Gravells, P; Hoh, L; Canovas, D; Rennie, I G; Sisley, K; Bryant, H E
2011-01-01
Background: Uveal melanoma (UM) is the most common primary intraocular tumour of adults, frequently metastasising to the liver. Hepatic metastases are difficult to treat and are mainly unresponsive to chemotherapy. To investigate why UM are so chemo-resistant we explored the effect of interstrand cross-linking agents mitomycin C (MMC) and cisplatin in comparison with hydroxyurea (HU). Methods: Sensitivity to MMC, cisplatin and HU was tested in established UM cell lines using clonogenic assays. The response of UM to MMC was confirmed in MTT assays using short-term cultures of primary UM. The expression of cytochrome P450 reductase (CYP450R) was analysed by western blotting, and DNA cross-linking was assessed using COMET analysis supported by γ-H2AX foci formation. Results: Both established cell lines and primary cultures of UM were resistant to the cross-linking agent MMC (in each case P<0.001 in Student's t-test compared with controls). In two established UM cell lines, DNA cross-link damage was not induced by MMC (in both cases P<0.05 in Students's t-test compared with damage induced in controls). In all, 6 out of 6 UMs tested displayed reduced expression of the metabolising enzyme CYP450R and transient expression of CYP450R increased MMC sensitivity of UM. Conclusion: We suggest that reduced expression of CYP450R is responsible for MMC resistance of UM, through a lack of bioactivation, which can be reversed by complementing UM cell lines with CYP450R. PMID:21386838
Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro
2005-12-15
Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.
Diagnosis of Fanconi Anemia: Chromosomal Breakage Analysis
Oostra, Anneke B.; Nieuwint, Aggie W. M.; Joenje, Hans; de Winter, Johan P.
2012-01-01
Fanconi anemia (FA) is a rare inherited syndrome with diverse clinical symptoms including developmental defects, short stature, bone marrow failure, and a high risk of malignancies. Fifteen genetic subtypes have been distinguished so far. The mode of inheritance for all subtypes is autosomal recessive, except for FA-B, which is X-linked. Cells derived from FA patients are—by definition—hypersensitive to DNA cross-linking agents, such as mitomycin C, diepoxybutane, or cisplatinum, which becomes manifest as excessive growth inhibition, cell cycle arrest, and chromosomal breakage upon cellular exposure to these drugs. Here we provide a detailed laboratory protocol for the accurate assessment of the FA diagnosis as based on mitomycin C-induced chromosomal breakage analysis in whole-blood cultures. The method also enables a quantitative estimate of the degree of mosaicism in the lymphocyte compartment of the patient. PMID:22693659
Abdel-Halim, H I; Natarajan, A T; Mullenders, L H F; Boei, J J W A
2005-04-15
Chromatid interchanges induced by the DNA cross-linking agent mitomycin C (MMC) are over-represented in human chromosomes containing large heterochromatic regions. We found that nearly all exchange breakpoints of chromosome 9 are located within the paracentromeric heterochromatin and over 70% of exchanges involving chromosome 9 are between its homologues. We provide evidence that the required pairing of chromosome 9 heterochromatic regions occurs in G(0)/G(1) and S-phase cells as a result of an active cellular process initiated upon MMC treatment. By contrast, no pairing was observed for a euchromatic paracentromeric region of the equal-sized chromosome 8. The MMC-induced pairing of chromosome 9 heterochromatin is observed in a subset of cells; its percentage closely mimics the frequency of homologous interchanges found at metaphase. Moreover, the absence of pairing in cells derived from XPF patients correlates with an altered spectrum of MMC-induced exchanges. Together, the data suggest that the heterochromatin-specific pairing following MMC treatment reflects the initiation of DNA cross-link repair and the formation of exchanges.
Passagne, Isabelle; Evrard, Alexandre; Depeille, Philippe; Cuq, Pierre; Cupissol, Didier; Vian, Laurence
2006-03-01
Alkylating agents play an important role in the chemotherapy of malignant melanomas. The activity of alkylating agents depends on their capacity to form alkyl adducts with DNA, in some cases causing cross-linking of DNA strands. However, the use of these agents is limited by cellular resistance induced by the DNA repair enzyme O(6)-methylguanine DNA-methyltransferase (MGMT) which removes alkyl groups from alkylated DNA strands. To determine to what extent the expression of MGMT in melanoma cells induces resistance to alkylating agents, the human cell line CAL77 Mer- (i.e., MGMT deficient) were transfected with pcMGMT vector containing human MGMT cDNA. Several clones expressing MGMT at a high level were selected to determine their sensitivity to chemotherapeutic drugs. Melanoma-transfected cells were found to be significantly less sensitive to nitrosoureas (carmustine, fotemustine, streptozotocin) and temozolomide with an increase of IC(50) values between 3 and 14 when compared to parent cells. No difference in cell survival rates between MGMT-proficient and -deficient cells was observed for melphalan, chlorambucil, busulphan, thiotepa and cisplatin which preferentially induce N(7) guanine lesions. Surprisingly, MGMT overexpression increased the sensitivity of CAL77 cells to mitomycin C by approximately 10-fold. Treatment of clonal cell lines with buthionine-[S,R]-sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase which depletes cellular glutathione, completely reversed this unexpected increase in sensitivity to mitomycin C. This observation suggests that glutathione is involved in the sensitivity of MGMT-transfected cells to mitomycin C and may act synergistically with MGMT via an unknown mechanism.
Paz, Manuel M.; Ladwa, Sweta; Champeil, Elise; Liu, Yanfeng; Rockwell, Sara; Boamah, Ernest K.; Bargonetti, Jill; Callahan, John; Roach, John; Tomasz, Maria
2009-01-01
The antitumor antibiotic and cancer chemotherapeutic agent mitomycin C (MC) alkylates and cross-links DNA, forming six major MC-deoxyguanosine adducts of known structures in vitro and in vivo. Two of these adducts are derived from 2,7-diaminomitosene (2,7-DAM), a non-toxic reductive metabolite of MC formed in cells in situ. Several methods have been used for analysis of MC-DNA adducts in the past; however, a need exists for a safer, more comprehensive and direct assay of the six-adduct complex. Development of an assay, based on mass spectrometry is described. DNA from EMT6 mouse mammary tumor cells, Fanconi Anemia –A fibroblasts, normal human fibroblasts, and MCF-7 human breast cancer cells was isolated after MC or DMC treatment of the cells, digested to nucleosides and submitted to liquid chromatography electrospray-tandem mass spectrometry. Two fragments of each parent ion were monitored (“multiple reaction monitoring”; MRM). Identification and quantitative analysis was based on a standard mixture of six adducts, the preparation of which is described here in detail. The lower limit of detection of adducts is estimated as 0.25 picomol. Three initial applications of this method are reported: (i) differential kinetics of adduct repair in EMT6 cells; (ii) analysis of adducts in MC- or DMC-treated Fanconi Anemia cells; and (iii) comparison of the adducts generated by treatment of MCF-7 breast cancer cells with MC and DMC. Notable results are the following: repair removal of the DNA interstrand cross-link and of the two adducts of 2,7-DAM is relatively slow; both MC and DMC generate DNA interstrand cross-links in human fibroblasts, Fanconi Anemia-A fibroblasts and MCF-7 cells as well as EMT6 cells; DMC shows a stereochemical preference of linkage to the guanine-2-amino group opposite from that of MC. PMID:19053323
In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor.
van der Heijden, Michiel S; Brody, Jonathan R; Dezentje, David A; Gallmeier, Eike; Cunningham, Steven C; Swartz, Michael J; DeMarzo, Angelo M; Offerhaus, G Johan A; Isacoff, William H; Hruban, Ralph H; Kern, Scott E
2005-10-15
BRCA2, FANCC, and FANCG gene mutations are present in a subset of pancreatic cancer. Defects in these genes could lead to hypersensitivity to interstrand cross-linkers in vivo and a more optimal treatment of pancreatic cancer patients based on the genetic profile of the tumor. Two retrovirally complemented pancreatic cancer cell lines having defects in the Fanconi anemia pathway, PL11 (FANCC-mutated) and Hs766T (FANCG-mutated), as well as several parental pancreatic cancer cell lines with or without mutations in the Fanconi anemia/BRCA2 pathway, were assayed for in vitro and in vivo sensitivities to various chemotherapeutic agents. A distinct dichotomy of drug responses was observed. Fanconi anemia-defective cancer cells were hypersensitive to the cross-linking agents mitomycin C (MMC), cisplatin, chlorambucil, and melphalan but not to 5-fluorouracil, gemcitabine, doxorubicin, etoposide, vinblastine, or paclitaxel. Hypersensitivity to cross-linking agents was confirmed in vivo; FANCC-deficient xenografts of PL11 and BRCA2-deficient xenografts of CAPAN1 regressed on treatment with two different regimens of MMC whereas Fanconi anemia-proficient xenografts did not. The MMC response comprised cell cycle arrest, apoptosis, and necrosis. Xenografts of PL11 also regressed after a single dose of cyclophosphamide whereas xenografts of genetically complemented PL11(FANCC) did not. MMC or other cross-linking agents as a clinical therapy for pancreatic cancer patients with tumors harboring defects in the Fanconi anemia/BRCA2 pathway should be specifically investigated.
Paz, Manuel M; Ladwa, Sweta; Champeil, Elise; Liu, Yanfeng; Rockwell, Sara; Boamah, Ernest K; Bargonetti, Jill; Callahan, John; Roach, John; Tomasz, Maria
2008-12-01
The antitumor antibiotic and cancer chemotherapeutic agent mitomycin C (MC) alkylates and crosslinks DNA, forming six major MC-deoxyguanosine adducts of known structures in vitro and in vivo. Two of these adducts are derived from 2,7-diaminomitosene (2,7-DAM), a nontoxic reductive metabolite of MC formed in cells in situ. Several methods have been used for the analysis of MC-DNA adducts in the past; however, a need exists for a safer, more comprehensive and direct assay of the six-adduct complex. Development of an assay, based on mass spectrometry, is described. DNA from EMT6 mouse mammary tumor cells, Fanconi Anemia-A fibroblasts, normal human fibroblasts, and MCF-7 human breast cancer cells was isolated after MC or 10-decarbamoyl mitomycin C (DMC) treatment of the cells, digested to nucleosides, and submitted to liquid chromatography electrospray-tandem mass spectrometry. Two fragments of each parent ion were monitored ("multiple reaction monitoring"). Identification and quantitative analysis were based on a standard mixture of six adducts, the preparation of which is described here in detail. The lower limit of detection of adducts is estimated as 0.25 pmol. Three initial applications of this method are reported as follows: (i) differential kinetics of adduct repair in EMT6 cells, (ii) analysis of adducts in MC- or DMC-treated Fanconi Anemia cells, and (iii) comparison of the adducts generated by treatment of MCF-7 breast cancer cells with MC and DMC. Notable results are the following: Repair removal of the DNA interstrand cross-link and of the two adducts of 2,7-DAM is relatively slow; both MC and DMC generate DNA interstrand cross-links in human fibroblasts, Fanconi Anemia-A fibroblasts, and MCF-7 cells as well as EMT6 cells; and DMC shows a stereochemical preference of linkage to the guanine-2-amino group opposite from that of MC.
Balbi, C; Abelmoschi, M L; Roner, R; Giaretti, W; Parodi, S; Santi, L
1985-11-01
DNA damage induced in vivo by the cross-linking agent mitomycin C (MMC) was investigated with a new oscillating crucible viscometer. Viscosity was measured by lysing rat liver nuclei in an alkaline lysing solution (pH 12.5; 25 degrees C). In control samples the viscosity increased very slowly with time, reaching a plateau only after 10-12 h. The process was accelerated and the maximum viscosity was decreased by alkaline single-stranded breaks arising from methylation and subsequent depurination of DNA in vitro with dimethylsulphate (DMS). MMC, when given alone, had no evident effect on the time needed for reaching plateau viscosity but it induced a small increase in maximum viscosity. When MMC was given in association with DMS, the time of disentanglement remained unchanged (accelerated) but maximum viscosity was increased in a dose dependent way. We conclude that these data clearly confirm that the slow steady increase of the viscosity of control DNA with time reflects mainly the process of unwinding of the two strands. The speed of this process seems to depend only from the number of unwinding points in DNA (breaks).
cea-kil operon of the ColE1 plasmid.
Sabik, J F; Suit, J L; Luria, S E
1983-01-01
We isolated a series of Tn5 transposon insertion mutants and chemically induced mutants with mutations in the region of the ColE1 plasmid that includes the cea (colicin) and imm (immunity) genes. Bacterial cells harboring each of the mutant plasmids were tested for their response to the colicin-inducing agent mitomycin C. All insertion mutations within the cea gene failed to bring about cell killing after mitomycin C treatment. A cea- amber mutation exerted a polar effect on killing by mitomycin C. Two insertions beyond the cea gene but within or near the imm gene also prevented the lethal response to mitomycin C. These findings suggest the presence in the ColE1 plasmid of an operon containing the cea and kil genes whose product is needed for mitomycin C-induced lethality. Bacteria carrying ColE1 plasmids with Tn5 inserted within the cea gene produced serologically cross-reacting fragments of the colicin E1 molecule, the lengths of which were proportional to the distance between the insertion and the promoter end of the cea gene. Images PMID:6298187
Mitomycin C binding to poly[d(G-m5C)].
Portugal, J; Sánchez-Baeza, F J
1995-01-01
Poly[d(G-m5C)] was modified by reductively activated mitomycin C, an anti-tumour drug, under buffer conditions which are known to favour either the B or the Z conformations of DNA. C.d. and 31P-n.m.r. were used to characterize the poly[d(G-m5C)]-mitomycin cross-linked complexes, as well as the effects on the equilibrium between the B and Z forms of the polynucleotide. Mitomycin C appears to inhibit the B-->Z transition, even in the presence of 3 mM MgCl2, while the Z-form of poly[d(G-m5C)] does not interact significantly with the drug under bifunctionally activating conditions; thus no reversion from the Z-form to the B-form of the polynucleotide can be observed under the salt conditions which are required for the Z-form to exist. PMID:7864808
Tam, Annie S; Chu, Jeffrey S C; Rose, Ann M
2015-11-12
Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage. Here, we have characterized the mutational spectrum of the commonly used DNA interstrand crosslinking agent mitomycin C (MMC). Using a combination of genetic mapping, whole genome sequencing, and genomic analysis, we have identified and confirmed several genomic lesions linked to MMC-induced DNA damage in Caenorhabditis elegans. Our data indicate that MMC predominantly causes deletions, with a 5'-CpG-3' sequence context prevalent in the deleted regions of DNA. Furthermore, we identified microhomology flanking the deletion junctions, indicative of DNA repair via nonhomologous end joining. Based on these results, we propose a general repair mechanism that is likely to be involved in the biological response to this highly toxic agent. In conclusion, the systematic study we have described provides insight into potential sequence specificity of MMC with DNA. Copyright © 2016 Tam et al.
Fowler, Paul; Whitwell, James; Jeffrey, Laura; Young, Jamie; Smith, Katie; Kirkland, David
2010-10-29
The following genotoxic chemicals were tested in the in vitro micronucleus assay, at Covance Laboratories, Harrogate, UK in the Chinese hamster lung cell line CHL. Etoposide (a topoisomerase inhibitor), colchicine (an aneugen), mitomycin C (a DNA cross linking agent) and cyclophosphamide (an alkylating agent requiring metabolic activation) were treated with and without cytokinesis block (by addition of cytochalasin B). This work formed part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 for the in vitro micronucleus test. The toxicity measures used, detecting both cytostasis and cell death, were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index or cytokinesis blocked proliferation index in the presence of cytokinesis block. All of the chemicals tested gave significant increases in the percentage of micronucleated cells with and without cytokinesis block at concentrations giving approximately 60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcomes from this series of tests support the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Jen-Chung; Department of Nursing, Yuanpei University, HsinChu, Taiwan; Graduate Institute of Technology Law, National Chiao Tung University, Taiwan
2011-09-15
Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), has been reported to suppress the proliferation of a wide variety of tumor cells. Rad51 is a key protein in the homologous recombination (HR) pathway of DNA double-strand break repair, and HR represents a novel target for cancer therapy. A high expression of Rad51 has been reported in chemo- or radio-resistant carcinomas. Therefore, in the current study, we will examine whether curcumin could enhance the effects of mitomycin C (MMC), a DNA interstrand cross-linking agent, to induce cytotoxicity by decreasing Rad51 expression. Exposure of two human non-small lung cancer (NSCLC)more » cell lines (A549 and H1975) to curcumin could suppress MMC-induced MKK1/2-ERK1/2 signal activation and Rad51 protein expression. Enhancement of ERK1/2 activation by constitutively active MKK1/2 (MKK1/2-CA) increased Rad51 protein levels in curcumin and MMC co-treated human lung cells. Moreover, the synergistic cytotoxic effect induced by curcumin combined with MMC was decreased by MKK1-CA-mediated enhancement of ERK1/2 activation by a significant degree. In contrast, MKK1/2 inhibitor, U0126 was shown to augment the cytotoxicity of curcumin and MMC through downregulation of ERK1/2 activation and Rad51 expression. Depletion of endogenous Rad51 expression by siRad51 RNA transfection significantly enhanced MMC and/or curcumin induced cell death and cell growth inhibition. In contrast, an overexpression of Rad51 protected lung cancer cells from synergistic cytotoxic effects induced by curcumin and MMC. We concluded that Rad51 inhibition may be an additional action mechanism for enhancing the chemosensitization of MMC by curcumin in NSCLC. - Highlights: > Curcumin downregulates MKK-ERK-mediated Rad51 expression. > Curcumin enhances mitomycin C-induced cytotoxicity. > Rad51 protects cells from cytotoxic effects induced by curcumin and mitomycin C. > Rad51 inhibition enhances the chemosensitization of mitomycin C by curcumin.« less
Cytokine overproduction and crosslinker hypersensitivity are unlinked in Fanconi anemia macrophages.
Garbati, Michael R; Hays, Laura E; Rathbun, R Keaney; Jillette, Nathaniel; Chin, Kathy; Al-Dhalimy, Muhsen; Agarwal, Anupriya; Newell, Amy E Hanlon; Olson, Susan B; Bagby, Grover C
2016-03-01
The Fanconi anemia proteins participate in a canonical pathway that repairs cross-linking agent-induced DNA damage. Cells with inactivated Fanconi anemia genes are universally hypersensitive to such agents. Fanconi anemia-deficient hematopoietic stem cells are also hypersensitive to inflammatory cytokines, and, as importantly, Fanconi anemia macrophages overproduce such cytokines in response to TLR4 and TLR7/8 agonists. We questioned whether TLR-induced DNA damage is the primary cause of aberrantly regulated cytokine production in Fanconi anemia macrophages by quantifying TLR agonist-induced TNF-α production, DNA strand breaks, crosslinker-induced chromosomal breakage, and Fanconi anemia core complex function in Fanconi anemia complementation group C-deficient human and murine macrophages. Although both M1 and M2 polarized Fanconi anemia cells were predictably hypersensitive to mitomycin C, only M1 macrophages overproduced TNF-α in response to TLR-activating signals. DNA damaging agents alone did not induce TNF-α production in the absence of TLR agonists in wild-type or Fanconi anemia macrophages, and mitomycin C did not enhance TLR responses in either normal or Fanconi anemia cells. TLR4 and TLR7/8 activation induced cytokine overproduction in Fanconi anemia macrophages. Also, although TLR4 activation was associated with induced double strand breaks, TLR7/8 activation was not. That DNA strand breaks and chromosome breaks are neither necessary nor sufficient to account for the overproduction of inflammatory cytokines by Fanconi anemia cells suggests that noncanonical anti-inflammatory functions of Fanconi anemia complementation group C contribute to the aberrant macrophage phenotype and suggests that suppression of macrophage/TLR hyperreactivity might prevent cytokine-induced stem cell attrition in Fanconi anemia. © Society for Leukocyte Biology.
Ichien, K; Yamamoto, T; Kitazawa, Y; Oguri, A; Ando, H; Kondo, Y
1997-01-01
To determine whether a new, reversible thermosetting gel enhances mitomycin C transfer to target ocular tissues in the rabbit eye. A 0.1 ml solution of mitomycin C containing 0.22 microgram, 2.9 micrograms, or 28 micrograms of the agent dissolved in a reversible thermosetting gel consisting of methylcellulose, citric acid, and polyethylene glycol was injected subconjunctivally in 30 New Zealand albino rabbits. Scleral and conjunctival tissues were excised at 0.5, 1, 2, 4, or 24 hours after the injection and mitomycin C concentrations in these tissues were determined by high performance liquid chromatography. The concentration over time was approximated to a single exponential curve, and initial mitomycin C concentrations, time constants, and half life values were determined. Finally, the areas under the curves (AUCs) between 0.5 and 24 hours were calculated. The mitomycin C concentrations in the target tissues were dose dependent and decreased rapidly over 24 hours. Both the initial mitomycin C concentrations as well as AUCs in these eyes treated with mitomycin C, dissolved in a reversible thermosetting gel, were higher than those in eyes treated similarly in a previous study in which the gel was not used. Applied subconjunctivally in the rabbit eye, mitomycin C dissolved in the reversible thermosetting gel enhanced transfer of the agent to the sclera and the conjunctiva.
Prevention of Intraabdominal Adhesions: An Experimental Study Using Mitomycin-C and 4% Icodextrin.
Urkan, Murat; Özerhan, İsmail Hakkı; Ünlü, Aytekin; Can, Mehmet Fatih; Öztürk, Erkan; Günal, Armağan; Yağcı, Gökhan
2017-01-01
Intraabdominal adhesions remain a significant cause of morbidity and mortality. Moreover, intraabdominal adhesions can develop in more than 50% of abdominal operations. We compared the anti-adhesive effects of two different agents on postoperative adhesion formation in a cecal abrasion model. Experimental animal study. Forty Wistar albino type female rats were anesthetized and underwent laparotomy. Study groups comprised Sham, Control, Mitomycin-C, 4% Icodextrin, and Mitomycin-C +4% Icodextrin groups. Macroscopic and histopathological evaluations of adhesions were performed. The frequencies of moderate and severe adhesions were significantly higher in the control group than the other groups. The mitomycin-C and Mitomycin-C +4% Icodextrin groups were associated with significantly lower adhesion scores compared to the control group and 4% Icodextrin group scores (p=0.002 and p=0.008, respectively). The adhesion scores of the Mitomycin-C group were also significantly lower than those of the 4% Icodextrin group (p=0.008). Despite its potential for bone marrow toxicity, Mitomycin-C seems to effectively prevent adhesions. Further studies that prove an acceptable safety profile relating to this promising anti-adhesive agent are required before moving into clinical trials.
Ichien, K.; Yamamoto, T.; Kitazawa, Y.; Oguri, A.; Ando, H.; Kondo, Y.
1997-01-01
AIMS—To determine whether a new, reversible thermosetting gel enhances mitomycin C transfer to target ocular tissues in the rabbit eye. METHODS—A 0.1 ml solution of mitomycin C containing 0.22 µg, 2.9 µg, or 28 µg of the agent dissolved in a reversible thermosetting gel consisting of methylcellulose, citric acid, and polyethylene glycol was injected subconjunctivally in 30 New Zealand albino rabbits. Scleral and conjunctival tissues were excised at 0.5, 1, 2, 4, or 24 hours after the injection and mitomycin C concentrations in these tissues were determined by high performance liquid chromatography. The concentration over time was approximated to a single exponential curve, and initial mitomycin C concentrations, time constants, and half life values were determined. Finally, the areas under the curves (AUCs) between 0.5 and 24 hours were calculated. RESULTS—The mitomycin C concentrations in the target tissues were dose dependent and decreased rapidly over 24 hours. Both the initial mitomycin C concentrations as well as AUCs in these eyes treated with mitomycin C, dissolved in a reversible thermosetting gel, were higher than those in eyes treated similarly in a previous study in which the gel was not used. CONCLUSION—Applied subconjunctivally in the rabbit eye, mitomycin C dissolved in the reversible thermosetting gel enhanced transfer of the agent to the sclera and the conjunctiva. PMID:9135413
Engin, Kaya N; Erdem-Kuruca, Serap; Akgün-Dar, Kadriye; Çetin, Beyza; Karadenizli, Sabriye; Gürel, Ebru; Yemisci, Bülent; Bilgiç, Sema; Arslan, Mehmet
2015-01-01
We aimed to evaluate the influence of current antifibrotic agents as well as the possible results obtained by combining these agents. This study included α-tocopherol, a strong antifibrotic and an efficient neuromediator of pathways used by other agents. Mitochondrial Bcl-2, Bax, cytochrome c and cytoplasmic caspase-3 expression, as well as toxic effect patterns, mitosis and cellular reactions due to α-tocopherol alone or combined with paclitaxel, mitomycin C and 5-flurouracil (5-FU), was studied in series obtained from human endothelial and primary Tenon's fibroblast cell cultures. The strongest apoptotic effect in both cell groups belonged to paclitaxel, followed by mitomycin C, and despite the overall suppressive effect of the α-tocopherol combination, mitomycin C increased its efficiency on the endothelial cells. The apoptosis/necrosis ratio was highest in α-tocopherol and lowest in paclitaxel, with α-tocopherol generally decreasing necrosis. Bax was observed at a high level with mitomycin C. Cytotoxicity was the highest with paclitaxel, and the caspase-3 reaction was markedly higher with mitomycin C in both cell types. In the α-tocopherol and 5-FU slides, mitosis and a layered formation were observed. The addition of α-tocopherol reduced the cytotoxicity of all antifibrotic agents in both cell series by decreasing the cell numbers, leading to necrosis. Alone or in combination, the use of α-tocopherol and 5-FU is safer than other agents. By suppressing the cytotoxic effects of other antifibrotic agents, α-tocopherol is a promising drug for improving the effects of antifibrotics in many aspects of medicine. In addition, it has the potential to play a role beyond its antioxidant and antifibrotic activity in ocular surgery.
Investigation of FANCA gene in Fanconi anaemia patients in Iran
Saffar Moghadam, Ali Akbar; Mahjoubi, Frouzandeh; Reisi, Nahid; Vosough, Parvaneh
2016-01-01
Background & objectives: Fanconi anaemia (FA) is a syndrome with a predisposition to bone marrow failure, congenital anomalies and malignancies. It is characterized by cellular hypersensitivity to cross-linking agents such as mitomycin C (MMC). In the present study, a new approach was selected to investigate FANCA (Fanconi anaemia complementation group A) gene in patients clinically diagnosed with cellular hypersensitivity to DNA cross-linking agent MMC. Methods: Chromosomal breakage analysis was performed to prove the diagnosis of Fanconi anaemia in 318 families. Of these, 70 families had a positive result. Forty families agreed to molecular genetic testing. In total, there were 27 patients with unknown complementary types. Genomic DNA was extracted and total RNA was isolated from fresh whole blood of the patients. The first-strand cDNA was synthesized and the cDNA of each patient was then tested with 21 pairs of overlapping primers. High resolution melting curve analysis was used to screen FANCA, and LinReg software version 1.7 was utilized for analysis of expression. Results: In total, six sequence alterations were identified, which included two stop codons, two frames-shift mutations, one large deletion and one amino acid exchange. FANCA expression was downregulated in patients who had sequence alterations. Interpretation & conclusions: The results of the present study show that high resolution melting (HRM) curve analysis may be useful in the detection of sequence alteration. It is simpler and more costeffective than the multiplex ligation-dependent probe amplification (MLPA) procedure. PMID:27121516
Investigation of FANCA gene in Fanconi anaemia patients in Iran.
Moghadam, Ali Akbar Saffar; Mahjoubi, Frouzandeh; Reisi, Nahid; Vosough, Parvaneh
2016-02-01
Fanconi anaemia (FA) is a syndrome with a predisposition to bone marrow failure, congenital anomalies and malignancies. It is characterized by cellular hypersensitivity to cross-linking agents such as mitomycin C (MMC). In the present study, a new approach was selected to investigate FANCA (Fanconi anaemia complementation group A) gene in patients clinically diagnosed with cellular hypersensitivity to DNA cross-linking agent MMC. Chromosomal breakage analysis was performed to prove the diagnosis of Fanconi anaemia in 318 families. Of these, 70 families had a positive result. Forty families agreed to molecular genetic testing. In total, there were 27 patients with unknown complementary types. Genomic DNA was extracted and total RNA was isolated from fresh whole blood of the patients. The first-strand cDNA was synthesized and the cDNA of each patient was then tested with 21 pairs of overlapping primers. High resolution melting curve analysis was used to screen FANCA, and LinReg software version 1.7 was utilized for analysis of expression. In total, six sequence alterations were identified, which included two stop codons, two frames-shift mutations, one large deletion and one amino acid exchange. FANCA expression was downregulated in patients who had sequence alterations. The results of the present study show that high resolution melting (HRM) curve analysis may be useful in the detection of sequence alteration. It is simpler and more cost-effective than the multiplex ligation-dependent probe amplification (MLPA) procedure.
Evolving role of mitomycin-C laryngology
NASA Astrophysics Data System (ADS)
Richards, Steven V.; Garrett, C. Gaelyn
2001-05-01
Topical mitomycin-C, a chemotherapeutic agent and a fibroblast inhibitor, has been successfully used in larynx, primarily to treat stenosis. Subglottic, tracheal, and anterior glottic stenosis have all shown promising results in a canine model. Less favorable results have been obtained when topical mitomycin-C is used on the vocal folds following surgical excision of mucosa. In the vocal fold studies, laryngeal videostroboscopy revealed diminished mucosal wave vibration in the vocal folds treated with mitomycin-C as well as a more atrophic appearance to the vibratory surface. The tissue treated with mitomycin-C showed fewer fibroblasts and less collagen. However, inflammatory infiltrate was not significantly different between the treated and untreated tissue. These results are consistent with the known suppression of fibroblast proliferation by mitomycin-C. In contrast to the positive effects of mitomycin-C on stenosis, the observed decrease in the healing response in the vocal fold had negative consequences on vocal fold vibratory pattern.
Weng, Shao-Hsing; Tsai, Min-Shao; Chiu, Yu-Fan; Kuo, Ya-Hsun; Chen, Huang-Jen; Lin, Yun-Wei
2012-03-01
Curcumin (diferuloylmethane), a phenolic compound obtained from the rhizome of Curcuma longa, has been found to inhibit cell proliferation in various human cancer cell lines, including non-small cell lung cancer (NSCLC). Thymidine phosphorylase (TP) is considered an attractive therapeutic target, because increased TP expression can suppress cancer cell death induced by DNA-damaging agents. Mitomycin C (MMC), a chemotherapeutic agent used to treat NSCLC, inhibits tumour growth through DNA cross-linking and breaking. Whether MMC can affect TP expression in NSCLC is unknown. Therefore, in this study, we suggested that curcumin enhances the effects of MMC-mediated cytotoxicity by decreasing TP expression and ERK1/2 activation. Exposure of human NSCLC cell lines H1975 and H1650 to curcumin decreased MMC-elicited phosphorylated MKK1/2-ERK1/2 protein levels. Moreover, curcumin significantly decreased MMC-induced TP protein levels by increasing TP mRNA and protein instability. Enhancement of ERK1/2 activation by constitutively active MKK1/2 (MKK1/2-CA) increased TP protein levels and cell viability in curcumin- and MMC-co-treated cells. In contrast, U0126, a MKK1/2 inhibitor, augmented the cytotoxic effect and the down-regulation of TP by curcumin and MMC. Specific inhibition of TP by siRNA significantly enhanced MMC-induced cell death and cell growth inhibition. Our results suggest that suppression of TP expression or administration of curcumin along with MMC may be a novel lung cancer therapeutic modality in the future. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.
Dependence of the cytotoxicity of DNA-damaging agents on the mismatch repair status of human cells.
Papouli, Efterpi; Cejka, Petr; Jiricny, Josef
2004-05-15
Mismatch repair (MMR) deficiency was reported to increase resistance of mammalian cells to killing by several genotoxic substances. However, although MMR-deficient cells are approximately 100-fold more resistant to killing by S(N)1 type methylating agents than MMR-proficient controls, the sensitivity differences reported for the other agents were typically <2-fold. To test whether these differences were linked to factors other than MMR status, we studied the cytotoxicities of mitomycin C, chloroethylcyclohexyl nitrosourea, melphalan, psoralen-UVA, etoposide, camptothecin, ionizing radiation, and cis-dichlorodiaminoplatinum (cisplatin) in a strictly isogenic system. We now report that MMR deficiency reproducibly desensitized cells solely to cisplatin.
Fancb deficiency impairs hematopoietic stem cell function
Du, Wei; Amarachintha, Surya; Erden, Ozlem; Wilson, Andrew; Meetei, Amom Ruhikanta; Andreassen, Paul R.; Namekawa, Satoshi H.; Pang, Qishen
2015-01-01
Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, variable congenital malformations and a predisposition to malignancies. FANCB (also known as FAAP95), is the only X-linked FA gene discovered thus far. In the present study, we investigated hematopoiesis in adult Fancb deficient (Fancb−/y) mice and found that Fancb−/y mice have decreased hematopoietic stem cell (HSC) quiescence accompanied by reduced progenitor activity in vitro and reduced repopulating capacity in vivo. Like other FA mouse models previously reported, the hematopoietic system of Fancb−/y mice is hypersensitive to DNA cross-linking agent mitomycin C (MMC), which induces bone marrow failure in Fancb−/y mice. Furthermore, Fancb−/y BM exhibits slower recovery kinetics and less tolerance to myelotoxic stress induced by 5-fluorouracil than wild-type littermates. RNA-seq analysis reveals altered expression of genes involved in HSC function and cell cycle regulation in Fancb−/y HSC and progenitor cells. Thus, this Fancb−/y mouse model provides a novel approach for studying the critical role of the FA pathway not only in germ cell development but also in the maintenance of HSC function. PMID:26658157
Uses and complications of mitomycin C in ophthalmology.
