalline graphene oxide (GO) dispersion before wet spinning and chemical reduction. The structure and properties of the resulted PVA/graphene hybrid fibers are systematically investigated, and the mechanism behind these enhancements is discussed in detail. The hybrid fiber with a PVA/GO weight ratio of 10/90 possesses a strength of 186 MPa, a toughness of 11.3 J cm-3, and a capacitance of 241 F cm-3 in 1 M H2SO4. A solid-state yarn supercapacitor assembled from these fibers exhibits a device energy of 5.97 mW h cm-3, and features excellent flexibility and bending stability. This device is robust enough to be integrated into textile and thus promising as wearable power supply for smart textiles.

  7. Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinyl alcohol/polyaniline films

    NASA Astrophysics Data System (ADS)

    El-Sayed, Somyia; Abel-Baset, Tarob; Elfadl, Azza Abou; Hassen, Arafa

    2015-05-01

    Nanosilica (NS) was synthesized by a sol-gel method and mixed with 0.98 polyvinyl alcohol (PVA)/0.02 polyaniline (PANI) in different amounts to produce nanocomposite films. High-resolution transmission electron microscopy (HR-TEM) revealed the average particle size of the NS to be ca. 15 nm. Scanning electron microscopy (SEM) showed that the NS was well-dispersed on the surface of the PVA/PNAI films. The Fourier transform infrared (FTIR) spectra of the samples showed a significant change in the intensity of the characteristic peak of the functional groups in the composite films with the amount of NS added. The absorbance and refractive index (n) of the composites were studied in the UV-vis range, and the optical energy band gap, Eg, and different optical parameters were calculated. The dielectric loss modulus, M″ and ac conductivity, σac, of the samples were studied within 300-425 K and 0.1 kHz-5 MHz, respectively. Two relaxation peaks were observed in the frequency dependence of the dielectric loss modulus, M″. The behavior of σac(f) for the composite films indicated that the conduction mechanism was correlated barrier hopping (CBH). The results of this work are discussed and compared with those of previous studies of similar composites.

  8. Magnetically mediated release of ciprofloxacin from polyvinyl alcohol based superparamagnetic nanocomposites.

    PubMed

    Bajpai, A K; Gupta, Rashmi

    2011-02-01

    Polymer nanocomposites exhibiting superparamagnetic behavior have been recognized as a promising tool to achieve targeted drug delivery using external magnetic field for treating complex diseases like cancers and tumors. The present investigation attempts to design a superparamagnetic nanocomposite which could desirably deliver ciprofloxacin drug by application of varying magnetic field. In order to achieve the proposed objectives, a polymer matrix of polyvinyl alcohol-g-polymethyl methacrylate was prepared by free radical polymerization and iron oxide particles were impregnated by in situ precipitation method. The prepared nanocomposites were characterized by techniques like FTIR, electron microscopy (SEM and TEM) and XRD and magnetization studies were performed to ensure superparamagnetic behavior. The antibiotic drug ciprofloxacin was loaded onto the magnetic nanocomposites and the influence of various factors such as percent loading, chemical composition of the nanocomposite, applied magnetic field, pH of the release medium were investigated on the release profiles of the drug. The chemical integrity of the drug and its antibacterial potential were also studied. The dynamics of the release process was also examined mechanistically.

  9. Arterial Distribution of Calibrated Tris-Acryl Gelatin and Polyvinyl Alcohol Embolization Microspheres in Sheep Uterus

    SciTech Connect

    Laurent, Alexandre; Wassef, Michel; Namur, Julien; Ghegediban, Homayra; Pelage, Jean-Pierre

    2010-10-15

    The purpose of this study was to compare, after embolization, the distribution in the uterine arterial vasculature of tris-acryl gelatin microspheres (TGMS) and polyvinyl alcohol microspheres (PVAMS). A limited bilateral uterine artery embolization was performed in six adult sheep under fluoroscopic control by injecting in each uterine artery 0.25 ml of 500- to 700-{mu}m TGMS of PVAMS suspended in 50/50 saline/contrast medium. Sacrifices were performed 1 week after embolization and uteri were analyzed histologically. The number and size of microspheres and vessels were measured, as well as the histological location according to a classification in four zones of the uterus. One hundred sixty-five vessels (69 vessels occluded with TGMS and 96 vessels occluded with PVAMS) were measured. The size of the occluded vessels decreased significantly from proximal to distal zones of the uterine vasculature (P < 0.0001). The location of TGMS and PVAMS within the vasculature was significantly different (P < 0.0001) since PVAMS blocked significantly more distally than TGMS. Deformation of the microspheres within the tissue was greater for PVAMS (18.0% {+-} 12.3%) than for TGMS (8.7% {+-} 9.2%) (P < 0.0001). In conclusion, PVAMS have a more distal distribution in the sheep uterine vasculature, compared to TGMS. Such differences in partition, already described in the kidney embolization model, can ultimately explain the different clinical outcome reported with these two types of microspheres in uterine fibroid embolization.

  10. Dielectric relaxation and ac conductivity behaviour of polyvinyl alcohol-HgSe quantum dot hybrid films

    NASA Astrophysics Data System (ADS)

    Sinha, Subhojyoti; Chatterjee, Sanat Kumar; Ghosh, Jiten; Meikap, Ajit Kumar

    2014-07-01

    Here we report a comparative study on the dielectric relaxation and ac conductivity behaviour of pure polyvinyl alcohol (PVA) and PVA-mercury selenide (HgSe) quantum dot hybrid films in the temperature range 298 K ⩽ T ⩽ 420 K and in the frequency range 100 Hz ⩽ f ⩽ 1 MHz. The prepared nanocomposite exhibits a larger dielectric constant as compared to the pure PVA. The real and imaginary parts of the dielectric constants were found to fit appreciably with the modified Cole-Cole equation, from which temperature-dependent values of the relaxation times, free charge carrier conductivity and space charge carrier conductivity were calculated. The relaxation time decreases with the quantum dot's inclusion in the PVA matrix and with an increase in temperature, whereas free charge carrier conductivity and space charge carrier conductivity increases with an increase in temperature. An increase in ac conductivity for the nanocomposites has also been observed, while the charge transport mechanism was found to follow the correlated barrier hopping model in both cases. An easy-path model with a suitable electrical equivalent circuit has been employed to analyse the temperature-dependent impedance spectra. The imaginary part of the complex electric modulus spectra exhibit an asymmetric nature and a non-Debye type of behaviour, which has been elucidated considering a generalized susceptibility function. The electric modulus spectra of the nanocomposite demonstrate a smaller amplitude and broader width, as compared to the pure PVA sample.

  11. Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite.

    PubMed

    Shanthini, G M; Sakthivel, N; Menon, Ranjini; Nabhiraj, P Y; Gómez-Tejedor, J A; Meseguer-Dueñas, J M; Gómez Ribelles, J L; Krishna, J B M; Kalkura, S Narayana

    2016-11-20

    Novel Cellulose (Cel) reinforced polyvinyl alcohol (PVA)-Silica (Si) composite which has good stability and in vitro degradation was prepared by lyophilization technique and implanted using N(3+) ions of energy 24keV in the fluences of 1×10(15), 5×10(15) and 1×10(16)ions/cm(2). SEM analysis revealed the formation of microstructures, and improved the surface roughness on ion implantation. In addition to these structural changes, the implantation significantly modified the luminescent, thermal and mechanical properties of the samples. The elastic modulus of the implanted samples has increased by about 50 times compared to the pristine which confirms that the stiffness of the sample surface has increased remarkably on ion implantation. The photoluminescence of the native cellulose has improved greatly due to defect site, dangling bonds and hydrogen passivation. Electric conductivity of the ion implanted samples was improved by about 25%. Hence, low energy ion implantation tunes the mechanical property, surface roughness and further induces the formation of nano structures. MG63 cells seeded onto the scaffolds reveals that with the increase in implantation fluence, the cell attachment, viability and proliferation have improved greatly compared to pristine. The enhancement of cell growth of about 59% was observed in the implanted samples compared to pristine. These properties will enable the scaffolds to be ideal for bone tissue engineering and imaging applications.

  12. Controlled release of retinyl acetate from β-cyclodextrin functionalized poly(vinyl alcohol) electrospun nanofibers.

    PubMed

    Lemma, Solomon M; Scampicchio, Matteo; Mahon, Peter J; Sbarski, Igor; Wang, James; Kingshott, Peter

    2015-04-08

    Retinyl acetate (RA) was effectively incorporated into electrospun nanofibers of poly(vinyl alcohol) (PVA) containing β-cyclodextrin (β-CD) in order to form inclusion complexes for encapsulation to prolong shelf life and thermal stability. The physical and thermal properties of encapsulated RA were determined by scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The nanofibers of PVA/RA and PVA/RA/β-CD exhibited bead free average fiber diameters of 264 ± 61 and 223 ± 49 nm, respectively. The surface chemistry of the functional nanofibers was investigated by X-ray photoelectron spectroscopy (XPS). Thermogravimetric analysis (TGA) demonstrated different thermal stabilities between the bioactive and the polymer, with and without β-CD. Square-wave voltammogram peak current changes were used to follow the release kinetics of RA from the nanofibers. Results indicate that RA coated inside PVA/β-CD nanofibers was protected against oxidation much better than RA in PVA nanofibers and should extend the shelf life. In addition, RA encapsulated in the PVA/β-CD had better thermal stability than PVA nanofibers.

  13. Polyaniline coated cellulose fiber / polyvinyl alcohol composites with high dielectric permittivity and low percolation threshold

    NASA Astrophysics Data System (ADS)

    Anju, V. P.; Narayanankutty, Sunil K.

    2016-01-01

    Cost effective, high performance dielectric composites based on polyvinyl alcohol, cellulose fibers and polyaniline were prepared and the dielectric properties were studied as a function of fiber content, fiber dimensions and polyaniline content over a frequency range of 40 Hz to 30 MHz. The short cellulose fibers were size-reduced to micro and nano levels prior to coating with polyaniline. Fiber surface was coated with Polyaniline (PANI) by an in situ polymerization technique in aqueous medium. The composites were then prepared by solution casting method. Short cellulose fiber composites showed a dielectric constant (DEC) of 2.3 x 105 at 40 Hz. For the micro- and nano- cellulose fiber composites the DEC was increased to 4.5 x 105 and 1.3 x 108, respectively. To gain insight into the inflection point of the dielectric data polynomial regression analysis was carried out. The loss tangent of all the composites remained at less than 1.5. Further, AC conductivity, real and imaginary electric moduli of all the composites were evaluated. PVA nanocomposite attained an AC conductivity of 3 S/m. These showed that by controlling the size of the fiber used, it was possible to tune the permittivity and dielectric loss to desired values over a wide range. These novel nanocomposites, combining high dielectric constant and low dielectric loss, can be effectively used in applications such as high-charge storage capacitors.

  14. Dye Adsorption Behavior of Polyvinyl Alcohol/Glutaraldehyde/β-Cyclodextrin Polymer Membranes

    NASA Astrophysics Data System (ADS)

    Ghemati, Dj.; Aliouche, Dj.

    2014-05-01

    Crosslinked polyvinyl alcohol/glutaraldehyde (PVA/GA) membranes were prepared, and attempts to obtain hydrophilic crosslinked PVA membranes were made by adding various amounts of β-cyclodexrin (β-CD), which is a typical cyclic oligosaccharide able to form inclusion complexes with organic host molecules (host-guest complexes). Thus, membranes of PVA/GA/β-CD were synthesized. The membranes were characterized by infrared spectroscopy (FTIR) and swelling measurements. The ability of cyclodextrin to include a wide variety of chemicals was also exploited for the dye adsorption to show the potentialities of the membranes in textile liquid waste processing. Adsorption of reactive methyl orange, and methylene blue dyes on PVA/GA/β-CD membranes was consequently studied using UV-Vis spectroscopy at wavelengths of 547, 463, and 660 nm. Adsorption reached equilibrium after 24 h. Results indicated that there is no covalent bond formation between PVA and β-CD; the β-CD is completely mixed into the PVA matrix polymer. The adsorption capacity increases with increasing amounts of cyclodextrin; the maximum adsorption capacity was obtained with 8% β-CD. Therefore, the change in adsorption capacities may be due to the dye structure effect, and the negative value of free energy indicated the spontaneous nature of adsorption.

  15. Dye-sensitized solar cell using 4-chloro-7-nitrobenzofurazan incorporated polyvinyl alcohol polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.; Arof, A. K.

    2016-11-01

    The influence of 4-chloro-7-nitrobenzofurazan (CNBF) on ionic conductivity of polyvinyl alcohol/KI/I2 (PVA/KI/I2) electrolytes was investigated in the present study. The pure and CNBF incorporated PVA/KI/I2 electrolyte films were prepared by solution casting method using dimethyl sulfoxide as a solvent. These polymer electrolyte films were characterized using Fourier transform infrared spectroscopy, X-ray diffractometer, UV-Vis spectrophotometer and impedance analysis. The ionic conductivities of polymer electrolyte films were calculated from impedance analysis. The pure PVA/KI/I2 electrolyte exhibited the ionic conductivity of 1.649 × 10-5 S cm-1 at room temperature and this value was significantly increased to 1.490 × 10-4 S cm-1 when CNBF was incorporated into the PVA/KI/I2 electrolyte. This might be due to the decrease in the crystallinity of the polymer and increase in the ionic mobility of charge carriers. The performance of the DSSCs using both pure and CNBF incorporated PVA/KI/I2 electrolytes were compared. A DSSC fabricated with CNBF incorporated PVA/KI/I2 electrolyte showed an improved power conversion efficiency of 3.89 % than that of the pure PVA/KI/I electrolyte (1.51 %). These results suggest that CNBF incorporated PVA/KI/I2 electrolyte could be used as a potential electrolyte for DSSC.

  16. Improvement of starch digestion using α-amylase entrapped in pectin-polyvinyl alcohol blend.

    PubMed

    Cruz, Maurício; Fernandes, Kátia; Cysneiros, Cristine; Nassar, Reginaldo; Caramori, Samantha

    2015-01-01

    Polyvinyl alcohol (PVA) and pectin blends were used to entrap α-amylase (Termamyl) using glutaraldehyde as a cross-linker. The effect of glutaraldehyde concentration (0.25, 0.5, 0.75, 1.0, and 1.25%) on the activity of the immobilized enzyme and rate of enzyme released was tested during a 24 h period. Characteristics of the material, such as scanning electron microscopy (SEM), tensile strength (TS), elongation, and rate of dissolution in water (pH 5.7), ruminal buffering solution (pH 7.0), and reactor containing 0.1 mol L(-1) sodium phosphate buffer (pH 6.5), were also analyzed. SEM results showed that the surfaces of the pectin/PVA/amylase films were highly irregular and rough. TS values increased as a function of glutaraldehyde concentration, whereas percentage of elongation (%E) decreased. Pectin/PVA/amylase films presented similar values of solubility in the tested solvents. The material obtained with 0.25% glutaraldehyde performed best with repeated use (active for 24 h), in a phosphate buffer reactor. By contrast, the material obtained with 1.25% glutaraldehyde presented higher performance during in vitro testing using an artificial rumen. The results suggest that pectin/PVA/amylase is a highly promising material for biotechnological applications.

  17. Poly(vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition.

    PubMed

    Li, Wei; Li, Xueyong; Chen, Yang; Li, Xiaoxia; Deng, Hongbing; Wang, Ting; Huang, Rong; Fan, Gang

    2013-02-15

    Poly(vinyl alcohol) (PVA)/sodium alginate (ALG)/organic rectorite (OREC) composite nanofibrous mats are fabricated by electrospinning aqueous solutions with different mixing ratios. Both good fiber shape and three-dimensional structure of nanofibrous mats can be observed by Field Emission Scanning Electron Microscopy. Energy-dispersive X-ray spectroscopy shows the existence of OREC in the as-spun composite mats. In addition, small-angle X-ray diffraction confirms that the interlayer of OREC is intercalated by ALG/PVA chains, and the distance between OREC interlayers is increased from 4.50 to 4.74 nm. Wide angle X-ray diffraction and Fourier transform infrared spectra further verify the intercalation is between polymers and layered silicate. Moreover, the thermal gravimetric analysis shows that the addition of OREC has only a small effect on the thermal stability of composites. Furthermore, the antibacterial experiments illustrate that OREC can enhance the bacterial inhibition ability of nanofibrous mats against Escherichia coli and Staphylococcus aureus.

  18. Chromaticity and color saturation of ultraviolet irradiated poly(vinyl alcohol)-anthocyanin coatings

    NASA Astrophysics Data System (ADS)

    Mat Nor, N. A.; Aziz, N.; Mohd-Adnan, A. F.; Taha, R. M.; Arof, A. K.

    2016-06-01

    The purpose of this paper is to evaluate the chromaticity and color saturation of anthocyanin extraction from fruit pericarps of Ixora siamensis in a poly(vinyl alcohol) (PVA) matrix. The colored PVA matrix was exposed to UV-B irradiation for 93 days at UV intensity of 17.55 lux. Anthocyanin colorant has been extracted using methanol acidified with 0.5% trifluoroacetic acid (TFA). Different concentrations of ferulic acid (FA) (0, 1, 2, 3, 4 and 5 wt.%) have been added to the anthocyanin extractions before mixing with PVA to form a coating system. The PVA-anthocyanin-FA mixtures have been coated on glass slides and kept overnight in the dark for curing before exposure to UV-B irradiation. The FA-free sample undergoes more color degradation compared to samples containing FA. The coating with 2% FA has the most stable color with chromaticity of 41% and color saturation of 0.88 compared to other FA containing coats. The FA-free coat exhibits 29% chromaticity and color saturation of 0.38 at the end of the experiment.

  19. Voriconazole Composited Polyvinyl Alcohol/Hydroxypropyl-β-Cyclodextrin Nanofibers for Ophthalmic Delivery

    PubMed Central

    Sun, Xiaoyi; Cai, Zhengyuan; Yu, Lingyan; Lv, Yuanyuan

    2016-01-01

    Voriconazole (VRC) incorporated in composited polyvinyl alcohol (PVA)/hydroxypropyl-β-cyclodextrin (HPβCD) blended nanofibers were produced via electrospinning for efficient ophthalmic delivery. The VRC loading capacity increased with increasing HPβCD content. The optimal solution for electrospinning consisted of 8% (w/v) PVA, 4% (w/v) HPβCD and 0.5% (w/v) VRC. The nanofibers exhibited bead-free average fiber diameters of 307±31 nm and VRC was released in vitro in a sustained manner. The VRC nanofibers were characterized by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The proton nuclear magnetic resonance (1H-NMR) was used to analyze the molar ratio of HPβCD/VRC in the nanofibers. Compared with a VRC solution, the nanofibers significantly prolonged the half life, and increased the bioavailability of VRC in rabbit tears. No obvious signs of irritation were observed after application in the conjunctival sac. VRC nanofibers are promising for ophthalmic drug delivery and further pharmacodynamics studies are needed. PMID:27974859

  20. Photochromic properties of the molecule Azure A chloride in polyvinyl alcohol matrix

    NASA Astrophysics Data System (ADS)

    Shahab, Siyamak; Filippovich, Liudmila; Kumar, Rakesh; Darroudi, Mahdieh; Borzehandani, Mostafa Yousefzadeh; Gomar, Maryam; Hajikolaee, Fatemeh Haji

    2015-12-01

    In the present work, isomerization, photophysical properties and heat conductivity of the substance Azure A chloride (AZAC): 3-amino-7-(dimethlamino)phenothiazin-5-ium chloride under the action of UV radiation in the presence of polyvinyl alcohol (PVA) matrix was studied using the Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The electronic absorption spectra of AZAC in dimethylformamide (DMF) solution and in aqueous medium before and after UV radiation were calculated. The nature of absorption bands of AZAC and its tautomeric prototropic form with the transfer of the electron (AZAC1) in the visible and near UV spectral regions was interpreted. The solvent effect on the absorption spectrum of the AZAC has established. The comparison of measured FTIR, UV-Visible data allowed assignments of major special features of title molecules. The frontier molecular orbital HOMO-LUMO have been also presented that shows the charge transfer interactions taking place within these molecules. The excitation energies for both molecules AZAC and AZAC1 have also been calculated. The experimental as well as theoretical investigations of azure molecule have a close agreement and it gives other important clues about the properties of the system. Anisotropy of thermal conductivity in PVA-films containing AZAC and AZAC1 were also measured.

  1. Extraction of microcrystalline cellulose from rice straw and its effect on polyvinyl alcohol biocomposites film

    NASA Astrophysics Data System (ADS)

    Chin, Kwok-Mern; Ting, Sam Sung; Lin, Ong Hui; Owi, Wei Tieng

    2017-07-01

    The poor management and underutilization of agricultural wastes had proliferated interest of researchers around the world to find alternatives to utilize them as potential value-added products. One of the green alternatives is by extracting cellulose from these waste materials and incorporating them in polymer as reinforcement fillers. The surging amount of plastic waste also posed major issues to the environment due to its recalcitrance to degrade. Microcrystalline cellulose (MCC-RS) was extracted from rice straw through cyclic alkaline and bleaching treatment to remove hemicellulose and lignin respectively. Polyvinyl alcohol (PVOH) was chosen as the matrix and different ratios of PVOH / MCC-RS films were prepared (2.5, 5.0, 7.5 and 10.0wt% of MCC) through solution casting method and its tensile, thermal and morphological properties were studied. X-ray powder diffraction (XRD) results showed increased crystallinity of MCC-RS after chemical treatment (from 44.5% to 60.8%) due to the successful removal of lignin and hemicellulose, which was then confirmed with Fourier transform infrared spectroscopy (FTIR) results. For the biocomposites, both tensile strength and Young's modulus of the films increased with increasing MCC-RS content up until 7.5wt%, supported with scanning electron microscopy (SEM) results which depicted improvement in the interfacial adhesion between MCC-RS and PVOH. From the overall results, the improvement in properties of biocomposite from cellulose-based microfiller had shown promising future in application of the water soluble plastic packaging industry.

  2. Preparation and characterization of oriented poly(vinyl alcohol)/carbon nanotube composite nanofibers

    NASA Astrophysics Data System (ADS)

    Shimizu, Akikazu; Kato, Hayato; Sato, Taiga; Kushida, Masahito

    2017-07-01

    Oriented nanofiber mats blended with carbon nanotubes (CNTs) are expected to be applied as cell seeding scaffolds. Biomaterials that are often used for cell seeding scaffolds generally have low mechanical strength and low electrical conductivity; thus, it has been difficult to apply them to tissues such as heart and nerve. In this study, we prepared oriented poly(vinyl alcohol) (PVA) nanofiber mats blended with various CNT concentrations (up to 10 wt %) by electrospinning using the parallel plate electrodes as collectors with applied voltage. The morphology, mechanical properties, and electrical properties of the prepared oriented nanofiber mats were measured by using various techniques such as scanning electron microscopy (SEM). The tensile strength of the oriented nanofiber mats in the applied voltage direction increased from 2.5 to 9.7 MPa with CNT concentration. Furthermore, the electrical conductivity of the oriented nanofiber mats in the applied voltage direction increased from 0.67 × 10-7 to 4.3 × 10-7 S·m-1. Also, the mechanical strength and electrical conductivity of the oriented nanofiber mats in the applied voltage direction were 3-4 and 2-3 times higher than those in the perpendicular direction, respectively.

  3. Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites.

    PubMed

    Islam, Md Shahidul; Rahaman, Md Saifur; Yeum, Jeong Hyun

    2015-01-22

    A novel super-absorbent material was fabricated by electrospinning the natural polysaccharide pullulan (PULL) with polyvinyl alcohol (PVA) and montmorillonite (MMT) clay to form nonwoven webs, which were then heat treated. Transmission electron microscopy (TEM) micrographs, X-ray diffraction (XRD) patterns, and Fourier transform infrared (FTIR) analysis of the novel super-absorbent nanofibers suggest the coexistence of PULL, PVA, and MMT through the exfoliation of MMT layers in the super-absorbent nanofiber composite. The heat-treated PULL/PVA/MMT webs loaded with 5 wt% MMT electrospun nanofibers exhibited a water absorbency of 143.42 g g(-1) in distilled water and a water absorbency of 39.75 g g(-1) in a 0.9 wt% NaCl solution. Under extremely dry conditions, the PULL/PVA/MMT webs exhibited the ability to retain 43% distilled water and 38% saline water after being exposed to the atmosphere for one week. The heat treatment improved the crystallinity of the electrospun PULL/PVA/MMT super-absorbent webs and thus made the webs highly stable in aqueous environments. Overall, the addition of MMT resulted in improved thermal stability and mechanical properties and increased the water absorbency of the PULL/PVA/MMT composite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Radiation sensitive indicator based on tetrabromophenol blue dyed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Beshir, W. B.

    2013-05-01

    Radiation sensitive indicators based on dyed polyvinyl alcohol (PVA) containing acid- sensitive dye (tetrabromophenol blue, TBPB) and chloral hydrate (CCl3·CH·(OH)2, 2,2,2-trichloroethane-1,1-diol) have been developed. These plastic film dosimeters undergo color change from blue (the alkaline form of TBPB) to yellow (the acidic form of TBPB), indicating acid formation. The concentration of radiation formed acids in the films containing different concentrations of chloral hydrate was calculated at different doses. These films can be used as dosimeters for food irradiation applications where the maximum of the useful dose ranges are between 1 and 8 kGy depending on chloral hydrate concentration in the film. The films have the advantage of negligible humidity effects on response in the intermediate range of relative humidity from 0 to 70% as good post irradiation stability when stored in the dark at room temperature. The overall combined uncertainty (at 2σ) associated with measurement of response (ΔA mm-1) at 623 nm for dose range 1-8 kGy is 4.53%.

  5. Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis.

    PubMed

    Belder, Detlev; Deege, Alfred; Kohler, Frank; Ludwig, Martin

    2002-10-01

    The channels of microfluidic glass chips have been coated with poly(vinyl alcohol) (PVA). Applied for microchip electrophoresis, the coated devices exhibited a suppressed electroosmotic flow and improved separation performance. The superior performance of PVA-coated channels could be demonstrated by electrophoretic separations of labeled amines and by video microscopy. While a distorted sample zone is injected using uncoated channels the application of PVA-coated channels results in an improved shape of the sample zone with less band broadening. Applying PVA-coated microchips for the separation of amines labeled with Alexa Fluor 350 even sub-second separations, utilizing a separation length of only 650 microm, could be obtained, while this was not possible using uncoated devices. By using PVA-coated devices rather than an uncoated chip a threefold increase in separation efficiencies could be observed. As the electroosmotic flow (EOF) was suppressed, the anionic compounds were detected at the anode whereas the dominant EOF in uncoated devices resulted in an effective mobility to the cathode. Besides improved separation performance another important feature of the PVA-coated channels was the suppressed adsorption of fluorescent compounds in repetitive runs which results in an improved robustness and detection sensitivity. Applying PVA-coated channels, rinsing or etching steps could be omitted while this was necessary for a reliable operation of uncoated devices.

  6. Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds.

    PubMed

    Liao, Huihui; Qi, Ruiling; Shen, Mingwu; Cao, Xueyan; Guo, Rui; Zhang, Yanzhong; Shi, Xiangyang

    2011-06-01

    We report the fabrication of multiwalled carbon nanotube (MWCNT)-incorporated electrospun polyvinyl alcohol (PVA)/chitosan (CS) nanofibers with improved cellular response for potential tissue engineering applications. In this study, smooth and uniform PVA/CS and PVA/CS/MWCNTs nanofibers with water stability were formed by electrospinning, followed by crosslinking with glutaraldehyde vapor. The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and mechanical testing, respectively. We showed that the incorporation of MWCNTs did not appreciably affect the morphology of the PVA/CS nanofibers; importantly the protein adsorption ability of the nanofibers was significantly improved. In vitro cell culture of mouse fibroblasts (L929) seeded onto the electrospun scaffolds showed that the incorporation of MWCNTs into the PVA/CS nanofibers significantly promoted cell proliferation. Results from this study hence suggest that MWCNT-incorporated PVA/CS nanofibrous scaffolds with small diameters (around 160 nm) and high porosity can mimic the natural extracellular matrix well, and potentially provide many possibilities for applications in the fields of tissue engineering and regenerative medicine.