Mearza, Ali A; Aslanides, Ioannis M
2007-01-01
Mitomycin C is a chemotherapeutic agent that acts by inhibiting DNA synthesis. Its use and application in ophthalmology has been increasing in recent years because of its modulatory effects on wound healing. Current applications include pterygium surgery, glaucoma surgery, corneal refractive surgery, cicatricial eye disease, conjunctival neoplasia and allergic eye disease. Although it has been used successfully in these conditions, it has also been associated with significant complications. This article reviews the current trends and uses of mitomycin C in the eye and its reported complications.
Mitomycin C and decarbamoyl mitomycin C induce p53-independent p21WAF1/CIP1 activation
Cheng, Shu-Yuan; Seo, Jiwon; Huang, Bik Tzu; Napolitano, Tanya; Champeil, Elise
2016-01-01
Mitomycin C (MC), a commonly used anticancer drug, induces DNA damage via DNA alkylation. Decarbamoyl mitomycin C (DMC), another mitomycin lacking the carbamate at C10, generates similar lesions as MC. Interstrand cross-links (ICLs) are believed to be the lesions primarily responsible for the cytotoxicity of MC and DMC. The major ICL generated by MC (α-ICL) has a trans stereochemistry at the guanine-drug linkage whereas the major ICL from DMC (β-ICL) has the opposite, cis, stereochemistry. In addition, DMC can provoke strong p53-independent cell death. Our hypothesis is that the stereochemistry of the major unique β-ICL generated by DMC is responsible for this p53-independent cell death signaling. p53 gene is inactively mutated in more than half of human cancers. p21WAF1/CIP1 known as a major effector of p53 is involved in p53-dependent and -independent control of cell proliferation and death. This study revealed the role of p21WAF1/CIP1 on MC and DMC triggered cell damage. MCF-7 (p53-proficient) and K562 (p53-deficient) cells were used. Cell cycle distributions were shifted to the G1/S phase in MCF-7 treated with MC and DMC, but were shifted to the S phase in K562. p21WAF1/CIP1 activation was observed in both cells treated with MC and DMC, and DMC triggered more significant activation. Knocking down p53 in MCF-7 did not attenuate MC and DMC induced p21WAF1/CIP1 activation. The α-ICL itself was enough to cause p21WAF1/CIP1 activation. PMID:27666201
Jamieson, D; Tung, A T Y; Knox, R J; Boddy, A V
2006-01-01
NRH:Quinone Oxidoreductase 2 (NQO2) has been described as having no enzymatic activity with nicotinamide adenine dinucleotide (NADH) or NADPH as electron donating cosubstrates. Mitomycin C (MMC) is both a substrate for and a mechanistic inhibitor of the NQO2 homologue NQO1. NRH:quinone oxidoreductase 2 catalysed the reduction of MMC at pH 5.8 with NADH as a co-factor. This reaction results in species that inhibit the NQO2-mediated metabolism of CB1954. In addition, MMC caused an increase in DNA cross-links in a cell line transfected to overexpress NQO2 to an extent comparable to that observed with an isogenic NQO1-expressing cell line. These data indicate that NQO2 may contribute to the metabolism of MMC to cytotoxic species. PMID:17031400
Liao, Pei-Hu; Lin, Ruey-Hseng; Yang, Ming-Ling; Li, Yi-Ching; Kuan, Yu-Hsiang
2012-03-01
Chinese hamster ovary (CHO) cells, its lung fibroblasts (V79), and human lymphocytes are routinely used in in vitro cytogenetic assays, which include micronuclei (MN), sister chromatid exchange (SCE), and chromosome aberration (CA) assays. Mitomycin C (MMC), a DNA cross-link alkylating agent, is both an anticancer medicine and a carcinogen. To study the differential representative values of cell types in MMC-treated cytogenetic assays and its upstream factor, cysteine aspartic acid-specific protease (caspase)-3. Among the chosen cell types, lymphocytes expressed the highest sensitivity in all three MMC-induced assays, whereas CHO and V79 showed varied sensitivity in different assays. In MN assay, the sensitivity of CHO is higher than or equal to V79; in SCE assay, the sensitivity of CHO is the same as V79; and in CA assay, the sensitivity of CHO is higher than V79. In-depth analysis of CA revealed that in chromatid breaks and dicentrics formation, lymphocyte was the most sensitive of all and CHO was more sensitive than V79; and in acentrics and interchanges formation, lymphocyte was much more sensitive than the others. Furthermore, we found caspase-3 activity plays an important role in MMC-induced cytogenetic assays, with MMC-induced caspase-3 activity resulting in more sensitivity in lymphocytes than in CHO and V79. Based on these findings, lymphocyte will make a suitable predictive or representative control reference in cytogenetic assays and caspase-3 activity with its high specificity, positive predictive value, and sensitivity.
Cunneen, Thomas S; Conway, R Max; Madigan, Michele C
2009-04-01
To investigate the effects of mitomycin C and the histone deacetylase inhibitors sodium butyrate and trichostatin on the viability and growth of conjunctival melanoma cell lines and Tenon capsule fibroblasts. Cells were treated with a range of concentrations of sodium butyrate, trichostatin, and mitomycin C. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) assays were performed 48 hours after treatment. Treated cells were stained with acridine orange/ethidium bromide to assess for cell death. Cell-cycle changes in histone deacetylase inhibitor-treated melanoma cells were quantified using flow cytometry. All agents induced dose-dependent cell death in the melanoma cell lines; however, sodium butyrate and trichostatin were relatively nontoxic to Tenon capsule fibroblasts. Acridine orange/ethidium bromide staining indicated that sodium butyrate and trichostatin induced apoptotic cell death. At low doses, sodium butyrate and trichostatin induced a G1 cell-cycle block in the melanoma cells. Sodium butyrate and trichostatin induced cell death in melanoma cells, comparable with mitomycin C, with minimal effect on Tenon capsule fibroblasts. In addition, they induced a G1 cell-cycle block. These findings support the need for further investigation into the in vivo efficacy of these agents.
Mitomycin-C: 'a ray of hope' in refractory corrosive esophageal strictures.
Nagaich, N; Nijhawan, S; Katiyar, P; Sharma, R; Rathore, M
2014-04-01
Increasingly frequent dilation may become a self-defeating cycle in refractory stricture as recurrent trauma enhance, scar formation, and ultimately recurrence and potential worsening of the stricture. In 12 patients of caustic induced esophageal stricture, who failed to respond despite rigorous dilatation regimen for more than one year, a trial of topical mitomycin-C application to improve dilatation results was undertaken, considering the recently reported efficacy and safety of this agent. Mitomycin-C was applied for 2-3 minutes at the strictured esophageal segment after dilation with wire-guided Savary-Gilliard dilator. Patient was kept nil by mouth for 2-3 hours. After 4-6 sessions of mitomycin-C treatment, resolution of symptoms and significant improvement in dysphagia score and periodic dilatation index was seen in all 12 patients. Mitomycin-C topical application may be a useful strategy in refractory corrosive esophageal strictures and salvage patients from surgery. © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.
β2-spectrin depletion impairs DNA damage repair
Horikoshi, Nobuo; Pandita, Raj K.; Mujoo, Kalpana; Hambarde, Shashank; Sharma, Dharmendra; Mattoo, Abid R.; Chakraborty, Sharmistha; Charaka, Vijaya; Hunt, Clayton R.; Pandita, Tej K.
2016-01-01
β2-Spectrin (β2SP/SPTBN1, gene SPTBN1) is a key TGF-β/SMAD3/4 adaptor and transcriptional cofactor that regulates TGF-β signaling and can contribute to liver cancer development. Here we report that cells deficient in β2-Spectrin (β2SP) are moderately sensitive to ionizing radiation (IR) and extremely sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with IR or ICL agents (formaldehyde, cisplatin, camptothecin, mitomycin), β2SP deficient cells displayed a higher frequency of cells with delayed γ-H2AX removal and a higher frequency of residual chromosome aberrations. Following hydroxyurea (HU)-induced replication stress, β2SP-deficient cells displayed delayed disappearance of γ-H2AX foci along with defective repair factor recruitment (MRE11, CtIP, RAD51, RPA, and FANCD2) as well as defective restart of stalled replication forks. Repair factor recruitment is a prerequisite for initiation of DNA damage repair by the homologous recombination (HR) pathway, which was also defective in β2SP deficient cells. We propose that β2SP is required for maintaining genomic stability following replication fork stalling, whether induced by either ICL damage or replicative stress, by facilitating fork regression as well as DNA damage repair by homologous recombination. PMID:27248179
Satoh, T; Yamamoto, K; Miura, K F; Sofuni, T
2004-01-01
A human diploid lung fibroblast cell strain, TIG-7, has a heteromorphic chromosome 15 with an extra short arm carrying a homogeneously staining region (15p+hsr). We demonstrated previously that the 15p+hsr consists of an inactive and G+C-rich rDNA cluster characterized by fluorescence in situ hybridization (FISH) and various chromosome banding techniques. Thus, it was suggested that the region could contain highly methylated DNA. To observe methylation status on the target region directly under the microscope, we used a demethylating agent, 5-azacytidine (5-azaC), to induce decondensation of the chromatin containing methylated DNA. At 24 h after treatment with 0.5 microM 5-azaC, marked decondensation of the 15p+hsr was observed in almost all of the metaphases. Furthermore, we observed micronuclei, which were equivalent to the rDNA of the 15p+hsr demonstrated by FISH in the same preparation. In contrast, the DNA cross-linking agent mitomycin C (MMC) preferentially induced 15p+hsr-negative micronuclei. These findings indicated that chromatin decondensation and subsequent DNA strand breakage induced by the demethylating effect of 5-azaC led specifically to 15p+hsr-positive micronuclei. Copyright 2003 S. Karger AG, Basel
van de Vrugt, H J; Cheng, N C; de Vries, Y; Rooimans, M A; de Groot, J; Scheper, R J; Zhi, Y; Hoatlin, M E; Joenje, H; Arwert, F
2000-04-01
Fanconi anemia (FA) is an autosomal recessive disorder in humans characterized by bone marrow failure, cancer predisposition, and cellular hypersensitivity to cross-linking agents such as mitomycin C and diepoxybutane. FA genes display a caretaker function essential for maintenance of genomic integrity. We have cloned the murine homolog of FANCA, the gene mutated in the major FA complementation group (FA-A). The full-length mouse Fanca cDNA consists of 4503 bp and encodes a protein with a predicted molecular weight of 161 kDa. The deduced Fanca mouse protein shares 81% amino acid sequence similarity and 66% identity with the human protein. The nuclear localization signal and partial leucine zipper consensus motifs found in the human FANCA protein were also present in the murine homolog. In spite of the species difference, the murine Fanca cDNA was capable of correcting the cross-linker sensitive phenotype of human FA-A cells, suggesting functional conservation. Based on Northern as well as Western blots, Fanca was mainly expressed in lymphoid tissues, testis, and ovary. This expression pattern correlates with some of the clinical symptoms observed in FA patients. The availability of the murine Fanca cDNA now allows the gene to be studied in experimental mouse models.
Mokdad Bzeouich, Imen; Mustapha, Nadia; Maatouk, Mouna; Ghedira, Kamel; Ghoul, Mohamed; Chekir-Ghedira, Leila
2016-12-01
Mitomycin C is one of the most effective chemotherapeutic drugs against various solid tumors. However, despite its wide spectrum of clinical benefits, this agent is capable of inducing various types of genotoxicity. In this study, we investigated the effect of esculin and its oligomer fractions (E1, E2 and E3) against mitomycin C induced genotoxicity in liver and kidney cells isolated from Balb/C mice using the comet assay. Esculin and its oligomer fractions were not genotoxic at the tested doses (20 mg/kg and 40 mg/kg b.w). A significant decrease in DNA damages was observed, suggesting a protective role of esculin and its oligomer fractions against the genotoxicity induced by mitomycin C on liver and kidney cells. Moreover, esculin and its oligomer fractions did not induce an increase of malondialdehyde levels. Copyright © 2016 Elsevier Inc. All rights reserved.
Cross-linked polyvinyl alcohol and method of making same
NASA Technical Reports Server (NTRS)
Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)
1981-01-01
A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.
Fang, Yi-Ping; Hu, Pei-Yu; Huang, Yaw-Bin
2018-01-01
Introduction Mitomycin C is an anticancer antibiotic agent that has the potential for broad-spectrum use against several cancers, including mammary cancers. Because its half-life is 17 min after a 30 mg intravenous bolus administration, the suitability of mitomycin C for wide use in the clinical setting is limited. Based on tumor pathophysiology, pH-sensitive liposomes could provide better tumor-targeted effects. The aim of this study was to investigate the possibility of diminishing the side effect of mitomycin C by using pH-sensitive liposomes. Materials and methods pH-sensitive liposomes was employed to deliver mitomycin C and evaluate the characterization, release behaviors, cytotoxicity, in vivo pharmacokinetics and biochemical assay. Results The results demonstrated that mitomycin C-loaded pH-sensitive liposomes had a particle diameter of 144.5±2.8 nm and an entrapment efficiency of 66.5%. The in vitro release study showed that the pH-sensitive liposome release percentages at pH 7.4 and pH 5.5 were approximately 47% and 93%, respectively. The cell viability of MCF-7 cells showed that both the solution and liposome group exhibited a concentration-dependent effect on cell viability. The MCF-7 cell uptake of pH-sensitive liposomes with a folate modification was higher which was indicated by an increased fluorescence intensity compared to that without a folate modification. The area under the concentration–time curve of mitomycin C-loaded pH-sensitive liposomes (18.82±0.51 µg·h/L) was significantly higher than that of the mitomycin C solution group (10.07±0.31 µg·h/L). The mean residence times of the mitomycin C-loaded and mitomycin C solution groups were 1.53±0.16 and 0.05 h, respectively. In addition, there was no significant difference in terms of Vss (p>0.05). Moreover, the half-life of pH-sensitive liposomes and the mitomycin C solution was 1.35±0.15 and 1.60±0.04 h, respectively. In terms of safety, mitomycin C-loaded pH-sensitive liposomes did not affect the platelet count and the levels of blood urea nitrogen and aspartate aminotransferase. Conclusion The positive results of pH-sensitive liposomes demonstrated maintained the cytotoxicity and decrease the side effect. PMID:29391780
Fang, Yi-Ping; Hu, Pei-Yu; Huang, Yaw-Bin
2018-01-01
Mitomycin C is an anticancer antibiotic agent that has the potential for broad-spectrum use against several cancers, including mammary cancers. Because its half-life is 17 min after a 30 mg intravenous bolus administration, the suitability of mitomycin C for wide use in the clinical setting is limited. Based on tumor pathophysiology, pH-sensitive liposomes could provide better tumor-targeted effects. The aim of this study was to investigate the possibility of diminishing the side effect of mitomycin C by using pH-sensitive liposomes. pH-sensitive liposomes was employed to deliver mitomycin C and evaluate the characterization, release behaviors, cytotoxicity, in vivo pharmacokinetics and biochemical assay. The results demonstrated that mitomycin C-loaded pH-sensitive liposomes had a particle diameter of 144.5±2.8 nm and an entrapment efficiency of 66.5%. The in vitro release study showed that the pH-sensitive liposome release percentages at pH 7.4 and pH 5.5 were approximately 47% and 93%, respectively. The cell viability of MCF-7 cells showed that both the solution and liposome group exhibited a concentration-dependent effect on cell viability. The MCF-7 cell uptake of pH-sensitive liposomes with a folate modification was higher which was indicated by an increased fluorescence intensity compared to that without a folate modification. The area under the concentration-time curve of mitomycin C-loaded pH-sensitive liposomes (18.82±0.51 µg·h/L) was significantly higher than that of the mitomycin C solution group (10.07±0.31 µg·h/L). The mean residence times of the mitomycin C-loaded and mitomycin C solution groups were 1.53±0.16 and 0.05 h, respectively. In addition, there was no significant difference in terms of V ss ( p >0.05). Moreover, the half-life of pH-sensitive liposomes and the mitomycin C solution was 1.35±0.15 and 1.60±0.04 h, respectively. In terms of safety, mitomycin C-loaded pH-sensitive liposomes did not affect the platelet count and the levels of blood urea nitrogen and aspartate aminotransferase. The positive results of pH-sensitive liposomes demonstrated maintained the cytotoxicity and decrease the side effect.
Müller, Lars U W; Milsom, Michael D; Kim, Mi-Ok; Schambach, Axel; Schuesler, Todd; Williams, David A
2008-06-01
Fanconi anemia (FA) is a rare recessive syndrome, characterized by congenital anomalies, bone marrow failure, and predisposition to cancer. Two earlier clinical trials utilizing gamma-retroviral vectors for the transduction of autologous FA hematopoietic stem cells (HSCs) required extensive in vitro manipulation and failed to achieve detectable long-term engraftment of transduced HSCs. As a strategy for minimizing ex vivo manipulation, we investigated the use of a "rapid" lentiviral transduction protocol in a murine Fanca(-/-) model. Importantly, while this and most murine models of FA fail to completely mimic the human hematopoietic phenotype, we observed a high incidence of HSC transplant engraftment failure and low donor chimerism after conventional transduction (CT) of Fanca(-/-) donor cells. In contrast, rapid transduction (RT) of Fanca(-/-) HSCs preserved engraftment to the level achieved in wild-type cells, resulting in long-term multilineage engraftment of gene-modified cells. We also demonstrate the correction of the characteristic hypersensitivity of FA cells against the cross-linking agent mitomycin C (MMC), and provide evidence for the advantage of using pharmacoselection as a means of further increasing gene-modified cells after RT. Collectively, these data support the use of rapid lentiviral transduction for gene therapy in FA.
Chapuy, Laurence; Pomerleau, Martine; Faure, Christophe
2014-11-01
The aim of the present study was to evaluate the efficacy and short-term safety of topical mitomycin-C, an antifibrotic agent, in preventing the recurrence of anastomotic strictures after surgical repair of esophageal atresia (EA). We retrospectively reviewed the medical records of patients with recurrent anastomotic strictures after EA surgery who underwent at least 3 esophageal dilations. We compared the outcome (ie, resolution of the stricture) of the group that received topical mitomycin-C treatment with endoscopic esophageal dilation with a historical cohort treated by dilations alone. A total of 11 children received mitomycin-C concurrently with endoscopic dilations. After a median follow-up of 33 months (range 18-72), and a mean number of 5.4 dilations per patient (range 3-11), 8 of 11 patients achieved a resolution of their strictures, 2 patients remained with stenosis, and 1 patient needed a surgical correction. In the control group, 10 patients required an average of 3.7 (range 3-7) total dilations. After a follow-up of 125 months (range 35-266) after the last dilation, strictures in 9 of 10 children disappeared and the remaining patient was symptom free. No dysplasia related to mitomycin-C was demonstrated. There is no benefit in the resolution of the stricture when adding mitomycin-C treatment compared with repeated esophageal dilations alone in historical controls. Further randomized controlled studies and a short- and long-term evaluation of safety are needed.
Heilmann, C; Schönfeld, P; Schlüter, T; Bohnensack, R; Behrens-Baumann, W
1999-08-01
To investigate the in vitro effect of a short time exposure to the anthracycline idarubicin on proliferation, protein synthesis, and motility of human Tenon's capsule fibroblasts in comparison with the antitumour antibiotic mitomycin C. After determination of effective concentrations of idarubicin, fibroblasts of the human Tenon's capsule were exposed to idarubicin or mitomycin C at concentrations ranging from 0.1 microg/ml to 1 microg/ml or from 2.5 microg/ml to 250 microg/ml, respectively, for 0.5, 2, or 5 minutes and cultured for 60 days. Cell death by apoptosis caused by idarubicin treatment was confirmed by Hoechst 33258 staining. Further proliferation was explored by cell counting and by (3)H-thymidine uptake. Protein synthesis was measured by (3)H-proline uptake and motility was assessed by agarose droplet motility assay. Idarubicin is able to exert toxicity and to induce apoptosis during a short time exposure of 0.5 minutes at concentrations of 0.3-1 microg/ml resulting in a significant reduction in cell number compared with the control after 60 days. For mitomycin C, higher concentrations and longer expositions were necessary. Even after treatment with 1 microg/ml idarubicin or 250 microg/ml mitomycin C a few cells were able to incorporate (3)H-thymidine. (3)H-proline uptake up to 10 days after exposure to 0.3 microg/ml idarubicin was found not to be decreased. Cell motility was reduced after treatment with 1 microg/ml idarubicin for 5 minutes or with 250 microg/ml mitomycin C for 2 or 5 minutes. For low mitomycin C concentrations, an increase in motility was found during the first 10 days. Idarubicin reduces proliferation of human Tenons's capsule fibroblasts after incubation for 0.5 minutes at concentrations as low as 0.3-1 microg/ml. In comparison, mitomycin C requires longer exposure times and higher doses for equal results. Therefore, idarubicin may be useful in the prevention of glaucoma filtering surgery failure.
Guervilly, Jean-Hugues; Macé-Aimé, Gaëtane; Rosselli, Filippo
2008-03-01
Fanconi anemia (FA) is a cancer-prone hereditary disease resulting from mutations in one of the 13 genes defining the FANC/BRCA pathway. This pathway is involved in the cellular resistance to DNA-cross-linking agents. How the FANC/BRCA pathway is activated and why its deficiency leads to the accumulation of FA cells with a 4N DNA content are still poorly answered questions. We investigated the involvement of ATR pathway members in these processes. We show here that RAD9 and RAD17 are required for DNA interstrand cross-link (ICL) resistance and for the optimal activation of FANCD2. Moreover, we demonstrate that CHK1 and its interacting partner CLASPIN that act downstream in the ATR pathway are required for both FANCD2 monoubiquitination and assembling in subnuclear foci in response to DNA damage. Paradoxically, in the absence of any genotoxic stress, CHK1 or CLASPIN depletion results in an increased basal level of FANCD2 monoubiquitination and focalization. We also demonstrate that the ICL-induced accumulation of FA cells in late S/G2 phase is dependent on ATR and CHK1. In agreement with this, CHK1 phosphorylation is enhanced in FA cells, and chemical inhibition of the ATR/CHK1 axis in FA lymphoblasts decreases their sensitivity to mitomycin C. In conclusion, this work describes a complex crosstalk between CHK1 and the FANC/BRCA pathway: CHK1 activates this pathway through FANCD2 monoubiquitination, whereas FA deficiency leads to a CHK1-dependent G2 accumulation, raising the possibility that the FANC/BRCA pathway downregulates CHK1 activation.
The effect of topical mitomycin C on full-thickness burns.
Tennyson, Heath; Helling, Eric R; Wiseman, Joseph; Dick, Edward; Lyons, Robert C
2007-09-15
Burns result in substantial morbidity because of fibroblast proliferation and contracture. Mitomycin C is a chemotherapeutic agent known to suppress fibroblast proliferation. It is used in ophthalmologic disorders and reduces scarring in upper aerodigestive surgery. No study of the effect of mitomycin C on cutaneous burns has been performed. This study examined burn healing in the presence of topical mitomycin C by evaluation of wound appearance, contraction, and histology in a pig model. Standardized full-thickness burns were produced on the flanks of three pigs. One animal received no further therapy and was an external control. Two animals underwent placement of topical mitomycin C, 0.4 mg/ml, on selected burn sites for 5 minutes. This was repeated 2 and 4 weeks after injury. Evaluation was performed at 2 and 6 months using a clinical assessment scale and a visual analogue scale. Scar length and histologic analysis were also evaluated. Clinical assessment scale and visual analogue scale scores showed improved appearance in the untreated external control wounds versus the untreated internal control and treated wounds (p < 0.001). Wound contraction was not significantly different between groups. Histologic characteristics between groups were similar except for epidermal hyperplasia, which was decreased in the untreated external control (p < 0.05) at 2 months after treatment. Topical mitomycin C treatment of full-thickness burn wounds at 0.4 mg/cc for three courses does not improve, and may worsen, clinical appearance and scarring during early healing. There is no difference in histology during the long-term healing process. Scar contraction was unchanged.
Bowen, Damian E; Whitwell, James H; Lillford, Lucinda; Henderson, Debbie; Kidd, Darren; Mc Garry, Sarah; Pearce, Gareth; Beevers, Carol; Kirkland, David J
2011-05-18
With the publication of revised draft ICH guidelines (Draft ICH S2), there is scope and potential to establish a combined multi-end point in vivo assay to alleviate the need for multiple in vivo assays, thereby reducing time, cost and use of animals. Presented here are the results of an evaluation trial in which the bone-marrow and peripheral blood (via MicroFlow(®) flow cytometry) micronucleus tests (looking at potential chromosome breakage and whole chromosome loss) in developing erythrocytes or young reticulocytes were combined with the Comet assay (measuring DNA strand-breakage), in stomach, liver and blood lymphocytes. This allowed a variety of potential target tissues (site of contact, site of metabolism and peripheral distribution) to be assessed for DNA damage. This combination approach was performed with minimal changes to the standard and regulatory recommended sampling times for the stand-alone assays. A series of eight in vivo genotoxins (2-acetylaminofluorene, benzo[a]pyrene, carbendazim, cyclophosphamide, dimethylnitrosamine, ethyl methanesulfonate, ethyl nitrosourea and mitomycin C), which are known to act via different modes of action (direct- and indirect-acting clastogens, alkylating agents, gene mutagens, cross-linking and aneugenic compounds) were tested. Male rats were dosed at 0, 24 and 45 h, and bone marrow and peripheral blood (micronucleus endpoint), liver, whole blood and stomach (Comet endpoint) were sampled at three hours after the last dose. Comet and micronucleus responses were as expected based on available data for conventional (acute) stand-alone assays. All compounds were detected as genotoxic in at least one of the endpoints. The importance of evaluating both endpoints was highlighted by the uniquely positive responses for certain chemicals (benzo[a]pyrene and 2-acetylaminofluorene) with the Comet endpoint and certain other chemicals (carbendazim and mitomycin C) with the micronucleus endpoint. The data generated from these investigations demonstrate the suitability of the multi-endpoint design. 2011 Elsevier B.V. All rights reserved.
Mullerad, Michael; Bochner, Bernard H.; Adusumilli, Prasad S.; Bhargava, Amit; Kikuchi, Eiji; Hui-Ni, Chen; Kattan, Michael W.; Chou, Ting-Chao; Fong, Yuman
2005-01-01
Purpose Oncolytic replication-competent herpes simplex virus type-1 (HSV) mutants have the ability to replicate in and kill malignant cells. We have previously demonstrated the ability of replication-competent HSV to control bladder cancer growth in an orthotopic murine model. We hypothesized that a combination of a chemotherapeutic agent used for intravesical treatment - mitomycin-C (MMC) - and oncolytic HSV would exert a synergistic effect in the treatment of human transitional cell carcinoma (TCC). Materials and Methods We used the mutant HSV NV1066, which is deleted for viral genes ICP0 and ICP4 and selectively infects cancer cells, to treat TCC lines, KU19-19 and SKUB. Cell survival was determined by lactate dehydrogenase (LDH) assay for each agent as well as for drug-viral combinations from days 1 to 5. The isobologram method and the combination index method of Chou-Talalay were used to assess for synergistic effect. Results NV1066 enhanced MMC mediated cytotoxicity at all combinations tested for both KU19-19 and SKUB. Combination of both agents demonstrated a synergistic effect and allowed dose reduction by 12 and 10.4 times (NV1066) and by 3 and 156 times (MMC) in the treatment of KU19-19 and SKUB respectively, while achieving an estimated 90% cell kill. Conclusion These data provide the cellular basis for the clinical investigation of combined mitomycin-C and oncolytic HSV therapy in the treatment of bladder cancer. PMID:16006968
Su, Tsann-Long; Lee, Te-Chang; Kakadiya, Rajesh
2013-11-01
Bifunctional DNA cross-linking agents are widely used as chemotherapeutic agents in clinics. The advance in the development of these agents as potential antitumor agents has generated various types of bis(hydroxymethyl)pyrrole analogs. In order to develop highly effective anticancer agents, it is necessary to understand the chemophysical properties, structure-activity relationships, therapeutic potency, toxicity/safety, and pharmacokinetics of these DNA cross-linking agents. This review presents an overview of the recent advances in developing various types of bis(hydroxymethyl)pyrrole analogs with potential antitumor activity to provide more information for future drug design and strategies for combination chemotherapy. The rational drug design, chemical syntheses, antitumor activity, mechanism of action, and development of combined chemotherapy regimens, including a DNA repair inhibitor, are discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
21 CFR 177.1650 - Polysulfide polymer-polyepoxy resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
...(2-chloroethyl) formal Bis(dichloropropyl) formal Cross-linking agent. Butyl alcohol Solvent. Carbon black (channel process) Chlorinated paraffins Cross-linking agent. Epoxidized linseed oil Epoxidized... monobutyl ether Solvent. Magnesium chloride Methyl isobutyl ketone Solvent. Naphthalene sulfonic acid...
Meyenberg, Alexander; Goldblum, David; Zingg, Jean-Marc; Azzi, Angelo; Nesaretnam, Kalanithi; Kilchenmann, Monika; Frueh, Beatrice E
2005-12-01
To evaluate the potential of the vitamin E compound alpha-tocotrienol as antifibrotic agent in vitro. Using human Tenon's capsule fibroblast cultures, the antiproliferative and cytotoxic effects of the different vitamin E forms alpha-tocopherol, alpha-tocopheryl acetate, alpha-tocopheryl succinate and alpha-tocotrienol were compared with those of mitomycin C. To mimic subconjunctival and regular oral application in vivo, exposure time of serum-stimulated and serum-restimulated fibroblasts (SF and RF, respectively) to vitamin E forms was set at 6 days. Cultures were only exposed for 5 min to mitomycin C due to its known acute toxicity and to mimic the short-time intraoperative administration. Proliferation (expressed as % of control) was determined by DNA content quantification on days 2, 4 and 6, whereas cytotoxicity was assessed by cell morphology and glucose 6-phosphate dehydrogenase (G6PD) release after 24 h. alpha-Tocopherol and alpha-tocopheryl acetate stimulated growth of SF, but not RF. Reduction of fibroblast content by alpha-tocopheryl succinate was accompanied by increased G6PD release and necrosis. Contrary to alpha-tocopheryl succinate, 50 microM or repeatedly 20 microM of alpha-tocotrienol significantly inhibited proliferation without causing cellular toxicity (maximal effect: 46.8%). RF were more sensitive to this effect than SF. Mitomycin C 100-400 microg/ml showed a stronger antiproliferative effect than alpha-tocotrienol (maximal effect: 13.8%). Morphologic characteristics of apoptosis were more commonly found under treatment with mitomycin C. Of the vitamin E forms tested, only alpha-tocotrienol significantly inhibited growth at non-toxic concentrations. In this in vitro study, antiproliferative effects of mitomycin C were stronger than those of alpha-tocotrienol.
Cytologic Effects of Air Force Chemicals
1979-08-01
mitomycin C (MMC, Sigma), a well known bifunctional DNA alkylating agent . Figure 3 shows typical metaphase spreads of a rat lymphocyte and a rat bone...monofunctional DNA alkylating agents and well known mutagens, are shown in Figures 7 and 8, respectively. Fig- ure 9 shows the induction of micronuclei by MMC...a bifunctional alkyl - ating agent . These three chemicals serve as positive controls for the in vitro exposures. In all three figures, the general
Dapa, Tanja; Fleurier, Sébastien; Bredeche, Marie-Florence; Matic, Ivan
2017-07-01
Mitomycin C (MMC) is a genotoxic agent that induces DNA cross-links, DNA alkylation, and the production of reactive oxygen species (ROS). MMC induces the SOS response and RpoS regulons in Escherichia coli SOS-encoded functions are required for DNA repair, whereas the RpoS regulon is typically induced by metabolic stresses that slow growth. Thus, induction of the RpoS regulon by MMC may be coincidental, because DNA damage slows growth; alternatively, the RpoS regulon may be an adaptive response contributing to cell survival. In this study, we show that the RpoS regulon is primarily induced by MMC-induced ROS production. We also show that RpoS regulon induction is required for the survival of MMC-treated growing cells. The major contributor to RpoS-dependent resistance to MMC treatment is DNA polymerase Pol II, which is encoded by the polB gene belonging to the SOS regulon. The observation that polB gene expression is controlled by the two major stress response regulons that are required to maximize survival and fitness further emphasizes the key role of this DNA polymerase as an important factor in genome stability. Copyright © 2017 by the Genetics Society of America.
Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V; Bronich, Tatiana K
2010-04-12
Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca(2+)) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like nanospheres and demonstrated a time-dependent degradation in the conditions mimicking the intracellular reducing environment. The ionic character of the cores allowed to achieve a very high level of doxorubicin (DOX) loading (50% w/w) into the cross-linked micelles. DOX-loaded degradable cross-linked micelles exhibited more potent cytotoxicity against human A2780 ovarian carcinoma cells as compared to micellar formulations without disulfide linkages. These novel biodegradable cross-linked micelles are expected to be attractive candidates for delivery of anticancer drugs.
Application of mitomycin-C for head and neck keloids.
Stewart, Charles E; Kim, John Y
2006-12-01
Keloids of the head and neck are a relatively common entity in darker-skinned races, occurring in 5%-15% of skin wounds. Keloids are fibrotic lesions that are a result of an abnormal wound-healing process that lacks control of the mechanisms that regulate tissue repair and regeneration. The proliferation of normal tissue-healing processes results in scarring that enlarges well beyond the original wound margins. Many treatment modalities for keloids have been tried with variable amounts of success. Surgical excision, compressive therapy, silicon dressings, corticosteroid injections, radiation, cryotherapy, interferon therapy, and laser therapy have all been used alone or in combination. Despite this wide range of available treatments, recurrence rates typically remain in the 50%-70% range. In this study, we present our results in a series of 10 patients who were treated with surgical excision of head and neck keloids and the application of topical mitomycin-C. Mitomycin-C is a chemotherapeutic agent that inhibits DNA synthesis and fibroblast proliferation. It has been used in ophthalmologic procedures and airway surgery to decrease scar formation. In these 10 patients, we combined surgical excision of keloids with the application of topical mitomycin-C. The patients were then followed postoperatively for recurrence (range, 7-14 months). We have found topical application of mitomycin-C to be an effective therapy for prevention of keloid recurrence in the head and neck, with a success rate of 90% as reported in this series.
Boutry, Céline; Delplace, Brigitte; Clippe, André; Fontaine, Laetitia; Hols, Pascal
2013-02-01
Streptococcus includes species that either contain or lack the LexA-like repressor (HdiR) of the classical SOS response. In Streptococcus pneumoniae, a species which belongs to the latter group, SOS response inducers (e.g., mitomycin C [Mc] and fluoroquinolones) were shown to induce natural transformation, leading to the hypothesis that DNA damage-induced competence could contribute to genomic plasticity and stress resistance. Using reporter strains and microarray experiments, we investigated the impact of the SOS response inducers mitomycin C and norfloxacin and the role of HdiR on competence development in Streptococcus thermophilus. We show that both the addition of SOS response inducers and HdiR inactivation have a dual effect, i.e., induction of the expression of SOS genes and reduction of transformability. Reduction of transformability results from two different mechanisms, since HdiR inactivation has no major effect on the expression of competence (com) genes, while mitomycin C downregulates the expression of early and late com genes in a dose-dependent manner. The downregulation of com genes by mitomycin C was shown to take place at the level of the activation of the ComRS signaling system by an unknown mechanism. Conversely, we show that a ComX-deficient strain is more resistant to mitomycin C and norfloxacin in a viability plate assay, which indicates that competence development negatively affects the resistance of S. thermophilus to DNA-damaging agents. Altogether, our results strongly suggest that SOS response activation and competence development are antagonistic processes in S. thermophilus.
The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams
Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing
2016-01-01
Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams. PMID:27841307
The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams
NASA Astrophysics Data System (ADS)
Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing
2016-11-01
Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams.
Geng, Deyu; Zhang, Zhixia; Guo, Huarong
2012-01-01
p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase) and pRL-CMV-luc (CMV promoter linked to Renilla luciferase) into marine flatfish flounder gill (FG) cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C) and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation), but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl) phthalate (DEHP), a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner. PMID:25585933
Protection Against the Acute and Delayed Toxicity of Mustards and Mustard-Like Compounds
1987-02-01
environ- mental agents can be more important than modification at the major alkylation sites, an important inicial objective of this work was to identify...position of guanine in DNA. A mechanism has been discovered for certain antitumor agents which leads to DNA cross-linking following alkylation of the O...been discovered. Simple monofunctional alkylating agents , including methylating agents , appear to cause cross-link- ing through the reactions of the
Kovalchuk, Anna; Rodriguez-Juarez, Rocio; Ilnytskyy, Yaroslav; Byeon, Boseon; Shpyleva, Svitlana; Melnyk, Stepan; Pogribny, Igor; Kolb, Bryan; Kovalchuk, Olga
2016-01-01
Recent research shows that chemotherapy agents can be more toxic to healthy brain cells than to the target cancer cells. They cause a range of side effects, including memory loss and cognitive dysfunction that can persist long after the completion of treatment. This condition is known as chemo brain. The molecular and cellular mechanisms of chemo brain remain obscure. Here, we analyzed the effects of two cytotoxic chemotherapy drugs—cyclophosphamide (CPP) and mitomycin C (MMC) - on transcriptomic and epigenetic changes in the murine prefrontal cortex (PFC) and hippocampal regions. We for the first time showed that CPP and MMC treatments led to profound sex- and brain region-specific alterations in gene expression profiles. Gene expression changes were most prominent in the PFC tissues of female mice 3 weeks after MMC treatment, and the gene expression response was much greater for MCC than CPP exposure. MMC exposure resulted in oxidative DNA damage, evidenced by accumulation of 8-oxo-2′-deoxyguanosine (8-oxodG) and a decrease in the level of 8-oxodG repair protein OGG1 in the PFC of female animals 3 weeks after treatment. MMC treatment decreased global DNA methylation and increased DNA hydroxymethylation in the PFC tissues of female mice. The majority of the changes induced by chemotherapy in the PFC tissues of female mice resembled those that occur during the brain's aging processes. Therefore, our study suggests a link between chemotherapy-induced chemo brain and brain aging, and provides an important roadmap for future analysis. PMID:27032448
NASA Technical Reports Server (NTRS)
Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)
1985-01-01
A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.
Lamin A/C Depletion Enhances DNA Damage-Induced Stalled Replication Fork Arrest
Singh, Mayank; Hunt, Clayton R.; Pandita, Raj K.; Kumar, Rakesh; Yang, Chin-Rang; Horikoshi, Nobuo; Bachoo, Robert; Serag, Sara; Story, Michael D.; Shay, Jerry W.; Powell, Simon N.; Gupta, Arun; Jeffery, Jessie; Pandita, Shruti; Chen, Benjamin P. C.; Deckbar, Dorothee; Löbrich, Markus; Yang, Qin; Khanna, Kum Kum; Worman, Howard J.
2013-01-01
The human LMNA gene encodes the essential nuclear envelope proteins lamin A and C (lamin A/C). Mutations in LMNA result in altered nuclear morphology, but how this impacts the mechanisms that maintain genomic stability is unclear. Here, we report that lamin A/C-deficient cells have a normal response to ionizing radiation but are sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with ICL agents (cisplatin, camptothecin, and mitomycin), lamin A/C-deficient cells displayed normal γ-H2AX focus formation but a higher frequency of cells with delayed γ-H2AX removal, decreased recruitment of the FANCD2 repair factor, and a higher frequency of chromosome aberrations. Similarly, following hydroxyurea-induced replication stress, lamin A/C-deficient cells had an increased frequency of cells with delayed disappearance of γ-H2AX foci and defective repair factor recruitment (Mre11, CtIP, Rad51, RPA, and FANCD2). Replicative stress also resulted in a higher frequency of chromosomal aberrations as well as defective replication restart. Taken together, the data can be interpreted to suggest that lamin A/C has a role in the restart of stalled replication forks, a prerequisite for initiation of DNA damage repair by the homologous recombination pathway, which is intact in lamin A/C-deficient cells. We propose that lamin A/C is required for maintaining genomic stability following replication fork stalling, induced by either ICL damage or replicative stress, in order to facilitate fork regression prior to DNA damage repair. PMID:23319047
Yue, Hongwei; Yang, Bo; Wang, Yan; Chen, Guangju
2013-01-01
We have constructed models for a series of platinum-DNA adducts that represent the binding of two agents, [Pt2(DTBPA)Cl2](II) and [Pt2(TPXA)Cl2](II), to DNA via inter- and intra-strand cross-linking, and carried out molecular dynamics simulations and DNA conformational dynamics calculations. The effects of trans- and cis-configurations of the centers of these di-nuclear platinum agents, and of different bridging linkers, have been investigated on the conformational distortions of platinum-DNA adducts formed via inter- and intra-strand cross-links. The results demonstrate that the DNA conformational distortions for the various platinum-DNA adducts with differing cross-linking modes are greatly influenced by the difference between the platinum-platinum distance for the platinum agent and the platinum-bound N7–N7 distance for the DNA molecule, and by the flexibility of the bridging linkers in the platinum agent. However, the effects of trans/cis-configurations of the platinum-centers on the DNA conformational distortions in the platinum-DNA adducts depend on the inter- and intra-strand cross-linking modes. In addition, we discuss the relevance of DNA base motions, including opening, shift and roll, to the changes in the parameters of the DNA major and minor grooves caused by binding of the platinum agent. PMID:24077126
Heilmann, C.; Schonfeld, P.; Schluter, T.; Bohnensack, R.; Behrens-Baumann, W.
1999-01-01
BACKGROUND/AIMS—To investigate the in vitro effect of a short time exposure to the anthracycline idarubicin on proliferation, protein synthesis, and motility of human Tenon's capsule fibroblasts in comparison with the antitumour antibiotic mitomycin C. METHODS—After determination of effective concentrations of idarubicin, fibroblasts of the human Tenon's capsule were exposed to idarubicin or mitomycin C at concentrations ranging from 0.1 µg/ml to 1 µg/ml or from 2.5 µg/ml to 250 µg/ml, respectively, for 0.5, 2, or 5 minutes and cultured for 60 days. Cell death by apoptosis caused by idarubicin treatment was confirmed by Hoechst 33258 staining. Further proliferation was explored by cell counting and by 3H-thymidine uptake. Protein synthesis was measured by 3H-proline uptake and motility was assessed by agarose droplet motility assay. RESULTS—Idarubicin is able to exert toxicity and to induce apoptosis during a short time exposure of 0.5 minutes at concentrations of 0.3-1 µg/ml resulting in a significant reduction in cell number compared with the control after 60 days. For mitomycin C, higher concentrations and longer expositions were necessary. Even after treatment with 1 µg/ml idarubicin or 250 µg/ml mitomycin C a few cells were able to incorporate 3H-thymidine. 3H-proline uptake up to 10 days after exposure to 0.3 µg/ml idarubicin was found not to be decreased. Cell motility was reduced after treatment with 1 µg/ml idarubicin for 5 minutes or with 250 µg/ml mitomycin C for 2 or 5 minutes. For low mitomycin C concentrations, an increase in motility was found during the first 10 days. CONCLUSION—Idarubicin reduces proliferation of human Tenons's capsule fibroblasts after incubation for 0.5 minutes at concentrations as low as 0.3-1 µg/ml. In comparison, mitomycin C requires longer exposure times and higher doses for equal results. Therefore, idarubicin may be useful in the prevention of glaucoma filtering surgery failure. PMID:10413703
Kulmala, K A M; Karjalainen, H M; Kokkonen, H T; Tiitu, V; Kovanen, V; Lammi, M J; Jurvelin, J S; Korhonen, R K; Töyräs, J
2013-10-01
To investigate the effect of threose-induced collagen cross-linking on diffusion of ionic and non-ionic contrast agents in articular cartilage. Osteochondral plugs (Ø=6mm) were prepared from bovine patellae and divided into two groups according to the contrast agent to be used in contrast enhanced computed tomography (CECT) imaging: (I) anionic ioxaglate and (II) non-ionic iodixanol. The groups I and II contained 7 and 6 sample pairs, respectively. One of the paired samples served as a reference while the other was treated with threose to induce collagen cross-linking. The equilibrium partitioning of the contrast agents was imaged after 24h of immersion. Fixed charge density (FCD), water content, contents of proteoglycans, total collagen, hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP) and pentosidine (Pent) cross-links were determined as a reference. The equilibrium partitioning of ioxaglate (group I) was significantly (p=0.018) lower (-23.4%) in threose-treated than control samples while the equilibrium partitioning of iodixanol (group II) was unaffected by the threose-treatment. FCD in the middle and deep zones of the cartilage (p<0.05) and contents of Pent and LP (p=0.001) increased significantly due to the treatment. However, the proteoglycan concentration was not systematically altered after the treatment. Water content was significantly (-3.5%, p=0.007) lower after the treatment. Since non-ionic iodixanol showed no changes in partition after cross-linking, in contrast to anionic ioxaglate, we conclude that the cross-linking induced changes in charge distribution have greater effect on diffusion compared to the cross-linking induced changes in steric hindrance. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Fisher, G R; Patterson, L H; Gutierrez, P L
1993-09-01
Electron paramagnetic resonance (EPR/ESR) spin trapping studies with DMPO revealed that purified rat liver NAD(P)H (quinone-acceptor) oxidoreductase (QAO) mediated hydroxyl radical formation by a diverse range of quinone-based antitumour agents. However, when MCF-7 S9 cell fraction was the source of QAO, EPR studies distinguished four different interactions by these agents and QAO with respect to hydroxyl radical formation: (i) hydroxyl radical formation by diaziquone (AZQ), menadione, 1AQ; 1,5AQ and 1,8AQ was mediated entirely or partially by QAO in MCF-7 S9 fraction; (ii) hydroxyl radical formation by daunorubicin and Adriamycin was not mediated by QAO in MCF-7 S9 fraction; (iii) hydroxyl radical formation by mitomycin C was stimulated in MCF-7 S9 fraction when QAO was inhibited by dicumarol; (iv) no hydroxyl radical formation was detected for 1,4AQ or mitoxantrone in MCF-7 S9 fraction. This study shows that purified rat liver QAO can mediate hydroxyl radical formation by a variety of diverse quinone antitumour agents. However, QAO did not necessarily contribute to hydroxyl radical formation by these agents in MCF-7 S9 fraction and in the case of mitomycin C, QAO played a protective role against hydroxyl radical formation.
Chen, Jian; Li, Jiding; Qi, Rongbin; Ye, Hong; Chen, Cuixian
2010-01-01
Cross-linked polydimethylsiloxane (PDMS)-polyetherimide (PEI) composite membranes were prepared, in which asymmetric microporous PEI membrane prepared with phase inversion method was acted as the microporous supporting layer in the flat-plate composite membrane. Membrane characterization was conducted by Fourier transform infrared and scanning electronic microscopy analysis. The composite membranes were employed in pervaporation separation of n-heptane-thiophene mixtures. Effect of amount of PDMS, cross-linking temperature, amount of cross-linking agent, and cross-linking time on the separation efficiency of n-heptane-thiophene mixtures was investigated experimentally. Experiment results demonstrated that 80-100 degrees degrees C of cross-linking temperature was more preferable for practical application, as the amount of cross-linking agent was up to 20 wt.%, and 25 wt.% of PDMS amount was more optimal as far as flux and sulfur enrichment factor were concerned. In addition, the swelling degree of and stableness of composite membrane during long-time operation were studied, which should be significant for practical application.
Rjiba-Touati, Karima; Ayed-Boussema, Imen; Soualeh, Nidhal; Achour, Abdellatif; Bacha, Hassen; Abid, Salwa
2013-08-01
Cisplatin (CDDP) and mitomycin C (MMC), two alkylating agents used against various solid tumours, are a common source of acute kidney injury. Thus, strategies for minimizing CDDP and MMC toxicity are of a clinical interest. In this study, we aimed to investigate the protective role of recombinant human erythropoietin (rhEPO) against oxidative stress and genotoxicity induced by CDDP and MMC in cultured Vero cells. Three types of treatments were performed: (i) cells were treated with rhEPO 24 h before exposure to CDDP/MMC (pre-treatment), (ii) cells were treated with rhEPO and CDDP/MMC simultaneously (co-treatment), (iii) cells were treated with rhEPO 24 h after exposure to CDDP/MMC (post-treatment). Our results showed that rhEPO decreased the reactive oxygen species levels, the malondialdehyde levels and ameliorated glutathione (reduced and oxidized glutathione) modulation induced by CDDP and MMC in cultured Vero cells. Furthermore, rhEPO administration prevented alkylating agents-induced DNA damage accessed by comet test. Altogether, our results suggested a protective role of rhEPO, against CDDP- and MMC-induced oxidative stress and genotoxicity, especially in pre-treatment condition.
Study on the preparation process of cross-linked porous cassava starch
NASA Astrophysics Data System (ADS)
Yin, Xiulian; You, Qinghong; Wan, Miaomiao; Zhang, Xuejuan; Dai, Chunhua
2017-04-01
Using cassava starch as raw material, preparation process of porous cross-linked cassava starch was studied. Using TSTP as cross-linking agents, Orthogonal design was applied for the optimization of cross-linked porous starch preparation process. The results showed that the opitmal conditions of cross-linked porous cassava starch were as follows: reaction temperature 45°C, reaction time 20 h, 1% of the amount of the enzyme, the enzyme ratio of 1:5, pH 5.50, substrate concentration of 40%.
Fang, Aiping; Cathala, Bernard
2011-01-01
This paper reports a microfluidic synthesis of biopolymer microparticles aiming at smart swelling. Monodisperse aqueous emulsion droplets comprising biopolymer and its cross-linking agent were formed in mineral oil and solidified in the winding microfluidic channels by in situ chaotic mixing, which resulted in internal chemical gelation for hydrogels. The achievement of pectin microparticles from in situ mixing pectin with its cross-linking agent, calcium ions, successfully demonstrates the reliability of this microfluidic synthesis approach. In order to achieve hydrogels with smart swelling, the following parameters and their impacts on the swelling behaviour, stability and morphology of microparticles were investigated: (1) the type of biopolymers (alginate or mixture of alginate and carboxymethylcellulose, A-CMC); (2) rapid mixing; (3) concentration and type of cross-linking agent. Superabsorbent microparticles were obtained from A-CMC mixture by using ferric chloride as an additional external cross-linking agent. The in situ encapsulation of a model protein, bovine serum albumin (BSA), was also carried out. As a potential protein drug-delivery system, the BSA release behaviours of the biopolymer particles were studied in simulated gastric and intestinal fluids. Compared with alginate and A-CMC microparticles cross-linked with calcium ions, A-CMC microparticles cross-linked with both calcium and ferric ions demonstrate a significantly delayed release. The controllable release profile, the facile encapsulation as well as their biocompatibility, biodegradability, mucoadhesiveness render this microfluidic approach promising in achieving biopolymer microparticles as protein drug carrier for site-specific release. Copyright © 2010 Elsevier B.V. All rights reserved.
Ballew, Bari J; Joseph, Vijai; De, Saurav; Sarek, Grzegorz; Vannier, Jean-Baptiste; Stracker, Travis; Schrader, Kasmintan A; Small, Trudy N; O'Reilly, Richard; Manschreck, Chris; Harlan Fleischut, Megan M; Zhang, Liying; Sullivan, John; Stratton, Kelly; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Alter, Blanche P; Boland, Joseph; Burdett, Laurie; Offit, Kenneth; Boulton, Simon J; Savage, Sharon A; Petrini, John H J
2013-08-01
Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.
Ballew, Bari J.; Joseph, Vijai; De, Saurav; Sarek, Grzegorz; Vannier, Jean-Baptiste; Stracker, Travis; Schrader, Kasmintan A.; Small, Trudy N.; O'Reilly, Richard; Manschreck, Chris; Harlan Fleischut, Megan M.; Zhang, Liying; Sullivan, John; Stratton, Kelly; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Alter, Blanche P.; Boland, Joseph; Burdett, Laurie; Offit, Kenneth; Boulton, Simon J.
2013-01-01
Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1. PMID:24009516
Szekalska, Marta; Sosnowska, Katarzyna; Zakrzeska, Agnieszka; Kasacka, Irena; Lewandowska, Alicja; Winnicka, Katarzyna
2017-01-22
Sodium alginate is a polymer with unique ability to gel with different cross-linking agents in result of ionic and electrostatic interactions. Chitosan cross-linked alginate provides improvement of swelling and mucoadhesive properties and might be used to design sustained release dosage forms. Therefore, the aim of this research was to develop and evaluate possibility of preparing chitosan cross-linked alginate microparticles containing metformin hydrochloride by the spray-drying method. In addition, influence of cross-linking agent on the properties of microparticles was evaluated. Formulation of microparticles prepared by the spray drying of 2% alginate solution cross-linked by 0.1% chitosan was characterized by good mucoadhesive properties, high drug loading and prolonged metformin hydrochloride release. It was shown that designed microparticles reduced rat glucose blood level, delayed absorption of metformin hydrochloride and provided stable plasma drug concentration. Additionally, histopathological studies of pancreas, liver and kidneys indicated that all prepared microparticles improved degenerative changes in organs of diabetic rats. Moreover, no toxicity effect and no changes in rats behavior after oral administration of chitosan cross-linked alginate microparticles were noted.
Novel magnetic cross-linked lipase aggregates for improving the resolution of (R, S)-2-octanol.
Liu, Ying; Guo, Chen; Liu, Chun-Zhao
2015-03-01
Novel magnetic cross-linked lipase aggregates were fabricated by immobilizing the cross-linked lipase aggregates onto magnetic particles with a high number of -NH2 terminal groups using p-benzoquinone as the cross-linking agent. At the optimal fabrication conditions, 100% of immobilization efficiency and 139% of activity recovery of the magnetic cross-linked lipase aggregates were achieved. The magnetic cross-linked lipase aggregates were able to efficiently resolve (R, S)-2-octanol, and retained 100% activity and 100% enantioselectivity after 10 cycles of reuse, whereas the cross-linked lipase aggregates only retained about 50% activity and 70% enantioselectivity due to insufficient cross-linking. These results provide a great potential for industrial applications of the magnetic cross-linked lipase aggregates. © 2014 Wiley Periodicals, Inc.
Shukla, Pallavi; Solanki, Avani; Ghosh, Kanjaksha; Vundinti, Babu Rao
2013-11-01
Interstrand cross-links (ICLs) are extremely toxic DNA lesions that prevent DNA double-helix separation due to the irreversible covalent linkage binding of some agents on DNA strands. Agents that induce these ICLs are thus widely used as chemotherapeutic drugs but may also lead to tumor growth. Fanconi anemia (FA) is a rare genetic disorder that leads to ICL sensitivity. This review provides update on current understanding of the role of FA proteins in repairing ICLs at various stages of cell cycle. We also discuss link between DNA cross-link genotoxicity caused by aldehydes in FA pathway. Besides this, we summarize various ICL agents that act as drugs to treat different types of tumors and highlight strategies for modulating ICL sensitivity for therapeutic interventions that may be helpful in controlling cancer and life-threatening disease, FA. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sasaki, S
2001-04-01
A number of cross-linking (alkylating) agents have been developed and incorporated into the oligonulceotides for sequence selective control of gene expression. Recently, potential application of such active oligonucleotides has been expanding from use for improvement of inhibition efficiency to new biotechnology that may enable chemical alteration of genetic information. These interests in active oligonucleotides have encouraged the generation of new cross-linking agents that exhibit high efficiency for application of either in vitro or in vivo. This mini review summarizes structures of alkylating agents, in particular, a new basic skeleton for cross-linking, a 2'-deoxyribose derivative of 2-amino-6-vinylpurine that has been recently developed by the author's group. The 2-amino-6-vinylpurine has been shown to form a complex with cytidine under acidic conditions, and brings the vinyl and the amino reactive groups into proximity to achieve efficient alkylation. A new strategy was designed so that the reactivity of 2-amino-6-vinylpurine can be induced from the corresponding phenylsulfoxide derivative within a duplex with the complementary strand. The validity of the new strategy has been proven by achievement of cytidine-selective cross-linking with remarkably efficiency.
Drilling fluid containing a copolymer filtration control agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enright, D.P.; Lucas, J.M.; Perricone, A.C.
1981-10-06
The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: (1) a (Meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and (2) a (Meth) acrylamide or n-alkyl (Meth) acrylamide. The copolymer may be cross-linked with a quaternary ammonium salt cross-linking agent.
Drilling fluid containing a copolymer filtration control agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, J. M.
1985-10-15
The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: a (meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and N, N-dialkyl (meth) acrylamide. The copolymer may be cross-linked with N,N'-methylenebisacrylamide or other appropriate cross-linking agent.
Electroactive hydrogel comprising poly(methyl 2-acetamido acrylate) for an artificial actuator
NASA Astrophysics Data System (ADS)
Ha, Eun-Ju; Kim, Bong-Soo; Park, Chun-ho; Lee, Jang-Oo; Paik, Hyun-jong
2013-08-01
A poly(methyl 2-acetamidoacrylic acrylate) (MAA) hydrogel was developed for use in an artificial actuator. The equilibrium swelling ratio of the MAA hydrogel was observed at different pH values with different concentrations of cross-linking agent; the hydrogel containing 2% cross-linking agent exhibited the maximum equilibrium swelling ratio at pH 10. The bending behavior of the MAA hydrogel under an electric field was measured in aqueous NaCl. The actuation response of the MAA hydrogel occurred via reversible bending behavior at 6 V. It was found that the MAA hydrogel features stable bending behavior over consecutive cycles in aqueous NaCl at different voltages depending on the cross-linking agent. Hence, the MAA hydrogel can be utilized as an artificial actuator using electrical stimulus.
Validation of the Glaucoma Filtration Surgical Mouse Model for Antifibrotic Drug Evaluation
Seet, Li-Fong; Lee, Wing Sum; Su, Roseline; Finger, Sharon N; Crowston, Jonathan G; Wong, Tina T
2011-01-01
Glaucoma is a progressive optic neuropathy, which, if left untreated, leads to blindness. The most common and most modifiable risk factor in glaucoma is elevated intraocular pressure (IOP), which can be managed surgically by filtration surgery. The postoperative subconjunctival scarring response, however, remains the major obstacle to achieving long-term surgical success. Antiproliferatives such as mitomycin C are commonly used to prevent postoperative scarring. Efficacy of these agents has been tested extensively on monkey and rabbit models of glaucoma filtration surgery. As these models have inherent limitations, we have developed a model of glaucoma filtration surgery in the mouse. We show, for the first time, that the mouse model typically scarred within 14 d, but when augmented with mitomycin C, more animals maintained lower intraocular pressures for a longer period of time concomitant with prolonged bleb survival to beyond 28 d. The morphology of the blebs following mitomycin C treatment also resembled well-documented clinical observations, thus confirming the validity and clinical relevance of this model. We demonstrate that the antiscarring response to mitomycin C is likely to be due to its effects on conjunctival fibroblast proliferation, apoptosis and collagen deposition and the suppression of inflammation. Indeed, we verified some of these properties on mouse conjunctival fibroblasts cultured in vitro. These data support the suitability of this mouse model for studying the wound healing response in glaucoma filtration surgery, and as a potentially useful tool for the in vivo evaluation of antifibrotic therapeutics in the eye. PMID:21229189
Posttranslational Regulation of Human DNA Polymerase ι.
McIntyre, Justyna; McLenigan, Mary P; Frank, Ekaterina G; Dai, Xiaoxia; Yang, Wei; Wang, Yinsheng; Woodgate, Roger
2015-11-06
Human DNA polymerases (pols) η and ι are Y-family DNA polymerase paralogs that facilitate translesion synthesis past damaged DNA. Both polη and polι can be monoubiquitinated in vivo. Polη has been shown to be ubiquitinated at one primary site. When this site is unavailable, three nearby lysines may become ubiquitinated. In contrast, mass spectrometry analysis of monoubiquitinated polι revealed that it is ubiquitinated at over 27 unique sites. Many of these sites are localized in different functional domains of the protein, including the catalytic polymerase domain, the proliferating cell nuclear antigen-interacting region, the Rev1-interacting region, and its ubiquitin binding motifs UBM1 and UBM2. Polι monoubiquitination remains unchanged after cells are exposed to DNA-damaging agents such as UV light (generating UV photoproducts), ethyl methanesulfonate (generating alkylation damage), mitomycin C (generating interstrand cross-links), or potassium bromate (generating direct oxidative DNA damage). However, when exposed to naphthoquinones, such as menadione and plumbagin, which cause indirect oxidative damage through mitochondrial dysfunction, polι becomes transiently polyubiquitinated via Lys(11)- and Lys(48)-linked chains of ubiquitin and subsequently targeted for degradation. Polyubiquitination does not occur as a direct result of the perturbation of the redox cycle as no polyubiquitination was observed after treatment with rotenone or antimycin A, which both inhibit mitochondrial electron transport. Interestingly, polyubiquitination was observed after the inhibition of the lysine acetyltransferase KATB3/p300. We hypothesize that the formation of polyubiquitination chains attached to polι occurs via the interplay between lysine acetylation and ubiquitination of ubiquitin itself at Lys(11) and Lys(48) rather than oxidative damage per se. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Jeyranpour, F; Alahyarizadeh, Gh; Arab, B
2015-11-01
Molecular dynamics (MD) simulations were carried out to predict the thermal and mechanical properties of the cross-linked epoxy system composed of DGEBA resin and the curing agent TETA. To investigate the effects of curing agents, a comprehensive and comparative study was also performed on the thermal and mechanical properties of DGEBA/TETA and DGEBA/DETDA epoxy systems such as density, glass transition temperature (Tg), coefficient of thermal expansion (CTE) and elastic properties of different cross-linking densities and different temperatures. The results indicated that the glass transition temperature of DGEBA/TETA system calculated through density-temperature data, ∼ 385-395 °K, for the epoxy system with the cross-linking density of 62.5% has a better agreement with the experimental value (Tg, ∼ 400 °K) in comparison to the value calculated through the variation of cell volume in terms of temperature, 430-440 °K. They also indicated that CTE related parameters and elastic properties including Young, Bulk, and shear's moduli, and Poisson's ratio have a relative agreement with the experimental results. Comparison between the thermal and mechanical properties of epoxy systems of DGEBA/TETA and DGEBA/DETDA showed that the DGEBA/DETDA has a higher Tg in all cross linking densities than that of DGEBA/TETA, while higher mechanical properties was observed in the case of DGEBA/TETA in almost all cross linking densities. Copyright © 2015 Elsevier Inc. All rights reserved.
Gas-phase transfer of polymer cross-linking agents and by-products to solid oral pharmaceuticals.
Maus, Russell G; Li, Min; Clement, Christopher M; Kinzer, Jeffery A
2007-11-05
In the pharmaceutical industry, solid oral compressed tablets (OCT) are frequently transported in bulk containers prior to packaging. While in this state, the product is generally protected from interaction with liquid and solid contaminants by physical barriers (e.g., polyethylene bags, drums, etc.). Vapor phase contamination, although generally less frequently observed, is possible. A specific example of the detection and identification of volatile by-products (acetophenone and 2-phenyl-2-propanol) of a common polymer cross-linking agent (dicumyl peroxide) is presented. The product tablets were compressed, placed into double polyethylene bags, and subsequently placed into a polyethylene drum for shipment overseas. To cushion the product during transit, a cross-linked polyethylene foam disk (designed to fit into the bottom of the drum) was placed below the bag of tablets. Initially, these contaminants were detected by HPLC with UV detection at the receiving laboratory, and assumed to be degradates of the active components of the product. Further analysis showed that neither the collected UV absorbance data nor the observed levels of the contaminants were consistent with known degradates of the product. Liquid extraction followed by GC-MS analysis of the product as well as the cross-linked foam disk exhibited measurable quantities of the contaminants in question. Vapor phase transfer of these cross-linking agent by-products, originating in the cross-linked foam pads, was determined to be the root cause for the presence of these compounds in the product.
Bharti, Sanjay Kumar; Sommers, Joshua A; Awate, Sanket; Bellani, Marina A; Khan, Irfan; Bradley, Lynda; King, Graeme A; Seol, Yeonee; Vidhyasagar, Venkatasubramanian; Wu, Yuliang; Abe, Takuye; Kobayashi, Koji; Shin-Ya, Kazuo; Kitao, Hiroyuki; Wold, Marc S; Branzei, Dana; Neuman, Keir C; Brosh, Robert M
2018-05-21
Fanconi Anemia (FA) is characterized by bone marrow failure, congenital abnormalities, and cancer. Of over 20 FA-linked genes, FANCJ uniquely encodes a DNA helicase and mutations are also associated with breast and ovarian cancer. fancj-/- cells are sensitive to DNA interstrand cross-linking (ICL) and replication fork stalling drugs. We delineated the molecular defects of two FA patient-derived FANCJ helicase domain mutations. FANCJ-R707C was compromised in dimerization and helicase processivity, whereas DNA unwinding by FANCJ-H396D was barely detectable. DNA binding and ATP hydrolysis was defective for both FANCJ-R707C and FANCJ-H396D, the latter showing greater reduction. Expression of FANCJ-R707C or FANCJ-H396D in fancj-/- cells failed to rescue cisplatin or mitomycin sensitivity. Live-cell imaging demonstrated a significantly compromised recruitment of FANCJ-R707C to laser-induced DNA damage. However, FANCJ-R707C expressed in fancj-/- cells conferred resistance to the DNA polymerase inhibitor aphidicolin, G-quadruplex ligand telomestatin, or DNA strand-breaker bleomycin, whereas FANCJ-H396D failed. Thus, a minimal threshold of FANCJ catalytic activity is required to overcome replication stress induced by aphidicolin or telomestatin, or to repair bleomycin-induced DNA breakage. These findings have implications for therapeutic strategies relying on DNA cross-link sensitivity or heightened replication stress characteristic of cancer cells.