  7. Precursor concentration and temperature controlled formation of polyvinyl alcohol-capped CdSe-quantum dots

    PubMed Central

    Shah, Chetan P; Rath, Madhabchandra; Kumar, Manmohan

    2010-01-01

    Summary Polyvinyl alcohol-capped CdSe quantum dots, with a size within their quantum confinement limit, were prepared in aqueous solution at room temperature, by a simple and environmentally friendly chemical method. The size of the CdSe quantum dots was found to be dependent on the concentrations of the precursors of cadmium and selenium ions, as well as on the aging time and the reaction temperature; all of which could be used conveniently for tuning the size of the particles, as well as their optical properties. The synthesized quantum dots were characterized by optical absorption spectroscopy, fluorescence spectroscopy, X-ray diffraction, atomic force microscopy and transmission electron microscopy. The samples were fluorescent at room temperature; the green fluorescence was assigned to band edge emission, and the near-infrared fluorescence peaks at about 665 and 865 nm were assigned to shallow and deep trap states emissions, respectively. The quantum dots were fairly stable up to several days. PMID:21977401

  8. Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings

    PubMed Central

    Oliveira, R. N.; Rouzé, R.; Quilty, B.; Alves, G. G.; Soares, G. D. A.; Thiré, R. M. S. M.; McGuinness, G. B.

    2014-01-01

    Polyvinyl alcohol (PVA) hydrogels are materials for potential use in burn healing. Silver nanoparticles can be synthesized within PVA hydrogels giving antimicrobial hydrogels. Hydrogels have to be swollen prior to their application, and the common medium available for that in hospitals is saline solution, but the hydrogel could also take up some of the wound's fluid. This work developed gamma-irradiated PVA/nano-Ag hydrogels for potential use in burn dressing applications. Silver nitrate (AgNO3) was used as nano-Ag precursor agent. Saline solution, phosphate-buffered solution (PBS) pH 7.4 and solution pH 4.0 were used as swelling media. Microstructural evaluation revealed an effect of the nanoparticles on PVA crystallization. The swelling of the PVA-Ag samples in solution pH 4.0 was low, as was their silver delivery, compared with the equivalent samples swollen in the other media. The highest swelling and silver delivery were related to samples prepared with 0.50% AgNO3, and they also presented lower strength in PBS pH 7.4 and solution pH 4.0. Both PVA-Ag samples were also non-toxic and presented antimicrobial activity, confirming that 0.25% AgNO3 concentration is sufficient to establish an antimicrobial effect. Both PVA-Ag samples presented suitable mechanical and swelling properties in all media, representative of potential burn site conditions. PMID:24501677

  9. Some Physical Properties of Pure and Doped Polyvinyl Alcohol under Applied Stress

    NASA Astrophysics Data System (ADS)

    Hemeda, O. M.; Hemeda, D. M.; Said, M. Z.

    Thick films of polyvinyl alcohol (PVA) containing very fine metallic powder, copper (Cu), iron (Fe) and aluminum (Al) 2.5% by weight, were prepared by the casting method. The temperature dependence of Young's modulus at constant stress, the stress dependence of Young's modulus (Y), the stress dependence of dielectric constant (ɛ) and stress dependence of phonon velocity, were studied. It was found that Young's modulus (Y) of the pure sample has the lowest value and that of PVA + Al has the highest value. This can be explained on the basis that Y depends on the ratio between the energy of molecular interactions and the energy of thermal motion of the sample units. We also found that the dielectric constant increases with the addition of metallic powder, and with an increasing applied stress. The phonon velocity increased with increasing stress. The increase of stress decreases imperfections leading to the increased phonon velocity. The electronic absorption spectra of PVA is not affected by doping Al and Fe, whereas the PVA doped with Cu shows a shift of the absorption maxima toward a longer wavelength. The instantaneous elastic behavior may be observed only at low temperatures and very short creep times.

  10. Voriconazole Composited Polyvinyl Alcohol/Hydroxypropyl-β-Cyclodextrin Nanofibers for Ophthalmic Delivery.

    PubMed

    Sun, Xiaoyi; Yu, Zhenwei; Cai, Zhengyuan; Yu, Lingyan; Lv, Yuanyuan

    2016-01-01

    Voriconazole (VRC) incorporated in composited polyvinyl alcohol (PVA)/hydroxypropyl-β-cyclodextrin (HPβCD) blended nanofibers were produced via electrospinning for efficient ophthalmic delivery. The VRC loading capacity increased with increasing HPβCD content. The optimal solution for electrospinning consisted of 8% (w/v) PVA, 4% (w/v) HPβCD and 0.5% (w/v) VRC. The nanofibers exhibited bead-free average fiber diameters of 307±31 nm and VRC was released in vitro in a sustained manner. The VRC nanofibers were characterized by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The proton nuclear magnetic resonance (1H-NMR) was used to analyze the molar ratio of HPβCD/VRC in the nanofibers. Compared with a VRC solution, the nanofibers significantly prolonged the half life, and increased the bioavailability of VRC in rabbit tears. No obvious signs of irritation were observed after application in the conjunctival sac. VRC nanofibers are promising for ophthalmic drug delivery and further pharmacodynamics studies are needed.

  11. Electrospun Polyvinyl Alcohol/ Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing.

    PubMed

    El-Aassar, M R; El Fawal, G F; El-Deeb, Nehal M; Hassan, H Shokry; Mo, Xiumei

    2016-04-01

    In this study, an antibacterial electrospun nanofibers for wound dressing application was successfully prepared from polyvinyl alcohol (PVA), Pluronic F127 (Plur), polyethyleneimine (PEI) blend solution with titanium dioxide nanoparticles (TiO2 NPs). PVA-Plur-PEI nanofibers containing various ratios of TiO2 NPs were obtained. The formation and presence of TiO2 in the PVA-Plu-PEI/ TiO2 composite was confirmed by X-ray diffraction (XRD). Transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), mechanical measurement, and antibacterial activity were undertaken in order to characterize the PVA-Plur-PEI/TiO2 nanofiber morphology and properties. The PVA-Plu-PEI nanofibers had a mean diameter of 220 nm, and PVA-Plur-PEI/TiO2 nanofibers had 255 nm. Moreover, the antimicrobial properties of the composite were studied by zone inhibition against Gram-negative bacteria, and the result indicates high antibacterial activity. Results of this antibacterial testing suggest that PVA-Plur-PEI/TiO2 nanofiber may be effective in topical antibacterial treatment in wound care; thus, they are very promising in the application of wound dressings.

  12. Water absorption and its effect on the tensile properties of tapioca starch/polyvinyl alcohol bioplastics

    NASA Astrophysics Data System (ADS)

    Judawisastra, H.; Sitohang, R. D. R.; Marta, L.; Mardiyati

    2017-07-01

    Tapioca is one of the largest sources of starch and makes it suitable to be used for bioplastic material. Addition of polyvinyl alcohol (PVA) has been shown to successfully reduce the brittleness of starch bioplastic. This study aims to investigate the influence of PVA addition to water absorption behavior and its effect on the tensile properties of tapioca starch/PVA bioplastics, which are still not yet fully understood until now. The bioplastics were prepared by solution casting method at gelatinization temperature, with PVA addition from 0 to 29 wt%. Examinations were carried out by means of water absorption test, tensile test and Fourier Transform Infrared (FTIR) Spectroscopy. Increasing content of PVA, up to 29 wt%, was found to decrease the water absorption of the bioplastics, with the lowest water saturation point of 251%. This is due to the interaction between starch and PVA which reduces the free OH groups in the resulting bioplastics. Consequently, this led to a decrease in water absorption-related deterioration, i.e. tensile properties degradation of the bioplastics. The addition of 29 wt% resulted into the lowest degradation in tensile strength (6%) and stiffness (30%), while accompanied with the highest elongation increase (39%) after water immersion.

  13. Physicochemical and morphological properties of plasticized poly(vinyl alcohol)-agar biodegradable films.

    PubMed

    Madera-Santana, T J; Freile-Pelegrín, Y; Azamar-Barrios, J A

    2014-08-01

    The effects of the addition of glycerol (GLY) on the physicochemical and morphological properties of poly(vinyl alcohol) (PVA)-agar films were reported. PVA-agar films were prepared by solution cast method, and the addition of GLY in PVA-agar films altered the optical properties, resulting in a decrease in opacity values and in the color difference (ΔE) of the films. Structural characterization using Fourier transformation infrared (FTIR) spectroscopy and X-ray diffraction (XRD) indicated that the presence of GLY altered the intensity of the bands (from 1200 to 800cm(-1)) and crystallinity. The characterization of the thermal properties indicated that an increase in the agar content produces a decrease in the melting temperature and augments the heat of fusion. Similar tendencies were observed in plasticized films, but at different magnification. The formulation that demonstrated the lowest mechanical properties contained 25wt.% agar, whereas the formulation that contained 75wt.% agar demonstrated a significant improvement. The water vapor transmission rate (WVTR) and surface morphology analysis demonstrated that the structure of PVA-agar films is reorganized upon GLY addition. The physicochemical properties of PVA-agar films using GLY as a plasticizer provide information for the application of this formulation as packaging material for specific food applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Enlarged-taper tailored Fiber Bragg grating with polyvinyl alcohol coating for humidity sensing

    NASA Astrophysics Data System (ADS)

    Liang, Yanhong; Yan, Guofeng; He, Sailing

    2015-08-01

    In this paper, a novel optical fiber sensor based on an enlarged-taper tailored fiber Bragg grating (FBG) is proposed and experimentally demonstrated for the measurement of relative humidity. The enlarged-taper works as a multifunctional joint that not only excites cladding modes but also recouples the cladding modes reflected by the FBG back into the leading single mode fiber. Due to the fact that cladding modes have a strong evanescent field penetrating into the ambient medium, the intensity of the reflected cladding modes is greatly influenced by the refractive index (RI) of the ambient medium. Polyvinyl alcohol (PVA) film is plated on the fiber surface by dip-coating technique, as a humidity-to-refractive index transducer, whose RI variance from 1.49 to 1.34 when the ambient humidity increases from 20%RH to 95%RH. The relative humidity response of the sensing structure is investigated in our home-made humidity chamber with a commercial hygrometer. By monitoring the intensity of the reflected cladding modes, the RH variance can be demodulated. Experimental results show that RH sensitivity depends on the RH value, and a sensitivity up to 1.2 dB/%RH can be achieved within the RH range of 30-90%. A fast and reversible time response has also been investigated. Such a probe-type and reusable fiber-optic RH sensor is a very promising technology for biochemical sensing applications, e.g., breath analysis, chemical reaction monitoring.

  15. Mucus-penetrating nanoparticles made with "mucoadhesive" poly(vinyl alcohol).

    PubMed

    Popov, Alexey; Enlow, Elizabeth; Bourassa, James; Chen, Hongming

    2016-10-01

    Nanoparticles that readily penetrate mucosal layers are desirable for a variety of biomedical applications. Nevertheless, most nanoparticles tend to be immobilized in mucus via steric and/or adhesive interactions. Contrary to the established opinion that poly(vinyl alcohol) (PVA) is mucoadhesive, we discovered that coating otherwise mucoadhesive nanoparticles with certain partially hydrolyzed PVAs can aid particle mobility in mucus. We describe two approaches to producing such mucus-penetrating particles (non-covalent modification of pre-formed nanoparticles and emulsification in the presence of PVA) and provide mobility data in human cervicovaginal mucus ex vivo as measured by multiple particle tracking and bulk permeation. When coated with PVAs that are ≥95% hydrolyzed, nanoparticles as small as ~210nm were immobilized in mucus similarly to well-established mucoadhesive controls (P>0.05). However, nanoparticles coated with PVAs that are <95% hydrolyzed penetrated mucus with velocities significantly exceeding those for the mucoadhesive controls (P<0.001) and were mobile in the bulk permeation assay. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Dynamic mechanical response of polyvinyl alcohol-gelatin theta-gels for nucleus pulposus tissue replacement.

    PubMed

    Charron, Patrick N; Blatt, Sarah E; McKenzie, Canaan; Oldinski, Rachael A

    2017-05-03

    Intervertebral disk degeneration is one of the most significant contributors to low back pain. Thus, there is significant interest in designing new treatments and nucleus pulposus (NP) tissue replacements. Herein, the authors propose a biosynthetic material, comprised of a polyvinyl alcohol (PVA) and gelatin theta-gel, as an acellular NP tissue replacement. Theta-gels form during the solidification of PVA and gelatin (phase I), and the phase separation of a disklike short-chain polyethylene glycol (PEG, phase II). The PVA concentration and weight ratio of PVA to PEG were optimized, in order to achieve mechanical properties resembling NP tissue. Mechanical and material properties were analyzed for the PVA-gelatin theta-gels under static and dynamic conditions. Cyclic stress-strain testing demonstrated the theta-gels' ability to relax and perform properly under dynamic loading. Altering the molecular weight and concentration of the theta-gel constituents allows for a tunable material that can match a variety of native tissue properties.

  17. A new polyvinyl alcohol hydrogel vascular model (KEZLEX) for microvascular anastomosis training

    PubMed Central

    Mutoh, Tatsushi; Ishikawa, Tatsuya; Ono, Hidenori; Yasui, Nobuyuki

    2010-01-01

    Background: Microvascular anastomosis is a challenging neurosurgical technique that requires extensive training for one to master it. We developed a new vascular model (KEZLEX, Ono and Co., Ltd., Tokyo, Japan) as a non-animal, realistic tool for practicing microvascular anastomosis under realistic circumstances. Methods: The model was manufactured from polyvinyl alcohol hydrogel to provide 1.0–3.0 mm diameter (available for 0.5-mm pitch), 6–8 cm long tubes that have qualitatively similar surface characteristics, visibility, and stiffness to human donor and recipient arteries for various bypass surgeries based on three-dimensional computed tomography/magnetic resonance imaging scanning data reconstruction using visible human data set and vessel casts. Results: Trainees can acquire basic microsuturing techniques for end-to-end, end-to-side, and side-to-side anastomoses with handling similar to that for real arteries. To practice standard deep bypass techniques under realistic circumstances, the substitute vessel can be fixed to specific locations of a commercially available brain model with pins. Conclusion: Our vascular prosthesis model is simple and easy to set up for repeated practice, and will contribute to facilitate “off-the-job” training by trainees. PMID:21170365

  18. Electrospinning of Ag Nanowires/polyvinyl alcohol hybrid nanofibers for their antibacterial properties.

    PubMed

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zhang, Xu; Zhao, Yanbao; Sun, Lei

    2017-09-01

    In order to developing a sort of flexible fibrous mats with outstanding and durable antibacterial activates, silver nanowires incorporated into polyvinyl alcohol (PVA) nanofibers were fabricated by electrospun method. Uniform Ag nanowires (NWs) were synthesized through a template-free method of solvothermal combined with polyol process, and then, they were dispersed in PVA solution. At last, Ag NWs embedded in PVA (Ag NWs/PVA) hybrid nanofibrous films were gained by electrospun of the mixed solution. The antibacterial activity of Ag NWs/PVA nanofibers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by the methods of absorption and turbidity. Ag NWs with a mean diameter of 86nm were demonstrated to be uniformly incorporated into PVA nanofibers, forming a core-sheath nanocable structure. The as-prepared flexible and free-standing Ag NWs/PVA nanofibrous films show outstanding antimicrobial activities against both E. coli and S. aureus. It's found that both matrix polymer of PVA and enrichment of active {111} facets present in Ag NWs are favorable for the antibacterial performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).

  20. Rhizobia survival in seeds coated with polyvinyl alcohol (PVA) electrospun nanofibres.

    PubMed

    Damasceno, Raquel; Roggia, Isabel; Pereira, Claudio; de Sá, Enilson

    2013-11-01

    The electrospinning technique of rhizobia immobilization in nanofibres is an innovative and promising alternative for reducing the harmful effects of environmental stress on bacteria strains in a possible inoculant nanotechnology product for use in agriculture. The use of polyvinyl alcohol (PVA) shows up as an effective polymer in cell encapsulation because of its physical characteristics, such as viscosity and power of scattering. The aim of these studies has been to evaluate the survival of rhizobia incorporated in PVA nanofibres, which were applied to soybean seed and then subjected to different storage times and exposure to fungicide. The maintenance of the symbiotic characteristics of the incorporated bacterial strains was also evaluated, noting the formation of nodules in the soybean seedlings. No significant differences in the cell survival at 0 h and after 24 h of storage were observed. After 48 h, a significant difference in the bacterial cell concentration of the seeds affixed with PVA nanofibres was observed. Exposure to the fungicide decreased the viability of the bacteria strains even when coated with the nanofibres. A larger number of nodules formed in soybean seedlings from seeds inoculated with rhizobia incorporated in PVA nanofibres than from seeds inoculated with rhizobia without PVA. Thus, the electrospinning technique is a great alternative to the usual protector inoculants because of its unprecedented capacity to control the release of bacteria.

  1. Synthesis of magnetic and multiferroic materials from polyvinyl alcohol-based gels

    NASA Astrophysics Data System (ADS)

    Lisnevskaya, I. V.; Bobrova, I. A.; Lupeiko, T. G.

    2016-01-01

    This review article summarizes results on the synthesis of the magnetic materials including modified nickel ferrite (Ni0.9Co0.1Cu0.1Fe1.9O4-δ), yttrium iron garnet (Y3Fe5O12), lanthanum-containing manganites (MxLa1-xMnO3 (M=Pb, Ba or Sr; x=0.3-0.35)), and multiferroics (BiFeO3 and BiFe0.5Mn0.5O3) from polyvinyl alcohol-based gels. It is shown that the ammonium nitrate accelerates destruction of organic components of xerogels and thus Ni0.9Co0.1Cu0.1Fe1.9O4-δ and BiFeO3 can be prepared at record low temperatures (100 and 250 °C, respectively) which are 200-300 °C lower compared to the process where air is used as an oxidizing agent. As for the synthesis of Y3Fe5O12, MxLa1-xMnO3 and BiFe0.5Mn0.5O3, the presence of NH4NO3 favors formation of foreign phases, which ultimately complicate reaction mechanisms and lead to the higher temperature to synthesize target products. Developed methods provide nanoscale magnetic and multiferroic materials with an average particle size of ∼20-50 nm.

  2. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite.

    PubMed

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments.

  3. Immobilized Horseradish Peroxidase on Discs of Polyvinyl Alcohol-Glutaraldehyde Coated with Polyaniline

    PubMed Central

    Caramori, Samantha Salomão; Fernandes, Kátia Flávia; de Carvalho Junior, Luiz Bezerra

    2012-01-01

    Discs of network polyvinyl alcohol-glutaraldehyde (PVAG) were synthesized and coated with polyaniline (PANI) using glutaraldehyde as a chemical arm (PVAG-PANIG-HRP disc). The best conditions for the immobilization were established as about 1.0 mg mL−1 of protein, for 60 min and pH 5.5. The soluble enzyme lost all of its activity after incubation at 70°C for 15 min, whereas the PVAG-PANIG-HRP disc retained about half of the initial activity for pyrogallol. The same PVAG-PANIG-HRP disc was used consecutively three times without any activity lossbut presented 25% of the initial activity after the 7th use. PVAG-PANIG-HRP disc retained approximately 80% and 60% of its initial activity after 60 and 80 days of storage, respectively. Resorcinol, m-cresol, catechol, pyrogallol, α-naphthol, βnaphthol, and 4, 4′-diaminodiphenyl benzidine were efficiently oxidized by the PVAG-PANIG-HRP disc (from about 70% to 90%), and it was less efficient towards aniline, phenol, and 2-nitrosonaphthol. PMID:22619582

  4. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment.

    PubMed

    Liu, Lifen; Zhao, Chuanqi; Yang, Fenglin

    2012-04-15

    Prepared by coating TiO(2)/polyvinyl alcohol (PVA) on a low cost polyester filter cloth (22 μm), a composite membrane (10 μm pore size) was successfully used in an anoxic/oxic membrane bioreactor (A/O-MBR) for treating a simulate wastewater in removing nitrate/ammonium for water reuse in a polyester fiber production plant. Its permeate flux and the anti-fouling properties against extracellular polymeric substances (EPS) were studied. Comparing with a commercial (0.1 μm) PVDF (polyvinylidene fluoride) membrane, similar effluent qualities were achieved, meeting the basic COD requirements for reuse. Anti-EPS accumulation, the TiO(2)/PVA Polyester composite membrane had higher sustained permeability and required less frequent cleaning. Its filtration time was 4 times longer when operated at a higher flux than the PVDF membrane. The nano-TiO(2) enhances the interaction between PVA and polyester, forms a more hydrophilic surface, drastically reduces the contact angle with water and reduces EPS fouling. The slow (trans-membrane pressure) TMP rise, loose cake layer, the low filtration resistances, and the EPS, SEM analysis confirmed the advantage of the composite membrane. Potential in lowering the membrane cost, the operation and maintenance cost, and in enhancing MBR waste water treatment efficiency is expected by the use of this new composite membrane.

  5. Structure-Sensitive Liquid-Flowing Media Based on Polyvinyl Alcohol Compounds with Cellulose Esters

    NASA Astrophysics Data System (ADS)

    Lazareva, T. G.; Vashuk, E. V.

    The class of structure-sensitive liquid-flowing media based on polyvinyl alcohol (PVA) compounds with water-soluble cellulose esters (carboxymethylcellulose, Na-CMC, methylcellulose, MC) have been investigated. PVA may be used as an excellent structure-sensitive matrix for films and gels. Introduction of active additives allows for the formation of liquids whose structures changes under the action of external fields. Introduction of additives, especially of Na-CMC and MC into PVA in the range of certain concentrations leads to the formation of the complexes of PVA with the active molecules linked by hydrogen bonds. Besides, due to the formation of macromolecular associates, a definitely ordered structure of the solution develops. Such changes in the structure of a solution result in abnormal properties, viz. rheological (characteristic flow curves), electrophysical and optical properties in the range of certain concentrations and temperatures. These fluids may be recommended for the formation of electric field-controlled anisotropic films and fibers as well as sensors and measuring elements sensitive to external fields.

  6. Dielectric relaxation and alternating current conductivity of lanthanum, gadolinium, and erbium-polyvinyl alcohol doped films

    NASA Astrophysics Data System (ADS)

    Hanafy, Taha A.

    2012-08-01

    Fourier transform infrared (FTIR) spectrum dielectric constant, ɛ', loss tangent, tan(δ), electric modulus, M*, and ac conductivity, σac, of pure polyvinyl alcohol (PVA) as well as La-, Gd-, and Er-PVA doped samples have been carried out. The dielectric properties have been studied in the temperature and frequency ranges; 300-450 K and 1 kHz-4 MHz, respectively. FTIR measurements reveal that La3+, Gd3+, and Er3+ ions form complex configuration within PVA structure. Two relaxation processes, namely, ρ and α were observed in pure PVA sample. The first process is due to the interfacial or Maxwell-Wagner-Sillers polarization. The second one is related to the micro-Brownian motion of the main chains. For doped PVA samples, α-relaxation process splits into αa and αc. This splitting is due to the segmental motion in the amorphous (αa) and crystalline (αc) phases of PVA matrix. Electric modulus analysis was discussed to understand the mechanism of the electrical transport process. The behavior of ac conductivity for all PVA samples indicates that the conduction mechanism is correlated barrier hopping.

  7. Effect of salts on the electrospinning of poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Stanger, Jonathan J.; Tucker, Nick; Staiger, Mark; Kirwan, Kerry; Coles, Stuart; Jacobs, Daniel; Larsen, Nigel

    2009-07-01

    Fibres with a diameter in the nanometer range were electrospun from aqueous poly(vinyl alcohol) (PVOH). In order to improve the mass deposition rate and decrease the final fibre diameter salts (NaCl, LiCl, LiBr and LiF) were added to the solution. The aim was to increase the charge density and hence increase the electrostatic forces on the fluid. It was found that with increasing salt concentration the charge density did increase. However the mass deposition rate was found to decrease and the final fibre diameter was found to increase. The decrease in mass deposition rate is explained by considering the concept of a virtual orifice. The increase in the final fibre diameter is explained by considering the charge distribution in the jet when it behaves like a conductor compared to when it behaves like an insulator. Both mechanisms result from the increase in conductivity of the PVOH solution without significantly modifying other solution properties when salt is added.

  8. Coupled electron beam radiation and MBR treatment of textile wastewater containing polyvinyl alcohol.

    PubMed

    Sun, Weihua; Chen, Jun; Chen, Lujun; Wang, Jianlong; Zhang, Yongming

    2016-07-01

    Advanced oxidation processes (AOP) can be combined with biological treatments for recalcitrant organic pollutant decomposition. However, there has been no thorough investigation on the coupling of AOPs and membrane bioreactors (MBR) to treat polymer organic pollutants. This study proposes a new AOP that couples electron beam (EB) radiation and MBR treatment. This method was applied to treat real textile effluents containing polyvinyl alcohol (PVA). During the stable operation stage, 31 ± 7% (n = 28) COD was removed by the EB-MBR process. COD removal was enhanced to 45% at the end of the research period without process optimization. In addition, both the membrane flux and activated sludge system exhibited good stability. Only a 2% membrane flux decreased was observed after a 46 d operation period. PVA radiolysis and biofacies analysis mechanisms are also discussed. By contrast, PVA degradation using only the MBR treatment was ineffective in this study. This ineffectiveness was caused by membrane interception and floccule formation by PVA and activated sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel.

    PubMed

    El-Naas, Muftah H; Al-Muhtaseb, Shaheen A; Makhlouf, Souzan

    2009-05-30

    Batch experiments were carried out to evaluate the biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel pellets in a bubble column bioreactor at different conditions. The bacteria were activated and gradually acclimatized to high concentrations of phenol of up to 300 mg/l. The experimental results indicated that the biodegradation capabilities of P. putida are highly affected by temperature, pH, initial phenol concentration and the abundance of the biomass. The biodegradation rate is optimized at 30 degrees C, a pH of 7 and phenol concentration of 75 mg/l. Higher phenol concentrations inhibited the biomass and reduced the biodegradation rate. At high phenol concentration, the PVA particle size was found to have negligible effect on the biodegradation rate. However, for low concentrations, the biodegradation rate increased slightly with decreasing particle size. Other contaminants such heavy metals and sulfates showed no effect on the biodegradation process. Modeling of the biodegradation of phenol indicated that the Haldane inhibitory model gave better fit of the experimental data than the Monod model, which ignores the inhibitory effects of phenol.

  10. Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate.

    PubMed

    Dong, Yuwei; Zhang, Yanqiu; Tu, Baojun

    Ammonia-oxidizing bacteria were immobilized by polyvinyl alcohol (PVA) and sodium alginate. The immobilization conditions and ammonia oxidation ability of the immobilized bacteria were investigated. The following immobilization conditions were observed to be optimal: PVA, 12%; sodium alginate, 1.1%; calcium chloride, 1.0%; inoculum concentration, 1.3 immobilized balls/mL of immobilized medium; pH, 10; and temperature, 30°C. The immobilized ammonia-oxidizing bacteria exhibited strong ammonia oxidation ability even after being recycled four times. The ammonia nitrogen removal rate of the immobilized ammonia-oxidizing bacteria reached 90.30% under the optimal immobilization conditions. When compared with ammonia-oxidizing bacteria immobilized by sodium alginate alone, the bacteria immobilized by PVA and sodium alginate were superior with respect to pH resistance, the number of reuses, material cost, heat resistance, and ammonia oxidation ability. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. [Preparation and in vitro evaluation of crosslinked polyvinyl alcohol microspheres for embolization].

    PubMed

    Yang, Shen; Meng, Wen-jing; Lu, Xiao-jing; Wu, Ya-nan; Ren-Zeng, Dun-zhu; Fan, Tian-yuan

    2014-10-18

    To develop and study the properties of crosslinked polyvinyl alcohol microspheres (PVA-Ms) for embolization. The PVA-Ms were produced by emulsion chemical crosslinking method. Fourier transform infrared spectroscopy (FT-IR) was used to investigate the special functional groups of PVA-Ms; the morphology and particle size of PVA-Ms were determined by optical microscope; the ratio of water absorption and the swelling ratio were also investigated; the compressibility was examined by texture analyzer. A new device was designed to measure the pressure of PVA-Ms during their delivery through catheter for embolization. The crosslinking reaction of PVA and formaldehyde was proved by FT-IR. The PVA-Ms were round with smooth surface. The average diameter of lyophilized PVA-Ms was 574.2 μm with a range of 80-1 800 μm and of wet PVA-Ms was 602.2 μm with a range of 100-1 900 μm. The average ratio of water absorption was 175% and the swelling ratio was 48.6%. The PVA-Ms were mechanically stable with appropriate elasticity and delivered through the catheter without any difficulty, and the pressure was higher for larger size of microspheres to be delivered. PVA-Ms prepared in this study was supposed to be suitable for clinical embolization according to the physicochemical properties. The study provides a series of methods to evaluate the properties of microspheres systemically for embolization in vitro.