Zaky, Khaled S; Khalifa, Yasser M
2012-01-01
Purpose: To determine the efficacy of preoperative subconjunctival injection of mitomycin C a day before surgery in the management of recurrent pterygium. Materials and Methods: Randomized comparative case series. Fifty eyes with recurrent pterygium were randomly divided into two groups; the mitomycin injection group (25 eyes) and the mitomycin application group (25 eyes). The mitomycin injection group underwent preoperative subconjunctival injection of mitomycin C in low dose (0.1 ml of 0.15 mg/ml) a day before bare sclera pterygium excision surgery. The mitomycin application group underwent bare sclera pterygium excision with topical application of mitomycin C (same concentration). Results: At one year of follow-up, 24 of 25 eyes (96%) in the mitomycin injection group and 23 of 25 (92%) eyes in the mitomycin application group were free of recurrence. The difference was statistically insignificant. As regards postoperative complications, delayed epithelization (more than two weeks) occurred in two eyes (8%) in the mitomycin injection group and in one eye (4%) in the mitomycin application group. Scleral thinning was reported in one eye (4%) in the mitomycin application group which resolved within three weeks after surgery, no other serious postoperative complications were reported. Conclusion: Preoperative subconjunctival injection of mitomycin C in low dose (0.1 ml of 0.15 mg/ml) a day before pterygium surgery is a simple and effective modality for management of recurrent pterygium. It has the advantage of low recurrence and complications’ rate. PMID:22824595
USDA-ARS?s Scientific Manuscript database
Bovine and caprine caseins were cross-linked with microbial transglutaminase (mTG). The mTG-cross-linked bovine or caprine casein dispersion, mixed with 14.5% maltodextrin (DE = 40), was used to prepare emulsions with 10.5% algae oil. Oxidative stability of emulsions was evaluated by peroxide valu...
Gong, Lan; Ramm, Georg; Devenish, Rodney J.; Prescott, Mark
2012-01-01
Genetically encoded fluorescent cross-linking agents represent powerful tools useful both for visualising and modulating protein interactions in living cells. The far-red fluorescent protein HcRed, which is fluorescent only in a dimer form, can be used to promote the homo-dimerisation of target proteins, and thereby yield useful information about biological processes. We have in yeast cells expressed HcRed fused to a subunit of mitochondrial ATP synthase (mtATPase). This resulted in cross-linking of the large multi-subunit mtATPase complex within the inner-membrane of the mitochondrion. Fluorescence microscopy revealed aberrant mitochondrial morphology, and mtATPase complexes isolated from mitochondria were recovered as fluorescent dimers under conditions where complexes from control mitochondria were recovered as monomers. When viewed by electron microscopy normal cristae were absent from mitochondria in cells in which mATPase complexes were cross-linked. mtATPase dimers are believed to be the building blocks that are assembled into supramolecular mtATPase ribbons that promote the formation of mitochondrial cristae. We propose that HcRed cross-links mATPase complexes in the mitochondrial membrane hindering the normal assembly/disassembly of the supramolecular forms of mtATPase. PMID:22496895
Mitomycin C induces multidrug resistance in glaucoma surgery.
Hueber, Arno; Esser, Johannes M; Kociok, Norbert; Welsandt, Gerhard; Lüke, Christoph; Roters, Sigrid; Esser, Peter J
2008-02-01
Despite the adjuvant use of mitomycin C during trabeculectomy, failures still occur. We investigated whether cultured human Tenon fibroblasts exposed to low-dose mitomycin C developed a multidrug resistance phenotype in vitro, and whether mitomycin C treatment during previous filtration surgery induces P-glycoprotein expression in vivo. Cultured human Tenon fibroblasts treated with low-dose 0.01 nM mitomycin C for 2 weeks were subsequently treated with 0.1 to 100 microM mitomycin C in the absence or presence of 4 microM verapamil, and allowed to recover for 24 hours. Low-dose mitomycin C-treated fibroblasts were analysed for P-glycoprotein expression using flow cytometry, immunoblotting, and RT-PCR for mdr-1 mRNA. In addition, fibroblasts were treated with low dose 0.1 nM 5-fluorouracil for 2 weeks and analysed for P-glycoprotein expression using flow cytometry. Expression of P-glycoprotein was analysed in surgically removed Tenon tissue (n = 30) using immunohistochemistry. Of the 30 patients, 20 had a previous trabeculectomy, of which nine had previous adjuvant therapy with mitomycin C during trabeculectomy. Partial resistance to mitomycin C after low-dose mitomycin C pre-treatment was significantly neutralised by the addition of verapamil. Low-dose mitomycin C up-regulated P-glycoprotein expression, but not mdr-1 mRNA expression. 5-Fluorouracil did not induce P-glycoprotein expression. P-glycoprotein expression was detected in all nine patients exposed to mitomycin C during previous trabeculectomies. Only six of 21 specimens from patients not previously exposed to mitomycin C showed faint P-glycoprotein expression. The induction of P-glycoprotein by mitomycin C could explain some failures that occur after repeated use of mitomycin C during trabeculectomy. The concomitant use of verapamil or the use of 5-fluorouracil alone could increase the success rate of repeat trabeculectomies.
Enhancement of lutetium texaphyrin phototherapy with Mitomycin C
NASA Astrophysics Data System (ADS)
Thiemann, Patricia A.; Woodburn, Kathryn W.
1998-05-01
Lutetium texaphyrin (Lu-Tex) photodynamic therapy (PDT) relies on the presence of the water-soluble Lu-Tex, oxygen, and light (activation around 730 nm). Cytotoxic oxygen species are produced that cause irreversible damage to biological substrates. Damage may be inflicted via direct cell kill mechanisms or through vasculature effects that cause hypoxia. The addition of hypoxia enhanced drugs, such as Mitomycin C (MMC), can potentially increase the anti-tumor response. RIF-1 bearing C3H mice received 10 micrometers ol Lu-Tex/kg and were illuminated with 100 J/cm2 3 hours postinjection. Mice received MMC (2.5 or 5 mg/kg, before and after light) in conjunction with PDT and were compared to subsets of drug alone controls. A significant improvement in PDT response was observed when MMC was added to the dosing regimen; the effect was more pronounced at the highest MMC dose of 5 mg/kg: MMC prior to PDT gave a median tumor regrowth time (10X original volume) of 28 days compared to MMC and PDT alone, 16.3 and 14.9 days, respectively. The anti-tumor activity of lutetium texaphyrin induced PDT was improved by the addition of the bioreductive alkylating agent mitomycin C.
Kakadiya, Rajesh; Dong, Huajin; Lee, Pei-Chih; Kapuriya, Naval; Zhang, Xiuguo; Chou, Ting-Chao; Lee, Te-Chang; Kapuriya, Kalpana; Shah, Anamik; Su, Tsann-Long
2009-08-01
A series of bifunctional DNA interstrand cross-linking agents, bis(hydroxymethyl)- and bis(carbamates)-8H-3a-azacyclopenta[a]indene-1-yl derivatives were synthesized for antitumor evaluation. The preliminary antitumor studies revealed that these agents exhibited potent cytotoxicity in vitro and antitumor therapeutic efficacy against human tumor xenografts in vivo. Furthermore, these derivatives have little or no cross-resistance to either Taxol or Vinblastine. Remarkably, complete tumor remission in nude mice bearing human breast carcinoma MX-1 xenograft by 13a,b and 14g,h and significant suppression against prostate adenocarcinoma PC3 xenograft by 13b were achieved at the maximum tolerable dose with relatively low toxicity. In addition, these agents induce DNA interstrand cross-linking and substantial G2/M phase arrest in human non-small lung carcinoma H1299 cells. The current studies suggested that these agents are promising candidates for preclinical studies.
Jost, Petr; Svobodova, Hana; Stetina, Rudolf
2015-07-25
Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Preparation and characterization of safe microparticles based on xylan.
Cartaxo da Costa Urtiga, Silvana; Aquino Azevedo de Lucena Gabi, Camilla; Rodrigues de Araújo Eleamen, Giovanna; Santos Souza, Bartolomeu; Pessôa, Hilzeth de Luna Freire; Marcelino, Henrique Rodrigues; Afonso de Moura Mendonça, Elisângela; Egito, Eryvaldo Sócrates Tabosa do; Oliveira, Elquio Eleamen
2017-10-01
This work describes the preparation and evaluation of safe xylan-based microparticles prepared by cross-linking polymerization using sodium trimetaphosphate. The resulting microparticles were evaluated for morphology, particle size, polymer-cross-link agent interaction, and in vitro toxicity. The microparticles showed narrow monodisperse size distributions with their mean sizes being between 3.5 and 12.5 µm in dried state. FT-IR analyzes confirmed the interaction between sodium trimetaphosphate and xylan during the cross-linking process with formation of phosphate ester bonds. Additionally, the X-ray diffraction patterns and FT-IR analyzes suggested that little or no cross-linking agent remained inside the microparticles. Furthermore, the in-vitro studies using Artemia salina and human erythrocytes revealed that the microparticles are not toxic. Therefore, the overall results suggest that these xylan microparticles can be used as a platform for new drug delivery system.
Adsorption of hexavalent chromium on modified corn stalk using different cross-linking agents
NASA Astrophysics Data System (ADS)
Chen, Suhong; Zhu, Yi; Han, Zhijun; Feng, Gao; Jia, Yuling; Fu, Kaifang; Yue, Qinyan
2017-12-01
In this study, four different types of adsorbents modified from corn stalk were synthesized after the reaction with epichlorohydrin, N,N-dimethylformamide, triethylamine and different cross-linking agents. The surface functional groups and thermal stability of modified corn stalk (MCSs) were characterized using FTIR and TG analysis, respectively. The feasibility of using MCSs to remove Cr(VI) were evaluated. Adsorption isotherms were determined and modeled with Langmuir, Freundlich and Temkin equations. The experimental results showed that MCS modified using diethylenetriamine (DETA) had the best modification effect, and the adsorption capacity of Cr(VI) reached as high as 227.27 mg/g at 323 K. Thermodynamic study showed that the Cr(VI) adsorption onto MCSs was endothermic processes. As a result, MCS by using DETA as cross-linking agent has good potential for the removal of Cr(VI) from aqueous solutions.
Rouprêt, M; Neuzillet, Y; Larré, S; Pignot, G; Coloby, P; Rébillard, X; Mongiat-Artus, P; Chartier-Kastler, E; Soulié, M; Pfister, C
2012-11-01
Intravesical BCG immunotherapy and mitomycin C are considered as the standard treatment for non-muscle invasive bladder cancer. These guidelines aim to describe the optimal condition to perform intravesical instillation of BCG or mitomycin C in order to increase its oncologic efficiency and to decrease its morbidity. Online systematic literature search was performed on PubMed(®) until April 2010. Regulation texts, published guidelines and results of recent urologists practice study were taken into consideration. Level of evidence was assigned to each recommendation. A bibliographic research in French and English using Medline(®) and Embase(®) with the keywords "BCG", "mitomycin C", "bladder", "complication", "toxicity", "adverse reaction", "prevention" and "treatment" was performed. Patient information must be prior to the first intravesical instillation and should be given through a medical exam by the physician performing the procedure. The check for formal contra-indication to BCG is systematically mandatory by the physician during the medical exam. Intravesical instillation must be realized in a health center where urologic endoscopic procedures are made frequently. A recent urine culture has to be checked systematically before any instillation done either by the urologist or a specialized nurse. Contingent upon a bladder catheter has been inserted in the bladder without any injury of the lower urinary tract, the instillation can be done. The pharmaceutical agent needs to be kept two hours in the bladder. After instillation, the patient must be seated to void and also has to keep in mind that he needs to drink at least 2 liters of water per day for 2 days. To improve the oncologic performance and to reduce the risk of complication and adverse event, achievement of intravesical instillations of BCG and/or mitomycin C should follow a standardized procedure. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Antifibrotic effects of tocotrienols on human Tenon's fibroblasts.
Tappeiner, Christoph; Meyenberg, Alexander; Goldblum, David; Mojon, Daniel; Zingg, Jean-Marc; Nesaretnam, Kalanithi; Kilchenmann, Monika; Frueh, Beatrice E
2010-01-01
To compare the antifibrotic effect of vitamin E isoforms alpha-, gamma-, and delta-tocotrienol on human Tenon's fibroblasts (hTf) to the antimetabolite mitomycin C. Antifibrotic effects of alpha- (40, 60, 80, 100, and 120 microM), gamma- (10, 20, 30, and 40 microM) and delta-tocotrienol (10, 20, 30, and 40 microM) on hTf cultures were evaluated by performing proliferation, migration and collagen synthesis assays. Whereas for vitamin E the exposure time was set to 7 days to mimic subconjunctival application, cultures were exposed only 5 min to mitomycin C 100 microg/ml to mimic intraoperative administration. Cell morphology (phase contrast microscopy) as an assessment for cytotoxicity and cell density by measuring DNA content in a fluorometric assay to determine proliferation inhibition was performed on day 0, 4, and 7. Migration ability and collagen synthesis of fibroblasts were measured. All tested tocotrienol isoforms were able to significantly inhibit hTf proliferation in a dose-dependent manner (maximal inhibitory effect without relevant morphological changes at day 4 for alpha-tocotrienol 80 microM with 36.7% and at day 7 for alpha-tocotrienol 80 microM with 42.6% compared to control). Degenerative cell changes were observed in cultures with concentrations above 80 microM for alpha- and above 30 microM for gamma- and delta-tocotrienol. The highest collagen synthesis inhibition has been found with 80 microM alpha-tocotrienol (62.4%) and no significant inhibition for mitomycin C (2.5%). Migration ability was significantly reduced in cultures exposed to 80 microM alpha- and 30 microM gamma-tocotrienol (inhibition of 82.2% and 79.5%, respectively, compared to control) and also after mitomycin C treatment (60.0%). Complete growth inhibition without significant degenerative cell changes could only be achieved with mitomycin C. In vitro, all tested tocotrienol isoforms were able to inhibit proliferation, migration and collagen synthesis of human Tenon's fibroblasts and therefore may have the potential as an anti-scarring agent in filtrating glaucoma surgery.
Latt, S A; Stetten, G; Juergens, L A; Buchanan, G R; Gerald, P S
1975-10-01
Sister chromatid exchanges, which may reflect chromosome repair in response to certain types of DNA damage, provide a means of investigating the increased chromosome fragility characteristic of Fanconi's anemia. By a recently developed technique using 33258 Hoechst and 5-bromodeoxyuridine, it was observed that the baseline frequency of sister chromatid exchanges in phytohemagglutinin-stimulated lymphocytes from four males with Fanconi's anemia differed little from that of normal lymphocytes. However, addition of the bifunctional alkylating agent mitomycin C (0.01 or 0.03 mug/ml) to the Fanconi's anemia cells during culture induces less than half of the increase in exchanges found in identically treated normal lymphocytes. This reduced increment in exchanges in accompanied by a partial suppression of mitosis and a marked increase in chromatid breaks and rearrangements. Many of these events occur at sites of incomplete chromatid interchange. The increase in sister chromatid exchanges induced in Fanconi's anemia lymphocytes by the monofunctional alkylating agent ethylmethane sulfonate (0.25 mg/ml) was slightly less than that in normal cells. Lymphocytes from two sets of parents of the patients with Fanconi's anemia exhibited a normal response to alkylating agents, while dermal fibroblasts from two different patients with Fanconi's anemia reacted to mitomycin C with an increase in chromatid breaks, but a nearly normal increment of sister chromatid exchanges. The results suggest that chromosomal breaks and rearrangements in Fanconi's anemia lymphocytes may result from a defect in a form of repair of DNA damage.
Cui, Jian-Dong; Zhang, Si; Sun, Li-Mei
2012-06-01
Cross-linked enzyme aggregates of phenylalanine ammonia lyase (PAL-CLEAs) from Rhodotorula glutinis were prepared. The effects of the type of aggregating agent, its concentration, and that of cross-linking agent were studied. PAL-CLEAs production was most effective using ammonium sulfate (40 % saturation), followed by cross-linking for 1 h with 0.2 % (v/v) glutaraldehyde. Moreover, the storage and operational stability of the resulting PAL-CLEAs were also investigated. Compared to the free enzyme, the PAL-CLEAs exhibited the expected increased stability of the enzyme against various deactivating conditions such as pH, temperature, denaturants, and organic solvents and showed higher storage stability than its soluble counterpart. Additionally, the reusability of PAL-CLEAs with respect to the biotransformation of L-phenylalanine was evaluated. PAL-CLEAs could be recycled at least for 12 consecutive batch reactions without dramatic activity loss, which should dramatically increase the commercial potential of PAL for synthesis of L: -phenylalanine. To the best of our knowledge, this is the first report of immobilization of PAL as cross-linked enzyme aggregates.
Impact of polymer modification on mechanical and viscoelastic properties.
DOT National Transportation Integrated Search
2015-10-01
This study was initiated with the aim of evaluating the relative impact of different cross-linking agents : on the rheological and morphological properties of polymer modified asphalt binders (PMAs). To : complete this objective, two cross-linking ag...
Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; ...
2016-01-08
As creep of polymeric materials is potentially a safety concern for photovoltaic modules, the potential for module creep has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. To investigate the possibility of creep, modules were constructed, using several thermoplastic encapsulant materials, into thin-film mock modules and deployed in Mesa, Arizona. The materials examined included poly(ethylene)-co-vinyl acetate (EVA, including formulations both cross-linked and with no curing agent), polyethylene/polyoctene copolymer (PO), poly(dimethylsiloxane) (PDMS), polyvinyl butyral (PVB), and thermoplastic polyurethane (TPU). The absence of creep in this experiment is attributable to several factors of which themore » most notable one was the unexpected cross-linking of an EVA formulation without a cross-linking agent. It was also found that some materials experienced both chain scission and cross-linking reactions, sometimes with a significant dependence on location within a module. The TPU and EVA samples were found to degrade with cross-linking reactions dominating over chain scission. In contrast, the PO materials degraded with chain scission dominating over cross-linking reactions. Furthermore, we found no significant indications that viscous creep is likely to occur in fielded modules capable of passing the qualification tests, we note that one should consider how a polymer degrades, chain scission or cross-linking, in assessing the suitability of a thermoplastic polymer in terrestrial photovoltaic applications.« less
Poly(iohexol) nanoparticles as contrast agents for in vivo X-ray computed tomography imaging.
Yin, Qian; Yap, Felix Y; Yin, Lichen; Ma, Liang; Zhou, Qin; Dobrucki, Lawrence W; Fan, Timothy M; Gaba, Ron C; Cheng, Jianjun
2013-09-18
Biocompatible poly(iohexol) nanoparticles, prepared through cross-linking of iohexol and hexamethylene diisocyanate followed by coprecipitation of the resulting cross-linked polymer with mPEG-polylactide, were utilized as contrast agents for in vivo X-ray computed tomography (CT) imaging. Compared to conventional small-molecule contrast agents, poly(iohexol) nanoparticles exhibited substantially protracted retention within the tumor bed and a 36-fold increase in CT contrast 4 h post injection, which makes it possible to acquire CT images with improved diagnosis accuracy over a broad time frame without multiple administrations.
VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Fang; Li, Xiuli; Kong, Jian
2013-11-08
Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarianmore » cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.« less
Ludwig, C U; Stoll, H R; Obrist, R; Obrecht, J P
1987-03-01
Accidental subcutaneous extravasation of several antineoplastic agents may provoke skin ulcerations for which there has been no simple and effective treatment. Since January 1983 we have treated all patients in our institution sustaining extravasation by a cytotoxic drug with a combination of DMSO and alpha-Tocopherole. During the first 48 hr after extravasation a mixture of 10% alpha-Tocopherole acetate and 90% DMSO was topically applied. The bandage was changed every 12 hr. So far eight patients with extravasation of an anthracycline or Mitomycin were treated on this protocol. No skin ulceration, functional or neurovascular impairment occurred in any of these patients. The only toxic effect observed by this treatment was a minor skin irritation. The combination of DMSO and alpha-Tocopherole seems to prevent skin ulceration induced by anthracyclines and Mitomycin.
Absence of cross-resistance between two alkylating agents: BCNU vs bifunctional galactitol.
Institóris, E; Szikla, K; Otvös, L; Gál, F
1989-01-01
Dianhydrogalactitol (DAG) increased the life span of both BCNU-sensitive and -resistant L1210 tumor-bearing mice. However, the BCNU-resistant strain showed slightly lower sensitivity against DAG, which could be overcome by an increase in drug dose of ca. 20%. The somewhat lower sensitivity was proportional to a slightly reduced DNA cross-linking formation induced by DAG in BCNU-resistant cells. The amount of DNA cross-links was determined by measurement of the 1,6-di(guaninyl)-galactitol content of DNA. The slight reduction in cross-links is not attributable to DNA repair but rather to other factors that seem to prevent the formation of DNA-drug adducts. The absence of cross-resistance is explained by different kinds of DNA damage caused by the two alkylating agents and the presumably different defense mechanisms developed by cells against these lesions.
Alper, M D; Ames, B N
1975-01-01
We have developed a convenient and specific positive selection for long deletions through the gal region of the chromosomes of Salmonella typhimurium and Escherichia coli. Through simultaneous selection for mutations in the two closely linked genes, gal and chlA, a variety of deletions of varying length, some extending through as much as 1 min of the chromosome, could be readily obtained. Many of these deletions resulted in the loss of a gene, which we named dhb, concerned with the ability of the bacterium to synthesize the iron chelating agent enterobactin. The selection was adapted for the screening of mutagens for their ability to generate long deletions in the bacterial deoxyribonucleic acid. Forty agents were screened for this capability. Nitrous acid, previously reported to be an efficient mutagen for this purpose, increased the frequency of deletion mutations 50-fold in our system. Three others, nitrogen mustard, mitomycin C, and fast neutrons, were shown to increase the frequency of long deletions between five- and eightfold. The remainder were found to be incapable of generating these deletions. PMID:1090571
Sun, Jingjing; Tang, Xinjing
2015-01-01
DNA cross-linking technology is an attractive tool for the detection, regulation, and manipulation of genes. In this study, a series of photolabile 4-oxo-enal-modified oligonucleotides functionalized with photosensitive ο-nitrobenzyl derivatives were rationally designed as a new kind of photocaged cross-linking agents. A comprehensive evaluation of cross-linking reactions for different nucleobases in complementary strands under different conditions suggested that the modified DNA oligonucleotides tended to form interstrand cross-linking to nucleobases with the potential of thymidine > guanosine » cytidine ~ adenosine. Different from previous literature reports that cytidine and adenosine were preferential cross-linked nucleobases with 4-oxo-enal moieties, our study represents the first example of DNA cross-linking for T and G selectivity using 4-oxo-enal moiety. The cross-linked adducts were identified and their cross-linking mechanism was also illustrated. This greatly expands the applications of 4-oxo-enal derivatives in the studies of DNA damage and RNA structure PMID:26020694
Sun, Jingjing; Tang, Xinjing
2015-05-28
DNA cross-linking technology is an attractive tool for the detection, regulation, and manipulation of genes. In this study, a series of photolabile 4-oxo-enal-modified oligonucleotides functionalized with photosensitive ο-nitrobenzyl derivatives were rationally designed as a new kind of photocaged cross-linking agents. A comprehensive evaluation of cross-linking reactions for different nucleobases in complementary strands under different conditions suggested that the modified DNA oligonucleotides tended to form interstrand cross-linking to nucleobases with the potential of thymidine > guanosine » cytidine ~ adenosine. Different from previous literature reports that cytidine and adenosine were preferential cross-linked nucleobases with 4-oxo-enal moieties, our study represents the first example of DNA cross-linking for T and G selectivity using 4-oxo-enal moiety. The cross-linked adducts were identified and their cross-linking mechanism was also illustrated. This greatly expands the applications of 4-oxo-enal derivatives in the studies of DNA damage and RNA structure.
2015-01-01
Reducing host toxicity is one of the main challenges of cancer chemotherapy. Many tumor cells contain high levels of ROS that make them distinctively different from normal cells. We report a series of ROS-activated aromatic nitrogen mustards that selectively kill chronic lymphocytic leukemia (CLL) over normal lymphocytes. These agents showed powerful DNA cross-linking abilities when coupled with H2O2, one of the most common ROS in cancer cells, whereas little DNA cross-linking was detected without H2O2. Consistent with chemistry observation, in vitro cytotoxicity assay demonstrated that these agents induced 40–80% apoptosis in primary leukemic lymphocytes isolated from CLL patients but less than 25% cell death to normal lymphocytes from healthy donors. The IC50 for the most potent compound (2) was ∼5 μM in CLL cells, while the IC50 was not achieved in normal lymphocytes. Collectively, these data provide utility and selectivity of these agents that will inspire further and effective applications. PMID:24801734
Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex
NASA Astrophysics Data System (ADS)
Truong, Quang Duc; Kakihana, Masato
2012-06-01
A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.
Sharma, Narinder K
2013-09-01
Apigenin (APG), a flavone, is known to exhibit antioxidant, antimutagenic and antitumorigenic activity, both in vivo and in vitro. The aim of this study is to investigate the modulatory effects of APG on human lymphocytes after irradiation with gamma rays (3 Gy) or treatment with the antineoplastic agent, mitomycin C (MMC), in vitro. Cytogenetic biomarkers such as chromosome aberrations (CAs), sister chromatid exchanges (SCEs) and cytochalasin-B blocked micronuclei (CBMN), were studied in blood lymphocytes treated with radiation, or antineoplastic agent (MMC), and APG. Whole blood lymphocytes were cultured in vitro using a standard protocol. No significant differences were found in the frequency of CAs or micronuclei (MN) in human peripheral blood lymphocytes irradiated with gamma rays (3 Gy) and then post-treated with APG. There was an increase in the frequency of SCEs per cell in APG-treated samples compared with the controls. Lymphocytes treated with MMC in the presence of APG exhibited a significant decrease (P < 0.01) in the frequency of SCEs compared with MMC treatment alone. The data for the MN test indicated that APG treatment significantly reduced (P < 0.01) the frequency of MMC-induced MN.
Sharma, Narinder K.
2013-01-01
Apigenin (APG), a flavone, is known to exhibit antioxidant, antimutagenic and antitumorigenic activity, both in vivo and in vitro. The aim of this study is to investigate the modulatory effects of APG on human lymphocytes after irradiation with gamma rays (3 Gy) or treatment with the antineoplastic agent, mitomycin C (MMC), in vitro. Cytogenetic biomarkers such as chromosome aberrations (CAs), sister chromatid exchanges (SCEs) and cytochalasin-B blocked micronuclei (CBMN), were studied in blood lymphocytes treated with radiation, or antineoplastic agent (MMC), and APG. Whole blood lymphocytes were cultured in vitro using a standard protocol. No significant differences were found in the frequency of CAs or micronuclei (MN) in human peripheral blood lymphocytes irradiated with gamma rays (3 Gy) and then post-treated with APG. There was an increase in the frequency of SCEs per cell in APG-treated samples compared with the controls. Lymphocytes treated with MMC in the presence of APG exhibited a significant decrease (P < 0.01) in the frequency of SCEs compared with MMC treatment alone. The data for the MN test indicated that APG treatment significantly reduced (P < 0.01) the frequency of MMC-induced MN. PMID:23764456
NASA Astrophysics Data System (ADS)
Abolmaali, Samira Sadat; Tamaddon, Ali Mohammad; Dinarvand, Rasoul
2013-12-01
Soft polymeric nanomaterials were synthesized by the template-assisted method involving self-association of methoxy polyethylene glycol- g-branched polyethyleneimine (mPEG- g-branched PEI) ionomer by transition metal ions such as Zn2+ followed by chemical cross-linking of the polyamine core by dithiopropionic acid. The formation of donor-acceptor complexes of Zn2+ and PEI ionomer was characterized by FT-IR spectroscopy and potentiometric titration. Turbidimetry was performed to study the solution property of the complexes which depended on pH, relative weight fraction of mPEG, and the molar ratio of Zn2+. The cross-linking reaction was studied by TNBS assay, 1H-NMR, and size exclusion chromatography. Upon removal of Zn2+ from cl-mPEG- g-branched PEI/Zn2+ at pH 3 by dialysis, the resulting cross-linked self-assembly represented a uniform, stable, and less positively charged hydrogel-like nanosphere with an intensity-averaged size ranging from 150 to 250 nm as determined by a Zetasizer. Atomic forced microscopy imaging was performed in intermittent contact mode in air that revealed discrete and oval-to-spherically shaped particles with average sizes ranging from 40 to 50 nm depending on the degree of cross-linking. This functional nanocarrier is expected to exhibit some key features such as active encapsulation of negatively charged hydrophilic agents in the swollen core of polyamine network and a hydrophilic mPEG shell which provides an increased solubility and passive targeting of active pharmaceutical agents to impaired tissues. The nano-hydrogels especially at 12 % degrees of cross-link demonstrated excellent biocompatibility determined by different experiments such as albumin aggregation, erythrocyte aggregation, hemolysis, and MTT cytotoxicity assay. Moreover, biodegradability of the cross-links as shown by the Ellman assay can offer a time-dependent degradation and redox-stimulated release of active agents.
ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents
NASA Astrophysics Data System (ADS)
Ding, Rui
Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.
Jeon, S; Djian, P; Green, H
1998-01-20
Epidermal keratinocytes, late in their terminal differentiation, form cross-linked envelopes resistant to ionic detergent and reducing agent. Because the cross-linking process is catalyzed by the keratinocyte transglutaminase, the absence of active transglutaminase should result in failure of the keratinocyte to form a cross-linked envelope. Three keratinocyte strains bearing mutations in the keratinocyte transglutaminase were examined: two contained no detectable transglutaminase mRNA and none contained active enzyme. All three were unable to form cross-linked envelopes, either spontaneously in stratified cultures or upon induction with Ca2+. Although stratum corneum of normal humans and scales from patients with different ichthyotic diseases contain cross-linked envelopes, those from patients with transglutaminase-negative lamellar ichthyosis do not. Therefore, the disease due to the absence of transglutaminase may be readily distinguished from other ichthyotic disease by a simple test for cross-linked envelopes.
Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.
Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G
2016-03-09
Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents.
NASA Astrophysics Data System (ADS)
Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.
In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.
Porous Cross-Linked Polyimide Networks
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)
2015-01-01
Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.
Stachel, Ines; Schwarzenbolz, Uwe; Henle, Thomas; Meyer, Michael
2010-03-08
Collagen is a popular biomaterial. To deal with its lack of thermal stability and its weak resistance to proteolytic degradation, collagen-based materials are stabilized via different cross-linking procedures. Regarding the potential toxicity of residual cross-linking agents, enzyme-mediated cross-linking would provide an alternative and nontoxic method for collagen stabilization. The results of this study show that type I collagen is a substrate for mTG. However, epsilon-(gamma-glutamyl)lysine cross-links are only incorporated at elevated temperatures when the protein is partially or completely denatured. A maximum number of 5.4 cross-links per collagen monomer were found for heat-denatured collagen. Labeling with the primary amine monodansylcadaverine revealed that at least half of the cross-links are located within the triple helical region of the collagen molecule. Because the triple helix is highly ordered in its native state, this finding might explain why the glutamine residues are inaccessible for mTG under nondenaturing conditions.
Abulateefeh, Samer R; Taha, Mutasem O
2015-01-01
Calcium alginate nanoparticles (NPs) suffer from sub-optimal stability in bio-relevant media leading to low drug encapsulation efficiency and uncontrolled release profiles. To sort out these drawbacks, a novel approach is proposed herein based on introducing tannic acid into these NPs to act as a bridging cross-linking aid agent. Calcium-alginate NPs were prepared by the ionotropic gelation method and loaded with diltiazem hydrochloride as a model drug. These NPs were characterized in terms of particle size, zeta potential, and morphology, and results were explained in accordance with Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The incorporation of tannic acid led to more than four folds increase in drug encapsulation efficiency (i.e. from 15.3% to 69.5%) and reduced burst drug release from 44% to around 10% within the first 30 min. These findings suggest the possibility of improving the properties of Ca-alginate NPs by incorporating cross-linking aid agents under mild conditions.
Drug Eluting Stents for Malignant Airway Obstruction: A Critical Review of the Literature
Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul; Pitsiou, Georgia; Linsmeier, Bernd; Tsavlis, Drosos; Kioumis, Ioannis; Papadaki, Eleni; Freitag, Lutz; Tsiouda, Theodora; Turner, J Francis; Browning, Robert; Simoff, Michael; Sachpekidis, Nikolaos; Tsakiridis, Kosmas; Zaric, Bojan; Yarmus, Lonny; Baka, Sofia; Stratakos, Grigoris; Rittger, Harald
2016-01-01
Lung cancer being the most prevalent malignancy in men and the 3rd most frequent in women is still associated with dismal prognosis due to advanced disease at the time of diagnosis. Novel targeted therapies are already on the market and several others are under investigation. However non-specific cytotoxic agents still remain the cornerstone of treatment for many patients. Central airways stenosis or obstruction may often complicate and decrease quality of life and survival of these patients. Interventional pulmonology modalities (mainly debulking and stent placement) can alleviate symptoms related to airways stenosis and improve the quality of life of patients. Mitomycin C and sirolimus have been observed to assist a successful stent placement by reducing granuloma tissue formation. Additionally, these drugs enhance the normal tissue ability against cancer cell infiltration. In this mini review we will concentrate on mitomycin C and sirolimus and their use in stent placement. PMID:26918052
Matsiaka, Oleksii M; Penington, Catherine J; Baker, Ruth E; Simpson, Matthew J
2018-04-01
Scratch assays are routinely used to study the collective spreading of cell populations. In general, the rate at which a population of cells spreads is driven by the combined effects of cell migration and proliferation. To examine the effects of cell migration separately from the effects of cell proliferation, scratch assays are often performed after treating the cells with a drug that inhibits proliferation. Mitomycin-C is a drug that is commonly used to suppress cell proliferation in this context. However, in addition to suppressing cell proliferation, mitomycin-C also causes cells to change size during the experiment, as each cell in the population approximately doubles in size as a result of treatment. Therefore, to describe a scratch assay that incorporates the effects of cell-to-cell crowding, cell-to-cell adhesion, and dynamic changes in cell size, we present a new stochastic model that incorporates these mechanisms. Our agent-based stochastic model takes the form of a system of Langevin equations that is the system of stochastic differential equations governing the evolution of the population of agents. We incorporate a time-dependent interaction force that is used to mimic the dynamic increase in size of the agents. To provide a mathematical description of the average behaviour of the stochastic model we present continuum limit descriptions using both a standard mean-field approximation and a more sophisticated moment dynamics approximation that accounts for the density of agents and density of pairs of agents in the stochastic model. Comparing the accuracy of the two continuum descriptions for a typical scratch assay geometry shows that the incorporation of agent growth in the system is associated with a decrease in accuracy of the standard mean-field description. In contrast, the moment dynamics description provides a more accurate prediction of the evolution of the scratch assay when the increase in size of individual agents is included in the model.