  12. In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels.

    PubMed

    Martínez-Gómez, Fabián; Guerrero, Juan; Matsuhiro, Betty; Pavez, Jorge

    2017-01-02

    Hydrogels, based on polysaccharides have found a number of applications as drug delivery carriers. In this work, hydrogels of full characterized sodium alginate (Mn 87,400g/mol) and commercial poly(vinyl alcohol) (PVA) sensitive to pH and temperature stimuli were obtained using a simple, controlled, green, low cost method based on freeze-thaw cycles. Stable hydrogels of sodium alginate/PVA with 0.5:1.5 and 1.0:1.0w/v concentrations showed very good swelling ratio values in distilled water (14 and 20g/g, respectively). Encapsulation and release of metformin hydrochloride in hydrogels of 1.0:1.0w/v sodium alginate/PVA was followed by UV spectroscopy. The hydrogel released a very low amount of metformin hydrochloride at pH 1.2; the highest release value (55%) was obtained after 6h at pH 8.0. Also, the release of metformin hydrochloride was studied by (1)H NMR spectroscopy, the temporal evolution of methyl group signals of metformin showed 30% of drug release after 3h.

  13. Effect of Process Parameters on Particle Removal Efficiency in Poly(vinyl alcohol) Brush Scrubber Cleaning

    NASA Astrophysics Data System (ADS)

    An, Joonho; Lee, Hyunseop; Kim, Hyoungjae; Jeong, Haedo

    2012-02-01

    Wafer cleaning is one of the most critical processes in the semiconductor device manufacturing. Poly(vinyl alcohol) (PVA) brush scrubber cleaning is much attractive when compared with traditional wet-batch cleaning which causes the cross-contamination among the wafers in a bath and environmental issues with huge amount of chemical and deionized water (DIW) usages. The mechanical forces generated from PVA brush contact can remove the particles on a wafer surface under low concentration of chemical solution without cross-contamination. In this research, we monitored the change of the dynamic forces including normal and friction force generated by PVA brush contacts during cleaning process, and also investigated the effects of scrubbing conditions of PVA brush overlap and velocity, and the surface tension (low- or high-hydrophilic) of the wafer on the particle removal efficiency. The results show that the driving mechanism to remove the particle on a wafer surface can be changed by the PVA brush overlap and velocity condition such as the hydrodynamic drag force in the brush soft contact condition and friction force in the brush hard contact condition. The particle removal efficiency is higher under the low-hydrophilic surface having a low surface tension compared to high-hydrophilic surface.

  14. Polyethylene glycol-polyvinyl alcohol grafted copolymer: study of the bioavailability after oral administration to rats.

    PubMed

    Heuschmid, Franziska F; Schuster, Paul; Lauer, Birthe; Fabian, Eric; Leibold, Edgar; van Ravenzwaay, Bennard

    2013-07-01

    The absorption, urinary excretion, and the biliary excretion of a single oral dose of 10 or 1000 mg/kg bw of (14)C-polyethylene glycol-polyvinyl alcohol (PEG-PVA) grafted copolymer were studied in adult male and female rats. In a balance/excretion experiment, the total excretion of ingested radioactivity was determined over a period of 168 h and residual radioactivity was detected in selected tissues and the carcass. In a biliary excretion experiment, excretion of radioactivity via the bile duct was determined over a period of 48 h after administration of the substance to cannulated rats. Most, if not all, of the radioactivity (>100%) was excreted within 48 h via the feces regardless of sex or dose. Urinary excretion was very limited: 0.45-0.50% of dose at the low dose and 0.22-0.27% of dose at the high dose. At both dose levels, residual radioactivity in the carcass and all organs and tissues after 168 h was ≤ 0.02% of dose. Biliary excretion was 0.01-0.02% of dose. Based on these findings, the bioavailability of PEG-PVA grafted copolymer was determined to be <1% demonstrating that absorption was virtually negligible following a single oral administration to male and female rats.

  15. Developmental toxicity of polyethylene glycol-g-polyvinyl alcohol grafted copolymer in rats and rabbits.

    PubMed

    Heuschmid, Franziska F; Schneider, Steffen; Schuster, Paul; Lauer, Birthe; van Ravenzwaay, Bennard

    2013-07-01

    Polyethylene glycol-g-polyvinyl alcohol (PEG-PVA) grafted copolymer was evaluated in developmental toxicity studies with Wistar rats and Himalayan rabbits. Pregnant Wistar rats were gavaged with 0 (vehicle control), 100, 300, or 1000 mg PEG-PVA grafted copolymer/kg bw/day from gestation day (GD) 6-15. Pregnant Himalayan rabbits received the same treatment from GD 6 to 19. On GD 20 and 29 for rats and rabbits, respectively, the animals were euthanized and were examined grossly. For each dam, corpora lutea were counted and number and distribution of implantation sites were determined. The fetuses were removed, sexed, weighed, and evaluated for any external, soft tissue, and skeletal findings. No significant findings were found that could be attributed to administration of PEG-PVA grafted copolymer. Under the conditions of these studies, the no-observed-adverse-effect level (NOAEL) for maternal and developmental toxicity in both species was the highest dose tested of 1000 mg/kg bw/day.

  16. Polyethylene glycol-g-polyvinyl alcohol grafted copolymer: reproductive toxicity study in Wistar rats.

    PubMed

    Heuschmid, Franziska F; Schneider, Steffen; Schuster, Paul; Lauer, Birthe; van Ravenzwaay, Bennard

    2013-07-01

    Polyethylene glycol-g-polyvinyl alcohol (PEG-PVA) grafted copolymer was administered by gavage to groups of 25 male and 25 female young Wistar rats at doses of 0 (vehicle control), 100, 300, or 1000 mg/kg bw/day for one generation (F0). The study followed the treated F0 generation through mating, gestation, lactation, and weaning of the F1 generation. F1 animals were mated and followed to gestation day (GD) 15-17 at which time F2 implants were evaluated. There were no indications from the various clinical and gross pathological examinations that the oral administration of PEG-PVA grafted copolymer to the F0-parental rats produced any signs of general, reproductive, or developmental toxicity in the F0 or F1 animals or F2 implants. Based on the lack of any dose-related or biologically relevant effects on fertility, reproduction, development, and overall health of rats gavaged with PEG-PVA grafted copolymer and their progeny, the no-observed-adverse effect level (NOAEL) was determined to be the highest dose tested of 1000 mg/kg bw/day.

  17. Subchronic toxicity of polyethylene glycol-g-polyvinyl alcohol grafted copolymer.

    PubMed

    Heuschmid, Franziska F; Schuster, Paul; Lauer, Birthe; Buesen, Roland; Mellert, Werner; Groeters, Sibylle; van Ravenzwaay, Bennard

    2013-07-01

    The safety of polyethylene glycol-g-polyvinyl alcohol (PEG-PVA) grafted copolymer was evaluated in a 13-week oral toxicity study in rats and in a 9-month oral toxicity study in dogs. Wistar rats were administered 600, 3000, or 15,000 ppm PEG-PVA grafted copolymer in their drinking water whereas beagle dogs were fed 3000, 10,000, or 30,000 ppm PEG-PVA grafted copolymer in the diet. There were no mortalities, no adverse clinical signs, no toxicologically adverse effects on body weight or body weight gain, feed consumption, hematological, clinical chemistry or urinary parameters, or histopathology in either species. In rats, no treatment-related effects were observed in the functional observational battery (FOB) or related measurements of motor activity. Increased water consumption observed in rats at the highest dose was the only test substance-induced effect noted. The no-observed-adverse-effect level (NOAEL) was the highest concentration tested in both species: 15,000 ppm in rats (corresponding to a daily intake of 1611 mg/kg bw for males and 2191 mg/kg bw for females) and 30,000 ppm in dogs (corresponding to a mean daily intake of 783 mg/kg bw for males and 811 mg/kg bw for females).

  18. Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics.

    PubMed

    Sun, Xunwen; Lu, Canhui; Liu, Yong; Zhang, Wei; Zhang, Xinxing

    2014-01-30

    Waste cotton fabrics (WCFs), which are generated in a large volume from the textile industry, have caused serious disposal problem. Recycling WCFs into value-added products is one of the vital measures for both environmental and economic benefits. In this study, microcrystalline cellulose (MCC) was prepared by acid hydrolysis of WCFs, and used as reinforcement for melt-processed poly(vinyl alcohol) (PVA) with water and formamide as plasticizer. The microstructure and mechanical properties of the melt-processed PVA/MCC composites were characterized by Fourier transform infrared spectra, Raman spectra, differential scanning calorimetry, thermal gravimetric analysis, X-ray diffraction, tensile tests and dynamic mechanical analysis. The results indicated that MCC could establish strong interfacial interaction with PVA through hydrogen bonding. As a result, the crystallization of PVA was confined and its melting temperature was decreased, which was beneficial for the melt-processing of PVA. Compared with the unfilled PVA, the PVA/MCC composites exhibited remarkable improvement in modulus and tensile strength.

  19. Poly(vinyl alcohol) physical hydrogels: noncryogenic stabilization allows nano- and microscale materials design.

    PubMed

    Jensen, Bettina E B; Smith, Anton A A; Fejerskov, Betina; Postma, Almar; Senn, Philipp; Reimhult, Erik; Pla-Roca, Mateu; Isa, Lucio; Sutherland, Duncan S; Städler, Brigitte; Zelikin, Alexander N

    2011-08-16

    Physical hydrogels based on poly(vinyl alcohol), PVA, have an excellent safety profile and a successful history of biomedical applications. However, highly inhomogeneous and macroporous internal organization of these hydrogels as well as scant opportunities in bioconjugation with PVA have largely ruled out micro- and nanoscale control and precision in materials design and their use in (nano)biomedicine. To address these shortcomings, herein we report on the assembly of PVA physical hydrogels via "salting-out", a noncryogenic method. To facilitate sample visualization and analysis, we employ surface-adhered structured hydrogels created via microtransfer molding. The developed approach allows us to assemble physical hydrogels with dimensions across the length scales, from ∼100 nm to hundreds of micrometers and centimeter sized structures. We determine the effect of the PVA molecular weight, concentration, and "salting out" times on the hydrogel properties, i.e., stability in PBS, swelling, and Young's modulus using exemplary microstructures. We further report on RAFT-synthesized PVA and the functionalization of polymer terminal groups with RITC, a model fluorescent low molecular weight cargo. This conjugated PVA-RITC was then loaded into the PVA hydrogels and the cargo concentration was successfully varied across at least 3 orders of magnitude. The reported design of PVA physical hydrogels delivers methods of production of functionalized hydrogel materials toward diverse applications, specifically surface mediated drug delivery.

  20. Expression and fermentation optimization of oxidized polyvinyl alcohol hydrolase in E. coli.

    PubMed

    Yang, Yu; Zhang, Dongxu; Liu, Song; Jia, Dongxu; Du, Guocheng; Chen, Jian

    2012-01-01

    Oxidized polyvinyl alcohol (PVA) hydrolase (OPH) is a key enzyme in the degradation of PVA, suggesting that OPH has a great potential for application in textile desizing processes. In this study, the OPH gene from Sphingopyxis sp. 113P3 was modified, by artificial synthesis, for overexpression in Escherichia coli. The OPH gene, lacking the sequence encoding the original signal peptide, was inserted into pET-20b (+) expression vector, which was then used to transform E. coli BL21 (DE3). OPH expression was detected in culture medium in which the transformed E. coli BL21 (DE3) was grown. Nutritional and environmental conditions were investigated for improved production of OPH protein by the recombinant strain. The highest OPH activity measured was 47.54 U/mL and was reached after 84 h under optimal fermentation conditions; this level is 2.64-fold higher that obtained under sub-optimal conditions. The productivity of recombinant OPH reached 565.95 U/L/h. The effect of glycine on the secretion of recombinant OPH was examined by adding glycine to the culture medium to a final concentration of 200 mM. This concentration of glycine reduced the fermentation time by 24 h and increased the productivity of recombinant OPH to 733.17 U/L/h. Our results suggest that the recombinant strain reported here has great potential for use in industrial applications.

  1. Hexavalent chromium removal by using synthesis of polyaniline and polyvinyl alcohol.

    PubMed

    Riahi Samani, Majid; Ebrahimbabaie, Parisa; Vafaei Molamahmood, Hamed

    2016-11-01

    Over the past few years, heavy metals have been proved to be one of the most important contaminants in industrial wastewater. Chromium is one of these heavy metals, which is being utilized in several industries such as textile, finishing and leather industries. Since hexavalent chromium is highly toxic to human health, removal of it from the wastewater is essential for human safety. One of the techniques for removing chromium (VI) is the use of different adsorbents such as polyaniline. In this study, composites of polyaniline (PANi) were synthesized with various amounts of polyvinyl alcohol (PVA). The results showed that PANi/PVA removed around 76% of chromium at a pH of 6.5; the PVA has altered the morphology of the composites and increased the removal efficiency. Additionally, synthesis of 20 mg/L of PVA by PANi composite showed the best removal efficiency, and the optimal stirring time was calculated as 30 minutes. Moreover, the chromium removal efficiency was increased by decreasing the pH, initial chromium concentration and increasing stirring time.

  2. Improvement of Starch Digestion Using α-Amylase Entrapped in Pectin-Polyvinyl Alcohol Blend

    PubMed Central

    Cruz, Maurício; Fernandes, Kátia; Cysneiros, Cristine; Nassar, Reginaldo; Caramori, Samantha

    2015-01-01

    Polyvinyl alcohol (PVA) and pectin blends were used to entrap α-amylase (Termamyl) using glutaraldehyde as a cross-linker. The effect of glutaraldehyde concentration (0.25, 0.5, 0.75, 1.0, and 1.25%) on the activity of the immobilized enzyme and rate of enzyme released was tested during a 24 h period. Characteristics of the material, such as scanning electron microscopy (SEM), tensile strength (TS), elongation, and rate of dissolution in water (pH 5.7), ruminal buffering solution (pH 7.0), and reactor containing 0.1 mol L−1 sodium phosphate buffer (pH 6.5), were also analyzed. SEM results showed that the surfaces of the pectin/PVA/amylase films were highly irregular and rough. TS values increased as a function of glutaraldehyde concentration, whereas percentage of elongation (%E) decreased. Pectin/PVA/amylase films presented similar values of solubility in the tested solvents. The material obtained with 0.25% glutaraldehyde performed best with repeated use (active for 24 h), in a phosphate buffer reactor. By contrast, the material obtained with 1.25% glutaraldehyde presented higher performance during in vitro testing using an artificial rumen. The results suggest that pectin/PVA/amylase is a highly promising material for biotechnological applications. PMID:25949991

  3. Fabrication and characterization of hybrid nanofibers from poly(vinyl alcohol), milk protein and metal carbonates.

    PubMed

    Mahanta, Narahari; Teow, Yiwei; Valiyaveettil, Suresh

    2012-08-01

    Porous three dimensional nanofibrous membranes were fabricated from poly(vinyl alcohol) (PVA), milk protein and inorganic salts such as calcium carbonate (CaCO3) or magnesium carbonate (MgCO3). Microscopic investigations showed that the fibers have smooth morphology with an average diameter of 300-500 nm and a surface area of 5.29 m2g(-1). Thermal analysis of the composite nanofibers showed a decrease in glass transition temperature as compared to PVA nanofiber. Incorporation of CaCO3 and MgCO3 into the nanofiber matrix was confirmed by energy dispersive spectroscopy and X-ray diffraction analysis. The cytocompatibility of electrospun composite nanofiber sheets was evaluated using human lung fibroblasts (IMR-90). There was an increase in cell attachment and cell density on milk protein incorporated to PVA-CaCO3 and PVA-MgCO3 fibers within a week of cell seeding. The cytocompatibility and increase in cell adhesion property of the hybrid nanofiber may provide significant advantages for such materials in biomedical applications.

  4. Kinetic evaluation study on the bioactivity of silver doped hydroxyapatite-polyvinyl alcohol nanocomposites.

    PubMed

    Mostafa, Amany A; Oudadesse, Hassane; El Sayed, Mayyada M H; Kamal, Gehan; Kamel, Mohamed; Foad, Enas

    2014-12-01

    This work investigates the effect of adding silver nanoparticles (NPs) in ppm on the bioactivity of hydroxyapatite/polyvinyl alcohol nanocomposites (HAV). HAV prepared by an in situ biomimetic approach was doped with different concentrations of silver NPs (HAV-Ag), and the formed powder samples were characterized by different techniques such as Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-EOS), X-ray diffraction, transmission electron microscope, and Fourier Transform Infrared Spectroscopy. Bioactivity was evaluated in simulated body fluid through studying the kinetics of Ca and P uptake onto the different HAV-Ag nanocomposites. Uptake profiles of Ca and P were well described by a pseudo-second order kinetic model, and the obtained kinetic parameters confirmed that the highest uptake capacities were achieved by adding less than 0.001 ppm of silver NPs which is an amount not detectable by ICP. Furthermore, HAV-Ag nanocomposites were shown to be non-toxic as well as have a strong antibacterial effect. Silver NPs significantly enhanced the bioactivity of HAV nanocomposites and thus the developed nanocomposites promise to be excellent biomaterials for bone and reconstructive surgery applications.

  5. Adsorption of Methylene Blue from Aqueous Solutions by Polyvinyl Alcohol/Graphene Oxide Composites.

    PubMed

    Yang, Xiaoxia; Li, Yanhui; Du, Qiuju; Wang, Xiaohui; Hu, Song; Chen, Long; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2016-02-01

    As a new member of the carbon family, graphene oxide (GO) has shown excellent adsorption ability to micro-pollutants in aqueous solutions. However, its tiny size makes it difficult to be removed from aqueous solutions using the conventional separation methods, which limits its practical application in the environmental protection. In this study, polyvinyl alcohol (PVA) was used as carrier immobilizing GO, and novel PVA/GO composites were prepared. The morphology and physicochemical properties of the composites were characterized by SEM, FTIR and TGA analysis. The adsorption properties of methylene blue (MB) onto the composites were studied through investigating the experimental parameters such as solution pH, adsorbent dosage, contact time and temperature. The isotherm data were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevich models. The calculated maximum adsorption capacity reached 476.2 mg/g at 50% GO content. The pseudo-first-order kinetic, pseudo-second-order kinetic and intra-particle diffusion models were used to explore the adsorption kinetics. The results showed that the dynamic data were fitted to the pseudo-second-order kinetic model.

  6. Treatment of desizing wastewater containing poly(vinyl alcohol) by wet air oxidation

    SciTech Connect

    Chen, G.; Lei, L.; Yue, P.L.; Cen, P.

    2000-05-01

    The effectiveness of wet air oxidation (WAO) is studied in a 2-L autoclave for the treatment of desizing wastewater from man-made fiber textile plants. At an oxygen pressure of less than 2 MPa, over 30-min, chemical oxygen demand (COD) removal was found to increase from 15 to 65% when the temperature was raised from 150 to 250 C. The biodegradability of the wastewater was also simultaneously increased. Up to 90% of the COD could be removed within 120 min. A simplified reaction mechanism is proposed which involves a direct mineralization step in parallel with a step in which an intermediate is formed prior to mineralization. A kinetic model for COD removal was developed based on this reaction mechanism. The model was tested with experimental COD results over the temperature range of the experiments. The dependence of the specific reaction rate constants was found to follow the Arrhenius type of equation. The direct oxidation of poly(vinyl alcohol) (PVA) to carbon dioxide and water is the dominant reaction step. The intermediates formed are not likely to be the acetic acid but may be short segments of PVA that are easily oxidized.

  7. Thalassospira povalilytica sp. nov., a polyvinyl-alcohol-degrading marine bacterium.

    PubMed

    Nogi, Yuichi; Yoshizumi, Masaki; Miyazaki, Masayuki

    2014-04-01

    A polyvinyl-alcohol-degrading marine bacterium was isolated from plastic rope litter found in Tokyo Bay, Japan. The isolated strain, Zumi 95(T), was a Gram-reaction-negative, non-spore-forming and facultatively anaerobic chemo-organotroph. The major respiratory quinone was Q-10. The predominant fatty acids were C18 : 1ω7c and C16 : 0. On the basis of 16S rRNA gene sequence analysis, the isolated strain was closely affiliated with members of the genus Thalassospira in the class Alphaproteobacteria. The DNA G+C content of the novel strain was 55.1 mol%. The hybridization values for DNA-DNA relatedness between this strain and four reference strains representing species of the genus Thalassospira were significantly lower than that accepted as the phylogenetic definition of a species. On the basis of differences in taxonomic characteristics, the isolated strain represents a novel species of the genus Thalassospira for which the name Thalassospira povalilytica sp. nov. (type strain Zumi 95(T) = JCM 18746(T) = DSM 26719(T)) is proposed.

  8. Sensitivity and Response of Polyvinyl Alcohol/Tin Oxide Nanocomposite Multilayer Thin Film Sensors.

    PubMed

    Sriram, G; Dhineshbabu, N R; Nithyavathy, N; Saminathan, K; Kaler, K V I S; Rajendran, V

    2016-01-01

    Nanocrystalline Tin Oxide (SnO₂) is Non-Stoichiometric in Nature with Functional Properties Suitable for gas sensing. In this study, SnO₂nanoparticles were prepared by the sol-gel technique, which were then characterised using X-ray diffraction. The nanoparticles showed tetragonal structure with an average crystallite size of 18 nm. The stretching and vibration modes of SnO₂were confirmed using Fourier transform infrared spectroscopy. The size of SnO₂ nanoparticles was determined using particle size analyser, which was found be 60 ± 10 nm on average. The surface morphology of the nanoparticles was investigated using scanning electron microscope, which showed irregular-sized agglomerated SnO₂nanostructures. In addition, primary particle size was evaluated using high-resolution transmission electron microscopy, which was found to be 50 nm on average. The polyvinyl alcohol/SnO₂ composite thin film was prepared on a glass substrate using spin-coating method. The values of band gap energy and electrical conductance of 13-layer thin film were found to be 2.96 eV and 0.0505 mho, respectively. Sulfur dioxide (SO₂) was suitably tailored to verify the sensor response over a concentration range of 10-70 ppm at room temperature. The performance, response, and recovery time of sensors were increased by increasing the layers of the thin film.

  9. Structure and physical properties of high amorphous polyvinyl alcohol/clay composites

    NASA Astrophysics Data System (ADS)

    Russo, P.; Speranza, V.; Vignali, A.; Tescione, F.; Buonocore, G. G.; Lavorgna, M.

    2015-12-01

    Recently a high amorphous polyvinyl alcohol (HAVOH) which can be easily melt processed has been patented and commercialized with the trade name G-Polymer. In this work, we report on the characterization of clay-G-Polymer composites obtained by melt processing of HAVOH with two commercial chemically-modified organoclays, Cloisite 15A and Cloisite 30B. Results show that the extent of polymer intercalation in the layered clay structure as well as the thermal and mechanical properties of the obtained composites depend on the nature of clay organo-modifier, i.e a quaternary ammonium salt of dimethyl dehydrogenated tallow for Cloisite 15A and an alkyl ammonium salt of bis-(2-hydroxyethyl)methyl tallow for Cloisite 30B. In particular Cloisite 15A, which is only slightly intercalated by the polymer during melt compounding, contributes to enhance glass transition temperature and mechanical properties of the resulting composites. On the contrary, Cloisite 30B which is significantly intercalated by the interacting polymer macromolecules, disturbs to some extent the H-bonding network established within the polymeric matrix thus showing a reduction of thermal and mechanical properties.

  10. Preparation of hydrophobic polyvinyl alcohol aerogel via the surface modification of boron nitride for environmental remediation

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiyang; Wan, Wenchao; Qiu, Lijuan; Wang, Yonghua; Zhou, Ying

    2017-10-01

    Macroscopic polyvinyl alcohol (PVA) aerogel is of great interest in environmental remediation due to its low cost and easy fabrication. However, the hydrophily of PVA aerogel limited its application in oil-water separation. In this work, boron nitride (BN)-modified PVA aerogel has been successfully prepared by a cost-effective frozen-drying method. PVA plays a role as a scaffold of aerogel to support BN nanosheets which can modify the surface properties of PVA aerogel, resulting in a dramatic change of wettability from hydrophily (0°) to hydrophobicity (94.9°-100.8°). Moreover, the obtained BN-modified PVA aerogel possesses a favorable porous structure, low density (41.8-60.0 mg/cm3) and good adsorption capacity (12-38 g/g), which make it a promising wastewater treatment material. Importantly, PVA aerogel with other functions can be easily fabricated through coupling with other inorganic materials by this strategy, which can provide various promising applications for environmental remediation.

  11. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Akhtar, Majid Niaz; Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Al-Amiery, Ahmed A

    2015-12-19

    The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol-halloysite nanotubes (PVA-HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA-HNT nanocomposites can be a potential way to address some of PVA's limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA-HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA-HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA.

  12. Microencapsulation and characterization of poly(vinyl alcohol)-coated titanium dioxide particles for electrophoretic display

    NASA Astrophysics Data System (ADS)

    Lee, Jeongwoo; Hong, Jinho; Park, Dong Wha; Shim, Sang Eun

    2010-02-01

    Titanium dioxide (TiO 2) particles were coated by poly(vinyl alcohol) (PVA) via a simple method of coacervation without a conventionally practiced polymerization step. Transmission electron microscopy (TEM) images clearly showed that the successful coating was achieved on the surface of TiO 2 particles. The average thickness of PVA coating layer was about 1.07 μm and the amount of coated PVA was 1.40 wt.% relative to TiO 2. The existence of PVA layer on TiO 2 was also verified from FT-IR spectra. The PVA-coated TiO 2 particles were further microencapsulated via coacervation of gelatin and gum Arabic. Regarding the performance of the resulting microcapsules, the resulting PVA-coated TiO 2 particles showed both a good electrophoretic movement and a good bistability in the microcapsules. Therefore, these microcapsules embedding PVA-coated TiO 2 particles can be used as a good candidate for the electrophoretic displays.

  13. A Study of Specific Heat Capacity Functions of Polyvinyl Alcohol- Cassava Starch Blends

    NASA Astrophysics Data System (ADS)

    Sin, Lee Tin; Rahman, W. A. W. A.; Rahmat, A. R.; Morad, N. A.; Salleh, M. S. N.

    2010-03-01

    The specific heat capacity ( C sp) of polyvinyl alcohol (PVOH) blends with cassava starch (CSS) was studied by the differential scanning calorimetry method. Specimens of PVOH-CSS blends: PPV37 (70 mass% CSS) and PPV46 (60 mass% CSS) were prepared by a melt blending method with glycerol added as a plasticizer. The results showed that the specific heat capacity of PPV37 and PPV46 at temperatures from 330 K to 530 K increased from (2.963 to 14.995) J· g-1 · K-1 and (2.517 to 14.727) J · g-1· K-1, respectively. The specific heat capacity of PVOH-CSS depends on the amount of starch. The specific heat capacity of the specimens can be approximated by polynomial equations with a curve fitting regression > 0.992. For instance, the specific heat capacity (in J · g-1 · K-1) of PPV37 can be expressed by C sp = -17.824 + 0.063 T and PPV46 by C sp = -18.047 + 0.061 T, where T is the temperature (in K).

  14. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Beigzadeh, Borhan

    2014-02-01

    This study proposes the quasi-linear viscoelastic (QLV) model to characterize the time dependent mechanical behavior of poly(vinyl alcohol) (PVA) sponges. The PVA sponges have implications in many viscoelastic soft tissues, including cartilage, liver, and kidney as an implant. However, a critical barrier to the use of the PVA sponge as tissue replacement material is a lack of sufficient study on its viscoelastic mechanical properties. In this study, the nonlinear mechanical behavior of a fabricated PVA sponge is investigated experimentally and computationally using relaxation and stress failure tests as well as finite element (FE) modeling. Hyperelastic strain energy density functions, such as Yeoh and Neo-Hookean, are used to capture the mechanical behavior of PVA sponge at ramp part, and viscoelastic model is used to describe the viscose behavior at hold part. Hyperelastic material constants are obtained and their general prediction ability is verified using FE simulations of PVA tensile experiments. The results of relaxation and stress failure tests revealed that Yeoh material model can define the mechanical behavior of PVA sponge properly compared with Neo-Hookean one. FE modeling results are also affirmed the appropriateness of Yeoh model to characterize the mechanical behavior of PVA sponge. Thus, the Yeoh model can be used in future biomechanical simulations of the spongy biomaterials. These results can be utilized to understand the viscoelastic behavior of PVA sponges and has implications for tissue engineering as scaffold. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Shock pressure measurements in Polyvinyl alcohol (PVA) films using multi-frame optical shadowgraphy

    NASA Astrophysics Data System (ADS)

    Chaurasia, S.; Tripathi, S.; Leshma, P.; Pasley, J.; Kumar, M.