Sui, Tao; Ge, Da-Wei; Yang, Lei; Tang, Jian; Cao, Xiao-Jian; Ge, Ying-Bin
2017-04-01
Numerous studies have shown that topical application of mitomycin C after surgical decompression effectively reduces scar adhesion. However, the underlying mechanisms remain unclear. In this study, we investigated the effect of mitomycin C on the proliferation and apoptosis of human epidural scar fibroblasts. Human epidural scar fibroblasts were treated with various concentrations of mitomycin C (1, 5, 10, 20, 40 μg/mL) for 12, 24 and 48 hours. Mitomycin C suppressed the growth of these cells in a dose- and time-dependent manner. Mitomycin C upregulated the expression levels of Fas, DR4, DR5, cleaved caspase-8/9, Bax, Bim and cleaved caspase-3 proteins, and it downregulated Bcl-2 and Bcl-xL expression. In addition, inhibitors of caspase-8 and caspase-9 (Z-IETD-FMK and Z-LEHD-FMK, respectively) did not fully inhibit mitomycin C-induced apoptosis. Furthermore, mitomycin C induced endoplasmic reticulum stress by increasing the expression of glucose-regulated protein 78, CAAT/enhancer-binding protein homologous protein (CHOP) and caspase-4 in a dose-dependent manner. Salubrinal significantly inhibited the mitomycin C-induced cell viability loss and apoptosis, and these effects were accompanied by a reduction in CHOP expression. Our results support the hypothesis that mitomycin C induces human epidural scar fibroblast apoptosis, at least in part, via the endoplasmic reticulum stress pathway.
Structural characterization of the mitomycin 7-O-methyltransferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Shanteri; Chang, Aram; Goff, Randal D.
2014-10-02
Mitomycins are quinone-containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin-7-O-methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae, catalyzes the 7-O-methylation of both C9{beta}- and C9{alpha}-configured 7-hydroxymitomycins. We have determined the crystal structures of the MmcR-S-adenosylhomocysteine (SAH) binary complex and MmcR-SAH-mitomycin A (MMA) ternary complex at resolutions of 1.9 and 2.3 {angstrom}, respectively. The study revealed MmcR to adopt a common S-adenosyl-L-methionine-dependent O-methyltransferase fold and the presence of a structurally conserved active site general acid-base pair is consistent with a proton-assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylationmore » to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins.« less
Modified carbohydrate-chitosan compounds, methods of making the same and methods of using the same
Venditti, Richard A; Pawlak, Joel J; Salam, Abdus; El-Tahlawy, Khaled Fathy
2015-03-10
Compositions of matter are provided that include chitosan and a modified carbohydrate. The modified carbohydrate includes a carbohydrate component and a cross linking agent. The modified carbohydrate has increased carboxyl content as compared to an unmodified counterpart carbohydrate. A carboxyl group of the modified carbohydrate is covalently bonded with an amino group of chitosan. The compositions of matter provided herein may include cross linked starch citrate-chitosan and cross linked hemicellulose citrate-chitosan, including foams thereof. These compositions yield excellent absorbency and metal chelation properties. Methods of making cross linked modified carbohydrate-chitosan compounds are also provided.
Mitomycin C and endoscopic sinus surgery: where are we?
Tabaee, Abtin; Brown, Seth M; Anand, Vijay K
2007-02-01
Mitomycin C has been used successfully in various ophthalmologic and, more recently, otolaryngologic procedures. Its modulation of fibroblast activity allows for decreased scarring and fibrosis. Several recent trials have examined the efficacy of mitomycin C in reducing synechia and stenosis following endoscopic sinus surgery. Basic science studies using fibroblast cell lines have demonstrated a dose-dependent suppression of activity with the use of mitomycin C. This is further supported by animal studies that have shown lower rates of maxillary ostial restenosis following application of mitomycin C. No human trial, however, has demonstrated a statistically significant impact of mitomycin C on the incidence of postoperative synechia or stenosis following sinus surgery. The limitations of the literature are discussed. The antiproliferative properties of mitomycin C may theoretically decrease the incidence of synechia and stenosis following endoscopic sinus surgery. Although this is supported by basic science studies and its successful use in other fields, the clinical evidence to date has not shown the application of mitomycin C to be effective in preventing stenosis after endoscopic sinus surgery. Future prospective studies are required before definitive conclusions can be made.
Irinotecan as a new agent for urachal cancer.
Kume, Haruki; Tomita, Kyoichi; Takahashi, Sayuri; Fukutani, Keiko
2006-01-01
The urachal carcinoma, in a 64-year-old male with multiple lung metastases, had shown the resistance to several anti-neoplastic agents including cisplatinum, methotrexate, 5-FU, doxorubicin, epirubicin, and mitomycin C. Because the tumor was adenocarcinoma producing mucin and serum carcinoembryonic antigen (CEA) increased, which resembled colorectal carcinoma, we administrated Irinotecan, which was very effective as the CEA decreased from 98.3 to 38.7 ng/ml and the pulmonary metastatic lesions were reduced by 60%. To our knowledge, this is the first case with urachal carcinoma in which Irinotecan was effective. Copyright (c) 2006 S. Karger AG, Basel.
Sulfolane-Cross-Polybenzimidazole Membrane For Gas Separation
Young, Jennifer S.; Long, Gregory S.; Espinoza, Brent F.
2006-02-14
A cross-linked, supported polybenzimidazole membrane for gas separation is prepared by reacting polybenzimidazole (PBI) with the sulfone-containing crosslinking agent 3,4-dichloro-tetrahydro-thiophene-1,1-dioxide. The cross-linked reaction product exhibits enhanced gas permeability to hydrogen, carbon dioxide, nitrogen, and methane as compared to the unmodified analog, without significant loss of selectivity, at temperatures from about 20 degrees Celsius to about 400 degrees Celsius.
Photoinduced DNA Interstrand Cross-Link Formation by Naphthalene Boronates via a Carbocation.
Wang, Yibin; Lin, Zechao; Fan, Heli; Peng, Xiaohua
2016-07-18
Most photoinduced DNA cross-link formation by a bifunctional aryl derivative is through a bisquinone methide. DNA cross-linking via a bisarylcarbocation remains a less explored area. We designed and synthesized a series of naphthalene boronates that produce DNA interstrand cross-links via a carbocation upon UV irradiation. A free radical was generated from the naphthalene boronates with 350 nm irradiation and further converted to a carbocation by electron transfer. The activation mechanism was determined using the orthogonal traps, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and methoxyamine that react with either the free radical or the carbocation but not both. This represents a novel example of photoinduced DNA cross-link formation via carbocations generated from a bisaryl derivative. This work provides information useful for the design of novel photoactivated DNA cross-linking agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jeon, Saewha; Djian, Philippe; Green, Howard
1998-01-01
Epidermal keratinocytes, late in their terminal differentiation, form cross-linked envelopes resistant to ionic detergent and reducing agent. Because the cross-linking process is catalyzed by the keratinocyte transglutaminase, the absence of active transglutaminase should result in failure of the keratinocyte to form a cross-linked envelope. Three keratinocyte strains bearing mutations in the keratinocyte transglutaminase were examined: two contained no detectable transglutaminase mRNA and none contained active enzyme. All three were unable to form cross-linked envelopes, either spontaneously in stratified cultures or upon induction with Ca2+. Although stratum corneum of normal humans and scales from patients with different ichthyotic diseases contain cross-linked envelopes, those from patients with transglutaminase-negative lamellar ichthyosis do not. Therefore, the disease due to the absence of transglutaminase may be readily distinguished from other ichthyotic diseases by a simple test for cross-linked envelopes. PMID:9435253
Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors
NASA Astrophysics Data System (ADS)
Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee
2016-01-01
Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.
Tunable Elastomers with an Antithrombotic Component for Cardiovascular Applications.
Stahl, Alexander M; Yang, Yunzhi Peter
2018-05-31
This study reports the development of a novel family of biodegradable polyurethanes for use as tissue engineered cardiovascular scaffolds or blood-contacting medical devices. Covalent incorporation of the antiplatelet agent dipyridamole into biodegradable polycaprolactone-based polyurethanes yields biocompatible materials with improved thromboresistance and tunable mechanical strength and elasticity. Altering the ratio of the dipyridamole to the diisocyanate linking unit and the polycaprolactone macromer enables control over both the drug content and the polymer cross-link density. Covalent cross-linking in the materials achieves significant elasticity and a tunable range of elastic moduli similar to that of native cardiovascular tissues. Interestingly, the cross-link density of the polyurethanes is inversely related to the elastic modulus, an effect attributed to decreasing crystallinity in the more cross-linked polymers. In vitro characterization shows that the antiplatelet agent is homogeneously distributed in the materials and is released slowly throughout the polymer degradation process. The drug-containing polyurethanes support endothelial cell and vascular smooth muscle cell proliferation, while demonstrating reduced levels of platelet adhesion and activation, supporting their candidacy as promising substrates for cardiovascular tissue engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015-01-01
Prodrugs of 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) are promising anticancer agents. The 90CE moiety is a readily latentiated, short-lived (t1/2 ∼ 30 s) chloroethylating agent that can generate high yields of oxophilic electrophiles responsible for the chloroethylation of the O-6 position of guanine in DNA. These guanine O-6 alkylations are believed to be responsible for the therapeutic effects of 90CE and its prodrugs. Thus, 90CE demonstrates high selectivity toward tumors with diminished levels of O6-alkylguanine-DNA alkyltransferase (MGMT), the resistance protein responsible for O6-alkylguanine repair. The formation of O6-(2-chloroethyl)guanine lesions ultimately leads to the generation of highly cytotoxic 1-(N3-cytosinyl),-2-(N1-guaninyl)ethane DNA interstrand cross-links via N1,O6-ethanoguanine intermediates. The anticancer activity arising from this sequence of reactions is thus identical to this component of the anticancer activity of the clinically used chloroethylnitrosoureas. Herein, we evaluate the ability of glutathione (GSH) and other low molecular weight thiols, as well as GSH coupled with various glutathione S-transferase enzymes (GSTs) to attenuate the final yields of cross-links generated by 90CE when added prior to or immediately following the initial chloroethylation step to determine the major point(s) of interaction. In contrast to studies utilizing BCNU as a chloroethylating agent by others, GSH (or GSH/GST) did not appreciably quench DNA interstrand cross-link precursors. While thiols alone offered little protection at either alkylation step, the GSH/GST couple was able to diminish the initial yields of cross-link precursors. 90CE exhibited a very different GST isoenzyme susceptibility to that reported for BCNU, this could have important implications in the relative resistance of tumor cells to these agents. The protection afforded by GSH/GST was compared to that produced by MGMT. PMID:25012050
Penketh, Philip G; Patridge, Eric; Shyam, Krishnamurthy; Baumann, Raymond P; Zhu, Rui; Ishiguro, Kimiko; Sartorelli, Alan C
2014-08-18
Prodrugs of 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) are promising anticancer agents. The 90CE moiety is a readily latentiated, short-lived (t1/2 ∼ 30 s) chloroethylating agent that can generate high yields of oxophilic electrophiles responsible for the chloroethylation of the O-6 position of guanine in DNA. These guanine O-6 alkylations are believed to be responsible for the therapeutic effects of 90CE and its prodrugs. Thus, 90CE demonstrates high selectivity toward tumors with diminished levels of O(6)-alkylguanine-DNA alkyltransferase (MGMT), the resistance protein responsible for O(6)-alkylguanine repair. The formation of O(6)-(2-chloroethyl)guanine lesions ultimately leads to the generation of highly cytotoxic 1-(N(3)-cytosinyl),-2-(N(1)-guaninyl)ethane DNA interstrand cross-links via N(1),O(6)-ethanoguanine intermediates. The anticancer activity arising from this sequence of reactions is thus identical to this component of the anticancer activity of the clinically used chloroethylnitrosoureas. Herein, we evaluate the ability of glutathione (GSH) and other low molecular weight thiols, as well as GSH coupled with various glutathione S-transferase enzymes (GSTs) to attenuate the final yields of cross-links generated by 90CE when added prior to or immediately following the initial chloroethylation step to determine the major point(s) of interaction. In contrast to studies utilizing BCNU as a chloroethylating agent by others, GSH (or GSH/GST) did not appreciably quench DNA interstrand cross-link precursors. While thiols alone offered little protection at either alkylation step, the GSH/GST couple was able to diminish the initial yields of cross-link precursors. 90CE exhibited a very different GST isoenzyme susceptibility to that reported for BCNU, this could have important implications in the relative resistance of tumor cells to these agents. The protection afforded by GSH/GST was compared to that produced by MGMT.
Ma, Jiachen; Zhang, Luqing; Geng, Bing; Azhar, Umair; Xu, Anhou; Zhang, Shuxiang
2017-01-25
In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl) methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer (RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide- b - N -isopropylacrylamide) (PDMA- b -PNIPAM) that performed a dual function as both a nanoreactor and macro-RAFT agent. The cross-linked polymer particles proved to be in a spherical-like structure of about 50 nm in diameter and with a relatively narrow particle size distribution. ¹H-NMR and 19 F-NMR spectra showed that thermo-responsive diblock P(DMA- b -NIPAM) and cross-linked PTFEMA particles were successfully synthesized. Influence of the amount of ammonium persulfate (APS), the molar ratio of monomers to RAFT agent, influence of the amount of cross-linker on aqueous polymerization and thermo-responsive characterization of the particles are investigated. Monomer conversion increased from 44% to 94% with increasing the molar ratio of APS and P(DMA- b -NIPAM) from 1:9 to1:3. As the reaction proceeded, the particle size increased from 29 to 49 nm due to the consumption of TFEMA monomer. The size of cross-linked nanoparticles sharply decreased from 50.3 to 40.5 nm over the temperature range 14-44 °C, suggesting good temperature sensitivity for these nanoparticles.
Martínez, Sandra; Pérez, Laura; Galmarini, Carlos M; Aracil, Miguel; Tercero, Juan C; Gago, Federico; Albella, Beatriz; Bueren, Juan A
2013-10-01
We have previously shown that cells with a defective Fanconi anaemia (FA) pathway are hypersensitive to trabectedin, a DNA-binding anti-cancer tetrahydroisoquinoline (DBAT) whose adducts functionally mimic a DNA inter-strand cross link (ICL). Here we expand these observations to new DBATs and investigate whether our findings in primary untransformed cells can be reproduced in human cancer cells. Initially, the sensitivity of transformed and untransformed cells, deficient or not in one component of the FA pathway, to mitomycin C (MMC) and three DBATs, trabectedin, Zalypsis and PM01183, was assessed. Then, the functional interaction of these drugs with the FA pathway was comparatively investigated. While untransformed FA-deficient haematopoietic cells were hypersensitive to both MMC and DBATs, the response of FA-deficient squamous cell carcinoma (SCC) cells to DBATs was similar to that of their respective FA-competent counterparts, even though these FA-deficient SCC cells were hypersensitive to MMC. Furthermore, while MMC always activated the FA pathway, the DBATs inhibited the FA pathway in the cancer cell lines tested and this enhanced their response to MMC. Our data show that although DBATs functionally interact with DNA as do agents that generate classical ICL, these drugs should be considered as FA pathway inhibitors rather than activators. Moreover, this effect was most significant in a variety of cancer cells. These inhibitory effects of DBATs on the FA pathway could be exploited clinically with the aim of 'fanconizing' cancer cells in order to make them more sensitive to other anti-tumour drugs. © 2013 The British Pharmacological Society.
Martínez, Sandra; Pérez, Laura; Galmarini, Carlos M; Aracil, Miguel; Tercero, Juan C; Gago, Federico; Albella, Beatriz; Bueren, Juan A
2013-01-01
BACKGROUND AND PURPOSE We have previously shown that cells with a defective Fanconi anaemia (FA) pathway are hypersensitive to trabectedin, a DNA-binding anti-cancer tetrahydroisoquinoline (DBAT) whose adducts functionally mimic a DNA inter-strand cross link (ICL). Here we expand these observations to new DBATs and investigate whether our findings in primary untransformed cells can be reproduced in human cancer cells. EXPERIMENTAL APPROACH Initially, the sensitivity of transformed and untransformed cells, deficient or not in one component of the FA pathway, to mitomycin C (MMC) and three DBATs, trabectedin, Zalypsis and PM01183, was assessed. Then, the functional interaction of these drugs with the FA pathway was comparatively investigated. KEY RESULTS While untransformed FA-deficient haematopoietic cells were hypersensitive to both MMC and DBATs, the response of FA-deficient squamous cell carcinoma (SCC) cells to DBATs was similar to that of their respective FA-competent counterparts, even though these FA-deficient SCC cells were hypersensitive to MMC. Furthermore, while MMC always activated the FA pathway, the DBATs inhibited the FA pathway in the cancer cell lines tested and this enhanced their response to MMC. CONCLUSIONS AND IMPLICATIONS Our data show that although DBATs functionally interact with DNA as do agents that generate classical ICL, these drugs should be considered as FA pathway inhibitors rather than activators. Moreover, this effect was most significant in a variety of cancer cells. These inhibitory effects of DBATs on the FA pathway could be exploited clinically with the aim of ‘fanconizing’ cancer cells in order to make them more sensitive to other anti-tumour drugs. PMID:23937566
Netto, Marcelo V.; Mohan, Rajiv R.; Sinha, Sunilima; Sharma, Ajay; Gupta, Pankaj C.; Wilson, Steven E.
2009-01-01
PURPOSE To determine the mechanism through which topical mitomycin C prevents and treats corneal haze after photorefractive keratectomy (PRK) and to examine the effects of dosage and duration of exposure. METHODS In 224 New Zealand rabbits, −9.0 diopter PRK with mitomycin C or balanced salt solution was performed. Haze level was graded at the slit-lamp. Rabbits were sacrificed at 4 hours, 24 hours, 4 weeks, or 6 months after surgery and immunohistochemistry was performed with TUNEL assay, Ki67 and α-SMA. RESULTS TUNEL-positive apoptotic cells marginally increased in all mitomycin C groups whereas Ki67-positive mitotic cells decreased significantly following mitomycin C application. A greater decrease in myofibroblasts was noted with prophylactic mitomycin C treatment than therapeutic mitomycin C treatment. There was, however, an anterior stromal acellular zone (approximately 20% of the total stroma) in eyes treated with mitomycin C, which persisted to the maximum follow-up of 6 months. CONCLUSIONS Mitomycin C treatment induces apoptosis of keratocytes and myofibroblasts, but the predominate effect in inhibiting or treating haze appears to be at the level of blocked replication of keratocytes or other progenitor cells of myofibroblasts. Treatment with 0.002% mitomycin C for 12 seconds to 1 minute appears to be just as effective as higher concentrations for longer duration in the rabbit model. However, a persistent decrease in keratocyte density in the anterior stroma could be a warning sign for future complications and treatment should be reserved for patients with significant risk of developing haze after PRK. PMID:16805119
Vásquez, Juan L; Gehl, Julie; Hermann, Gregers G
2012-12-01
Intravesical mitomycin instillation combined with electric pulses is being used experimentally for the treatment of T1 bladder tumors, in patients unfit for surgery. Electroporation may enhance the uptake of chemotherapeutics by permeabilization of cell membranes. We investigated if electroporation improves the cytotoxicity of mitomycin. In two cell lines, T24 (bladder cancer cell line) and DC3F (Chinese hamster fibroblast), exposure to different concentrations of mitomycin (0.01-2000μM) was tested with and without electroporation (6 pulses of 1kV/cm, duration: 99μs, frequency: 1Hz). Cell viability was assessed by colorimetric assay (MTT). For both cell lines, mitomycin's IC_50 was approximately 1000μM in both pulsed and unpulsed cells. On T24 cells, electroporation and mitomycin caused (relative reduction) RR of survival of: 25%, 31% and 29%, by concentrations 0μM, 500μM and 1000μM respectively. For DC3F cells, the RRs of survival were: 28%, 29%, and 33%, by concentrations 0μM, 500μM and 1000μM respectively. In conclusion, electroporation and mitomycin together are about 30% more effective than mitomycin alone. The results help to elucidate the additive effect of mitomycin and electric pulses and support the use of this combination in the treatment of bladder cancer. Copyright © 2012 Elsevier B.V. All rights reserved.
Roh, Danny S.
2011-01-01
Purpose. To determine how corneal endothelial (CE) cells respond to acute genotoxic stress through changes in connexin-43 (Cx43) and gap junction intercellular communication (GJIC). Methods. Cultured bovine CE cells were exposed to mitomycin C or other DNA-damaging agents. Changes in the levels, stability, binding partners, and trafficking of Cx43 were assessed by Western blot analysis and immunostaining. Live-cell imaging of a Cx43–green fluorescent protein (GFP) fusion protein was used to evaluate internalization of cell surface Cx43. Dye transfer and fluorescent recovery after photobleaching (FRAP) assessed GJIC. Results. After genotoxic stress, Cx43 accumulated in large gap junction plaques, had reduced zonula occludens-1 binding, and displayed increased stability. Live-cell imaging of Cx43–GFP plaques in stressed CE cells revealed reduced gap junction internalization and degradation compared to control cells. Mitomycin C enhanced transport of Cx43 from the endoplasmic reticulum to the cell surface and formation of gap junction plaques. Mitomycin C treatment also protected GJIC from disruption after cytokine treatment. Discussion. These results show a novel CE cell response to genotoxic stress mediated by marked and rapid changes in Cx43 and GJIC. This stabilization of cell–cell communication may be an important early adaptation to acute stressors encountered by CE. PMID:21666237
Single-step assembly of polymer-lipid hybrid nanoparticles for mitomycin C delivery
2014-01-01
Mitomycin C is one of the most effective chemotherapeutic agents for a wide spectrum of cancers, but its clinical use is still hindered by the mitomycin C (MMC) delivery systems. In this study, the MMC-loaded polymer-lipid hybrid nanoparticles (NPs) were prepared by a single-step assembly (ACS Nano 2012, 6:4955 to 4965) of MMC-soybean phosphatidyhlcholine (SPC) complex (Mol. Pharmaceutics 2013, 10:90 to 101) and biodegradable polylactic acid (PLA) polymers for intravenous MMC delivery. The advantage of the MMC-SPC complex on the polymer-lipid hybrid NPs was that MMC-SPC was used as a structural element to offer the integrity of the hybrid NPs, served as a drug preparation to increase the effectiveness and safety and control the release of MMC, and acted as an emulsifier to facilitate and stabilize the formation. Compared to the PLA NPs/MMC, the PLA NPs/MMC-SPC showed a significant accumulation of MMC in the nuclei as the action site of MMC. The PLA NPs/MMC-SPC also exhibited a significantly higher anticancer effect compared to the PLA NPs/MMC or free MMC injection in vitro and in vivo. These results suggested that the MMC-loaded polymer-lipid hybrid NPs might be useful and efficient drug delivery systems for widening the therapeutic window of MMC and bringing the clinical use of MMC one step closer to reality. PMID:25324707
Kotmakçı, Mustafa; Kantarcı, Gülten; Aşıkoğlu, Makbule; Ozkılıç, Hayal; Ertan, Gökhan
2013-09-01
In this study, a microemulsion system was evaluated for delivery of mitomycin C (MMC). To track the distribution of the formulated drug after intravenous administration, radiochemical labeling and gamma scintigraphy imaging were used. The aim was to evaluate a microemulsion system for intravenous delivery of MMC and to compare its in vivo behavior with that of the MMC solution. For microemulsion formulation, soybean oil was used as the oil phase. Lecithin and Tween 80 were surfactants and ethanol was the cosurfactant. To understand the whole body localization of MMC-loaded microemulsion, MMC was labeled with radioactive technetium and gamma scintigraphy was applied for visualization of drug distribution. Radioactivity in the bladder 30 minutes after injection of the MMC solution was observed, according to static gamma camera images. This shows that urinary excretion of the latter starts very soon. On the other hand, no radioactivity appeared in the urinary bladder during the 90 minutes following the administration of MMC-loaded microemulsion. The unabated radioactivity in the liver during the experiment shows that the localization of microemulsion formulation in the liver is stable. In the light of the foregoing, it is suggested that this microemulsion formulation may be an appropriate carrier system for anticancer agents by intravenous delivery in hepatic cancer chemotherapy.
The use of mitomycin C in pediatric airway surgery: does it work?
Gangar, Mona; Bent, John P
2014-12-01
To describe the efficacy of mitomycin C in combating airway stenosis. Recent publications discussing mitomycin C utility have not altered the mixed results previously established by prospective trials. Mitomycin C has been used for the past 16 years to inhibit pediatric airway fibroblast proliferation. Its benefit remains more hypothetical than proven and its future role remains uncertain.
Walton, H A; Byrne, J; Robinson, G B
1992-03-20
Cross-linking glomerular basement membrane (GBM) has been shown to render it more permeable to protein. Isolated pig GBM was cross-linked with dimethylmalonimidate which reacts selectively with lysine epsilon-NH2 groups or with glutaraldehyde, a less selective cross-linking agent. Studies of the ultrafiltration properties of these materials in vitro using cytochrome c, myoglobin, bovine serum albumin and immunoglobulin showed that cross-linking had markedly increased solvent and protein fluxes as compared with native membranes particularly at higher pressures. Filtration studies with serum demonstrated that the cross-linked membranes were more permeable to serum proteins. Thickness measurements under pressure indicated that cross-linked membrane was less compressed than native membrane as pressure was increased. Pore theory did not provide a suitable model for analysis of the results, but analysis of the results using the fibre-matrix hypothesis indicated that cross-linking had the effect of bundling together the fibres (type IV collagen) in the GBM matrix. The effect of cross-linking on filtration could be explained by a combination of contraction of the membrane, fibre bundling and increased rigidity compared with native membrane. Cross-linking of GBM might lead to long-term damage of the glomerular capillary wall in nephritis, so promoting proteinuria.
Nakai, Yasushi; Tanaka, Nobumichi; Fujimoto, Kiyohide
2017-01-01
Intravesical bacillus Calmette-Guerin (BCG) treatment is the most common therapy to prevent progression and recurrence of non-muscle invasive bladder cancer (NMIBC). Although the immunoreaction elicited by BCG treatment is well documented, those induced by intravesical treatment with chemotherapeutic agents are much less known. We investigated the immunological profiles caused by mitomycin C, gemcitabine, adriamycin and docetaxel in the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced orthotopic bladder cancer mouse model. Ninety mice bearing orthotopic bladder cancer induced by BBN were randomly divided into six groups and treated with chemotherapeutic agents once a week for four weeks. After last treatment, bladder and serum samples were analyzed for cell surface and immunological markers (CD4, CD8, CD56, CD204, Foxp3, and PD-L1) using immunohistochemistry staining. Serum and urine cytokine levels were evaluated by ELISA. All chemotherapeutic agents presented anti-tumor properties similar to those of BCG. These included changes in immune cells that resulted in fewer M2 macrophages and regulatory T cells around tumors. This result was compatible with those in human samples. Intravesical chemotherapy also induced systemic changes in cytokines, especially urinary interleukin (IL)-17A and granulocyte colony stimulating factor (G-CSF), as well as in the distribution of blood neutrophils, lymphocytes, and monocytes. Our findings suggest that intravesical treatment with mitomycin C and adriamycin suppresses protumoral immunity while enhancing anti-tumor immunity, possibly through the action of specific cytokines. A better understanding of the immunoreaction induced by chemotherapeutic agents can lead to improved outcomes and fewer side effects in intravesical chemotherapy against NMIBC. PMID:28406993
Cross-Linking Studies of Lysozyme Nucleation
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth; Pusey, Marc
2000-01-01
Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a reactive group that can be photoactivated at a specific point in the nucleation or crystal growth process to "capture" protein molecules bound within reach of the crosslinking agent. If those bound protein molecules have a defined geometric relationship with the capturing molecule, such as would be found in a crystal, then the photoreacted cross-linking site should be consistent. Random protein interactions, typical of an amorphous precipitate or interaction, would show a random cross-linking reaction. The results of these and other experiments will be presented.
Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme
NASA Technical Reports Server (NTRS)
Meador, Ann B.; Capadona, Lynn A.
2008-01-01
A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.
Williams, Nicholas A; Barnard, Luke; Allender, Chris J; Bowen, Jenna L; Gumbleton, Mark; Harrah, Tim; Raja, Aditya; Joshi, Hrishi B
2016-03-01
We compared the relative permeability of upper urinary tract and bladder urothelium to mitomycin C. Ex vivo porcine bladder, ureters and kidneys were dissected out and filled with 1 mg ml(-1) mitomycin C. At 60 minutes the organs were emptied and excised tissue samples were sectioned parallel to the urothelium. Sectioned tissue was homogenized and extracted mitomycin C was quantified. Transurothelial permeation across the different urothelia was calculated by normalizing the total amount of drug extracted to the surface area of the tissue sample. Average mitomycin C concentrations at different tissue depths (concentration-depth profiles) were calculated by dividing the total amount of drug recovered by the total weight of tissue. Mitomycin C permeation across the ureteral urothelium was significantly greater than across the bladder and renal pelvis urothelium (9.07 vs 0.94 and 3.61 μg cm(-2), respectively). Concentrations of mitomycin C in the ureter and kidney were markedly higher than those achieved in the bladder at all tissue depths. Average urothelial mitomycin C concentrations were greater than 6.5-fold higher in the ureter and renal pelvis than in the bladder. To our knowledge we report for the first time that the upper urinary tract and bladder show differing permeability to a single drug. Ex vivo porcine ureter is significantly more permeable to mitomycin C than bladder urothelium and consequently higher mitomycin C tissue concentrations can be achieved after topical application. Data in this study correlate with the theory that mammalian upper tract urothelium represents a different cell lineage than that of the bladder and it is innately more permeable to mitomycin C. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Seong, Gong Je; Park, Channy; Kim, Chan Yoon; Hong, Young Jae; So, Hong-Seob; Kim, Sang-Duck; Park, Raekil
2005-10-01
To investigate whether mitochondrial dysfunction and mitogen-activated protein kinase family proteins are implicated in apoptotic signaling of human Tenon's capsule fibroblasts (HTCFs) by mitomycin-C. Apoptosis was determined by Hoechst nuclei staining, agarose gel electrophoresis, and flow cytometry in HTCFs treated with 0.4 mg/mL mitomycin-C for 5 minutes. Enzymatic digestion of florigenic biosubstrate assessed the catalytic activity of caspase proteases, including caspase-3, caspase-8, and caspase-9. Phosphotransferase activity of c-Jun N-terminal kinase (JNK) 1 was measured by in vitro immune complex kinase assay using c-Jun(1-79) protein as a substrate. Mitochondrial membrane potential transition (MPT) was measured by flow cytometric analysis of JC-1 staining. Mitomycin-C (0.4 mg/mL) induced the apoptosis of HTCFs, which was characterized as nucleic acid and genomic DNA fragmentation, chromatin condensation, and sub-G(0)/G(1) fraction of cell cycle increase. The catalytic activity of caspase-3 and caspase-9 was significantly increased and was accompanied by cytosolic release of cytochrome c and MPT in response to mitomycin-C. Treatment with mitomycin-C resulted in the increased expression of Fas, FasL, Bad, and phosphorylated p53 and a decreased level of phosphorylated AKT. Treatment with mitomycin-C also increased the phosphotransferase activity and tyrosine phosphorylation of JNK1, whose inhibitor significantly suppressed the cytotoxicity of mitomycin-C. Mitomycin-C induced the apoptosis of HTCFs through the activation of intrinsic and extrinsic caspase cascades with mitochondrial dysfunction. It also activated Fas-mediated apoptotic signaling of fibroblasts. Furthermore, the activation of JNK1 played a major role in the cytotoxicity of mitomycin-C.
Crowston, Jonathan G; Chang, Lydia H; Constable, Peter H; Daniels, Julie T; Akbar, Arne N; Khaw, Peng T
2002-03-01
To examine the effect of mitomycin-C on the expression of apoptosis genes in human Tenon capsule fibroblasts and to evaluate whether death receptor signaling modulates mitomycin-C cytotoxicity. Bcl-2, Bax, Bcl-x, Fas (CD95) and tumor necrosis factor (TNF) receptor expression was determined by flow cytometry in control and mitomycin-C-treated Tenon fibroblasts. Fibroblast death was quantified using a lactate dehydrogenase release assay. The effect of Fas and TNF-receptor signaling was evaluated using Fas-specific antibodies and soluble TNF-alpha. Tenon fibroblasts constitutively express Bcl-2, Bax, and Bcl-x in culture. Mitomycin-C (0.4 mg/mL) induced a small but consistent increase in the expression of all three proteins. Tenon fibroblasts express low levels of Fas but are resistant to the effects of Fas-receptor ligation. Mitomycin-C (0.01-1.0 mg/mL) led to a significant increase in Fas expression at all concentrations tested (P < 0.01). Pretreatment with mitomycin-C (0.4 mg/mL) rendered fibroblasts susceptible to agonistic anti-Fas monoclonal IgM antibodies (50-500 ng/mL) and led to a further 50% reduction in viable fibroblasts at 48 hours, compared with mitomycin-C alone (P < 0.05). Antibodies that block the Fas receptor did not inhibit mitomycin-C-induced apoptosis. Mitomycin-C alters apoptosis gene expression and primes fibroblasts to the effects of Fas receptor ligation. Factors other than the level of Fas receptor expression modulate the response to Fas receptor signaling. Determining the signals that regulate fibroblast apoptosis may help to refine therapeutic strategies for switching off the subconjunctival healing response and maintaining intraocular pressure control.
Effects of mitomycin-C on normal dermal fibroblasts.
Chen, Theodore; Kunnavatana, Shaun S; Koch, R James
2006-04-01
To evaluate the effects of mitomycin-C on the growth and autocrine growth factor production of human dermal fibroblasts from the face. In vitro study using normal adult dermal fibroblast cell lines in a serum-free model. Cell cultures were exposed to 4 mg/mL, 0.4 mg/mL, 0.04 mg/mL, 0.004 mg/mL, and 0.0004 mg/mL concentrations of mitomycin-C solution. Cell counts were performed, and the cell-free supernatants were collected at 0, 1, 3, and 5 days after the initial exposure. Population doubling times were calculated and supernatants were quantitatively assayed for basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta1. Continuous exposure to mitomycin-C caused fibroblast cell death by day 7 at all tested concentrations. A 4 minute exposure to mitomycin-C at 4 mg/mL caused rapid fibroblast cell death. A 4-minute exposure to mitomycin-C at either 0.4 mg/mL or 0.04 mg/mL resulted in decreased fibroblast proliferation. A 4 minute exposure to mitomycin-C at 0.4 mg/mL resulted in a marked increase in the production of both bFGF and TGF-beta1. A clinically ideal concentration of mitomycin-C would slow fibroblast proliferation yet not cause cell death to allow for a wound healing response. Mitomycin-C 0.4 mg/mL for 4 minutes satisfies the above criteria in vitro.
Mitomycin C-induced apoptosis in cultured human Tenon's capsule fibroblasts.
Kim, J W; Kim, S K; Song, I H; Kim, I T
1999-06-01
To investigate the mitomycin C-induced apoptotic cell death of fibroblasts, the primarily cultured human Tenon's capsule fibroblasts were exposed to a clinically used dosage of 0.4 mg/ml of mitomycin C for 5 minutes. TUNEL (TdT-mediated dUTP-biotin nick end labeling) assay and electron microscopic studies were performed to determine the extent of mitomycin C-induced apoptosis. A flow cytometric study was performed to quantify the apoptotic cell population over time. The TUNEL stains were positive and electron microscopy showed features of apoptotic cell death in some fibroblasts 3 and 5 days after treatment. Flow cytometric analysis using Annexin V-propidium iodide double staining detected apoptotic cells 3 days after treatment. These apoptotic cell populations increased at 4 days and were sustained for one week. This study revealed that the clinical effects of mitomycin C on fibroblasts may be mediated not only by antiproliferative but also apoptotic cell death to some degree. Therefore, the apoptotic cell death of fibroblasts induced by mitomycin C should be considered to properly understand the mechanism of wound healing after trabeculectomy with adjunctive mitomycin C.
Nair, Akshay Gopinathan; Ali, Mohammad Javed
2015-04-01
Dacryocystorhinostomy (DCR) is the procedure of choice in patients with epiphora due to primary acquired nasolacrimal duct obstruction. The evolution of surgical tools, fiber-optic endoscopes, effective anesthesia techniques, and the adjunct use of antimetabolites intraoperatively; namely mitomycin-C (MMC) have significantly contributed to the advancement of DCR surgery. MMC is a systemic chemotherapeutic agent derived from Streptomyces caespitosus that inhibits the synthesis of DNA, cellular RNA, and protein by inhibiting the synthesis of collagen by fibroblasts. Even the cellular changes in the human nasal mucosal fibroblasts induced by MMC at an ultrastructural level have been documented. There, however, seems to be a lack of consensus regarding MMC: The dosage, the route of delivery/application, the time of exposure and subsequently what role each of these variables plays in the final outcome of the surgery. In this review, an attempt is made to objectively examine all the evidence regarding the role of MMC in DCR. MMC appears to improve the success rate of DCR.
Nair, Akshay Gopinathan; Ali, Mohammad Javed
2015-01-01
Dacryocystorhinostomy (DCR) is the procedure of choice in patients with epiphora due to primary acquired nasolacrimal duct obstruction. The evolution of surgical tools, fiber-optic endoscopes, effective anesthesia techniques, and the adjunct use of antimetabolites intraoperatively; namely mitomycin-C (MMC) have significantly contributed to the advancement of DCR surgery. MMC is a systemic chemotherapeutic agent derived from Streptomyces caespitosus that inhibits the synthesis of DNA, cellular RNA, and protein by inhibiting the synthesis of collagen by fibroblasts. Even the cellular changes in the human nasal mucosal fibroblasts induced by MMC at an ultrastructural level have been documented. There, however, seems to be a lack of consensus regarding MMC: The dosage, the route of delivery/application, the time of exposure and subsequently what role each of these variables plays in the final outcome of the surgery. In this review, an attempt is made to objectively examine all the evidence regarding the role of MMC in DCR. MMC appears to improve the success rate of DCR. PMID:26044474
Hasegawa, Yasuna; Wakabayashi, Masayuki; Nakamura, Shogo; Kodaira, Ken-ichi; Shinohara, Hiroaki; Yasukawa, Hiro
2004-05-04
The cellular slime mold Dictyostelium discoideum expresses a gene encoding a 452-amino-acid polypeptide that is 47% identical to Escherichia coli RecA. A recA-deficient E. coli, JE6651, was transformed by pYSN1, which was designed to express the truncated form of the D. discoideum gene, and used in suppression assays. The viability of the transformant, JE6651(pYSN1), increased following UV irradiation or mitomycin C treatment. Phage lambda (red(-) gam(-)), which required RecA activity for DNA packaging, formed plaques on a lawn of JE6651(pYSN1). These results indicate that the gene product has a DNA recombination activity. Fluorescence of D. discoideum protein fused with GFP was detected in mitochondria. The gene disruption mutant was hypersensitive to UV-light (254nm), mitomycin C and H(2)O(2), indicating that D. discoideum recA is important for survival following exposure to DNA damaging agents.
Diepoxybutane Interstrand Cross-Links Induce DNA Bending
Millard, Julie T.; McGowan, Erin E.; Bradley, Sharonda Q.
2011-01-01
The bifunctional alkylating agent 1,2,3,4-diepoxybutane (DEB) is thought to be a major contributor to the carcinogenicity of 1,3-butadiene, from which it is derived in vivo. DEB forms DNA interstrand cross-links primarily between distal deoxyguanosine residues at the duplex sequence 5’-GNC. In order for the short butanediol tether to span this distance, distortion of the DNA target has been postulated. We determined that the electrophoretic mobility of ligated DNA oligomers containing DEB cross-links was retarded in comparison with control, uncross-linked DNA. Our data are consistent with DNA bending of ~34° per lesion towards the major groove. PMID:21839139
Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking
Yu, Qingyue; Alvarez, Noe T.; Miller, Peter; Malik, Rachit; Haase, Mark R.; Schulz, Mark; Shanov, Vesselin; Zhu, Xinbao
2016-01-01
Individual Carbon Nanotubes (CNTs) have a great mechanical strength that needs to be transferred into macroscopic fiber assemblies. One approach to improve the mechanical strength of the CNT assemblies is by creating covalent bonding among their individual CNT building blocks. Chemical cross-linking of multiwall CNTs (MWCNTs) within the fiber has significantly improved the strength of MWCNT thread. Results reported in this work show that the cross-linked thread had a tensile strength six times greater than the strength of its control counterpart, a pristine MWCNT thread (1192 MPa and 194 MPa, respectively). Additionally, electrical conductivity changes were observed, revealing 2123.40 S·cm−1 for cross-linked thread, and 3984.26 S·cm−1 for pristine CNT thread. Characterization suggests that the obtained high tensile strength is due to the cross-linking reaction of amine groups from ethylenediamine plasma-functionalized CNT with the epoxy groups of the cross-linking agent, 4,4-methylenebis(N,N-diglycidylaniline). PMID:28787868
Shokuhfar, Ali; Arab, Behrouz
2013-09-01
Recently, great attention has been focused on using epoxy polymers in different fields such as aerospace, automotive, biotechnology, and electronics, owing to their superior properties. In this study, the classical molecular dynamics (MD) was used to simulate the cross linking of diglycidyl ether of bisphenol-A (DGEBA) with diethylenetriamine (DETA) curing agent, and to study the behavior of resulted epoxy polymer with different conversion rates. The constant-strain (static) approach was then applied to calculate the mechanical properties (Bulk, shear and Young's moduli, elastic stiffness constants, and Poisson's ratio) of the uncured and cross-linked systems. Estimated material properties were found to be in good agreement with experimental observations. Moreover, the dependency of mechanical properties on the cross linking density was investigated and revealed improvements in the mechanical properties with increasing the cross linking density. The radial distribution function (RDF) was also used to study the evolution of local structures of the simulated systems as a function of cross linking density.
Cosmetic Preservatives as Therapeutic Corneal and Scleral Tissue Cross-Linking Agents
Babar, Natasha; Kim, MiJung; Cao, Kerry; Shimizu, Yukari; Kim, Su-Young; Takaoka, Anna; Trokel, Stephen L.; Paik, David C.
2015-01-01
Purpose. Previously, aliphatic β-nitroalcohols (BNAs) have been studied as a means to chemically induce tissue cross-linking (TXL) of cornea and sclera. There are a number of related and possibly more potent agents, known as formaldehyde releasers (FARs), that are in commercial use as preservatives in cosmetics and other personal care products. The present study was undertaken in order to screen such compounds for potential clinical utility as therapeutic TXL agents. Methods. A chemical registry of 62 FARs was created from a literature review and included characteristics relevant to TXL such as molecular weight, carcinogenicity/mutagenicity, toxicity, hydrophobicity, and commercial availability. From this registry, five compounds [diazolidinyl urea (DAU), imidazolidinyl urea (IMU), sodium hydroxymethylglycinate (SMG), DMDM hydantoin (DMDM), 5-Ethyl-3,7-dioxa-1-azabicyclo [3.3.0] octane (OCT)] were selected for efficacy screening using two independent systems, an ex vivo rabbit corneal cross-linking simulation setup and incubation of cut scleral tissue pieces. Treatments were conducted at pH 7.4 or 8.5 for 30 minutes. Efficacy was evaluated using thermal denaturation temperature (Tm), and cell toxicity was studied using the trypan blue exclusion method. Results. Cross-linking effects in the five selected FARs were pH and concentration dependent. Overall, the Tm shifts were in agreement with both cornea and sclera. By comparison with BNAs previously reported upon, the FARs identified in this study were significantly more potent but with similar or better cytotoxicity. Conclusions. The FARs, a class of compounds well known to the cosmetic industry, may have utility as therapeutic TXL agents. The compounds studied thus far show promise and will be further tested. PMID:25634979
Effect of the cross-linking agent on performances of NaCS-CS/WSC microcapsules.
Wu, Qing-Xi; Xu, Xin; Wang, Zu-Li; Yao, Shan-Jing; Tong, Wang-Yu; Chen, Yan
2016-11-01
Based on the properties of oppositely charged natural polysaccharides, the polyelectrolyte complexes (PECs) prepared with chitosan-related polycationic polyelectrolytes and cellulose-related polyanionic polyelectrolytes have been widely concerned for their potential applications as micro-drug-carriers for colon. However, the poor mechanical property of the PECs becomes the obstacle encountered in practical applications. This study investigated the effect of the cross-linking agent (sodium polyphosphate, PPS) on the performances of sodium cellulose sulfate -chitosan/water soluble chitosan (NaCS-CS/WSC) microcapsules. The results revealed that PPS could penetrate through the PEC film and form tighter interior structures compared with the microcapsules without the addition of cross-linking agent. The NaCS-CS microcapsules and NaCS-WSC microcapsules with or without PPS had distinct microstructures, which could be ascribed to the different physicochemical properties of CS and WSC. During the formation process, CS can be dissolved in water under acidic conditions, while WSC can be directly dissolved and protonated in acid-free aqueous providing NH3(+) groups quickly, which resulted in the microstructure's difference. Further analysis showed the NaCS-CS-PPS microcapsules and NaCS-WSC-PPS microcapsules had lower swelling ratios due to their tighter interior microstructures that formed. The cross-linking agent had important effect on the total mass of PECs that produced; moreover, the decline of zeta potential of NaCS-CS-PPS microcapsules was lower than that of NaCS-CS microcapsules, similar trend was found in the NaCS-WSC-PPS microcapsules compared with NaCS-WSC microcapsules, indicating the PPS participated in the interactions and played a role in the microcapsules' formation process. Copyright © 2016 Elsevier B.V. All rights reserved.
Ichien, K; Sawada, A; Yamamoto, T; Kitazawa, Y; Shiraki, R; Yoh, M
1999-04-01
Based on our previous report that showed enhanced transfer of mitomycin C to the sclera and the conjunctiva by dissolving the antiproliferative in a reversible thermo-setting gel, we conducted a study to investigate the efficacy of the mitomycin C-gel in the rabbit. We subconjunctivally injected 0.1 ml of the mitomycin C-gel solution containing several amounts of the drug. Trephination was performed in the injected region 24 hours later. Intraocular pressure measurement, and photography and ultrasound biomicroscopic examination of the filtering bleb were done 1, 2, and 4 weeks postoperatively. The gel containing 3.0 micrograms or more mitomycin C significantly enhanced bleb formation in addition to reducing the intraocular pressure. The reversible thermo-setting gel seems to facilitate filtration following glaucoma filtering surgery in the rabbit and deserves further investigation as a new method of mitomycin C application.
Bahrami, Bobak; Greenwell, Timothy; Muecke, James S
2014-01-01
To report rates of recurrence and complications of localized ocular surface squamous neoplasia treated with 5-fluorouracil or mitomycin C as adjunctive treatment to surgical excision. Long-term follow up of two prospective, non-comparative interventional case series. One hundred fifty-three eyes with histologically confirmed localized, non-invasive ocular surface squamous neoplasia. 89 eyes were treated with adjuvant 5-fluorouracil and 64 eyes were treated with adjuvant mitomycin C. Following surgical excision±cryotherapy patients received topical 5-fluorouracil 1% four times daily for two weeks or topical mitomycin C 0.04% four times daily for two to three 1-week cycles. Ocular surface squamous neoplasia recurrence, complications of therapy and compliance. Median follow up was 33.6 (range 12-84) months and 57.9 (range 12-160) months in 5-fluorouracil and mitomycin C groups, respectively. There was one recurrence in the 5-fluorouracil group and no recurrences in the mitomycin C group. Side-effects occurred in 69% of 5-fluorouracil patients and 41% of mitomycin C patients. Five patients (6%) required intervention for treatment-related side-effects in the 5-fluorouracil group versus 11 (17%) in the mitomycin C group. No vision-threatening complications were noted. Long-term recurrence of localised ocular surface squamous neoplasia is rare when topical 5-fluorouracil or mitomycin C are used as adjunctive treatment to surgical excision. While side-effects are common, the majority are transient and rarely limit compliance. © 2013 Royal Australian and New Zealand College of Ophthalmologists.
Cross-Linked Micellar Spherical Nucleic Acids from Thermoresponsive Templates
2017-01-01
A one-pot synthesis of micellar spherical nucleic acid (SNA) nanostructures using Pluronic F127 as a thermoresponsive template is reported. These novel constructs are synthesized in a chemically straightforward process that involves intercalation of the lipid tails of DNA amphiphiles (CpG motifs for TLR-9 stimulation) into the hydrophobic regions of Pluronic F127 micelles, followed by chemical cross-linking and subsequent removal of non-cross-linked structures. The dense nucleic acid shell of the resulting cross-linked micellar SNA enhances their stability in physiological media and facilitates their rapid cellular internalization, making them effective TLR-9 immunomodulatory agents. These constructs underscore the potential of SNAs in regulating immune response and address the relative lack of stability of noncovalent constructs. PMID:28207251
CuC1 thermochemical cycle for hydrogen production
Fan, Qinbai [Chicago, IL; Liu, Renxuan [Chicago, IL
2012-01-03
An electrochemical cell for producing copper having a dense graphite anode electrode and a dense graphite cathode electrode disposed in a CuCl solution. An anion exchange membrane made of poly(ethylene vinyl alcohol) and polyethylenimine cross-linked with a cross-linking agent selected from the group consisting of acetone, formaldehyde, glyoxal, glutaraldehyde, and mixtures thereof is disposed between the two electrodes.
Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener.
Smith, Cartney E; Kong, Hyunjoon
2014-04-08
Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads.
Cross-Linkable Liposomes Stabilize a Magnetic Resonance Contrast-Enhancing Polymeric Fastener
2015-01-01
Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads. PMID:24635565
Sensitivity of cultured skin fibroblasts from patients with neurofibromatosis to DNA-damaging agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, W.G.; McKenzie, B.; Letourneau, M.A.
Neurofibromatosis (NF) is an autosomal dominant disorder associated with various constitutional abnormalities as well as a striking predisposition for malignant and nonmalignant neoplasms, both in cells originating in and not originating in the neural crest. We have examined the sensitivity of cultured skin fibroblasts from patients with neurofibromatosis to several types of DNA damage. Fibroblasts in Dulbecco's modified Eagle's medium were plated at 10(2) to 2 X 10(4) cells per 75 cm2 tissue culture plates, and exposed to various doses of gamma radiation (leads to DNA scission), actinomycin D, or mitomycin C. Cells were reincubated for 15 to 40 daysmore » until surviving colonies exhibited greater than 30-50 cells. Plates were then stained with 1% methylene blue and the colonies counted, with surviving fraction determined relative to plating efficiency. Nine skin fibroblast cell strains from normal individuals were studied as controls. One neurofibromatosis (NF) cell strain, SB23, exhibited normal sensitivity to all three DNA-damaging agents studied in early (7-8) and middle (12-13) in vitro passage. Strain GM0622, on the other hand, exhibited normal sensitivity to the three DNA-damaging agents studied at early passage, but showed a significant decrease in survival after exposure to both gamma radiation (D0 = 106 rad) and actinomycin D (D0 = 0.024 mcg/ml) with increasing passage. Strain GM1639 exhibited decreased survival after actinomycin D exposure at early passage (D0 = 0.017 mcg/ml), with normal survival after exposure to gamma radiation and mitomycin C at the same passage.« less
Improving the performance of transglutaminase-crosslinked microparticles for enteric delivery.
Tello, Fernando; Prata, Ana S; Rodrigues, Rodney A F; Sartoratto, Adilson; Grosso, Carlos R F
2016-10-01
Various agents for cross-linking have been investigated for stabilizing and controlling the barrier properties of microparticles for enteric applications. Transglutaminase, in addition to being commercially available for human consumption, presents inferior cross-linking action compared to glutaraldehyde. In this study, the intensity of this enzymatic cross-linking was investigated in microparticles obtained by complex coacervation between gelatin and gum Arabic. The effectiveness of cross-linking in these microparticles was evaluated based on swelling, release of a model substance (parika oleoresin: colored and hydrophobic) and gastrointestinal assays. The cross-linked microparticles remained intact under gastric conditions, whereas the uncross-linked microparticles have been dissolved. However, all of the microparticles have been dissolved under intestinal conditions. The amount of oily core that was released decreased as the amount of transglutaminase increased. For the most efficient microparticles (50U/g of protein), the performance was improved by increasing the pH of cross-linking from 4.0 to 6.0, resulting in a release of 17.1% rather than 32.3% of the core material. These results were considerably closer to the 10.3% of core material released by glutaraldehyde-cross-linked microparticles (1mM/g of protein). Copyright © 2016 Elsevier Ltd. All rights reserved.
Kashiwada, T
1979-01-01
The physical properties of thermosetting methacrylic resins contain a kind or more than two kinds of cross linking agents were investigated. Knoop hardness and bending strength after drying, water sorption and thermal cycling were listed in table 4 and 5. Hydrophilic resins absorbed water about 3 times as much as hydrophobic resins. The materials contain a small amount of hydrophobic cross linking agents in MMA indicate comparatively excellent properties after drying, water sorption and thermal cycling. Knoop hardness of resins generally reduced by water sorption, especially in the case of the resin contains a large amount of triethylene glycol dimethacrylate.
Razmi, Mahdieh; Rabbani-Chadegani, Azra; Hashemi-Niasari, Fatemeh; Ghadam, Parinaz
2018-07-01
The clinical use of potent anticancer drug mitomycin C (MMC) has limited due to side effects and resistance of cancer cells. The aim of this study was to investigate whether lithium chloride (LiCl), as a mood stabilizer, can affect the sensitivity of MDA-MB-231 breast cancer cells to mitomycin C. The cells were exposed to various concentrations of mitomycin C alone and combined with LiCl and the viability determined by trypan blue and MTT assays. Proteins were analyzed by western blot and mRNA expression of HMGB1 MMP9 and Bcl-2 were analyzed by RT-PCR. Flow cytometry was used to determine the cell cycle arrest and percent of apoptotic and necrotic cells. Concentration of Bax assessed by ELISA. Exposure of the cells to mitomycin C revealed IC 50 value of 20 μM, whereas pretreatment of the cells with LiCl induced synergistic cytotoxicity and IC 50 value declined to 5 μM. LiCl combined with mitomycin C significantly down-regulated HMGB1, MMP9 and Bcl-2 gene expression but significantly increased the level of Bax protein. In addition, the content of HMGB1 in the nuclei decreased and pretreatment with LiCl reduced the content of HMGB1 release induced by MMC. LiCl increased mitomycin C-induced cell shrinkage and PARP fragmentation suggesting induction of apoptosis in these cells. LiCl prevented mitomycin C-induced necrosis and changed the cell death arrest at G2/M-phase. Taking all together, it is suggested that LiCl efficiently enhances mitomycin C-induced apoptosis and HMGB1, Bax and Bcl-2 expression may play a major role in this process, the findings that provide a new therapeutic strategy for LiCl in combination with mitomycin C. Copyright © 2018 Elsevier GmbH. All rights reserved.
Budach, W; Paulsen, F; Welz, S; Classen, J; Scheithauer, H; Marini, P; Belka, C; Bamberg, M
2002-01-01
The potential of Mitomycin C in combination with fractionated irradiation to inhibit tumour cell repopulation of a fast growing squamous cell carcinoma after fractionated radiotherapy was investigated in vivo. A rapidly growing human squamous cell carcinoma (FaDudd) was used for the study. For experiments, NMRI (nu/nu) mice with subcutaneously growing tumours were randomly allocated to no treatment, Mitomycin C, fractionated irradiation (ambient: 11x4.5 Gy in 15 days), or fractionated irradiation combined with Mitomycin C. Graded top up doses (clamped blood flow: 0–57 Gy) were given at day 16, 23, 30 or 37. End point of the study was the time to local tumour progression. Data were examined by multiple regression analysis (Cox). Mitomycin C alone resulted in a median time to local tumour progression of 23 (95% confidence limits: 17–43) days, fractionated irradiation in 31 (25–35) days and combined Mitomycin C plus fractionated irradiation in 65 (58–73) days (P=0.02). Mitomycin C decreased the relative risk of local recurrence by 94% (P<<0.001) equivalent to 31.7 Gy top up dose. Repopulation accounted for 1.33 (0.95–1.72) Gy per day top up dose after fractionated irradiation alone and for 0.68 (0.13–1.22) Gy per day after fractionated irradiation+Mitomycin C (P=0.018). Mitomycin C significantly reduces the risk of local recurrence and inhibits tumour cell repopulation in combination with fractionated irradiation in vivo in the tested tumour model. British Journal of Cancer (2002) 86, 470–476. DOI: 10.1038/sj/bjc/6600081 www.bjcancer.com © 2002 The Cancer Research Campaign PMID:11875717
Synthesis and biological activity of mustard derivatives of thymine.
Hadj-Bouazza, Amel; Teste, Karine; Colombeau, Ludovic; Chaleix, Vincent; Zerrouki, Rachida; Kraemer, Michel; Sainte Catherine, Odile
2008-05-01
The synthesis and biological activity of a novel DNA cross-linking antitumor agent is presented. The new alkylating agent significantly inhibited cell proliferation, migration and invasion as tested in vitro on the A431 vulvar epidermal carcinoma cell line.
Re-evaluation of tumor-specific cytotoxicity of mitomycin C, bleomycin and peplomycin.
Sasaki, Masahiro; Okamura, Masahiko; Ideo, Atsushi; Shimada, Jun; Suzuki, Fumika; Ishihara, Mariko; Kikuchi, Hirotaka; Kanda, Yumiko; Kunii, Shiro; Sakagami, Hiroshi
2006-01-01
Three antitumor antibiotics, mitomycin C, bleomycin sulfate and peplomycin sulfate, were compared for their tumor-specific cytotoxicity, using human oral squamous cell lines (HSC-2, HSC-3, HSC-4, Ca9-22 and NA), human promyelocytic leukemic cell line HL-60 and human normal oral cell types (gingival fibroblast HGF, pulp cell HPC and periodontal ligament fibroblast HPLF). Among these three compounds, mitomycin C showed the highest tumor-specificity, due to its higher cytotoxic activity against human oral tumor cell lines than bleomycin and peplomycin. However, there was considerable variation of drug sensitivity among the six tumor cell lines. Mitomycin C induced internucleosomal DNA fragmentation and caspase-3, -8 and -9 activation in HL-60 cells only after 24 h. On the other hand, mitomycin C induced no clear-cut DNA fragmentation in HCS-2 cells, although it activated caspase-3, -8 and -9 to a slightly higher extent. Western blot analysis demonstrated that mitomycin C did not induce any apparent change in the intracellular concentration of anti-apoptotic protein (Bcl-2) and pro-apoptotic proteins (Bax, Bad). Electron microscopy of mitomycin C-treated HL-60 cells showed intact mitochondria (as regards to integrity and size) and cell surface microvilli, without production of an apoptotic body or autophagosome, at an early stage after treatment. The present study suggests the incomplete induction of apoptosis or the induction of another type of cell death by mitomycin C treatment.
Kohn, K W
1977-05-01
Bifunctional alkylating agents are known to cross-link DNA by simultaneously alkylating two guanine residues located on opposite strands. Despite this apparent requirement for bifunctionality, 1-(2-chloroethyl)-1-nitrosoureas bearing a single alkylating function were found to cross-link DNA in vitro. Cross-linking was demonstrated by showing inhibition of alkali-induced strand separation. Extensive cross-linking was observed in DNA treated with 1-(2-chloroethyl)-1-nitrosourea, 1,3-bis-(2-chloroethyl)-1-nitrosourea, and 1-(2-chloroethyl(-3-cyclohexyl-1-nitrosourea. The reaction occurs in two steps, an intital binding followed by a second step which can proceed after removal of unbound drug. It is suggested that the first step is chloroethylation of a nucleophilic site on one strand and that the second step involves displacement of Cl- by a nucleophilic site on the opposite strand, resulting in an ethyl bridge between the strands. Consistent with this possibility, 1-(2-fluoroethyl)-3-cyclohexyl-1-nitrosourea produced much less cross-linking, as expected from the known low activity of F-, compared with Cl-, as leaving group. 1-Methyl-1-nitrosourea, which is known to depurinate DNA, produced no detectable cross-linking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jongmin; Saba, Stacey A.; Hillmyer, Marc A.
We report on the phase separation behaviors of polymerization mixtures containing a polylactide macro-chain transfer agent (PLA-CTA), styrene, divinylbenzene, hydroxyl-terminated PLA (PLA-OH), and a molecular chain transfer agent which enable the ability to tune the pore size of a cross-linked polymer monolith in a facile manner. Cross-linked monoliths were produced from the mixtures via reversible addition-fragmentation chain transfer (RAFT) polymerization and converted into cross-linked porous polymers by selective removal of PLA while retaining the parent morphology. We demonstrate that pore sizes are tunable over a wide range of length scales from the meso- to macroporous regimes by adjusting the ratiomore » of PLA-CTA to PLA-OH in the reaction mixture which causes the phase separation mechanism to change from polymerization-induced microphase separation to polymerization-induced phase separation. The possibility of increasing porosity and inducing simultaneous micro- and macrophase separation was also realized by adjustments in the molar mass of PLA which enabled the synthesis of hierarchically meso- and macroporous polymers.« less
Bandyopadhyay, Pradipta; Kuntz, Irwin D
2009-01-01
The determination of protein structure using distance constraints is a new and promising field of study. One implementation involves attaching residues of a protein using a cross-linking agent, followed by protease digestion, analysis of the resulting peptides by mass spectroscopy, and finally sequence threading to detect the protein folds. In the present work, we carry out computational modeling of the kinetics of cross-linking reactions in proteins using the master equation approach. The rate constants of the cross-linking reactions are estimated using the pKas and the solvent-accessible surface areas of the residues involved. This model is tested with fibroblast growth factor (FGF) and cytochrome C. It is consistent with the initial experimental rate data for individual lysine residues for cytochrome C. Our model captures all observed cross-links for FGF and almost 90% of the observed cross-links for cytochrome C, although it also predicts cross-links that were not observed experimentally (false positives). However, the analysis of the false positive results is complicated by the fact that experimental detection of cross-links can be difficult and may depend on specific experimental conditions such as pH, ionic strength. Receiver operator characteristic plots showed that our model does a good job in predicting the observed cross-links. Molecular dynamics simulations showed that for cytochrome C, in general, the two lysines come closer for the observed cross-links as compared to the false positive ones. For FGF, no such clear pattern exists. The kinetic model and MD simulation can be used to study proposed cross-linking protocols.
Sun, Guohui; Zhang, Na; Zhao, Lijiao; Fan, Tengjiao; Zhang, Shufen; Zhong, Rugang
2016-05-01
The drug resistance of CENUs induced by O(6)-alkylguanine-DNA alkyltransferase (AGT), which repairs the O(6)-alkylated guanine and subsequently inhibits the formation of dG-dC cross-links, hinders the application of CENU chemotherapies. Therefore, the discovery of CENU analogs with AGT inhibiting activity is a promising approach leading to novel CENU chemotherapies with high therapeutic index. In this study, a new combi-nitrosourea prodrug 3-(3-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)-1-(2-chloroethyl)-1-nitrosourea (6), designed to release a DNA cross-linking agent and an inhibitor of AGT, was synthesized and evaluated for its antitumor activity and ability to induce DNA interstrand cross-links (ICLs). The results indicated that 6 exhibited higher cytotoxicity against mer(+) glioma cells compared with ACNU, BCNU, and their respective combinations with O(6)-benzylguanine (O(6)-BG). Quantifications of dG-dC cross-links induced by 6 were performed using HPLC-ESI-MS/MS. Higher levels of dG-dC cross-link were observed in 6-treated human glioma SF763 cells (mer(+)), whereas lower levels of dG-dC cross-link were observed in 6-treated calf thymus DNA, when compared with the groups treated with BCNU and ACNU. The results suggested that the superiority of 6 might result from the AGT inhibitory moiety, which specifically functions in cells with AGT activity. Molecular docking studies indicated that five hydrogen bonds were formed between the O(6)-BG analogs released from 6 and the five residues in the active pocket of AGT, which provided a reasonable explanation for the higher AGT-inhibitory activity of 6 than O(6)-BG. Copyright © 2016 Elsevier Ltd. All rights reserved.
Focal Urethral Stricturing Following Intraurethral Mitomycin-C Gel and the Use of a Penile Clamp
Stanford, Richard F. J.; Thomas, Stephen A.
2012-01-01
We present a case of a 51-year-old gentleman, previously diagnosed with high-grade superficial transitional cell carcinoma of the bladder and treated with intravesical mitomycin C and BCG, who developed serial recurrences in the prostatic urethra. This was resected and treated further with intraurethral mitomycin-C gel. He subsequently developed an almost impassable distal penile urethral stricture, corresponding to the site of penile clamp application which we hypothesise is secondary to a combination of the mitomycin-C gel and penile clamp pressure. PMID:22830069
Focal urethral stricturing following intraurethral mitomycin-C gel and the use of a penile clamp.
Stanford, Richard F J; Thomas, Stephen A
2012-01-01
We present a case of a 51-year-old gentleman, previously diagnosed with high-grade superficial transitional cell carcinoma of the bladder and treated with intravesical mitomycin C and BCG, who developed serial recurrences in the prostatic urethra. This was resected and treated further with intraurethral mitomycin-C gel. He subsequently developed an almost impassable distal penile urethral stricture, corresponding to the site of penile clamp application which we hypothesise is secondary to a combination of the mitomycin-C gel and penile clamp pressure.
Saleem, A; Datta, R; Yuan, Z M; Kharbanda, S; Kufe, D
1995-12-01
The cellular response to 1-beta-D-arabinofuranosylcytosine (ara-C) includes activation of Jun/AP-1, induction of c-jun transcription, and programmed cell death. The stress-activated protein (SAP) kinases stimulate the transactivation function of c-jun by amino terminal phosphorylation. The present work demonstrates that ara-C activates p54 SAP kinase. The finding that SAP kinase is also activated by alkylating agents (mitomycin C and cisplatinum) and the topoisomerase I inhibitor 9-amino-camptothecin supports DNA damage as an initial signal in this cascade. The results demonstrate that ara-C also induces binding of SAP kinase to the SH2/SH3-containing adapter protein Grb2. SAP kinase binds to the SH3 domains of Grb2, while interaction of the p85 alpha-subunit of phosphatidylinositol 3-kinase complex. The results also demonstrate that ara-C treatment is associated with inhibition of lipid and serine kinase activities of PI 3-kinase. The potential significance of the ara-C-induced interaction between SAP kinase and PI 3-kinase is further supported by the demonstration that Wortmannin, an inhibitor of PI 3-kinase, stimulates SAP kinase activity. The finding that Wortmannin treatment is also associated with internucleosomal DNA fragmentation may support a potential link between PI 3-kinase and regulation of both SAP kinase and programmed cell death.