    2012-07-01

    The knowledge of the equation of state (EOS) of materials at high pressures in excess of 10 Mbar is important in several branches of physics including astrophysics and inertial confinement fusion. It is possible to access this high pressure regime in the laboratory using shock waves launched by the interaction of a high power laser with a solid target. To study laser driven shock waves in plastic (Polyvinyl alcohol) (C2H4O)n targets, a multiframe optical shadowgraphy technique has been developed, with spatial and temporal resolution of 12 μm and 500 ps respectively. The experiments were performed using the 1064 nm 20 J /500 ps Nd: Glass laser at BARC. The focused laser intensity on target was varied between 6 × 1013 W/cm2 and 2.7 × 1014 W/cm2. The experimental data have been compared with the results of previous experimental and theoretical studies. The results are also found to be in agreement with SESAME data. The maximum pressure attained in the experiments was 30 Mbar, achieved with a laser intensity of 2.7 × 1014 W/cm2.

  16. Vinyl monomers-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles

    SciTech Connect

    Shah, Chetan P.; Singh, Krishan K.; Kumar, Manmohan; Bajaj, Parma N.

    2010-01-15

    A simple wet chemical method has been developed to synthesize selenium nanoparticles (size 100-200 nm), by reaction of sodium selenosulphate precursor with different vinyl monomers, such as acrylamide, N,N'-dimethylene bis acrylamide, methyl methacrylate, sodium acrylate, etc., in aqueous medium, under ambient conditions. Polyvinyl alcohol has been used to stabilize the selenium nanoparticles. Average size of the synthesized selenium nanoparticles can be controlled by adjusting concentration of both the precursors and the stabilizer. Rate of the reaction as well as size of the resultant selenium nanoparticles have been correlated with the functional groups of the different monomers. UV-vis optical absorption spectroscopy, X-ray diffraction, energy dispersive X-rays, differential scanning calorimetry, atomic force microscopy, scanning electron microscopy and transmission electron microscopy techniques have been employed to characterize the synthesized selenium nanoparticles. Gas chromatographic analysis of the reaction mixture established the non-catalytic role of the vinyl monomers, which were found to be consumed during the course of the reaction.

  17. Preparation and properties of nanometer silk fibroin peptide/polyvinyl alcohol blend films for cell growth.

    PubMed

    Luo, Qin; Chen, Zhongmin; Hao, Xuefei; Zhu, Qiangsong; Zhou, Yucheng

    2013-10-01

    Nanometer silk fibroin peptide (Nano-SFP) was prepared from silkworm cocoons through the process of dissolution, dialysis and enzymolysis. For comparison, silk fibroin was decomposed with α-chymotrypsin, trypsin and neutrase, respectively. From the SEM and particle size analysis results, the Nano-SFP prepared by neutrase was found to be the most desirable at about 50-200 nm. Nano-SFP/polyvinyl alcohol films (Nano-SFP/PVA) were prepared by blending Nano-SFP and PVA in water with different weight ratios of 10/90, 20/80, 30/70, and 40/60. The films were characterized by IR, SEM, TG, DSC and tensile strength test for investigating their structure, surface morphology, thermostability, and mechanical property. The results showed that Nano-SFP inserted in the PVA films with small linear particles, and Nano-SFP/PVA films exhibited smooth surface, good thermostability and tensile strength. The growth of Chinese hamster ovary (CHO) cells on films with and without Nano-SFP was investigated with MTT colorimetric assay to assess the films' ability to promote cell growth. It was observed that the Nano-SFP improved cell adhesion on the film surface, and the ability of promoting cell growth increased with the increasing content of Nano-SFP in the blend films. Nano-SFP/PVA film with the ratio of 30/70 was concluded to have the best properties.

  18. Dielectric relaxation and electric modulus of polyvinyl alcohol-Zinc oxide composite films

    NASA Astrophysics Data System (ADS)

    More, Shital; Dhokne, Ragini; Moharil, Sanjiv

    2017-05-01

    A systematic study of AC electrical properties and dielectric relaxation of polyvinyl alcohol (PVA)- zinc oxide (ZnO) composite films has been presented in the frequency range 1 Hz-100 kHz when temperature changes from 288 K-353 K. The films were characterized for structural analysis by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) attached with EDAX and Fourier transform infrared spectroscopy (FTIR). The structural investigation confirms the presence of ZnO in PVA polymer. The incorporation of ZnO particles into PVA matrix enhances the AC conductivity and temperature dependence of them obeys the Jonscher’s universal power law. The frequency exponent which depends on temperature suggests the CBH (correlated barrier hopping) mechanism; is dominent mechanism in the composite film. The real and imaginary part of dielectric constant shows dispersion at low frequencies and decreased at high frequencies which may be ascribed to interfacial or electrode polarization. The temperature dependence of \\varepsilon {{}\\prime} follows the Debye model. At low frequency, the values of a real part of the electric modulus ({{M}\\prime} ) remains almost zero at all temperature except at 288 K and 303 K temperature due to viscous nature of polymer at low temperatures. The dielectric relaxation time was extracted from a plot of frequency dependence of {{M}\\prime \\prime} at different temperature and it is found to decrease with temperature resulting in the enhancement of AC conductivity.

  19. Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems.

    PubMed

    Pereira, André Luís S; do Nascimento, Diego M; Souza Filho, Men de Sá M; Morais, João Paulo S; Vasconcelos, Niedja F; Feitosa, Judith P A; Brígida, Ana Iraidy S; Rosa, Morsyleide de F

    2014-11-04

    Cellulose nanocrystals (CNCs) isolated from banana pseudostems fibers (BPF) of the Pacovan variety were used as fillers in a polyvinyl alcohol (PVOH) matrix to yield a nanocomposite. The fibers from the external fractions of the BPF were alkaline bleached and hydrolyzed under acidic conditions (H2SO4 62% w/w, 70 min, 45 °C) to obtain CNCs with a length (L) of 135.0 ± 12.0 nm and a diameter (D) of 7.2 ± 1.9 nm to yield an aspect ratio (L/D) of 21.2. The CNCs were applied to PVOH films at different concentrations (0%, 1%, 3%, and 5% w/w, dry basis). With higher concentrations of CNCs, the water-vapor barrier of the films increased, while the optical properties changed very little. Increasing the concentration of the CNCs up to 3% significantly improved the mechanical properties of the nanocomposite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. In vitro anticoagulant activity of polyanionic graft chains modified poly(vinyl alcohol) particles

    NASA Astrophysics Data System (ADS)

    Li, Rong; Wu, Guozhong; Cai, Ximing; Ye, Yin

    2017-05-01

    Poly(acrylic acid), poly(sodium styrenesulfonate), and poly(acrylic acid-co-sodium styrenesulfonate) chains were immobilized onto poly(vinyl alcohol) (PVA) particles via a facile γ-ray simultaneous irradiation induced graft polymerization technique, which were confirmed by the attenuated total reflection Fourier transform infrared spectroscopy and the high swelling ratios of modified PVA particles. The effects of absorbed dose, dose rate, Cu2+ concentration and monomer concentration on the degree of grafting (DG) of PVA particles were investigated to find out a feasible process for preparing polyanionic chains graft-modified PVA particles. The clotting time results illustrated that both PVA-g-PAA and PVA-g-PSSS particles presented excellent anticoagulant activity, and the activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) were effectively prolonged with the increase of DGAA and DGSSS, respectively. Furthermore, the anticoagulant activity of PVA-g-PSSS samples was more efficient than that of PVA-g-PAA samples. However, the anticoagulant effect of PVA-g-P(AA-co-SSS) samples was different from that of PVA-g-PAA and PVA-g-PSSS samples, and was similar to that of heparin, mainly elongating the APTT and TT. This might be due to both of them containing the same negative-charged groups. Additionally, the grafted PVA particles were all non-hemolytic, showing good blood compatibility.

  1. Gamma irradiation induced in situ synthesis of lead sulfide nanoparticles in poly(vinyl alcohol) hydrogel

    NASA Astrophysics Data System (ADS)

    Kuljanin-Jakovljević, Jadranka Ž.; Radosavljević, Aleksandra N.; Spasojević, Jelena P.; Carević, Milica V.; Mitrić, Miodrag N.; Kačarević-Popović, Zorica M.

    2017-01-01

    In this study, the nanocomposites based on semiconductor lead sulfide (PbS) nanoparticles and poly(vinyl alcohol) (PVA) were investigated. The gamma irradiation induced in situ incorporation of PbS nanoparticles in crosslinked polymer network i.e. PVA hydrogel was performed. PVA hydrogel was previously obtained also under the influence of gamma irradiation. UV-Vis absorption and X-ray diffraction measurements were employed to investigate optical and structural properties of PbS nanoparticles, respectively, and obtained results indicates the presence of nanoparticles with approximately 6 nm in diameter and face centered cubic rock-salt crystal structure. The porous morphology was confirmed by scanning electron microscopy. Swelling data revealed that investigated hydrogels (PVA and PbS-PVA nanocomposite) shows non-Fickian diffusion, indicating that both diffusion and polymer relaxation processes controlled the fluid transport. The values of diffusion coefficients have an order of magnitude 10-9 cm2/s (typical values for water diffusion in polymers) and the best fit with the experimental results showed the Etters approximation. Comparing the thermal properties of PbS-PVA xerogel nanocomposite with PVA xerogel it was observed that incorporation of PbS nanoparticles in crosslinked PVA matrix just slightly enhanced the thermal stability of nanocomposite.

  2. Thermal, mechanical and dielectric properties of poly(vinyl alcohol)/graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Rathod, Sunil G.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Sheela, T.; Naik, Jagadish

    2014-04-01

    In this work the composite films of poly(vinyl alcohol) (PVA) doped with functionalized Graphene Oxide (GO) were prepared by solution casting method. The films were characterized using FT-IR, DSC, XRD, mechanical properties and dielectric studies at room temperature. FTIR spectra shows the formation of hydrogen bonds between hydroxyl groups of PVA and the hydroxy groups of GO. The DSC thermograms shows the addition of GO to PVA greatly improves the thermal stability of the composites. XRD patterns shows that the GO exfoliated and uniformly dispersed in PVA matrix. Mechanical properties are significantly improved in PVA/GO composites. The tensile strength increased from 8.2 to 13.7 MPa and the Young's modulus increased from 7.5 to 24.8 MPa for 5 wt% GO doped sample. Dielectric spectroscopy showed a highest dielectric constant for the 5 wt% GO doped PVA films. This work provides a potential design strategy on PVA/GO composite, which would lead to higher-performance, flexible dielectric materials, high charge-storage devices.

  3. Inexpensive cross-linked polymeric separators made from water-soluble polymers. [for secondary alkaline nickel-zinc and silver-zinc cells

    NASA Technical Reports Server (NTRS)

    Hsu, L.-C.; Sheibley, D. W.

    1982-01-01

    Polyvinyl alcohol (PVA), cross-linked chemically with aldehyde reagents, produces membranes which demonstrate oxidation resistance, dimensional stability, low ionic resistivity (less than 0.8 Ohms sq cm), low zincate diffusivity (less than 1 x 10 to the -7th mols/sq cm per min), and low zinc dendrite penetration rate (greater than 350 min) which make them suitable for use as alkaline battery separators. They are intrinsically low in cost, and environmental health and safety problems associated with commercial production appear minimal. Preparation, property measurements, and cell test results in Ni/Zn and Ag/Zn cells are described and discussed.

  4. Prediction of Thermal Properties and Effect of OH Substituent for Poly(vinyl alcohol)s by Molecular Dynamics Calculations

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yooko; Yoshii, Noriyuki; Iwatsubo, Tetsushiro

    2004-08-01

    Since heat storage technology contributes greatly to the effective use of energy, we are attempting to develop latent heat storage materials. If computer simulations enable the estimation of material properties prior to experiments, they will provide us with very effective tools for the development of new materials. We use molecular dynamics calculations to predict the melting points and latent heats of fusion, which are crucial thermal properties for evaluating the suitability of heat-storage materials. As the object of calculation, poly(vinyl alcohol) (PVA) was chosen, because polymer materials are effective in that they can be made to cover all temperature ranges by changing the molecular weight. The melting points were determined from the volume change, and the latent heats of fusion were determined from the internal energy. As for these calculations, it was ascertained that these thermal properties were suitable values in comparison with the results of actual calorimetry. From the comparative calculation of the polymer consistent force field (PCFF) and optimized potentials for liquid simulations (OPLS) force field, it was shown that the intermolecular potential could be simplified. Moreover, the stability of the structural isomer of PVA and the state of the hydrogen bond were evaluated, because a strong intermolecular bond leads to structural stability and a high melting temperature.

  5. Tolerogenic responses of CD206+, CD83+, FOXP3+, and CTLA-4 to sericin/polyvinyl alcohol/glycerin scaffolds relevant to IL-33 and HSP60 activity.

    PubMed

    Ampawong, Sumate; Aramwit, Pornanong

    2016-09-01

    Silk sericin-releasing (sericin/polyvinyl alcohol (PVA)/glycerin) scaffolds have been designed for wound dressing applications using different fabrication techniques that influence scaffold antigenicity. The immunological tolerance of scaffolds depends on the balance of immunogenic and tolerogenic responses modulated by dendritic cells (DCs). An in vivo skin implantation model was used to compare the tolerogenic effect of sericin/PVA/glycerin scaffolds prepared by freeze-drying versus salt-leaching techniques, using an Allevyn® scaffold as a control. Immunohistochemical and histopathological studies were performed to evaluate tolerogenic DCs (CD206+), immunogenic DCs (CD83+), regulatory T-cells (FOXP3+ and CTLA-4), a proinflammatory cytokine (interleukin 33: IL-33), a stress marker (heat shock protein 60; HSP60), histopathological changes and related inflammatory cells. It was found that both sericin/PVA/glycerin scaffolds were tolerogenic and induced early activated Treg functions, while the Allevyn® scaffold was immunogenic. However, the tolerance of the freeze-dried sericin/PVA/glycerin scaffolds was not as consistent as the salt-leached sericin/PVA/glycerin scaffolds, indicated by the low level of CTLA-4 expression. This was probably due to molecular cross-linking and the morphological and mechanical properties of the freeze-drying technique, which would enhance the immune response. Severe inflammatory responses (including mast cell degranulation and foreign body giant cell accumulation) and histopathological changes (including fat infiltration and fibrosis formation) were mainly found with the Allevyn® scaffold, presumably from its architecture and chemical composition, especially polyurethane. The up-regulation of IL-33 and HSP60 with the Allevyn® scaffold was correlated with the inflammatory and pathological levels. Our findings suggested that salt-leached sericin/PVA/glycerin scaffolds were tolerogenic, induced a low inflammatory response and were

  6. Co-immobilization of Pseudomonas stutzeri YHA-13 and Alcaligenes sp. ZGED-12 with polyvinyl alcohol-alginate for removal of nitrogen and phosphorus from synthetic wastewater.

    PubMed

    Han, Yonghe; Zhang, Wenxian; Lu, Wenxian; Zhou, Zhihua; Zhuang, Zhigang; Li, Min

    2014-01-01

    Nitrogen (N) and phosphorus (P) are the two main factors causing water eutrophication. Immobilized micro-organisms have been widely studied in N and P removal. However, the effects of various immobilizing conditions on the removal efficiency of N and P using immobilized micro-organism beads (IMOBs) remain unclear. Polyvinyl alcohol (PVA) and alginate, as the two frequently immobilizing-used matrixes, were used for co-immobilizing Pseudomonas stutzeri YHA-13 and Alcaligenes sp. ZGED-12. PVA, alginate and CaCl₂contents, immobilization time and different wet biomass ratios of P. stutzeri to Alcaligenes sp. were conducted to elucidate their roles in and influences on the removal efficiency of N and P from synthetic wastewater. The application potential of IMOBs was estimated as well. Results showed that IMOBs prepared by cross-link of 4% PVA and 2-3% alginate with 5% CaCl₂and saturated boric acid solution for 10-15 min are the best ones in removal of N and P. Though IMOBs containing P. stutzeri and/or Alcaligenes sp. were capable of removal of the two nutrients, the highest removal efficiency was observed when the wet biomass ratio of P. stutzeri to Alcaligenes sp. was adjusted to 2:2. In addition, the IMOBs were of good ability to remove chemical oxygen demand (COD), NO(3)(-), NO(2)(-), NH(4)(+)- N, total nitrogen (TN) and total phosphorus (TP) from artificial wastewater. Of which, micro-organisms immobilized in matrixes were mainly responsible for NO(3)(-) and TP removal. Therefore, P. stutzeri YHA-13 and Alcaligenes sp. ZGED-12 are reliable bioresources to remove N and P from wastewater.

  7. Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; May, C. E.

    1983-01-01

    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.

  8. Development of ethyl alcohol-precipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of full-thickness wounds.

    PubMed

    Siritienthong, Tippawan; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2012-12-15

    Silk sericin has been recently reported for its advantageous biological properties to promote wound healing. In this study, we established that the ethyl alcohol (EtOH) could be used to precipitate sericin and form the stable sericin/polyvinyl alcohol (PVA) scaffolds without the crosslinking. The sericin/PVA scaffolds were fabricated via freeze-drying and subsequently precipitating in various concentrations of EtOH. The EtOH-precipitated sericin/PVA scaffolds showed denser structure, higher compressive modulus, but lower water swelling ability than the non-precipitated scaffolds. Sericin could be released from the EtOH-precipitated sericin/PVA scaffolds in a sustained manner. After cultured with L929 mouse fibroblasts, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed the highest potential to promote cell proliferation. After applied to the full-thickness wounds of rats, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed significantly higher percentage of wound size reduction and higher extent of type III collagen formation and epithelialization, compared with the control scaffolds without sericin. The accelerated wound healing by the 70 vol% EtOH-precipitated sericin/PVA scaffolds was possibly due to (1) the bioactivity of sericin itself to promote wound healing, (2) the sustained release of precipitated sericin from the scaffolds, and (3) the activation and recruitment of wound healing-macrophages by sericin to the wounds. This finding suggested that the EtOH-precipitated sericin/PVA scaffolds were more effective for the wound healing, comparing with the EtOH-precipitated PVA scaffolds without sericin. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Manipulating the morphologies of poly(vinyl alcohol) block copolymer surfactants

    NASA Astrophysics Data System (ADS)

    Repollet-Pedrosa, Milton H.

    Amphiphilic block copolymers (ABCs) are macromolecules containing well-defined hydrophilic and hydrophobic segments that self-assemble into nanoscale aggregates such as spherical and cylindrical micelles and vesicles, when dispersed in block-selective solvents. ABCs possess a miniscule critical micelle concentration, which results in kinetically trapped and persistent assemblies in solution with slow chain exchange between aggregates. This makes them useful as rheological modifiers for personal care products, enhanced oil recovery, and drug delivery formulations. Their utility in many of these applications is crucially dependent on the ability to control the micellar morphologies that they adopt in selective solvents. Triggering ABC micellar morphological transformations, i.e. from spherical to cylindrical micelles, is important for generating "on-demand" stimuli-responsive morphologies that control the aggregate morphology and the bulk solution properties in any given application. In this thesis, we develop the straightforward synthesis of biodegradable and biocompatible ABCs comprised of poly(vinyl acetate) (PVAc) and poly(vinyl alcohol) (PVA), with narrow molecular distributions and variable yet well-defined compositions. These block copolymer amphiphiles readily form spherical micelles in aqueous dispersions. We demonstrate that the addition of a water-soluble poly(ethylene oxide) (PEO) homopolymer to these dispersions results in a rapid transformation of these spherical micelles into cylindrical micelles. Dilution of these cylindrical micelles with water induces their reversion to spherical micelles. Our results indicate that the reversible morphology change depends sensitively on the PEO homopolymer concentration and molecular weight, as well as the length of the PVA corona block of the micelles. Through a series of quantitative 1H NMR studies, we found that the preferential partitioning of PEO homopolymer into the PVAc micellar core drives this morphological

  10. Development and evaluation of polyvinyl-alcohol blend polymer films as battery separators

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.

    1982-01-01

    Several dialdehydes and epoxies were evaluated for their suitability as cross-linkers. Optium concentrations of several cross-linking reagents were determined. A two-step method of cross-linking, which involves treatment of the film in an acid or acid periodate bath, was investigated and dropped in favor of a one-step method in which the acid catalyst, which initiates cross-linking, is added to the PVA - cross-linker solution before casting. The cross-linking was thus achieved during the drying step. This one-step method was much more adaptable to commercial processing. Cross-linked films were characterized as alkaline battery separators. Films were prepared in the lab and tested in cells in order to evaluate the effect of film composition and a number of processing parameters on cell performance. These tests were conducted in order to provide a broader data base from which to select optimum processing parameters. Results of the separator screening tests and the cell tests are discussed.

  11. Surface modified electrospun poly(vinyl alcohol) membranes for extracting nanoparticles from water

    NASA Astrophysics Data System (ADS)

    Mahanta, Narahari; Valiyaveettil, Suresh

    2011-11-01

    Contamination of water from nanomaterials will be an emerging problem in the future due to incorporation of nanomaterials in many commercial products and improper disposal of waste materials. In this report, electrospun polyvinyl alcohol nanofibers (PVA NFs) with diameters ranging between 300 and 500 nm were used for the extraction of nanosized contaminants from the aqueous environment. To obtain the best extraction efficiency, surface hydroxyl groups of PVA NFs were chemically modified with functional groups, such as thiols and amines. Two model nanoparticles (silver and gold) dissolved in water were used for adsorption studies. Depending on the nature of the surface functionalities, the fibers showed unique ability to adsorb nanoparticles. The extraction studies revealed that the amine and thiol modified PVA NFs showed 90% extraction efficiency for both silver and gold nanoparticles. The thiol and amine functionalized PVA NFs showed maximum adsorption capacities (Qt) towards Au NPs, which were around 79-84 mg g-1. Similarly for Ag NP extraction, amine functionalized PVA NFs showed a value for Qt at 56 mg g-1. Our results highlight that functionalized nanofibers have high extraction efficiency for dissolved nanoparticles in water and can be used for removal of the nanocontaminants from the aqueous environment.Contamination of water from nanomaterials will be an emerging problem in the future due to incorporation of nanomaterials in many commercial products and improper disposal of waste materials. In this report, electrospun polyvinyl alcohol nanofibers (PVA NFs) with diameters ranging between 300 and 500 nm were used for the extraction of nanosized contaminants from the aqueous environment. To obtain the best extraction efficiency, surface hydroxyl groups of PVA NFs were chemically modified with functional groups, such as thiols and amines. Two model nanoparticles (silver and gold) dissolved in water were used for adsorption studies. Depending on the nature of

  12. Povalibacter uvarum gen. nov., sp. nov., a polyvinyl-alcohol-degrading bacterium isolated from grapes.

    PubMed

    Nogi, Yuichi; Yoshizumi, Masaki; Hamana, Koei; Miyazaki, Masayuki; Horikoshi, Koki

    2014-08-01

    Polyvinyl-alcohol-degrading bacteria were isolated from the fruit of a grape in Yokosuka, Japan. The isolated strain, Zumi 37(T), was a Gram-stain-negative, rod-shaped, motile, non-spore-forming and strictly aerobic chemo-organotroph, showing optimal growth at pH 7.5, 30 °C and 0.1% (w/v) NaCl. The major respiratory quinone was Q-8. The predominant fatty acids were iso-C(15 : 0), C(16 : 0) and C(16 : 1)ω7c. The major polyamines were homospermidine and putrescine. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content of the novel strain was 64.2 mol%. 16S rRNA gene sequence comparison revealed that strain Zumi 37(T) belongs to the family Sinobacteraceae within the class Gammaproteobacteria. Steroidobacter denitrificans DSM 18526(T) was the most closely related species with a validly published name, with 98.0% similarity based on 16S rRNA gene sequence comparison (and showed less than 87.5% sequence similarity to members of the genera Alkanibacter, Fontimonas, Hydrocarboniphaga, Nevskia and Solimonas with known 16S rRNA gene sequences). Phenotypes for growth under aerobic conditions and on complex media and major fatty acid composition, differed greatly from those of with comparatively high 16S rRNA gene sequence similarity. Based on phylogenetic, phenotypic and chemotaxonomic evidence, it is proposed that strain Zumi 37(T) represents a novel species in a new genus for which the name Povalibacter uvarum gen. nov., sp. nov. is proposed. The type strain of the type species is Zumi 37(T) ( = JCM 18749(T) = DSM 26723(T)). © 2014 IUMS.

  13. Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration.

    PubMed

    Lee, Si-Yuen; Pereira, Barry P; Yusof, N; Selvaratnam, L; Yu, Zou; Abbas, A A; Kamarul, T

    2009-07-01

    A poly(vinyl alcohol) (PVA) hydrogel composite scaffold containing N,O-carboxymethylated chitosan (NOCC) was tested to assess its potential as a scaffold for cartilage tissue engineering in a weight-bearing environment. The mechanical properties under unconfined compression for different hydration periods were investigated. The effect of supplementing PVA with NOCC (20wt.% PVA:5vol.% NOCC) produced a porosity of 43.3% and this was compared against a non-porous PVA hydrogel (20g PVA: 100ml of water, control). Under non-hydrated conditions, the porous PVA-NOCC hydrogel behaved in a similar way to the control non-porous PVA hydrogel, with similar non-linear stress-strain response under unconfined compression (0-30% strain). After 7days' hydration, the porous hydrogel demonstrated a reduced stiffness (0.002kPa, at 25% strain), resulting in a more linear stiffness relationship over a range of 0-30% strain. Poisson's ratio for the hydrated non-porous and porous hydrogels ranged between 0.73 and 1.18, and 0.76 and 1.33, respectively, suggesting a greater fluid flow when loaded. The stress relaxation function for the porous hydrogel was affected by the hydration period (from 0 to 600s); however the percentage stress relaxation regained by about 95%, after 1200s for all hydration periods assessed. No significant differences were found between the different hydration periods between the porous hydrogels and control. The calculated aggregate modulus, H(A), for the porous hydrogel reduced drastically from 10.99kPa in its non-hydrated state to about 0.001kPa after 7days' hydration, with the calculated shear modulus reducing from 30.92 to 0.14kPa, respectively. The porous PVA-NOCC hydrogel conformed to a biphasic, viscoelastic model, which has the desired properties required for any scaffold in cartilage tissue engineering.

  14. Composite Scaffold of Poly(Vinyl Alcohol) and Interfacial Polyelectrolyte Complexation Fibers for Controlled Biomolecule Delivery

    PubMed Central

    Cutiongco, Marie Francene A.; Choo, Royden K. T.; Shen, Nathaniel J. X.; Chua, Bryan M. X.; Sju, Ervi; Choo, Amanda W. L.; Le Visage, Catherine; Yim, Evelyn K. F.

    2015-01-01

    Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor, and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol) hydrogel (PVA). Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight. Next, IPC fibers were incorporated in between layers of PVA to produce PVA–IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA–IPC composite grafts exhibited dependence on molecular weight, with lysozyme showing near-linear release for 1 month. Angiogenic factors were also incorporated into the PVA–IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA–IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release, and bioinertness, PVA–IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft tissue

  15. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model

    PubMed Central

    Cutiongco, Marie F. A.; Kukumberg, Marek; Peneyra, Jonnathan L.; Yeo, Matthew S.; Yao, Jia Y.; Rufaihah, Abdul Jalil; Le Visage, Catherine; Ho, Jackie Pei; Yim, Evelyn K. F.

    2016-01-01

    Microvascular surgery is becoming a prevalent surgical practice. Replantation, hand reconstruction, orthopedic, and free tissue transfer procedures all rely on microvascular surgery for the repair of venous and arterial defects at the millimeter and submillimeter levels. Often, a vascular graft is required for the procedure as a means to bridge the gap between native arteries. While autologous vessels are desired for their bioactivity and non-thrombogenicity, the tedious harvest process, lack of availability, and caliber or mechanical mismatch contribute to graft failure. Thus, there is a need for an off-the-shelf artificial vascular graft that has low thrombogenic properties and mechanical properties matching those of submillimeter vessels. Poly(vinyl alcohol) hydrogel (PVA) has excellent prospects as a vascular graft due to its bioinertness, low thrombogenicity, high water content, and tunable mechanical properties. Here, we fabricated PVA grafts with submillimeter diameter and mechanical properties that closely approximated those of the rabbit femoral artery. In vitro platelet adhesion and microparticle release assay verified the low thrombogenicity of PVA. A stringent proof-of-concept in vivo test was performed by implanting PVA grafts in rabbit femoral artery with multilevel arterial occlusion. Laser Doppler measurements indicated the improved perfusion of the distal limb after implantation with PVA grafts. Moreover, ultrasound Doppler and angiography verified that the submillimeter diameter PVA vascular grafts remained patent for 2 weeks without the aid of anticoagulant or antithrombotics. Endothelial cells were observed in the luminal surface of one patent PVA graft. The advantageous non-thrombogenic and tunable mechanical properties of PVA that are retained even in the submillimeter diameter dimensions support the application of this biomaterial for vascular replacement in microvascular surgery. PMID:27376059

  17. Trisacryl Gelatin Microspheres Versus Polyvinyl Alcohol Particles in the Preoperative Embolization of Bone Neoplasms

    SciTech Connect

    Basile, Antonio; Rand, Thomas; Lomoschitz, Fritz; Toma, Cyril; Lupattelli, Tommaso; Kettenbach, Joachim; Lammer, Johannes

    2004-09-15

    The aim of this study was to compare the efficacy of trisacryl gelatin microspheres versus polyvinyl alcohol particles (PVA) in the preoperative embolization of bone neoplasms, on the basis of intraoperative blood loss quantified by the differences in preoperative and postoperative hematic levels of hemoglobin, hematocrit and erythrocytes count. From January 1997 to December 2002, preoperative embolization of bone tumors (either primary or secondary) was carried out in 49 patients (age range 12/78), 20 of whom were treated with trysacril gelatin microspheres (group A) and 29 with PVA particles (group B). The delay between embolization and surgery ranged from 1 to 13 days in group A and 1 to 4 days in group B. As used in international protocols, we considered hematic levels of hemoglobin, hematocrit and erythrocytes count for the measurement of intraoperative blood loss then the differences in pre- and postoperative levels were used as statistical comparative parameters. We compared the values of patients treated with embospheres (n = 10) and PVA (n = 18) alone, and patients treated with (group A = 10; group B = 11) versus patients treated without other additional embolic materials in each group (group A = 10; group B = 18). According to the Student's t-test (p < 0.05), the difference of hematic parameters between patients treated by embospheres and PVA alone were significant; otherwise there was no significant difference between patients treated with only one embolic material (embospheres and PVA) versus those treated with other additional embolic agents in each group. The patients treated with microspheres had a minor quantification of intraoperative blood loss compared to those who received PVA particles. Furthermore, they had a minor increase of bleeding related to the delay time between embolization and surgery. The use of additional embolic material did not improve the efficacy of the procedure in either group of patients.

  18. Influence of Cr2O3 nanoparticles on the physical properties of polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Hassen, A.; El Sayed, A. M.; Morsi, W. M.; El-Sayed, S.

    2012-11-01

    Nano-sized chromium oxide (Cr2O3) was synthesized by sol-gel method and mixed with polyvinyl alcohol (PVA) to produce nanocomposite films. Scanning electron microscopy (SEM) was used to observe the morphology and dispersion of Cr2O3 on the surface of the PVA films. X-ray diffraction (XRD) was performed on nano-sized Cr2O3, pure PVA, and Cr2O3/PVA composites. Based on the results of both XRD and high-resolution transmission electron microscopy (HR-TEM), the average particle size of the Cr2O3 was ≈ 46 nm. Differential scanning calorimetry (DSC) showed that the thermal stability and degree of crystallinity of the PVA were reinforced by the addition of Cr2O3 nanoparticles. The absorbance and extinction coefficients of the composites were studied in the UV-vis range and compared with those of pure PVA. The optical energy band gap, Eg, was calculated. Dielectric constant, ɛ', dielectric loss modulus, M″, and ac conductivity, σac, of all samples were measured within temperature and frequency ranges of 300-468 K and 10 kHz-2 MHz, respectively. According to the frequency and temperature dependence of the dielectric loss modulus, M″, the observed α-relaxation peak was due to the micro-Brownian motion of the polymer main chains. The behavior of σac(f) for the composite films indicated that the conduction mechanism was correlated barrier hopping (CBH). The results of this work were discussed and compared with those of previous studies of PVA composites.

  19. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    NASA Astrophysics Data System (ADS)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2016-09-01

    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S'-bis(N,N-dimethylthiourea-κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33-7.21 nm for ZnS and 4.95-7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  20. Pregnancy Following Uterine Artery Embolization with Polyvinyl Alcohol Particles for Patients with Uterine Fibroid or Adenomyosis

    SciTech Connect

    Kim, Man Deuk Kim, Nahk Keun; Kim, Hee Jin; Lee, Mee Hwa

    2005-06-15

    Purpose:To determine whether uterine fibroid embolization (UFE) with polyvinyl alcohol (PVA) particles affects fertility in women desiring future pregnancy.Methods:Of 288 patients managed with UFE with PVA particles for uterine myoma or adenomyosis between 1998 and 2001, 94 patients were enrolled in this study. The age range of participants was 20-40 years. The data were collected through review of medical records and telephone interviews. Mean duration of follow-up duration was 35 months (range 22-60 months). Patients using contraception and single women were excluded, and the chance of infertility caused by possible spousal infertility or other factors was disregarded. Contrast-enhanced magnetic resonance imaging was performed in all patients before and after UFE, and the size of PVA particles used was 255-700 {mu}m.Results:Among 94 patients who underwent UFE with PVA, 74 were on contraceptives, 6 had been single until the point of interview, and 8 were lost to follow-up. Of the remaining 6 patients who desired future pregnancy, 5 (83%) succeeded in becoming pregnant (1 patient became pregnant twice). Of a total of 8 pregnancies, 6 were planned pregnancies and 2 occurred after contraception failed. Five deliveries were vaginal, and 2 were by elective cesarean. Artificial abortion was performed in 1 case of unplanned pregnancy. There was 1 case of premature rupture of membrane (PROM) followed by preterm labor and delivery of an infant who was small-for-gestational-age. After UFE, mean volume reduction rates of the uterus and fibroid were 36.6% (range 0 to 62.6%) and 69.3% (range 36.3% to 93.3%), respectively.Conclusion:Although the absolute number of cases was small, UFE with PVA particles ultimately did not affect fertility in the women who underwent the procedure.

  1. Biomedical applications of stereoregular poly(vinyl alcohol) micro- and nanoparticles

    NASA Astrophysics Data System (ADS)

    Lyoo, Won Seok; Kim, Joon Ho; Kim, Sam Soo; Ghim, Han Do

    2002-11-01

    Syndiotactic poly(vinyl alcohol) (PVA)/poly(vinyl pivalate/vinyl acetate) (P(VPi/VAc)) and atactic PVA/PVAc micro- and nanoparticles with skin/core structure have been prepared by heterogeneous saponification of P(VPi/VAc) and PVAc micro- and nanoparticles. Especially, to prepare P(VPi/VAc) and PVAc microparticles having various particle sizes and uniform particle size distribution, vinyl pivalate (VPi)/vinyl acetate (VAc) and VAc were suspension-polymerized using a low-temperature initiator, 2,2"-azobis(2,4-dimethylvaleronitrile). P(VPi/VAc) particles are promising precursor of stereoregular PVA embolic materials which can be introduced through catheters in the management of gastrointestinal bleeders, arteriovenous malformations, hemangiomas, and traumatic rupture of blood vessels. Monodisperse and/or nearly monodisperse P(VPi/VAc) and PVAc microparticles with various particle diameters were obtained by controlling suspension polymerization conditions. Monodisperse P(VPi/VAc) and PVAc microparticles having various particle sizes were partially saponified in the heterogeneous system. PVA/P(VPi/VAc) and PVA/PVAc microparticles having various tacticity and degree of saponification were produced by controlling various polymerization and saponification conditions. The coating of stereoregular PVA micro- and nanoparticles for drug release experiments was conducted with the strepo-avidin-alkaline phosphatase conjugate in variable conditions of pH value, coating buffer, and reaction temperature. Protein-coated syndiotactic PVA micro- and nanoparticles, which does not crosslinking, were more superior to controllability of drug release, durability, and dimensional stability to water and blood than atactic one.

  2. Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution.

    PubMed

    Wang, Hai-Yan; Inada, Takaaki; Funakoshi, Kunio; Lu, Shu-Shen

    2009-08-01

    Control of ice formation is crucial in cryopreservation of biological substances. Successful vitrification using several additives that inhibit ice nucleation in vitrification solutions has previously been reported. Among these additives, here we focused on a synthetic polymer, poly(vinyl alcohol) (PVA), and investigated the effects of PVA on nucleation and growth of ice in 35% (w/w) aqueous 1,2-propanediol solution by using a differential scanning calorimetry (DSC) system equipped with a cryomicroscope. First, the freezing temperature of the solution was measured using the DSC system, and then the change in ice fraction in the solution during cooling was evaluated based on images obtained using the cryomicroscope, at different concentrations of PVA between 0% and 3% (w/w). Based on the ice fraction, the change in residual solution concentration during cooling was also evaluated and then plotted on the state diagram of aqueous 1,2-propanediol solution. Results indicated that, when the partially glassy and partially frozen state was intentionally allowed, the addition of PVA effectively inhibited not only ice nucleation but also ice growth in the vitrification solution. The effect of PVA on ice growth in the vitrification solution was explained based on kinetic limitations mainly due to mass transport. The interfacial kinetics also might limit ice growth in the vitrification solution only when the ice growth rate decreased below a critical value. This coincides with the fact that PVA exhibits a unique antifreeze activity in the same manner as antifreeze proteins when ice growth rate is lower than a critical value.

  3. Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation

    PubMed Central

    Young, Cara; Rozario, Kester; Serra, Christophe; Poole-Warren, Laura; Martens, Penny

    2013-01-01

    Biosynthetic microspheres have the potential to address some of the limitations in cell microencapsulation; however, the generation of biosynthetic hydrogel microspheres has not been investigated or applied to cell encapsulation. Droplet microfluidics has the potential to produce more uniform microspheres under conditions compatible with cell encapsulation. Therefore, the aim of this study was to understand the effect of process parameters on biosynthetic microsphere formation, size, and morphology with a co-flow microfluidic method. Poly(vinyl alcohol) (PVA), a synthetic hydrogel and heparin, a glycosaminoglycan were chosen as the hydrogels for this study. A capillary-based microfluidic droplet generation device was used, and by varying the flow rates of both the polymer and oil phases, the viscosity of the continuous oil phase, and the interfacial surface tension, monodisperse spheres were produced from ∼200 to 800 μm. The size and morphology were unaffected by the addition of heparin. The modulus of spheres was 397 and 335 kPa for PVA and PVA/heparin, respectively, and this was not different from the bulk gel modulus (312 and 365 for PVA and PVA/heparin, respectively). Mammalian cells encapsulated in the spheres had over 90% viability after 24 h in both PVA and PVA/heparin microspheres. After 28 days, viability was still over 90% for PVA-heparin spheres and was significantly higher than in PVA only spheres. The use of biosynthetic hydrogels with microfluidic and UV polymerisation methods offers an improved approach to long-term cell encapsulation. PMID:24404042

  4. Elastic properties of thin poly(vinyl alcohol)-cellulose nanocrystal membranes

    NASA Astrophysics Data System (ADS)

    Pakzad, A.; Simonsen, J.; Yassar, R. S.

    2012-03-01

    In spite of extensive studies on the preparation and characterization of nanocomposite materials, the correlation of their properties at the nanoscale with those in bulk is a relatively unexplored area. This is of great importance, especially for materials with potential biomedical applications, where surface properties are as important in determining their applicability as bulk characteristics. In this study, the nanomechanical characteristics of thin poly(vinyl alcohol) (PVOH)-poly(acrylic acid) (PAA)-cellulose nanocrystal (CNC) membranes were studied using the nanoindentation module in an atomic force microscope (AFM) and the properties were compared with the macro-scale properties obtained by tensile tests. In general, the elastic properties measured by nanoindentation followed the same trend as macro-scale tensile tests except for the PVOH 85-PAA 0-CNC 15 sample. In comparison to the macro-scale elastic properties, the measured elastic moduli with AFM were higher. Macro-scale tensile test results indicated that, in the presence of PAA, incorporation of CNCs up to 20 wt% improved the elastic modulus of PVOH, but when no PAA was added, increasing the CNC content above 10 wt% resulted in their agglomeration and degradation in mechanical properties of PVOH. The discrepancy between macro-scale tensile tests and nanoindentation in the PVOH 85-PAA 0-CNC 15 sample was correlated to the high degree of inhomogeneity of CNC dispersion in the matrix. It was found that the composites reinforced with cellulose nanocrystals had smaller indentation imprints and the pile-up effect increased with the increase of cellulose nanocrystal content.

  5. Improvement of Physical and Wound Adhesion Properties of Silk Sericin and Polyvinyl Alcohol Dressing Using Glycerin.

    PubMed

    Aramwit, Pornanong; Ratanavaraporn, Juthamas; Siritientong, Tippawan

    2015-08-01

    This study aimed to use glycerin to improve physical and wound adhesion properties of a wound dressing made of silk sericin and polyvinyl alcohol (PVA). Glycerin of a natural-derived plasticizer was used to modify the properties of silk sericin/PVA scaffolds. Various concentrations of glycerin were mixed with silk sericin and PVA and then fabricated into the scaffolds by a freeze-drying technique. The control study was performed to examine the properties of the silk sericin/PVA scaffolds with and without glycerin. Physical, mechanical, wound adhesion properties, the release profile of silk sericin, and in vivo safety of the silk sericin/PVA scaffolds with and without glycerin were investigated. The silk sericin/PVA scaffolds with glycerin exhibited more homogenous structure, less compressive modulus, higher Young modulus and elongation percentage, and a higher degree of crosslinking compared with the scaffold without glycerin. The silk sericin/PVA scaffold with 2% wt/vol glycerin showed more controlled release of silk sericin than the other scaffolds. The sustained release of silk sericin from the scaffold with glycerin would be advantageous for long-term healing of wounds. The silk sericin/PVA scaffold with 2% (wt/vol) glycerin was less adhesive to the wound compared with the scaffold without glycerin. Furthermore, the implantation of silk sericin/PVA scaffolds with 2% (wt/vol) glycerin did not cause any irritation to the tissue. The silk sericin/PVA scaffolds with glycerin were introduced as a biocompatible, more flexible, and less adhesive wound dressing than the scaffold without glycerin.

  6. Effect of polyvinyl alcohol (PVA) on Ag-Cu nanopaste performance

    NASA Astrophysics Data System (ADS)

    Noordin, Norasiah Mohammad; Razak, Khairunisak Abd; Cheong, Kuan Yew

    2017-07-01

    Electronic devices used for extreme high temperature continue to be in demand, for instance in aviation, aerospace and automotive industry. The reliability of these devices strongly depends on electronic packaging. Die attach materials is vital in electronic packaging as it provides an interface in between a die and a substrate, and its quality will determine the performance of the devices. Nanopaste is one of categories classified in the die attach systems. It is a mixture of nano sized metal particles and organic additives (binder, surfactant, solvent). In this study, Ag and Cu nanoparticles was mixed into an organic binder system, polyvinyl alcohol (PVA) serves as binder and ethylene glycol functions as surfactant while deionized water used to dissolve PVA. The mixture was inserted in vacuum oven at 70°C and then proceeds for sintering in horizontal tube furnace with various sintering temperature, a dwell time of 30 min and ramp rate of 5°C/min. The samples were then characterized using field emission scanning electron microscope (FE-SEM) to examine the morphology, X-ray diffraction (XRD) for phase identification, Four Point Probe to measure sheet resistance, and thermogravimetric and differential scanning calorimetry analysis (TGA/DSC) to study the thermal response with respect to temperature. These parameter were studied, the effect of PVA amount (0.10, 0.15, 0.20, 0.30, 0.40, 0.50 g) in Ag-Cu nanopaste formulation was visual inspected, the variation of drying time (20, 30, 40, 60, 80, 100, 120 min) in vacuum oven and sintering temperature (280, 300, 320, 340, 360, 380, 400°C) was recorded. The optimum condition for producing Ag-Cu nanopaste is by using 0.15 g of PVA in the Ag-Cu formulation, 30 min drying time and 340°C sintering temperature.

  7. Nitrogen and carbon removal efficiency of a polyvinyl alcohol gel based moving bed biofilm reactor system.

    PubMed

    Gani, Khalid Muzamil; Singh, Jasdeep; Singh, Nitin Kumar; Ali, Muntjeer; Rose, Vipin; Kazmi, A A

    2016-01-01

    In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22-1.22 kg N m(-3) d(-1) (total nitrogen (TN)), 1.48-7.82 kg chemical oxygen demand (COD) m(-3) d(-1) (organic) and 0.12-0.89 kg NH4(+)-N m(-3)d(-1) (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m(-3) d(-1) when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m(-3) d(-1). Ammonium removal rates ranged from 0.13 to 0.75 kg NH4(+)-N m(-3) d(-1) during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3-7.1 mg/L and 74-356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems.

  8. Analysis of Distribution of Polyvinyl Alcohol Hydrogel Nanocrystalline by using SAXS Synchrotron

    NASA Astrophysics Data System (ADS)

    Sunaryono; Taufiq, A.; Mufti, N.; Hidayat, N.; Rugmai, S.; Soontaranon, S.; Putra, E. G. R.; Darminto

    2017-05-01

    Polyvinyl alcohol (PVA) hydrogel has been successfully synthesized through freezing-thawing (F-T) process by using time-variation. This work is aimed to investigate the distribution of nanocrystalline from the hydrogel. Fourier Transform Infrared (FTIR) Spectroscopy, Differential Thermal Analysis/Thermogravimetric (DTA/TG), and Synchrotron Small-Angle X-ray Scattering (SAXS) were used as the instruments in characterizing the PVA hydrogel, respectively to observe the frequency of absorption, thermal degradation, and structural dimensions. The functional groups which represent the PVA polymer chains were verified on the wavenumber of 1450-1480 cm-1 and 850-870 cm-1 which is in accordance with the stretching of -CH2 vibration mode. The absorption band of PVA polymer chains was also found on the wavenumber of 1090-1150 cm-1 which is in accordance with the stretching of carboxyl vibration mode (CO), and this wavenumber gave a contribution towards the crystallinity of PVA polymer. Furthermore, the PVA polymer only interacted with the distilled water in the sample of PVA hydrogel without experiencing any chemical interactions between the PVA polymer and other substances. Meanwhile, the graphic of PVA hydrogel thermal degradation shows three thermal decompositions which are indicated by three areas in which there was sample weight loss. The second decomposition with sample weight loss was equivalent to 61.62%-73.04% occurred at the temperature of 282-376 °C which became the highest sample weight loss due to polymer chain degradation. Teubner-Strey and Beaucage models were used to analyze the characterization of structural dimension and distribution of PVA Hydrogel nanocrystalline with SAXS Synchrotron. With a high compatibility between the model data and the experiment, the average structural dimension of PVA hydrogel nanocrystalline is the equivalent of 3.96 nm, with an inter-crystalline average distance of 16.9 nm. These results indicate that PVA hydrogel is very

  9. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel.

    PubMed

    Bichara, David A; Bodugoz-Sentruk, Hatice; Ling, Doris; Malchau, Erik; Bragdon, Charles R; Muratoglu, Orhun K

    2014-08-01

    Poly(vinyl alcohol) (PVA) hydrogels can be candidates for articular cartilage repair due to their high water content. We synthesized a PVA-poly(acrylic acid) (PAAc) hydrogel formulation and determined its ability to function as a treatment option for condylar osteochondral (OC) defects in a New Zealand white rabbit (NZWR) model for 12 weeks and 24 weeks. In addition to hydrogel OC implants, tensile bar-shaped hydrogels were also implanted subcutaneously to evaluate changes in mechanical properties as a function of in vivo duration. There were no statistically significant differences (p > 0.05) in the water content measured in the OC hydrogel implant that was harvested after 12 weeks and 24 weeks, and non-implanted controls. There were no statistically significant differences (p > 0.05) in the break stress, strain at break or modulus of the tensile bars either between groups. Histological analysis of the OC defect, synovial capsule and fibrous tissue around the tensile bars determined hydrogel biocompatibility. Twelve-week hydrogels were found to be in situ flush with the articular cartilage; meniscal tissue demonstrated an intact surface. Twenty-four week hydrogels protruded from the defect site due to lack of integration with subchondral tissue, causing fibrillation to the meniscal surface. Condylar micro-CT scans ruled out osteolysis and bone cysts of the subchondral bone, and no PVA-PAAc hydrogel contents were found in the synovial fluid. The PVA-PAAc hydrogel was determined to be fully biocompatible, maintained its properties over time, and performed well at the 12 week time point. Physical fixation of the PVA-PAAc hydrogel to the subchondral bone is required to ensure long-term performance of hydrogel plugs for OC defect repair.

  10. Soy proteins as environmentally friendly sizing agents to replace poly(vinyl alcohol).

    PubMed

    Chen, Lihong; Reddy, Narendra; Yang, Yiqi

    2013-09-01

    An environmentally friendly and inexpensive substitute to the widely used poly(vinyl alcohol) (PVA) has been developed from soy proteins for textile warp sizing. Textile processing is the major source of industrial water pollution across the world, and sizing and desizing operations account for nearly 30 % of the water consumed in a textile plant. PVA is one of the most common sizing agents used for synthetic fibers and their blends due to PVA's easy water solubility and ability to provide desired sizing performance. However, PVA does not degrade and is a major contributor to pollution in textile effluent treatment plants. Although considerable efforts have been made to replace PVA with biodegradable sizing materials, the performance properties provided by PVA on synthetic fibers and their blends have been unmatched so far. Soy proteins are inexpensive, biodegradable, and have been widely studied for potential use in food packaging, as resins and adhesives. In this research, the potential of using soy proteins as textile sizing agents to replace PVA was studied. Polyester and polyester/cotton rovings, yarns, and fabrics sized with soy protein showed a considerably better improvement in strength and abrasion resistance compared to commercially available PVA-based size. Soy protein size had a 5-day biochemical oxygen demand /chemical oxygen demand ratio of 0.57 compared to 0.01 for PVA indicating that soy protein sizes were easily biodegradable in activated sludge. The total and ammonia nitrogen released from the proteins also did not adversely impact the biodegradability. Good sizing performance and easy biodegradability demonstrate that soy protein-based sizes have potential to replace PVA-based sizes leading to substantial benefits to the textile industry and the environment.

  11. Analysis of isothiazolinone preservatives in polyvinyl alcohol cooling towels used in Japan.

    PubMed

    Kawakami, Tsuyoshi; Isama, Kazuo; Ikarashi, Yoshiaki

    2014-09-19

    Recently, cases of contact dermatitis that were related to the use of polyvinyl alcohol (PVA) cooling towels containing isothiazolinone preservatives were reported in Japan. The aim of this investigation was to analyze the concentrations of five different isothiazolinone compounds present in PVA towels and to assess the effectiveness of washing in removing the preservatives from new towels prior to being used for the first time. Twenty-seven PVA towels were used in this study. Two groups (i.e., laboratory-simulation and volunteer) of washing experiments were conducted to evaluate the effect of washing procedures. Qualitative and quantitative analyses were performed by LC/MS/MS, which detected 2-methyl-4-isothiazolin-3-one (MI) and 5-chloro-2-methyl-4-isothaizolin-3-one (CMI) in 23 samples (MI: 0.29-154 μg g-wet(-1), CMI: 2.2-467 μg g-wet(-1)), 2-n-octyl-4-isothiazolin-3-one (OIT) in one sample (478 μg g-wet(-1)). The compounds 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (2Cl-OIT) and 1,2-benzisothiazolin-3-one (BIT) were not detected in all samples. We confirmed the presence of residual MI, CMI, and OIT in the washed towels, and the residual-to-original content ratio of OIT was higher than that of MI and CMI in PVA towels, due to the higher hydrophobicity of OIT than MI and CMI. A concern has been raised about the occurrence of contact dermatitis being caused by the use of PVA towels. It is suggested that a detailed description of isothiazolinone preservatives in PVA towels and an effective washing procedure for the removal of these preservatives should be provided by the manufacturer. Further, alternative non-sensitizing preservatives might be considered for the manufacture of PVA cooling towels in the future.

  12. Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals.

    PubMed

    Peresin, Maria S; Habibi, Youssef; Vesterinen, Arja-Helena; Rojas, Orlando J; Pawlak, Joel J; Seppälä, Jukka V

    2010-09-13

    The effect of humidity on the morphological and thermomechanical properties of electrospun poly(vinyl alcohol) (PVA) fiber mats reinforced with cellulose nanocrystals (CNs) was investigated. Scanning electron microscopy (SEM) images revealed that the incorporation of CNs improved the morphological stability of the composite fibers even in high humidity environments. Thermal and mechanical properties of the electrospun fiber mats were studied by using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and large deformation tensile tests under controlled humidity and temperatures. The balance between the moisture-induced plasticization and the reinforcing effect of rigid CN particles was critical in determining the thermomechanical behaviors of the electrospun fiber mats. Results indicated that the stabilizing effect of the CNs in the PVA matrix might be compromised by water absorption, disrupting the hydrogen bonding within the structure. The amount of this disruption depended on the surrounding humidity and the CN loading. The reduction in tensile strength of neat PVA fiber mats as they were conditioned from low relative humidity (10% RH) to high relative humidity (70% RH) was found to be about 80%, from 1.5 to 0.4 MPa. When the structure was reinforced with CNs, the reduction in strength was limited to 40%, from 2 to 0.8 MPa over the same range in relative humidity. More importantly, the CN-loaded PVA fiber mats showed a reversible recovery in mechanical strength after cycling the relative humidity. Finally, humidity treatments of the composite PVA fiber mats induced significant enhancement of their strength as a result of the adhesion between the continuous matrix and the CNs.

  13. Grafting poly(vinyl alcohol) onto polybutadiene rubber latex particles by pre-irradiation

    NASA Astrophysics Data System (ADS)

    Tian, Bo; Dong, Wei; Liu, Yuguang

    2017-06-01

    Poly(vinyl alcohol) (PVA) was grafted on polybutadiene rubber latex (PBL) particles (PB-g-PVA) by pre-irradiation via emulsion grafting copolymerization. The grafting degree (G%) increased almost linearly with the reaction time and the weight ratio of PVA to the PB latex, while decreased gradually when the irradiation dose is over 30 kGy and the reaction temperature is higher than 60 °C. The grafting efficiency (GE%) has the same trend of the G% but the weight ratio of PVA to PBL, GE% decreased with increasing of PVA adding to PB latex. FTIR spectroscopy indicated that the PVA was grafted onto the PB particles. The dynamic light scattering measurement showed that the particle size of PB-g-PVA particles was larger than that of the pristine PBL particles, and it increased with increment of G%. Transmission electron microscopy images of the PB-g-PVA latex particles demonstrated that the size of PB-g-PVA particle was enlarged by the layer of grafted PVA surrounding the PBL particles. Thermal behavior exhibited the phase separation in the PB-g-PVA films, Tg1 and Tg2 related to the PB and PVA respectively, both of which shifted to a higher temperature with increasing of G%, but the Tg2 was still lower than that of the virgin PVA. The increment of the surface free energy of PB-g-PVA films was attributed to the incorporation of the polar PVA, which also resulted in improvement of the hydrophilic properties.

  14. Poly(vinyl alcohol)-based film potentially suitable for antimicrobial packaging applications.

    PubMed

    Musetti, Alessandro; Paderni, Katia; Fabbri, Paola; Pulvirenti, Andrea; Al-Moghazy, Marwa; Fava, Patrizia

    2014-04-01

    This work aimed at developing a thin and water-resistant food-grade poly(vinyl alcohol) (PVOH)-based matrix able to swell when in contact with high moisture content food products without rupturing to release antimicrobial agents onto the food surface. This film was prepared by blending PVOH and 7.20% (wt/wt of PVOH) of poly(ethylene glycol) (PEG) with citric acid as crosslinking agent. The film-forming solution was then casted onto a flat surface and the obtained film was 60 μm in thickness and showed a good transparency (close to T = 100%) in the visible region (400 to 700 nm). After immersion in water for 72 h at room temperature, the crosslinked matrix loses only 19.2% of its original weight (the percentage includes the amount of unreacted crosslinking agent, antimicrobial in itself). Water content, degree of swelling, and crosslinking density of the film prove that the presence of PEG diminishes the hydrophilic behavior of the material. Also the mechanical properties of the wet and dry film were assessed. Alongside this, 2.5% (wt/wt of dry film) of grapefruit seed extract (GSE), an antimicrobial agent, was added to the film-forming solution just before casting and the ability of the plastic matrix to release the additive was then evaluated in vitro against 2 GSE-susceptible microorganisms, Salmonella enteritidis and Listeria innocua. The results indicate that the developed matrix may be a promising food-grade material for the incorporation of active substances.