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)
1981-01-01
Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.
Effect of mitomycin on normal dermal fibroblast and HaCat cell: an in vitro study
Wang, Yao-wen; Ren, Ji-hao; Xia, Kun; Wang, Shu-hui; Yin, Tuan-fang; Xie, Ding-hua; Li, Li-hua
2012-01-01
Objective: To evaluate the effects of mitomycin on the growth of human dermal fibroblast and immortalized human keratinocyte line (HaCat cell), particularly the effect of mitomycin on intracellular messenger RNA (mRNA) synthesis of collagen and growth factors of fibroblast. Methods: The normal dermal fibroblast and HaCat cell were cultured in vitro. Cell cultures were exposed to 0.4 and 0.04 mg/ml of mitomycin solution, and serum-free culture medium was used as control. The cellular morphology change, growth characteristics, cell proliferation, and apoptosis were observed at different intervals. For the fibroblasts, the mRNA expression changes of transforming growth factor (TGF)-β1, basic fibroblast growth factor (bFGF), procollagen I, and III were detected by reverse transcription polymerase chain reaction (RT-PCR). Results: The cultured normal human skin fibroblast and HaCat cell grew exponentially. A 5-min exposure to mitomycin at either 0.4 or 0.04 mg/ml caused marked dose-dependent cell proliferation inhibition on both fibroblasts and HaCat cells. Cell morphology changed, cell density decreased, and the growth curves were without an exponential phase. The fibroblast proliferated on the 5th day after the 5-min exposure of mitomycin at 0.04 mg/ml. Meanwhile, 5-min application of mitomycin at either 0.04 or 0.4 mg/ml induced fibroblast apoptosis but not necrosis. The apoptosis rate of the fibroblast increased with a higher concentration of mytomycin (p<0.05). A 5-min exposure to mitomycin at 0.4 mg/ml resulted in a marked decrease in the mRNA production of TGF-β1, procollagen I and III, and a marked increase in the mRNA production of bFGF. Conclusions: Mitomycin can inhibit fibroblast proliferation, induce fibroblast apoptosis, and regulate intracellular protein expression on mRNA levels. In additon, mitomycin can inhibit HaCat cell proliferation, so epithelial cell needs more protecting to avoid mitomycin’s side effect when it is applied clinically. PMID:23225855
Xin, Keting; Li, Man; Lu, Di; Meng, Xuan; Deng, Jun; Kong, Deling; Ding, Dan; Wang, Zheng; Zhao, Yanjun
2017-01-11
Catechol-Fe 3+ coordinated micelles show the potential for achieving on-demand drug delivery and magnetic resonance imaging in a single nanoplatform. Herein, we developed bioinspired coordination-cross-linked amphiphilic polymeric micelles loaded with a model anticancer agent, doxorubicin (Dox). The nanoscale micelles could tolerate substantial dilution to a condition below the critical micelle concentration (9.4 ± 0.3 μg/mL) without sacrificing the nanocarrier integrity due to the catechol-Fe 3+ coordinated core cross-linking. Under acidic conditions (pH 5.0), the release rate of Dox was significantly faster compared to that at pH 7.4 as a consequence of coordination collapse and particle de-cross-linking. The cell viability study in 4T1 cells showed no toxicity regarding placebo cross-linked micelles. The micelles with improved stability showed a dramatically increased Dox accumulation in tumors and hence the enhanced suppression of tumor growth in a 4T1 tumor-bearing mouse model. The presence of Fe 3+ endowed the micelles T 1 -weighted MRI capability both in vitro and in vivo without the incorporation of traditional toxic paramagnetic contrast agents. The current work presented a simple "three birds with one stone" approach to engineer the robust theranostic nanomedicine platform.
Dose-dependent effect of mitomycin C on human vocal fold fibroblasts
Li, Nicole Y. K.; Chen, Fei; Dikkers, Frederik G.; Thibeault, Susan L.
2014-01-01
Background The purpose of this study was to evaluate in vitro cytotoxicity and antifibrotic effects of mitomycin C on normal and scarred human vocal fold fibroblasts. Methods Fibroblasts were subjected to mitomycin C treatment at 0.2, 0.5, or 1 mg/mL, or serum control. Cytotoxicity, immunocytochemistry, and Western blot for collagen I/III were performed at days 0, 1, 3, and 5. Results Significant decreases in live cells were measured for mitomycin C-treated cells on days 3 and 5 for all doses. Extracellular staining of collagen I/III was observed in mitomycin C-treated cells across all doses and times. Extracellular staining suggests apoptosis with necrosis, compromising the integrity of cell membranes and release of cytosolic proteins into the extracellular environment. Western blot indicates inhibition of collagen at all doses except 0.2 mg/mL at day 1. Conclusion A total of 0.2 mg/mL mitomycin C may provide initial and transient stimulation of collagen for necessary repair to damaged tissue without the long-term risk of fibrosis. PMID:23765508
T lymphocyte mediated lysis of mitomycin C treated Tenon’s capsule fibroblasts
Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N
2004-01-01
Aims: To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon’s capsule fibroblasts. Methods: IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. Results: T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). Conclusion: T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically. PMID:14977777
T lymphocyte mediated lysis of mitomycin C treated Tenon's capsule fibroblasts.
Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N
2004-03-01
To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon's capsule fibroblasts. IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically.
Dose-dependent effect of mitomycin C on human vocal fold fibroblasts.
Li, Nicole Y K; Chen, Fei; Dikkers, Frederik G; Thibeault, Susan L
2014-03-01
The purpose of this study was to evaluate in vitro cytotoxicity and antifibrotic effects of mitomycin C on normal and scarred human vocal fold fibroblasts. Fibroblasts were subjected to mitomycin C treatment at 0.2, 0.5, or 1 mg/mL, or serum control. Cytotoxicity, immunocytochemistry, and Western blot for collagen I/III were performed at days 0, 1, 3, and 5. Significant decreases in live cells were measured for mitomycin C-treated cells on days 3 and 5 for all doses. Extracellular staining of collagen I/III was observed in mitomycin C-treated cells across all doses and times. Extracellular staining suggests apoptosis with necrosis, compromising the integrity of cell membranes and release of cytosolic proteins into the extracellular environment. Western blot indicates inhibition of collagen at all doses except 0.2 mg/mL at day 1. A total of 0.2 mg/mL mitomycin C may provide initial and transient stimulation of collagen for necessary repair to damaged tissue without the long-term risk of fibrosis. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.
Porous Cross-Linked Polyimide-Urea Networks
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)
2015-01-01
Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jin; Ye, Feng; Dan, Guorong
Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O{sup 6}-methylguanine–DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPCmore » was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1 h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24 h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. - Highlights: • Nitrogen mustard-induced MGMT-DNA cross-linking was detected in a living cell. • Concentration- and time-dependent manners of MGMT-DNA cross-linking were revealed. • Proteolysis played an important role in protein (MGMT)-DNA cross-linking repair. • DVC1 acts as a proteolytic enzyme in cross-linking repair in a p97-dependent manner.« less
Redshaw, Jeffrey D.; Broghammer, Joshua A.; Smith, Thomas G.; Voelzke, Bryan B.; Erickson, Bradley A.; McClung, Christopher D.; Elliott, Sean P.; Alsikafi, Nejd F.; Presson, Angela P.; Aberger, Michael E.; Craig, James R.; Brant, William O.; Myers, Jeremy B.
2015-01-01
Purpose Injection of mitomycin C may increase the success of transurethral incision of the bladder neck for the treatment of bladder neck contracture. We evaluated the efficacy of mitomycin C injection across multiple institutions. Materials and Methods Data on all patients who underwent transurethral incision of the bladder neck with mitomycin C from 2009 to 2014 were retrospectively reviewed from 6 centers in the TURNS. Patients with at least 3 months of cystoscopic followup were included in the analysis. Results A total of 66 patients underwent transurethral incision of the bladder neck with mitomycin C and 55 meeting the study inclusion criteria were analyzed. Mean ± SD patient age was 64 ± 7.6 years. Dilation or prior transurethral incision of the bladder neck failed in 80% (44 of 55) of patients. Overall 58% (32 of 55) of patients achieved resolution of bladder neck contracture after 1 transurethral incision of the bladder neck with mitomycin C at a median followup of 9.2 months (IQR 11.7). There were 23 patients who had recurrence at a median of 3.7 months (IQR 4.2), 15 who underwent repeat transurethral incision of the bladder neck with mitomycin C and 9 of 15 (60%) who were free of another recurrence at a median of 8.6 months (IQR 8.8), for an overall success rate of 75% (41 of 55). Incision with electrocautery (Collins knife) was predictive of success compared with cold knife incision (63% vs 50%, p=0.03). Four patients experienced serious adverse events related to mitomycin C and 3 needed or are planning cystectomy. Conclusions The efficacy of intralesional injection of mitomycin C at transurethral incision of the bladder neck was lower than previously reported and was associated with a 7% rate of serious adverse events. PMID:25200807
A cross-linking study of the Ca2+, Mg2+-activated adenosine triphosphatase of Escherichia coli.
Bragg, P D; Hou, C
1980-05-01
The solubilized Ca2+,Mg2+-activated adenosine triphosphatase of Escherichia coli is composed of five subunits designated alpha, beta, gamma, delta and epsilon in order of decreasing molecular weight. The subunit structure of the enzyme has been investigated by the use of the cleavable cross-linking agents dithiobis(succinimidyl propionate), methyl-4-mercaptobutyrimidate, dimethyl-3,3'-dithiobispropionimidate, disuccinimidyl tartarate, and cupric 1,10-phenanthrolinate. The products of cross-linking were analyzed by two different two-dimensional gel electrophoresis systems. The following cross-linked subunit dimers were observed: alpha 2, beta 2, alpha beta, alpha delta, beta gamma, beta delta, beta epsilon and gamma epsilon. These results, together with other published data, are discussed in relation to a model of the arrangement of the subunits in the ATPase molecule.
Flow cytometric characterization of the response of Fanconi's anemia cells to mitomycin C treatment.
Kaiser, T N; Lojewski, A; Dougherty, C; Juergens, L; Sahar, E; Latt, S A
1982-03-01
DNA flow histogram analysis, using 33342 Hoechst as a stain, has been used to detect the effect of the potentially bifunctional alkylating agent, mitomycin C (MMC) on dermal fibroblasts from patients with Fanconi's anemia (FA), a hereditary human disease characterized by pancytopenia, hypersensitivity to DNA-crosslinking agents, congenital abnormalities and a predisposition for neoplasia. At 24 or 48 hr after a 2-hr exposure to 0.05 or 0.10 micrograms/ml MMC, (3)HdT incorporation was reduced to a greater extent in FA cells than in normal cells. Cells sorted from the last half of S phase showed a slightly greater inhibition of (3)HdT incorporation than did those sorted from the first half of S. Fanconi's anemia cells exhibited a marked accumulation in the G(2) + M peak of flow histograms following exposure to MMC. Twenty-four hr after treatment with .0.5 micrograms/ml MMC, the G(2) + M fraction of FA cells (eight lines) increased to more than 0.5 from a control value of approximately 0.02. Both normals (six lines) and heterozygotes (eight lines) showed, on the average, much less of a G(2) + M increment than did FA cells, even after exposure to 0.1 micrograms/ml MMC. Examination of cells sorted from the G(2) + M peak revealed that MMC-treated FA cells were blocked prior to mitosis. To determine whether the response of FA cells was specific for bifunctional alkylating agent, cells were also treated with ethylmethanesulfonate, a monofunctional agent. Twenty-four hours after exposure to 0.25 or 0.5 mg/ml ethylmethanesulfonate, FA and normal cells showed similar, small increases in the G(2) + M peak. The results suggest the utility of flow cytometry in the diagnostic evaluation of fibroblasts from patients suspected of having Fanconi's anemia.
Effect of mitomycin C on keloid fibroblasts: an in vitro study.
Simman, Richard; Alani, Hashim; Williams, Frances
2003-01-01
Keloids are the result of aberrant wound healing of human skin after dermal injury. Therapeutic options include excision followed by radiation therapy, steroid injection, and compression with silicone sheets among others. Local invasion and recurrence after excision has provoked interest in treating keloids as neoplasms. The purpose of this study was to determine the effect of mitomycin C (MMC) on keloid fibroblasts. Keloid fibroblasts obtained from five different patients were exposed to MMC. A control group of normal and keloid cells was treated with phosphate buffered saline only. Contrast microscopy showed a decrease of fibroblast density during the 3 weeks after exposure for normal and keloid fibroblasts relative to untreated fibroblasts. This was confirmed by total cell counts ( = 0.1) and measurement of DNA synthesis. By the third week, there was a recovery in DNA synthesis and increased cell count for some of the treated fibroblasts. We concluded that at an appropriate concentration, MMC shows proliferation of keloid fibroblasts in vitro for a period of 3 weeks. This agent may be considered in clinical trials after surgical excision of keloids.
Binding of mitomycin C to blood proteins: A spectroscopic analysis and molecular docking
NASA Astrophysics Data System (ADS)
Jang, Jongchol; Liu, Hui; Chen, Wei; Zou, Guolin
2009-06-01
Mitomycin C (MMC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. The binding of MMC to two human blood proteins, human serum albumin (HSA) and human hemoglobin (HHb), have been investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD) spectroscopy and molecular docking methods. The fluorescence data showed that binding of MMC to proteins caused strong fluorescence quenching of proteins through a static quenching way, and each protein had only one binding site for the drug. The binding constants of MMC to HSA and HHb at 298 K were 2.71 × 10 4 and 2.56 × 10 4 L mol -1, respectively. Thermodynamic analysis suggested that both hydrophobic interaction and hydrogen bonding played major roles in the binding of MMC to HSA or HHb. The CD spectroscopy indicated that the secondary structures of the two proteins were not changed in the presence of MMC. The study of molecular docking showed that MMC was located in the entrance of site I of HSA, and in the central cavity of HHb.
Zhang, Qiaofei; Zhao, Guofeng; Zhang, Zhiqiang; Han, Lupeng; Fan, Songyu; Chai, Ruijuan; Li, Yakun; Liu, Ye; Huang, Jun; Lu, Yong
2016-09-29
A strategy of "macro-micro-nano" organization is reported for embedding oxide-encapsulated-nanoparticles onto monolithic substrates in one-step with the aid of molecularly defined cross-linking agents. Such catalysts, with enhanced heat/mass transfer and high permeability, are qualified for several harsh reaction processes such as CH 4 /VOC abatement, gas-phase hydrogenation of dimethyl oxalate and oxidative dehydrogenation of ethane.
Chugh, Rishi Man; Chaturvedi, Madhusudan; Yerneni, Lakshmana Kumar
2016-01-01
Growth-arrested feeder cells following Mitomycin C treatment are instrumental in stem cell culture allowing development of regenerative strategies and alternatives to animal testing in drug discovery. The concentration of Mitomycin C and feeder cell type was described to affect feeder performance but the criticality of feeder cell exposure density was not addressed. We hypothesize that the exposure cell density influences the effectiveness of Mitomycin C in an arithmetic manner. Three different exposure cell densities of Swiss 3T3 fibroblasts were treated with a range of Mitomycin C concentrations for 2h. The cells were replaced and the viable cells counted on 3, 6, 9, 12 and 20days. The cell extinctions were compared with doses per cell which were derived by dividing the product of concentration and volume of Mitomycin C solution with exposure cell number. The periodic post-treatment feeder cell extinctions were not just dependent on Mitomycin C concentration but also on dose per cell. Analysis of linearity between viable cell number and Mitomycin C dose per cell derived from the concentrations of 3 to 10μg/ml revealed four distinct categories of growth-arrest. Confluent cultures exposed to low concentration showed growth-arrest failure. The in vitro cell density titration can facilitate prediction of a compound's operational in vivo dosing. For containing the growth arrest failure, an arithmetic volume derivation strategy is proposed by fixing the exposure density to a safe limit. The feeder extinction characteristics are critical for streamlining the stem cell based pharmacological and toxicological assays. Copyright © 2016 Elsevier Inc. All rights reserved.
Topical Mitomycin C in functional endoscopic sinus surgery.
Venkatraman, Vaidyanathan; Balasubramanian, Deepak; Gopalakrishnan, Suria; Saxena, Sunil Kumar; Shanmugasundaram, Nirmal
2012-07-01
In recent literature, there has been an interest in the use of Mitomycin C to reduce post-operative complications following endoscopic sinus surgery. We report our results on a prospective, randomized controlled trial involving 50 patients with chronic bilateral rhino sinusitis. We eliminated various confounding factors by studying a single group of patients, with symmetrical disease, without pre-existing gross anatomical abnormalities. Patients requiring revision sinus surgery were excluded. On completion of the surgery, a cotton pledget soaked in Mitomycin C was placed in one nostril (test) and saline-soaked pledget (control) was placed in the other side of the nose, both in the middle meatus. The side of the nasal cavity receiving the topical Mitomycin C was randomized. The patients were assessed periodically (first week, first month, third month and sixth month) for synechiae formation and presence or absence of their symptoms. At the first week follow up, there was a statistically significant difference in the incidence of synechiae between the saline and Mitomycin C side. Furthermore, there was a statistically significant improvement with regards to patient symptoms (nasal block and discharge) in the Mitomycin C side when compared to the saline side. At the third and sixth month, there was no difference between the two groups. The incidence of adverse tissue reaction (granulation, discharge, polypoidal mucosa and crusting) was less in the Mitomycin C side when compared to the saline side at the first month follow up. Topically applied Mitomycin C reduces the incidence of synechiae in the immediate post-operative period in patients undergoing endoscopic sinus surgery. There is also an improvement in nasal obstruction and discharge with a reduction in the incidence of adverse tissue reaction in the early post-operative period.
Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase.
Nadar, Shamraja S; Muley, Abhijeet B; Ladole, Mayur R; Joshi, Pranoti U
2016-03-01
Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase were prepared by precipitation and subsequent cross-linking. The non-toxic, biodegradable, biocompatible, renewable polysaccharide based macromolecular cross-linkers viz. agar, chitosan, dextran, and gum arabic were used as a substitute for traditional glutaraldehyde to augment activity recovery toward macromolecular substrate. Macromolecular cross-linkers were prepared by periodate mediated controlled oxidation of polysaccharides. The effects of precipitating agent, concentration and different cross-linkers on activity recovery of α-amylase CLEAs were investigated. α-Amylase aggregated with ammonium sulphate and cross-linked by dextran showed 91% activity recovery, whereas glutaraldehyde CLEAs (G-CLEAs) exhibited 42% activity recovery. M-CLEAs exhibited higher thermal stability in correlation with α-amylase and G-CLEAs. Moreover, dextran and chitosan M-CLEAs showed same affinity for starch hydrolysis as of free α-amylase. The changes in secondary structures revealed the enhancements in structural and conformational rigidity attributed by cross-linkers. Finally, after five consecutive cycles dextran M-CLEAs retained 1.25 times higher initial activity than G-CLEAs. Copyright © 2015 Elsevier B.V. All rights reserved.
A potentiometric enzyme electrode for the direct measurement of organophosphate (OP)
nerve agents was developed. The basic element of this enzyme electrode was a pH electrode
modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking
OPH ...
Chemotherapy induced toxicity is highly heritable in Drosophila melanogaster
Kislukhin, Galina; Murphy, Maura L.; Jafari, Mahtab; Long, Anthony D.
2012-01-01
Objectives Identifying the genes responsible for chemotherapy toxicity in Drosophila melanogaster may allow for the identification of human orthologs that similarly mediate toxicity in humans. In order to develop Drosophila melanogaster as a model of dissecting chemotoxicity, we first need to develop standardized high throughput toxicity assays and prove that inter-individual variation in toxicity as measured by such assays is highly heritable. Methods We developed a method for the oral delivery of commonly used chemotherapy drugs to Drosophila. Post-treatment female fecundity displayed a dose dependent response to varying levels of the chemotherapy drug delivered. We fixed the dose for each drug at a level that resulted in a 50% reduction in fecundity and used a paternal half-sibling heritability design to calculate the heritability attributable to chemotherapy toxicity assayed via a decrease in female fecundity. Chemotherapy agents tested were carboplatin, floxuridine, gemcitabine hydrochloride, methotrexate, mitomycin C, and topotecan hydrochloride. Results We found that six currently widely prescribed chemotherapeutic agents lowered fecundity in D. melanogaster in both a dose dependent and highly heritable manner. The following heritability estimates were found: carboplatin – 0.72, floxuridine – 0.52, gemcitabine hydrochloride – 0.72, methotrexate – 0.99, mitomycin C – 0.64, and topotecan hydrochloride – 0.63. Conclusions The high heritability estimates observed in this study, irrespective of the particular class of drug examined, suggest that human toxicity may also have a sizable genetic component. PMID:22336958
Stanton, Thaddeus B; Humphrey, Samuel B; Sharma, Vijay K; Zuerner, Richard L
2008-05-01
Brachyspira hyodysenteriae is an anaerobic spirochete and the etiologic agent of swine dysentery. The genome of this spirochete contains a mitomycin C-inducible, prophage-like gene transfer agent designated VSH-1. VSH-1 particles package random 7.5-kb fragments of the B. hyodysenteriae genome and transfer genes between B. hyodysenteriae cells. The chemicals and conditions inducing VSH-1 production are largely unknown. Antibiotics used in swine management and stressors inducing traditional prophages might induce VSH-1 and thereby stimulate lateral gene transfer between B. hyodysenteriae cells. In these studies, VSH-1 induction was initially detected by a quantitative real-time reverse transcriptase PCR assay evaluating increased transcription of hvp38 (VSH-1 head protein gene). VSH-1 induction was confirmed by detecting VSH-1-associated 7.5-kb DNA and VSH-1 particles in B. hyodysenteriae cultures. Nine antibiotics (chlortetracycline, lincomycin, tylosin, tiamulin, virginiamycin, ampicillin, ceftriaxone, vancomycin, and florfenicol) at concentrations affecting B. hyodysenteriae growth did not induce VSH-1 production. By contrast, VSH-1 was detected in B. hyodysenteriae cultures treated with mitomycin C (10 microg/ml), carbadox (0.5 microg/ml), metronidazole (0.5 microg/ml), and H(2)O(2) (300 microM). Carbadox- and metronidazole-induced VSH-1 particles transmitted tylosin and chloramphenicol resistance determinants between B. hyodysenteriae strains. The results of these studies suggest that certain antibiotics may induce the production of prophage or prophage-like elements by intestinal bacteria and thereby impact intestinal microbial ecology.
Cross-linking Chemistry of Squid Beak*
Miserez, Ali; Rubin, Daniel; Waite, J. Herbert
2010-01-01
In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance (1H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720
Cross-linking chemistry of squid beak.
Miserez, Ali; Rubin, Daniel; Waite, J Herbert
2010-12-03
In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance ((1)H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed.
Let there be light: photo-cross-linked block copolymer nanoparticles.
Roy, Debashish; Sumerlin, Brent S
2014-01-01
Polymeric nanoparticles are prepared by selectively cross-linking a photo-sensitive dimethylmaleimide-containing block of a diblock copolymer via UV irradiation. A well-defined photo-cross-linkable block copolymer is prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of a dimethylmaleimide-functional acrylamido monomer containing photoreactive pendant groups with a poly(N,N-dimethylacrylamide) (PDMA) macro-chain transfer agent. The resulting amphiphilic block copolymers form micelles in water with a hydrophilic PDMA shell and a hydrophobic photo-cross-linkable dimethylmaleimide-containing core. UV irradiation results in photodimerization of the dimethylmaleimide groups within the micelle cores to yield core-cross-linked aggregates. Alternatively, UV irradiation of homogeneous solutions of the block copolymer in a non-selective solvent leads to in situ nanoparticle formation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cellulose-silica/gold nanomaterials for electronic applications.
Kim, Gwang-Hoon; Ramesh, Sivalingam; Kim, Joo-Hyung; Jung, Dongsoo; Kim, Heung Soo
2014-10-01
Cellulose and one dimensional nano-material composite has been investigated for various industrial applications due to their optical, mechanical and electrical properties. In present investigation, cellulose/silica and silica-gold hybrid biomaterials were prepared by sol-gel covalent cross-linking process. The tetraethoxysiliane (TEOS) and gold precursors and γ-aminopropyltriethoxysilane (γ-APTES) as coupling agent were used for sol-gel cross-linking process. The chemical and morphological properties of cellulose/silica and cellulose/silica-gold nano-materials via covalent cross-linking hybrids were confirmed by FTIR, XRD, SEM, and TEM analysis. In the sol-gel process, the inorganic particles were dispersed in the cellulose host matrix at the nanometer scale, bonding to the cellulose through the covalent bonds.
FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair.
Liu, Ting; Ghosal, Gargi; Yuan, Jingsong; Chen, Junjie; Huang, Jun
2010-08-06
Fanconi anemia (FA) is caused by mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono-ubiquitylation of the FANCI-FANCD2 (ID) protein complex. Here, we characterize a previously unrecognized nuclease, Fanconi anemia-associated nuclease 1 (FAN1), that promotes ICL repair in a manner strictly dependent on its ability to accumulate at or near sites of DNA damage and that relies on mono-ubiquitylation of the ID complex. Thus, the mono-ubiquitylated ID complex recruits the downstream repair protein FAN1 and facilitates the repair of DNA interstrand cross-links.
Cao, Yanting; Pan, Rong; Xuan, Weimin; Wei, Yongyi; Liu, Kejian; Zhou, Jiahong; Wang, Wei
2015-06-28
We describe a new theranostic strategy for selective delivery and spatiotemporal monitoring of mechlorethamine, a DNA alkylating agent. A photo-responsive prodrug is designed and composed of a photolabile o-nitrophenylethyl group, a DNA alkylating mechlorethamine drug and a coumarin fluorophore. Masking of the "N" in mechlorethamine in a positively charged state in the prodrug renders it inactive, non-toxic, selective and non-fluorescent. Indeed, the stable prodrug shows negligible cytotoxicity towards normal cells with and without UV activation and is completely non-fluorescent. However, upon photo-irradiation, the active mechlorethamine is released and induces efficient DNA cross-links, accompanied by a strong fluorescence enhancement (152 fold). Furthermore, DNA cross-linking activity from the release can be transformed into anticancer activity observed in in vitro studies of tumor cells. Importantly, the drug release progress and the movement can be conveniently monitored by fluorescence spectroscopy. The mechanistic study proves that the DNA cross-linking activity is mainly due to the release of DNA alkylating mechlorethamine. Altogether, the studies show the power of the theranostic strategy for efficient therapy in cancer treatment.
Chen, Guo-Ning; Li, Ning; Luo, Tian; Dong, Yu-Ming
2017-04-01
In this study, 3-(trimethoxysilyl)propyl methacrylate (γ-MPS), a bifunctional group compound, was used as a single cross-linking agent to prepare molecular imprinted inorganic-organic hybrid polymers by in situ polymerization for open-tubular capillary electro chromatography (CEC) column. The optimal preparation conditions were: the ratio between template molecule and functional monomer was 1:4; the volume proportion of porogen toluene and methanol was 1:1 and the volume of cross-linking agent γ-MPS was 69 μL. The optimal separation conditions were separation voltage of 15 kV; detection wavelength at 215 nm and background electrolyte composed of 70% acetonitrile/20 mmol/L boric acid salt (pH 6.9). Under the optimized conditions, the propranolol enantiomers can be separated well by CEC. The method is simple and fast, it can be a potentially useful approach for propranolol enantiomers separation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chen, Nan; Zhang, Jie; Xu, Min; Wang, Yu Ling; Pei, Ying Hua
2013-01-01
Airway granulation tissue and scar formation pose a challenge because of the high incidence of recurrence after treatment. As an emerging treatment modality, topical application of mitomycin C has potential value in delaying the recurrence of airway obstruction. Several animal and clinical studies have already proven its feasibility and efficacy. However, the ideal dosage has still not been determined. To establish a novel method for culturing primary fibroblasts isolated from human airway granulation tissue, and to investigate the dose-effect of mitomycin C on the fibroblast proliferation in vitro, so as to provide an experimental reference for clinical practitioners. Granulation tissues were collected during the routine bronchoscopy at our department. The primary fibroblasts were obtained by culturing the explanted tissues. The cells were treated with different concentrations of mitomycin C (0.1, 0.2, 0.4, 0.8 and 1.6 mg/ml) for 5 min followed by additional 48-hour culture before an MTT assay was performed to measure cell viability. MTT assay showed that mitomycin C reduced cell viability at all tested concentrations. The inhibitory ratios were 10.26, 26.77, 32.88, 64.91 and 80.45% for cells treated with mitomycin C at 0.1, 0.2, 0.4, 0.8 and 1.6 mg/ml, respectively. Explant culture is a reliable method for culturing primary fibroblasts from human airway granulation tissue, and mitomycin C can inhibit proliferation of the fibroblasts in vitro. Copyright © 2013 S. Karger AG, Basel.
Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang; Ma, David Hui-Kang
2017-02-01
Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure-property relationship without compromising in vitro and in vivo biocompatibility of electrospun gelatin nanofibers for future ophthalmic applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Johnson, Kevin M.; Price, Nathan E.; Wang, Jin; Fekry, Mostafa I.; Dutta, Sanjay; Seiner, Derrick R.; Wang, Yinsheng; Gates, Kent S.
2014-01-01
We recently reported that the aldehyde residue of an abasic (Ap) site in duplex DNA can generate an interstrand cross-link via reaction with a guanine residue on the opposing strand. This finding is intriguing because the highly deleterious nature of interstrand cross-links suggests that even small amounts of Ap-derived cross-links could make a significant contribution to the biological consequences stemming from the generation of Ap sites in cellular DNA. Incubation of 21-bp duplexes containing a central 5′-CAp sequence under conditions of reductive amination (NaCNBH3, pH 5.2) generated much higher yields of cross-linked DNA than reported previously. At pH 7, in the absence of reducing agents, these Ap-containing duplexes also produced cross-linked duplexes that were readily detected on denaturing polyacrylamide gels. Cross-link formation was not highly sensitive to reaction conditions and, once formed, the cross-link was stable to a variety of work-up conditions. Results of multiple experiments including MALDI-TOF mass spectrometry, gel mobility, methoxyamine capping of the Ap aldehyde, inosine-for-guanine replacement, hydroxyl radical footprinting, and LCMS/MS were consistent with a cross-linking mechanism involving reversible reaction of the Ap aldehyde residue with the N2-amino group of the opposing guanine residue in 5′-CAp sequences to generate hemiaminal, imine, or cyclic hemiaminal cross-links (7-10) that were irreversibly converted under conditions of reductive amination (NaCNBH3/pH 5.2) to a stable amine linkage. Further support for the importance of the exocyclic N2-amino group in this reaction was provided by an experiment showing that installation of a 2-aminopurine-thymine base pair at the cross-linking site produced high yields (15-30%) of a cross-linked duplex at neutral pH, in the absence of NaCNBH3. PMID:23215239
Malina, Jaroslav; Natile, Giovanni; Brabec, Viktor
2013-09-02
Oxaliplatin and cisplatin belong to the class of platinum-based anticancer agents. Formation of DNA adducts by these complexes and the consequences for its structure and function, is the mechanistic paradigm by which these drugs exert their antitumor activity. We show that employing short oligonucleotide duplexes containing single, site-specific 1,3-intrastrand cross-links of oxaliplatin, its enantiomeric analogue, or cisplatin and by using gel electrophoresis that under physiological conditions the coordination bonds between platinum and the N7 position of guanine residues involved in the cross-links of the Pt(II) complexes can be cleaved. This cleavage may lead to linkage isomerization reactions between these metallodrugs and double-helical DNA. For instance, approximately 25 % 1,3-intrastrand cross-links of the platinum complexes isomerized after 192 h (at 310 K in 200 mM NaClO4). Differential scanning calorimetry of duplexes containing single, site-specific cross-links of oxaliplatin, its enantiomeric analogue, and cisplatin reveals that one of the driving forces that leads to the lability of DNA cross-links of these metallodrugs is a difference between the thermodynamic destabilization induced by the cross-link and by the adduct into which it could isomerize. The rearrangements may proceed in the way that cross-links originally formed in one strand of the DNA can spontaneously translocate from one DNA strand to its complementary counterpart, which may evoke walking of the platinum complex on DNA molecule. In addition, the differences in the kinetics of the rearrangement reactions and the thermodynamic destabilization of DNA observed for adducts of oxaliplatin and its enantiomeric analogue confirm that the chirality at the carrier 1,2-diaminocyclohexane ligand can considerably affect structural and other physical properties of DNA adducts and consequently their biological effects. In aggregate, interesting generalization of the results described in this work might be that the migration of oxaliplatin, its enantiomeric analogue, or cisplatin from one strand to another in double-helical DNA controlled by energetic signatures of these agents might contribute to a better understanding of their cytotoxic and mutagenic potential. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Welsch, Nicole; Lyon, L Andrew
2017-01-01
We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties.
Lyon, L. Andrew
2017-01-01
We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties. PMID:28719648
A method for the production of weakly acidic cation exchange resins
NASA Astrophysics Data System (ADS)
Heller, H.; Werner, F.; Mitschker, A.; Diehl, H. V.; Schaefer, A.