  15. Nanoparticle penetration of human cervicovaginal mucus: The effect of polyvinyl alcohol

    PubMed Central

    Yang, Ming; Lai, Samuel K.; Yu, Tao; Wang, Ying-Ying; Happe, Christina; Zhong, Weixi; Zhang, Michael; Anonuevo, Abraham; Fridley, Colleen; Hung, Amy; Fu, Jie; Hanes, Justin

    2014-01-01

    Therapeutic nanoparticles must rapidly penetrate the mucus secretions lining the surfaces of the respiratory, gastrointestinal and cervicovaginal tracts to efficiently reach the underlying tissues. Whereas most polymeric nanoparticles are highly mucoadhesive, we previously discovered that a dense layer of low MW polyethylene glycol (PEG) conferred a sufficiently hydrophilic and uncharged surface to effectively minimize mucin-nanoparticle adhesive interactions, allowing well-coated particles to rapidly diffuse through human mucus. Here, we sought to investigate the influence of surface coating by polyvinyl alcohol (PVA), a relatively hydrophilic and uncharged polymer routinely used as a surfactant to formulate drug carriers, on the transport of nanoparticles in fresh human cervicovaginal mucus. We found that PVA-coated polystyrene (PS) particles were immobilized, with speeds at least 4,000-fold lower in mucus than in water, regardless of the PVA molecular weight or incubation concentration tested. Nanoparticles composed of poly(lactide-co-glycolide) (PLGA) or diblock copolymers of PEG-PLGA were similarly immobilized when coated with PVA (slowed 29,000- and 2,500-fold, respectively). PVA coatings could not be adequately removed upon washing, and the residual PVA prevented sufficient coating with Pluronic F127 capable of reducing particle mucoadhesion. In contrast to PVA-coated particles, the similar sized PEG-coated formulations were slowed only ~6- to 10-fold in mucus compared to in water. Our results suggest incorporating PVA in the particle formulation process may lead to the formation of mucoadhesive particles for many nanoparticulate systems. Thus, alternative methods for particle formulation, based on novel surfactants or changes in the formulation process, should be identified and developed in order to produce mucus-penetrating particles for mucosal applications. PMID:25090196

  16. Dressing liposomal particles with chitosan and poly(vinylic alcohol) for oral vaccine delivery.

    PubMed

    Rescia, Vanessa C; Takata, Célia S; de Araujo, Pedro S; Bueno da Costa, Maria H

    2011-03-01

    Liposomes have been used as adjuvants since 1974. One major limitation for the use of liposomes in oral vaccines is the lipid structure instability caused by enzyme activities. Our aim was to combine liposomes that could encapsulate antigens (i.e., Dtxd, diphtheria toxoid) with chitosan, which protects the particles and promotes mucoadhesibility. We employed physical techniques to understand the process by which liposomes (SPC: Cho, 3:1) can be sandwiched with chitosan (Chi) and stabilized by PVA (poly-vinylic alcohol), which are biodegradable, biocompatible polymers. Round, smooth-surfaced particles of REVs-Chi (reversed-phase vesicles sandwiched by Chi) stabilized by PVA were obtained. The REVs encapsulation efficiencies (Dtxd was used as the antigen) were directly dependent on the Chi and PVA present in the formulation. Chi adsorption on the REVs surface was accompanied by an increase of ζ-potential. In contrast, PVA adsorption on the REVs-Chi surface was accompanied by a decrease of ζ-potential. The presence of Dtxd increased the Chi surface-adsorption efficiency. The PVA affinity by mucine was 2,000 times higher than that observed with Chi alone and did not depend on the molecule being in solution or adsorbed on the liposomal surface. The liberation of encapsulated Dtxd was retarded by encapsulation within REVs-Chi-PVA. These results lead us to conclude that these new, stabilized particles were able to be adsorbed by intestinal surfaces, resisted degradation, and controlled antigen release. Therefore, REVs-Chi-PVA particles can be used as an oral delivery adjuvant.

  17. Elastic properties of thin poly(vinyl alcohol)-cellulose nanocrystal membranes.

    PubMed

    Pakzad, A; Simonsen, J; Yassar, R S

    2012-02-01

    In spite of extensive studies on the preparation and characterization of nanocomposite materials, the correlation of their properties at the nanoscale with those in bulk is a relatively unexplored area. This is of great importance, especially for materials with potential biomedical applications, where surface properties are as important in determining their applicability as bulk characteristics. In this study, the nanomechanical characteristics of thin poly(vinyl alcohol) (PVOH)-poly(acrylic acid) (PAA)-cellulose nanocrystal (CNC) membranes were studied using the nanoindentation module in an atomic force microscope (AFM) and the properties were compared with the macro-scale properties obtained by tensile tests. In general, the elastic properties measured by nanoindentation followed the same trend as macro-scale tensile tests except for the PVOH 85-PAA 0-CNC 15 sample. In comparison to the macro-scale elastic properties, the measured elastic moduli with AFM were higher. Macro-scale tensile test results indicated that, in the presence of PAA, incorporation of CNCs up to 20 wt% improved the elastic modulus of PVOH, but when no PAA was added, increasing the CNC content above 10 wt% resulted in their agglomeration and degradation in mechanical properties of PVOH. The discrepancy between macro-scale tensile tests and nanoindentation in the PVOH 85-PAA 0-CNC 15 sample was correlated to the high degree of inhomogeneity of CNC dispersion in the matrix. It was found that the composites reinforced with cellulose nanocrystals had smaller indentation imprints and the pile-up effect increased with the increase of cellulose nanocrystal content.

  18. Composite scaffold of poly(vinyl alcohol) and interfacial polyelectrolyte complexation fibers for controlled biomolecule delivery.

    PubMed

    Cutiongco, Marie Francene A; Choo, Royden K T; Shen, Nathaniel J X; Chua, Bryan M X; Sju, Ervi; Choo, Amanda W L; Le Visage, Catherine; Yim, Evelyn K F

    2015-01-01

    Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor, and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol) hydrogel (PVA). Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight. Next, IPC fibers were incorporated in between layers of PVA to produce PVA-IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA-IPC composite grafts exhibited dependence on molecular weight, with lysozyme showing near-linear release for 1 month. Angiogenic factors were also incorporated into the PVA-IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA-IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release, and bioinertness, PVA-IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft tissue engineering.

  19. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite

    PubMed Central

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments. PMID:25482413

  20. The impact of hot-melt extrusion on the tableting behaviour of polyvinyl alcohol.

    PubMed

    Grymonpré, W; De Jaeghere, W; Peeters, E; Adriaensens, P; Remon, J P; Vervaet, C

    2016-02-10

    There is evidence that processing techniques like hot-melt extrusion (HME) could alter the mechanical properties of pharmaceuticals, which may impede further processability (e.g. tableting). The purpose of this study was to evaluate if HME has an impact on the tableting behaviour of polyvinyl alcohol (PVA)-formulations. Mixtures of partially hydrolysed PVA grades (with a hydroxylation degree of 75 and 88%) and sorbitol (0, 10 and 40%) were extruded, (cryo-) milled and compressed into compacts of 350 ± 10 mg. Before compression all intermediate products were characterized for their solid-state (Tg, Tm, crystallinity) and material properties (particle size, moisture content, moisture sorption). Because both PVA-grades required higher extrusion temperatures (i.e. 180 °C), sorbitol was added to PVA as plasticizing agent to allow extrusion at 140 °C. Compaction experiments were performed on both physical mixtures and cryo-milled extrudates of PVA-sorbitol. By measuring tablet tensile strength and porosity in function of compaction pressure, tableting behaviour was compared before and after HME by means of the CTC-profiles (compressibility, tabletability, compactibility). A higher amorphous content in the formulation (as a result of HME) negatively influenced the tableting behaviour (i.e. lower tablet tensile strength). HME altered the mechanical properties towards more elastically deforming materials, thereby increasing tablet elastic recovery during decompression. The lower tensile strengths resulted from a combined effect of less interparticulate bonding areas (because of higher elastic recovery) and weaker bonding strengths per unit bonding area (between glassy particles).

  1. Polyblends of Poly(vinyl alcohol) and Poly(Vegr;-caprolactone) and Their Properties

    NASA Astrophysics Data System (ADS)

    Arcana, I. M.; Alio, L.

    2008-03-01

    The increasing volume of plastic has caused the serious problem in environment. One way to solve this problem is preparation of new plastic materials which can be decomposed by microorganisms in environment These plastics may be prepared from non-biodegradable material by modification of theirs physical and chemical properties, preparation of theirs copolymers and polyblends. The main problem in preparation of polyblends is compatibility between polymers mixtures. In this work has focused on preparation of polyblends between poly(vinyl alcohol) (PVA) and poly(ɛ-caprolactone) (PCL) in various compositions by casting of polymers solution. Characterizations of polyblends were carried out by analysis of functional groups (FTIR), thermal property (DSC and TGA/DTA), mechanical properties (Tensile tester), and crystallinity (XRD). The results of polyblends showed that the compatible and homogeneous polyblends were obtained in solvent composition (dimethyl sulfoxide/tetrahydrofurane) (DMSO/THF) of 3:1 and PCL ratio in polyblends less than 15 % (w/w). The absorption intensity of carbonyl and alkyl groups observed in 1725 cm-1 and 2940 cm-1 increased with increasing PCL composition in polyblends. The melting point (Tm) and fusion enthalpy (ΔHm) for PCL region in polyblends decreased with decreasing PCL composition, but melting point (Tm) and fusion of enthalpy (ΔHm) for PVA region increased. The total fusion enthalpy value obtained by observation was smaller than that of calculation value, indicating the presence of interaction between PCL and PVA to form a part of compatible polyblends with more amorphous structure. The mechanical properties of polyblends tended to decrease with increasing PCL ratio in polyblends. These results were supported by analysis of crystallinity with using X-ray diffraction.

  2. Electrospinning formaldehyde cross-linked zein solutions

    USDA-ARS?s Scientific Manuscript database

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  3. Effects of Saponification Rate on Electrooptical Properties and Morphology of Poly(vinyl alcohol)/Liquid Crystal Composite Films

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Kawatsuki, Nobuhiro

    1995-03-01

    The relationship between the saponification rate of poly(vinyl alcohol) (PVA), and the electrooptical properties and morphology of the PVA/liquid crystal (LC) composite films was investigated. Light transmission clazing and the LC droplet size were varied by changing the saponification rate or the blend ratio of two kinds of PVA with different saponification rates because the refractive index and surface tension could be controlled by the saponification rate of PVA. The threshold voltage decreased with increasing saponification rate though the extrapolation length was decreased. It was suggested that the electrooptical properties were strongly dependent on the droplet size.

  4. Repeated courses of transarterial embolization with polyvinyl alcohol particles: 'long life elixir' in a cirrhotic patient with unresectable hepatocellular carcinoma.

    PubMed

    Marelli, Laura; Shusang, Vibhakorn; Senzolo, Marco; Cholongitas, Evangelos; Goode, Antony; Yu, Dominic; Patch, David W; Burroughs, Andrew K

    2007-04-01

    Chemoembolization improves survival in selected cirrhotic patients with hepatocellular carcinoma, but prolonged survival is unusual. In this study, a 70-year-old cirrhotic patient, who had a histologically proven hepatocellular carcinoma of 5 cm diameter, embolization with polyvinyl alcohol particles alone, without chemotherapeutic agent, has resulted in continued survival, of 5 years to date, with virtual elimination of residual hypervascularity following 10 sessions of embolization, and with continued patency of the injected branch of the hepatic artery. Provided liver function is maintained, embolization alone appears a feasible long term and effective therapy for unresectable hepatocellular carcinoma.

  5. Thermodynamic characteristics of the interaction between methanol and Keplerate-type poly(vinyl alcohol)-polyoxomolybdate composites

    NASA Astrophysics Data System (ADS)

    Ostroushko, A. A.; Adamova, L. V.; Eremina, E. V.

    2017-08-01

    The interaction between methanol vapors and composite film samples of polyvinyl alcohol-porous keplerate nanocluster polyoxomolybdate Mo132 is studied by means of equilibrium interval sorption performed gravimetrically and using thermodynamic cycle calculations. Isotherms of methanol sorption by the films are obtained, and the concentration dependences of the average Gibbs energies of the interaction between methanol and films are calculated, along with the Gibbs energy and entropy of the interaction between polyoxometalate and the polymer. Micrographs of the studied composite films are presented.

  6. Preparation of novel carbon microfiber/carbon nanofiber-dispersed polyvinyl alcohol-based nanocomposite material for lithium-ion electrolyte battery separator.

    PubMed

    Sharma, Ajit K; Khare, Prateek; Singh, Jayant K; Verma, Nishith

    2013-04-01

    A novel nanocomposite polyvinyl alcohol precursor-based material dispersed with the web of carbon microfibers and carbon nanofibers is developed as lithium (Li)-ion electrolyte battery separator. The primary synthesis steps of the separator material consist of esterification of polyvinyl acetate to produce polyvinyl alcohol gel, ball-milling of the surfactant dispersed carbon micro-nanofibers, mixing of the milled micron size (~500 nm) fibers to the reactant mixture at the incipience of the polyvinyl alcohol gel formation, and the mixing of hydrophobic reagents along with polyethylene glycol as a plasticizer, to produce a thin film of ~25 μm. The produced film, uniformly dispersed with carbon micro-nanofibers, has dramatically improved performance as a battery separator, with the ion conductivity of the electrolytes (LiPF6) saturated film measured as 0.119 S-cm(-1), approximately two orders of magnitude higher than that of polyvinyl alcohol. The other primary characteristics of the produced film, such as tensile strength, contact angle, and thermal stability, are also found to be superior to the materials made of other precursors, including polypropylene and polyethylene, discussed in the literature. The method of producing the films in this study is novel, simple, environmentally benign, and economically viable.

  7. Electrospun cross linked rosin fibers

    NASA Astrophysics Data System (ADS)

    Baek, Woo-il; Nirmala, R.; Barakat, Nasser A. M.; El-Newehy, Mohamed H.; Al-Deyab, Salem S.; Kim, Hak Yong

    2011-12-01

    In this study, we describe the first reported preparation of rosin in fiber form through use of an electrospinning technique utilizing various solvent systems. The polymer concentration of the formed fiber was studied by using various solvents such as chloroform, ethanol, N-N dimethylformamide (DMF), tetrahydrofuran (THF), acetone, and methylene chloride (MC). An electrospray of the solution resulted in the beaded form of the rosin. By varying the polymer concentration with MC, we were then able to obtain uniform fibers. However, the fibers exhibited large diameter. We believe that it is possible to reduce the diameter of the rosin fibers through appropriate selection of electrospinning parameters. In addition, the morphological transitions from beads, to beaded fiber, to fiber were studied at different polymer concentrations. We propose a possible physical cross linking mechanism for the formation of rosin fibers during the electrospinning process. Our results demonstrate the feasibility of producing fiber nanostructures of rosin by using an electrospinning technique.

  8. Electrospinning of poly(vinyl alcohol) nanofibers loaded with hexadecane nanodroplets.

    PubMed

    Arecchi, A; Mannino, S; Weiss, J

    2010-08-01

    The feasibility of producing poly(vinyl alcohol) (PVA) nanofibers containing fine-disperse hexadecane droplets by electrospinning a blend of hexadecane-in-water emulsions and PVA was investigated. Hexadecane oil-in-water nanoemulsions (d(10)= 181.2 +/- 0.1 nm) were mixed with PVA at pH 4.5 to yield polymer-emulsion blends containing 0.5 to 1.5 wt% oil droplets and 8-wt% PVA. The solution properties of emulsions and emulsion-PVA blends (viscosity, conductivity, surface tension) were determined. Solutions were electrospun and the morphology and thermal properties of deposited fiber mats characterized by scanning electron microscopy and differential scanning calorimetry. Fiber mats were dissolved in buffer to liberate incorporated hexadecane droplets and the buffer solutions analyzed by optical microscopy, UV-spectroscopy, and light scattering. Analysis of dry fiber mats and their solutions showed that emulsion droplets were indeed part of the electrospun fiber structures. Depending on the concentration of hexadecane in the initial emulsion-polymer blends, droplets were dispersed in the fibers as individual droplets or in form of aggregated flocs of hexadecane droplets. Nanofibers with spindle-like perturbations or nanofibers containing bead-like structures with approximately 5 times larger than the size of droplets in the original nanoemulsion were obtained. Remarkably, incorporation of hexadecane droplets in fibers did not alter size of individual droplets, that is, no coalescence occurred. The manufacture of solid matrix containing nanodroplets could be of substantial interest for manufacturers wishing to develop encapsulation system for lipophilic functional compounds such as lipid-soluble flavors, antimicrobials, antioxidants, and bioactives with tailored release kinetics. Practical Applications: The paper describes the formation of electrospun nanofibers from hydrophilic polymers that contain fine-disperse emulsion droplets. By incorporating emulsion droplets, a

  9. Poly(vinyl alcohol) stabilization of acrylic emulsion polymers using the miniemulsion approach

    NASA Astrophysics Data System (ADS)

    Kim, Noma

    Miniemulsion approach was employed to obtain stable acrylic latexes of n-butyl acrylate and methyl methacrylate (50/50 wt%) stabilized with poly(vinyl alcohol) (PVA) and to enhance the grafting reaction between PVA and acrylic monomers at the water/droplet interface. The stability of miniemulsions were studied in terms of the type and concentration of' the stabilizer, and the PVA partitioning were determined as a function of the PVA concentration. Using the comparison of PVA partitioning at droplet surface and grafted PVA as a function of concentration, it was suggested that the water/monomer interface is the main grafting site in the miniemulsion polymerization. Seeded emulsion and miniemulsion copolymerizations initiated with water-soluble (hydrogen peroxide, HPO), partially water-soluble (t-butyl peroxide, TBHP), and oil-soluble (t-butyl peroxyoctoate, TBPO) initiators were carried out to further investigate the oil/water interface as the grafting site for PVA. The interaction between the capillary wall in the CHDF (capillary hydrodynamic fractionation) chromatographic particle sizer and the water-soluble polymers adsorbed on the particle surface was studied using different types of water-soluble polymers and eluants. Different grafting architectures depending on the initiation site were suggested based on the CHDF results. The amounts of grafted PVA produced in miniemulsion polymers initiated with TBHP and TBPO were substantially less than those in the corresponding seeded emulsion polymerizations. The effect on the internal viscosity at the interface was proposed to explain the difference in grafting in terms of polymerization methods. Aqueous phase and interface grafting were studied using the measurement of the degree of hydrolysis (DH) of the serum PVA and adsorbed PVA after miniemulsion polymerizations. Based on the results, it was found that aqueous phase and interface grafting occurred in the HPO system; however, interface grafting dominated the TBHP

  10. Effect of polyvinyl alcohol (PVA) concentration during vitrification of in vitro matured bovine oocytes.

    PubMed

    Asada, Masatsugu; Ishibashi, Satomi; Ikumi, Sachiko; Fukui, Yutaka

    2002-10-01

    Polyvinyl alcohol (PVA) was used as a substitute for serum in a vitrification solution for in vitro matured bovine oocytes. In vitro matured bovine oocytes were cryopreserved in various vitrification solutions (VS) supplemented with different concentrations (0.05, 0.1, 0.5, and 1%) of PVA, 20% fetal calf serum (FCS) or without macromolecule supplementation in a gel-loading tip (GL-tip). After warming, vitrified oocytes were examined for effects on survivability, fertilizability, and embryonic development in vitro. At 18 h in vitro fertilization after vitrifying and warming, the number of surviving mature oocytes vitrified in VS without macromolecule supplementation was significantly (P < 0.05) lower than those with macromolecule supplementation. For fertilizability after vitrification, there was no significant difference in the penetration rate of oocytes among fresh oocytes (98.7%); oocytes vitrified in VS supplemented with 0.1 (76.8%), 0.5 (70.2%), or 1% (80.3%) PVA; 20% (84.1%) FCS; or without supplementation (61.7%). Also, the normal fertilization rate was not significantly different in oocytes vitrified with 0.1 (56.5%), 0.5 (43.5%), or 1% (49.7%) PVA and 20% (60.6%) FCS, compared with fresh oocytes (84.0%). Subsequently, vitrified oocytes were examined for embryonic development effects in vitro. The highest proportion of cleaved oocytes after vitrification was obtained in VS supplemented with 0.1% (18.8%) PVA. Additionally, the proportion of development to morula stage (7.7%) in the oocytes vitrified in a VS supplemented with 0.1% PVA was significantly (P < 0.05) superior to that of the 0, 0.5, and 1% PVA-vitrified groups. However, the beneficial effect of PVA addition was not found in blastocyst development. Embryonic development of vitrified oocytes was significantly lower than that of fresh oocytes. In conclusion, the present results indicate that 0.1% PVA supplementation in VS results in a significantly higher rate of morula stage embryos than 0, 0.5, and

  11. Enzymatic removal of flatulence-inducing sugars in chickpea milk using free and polyvinyl alcohol immobilized alpha-galactosidase from Aspergillus oryzae.

    PubMed

    Patil, Aravind Goud G; Kote, Naganagoud V; Mulimani, Veerappa

    2009-01-01

    The treatment of chickpea milk was carried out in batch, repeated batch and continuous reaction by soluble and polyvinyl alcohol (PVA) immobilized Aspergillus oryzae alpha-galactosidase for the removal of raffinose family oligosaccharides (RFOs). In the batch mode of treatment 96 and 92% of RFOs hydrolysis was observed by soluble and immobilized enzyme, respectively. In repeated batch experiments, immobilized enzyme showed 70% RFOs hydrolysis up to sixth cycle. Polyvinyl alcohol immobilized alpha-galactosidase in fluidized bed reactor showed highest reduction of 94% at a flow rate of 30 ml/h. The results obtained from the present study are very interesting for industrial use of PVA-immobilized enzyme.

  12. BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly(vinyl alcohol) modified by N-vinylpyrrolidone.

    PubMed

    Arlyapov, V A; Yudina, N Yu; Asulyan, L D; Alferov, S V; Alferov, V A; Reshetilov, A N

    2013-09-10

    An amperometric biosensor for assessing the biochemical oxygen demand (BOD) was formed by immobilizing Debaryomyces hansenii VKM Y-2482 yeast cells in poly(vinyl alcohol) modified by N-vinylpyrrolidone. Modification provided for a high sensitivity and stability of the bioreceptor. A high oxidative activity of the receptor element and the absence of any toxic effect of assayed compounds were shown for 34 substrates (alcohols, carbohydrates, carboxylic acids, amino acids, nitrophenols and surfactants) that may occur in wastewaters. Estimates of the measurement range and region of the linear dependence of signals on the BOD level, pH and temperature sensitivities, dependences of signals on concentrations of salts, stability, Michaelis kinetic constants and assay rates were obtained. The BOD values determined by the biosensor in assayed wastewater samples were shown to have a high correlation with those obtained by the standard dilution method. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Investigation into the potential use of poly(vinyl alcohol)/methylglyoxal fibres as antibacterial wound dressing components.

    PubMed

    Bulman, Sophie E L; Goswami, Parikshit; Tronci, Giuseppe; Russell, Stephen J; Carr, Chris

    2015-03-01

    As problems of antibiotic resistance increase, a continuing need for effective bioactive wound dressings is anticipated for the treatment of infected chronic wounds. Naturally derived antibacterial agents, such as Manuka honey, consist of a mixture of compounds, more than one of which can influence antimicrobial potency. The non-peroxide bacteriostatic properties of Manuka honey have been previously linked to the presence of methylglyoxal. The incorporation of methylglyoxal as a functional antibacterial additive during fibre production was explored as a potential route for manufacturing wound dressing components. Synthetic methylglyoxal and poly(vinyl alcohol) were fabricated into webs of sub-micron fibres by means of electrostatic spinning of an aqueous spinning solution. Composite fabrics were also produced by direct deposition of the poly(vinyl alcohol)-methylglyoxal fibres onto a preformed spunbonded nonwoven substrate. Attenuated total reflectance fourier transform infrared and proton nuclear magnetic resonance spectroscopies confirmed the presence of methylglyoxal within the resulting fibre structure. The antibacterial activity of the fibres was studied using strains of Staphylococcus aureus and Escherichia coli. Strong antibacterial activity, as well as diffusion of methylglyoxal from the fibres was observed at a concentration of 1.55 mg/cm(2). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study.

    PubMed

    Congdon, Thomas; Notman, Rebecca; Gibson, Matthew I

    2013-05-13

    This manuscript reports a detailed study on the ability of poly(vinyl alcohol) to act as a biomimetic surrogate for antifreeze(glyco)proteins, with a focus on the specific property of ice-recrystallization inhibition (IRI). Despite over 40 years of study, the underlying mechanisms that govern the action of biological antifreezes are still poorly understood, which is in part due to their limited availability and challenging synthesis. Poly(vinyl alcohol) (PVA) has been shown to display remarkable ice recrystallization inhibition activity despite its major structural differences to native antifreeze proteins. Here, controlled radical polymerization is used to synthesize well-defined PVA, which has enabled us to obtain the first quantitative structure-activity relationships, to probe the role of molecular weight and comonomers on IRI activity. Crucially, it was found that IRI activity is "switched on" when the polymer chain length increases from 10 and 20 repeat units. Substitution of the polymer side chains with hydrophilic or hydrophobic units was found to diminish activity. Hydrophobic modifications to the backbone were slightly more tolerated than side chain modifications, which implies an unbroken sequence of hydroxyl units is necessary for activity. These results highlight that, although hydrophobic domains are key components of IRI activity, the random inclusion of addition hydrophobic units does not guarantee an increase in activity and that the actual polymer conformation is important.

  15. Remediation of environmental pollution by substituting poly(vinyl alcohol) with biodegradable warp size from wheat gluten.

    PubMed

    Chen, Lihong; Reddy, Narendra; Yang, Yiqi

    2013-05-07

    We report the development of wheat gluten as an environmentally friendly sizing agent that can replace poly(vinyl alcohol) (PVA) and make the textile industry more environmentally friendly. Wheat gluten applied onto polyester/cotton (P/C) and polyester as warp sizing agent provided sizing performance and biodegradability in activated sludge necessary to substitute poly(vinyl alcohol) (PVA). PVA is one of the most widely used sizing agents and provides excellent sizing performance to synthetic fibers and their blends but is expensive and difficult to degrade in textile wastewater treatment plants. Although considerable efforts have been made to replace PVA, it has not been possible to develop a warp sizing chemical that can match the sizing performance of PVA and at the same time be cost-effective and biodegrade in effluent treatment plants. At similar % add-on, wheat gluten provided similar cohesion to P/C but much higher abrasion resistance to polyester fabrics compared to PVA. With a biochemical oxygen demand (BOD) to chemical oxygen demand (COD) ratio of 0.7 compared to 0.01 for PVA, wheat gluten was readily degradable in activated sludge. Wheat gluten has the ability to replace PVA for textile warp sizing applications.

  16. Clinical Long-Term Outcome and Reinterventional Rate After Uterine Fibroid Embolization with Nonspherical Versus Spherical Polyvinyl Alcohol Particles

    SciTech Connect

    Duvnjak, Stevo; Ravn, Pernille; Green, Anders; Andersen, Poul Erik

    2016-02-15

    PurposeThis study was designed to evaluate the long-term clinical outcome and frequency of reinterventions in patients with uterine fibroids treated with embolization at a single center using polyvinyl alcohol microparticles.MethodsThe study included all patients with symptomatic uterine fibroids treated with uterine fibroid embolization (UFE) with spherical (s-PVA) and nonspherical (ns-PVA) polyvinyl alcohol microparticles during the period January 2001 to January 2011. Clinical success and secondary interventions were examined. Hospital records were reviewed during follow-up, and symptom-specific questionnaires were sent to all patients.ResultsIn total, 515 patients were treated with UFE and 350 patients (67 %) were available for long-term clinical follow-up. Median time of follow-up was 93 (range 76–120.2) months. Eighty-five patients (72 %) had no reinterventions during follow-up in the group embolized with ns-PVA compared with 134 patients (58 %) treated with s-PVA. Thirty-three patients (28 %) underwent secondary interventions in the ns-PVA group compared with 98 patients (42 %) in s-PVA group (χ{sup 2} test, p < 0.01).ConclusionsSpherical PVA particles 500–700 µm showed high reintervention rate at long-term follow-up, and almost one quarter of the patients underwent secondary interventions, suggesting that this type of particle is inappropriate for UFE.

  17. Antioxidative/oxidative effects and retarding osteoconductivity of ciprofloxacin-loaded porous polyvinyl alcohol/bioactive glass hybrid.

    PubMed

    Boulila, Salha; Oudadesse, Hassane; Badraoui, Riadh; Lefeuvre, Bertrand; Mabrouk, Mostafa; Chaabouni, Khansa; Mostafa, Amany; Makni-Ayedi, Fatma; Barroug, Allal; Rebai, Tarek; Elfeki, Abdelfattah; Elfeki, Hafed

    2017-01-01

    This study investigated the effect of bioglass (melting)-polyvinyl alcohol (BG (M)-PVA) and bioglass (melting)-polyvinyl alcohol-20 %ciprofloxacin (BG(M)-PVA-20Cip) in improving antioxidant activity and regenerating bone capacity. These composites were implanted in femoral condyles of ovariectomized Wistar rats and compared to that of controls groups. After the different period of implantation (15, 30, 60 and 90 days), the treatment of ovariectomized rats with BG(M)-PVA-20Cip showed a significantly higher malondialdehyde concentration when compared to that of BG(M)-PVA group. The superoxide dismutase, glutathione peroxidase and catalase in BG(M)-PVA-20Cip group showed significantly lower activities when compared to those in BG(M)-PVA group. So, BG(M)-PVA is more tolerated by organism than BG(M)-PVA-20Cip. Moreover, the alkaline phosphatase and acid phosphatase activities showed an excellent osteoinductive property of BG (M)-PVA. This property decreased with the presence of ciprofloxacin which is confirmed by histopathological analysis. Several physicochemical techniques showed a rapid reduction in Si and Na in one hand and an accelerator rise in Ca and P ions concentrations in other hand in BG(M)-PVA than in the BG(M)-PVA-20Cip. Therefore, the incorporation of ciprofloxacin in BG(M)-PVA is characterized by a prooxidant effect in oxidant-antioxidant balance at the beginning of treatment and a retard effect of formation of apatitic phase.

  18. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  19. Water properties in a novel thermoswelling poly(vinyl alcohol) derivative hydrogel as studied by nuclear magnetic resonance and Fourier transform infrared spectroscopy.

    PubMed

    Wang, Jianquan; Satoh, Mitsuru

    2010-08-17

    Water properties in a novel thermoswelling hydrogel, which was prepared from poly(vinyl alcohol)-trimellitate (PVA-T) by a simple chemical cross-linking and swollen in 0.1-1.0 M Li(2)SO(4) solutions, were investigated through nuclear magnetic resonance and Fourier transform infrared (FTIR) spectroscopies. The spin-spin relaxation of the water proton in the hydrogel was measured at 5-35 degrees C, and the results were analyzed with a two-component model to obtain a long T(2) and a short T(2) as well as their fractions (f(short) = 1 - f(long)). The f(short) values thus obtained proved to be a linear function of the gel swelling ratio, and all of the data, except for an upper deviation at 1.0 M Li(2)SO(4), were found to be on an almost same line irrespective of the temperature and the salt concentration. This dependency of f(short) on the swelling degree strongly suggests that the temperature increment has an equivalent effect as that of the SO(4)(2-) concentration; namely, scission of inter(intra-)molecular hydrogen bonding (HB) between the COOHs on the side group must be responsible for the observed thermoswelling in the sulfate salt solutions. The upper deviation of f(short) at 1.0 M from the "master line" was reasonably interpreted in terms of the salting-out effect by the concentrated sulfate anion. On the other hand, attenuated total reflection-FTIR measurements for a gel plate revealed that an appreciable dissociation of the carboxyl group occurred only in the 1.0 M Li(2)SO(4) system. This finding, in turn, means that gel swelling with an increase in the salt concentration up to 0.5 M is not caused by the ionization of the gel and supports the scission of the intermolecular HB. Hydrophobic hydration around the main chain was investigated via a peak shift of the stretching vibration of -CH(2)-, and the slight red shift observed only at 1.0 M suggested that the salting-out effect onto the hydrophobic hydration is rather limited and the hydration around the main

  20. Poly(vinyl alcohol)-coated chitosan microparticles act as an effective oral vaccine delivery system for hepatitis B vaccine in rat model.

    PubMed

    Shrestha, Bijaya; Rath, Jyoti Prakash

    2014-12-01

    The present study focused on the development of an effective oral vaccine delivery system of poly(vinyl alcohol)-coated chitosan microparticles-based recombinant hepatitis B vaccine. Chitosan microparticles were prepared by ionotropic gelation technique; they were loaded with recombinant hepatitis B vaccine and coated with poly(vinyl alcohol). The average sizes of the microparticles were measured in the range of 100-410 nm. The optimal loading capacity and loading efficiency were recorded around 3.4 and 74%, respectively. In vitro release study shows that the prepared microparticles release the antigen in a sustained manner. Moreover, the microparticles were resistant to simulated gastric environment and release the antigen in the targeted intestinal milieu. Furthermore, oral immunisation of rats with poly(vinyl alcohol)-coated chitosan hepatitis-B microparticles vaccine shows comparable seroprotective immune response to presently practiced intramuscular vaccination. The results demonstrated that poly(vinyl alcohol)-coated chitosan microparticles have the potential for being used as an oral vaccine delivery system for hepatitis B vaccine and may be a suitable alternative for needle-based vaccination.

  1. Films prepared from poly(vinyl alcohol) and amylose-fatty acid salt inclusion complexes with increased surface hydrophobicity and high elongation

    USDA-ARS?s Scientific Manuscript database

    In this study, water-soluble amylose-inclusion complexes were prepared from high amylose corn starch and sodium salts of lauric, palmitic, and stearic acid by steam jet cooking. Cast films were prepared by combining the amylose complexes with poly(vinyl alcohol)(PVOH) solution at ratios varying from...

  2. Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol)

    Treesearch

    Craig Clemons; Julia Sedlmair; Barbara Illman; Rebecca Ibach; Carol Hirschmugl

    2013-01-01

    The distribution of poly(acrylic acid) (PAA) in model laminates of nanocellulose and poly(vinyl alcohol) (PVOH) was investigated by FTIR chemical imaging. The method was effective in spatially discerning the three components of the composite. PAA can potentially improve the performance of nanocellulose reinforced PVOH by not only crosslinking the PVOH matrix but also...

  3. In situ formation of poly(vinyl alcohol)–heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factor

    PubMed Central

    Roberts, Justine J; Farrugia, Brooke L; Green, Rylie A; Rnjak-Kovacina, Jelena; Martens, Penny J

    2016-01-01

    Heparin-based hydrogels are attractive for controlled growth factor delivery, due to the native ability of heparin to bind and stabilize growth factors. Basic fibroblast growth factor and vascular endothelial growth factor are heparin-binding growth factors that synergistically enhance angiogenesis. Mild, in situ encapsulation of both basic fibroblast growth factor and vascular endothelial growth factor and subsequent bioactive dual release has not been demonstrated from heparin-crosslinked hydrogels, and the combined long-term delivery of both growth factors from biomaterials is still a major challenge. Both basic fibroblast growth factor and vascular endothelial growth factor were encapsulated in poly(vinyl alcohol)-heparin hydrogels and demonstrated controlled release. A model cell line, BaF32, was used to show bioactivity of heparin and basic fibroblast growth factor released from the gels over multiple days. Released basic fibroblast growth factor promoted higher human umbilical vein endothelial cell outgrowth over 24 h and proliferation for 3 days than the poly(vinyl alcohol)-heparin hydrogels alone. The release of vascular endothelial growth factor from poly(vinyl alcohol)-heparin hydrogels promoted human umbilical vein endothelial cell outgrowth but not significant proliferation. Dual-growth factor release of basic fibroblast growth factor and vascular endothelial growth factor from poly(vinyl alcohol)-heparin hydrogels resulted in a synergistic effect with significantly higher human umbilical vein endothelial cell outgrowth compared to basic fibroblast growth factor or vascular endothelial growth factor alone. Poly(vinyl alcohol)-heparin hydrogels allowed bioactive growth factor encapsulation and provided controlled release of multiple growth factors which is beneficial toward tissue regeneration applications. PMID:27895888

  4. In situ formation of poly(vinyl alcohol)-heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factor.

    PubMed

    Roberts, Justine J; Farrugia, Brooke L; Green, Rylie A; Rnjak-Kovacina, Jelena; Martens, Penny J

    2016-01-01

    Heparin-based hydrogels are attractive for controlled growth factor delivery, due to the native ability of heparin to bind and stabilize growth factors. Basic fibroblast growth factor and vascular endothelial growth factor are heparin-binding growth factors that synergistically enhance angiogenesis. Mild, in situ encapsulation of both basic fibroblast growth factor and vascular endothelial growth factor and subsequent bioactive dual release has not been demonstrated from heparin-crosslinked hydrogels, and the combined long-term delivery of both growth factors from biomaterials is still a major challenge. Both basic fibroblast growth factor and vascular endothelial growth factor were encapsulated in poly(vinyl alcohol)-heparin hydrogels and demonstrated controlled release. A model cell line, BaF32, was used to show bioactivity of heparin and basic fibroblast growth factor released from the gels over multiple days. Released basic fibroblast growth factor promoted higher human umbilical vein endothelial cell outgrowth over 24 h and proliferation for 3 days than the poly(vinyl alcohol)-heparin hydrogels alone. The release of vascular endothelial growth factor from poly(vinyl alcohol)-heparin hydrogels promoted human umbilical vein endothelial cell outgrowth but not significant proliferation. Dual-growth factor release of basic fibroblast growth factor and vascular endothelial growth factor from poly(vinyl alcohol)-heparin hydrogels resulted in a synergistic effect with significantly higher human umbilical vein endothelial cell outgrowth compared to basic fibroblast growth factor or vascular endothelial growth factor alone. Poly(vinyl alcohol)-heparin hydrogels allowed bioactive growth factor encapsulation and provided controlled release of multiple growth factors which is beneficial toward tissue regeneration applications.

  5. A carbon nanotube-infused polysulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water

    PubMed Central

    Maphutha, Selby; Moothi, Kapil; Meyyappan, M.; Iyuke, Sunny E.

    2013-01-01

    A carbon nanotube (CNT) integrated polymer composite membrane with a polyvinyl alcohol barrier layer has been prepared to separate oil from water for treatment of oil-containing waste water. The CNTs were synthesised using chemical vapour deposition, and a phase inversion method was employed for the blending of the CNTs in the polymer composite solution for casting of the membrane. Relative to the baseline polymer, an increase of 119% in the tensile strength, 77% in the Young's modulus and 258% in the toughness is seen for a concentration of 7.5% CNTs in the polymer composite. The permeate through the membrane shows oil concentrations below the acceptable 10 mg/L limit with an excellent throughput and oil rejection of over 95%. PMID:23518875

  6. Negative giant magnetoresistance effect in single layered superparamagnetic polymer nanocomposite structures of poly(vinyl alcohol)-polyaniline/bismuth ferrite

    NASA Astrophysics Data System (ADS)

    Prabhakaran, T.; Hemalatha, J.

    2012-08-01

    Superparamagnetic polyaniline/bismuth ferrite (PANI/BFO) nanocomposite powder is synthesized through an in situ sol-gel polymerization method and it is embedded in non-magnetic poly(vinyl alcohol) (PVA) matrix to fabricate high performance flexible films. The interaction between PANI/BFO filler and PVA matrix and hence the formation of composite is identified through XRD and it is further confirmed through FTIR spectra. Vibration sample magnetometry (VSM) studies ensure the superparamagnetic nature of the composite films. The magnetoresistance measurements are made at room temperature for various current values from which it is observed that the samples exhibit a negative giant magnetoresistance (GMR) effect. The variation of GMR from 21% to 66% with filler concentration and also the non-ohmic V-I characteristics of the composite films are reported.

  7. Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment.

    PubMed

    Du, Jennifer R; Peldszus, Sigrid; Huck, Peter M; Feng, Xianshe

    2009-10-01

    A commercial poly(vinylidene fluoride) flat sheet membrane was modified by surface coating with a dilute poly(vinyl alcohol) (PVA) aqueous solution followed by solid-vapor interfacial crosslinking. The resulting PVA layer increased membrane smoothness and hydrophilicity and resulted in comparable pure water permeation between the modified and unmodified membranes. Fouling tests using a 5 mg/L protein solution showed that a short period of coating and crosslinking improved the anti-fouling performance. After 18 h ultrafiltration of a surface water with a TOC of approximately 7 mg C/L, the flux of the modified membrane was twice as high as that of the unmodified membrane. The improved fouling resistance of the modified membrane was related to the membrane physiochemical properties, which were confirmed by pure water permeation, X-ray photoelectron spectroscopy, and contact angle, zeta potential and roughness measurements.

  8. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    SciTech Connect

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  9. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40 , and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  10. Preparation and properties of a hydrogel of maleated poly(vinyl alcohol) (PVAM) grafted with cassava starch.

    PubMed

    Riyajan, Sa-Ad; Sukhlaaied, Wattana; Keawmang, Woranut

    2015-05-20

    A novel pH-sensitive graft copolymer (PVAM-g-CSt) was synthesized from maleated poly(vinyl alcohol) (PVAM) and cassava starch (CSt) through a grafting reaction using potassium persulfate as a thermal initiator. The chemical structure of the PVAM-g-CSt was revealed by FTIR and ether linkage of the graft copolymer was observed at 1089 cm(-1). The degree of grafting of the copolymer was found to range between 40 and 82%, depending on the PVAM/CSt ratio. The highest tensile strength was found at a ratio of 9:1 PVAM/CSt. In addition, the swelling ratio in water increased with increasing proportions of CSt in the PVAM-g-CSt due to the decrease in the degree of grafting. The resulting hydrogel exhibits good pH sensitivity in different pH mediums. The graft copolymer easily degraded in natural soil, especially at high proportions of CSt in the blend.

  11. Michael-type addition reactions for the in situ formation of poly(vinyl alcohol)-based hydrogels.

    PubMed

    Tortora, Mariarosaria; Cavalieri, Francesca; Chiessi, Ester; Paradossi, Gaio

    2007-01-01

    Michael-type addition reactions offer the possibility to obtain in situ formation of polymeric hydrogels in the absence of a radical mechanism for the networking process. We explored such a synthetic route for obtaining a poly(vinyl alcohol) (PVA)-based hydrogel as a potential biomaterial for applications in vitro-retinal replacement surgery. The presence of radicals in the reaction medium can represent a risk for in situ surgical treatment. To circumvent this problem we have applied nucleophilic addition to ad hoc modified PVA macromers. The gel formation has been studied with respect to the timing required in this surgery and in terms of the structural characteristics of the obtained network.

  12. Graphene functionalized with poly(vinyl alcohol) as a Pickering stabilizer for suspension polymerization of poly(methyl methacrylate).

    PubMed

    Erdenedelger, Gansukh; Dao, Trung Dung; Jeong, Han Mo

    2016-08-15

    Two types of thermally reduced graphenes (TRGs) having different lateral sizes were non-covalently modified with poly(vinyl alcohol) to endow water-dispersibility. The modified TRGs were examined as Pickering stabilizers for the suspension polymerization of methyl methacrylate (MMA). They were effective graphene-based Pickering stabilizers for the system with almost all of the polymerized composite microparticles having a regular spherical shape. The particle size of the composite microparticles was tunable by the size or the amount of modified TRG used as stabilizer. The almost perfect core-shell structure of the composite microparticles effectively enhanced the thermal stability of the core PMMA. In addition, when the core-shell microparticles were compression molded into a monolith, the obtained composite exhibited an ultra-low percolation threshold of electrical conductivity of around 0.04vol%.

  13. Modifying theophylline microparticle surfaces via the sequential deposition of poly(vinyl alcohol-co-vinyl acetate) copolymers.

    PubMed

    Zhao, Yanjun; Alas'ad, Mannar A; Jones, Stuart A

    2014-03-10

    The aim of this study was to investigate the manner in which amphiphilic poly(vinyl alcohol-co-vinyl acetate) copolymers (PVA-Ac) assembled on drug surfaces and use this information to generate a novel bi-layer polymer coating for a theophylline microparticle. Three grades of PVA-Ac, differing in hydrolysis degree and monomer distribution, were synthesised, characterised by nuclear magnetic resonance and shown to interact with theophylline when suspended in water. PVA-Ac deposition at the solid/liquid interface was driven by polymer hydrogen bond formation in a process that induced consequential structural changes in the macromolecule architecture. The most hydrophobic grades of the copolymer appeared to adsorb in a multistage process that passed through a series of equilibrium points. The PVA-Ac surface allowed two grades of the copolymer to be sequentially adsorbed and this resulted in the fabrication of a microparticle with desirable characteristics for pharmaceutical formulation production.

  14. Polyene Formation Catalyzed by Phosphotungstic Acid and Aluminum Chloride in Thin Films of Poly(Vinyl Alcohol)

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.; Maly, A. B.

    2016-01-01

    Formation of linear polyenes -(CH=CH) n - during thermal dehydration of thin layers (9-20 μm) of poly(vinyl alcohol) containing phosphotungstic-acid and aluminum-chloride catalysts was investigated. It was found that the concentration of long-chain ( n ≥ 8) polyenes in films containing phosphotungstic acid increased smoothly with increasing annealing time although the kinetics of the dehydration were independent of the film thickness. The polyene ( n ≥ 8) formation rate in films containing aluminum chloride dropped quickly with decreasing film thickness and increasing annealing time. As a result, long-chain polyenes practically did not form regardless of the annealing time for a film thickness of 11 μm.

  15. Radiation preparation of graphene/carbon nanotubes hybrid fillers for mechanical reinforcement of poly(vinyl alcohol) films

    NASA Astrophysics Data System (ADS)

    Ma, Hui-Ling; Zhang, Long; Zhang, Youwei; Wang, Shuojue; Sun, Chao; Yu, Hongyan; Zeng, Xinmiao; Zhai, Maolin

    2016-01-01

    Graphene/carbon nanotubes (G/CNTs) hybrid fillers were synthesized by γ-ray radiation reduction of graphene oxide (GO) in presence of CNTs. The obtained hybrid fillers with three-dimensional (3D) interconnected network structure were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Poly(vinyl alcohol) (PVA) composite films with enhanced mechanical properties and thermal stability were subsequently prepared by solution blending of G/CNTs with PVA matrix. The tensile strength and Young's modulus of PVA composite films containing 1 wt% G/CNTs were measured to be 81.9 MPa and 3.9 GPa respectively, which were 56% and 33.6% higher than those of pure PVA. These substantial improvements could be attributed to the interconnected 3D structure of G/CNTs, homogeneous dispersion as well as the strong hydrogen-bonding interaction between G/CNTs and PVA macromolecular chains.

  16. Preparation and characterization of NaClO4 doped poly(vinyl alcohol)/sodium alginate composite electrolyte

    NASA Astrophysics Data System (ADS)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Rathod, Sunil G.

    2013-02-01

    The 60:40 wt% poly(vinyl alcohol) (PVA)/sodium alginate blend doped with different concentrations of NaClO4 composite films were prepared by solution casting method. The prepared samples were characterized by FTIR, UV-Vis, DC and AC conductivity. The FTIR spectra confirms the complexation of NaClO4 with host polymer blend. From the UV-Vis spectra, the calculated optical band gap decreases from 5.2eV to 4.6eV. The frequency dependent dielectric constant decreases, and hence the dielectric loss and ac conductivity increases with doping level. The mechanical study shows the Young's modulus, tensile strength, stiffness were increases with the NaClO4 concentrations.

  17. Photoinduced crystallization of calcium carbonate from a homogeneous precursor solution in the presence of partially hydrolyzed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Nishio, Takashi; Naka, Kensuke

    2015-04-01

    Photoinduced crystallization of calcium carbonate (CaCO3) was demonstrated by the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphenyl)propionic acid) under alkaline conditions (pH 10). In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol %) was used as the precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. Thermogravimetric analysis of the obtained xerogels showed that increasing the UV irradiation time increased the amount of CaCO3 formed and the complete conversion of calcium ions to calcite was achieved after 50 min of UV irradiation. Furthermore, solid phase analyses suggested that nanometer-to-micron-sized calcite crystals were formed and dispersed in the obtained PVAPS matrix.

  18. Effect of γ irradiation on poly(vinyl alcohol) and bacterial cellulose composites used as packaging materials

    NASA Astrophysics Data System (ADS)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jipa, Iuliana; Dobre, Loredana; Zaharescu, Traian

    2013-03-01

    The aim of this paper is to present the influence of bacterial cellulose microfibrils and γ-radiation dose on poly(vinyl alcohol) (PVA)-bacterial cellulose (BC) composites. Two composite materials were obtained: the first one from PVA aqueous solution 4% and 5% wet bacterial cellulose and the second from the same PVA solution and 10% wet bacterial cellulose. In terms of PVA/dry BC ratios (w/w) for these films the ratios are 1/0.025 and 1/0.050. The obtained composite materials were characterized by infrared spectroscopy with Fourier transform (FT-IR) and UV-vis spectroscopy in order to evaluate the irradiation effect on their stability. The swelling behavior of the polymeric composites was also studied. The composite materials were compared with a film of pure PVA and a dry BC membrane.

  19. Passively Q-switched erbium doped fiber laser based on double walled carbon nanotubes-polyvinyl alcohol saturable absorber

    NASA Astrophysics Data System (ADS)

    Mohammed, D. Z.; Al-Janabi, A. H.

    2016-11-01

    A passively Q-switched Er-doped fiber laser with a ring cavity operating at 1568.6 nm is demonstrated using a saturable absorber based on a double walled carbon nanotubes film, which is prepared using polyvinyl alcohol as a host polymer. The Q-switching operation is achieved at a low pump threshold of 40 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 14.7 KHz to 47 KHz as the pump power increases from threshold to 203 mW. The minimum recorded pulse width was 4.6 µs at 203 mW, while the highest energy obtained was 102.1 nJ.

  20. Comparison of Chain Conformation of Poly(vinyl alcohol) in Solutions and Melts from Quantum Chemistry Based Molecular Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.

  1. Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. leaves using polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Ardani, H. K.; Imawan, C.; Handayani, W.; Djuhana, D.; Harmoko, A.; Fauzia, V.

    2017-04-01

    Biosynthesis of silver nanoparticles is recently attracting considerable attention because of it reduces the environmental impact and already used in numerous applications. However, the disadvantages such as easy aggregation and instability properties, prevent its’ application. In this papers, biosynthesis of silver nanoparticles using aqueous extract of Diospyros discolor Willd. leaves have been prepared. The effect of biosynthesis variables, like ratio of reactants and reduction time on the particle size distribution, stability, and morphology of the silver nanoparticles were investigated. The resulted silver nanoparticles were characterized using UV spectroscopy, Transmission Electron Microscopy, and Particles Size Analyzer. Polyvinyl alcohol (PVA) was used to enhance the stability of the silver nanoparticles. Silver nanoparticles modification with 1% PVA concentration has produced a better characteristic of particle size distribution compared to the original silver nanoparticles, from highly polydisperse into moderately disperse. The results of the Zetta potential measurement also confirmed the increase stability of cluster distribution in the colloidal Ag/PVA compared to the original Ag.

  2. A new approach to immobilize poly(vinyl alcohol) on poly(dimethylsiloxane) resulting in low protein adsorption

    NASA Astrophysics Data System (ADS)

    Carneiro, Leandro B.; Ferreira, Jacqueline; Santos, Marcos J. L.; Monteiro, Johny P.; Girotto, Emerson M.

    2011-10-01

    The hydrophobic characteristics of PDMS and non-specific protein adsorption are major drawbacks for its application in biosensing. Here we have combined surface oxidation by plasma and chemical binding of polyvinyl alcohol (PVA) to obtain long-term stability of hydrophilic PDMS surfaces. Mercaptopropyltrimethoxisilane and aminopropyltrimethoxisilane were used as adhesives between the plasma-oxidized PDMS surface and the PVA, immobilized at room temperature. This approach has allowed for fast, uniform, and very stable modification of the PDMS surface, which maintained a hydrophilic character for as long as 30 days. In addition, the modified hydrophilic surface presented minimized protein adsorption when compared to pristine PDMS. The results obtained in this work are important contributions to the growing field of integrated microfluidic biosensors.

  3. Polyvinyl Alcohol Hydrogel Irradiated and Acetalized for Osteochondral Defect Repair: Mechanical, Chemical, and Histological Evaluation after Implantation in Rat Knees

    PubMed Central

    Batista, N. A.; Rodrigues, A. A.; Bavaresco, V. P.; Mariolani, J. R. L.; Belangero, W. D.

    2012-01-01

    Polyvinyl Alcohol (PVA) hydrogel plugs were implanted in artificial osteochondral defects on the trochlear groove of rat knees. After 0, 3, 6, 12, and 24 weeks of followup, samples containing the implants were mechanically evaluated by creep indentation test, chemically, and histologically by optical microscopy. The mechanical test pointed towards an increase of the implant creep modulus and the chemical analysis exhibited an increasing concentration of calcium and phosphorus within the implants over time. Optical microscopy showed no foreign body reaction and revealed formation, differentiation, and maintenance of new tissue at the defect/implant interface. The absence of implant wear indicated that the natural articular lubrication process was not disturbed by the implant. The performance of the irradiated and acetalized PVA was considered satisfactory for the proposed application. PMID:23197982

  4. Polydopamine-coated electrospun poly(vinyl alcohol)/poly(acrylic acid) membranes as efficient dye adsorbent with good recyclability.

    PubMed

    Yan, Jiajie; Huang, Yunpeng; Miao, Yue-E; Tjiu, Weng Weei; Liu, Tianxi

    2015-01-01

    Free-standing poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) membranes with polydopamine (PDA) coating were prepared based on the combination of electrospinning and self-polymerization of dopamine. This is a facile, mild, controllable, and low-energy consumption process without any rigorous restriction to reactive conditions. Benefiting from the high specific surface area of electrospun membranes and the abundant "adhesive" functional groups of polydopamine, the as-prepared membranes exhibit efficient adsorption performance towards methyl blue with the adsorption capacity reaching up to 1147.6 mg g(-1). Moreover, compared to other nanoparticle adsorbents, the as-prepared self-standing membrane is highly flexible, easy to operate and retrieve, and most importantly, easy to elute, and regenerate, which enable its potential applications in wastewater treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effect of Salt Concentration on the Structure of Poly(Vinyl Alcohol) Cryogels Obtained from Aqueous Salt Solutions

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.; Zagorskaya, S. A.

    2015-03-01

    The degree of polymer crystallinity and water content on the surfaces and in the bulk of poly(vinyl alcohol) (PVA) cryogels prepared from aqueous salt solutions were determined as functions of KCl concentration using FTIR-ATR spectroscopy. It was found that the degree of PVA crystallinity increased with increasing KCl concentration and was much greater in the cryogel bulk than on its surfaces. Addition of salt at a concentration of 1.3 M increased the degree of polymer crystallinity on the cryogel surfaces by 1.6-2.3 times whereas the crystallinity in the bulk increased by 3.3-4 times. The cryogel water contents on the surfaces and in the bulk were approximately equal and were practically independent of the salt concentration.

  6. Effect of the PVA (polyvinyl alcohol) concentration on the optical properties of Eu-doped YAG phosphors

    NASA Astrophysics Data System (ADS)

    Hora, Daniela A.; Andrade, Adriano B.; Ferreira, Nilson S.; Teixeira, Verônica C.; dos S. Rezende, Marcos V.

    2016-10-01

    The influence of the polyvinyl alcohol (PVA) concentration on the synthesis and structural, morphological and optical properties of Y3Al5O13: Eu (Eu-doped YAG) was systematically investigated in this work. The final concentration of PVA in the preparation step influenced the crystallite size and also the degree of particle agglomeration in Eu-doped YAG phosphors. X-ray excited optical luminescence (XEOL) emission spectra results indicated typical Eu3+ emission lines and an abnormally intense 5D0 → 7F4. The intensity parameters Ω2 and Ω4 were calculated and indicated the PVA concentration affects the ratio Ω2:Ω4. X-ray absorption spectroscopy (XAS) results showed Eu valence did not change and the symmetry around the Eu3+ is influenced by the PVA concentration. XEOL-XAS showed the luminescence increases as a function of energy.

  7. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating

    NASA Astrophysics Data System (ADS)

    Yan, Haitao; Han, Daofu; Li, Ming; Lin, Bo

    2017-01-01

    This paper presents the design, fabrication, and characterization of a D-shaped fiber coated with polyvinyl alcohol (PVA) embedding an Au grating-based relative humidity (RH) sensor. The Au grating is fabricated on a D-shaped fiber to match the wave-vector and excite the surface plasmon, and the PVA is embedded in the Au grating as a sensitive cladding film. The refractive index of PVA changes with the ambient humidity. Measurements in a controlled environment show that the RH sensor can achieve a sensitivity of 5.4 nm per relative humidity unit in the RH range from 0% to 70% RH. Moreover, the surface plasmon resonance can be realized and used for RH sensing at the C band of optical fiber communication instead of the visible light band due to the metallic grating microstructure on the D-shaped fiber.

  8. Cell-compatible properties of calcium carbonates and hydroxyapatite deposited on ultrathin poly(vinyl alcohol)-coated polyethylene films.

    PubMed

    Serizawa, Takeshi; Tateishi, Taishi; Akashi, Mitsuru

    2003-01-01

    Poly(vinyl alcohol) (PVA) was coated onto polyethylene (PE) films by a repetitive adsorption and drying process, and then the PVA-coated PE films were alternately immersed into aqueous solutions of Ca2+ and CO3(2-) ions (alternate soaking cycles), to deposit calcium carbonate (CaCO3) onto the films. The PVA coating was essential for the CaCO3 deposition. The amount of CaCO3 deposited increased with an increasing number of cycles. Scanning electron microscopic observations and attenuated total reflection spectra revealed the presence of both calcite and aragonite as the crystal structures of CaCO3 on the film. L929 fibroblast cells adhered and proliferated on these CaCO3-deposited PE films, as well as the hydroxyapatite-coated PE films previously prepared. It was found that the PVA coating and the subsequent deposition of calcium salts on certain films facilitated cell compatibility.

  9. Design and simulation of a poly(vinyl alcohol)-bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis.

    PubMed

    Mohammadi, H; Boughner, D; Millon, L E; Wan, W K

    2009-08-01

    In this study, a polymeric aortic heart valve made of poly(vinyl alcohol) (PVA)-bacterial cellulose (BC) nanocomposite is simulated and designed using a hyperelastic non-linear anisotropic material model. A novel nanocomposite biomaterial combination of 15 wt % PVA and 0.5 wt % BC is developed in this study. The mechanical properties of the synthesized PVA-BC are similar to those of the porcine heart valve in both the principal directions. To design the geometry of the leaflets an advance surfacing technique is employed. A Galerkin-based non-linear finite element method is applied to analyse the mechanical behaviour of the leaflet in the closing and opening phases under physiological conditions. The model used in this study can be implemented in mechanical models for any soft tissues such as articular cartilage, tendon, and ligament.

  10. Acrylonitrile-grafted poly(vinyl alcohol) copolymer as effective binder for high-voltage spinel positive electrode

    NASA Astrophysics Data System (ADS)

    Tanaka, Shinichi; Narutomi, Takuya; Suzuki, Shigeru; Nakao, Aiko; Oji, Hiroshi; Yabuuchi, Naoaki

    2017-08-01

    Acrylonitrile-grafted poly(vinyl alcohol) copolymer with a branched structure is synthesized and used as binder for a LiNi1/2Mn3/2O4 composite electrode. Electrode performances of composite electrodes with different binders are compared in Li cells at 50 °C. The branched copolymer has better coatability to active materials in comparison to a simple mixture of linear polymers and conventional PVdF as evidenced by hard X-ray photoelectron spectroscopy. Cyclability is effectively improved by using the branched copolymer at elevated temperatures because of high chemical stability of the coated polymer layer and formation of a protective layer on cycles. Moreover, excellent rate-capability is realized by applying the branched copolymer with high adhesive strength, and the composite electrode delivers 70 mAh g-1 of discharge capacity at a rate of 1280 mA g-1.

  11. Crystal structures and magnetic properties of magnetite (Fe{sub 3}O{sub 4})/Polyvinyl alcohol (PVA) ribbon

    SciTech Connect

    Ardiyanti, Harlina; Suharyadi, Edi; Kato, Takeshi; Iwata, Satoshi

    2016-04-19

    Ribbon of magnetite (Fe{sub 3}O{sub 4})/Polyvinyl Alcohol (PVA) nanoparticles have been successfully fabricated with various concentration of PVA synthesized by co-precipitation method. Particle size of nanoparticles Fe{sub 3}O{sub 4} sample and ribbon Fe{sub 3}O{sub 4}/PVA 25% sample is about 9.34 nm and 11.29 nm, respectively. The result of Vibrating Sample Magnetometer (VSM) showed that saturation magnetization value decreased from 76.99 emu/g to 15.01 emu/g and coercivity increased from 49.30 Oe to 158.35 Oe as increasing concentration of PVA. Atomic Force Microscopy (AFM) analysis showed that encapsulated PVA given decreasing agglomeration, controlled shape of nanoparticles Fe{sub 3}O{sub 4} more spherical and dispersed. Surface roughness decreased with increasing concentration of PVA.

  12. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    NASA Astrophysics Data System (ADS)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-11-01

    Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  13. Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen; Hsu, Sung-Ting

    Alkaline SPE was obtained from a blend of polyvinyl alcohol (PVA) and poly(epichlorohydrin) (PECH), PVA-PECH, by a solution-cast technique. The PVA host polymer is blended with PECH polymer to provide a polymer electrolyte with improved chemical and mechanical properties. The ionic conductivity of the PVA-PECH polymer electrolytes is between 10 -2 and 10 -3 S cm -1 at room temperature when the blend ratio is varied from 1:0.2 to 1:1. The PVA-PECH polymer was characterized by means of scanning electron microscopy, X-ray diffraction, stress-strain test, cyclic voltammetry, and a.c. impedance spectroscopy. It is found that the polymer electrolytes exhibit good mechanical strength and excellent chemical stability. The electrochemical performance of solid-state Zn-air batteries with various types of the blended polymer electrolyte films is examined by a galvanostatic discharge method.

  14. A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose.

    PubMed

    Sanaeifar, Niuosha; Rabiee, Mohammad; Abdolrahim, Mojgan; Tahriri, Mohammadreza; Vashaee, Daryoosh; Tayebi, Lobat

    2017-02-15

    In this research, a new electrochemical biosensor was constructed for the glucose detection. Iron oxide nanoparticles (Fe3O4) were synthesized through co-precipitation method. Polyvinyl alcohol-Fe3O4 nanocomposite was prepared by dispersing synthesized nanoparticles in the polyvinyl alcohol (PVA) solution. Glucose oxidase (GOx) was immobilized on the PVA-Fe3O4 nanocomposite via physical adsorption. The mixture of PVA, Fe3O4 nanoparticles and GOx was drop cast on a tin (Sn) electrode surface (GOx/PVA-Fe3O4/Sn). The Fe3O4 nanoparticles were characterized by X-ray diffraction (XRD). Also, Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM) techniques were utilized to evaluate the PVA-Fe3O4 and GOx/PVA-Fe3O4 nanocomposites. The electrochemical performance of the modified biosensor was investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Presence of Fe3O4 nanoparticles in the PVA matrix enhanced the electron transfer between enzyme and electrode surface and the immobilized GOx showed excellent catalytic characteristic toward glucose. The GOx/PVA-Fe3O4/Sn bioelectrode could measure glucose in the range from 5 × 10(-3) to 30 mM with a sensitivity of 9.36 μA mM(-1) and exhibited a lower detection limit of 8 μM at a signal-to-noise ratio of 3. The value of Michaelis-Menten constant (KM) was calculated as 1.42 mM. The modified biosensor also has good anti-interfering ability during the glucose detection, fast response (10 s), good reproducibility and satisfactory stability. Finally, the results demonstrated that the GOx/PVA-Fe3O4/Sn bioelectrode is promising in biosensor construction. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Protein cross-linking in food.

    PubMed

    Gerrard, J A; Meade, S J; Miller, A G; Brown, P K; Yasir, S B M; Sutton, K H; Newberry, M P

    2005-06-01

    The aims of this paper are (1) to probe the relationship between molecular structure and protein cross-linking ability for a range of small molecules; (2) to establish whether this relationship holds within a food matrix; and (3) to test the impact of Maillard cross-linking on food functionality, particularly texture, in wheat- and soy-based food systems. A variety of molecules were obtained, either commercially or via organic synthesis. Cross-linking ability was tested using our standard model system, employing ribonuclease A and analyzing the results by SDS-PAGE. Molecules of varying reactivity were tested in wheat- and soy-based products, and the changes in functionality were correlated with changes in protein cross-linking. No simple relationship was found between molecular structure and ability to cross-link ribonuclease. Only the most reactive reagents were able to cross-link within the food matrix. Nevertheless, a low degree of cross-linking was shown to have significant consequences on the properties of wheat- and soy-based foods, suggesting that the Maillard reaction may represent a means to control food texture.

  16. Porous Cross-Linked Polyimide Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)

    2015-01-01

    Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.

  17. The effect of cross-link distributions in axially-ordered, cross-linked networks

    NASA Astrophysics Data System (ADS)

    Bennett, C. Brad; Kruczek, James; Rabson, D. A.; Matthews, W. Garrett; Pandit, Sagar A.

    2013-07-01

    Cross-linking between the constituent chains of biopolymers has a marked effect on their materials’ properties. In certain of these materials, such as fibrillar collagen, increases in cross-linking lead to an increase in the melting temperature. Fibrillar collagen is an axially-ordered network of cross-linked polymer chains exhibiting a broadened denaturation transition, which has been explained in terms of the successive denaturation with temperature of multiple species. We model axially-ordered, cross-linked materials as stiff chains with distinct arrangements of cross-link-forming sites. Simulations suggest that systems composed of chains with identical arrangements of cross-link-forming sites exhibit critical behavior. In contrast, systems composed of non-identical chains undergo a crossover. This model suggests that the arrangement of cross-link-forming sites may contribute to the broadening of the denaturation transition in fibrillar collagen.

  18. Microencapsulation of lobster carotenoids within poly(vinyl alcohol) and poly(D,L-lactic acid) membranes.

    PubMed

    Sun, Z M; Poncelet, D; Conway, J; Neufeld, R J

    1995-01-01

    The use of natural pigments such as lobster carotenoids in fish feed formulations offers advantages over the use of the synthetic alternatives. Microencapsulation of the pigments, with or without the addition of antioxidants to the formulation, may be of benefit in terms of stabilizing pigment colour. In the present study, lobster carotenoids were extracted from lobster shell into petroleum ether and microencapsulated by phase separation and salt coacervation within (poly vinyl alcohol) and poly(vinyl alcohol)/poly(D,L-lactic acid) membranes. Spherical microcapsules, with smooth, thin and resilient membranes were obtained with mean diameters ranging from 50 to 150 microns, depending on the membrane material, and source of pigment. The microcapsules were pink-orange in colour, and colour stability was followed spectrophotometrically. Enhanced stability was observed in both membrane materials, in comparison to the non-encapsulated control. Rates of discoloration were determined under a variety of storage conditions, including the absence of light, reduced temperatures and under nitrogen atmosphere. The best stability of lobster carotenoids was observed under a nitrogen atmosphere within PVA/PLA membranes, representing an 11-fold enhancement of pigment stability in comparison to the controls. Under ambient conditions, the enhancement in pigment stability was approximately 6-fold. The optimum concentration of PVA during microencapsulation was 3-4%, and the microencapsulated pigments appeared most stable under acidic conditions. The rate of discoloration appeared independent of pigment concentration.

  19. Green synthesis and characterization of polyvinyl alcohol stabilized palladium nanoparticles: effect of solvent on diameter and catalytic activity

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sreya Roy; Sarathi Roy, Partha; Bhattacharya, Swapan Kumar

    2017-06-01

    Global palladium nanoparticles of different average diameters in the range 2-19 nm have been synthesized at room temperature by the reduction of K2PdCl4 in aqueous alcohols of varying composition in presence of constant proportion of polyvinyl alcohol (PVA). The synthesized nanoparticles have been characterized by different spectroscopic, microscopic and electro analytical techniques like cyclic voltammetry, chronopotentiometry, and chronoamperometry. FTIR spectroscopy detects the effect of co-solvent composition on the particle-PVA interaction involving  -OH group of the latter. X-ray diffraction study shows that the nanoparticles have both face centred cubic and hexagonal crystalline structures which may influence the catalytic capability of the synthesized palladium quantum dots. The study reveals the influence of co-solvent (ethanol) composition in monitoring the average diameter and the nature of encapsulation of palladium nanoparticles which in turn help to monitor the electro-catalytic activity of the synthesized palladium nanoparticles in reference to oxidation of ethanol in alkaline medium.

  20. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  1. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  2. Separator Membrane from Crosslinked Poly(Vinyl Alcohol) and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride)

    PubMed Central

    Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy

    2015-01-01

    In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019

  3. Cross-linked biopolymer bundles: Cross-link reversibility leads to cooperative binding/unbinding phenomena

    NASA Astrophysics Data System (ADS)

    Vink, Richard L. C.; Heussinger, Claus

    2012-01-01

    We consider a biopolymer bundle consisting of filaments that are cross-linked together. The cross-links are reversible: they can dynamically bind and unbind adjacent filament pairs as controlled by a binding enthalpy. The bundle is subjected to a bending deformation and the corresponding distribution of cross-links is measured. For a bundle consisting of two filaments, upon increasing the bending amplitude, a first-order transition is observed. The transition is from a state where the filaments are tightly coupled by many bound cross-links, to a state of nearly independent filaments with only a few bound cross-links. For a bundle consisting of more than two filaments, a series of first-order transitions is observed. The transitions are connected with the formation of an interface between regions of low and high cross-link densities. Combining umbrella sampling Monte Carlo simulations with analytical calculations, we present a detailed picture of how the competition between cross-link shearing and filament stretching drives the transitions. We also find that, when the cross-links become soft, collective behavior is not observed: the cross-links then unbind one after the other leading to a smooth decrease of the average cross-link density.

  4. Electrospun polyvinyl alcohol/bovine serum albumin biocomposite membranes for horseradish peroxidase immobilization.

    PubMed

    Fazel, Ramin; Torabi, Seyed-Fakhreddin; Naseri-Nosar, Pooya; Ghasempur, Salehe; Ranaei-Siadat, Seyed-Omid; Khajeh, Khosro

    2016-11-01

    Electrospinning, a simple and versatile method to fabricate nanofibrous supports, has attracted attention in the field of enzyme immobilization. Biocomposite nanofibers were fabricated from mixed PVA/BSA solution and the effects of glutaraldehyde treatment, initial BSA concentration and PVA concentration on protein loading were investigated. Glutaraldehyde cross-linking significantly decreased protein release from nanofibers and BSA loading reached as high as 27.3% (w/w). In comparison with the HRP immobilized into the nascent nanofibrous membrane, a significant increase was observed in the activity retention of the enzyme immobilized into the PVA/BSA biocomposite nanofibers. The immobilized HRP was able to tolerate much higher concentrations of hydrogen peroxide than the free enzyme and thus the immobilized enzyme did not demonstrate substrate inhibition. The immobilized HRP retained∼50% of the free enzyme activity at 6.4mM hydrogen peroxide and no significant variation was observed in the KM value of the enzyme for hydrogen peroxide after immobilization. In addition, reusability tests showed that the residual activity of the immobilized HRP were 73% after 11 reuse cycles. Together, these results demonstrate efficient immobilization of HRP into electrospun PVA/BSA biocomposite nanofibers and provide a promising immobilization strategy for biotechnological applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Photo-triggered release from liposomes without membrane solubilization, based on binding to poly(vinyl alcohol) carrying a malachite green moiety.

    PubMed

    Uda, Ryoko M; Kato, Yutaka; Takei, Michiko

    2016-10-01

    When working with liposomes analogous to cell membranes, it is important to develop substrates that can regulate interactions with the liposome surface in response to light. We achieved a photo-triggered release from liposomes by using a copolymer of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). Although PVAMG is a neutral polymer under dark conditions, it is photoionized upon exposure to UV light, resulting in the formation of a cationic site for binding to liposomes with a negatively charged surface. Under UV irradiation, PVAMG showed effective interaction with liposomes, releasing the encapsulated compound; however, this release was negligible under dark conditions. The poly(vinyl alcohol) moiety of PVAMG played an important role in the photo-triggered release. This release was caused by membrane destabilization without lipid solubilization. We also investigated different aspects of liposome/PVAMG interactions, including PVAMG-induced fusion between the liposomes and the change in the liposome morphologies.

  6. Electron spin resonance of the phosphorescent triplet states of p-phenylphenol and p-phenylphenolate ion in stretched polyvinyl alcohol films

    NASA Astrophysics Data System (ADS)

    Yagi, Mikio; Higuchi, Jiro

    1980-05-01

    Using a stretched polyvinyl alcohol film as a host, electron spin resonance (ESR) of the phosphorescent triplet states of p-phenylphenol and p-phenylphenolate ion has been studied by changing the pH of the medium as an example of the application of ESR to an acid-base equilibrium. In assigning ESR spectra of aromatic acid and conjugated base, the present method is demonstrated to be most convenient and useful.

  7. The Surface Structure and Thermal Properties of Novel Polymer Composite Films Based on Partially Phosphorylated Poly(vinyl alcohol) with Aluminum Phosphate

    PubMed Central

    Mohamed Saat, Asmalina

    2014-01-01

    Partially phosphorylated polyvinyl alcohol (PPVA) with aluminum phosphate (ALPO4) composites was synthesized by solution casting technique to produce (PPVA)100−y − (ALPO4)y (y = 0, 1, and 2). The surface structure and thermal properties of the films were characterized using Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The results showed that the films have higher thermal stability with strong bonding between PPVA and ALPO4. PMID:25506069

  8. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    PubMed

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cross-linking Chemistry of Squid Beak*

    PubMed Central

    Miserez, Ali; Rubin, Daniel; Waite, J. Herbert

    2010-01-01

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance (1H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720

  10. DNA interstrand cross-linking by epichlorohydrin.

    PubMed

    Romano, Keith P; Newman, Adam G; Zahran, Rami W; Millard, Julie T

    2007-05-01

    Epichlorohydrin (ECH), an important industrial chemical, is a bifunctional alkylating agent with the potential to form DNA cross-links. Occupational exposure to this suspect carcinogen leads to chromosomal aberrations, and ECH has been shown previously to undergo reaction with DNA in vivo and in vitro. We used denaturing polyacrylamide gel electrophoresis to monitor the possible formation of interstrand cross-links within DNA oligomers by ECH and the related compound, epibromohydrin (EBH). Although both compounds did indeed form cross-links between deoxyguanosine residues, EBH was a more efficient cross-linker than ECH. The optimal pH for cross-linking also varied, with ECH more efficient at pH 5.0 and EBH more efficient at pH 7.0. Both agents were relatively flexible in the sequences targeted, with comparable efficiencies for 5'-GGC and 5'GC sites. Furthermore, interstrand cross-linking by the two optical isomers of ECH correlated with their relative cytotoxicities, with R-ECH about twice as potent as S-ECH.

  11. Cross-linking chemistry of squid beak.

    PubMed

    Miserez, Ali; Rubin, Daniel; Waite, J Herbert

    2010-12-03

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance ((1)H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed.

  12. 76 FR 5562 - Polyvinyl Alcohol From Taiwan: Final Determination of Sales at Less Than Fair Value

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... questionnaire responses submitted by the sole respondent, Chang Chun Petrochemical Co., Ltd. (CCPC). We used... Alcohol from Taiwan: Sales Verification of Chang Chun Petrochemical Co., Ltd.,'' dated October 12, 2010... Value Data Submitted by Chang Chun Petrochemical Co., Ltd., in the Antidumping Duty Investigation...

  13. Recycled Poly(vinyl alcohol) Sponge for Carbon Encapsulation of Size-Tunable Tin Dioxide Nanocrystalline Composites.

    PubMed

    Ma, Yue; Tai, Cheuk-Wai; Gustafsson, Torbjörn; Edström, Kristina

    2015-06-22

    The recycling of industrial materials could reduce their environmental impact and waste haulage fees and result in sustainable manufacturing. In this work, commercial poly(vinyl alcohol) (PVA) sponges are recycled into a macroporous carbon matrix to encapsulate size-tunable SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) through a scalable, flash-combustion method. The hydroxyl groups present copiously in the recycled PVA sponges guarantee a uniform chemical coupling with a tin(IV) citrate complex through intermolecular hydrogen bonds. Then, a scalable, ultrafast combustion process (30 s) carbonizes the PVA sponge into a 3D carbon matrix. This PVA-sponge-derived carbon could not only buffer the volume fluctuations upon the Li-Sn alloying and dealloying processes but also afford a mixed conductive network, that is, a continuous carbon framework for electrical transport and macropores for facile electrolyte percolation. The best-performing electrode based on this composite delivers a rate performance up to 9.72 C (4 A g(-1) ) and long-term cyclability (500 cycles) for Li(+) ion storage. Moreover, cyclic voltammograms demonstrate the coexistence of alloying and dealloying processes and non-diffusion-controlled pseudocapacitive behavior, which collectively contribute to the high-rate Li(+) ion storage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Protein aggregation with poly(vinyl) alcohol surfactant reduces double emulsion-encapsulated mammalian cell-free expression

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Jin Woo; Durand, Grégory; Majumder, Sagardip

    2017-01-01

    Development of artificial cell models requires encapsulation of biomolecules within membrane-bound compartments. There have been limited studies of using mammalian cell-free expression (CFE) system as the ‘cytosol’ of artificial cells. We exploit glass capillary droplet microfluidics for the encapsulation of mammalian CFE within double emulsion templated vesicles. The complexity of the physicochemical properties of HeLa cell-free lysate poses a challenge compared with encapsulating simple buffer solutions. In particular, we discovered the formation of aggregates in double emulsion templated vesicles encapsulating mammalian HeLa CFE, but not with bacterial CFE. The aggregates did not arise from insolubility of the proteins made from CFE nor due to the interaction of mammalian CFE with the organic solvents in the middle phase of the double emulsions. We found that aggregation is dependent on the concentration of poly(vinyl) alcohol (PVA) surfactant, a critical double emulsion-stabilizing surfactant, and the lysate concentration in mammalian CFE. Despite vesicle instability and reduced protein expression, we demonstrate protein expression by encapsulating mammalian CFE system. Using mass spectrometry and Western blot, we identified and verified that actin is one of the proteins inside the mammalian CFE that aggregated with PVA surfactant. Our work establishes a baseline description of mammalian CFE system encapsulated in double emulsion templated vesicles as a platform for building artificial cells. PMID:28358875

  15. Shape Memory Composites Based on Electrospun Poly(vinyl alcohol) Fibers and a Thermoplastic Polyether Block Amide Elastomer.

    PubMed

    Shirole, Anuja; Sapkota, Janak; Foster, E Johan; Weder, Christoph

    2016-03-01

    The present study aimed at developing new thermally responsive shape-memory composites, that were fabricated by compacting mats of electrospun poly(vinyl alcohol) (PVA) fibers and sheets of a thermoplastic polyether block amide elastomer (PEBA). This design was based on the expectation that the combination of the rubber elasticity of the PEBA matrix and the mechanical switching exploitable through the reversible glass transition temperature (Tg) of the PVA filler could be combined to create materials that display shape memory characteristics as an emergent effect. Dynamic mechanical analyses (DMA) show that, upon introduction of 10-20% w/w PVA fibers, the room-temperature storage modulus (E') increased by a factor of 4-5 in comparison to the neat PEBA, and they reveal a stepwise reduction of E' around the Tg of PVA (85 °C). This transition could indeed be utilized to fix a temporary shape and recover the permanent shape. At low strain, the fixity was 66 ± 14% and the recovery was 98 ± 2%. Overall, the data validate a simple and practical strategy for the fabrication of shape memory composites that involves a melt compaction process and employs two commercially available polymers.

  16. Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range.

    PubMed

    Gallego, Sergi; Márquez, André; Méndez, David; Marini, Stephan; Beléndez, Augusto; Pascual, Inmaculada

    2009-08-01

    Photopolymers are appealing materials for the fabrication of diffractive optical elements (DOEs). We evaluate the possibilities of polyvinyl-alcohol/acrylamide-based photopolymers to store diffractive elements with low spatial frequencies. We record gratings with different spatial frequencies in the material and analyze the material behavior measuring the transmitted and the reflected orders as a function of exposition. We study two different compositions for the photopolymer, with and without a cross-linker. The values of diffraction efficiency achieved for both compositions make the material suitable to record DOEs with long spatial periods. Assuming a Fermi-Dirac-function-based profile, we fitted the diffracted intensities (up to the eighth order) to obtain the phase profile of the recorded gratings. This analysis shows that it is possible to achieve a phase shift larger than 2pi rad with steep edges in the periodic phase profile. In the case of the measurements in reflection, we have obtained information dealing with the surface profile, which show that it has a smooth shape with an extremely large phase-modulation depth.

  17. Improved thermostable polyvinyl alcohol electrospun nanofibers with entangled naringinase used in a novel mini-packed bed reactor.

    PubMed

    Nunes, Mário A P; Martins, Samuel; Rosa, M Emilia; Gois, Pedro M P; Fernandes, Pedro C B; Ribeiro, Maria H L

    2016-08-01

    Polyvinyl alcohol (PVA) electrospun nanofibers were produced using an electrospinning technique. Key parameters (e.g. collectors, distance from needle tip to collector, among others) that influence the structure and morphology of fibers were optimized. The naringinase entrapped in PVA nanofibers retained over 100% of its initial activity after 212h of operation, at 25°C. Chemical crosslinking with several boronic acids further increased the hydrolysis temperature (up to 85°C) and yielded nanofibers with thermal stability up to 121°C. A mini packed bed reactor (PBR) developed to establish the feasibility for continuous enzymatic operation, ran for 16days at 45°C. Highest naringenin biosynthesis was attained at a flow rate of 10mLh(-1). Highest volumetric (78molL(-1)h(-1)) and specific (26molh(-1)genzyme(-1)) productivities were attained at 30mLh(-1). The activity of NGase in electrospun nanofibers remained constant for almost 16days of operation at 10mLh(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of electron beam irradiation on the structural, thermal and optical properties of poly(vinyl alcohol) thin film

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Bahareth, Radiyah A.

    2013-04-01

    Poly(vinyl alcohol) (PVA) polymer was prepared using the casting technique. The obtained PVA thin films have been irradiated with electron beam doses ranging from 20 to 300 kGy. The resultant effect of electron beam irradiation on the structural properties of PVA has been investigated using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), while the thermal properties have been investigated using thermo-gravimetric analysis and differential thermal analysis (DTA). The onset temperature of decomposition T 0 and activation energy of thermal decomposition E a were calculated, results indicate that the PVA thin film decomposes in one main weight loss stage. Also, the electron beam irradiation in dose range 95-210 kGy led to a more compact structure of the PVA polymer, which resulted in an improvement in its thermal stability with an increase in the activation energy of thermal decomposition. The variation of transition temperatures with electron beam dose has been determined using DTA. The PVA thermograms were characterized by the appearance of an endothermic peak due to melting. In addition, the transmission of the PVA samples and any color changes were studied. The color intensity Δ E was greatly increased with increasing electron beam dose, and was accompanied by a significant increase in the blue color component.

  19. Influence of absorbed moisture on desizing of poly(vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment

    NASA Astrophysics Data System (ADS)

    Peng, Shujing; Liu, Xiulan; Sun, Jie; Gao, Zhiqiang; Yao, Lan; Qiu, Yiping

    2010-04-01

    This paper studies the influence of moisture absorption of cotton fabrics on the effectiveness of atmospheric pressure plasma jet (APPJ) on desizing of polyvinyl alcohol (PVA). Cotton fabrics with three different moisture regains (MR), namely 1.8%, 7.3%, and 28.4% corresponding to 10%, 65%, and 98% of relative humidity respectively, are treated for 16 s, 32 s, 48 s, and 64 s. X-ray photoelectron spectroscopy analysis indicates that the plasma treated PVA has higher oxygen concentration than the control. Mass loss results show that the fabric with the highest MR has the largest mass loss after 64 s plasma exposure. Solubility measurement reveals that the sample with the lowest MR has the highest desizing efficacy and the percent desizing ratio reaches 96% after 64 s exposure plus a 20 min hot wash, which is shown as clean as the unsized sample through scanning electron microscopy analysis. The yarn tensile strength test results show that APPJ has no negative effect on fabric tensile strength.

  20. Poly(vinyl alcohol) gel sublayers for reverse osmosis membranes. I. Insolubilization by acid-catalyzed dehydration

    SciTech Connect

    Immelman, E.; Sanderson, R.D.; Jacobs, E.P.; Van Reenan, A.J. . Inst. of Polymer Science)

    1993-11-10

    Both flat-sheet and tubular composite reverse osmosis (RO) membranes were prepared by depositing aqueous solutions of poly(vinyl alcohol) (PVA) and a dehydration catalyst on asymmetric poly(arylether sulfone) (PES) substrate membranes. The PVA coatings were insolubilized by heat treatment to create stable hydrophilic gel-layer membranes. The influence of variables such as PVA concentration, catalyst concentration, curing time, and curing temperature was investigated. It was shown that a simple manipulation of one or two variables could lead to membranes with widely differing salt retention and water permeability characteristics. The insolubilized PVA coatings were intended to serve as hydrophilic gel sublayers on which ultra thin salt-retention barriers could ultimately be formed by interfacial polycondensation. For this purpose, high-flux gel layers were required, whereas salt-retention capabilities were not regarded as important. However, the promising salt retentions obtained as 2 MPa (up to 85% NaCl retention and 92% MgSO[sub 4] retention) showed that some of these PES-PVA composite membranes could function as medium-retention, medium-flux RO membranes, even in the absence of an interfacially formed salt-retention barrier.