1991-12-01
The invention relates to a nonpolluting method for the production of weakly acidic cation exchange resins by saponification of cross-linked acrylonitrile bead polymers, with an alkaline saponification agent at elevated temperature, according to which method the bead polymer and alkaline saponification agent are jointly added only at elevated temperature.
Kim, Gyu-Nam; Yoo, Woong-Sun; Kim, Seong-Jae; Han, Yong-Seop; Chung, In-Young; Park, Jong-Moon; Yoo, Ji-Myong
2014-01-01
Purpose To investigate the inhibitory effect of 0.02% mitomycin C on eyelash regrowth when injected to the eyelash hair follicle immediately after radiofrequency ablation. Methods We prospectively included 21 trichiasis patients from June 2011 to October 2012. Twenty eyes of 14 patients were treated with 0.02% mitomycin C to the hair follicle immediately after radiofrequency ablation in group 1, while radiofrequency ablation only was conducted in ten eyes of seven patients in group 2. Recurrences and complications were evaluated until six months after treatment. Results One hundred sixteen eyelashes of 20 eyes in group 1 underwent treatment, and 19 (16.4%) eyelashes recurred. Eighty-four eyelashes of ten eyes in group 2 underwent treatment, and 51 (60.7%) eyelashes recurred. No patients developed any complications related to mitomycin C. Conclusions Application of 0.02% mitomycin C in conjunction with radiofrequency ablation may help to improve the success rate of radiofrequency ablation treatment in trichiasis patients. PMID:24505196
Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars
2013-11-06
Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred. Copyright © 2013 Elsevier Ltd. All rights reserved.
Heran, Manraj K S; Baird, Robert; Blair, Geoffrey K; Skarsgard, Erik D
2008-05-01
Nonsurgical treatment of recalcitrant pediatric esophageal strictures is challenging. The chemotherapy drug mitomycin-C, which reduces collagen synthesis and scar formation, shows anecdotal promise in the topical treatment of these strictures. Mitomycin-C is cytotoxic, and a safe endoluminal delivery system that avoids inadvertent application to adjacent mucosa has not yet been described. We have treated 2 patients with a combined endoscopic/fluoroscopic technique that ensures protected delivery of a mitomycin-soaked pledget directly to the targeted site. Following pneumatic balloon dilation of the stricture under fluoroscopy, flexible esophagoscopy is performed to the disrupted stricture. Through the gastrostomy tract, a 12F to 16F semirigid sheath is introduced over a guide wire and passed retrograde up the esophagus to the stricture. A grasping forceps introduced through the instrument channel of the esophagoscope is advanced through the sheath and grasps a mitomycin-C-soaked pledget. The pledget is drawn back through the sheath up to the stricture where timed, serial radial applications to the stricture are performed without any contamination of the rest of the esophagus or stomach. We describe a novel technique of endoluminal delivery and focused application of mitomycin-C to an esophageal stricture that avoids inadvertent topical application to adjacent mucosa.
Martínez-Martínez, Mayte; Rodríguez-Berna, Guillermo; Gonzalez-Alvarez, Isabel; Hernández, Ma Jesús; Corma, Avelino; Bermejo, Marival; Merino, Virginia; Gonzalez-Alvarez, Marta
2018-04-09
In this work, 6-phosphogluconic trisodium salt (6-PG - Na + ) is introduced as a new aqueous and nontoxic cross-linking agent to obtain ionic hydrogels. Here, it is shown the formation of hydrogels based on chitosan cross-linked with 6-PG - Na + . This formulation is obtained by ionic interaction of cationic groups of polymer with anionic groups of the cross-linker. These hydrogels are nontoxic, do not cause dermal irritation, are easy to extend, and have an adequate adhesion force to be applied as polymeric film over the skin. This formulation exhibits a first order release kinetic and can be applied as drug vehicle for topical administration or as wound dressing for wound healing. The primary goal of this communication is to report the identification and utility of 6-phosphogluconic trisodium salt (6-PG - Na + ) as a nontoxic cross-linker applicable for cationic polymers.
Vršanská, Martina; Voběrková, Stanislava; Jiménez Jiménez, Ana María; Strmiska, Vladislav; Adam, Vojtěch
2017-01-01
The key to obtaining an optimum performance of an enzyme is often a question of devising a suitable enzyme and optimisation of conditions for its immobilization. In this study, laccases from the native isolates of white rot fungi Fomes fomentarius and/or Trametes versicolor, obtained from Czech forests, were used. From these, cross-linked enzyme aggregates (CLEA) were prepared and characterised when the experimental conditions were optimized. Based on the optimization steps, saturated ammonium sulphate solution (75 wt.%) was used as the precipitating agent, and different concentrations of glutaraldehyde as a cross-linking agent were investigated. CLEA aggregates formed under the optimal conditions showed higher catalytic efficiency and stabilities (thermal, pH, and storage, against denaturation) as well as high reusability compared to free laccase for both fungal strains. The best concentration of glutaraldehyde seemed to be 50 mM and higher efficiency of cross-linking was observed at a low temperature 4 °C. An insignificant increase in optimum pH for CLEA laccases with respect to free laccases for both fungi was observed. The results show that the optimum temperature for both free laccase and CLEA laccase was 35 °C for T. versicolor and 30 °C for F. fomentarius. The CLEAs retained 80% of their initial activity for Trametes and 74% for Fomes after 70 days of cultivation. Prepared cross-linked enzyme aggregates were also investigated for their decolourisation activity on malachite green, bromothymol blue, and methyl red dyes. Immobilised CLEA laccase from Trametes versicolor showed 95% decolourisation potential and CLEA from Fomes fomentarius demonstrated 90% decolourisation efficiency within 10 h for all dyes used. These results suggest that these CLEAs have promising potential in dye decolourisation. PMID:29295505
Crosslinked, porous, polyacrylate beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)
1976-01-01
Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.
Crosslinked, porous, polyacrylate beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)
1977-01-01
Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.
Small, porous polyacrylate beads
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping Siao (Inventor); Rembaum, Alan (Inventor); Dreyer, William J. (Inventor)
1976-01-01
Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.
Xiang, Xinran; Suo, Hongbo; Xu, Chao; Hu, Yi
2018-05-01
Chitosan-mesoporous silica SBA-15 hybrid nanomaterials (CTS-SBA-15) were synthesized by means of carboxyl functionalized ionic liquids as the coupling agent. The as-prepared CTS-SBA-15 support was characterized by TEM, FTIR, TG and nitrogen adsorption-desorption techniques. Porcine pancreas lipase (PPL) was then bound to the hybrid nanomaterials by using the cross-linking reagent glutaraldehyde (GA). Further, the parameters like cross-linking concentration, time and ratio of supports to enzyme were optimized. The property of immobilized lipase were tested in detail by enzyme activity assays. The results indicated that the hybrid nanomaterials could form three-dimensional (3D) structure with homogeneous mesoporous structures and immobilized PPL revealed excellent enzymatic performance. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wei, Weijia; Zhang, Xiujuan; Chen, Xianfeng; Zhou, Mengjiao; Xu, Ruirui; Zhang, Xiaohong
2016-04-01
Many drug molecules can be directly used as nanomedicine without the requirement of any inorganic or organic carriers such as silica and liposome nanostructures. This new type of carrier-free drug nanoparticles (NPs) has great potential in clinical treatment because of its ultra-high drug loading capacity and biodegradability. For practical applications, it is essential for such nanomedicine to possess robust stability and minimal premature release of therapeutic molecules during circulation in the blood stream. To meet this requirement, herein, we develop GSH-responsive and crosslinkable amphiphilic polyethylene glycol (PEG) molecules to modify carrier-free drug NPs. These PEG molecules can be cross-linked on the surface of the NPs to endow them with greater stability and the cross-link is sensitive to intracellular environment for bio-responsive drug release. With this elegant design, our experimental results show that the liberation of DOX from DOX-cross-linked PEG NPs is dramatically slower than that from DOX-non-cross-linked PEG NPs, and the DOX release profile can be controlled by tuning the concentration of the reducing agent to break the cross-link between PEG molecules. More importantly, in vivo studies reveal that the DOX-cross-linked PEG NPs exhibit favorable blood circulation half-life (>4 h) and intense accumulation in tumor areas, enabling effective anti-cancer therapy. We expect this work will provide a powerful strategy for stabilizing carrier-free nanomedicines and pave the way to their successful clinical applications in the future.Many drug molecules can be directly used as nanomedicine without the requirement of any inorganic or organic carriers such as silica and liposome nanostructures. This new type of carrier-free drug nanoparticles (NPs) has great potential in clinical treatment because of its ultra-high drug loading capacity and biodegradability. For practical applications, it is essential for such nanomedicine to possess robust stability and minimal premature release of therapeutic molecules during circulation in the blood stream. To meet this requirement, herein, we develop GSH-responsive and crosslinkable amphiphilic polyethylene glycol (PEG) molecules to modify carrier-free drug NPs. These PEG molecules can be cross-linked on the surface of the NPs to endow them with greater stability and the cross-link is sensitive to intracellular environment for bio-responsive drug release. With this elegant design, our experimental results show that the liberation of DOX from DOX-cross-linked PEG NPs is dramatically slower than that from DOX-non-cross-linked PEG NPs, and the DOX release profile can be controlled by tuning the concentration of the reducing agent to break the cross-link between PEG molecules. More importantly, in vivo studies reveal that the DOX-cross-linked PEG NPs exhibit favorable blood circulation half-life (>4 h) and intense accumulation in tumor areas, enabling effective anti-cancer therapy. We expect this work will provide a powerful strategy for stabilizing carrier-free nanomedicines and pave the way to their successful clinical applications in the future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09167e
Guler Simsek, Gulcin; Vargol, Erdem; Simsek, Hulya
2014-01-01
Cytomorphological changes of mitomycin C on urothelial cells may be misinterpreted as a neoplastic process. A 60-year old male patient who was given an eight-week course of intravesical mitomycin C due to non-invasive low grade transitional cell carcinoma. During his follow-up care, the findings of a urine cytology exam were as follows: nuclear enlargement of cells, wrinkled nuclear membranes, little hyperchromasia, pleomorphism, abnormal nuclear morphology and disordered orientation of the urothelium. Furthermore, there were eosinophils nearby the atypical cells. This report aimed at reminding the cytomorphologic changes of mitomycin C may be misinterpreted as carcinoma, so the presence of eosinophils is required to predict the drug-induced changes.
Medical applications of atomic force microscopy and Raman spectroscopy.
Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk
2014-01-01
This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.
Sulfur-Containing Organic-Inorganic Hybrid Gel Compositions and Aerogels
NASA Technical Reports Server (NTRS)
Evans, Owen R (Inventor); Deshpande, Kiranmayi (Inventor); Dong, Wenting (Inventor)
2017-01-01
Methods and materials are described for preparing organic-inorganic hybrid gel compositions where a sulfur-containing cross-linking agent covalently links the organic and inorganic components. The gel compositions are further dried to provide porous gel compositions and aerogels. The mechanical and thermal properties of the dried gel compositions are also disclosed.
Sulfur-Containing Organic-Inorganic Hybrid Gel Compositions and Aerogels
NASA Technical Reports Server (NTRS)
Deshpande, Kiranmayi (Inventor); Evans, Owen R. (Inventor); Dong, Wenting (Inventor)
2015-01-01
Methods and materials are described for preparing organic-inorganic hybrid gel compositions where a sulfur-containing cross-linking agent covalently links the organic and inorganic components. The gel compositions are further dried to provide porous gel compositions and aerogels. The mechanical and thermal properties of the dried gel compositions are also disclosed.
The mechanism of collagen cross-linking in diabetes: a puzzle nearing resolution.
Monnier, V M; Glomb, M; Elgawish, A; Sell, D R
1996-07-01
Considerable interest has been focused in recent years on the mechanism of collagen cross-linking by high glucose in vitro and in vivo. Experiments in both diabetic humans and in animals have shown that over time collagen becomes less soluble, less digestible by collagenase, more stable to heat-induced denaturation, and more glycated. In addition, collagen becomes more modified by advanced products of the Maillard reaction, i.e., immunoreactive advanced glycation end products and the glycoxidation markers carboxymethyllysine and pentosidine. Mechanistic studies have shown that collagen cross-linking in vitro can be uncoupled from glycation by the use of antioxidants and chelating agents. Experiments in the authors' laboratory revealed that approximately 50% of carboxymethyllysine formed in vitro originates from pathways other than oxidation of Amadori products, i.e., most likely the oxidation of Schiff base-linked glucose. In addition, the increase in thermal stability of rat tail tendons exposed to high glucose in vitro or in vivo was found to strongly depend on H2O2 formation. The final missing piece of the puzzle is that of the structure of the major cross-link. We speculate that it is a nonfluorescent nonultraviolet active cross-link between two lysine residues, which includes a fragmentation product of glucose linked in a nonreducible bond labile to both strong acids and bases.
Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins. [Patent application
Rinde, J.A.; Newey, H.A.
Primary diamines are prepared for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and preimpregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses a room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.
Mudhol, Rekha R; Zingade, N D; Mudhol, R S; Harugop, Anil S; Das, Amal T
2013-08-01
The aim of the study is to compare the subjective (relief of symptoms) and objective (endoscopic visualization of ostium patency at the time of syringing) outcomes at the end of two procedures-Endonasal DCR versus External DCR with Mitomycin C and to assess the role of Mitomycin C in maintaining patency of nasolacrimal drainage system. Prospective randomized comparative study was performed. Thirty-five patients were enrolled in each endoscopic and external dacryocystorhinostomy groups with Mitomycin C (MMC) application. The 37 eyes underwent endonasal DCR (28 unilateral primary eyes + 1 bilateral primary eyes + 5 unilateral revision eyes + 1 bilateral revision eye) while 35 eyes underwent external DCR (34 unilateral primary eyes + 1 unilateral revision eye). Mitomycin C 0.2 mg/ml was applied intra-operatively for 5 min to the ostium site at the end of endonasal or external DCR procedure. Objective assessment by syringing at the end of 1 year in the endonasal group showed 35 eyes (94%) were patent, 1 (3%) was partially blocked and 1(3%) was completely blocked; while in external group all 35 eyes (100%) were patent. Endoscopic visualization of the ostium at the time of syringing showed only one eye (3%) in the endonasal group was blocked while all the other eyes in both groups were patent. Both groups had a mean follow-up of 6-36 months. No complications were associated with use of Mitomycin C. In conclusion, intra-operative use of Mitomycin C in both endoscopic DCR and external DCR is safe and effective in increasing the success rate.
Wang, Xiao Yang; Crowston, Jonathan G; White, Andrew J R; Zoellner, Hans; Healey, Paul R
2014-08-01
The aim of the study was to investigate, using a native mitomycin-C-resistant human Tenon's fibroblast cell line, the possibility that interferon-alpha and gamma could be used with Fas agonists as an alternative anti-fibrotic strategy to mitomycin-C in trabeculectomy. A clinically resistant and in vitro verified mitomycin-C-resistant human Tenon's fibroblast cell line was pretreated with interferon-alpha and interferon-gamma for 48 h before stimulation with an agonistic Fas antibody (CH11) for 2 days to induce cell death. Cell death assays were undertaken. Changes in apoptosis-related proteins were determined by flow cytometry and Western blot. Pretreatment with interferon-alpha or interferon-gamma for 48 h increased Fas, Fas-associated protein with death domain and caspase-8 expression. Protein expression was further increased by combined exposure to interferon-alpha and gamma. Pretreatment with cytokines had no effect on Fas-L and Bcl-2. Interferon-alpha alone did not change the rate of induced cell death. A combination of interferon-alpha and gamma synergistically increased the sensitivity of mitomycin-C-resistant human Tenon's fibroblast cell line to induced cell death. An antagonistic anti-Fas antibody (ZB4) completely blocked induced cell death. Broad caspase inhibitors specific for caspases-8 and -3 reduced induced deaths in interferon pretreated mitomycin-C-resistant human Tenon's fibroblast cell line in a dose-dependent manner. Interferon-alpha and interferon-gamma render mitomycin-C-resistant human Tenon's fibroblast cell line sensitive to Fas-mediated apoptosis. The mechanism involves increased death-inducing signalling complex formation by upregulation of Fas, Fas-associated protein with death domain and caspase-8 expression. © 2013 Royal Australian and New Zealand College of Ophthalmologists.
Treatment of Refractory Gastrointestinal Strictures With Mitomycin C: A Systematic Review.
Rustagi, Tarun; Aslanian, Harry R; Laine, Loren
2015-01-01
Refractory benign gastrointestinal (GI) strictures represent a difficult management problem given the limited therapeutic interventions available. We performed a systematic review of all published cases using mitomycin C in the treatment of GI strictures. Searches of MEDLINE and Embase databases were performed to identify studies reporting application of mitomycin C for GI strictures. Review of titles/abstracts, full review of potentially relevant studies, and data abstraction were performed independently by 2 authors. Of 549 citations, 24 studies with 145 patients (74% pediatric and 26% adult) met inclusion criteria. Esophageal strictures were the most common (79%) site of refractory strictures treated with mitomycin C, with caustic injury the most common underlying etiology. The concentration (range, 0.1 to 2 mg/mL; median, 0.4 mg/mL), number of applications (range, 1 to 12; median, 1), duration of applications (range, 1 to 5; median, 2 min), and technique of application (cotton pledget, spray, injection, special catheters) varied among studies. Ninety-one patients (73%; children: 80%, adults: 59%) had a complete response; 26 (21%) had a partial response. Only 1 (0.7%) adverse event was reported: cutaneous sclerosis attributed to microperforation and mitomycin C extravastion after injection. Mean follow-up was 23 (4 to 60) months. Local mitomycin C application seems to be a safe and effective therapy for benign refractory GI strictures of varying etiology in both pediatric and adult populations. Although the results of this systematic review are highly encouraging, it should be considered investigational. Additional randomized trials and larger prospective studies are needed to confirm these results and to better define the optimal dose, concentration, duration and technique of mitomycin C application.
Macromolecular crowding-assisted fabrication of liquid-crystalline imprinted polymers.
Zhang, Chen; Zhang, Jing; Huang, Yan-Ping; Liu, Zhao-Sheng
2015-04-01
A macromolecular crowding-assisted liquid-crystalline molecularly imprinted monolith (LC-MIM) was prepared successfully for the first time. The imprinted stationary phase was synthesized with polymethyl methacrylate (PMMA) or polystyrene (PS) as the crowding agent, 4-cyanophenyl dicyclohexyl propylene (CPCE) as the liquid-crystal monomer, and hydroquinidine as the pseudo-template for the chiral separation of cinchona alkaloids in HPLC. A low level of cross-linker (26%) has been found to be sufficient to achieve molecular recognition on the crowding-assisted LC-MIM due to the physical cross-linking of mesogenic groups in place of chemical cross-linking, and baseline separation of quinidine and quinine could be achieved with good resolution (R(s) = 2.96), selectivity factor (α = 2.16), and column efficiency (N = 2650 plates/m). In contrast, the LC-MIM prepared without crowding agents displayed the smallest diastereoselectivity (α = 1.90), while the crowding-assisted MIM with high level of cross-linker (80%) obtained the greatest selectivity factor (α = 7.65), but the lowest column efficiency (N = 177 plates/m).
Czejka, Martin; Schüller, Johannes; Kletzl, Heidemarie
2017-08-25
The cytoprotective agent amifostine (AMI) is capable to protect healthy cells (contrary to tumor cells) due to higher activity of alkaline phosphatase at the membrane site of normal cells. In seven clinical trials the influence of AMI on the pharmacokinetics of different cytostatics was investigated. Preadministration of AMI increased Cmax of doxorubicin (+ 44 %, p < 0.06), epirubicin (+ 31 %, P < 0.08), mitomycin C (+ 41 %, p < 0.01) and docetaxel (+ 31 % and + 17 %, not significant). In contrary, the peak concentration of pirarubicin , the tetrahydropyranyl-prodrug of doxorubicin was decreased (- 50 %, P < 0.03), leading to an equal higher concentrationof doxorubicin in the blood . In accordance to the peak concentrations, the AUC'ast was increased by chemoprotection: doxorubicin + 53 % (p < 0.01) and epirubicin + 23 % (not significant), docetaxel + 25 % and + 31 % (not significant). AUC'ast of mitomycin C and paclitaxel seemed to be unaffected by preadministered AMI. A particular inhibition of the protein binding by AMI has been identified as one reason for higher serum concentrations of anthracycline drugs. After cytoprotection, a possible increase of the cytostatic's Serum concentrations should be taken into account for optimal dosage schedules.
Yildiz, Kartal Hakan; Gezen, Ferruh; Is, Merih; Cukur, Selma; Dosoglu, Murat
2007-09-01
This study examined the preventive effects of the local application of mitomycin C (MMC), 5-fluorouracil (5-FU), and cyclosporine A (CsA) in minimizing spinal epidural fibrosis in a rat laminectomy model. Thirty-two 2-year-old male Wistar albino rats, each weighing 400 +/- 50 g, were divided into four equal groups: sham, MMC, 5-FU, and CsA. Each rat underwent laminectomy at the L5-L6 lumbar level. Cotton pads (4 x 4 mm2) soaked with MMC (0.5 mg/ml), 5-FU (5 ml/mg), or CsA (5 mg/ml) were placed on the exposed dura for 5 min. Thirty days after surgery, the rats were killed and the epidural fibrosis, fibroblast density, inflammatory cell density, and arachnoid fibrosis were quantified. The epidural and arachnoid fibroses were reduced significantly in the treatment groups compared to the sham group. Fibroblast cell density and inflammatory cell density were decreased significantly in the MMC and 5-FU groups, but were similar in the sham and CsA groups. The decreased rate of epidural fibrosis was promising. Further studies in humans are needed to determine the short- and long-term complications of the agents used here.
Stanton, Thaddeus B.; Humphrey, Samuel B.; Sharma, Vijay K.; Zuerner, Richard L.
2008-01-01
Brachyspira hyodysenteriae is an anaerobic spirochete and the etiologic agent of swine dysentery. The genome of this spirochete contains a mitomycin C-inducible, prophage-like gene transfer agent designated VSH-1. VSH-1 particles package random 7.5-kb fragments of the B. hyodysenteriae genome and transfer genes between B. hyodysenteriae cells. The chemicals and conditions inducing VSH-1 production are largely unknown. Antibiotics used in swine management and stressors inducing traditional prophages might induce VSH-1 and thereby stimulate lateral gene transfer between B. hyodysenteriae cells. In these studies, VSH-1 induction was initially detected by a quantitative real-time reverse transcriptase PCR assay evaluating increased transcription of hvp38 (VSH-1 head protein gene). VSH-1 induction was confirmed by detecting VSH-1-associated 7.5-kb DNA and VSH-1 particles in B. hyodysenteriae cultures. Nine antibiotics (chlortetracycline, lincomycin, tylosin, tiamulin, virginiamycin, ampicillin, ceftriaxone, vancomycin, and florfenicol) at concentrations affecting B. hyodysenteriae growth did not induce VSH-1 production. By contrast, VSH-1 was detected in B. hyodysenteriae cultures treated with mitomycin C (10 μg/ml), carbadox (0.5 μg/ml), metronidazole (0.5 μg/ml), and H2O2 (300 μM). Carbadox- and metronidazole-induced VSH-1 particles transmitted tylosin and chloramphenicol resistance determinants between B. hyodysenteriae strains. The results of these studies suggest that certain antibiotics may induce the production of prophage or prophage-like elements by intestinal bacteria and thereby impact intestinal microbial ecology. PMID:18359835
Faisal, Mohamed; Harun, Hafaruzi; Hassan, Tidi M; Ban, Andrea Y L; Chotirmall, Sanjay H; Abdul Rahaman, Jamalul Azizi
2016-04-14
Tracheobronchial stenosis is a known complication of endobronchial tuberculosis. Despite antituberculous and steroid therapy, the development of bronchial stenosis is usually irreversible and requires airway patency to be restored by either bronchoscopic or surgical interventions. We report the use of balloon dilatation and topical mitomycin-C to successful restore airway patency. We present a 24-year old lady with previous pulmonary tuberculosis and laryngeal tuberculosis in 2007 and 2013 respectively who presented with worsening dyspnoea and stridor. She had total left lung collapse with stenosis of both the upper trachea and left main bronchus. She underwent successful bronchoscopic balloon and manual rigid tube dilatation with topical mitomycin-C application over the stenotic tracheal segment. A second bronchoscopic intervention was performed after 20 weeks for the left main bronchus stenosis with serial balloon dilatation and topical mitomycin-C application. These interventions led to significant clinical and radiographic improvements. This case highlights that balloon dilatation and topical mitomycin-C application should be considered in selected patients with tracheobronchial stenosis following endobronchial tuberculosis, avoiding airway stenting and invasive surgical intervention.
Pereira, Marcelo Charles; Repka, Carlos Domingues; Camargo, Paulo Antonio Monteiro; Rispoli, Daniel Zeni; Campos, Antônio Carlos Ligocki; Matias, Jorge Eduardo Fouto
2009-07-01
To compare the effects of topical mitomycin-C at different concentrations on submucosal collagen deposition on the vocal folds of swine. The animals were divided into three groups according to the composition of the topical solution to be applied to the vocal folds: 0.9% saline solution (control group); 4 mg/ml mitomycin-C (group 1) and 8 mg/ml mitomycin-C (group 2). Thirty days after the application, all animals were sacrificed, their vocal folds were collected and stained by the picrosirius red technique, and submucosal collagen deposition areas were estimated by the Image Pro Plus 4.5 software. Mann-Whitney test was used to compare differences between parameters of each group. The means of the areas of submucosal collagen deposits on vocal folds were 3110.44 square micrometers (microm(2)), 3115.98 microm(2) and 3105.78 microm(2) for groups control, 1 and 2, respectively. There were no statistical differences across the three groups (p>0.05). Mitomycin-C topically applied to intact vocal folds of swine did not alter submucosal collagen deposition.
Bartel, Michael J; Seeger, Kristina; Jeffers, Kayin; Clayton, Donnesha; Wallace, Michael B; Raimondo, Massimo; Woodward, Timothy A
2016-09-01
Recurrent complex esophageal strictures remain difficult to manage. To determine the efficacy of topical Mitomycin C application for recurrent benign esophageal strictures. All patients who underwent balloon dilation followed by topical Mitomycin C application for recurrent benign esophageal strictures were included. Primary outcome was number of dilations and change of dysphagia score. Nine patients with anastomotic (3), radiation-induced (3), caustic (2), and combined anastomotic and radiation-induced (1) strictures were included. Strictures had a mean length of 13.75mm, diameter of 8.0mm, and were dilated 10.7 times over a median of 8 months (1.5 dilations per month). Following Mitomycin C application, the need for further dilation decreased to 0.39 dilations per month over a median of 10 months; however, dysphagia scores improved not significantly from 3.2 to 2.6 (mean). In this pilot study, topical Mitomycin C in conjunction with dilation decreased the frequency of esophageal dilations for recurrent benign esophageal strictures. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Burton, G. W.; Hanna, W. W.
1981-09-01
Techniques for biomass increase are discussed: irradiation breeding of sterile triploid turf bermuda grasses; irradiation breeding of sterile Coastcross-1, a forage grass hybrid to increase winter hardiness; heterosis resulting from crossing specific irradiation induced mutants with their normal inbred parent; use of mitomycin and streptomycin to create cytoplasmic male sterile mutants in pearl millet; biomass of napiergrass; evaluation of mutagen induced lignin mutants to maximize metabolizable energy in sorghum; interspecific crosses in Pennisetum; production of homozygous translocation tester stocks; use of radiation to induce and transfer reproductive behavior in plants; and genetics of radiation induced mutations.
Hu, Zhubing; Cools, Toon; Kalhorzadeh, Pooneh; Heyman, Jefri; De Veylder, Lieven
2015-01-01
To maintain genome integrity, DNA replication is executed and regulated by a complex molecular network of numerous proteins, including helicases and cell cycle checkpoint regulators. Through a systematic screening for putative replication mutants, we identified an Arabidopsis thaliana homolog of human Regulator of Telomere Length 1 (RTEL1), which functions in DNA replication, DNA repair, and recombination. RTEL1 deficiency retards plant growth, a phenotype including a prolonged S-phase duration and decreased cell proliferation. Genetic analysis revealed that rtel1 mutant plants show activated cell cycle checkpoints, specific sensitivity to DNA cross-linking agents, and increased homologous recombination, but a lack of progressive shortening of telomeres, indicating that RTEL1 functions have only been partially conserved between mammals and plants. Surprisingly, RTEL1 deficiency induces tolerance to the deoxynucleotide-depleting drug hydroxyurea, which could be mimicked by DNA cross-linking agents. This resistance does not rely on the essential replication checkpoint regulator WEE1 but could be blocked by a mutation in the SOG1 transcription factor. Taken together, our data indicate that RTEL1 is required for DNA replication and that its deficiency activates a SOG1-dependent replication checkpoint. PMID:25595823
NASA Technical Reports Server (NTRS)
Tanner, Stephen P.
1997-01-01
One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.
Walking of antitumor bifunctional trinuclear PtII complex on double-helical DNA
Malina, Jaroslav; Kasparkova, Jana; Farrell, Nicholas P.; Brabec, Viktor
2011-01-01
The trinuclear BBR3464 ([{trans-PtCl(NH3)2}2µ-(trans-Pt(NH3)2(H2N(CH2)6NH2)2)]4+) belongs to the polynuclear class of platinum-based anticancer agents. DNA adducts of this complex differ significantly in structure and type from those of clinically used mononuclear platinum complexes, especially, long-range (Pt, Pt) intrastrand and interstrand cross-links are formed in both 5′–5′ and 3′–3′ orientations. We show employing short oligonucleotide duplexes containing single, site-specific cross-links of BBR3464 and gel electrophoresis that in contrast to major DNA adducts of clinically used platinum complexes, under physiological conditions the coordination bonds between platinum and N7 of G residues involved in the cross-links of BBR3464 can be cleaved. This cleavage may lead to the linkage isomerization reactions between this metallodrug and double-helical DNA. Differential scanning calorimetry of duplexes containing single, site-specific cross-links of BBR3464 reveals that one of the driving forces that leads to the lability of DNA cross-links of this metallodrug is a difference between the thermodynamic destabilization induced by the cross-link and by the adduct into which it could isomerize. The rearrangements may proceed in the way that cross-links originally formed in one strand of DNA can spontaneously translocate from one DNA strand to its complementary counterpart, which may evoke walking of the platinum complex on DNA molecule. PMID:20833634
Shamekhi, Mohammad Amin; Rabiee, Ahmad; Mirzadeh, Hamid; Mahdavi, Hamid; Mohebbi-Kalhori, Davod; Baghaban Eslaminejad, Mohamadreza
2017-11-01
The use of various chemical cross-linking agents for the improvement of scaffolds physical and mechanical properties is a common practical method, which is limited by cytotoxicity effects. Due to exerting contract type forces, chondrocytes are known to implement shrinkage on the tissue engineered constructs, which can be avoided by the scaffold cross-linking. In the this research, chitosan scaffolds are cross-linked with hydrothermal treatment with autoclave sterilization time of 0, 10, 20 and 30min, to avoid the application of the traditional chemical toxic materials. The optimization studies with gel content and crosslink density measurements indicate that for 20min sterilization time, the gel content approaches to ~80%. The scaffolds are fully characterized by the conventional techniques such as SEM, porosity and permeability, XRD, compression, thermal analysis and dynamic mechanical thermal analysis (DMTA). FT-IR studies shows that autoclave inter-chain cross-linking reduces the amine group absorption at 1560cm -1 and increase the absorption of N-acetylated groups at 1629cm -1 . It is anticipated, that this observation evidenced by chitosan scaffold browning upon autoclave cross-linking is an indication of the familiar maillard reaction between amine moieties and carbonyl groups. The biodegradation rate analysis shows that chitosan scaffolds with lower concentrations, possess suitable degradation rate for cartilage tissue engineering applications. In addition, cytotoxicity analysis shows that fabricated scaffolds are biocompatible. The human articular chondrocytes seeding into 3D cross-linked scaffolds shows a higher viability and proliferation in comparison with the uncross-linked samples and 2D controls. Investigation of cell morphology on the scaffolds by SEM, shows a more spherical morphology of chondrocytes on the cross-linked scaffolds for 21days of in vitro culture. Copyright © 2017. Published by Elsevier B.V.
Obadia, Mona M; Mudraboyina, Bhanu P; Serghei, Anatoli; Montarnal, Damien; Drockenmuller, Eric
2015-05-13
Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s. Tunable networks with high ionic content are obtained by the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer and simultaneous alkylation of the resulting poly(1,2,3-triazole)s with a series of difunctional cross-linking agents. Temperature-induced transalkylation exchanges of C-N bonds between 1,2,3-triazolium cross-links and halide-functionalized dangling chains enable recycling and reprocessing of these highly cross-linked permanent networks. They can also be recycled by depolymerization with specific solvents able to displace the transalkylation equilibrium, and they display a great potential for applications that require solid electrolytes with excellent mechanical performances and facile processing such as supercapacitors, batteries, fuel cells, and separation membranes.
Delcour, J A; Vansteelandt, J; Hythier, M; Abécassis, J
2000-09-01
Commercial durum wheat semolina was fractionated into protein, starch, water-extractable, and sludge fractions. The starch fraction was hydroxypropylated, annealed, or cross-linked to change its gelatinization and pasting properties. Spaghettis were made by reconstitution of the fractions, and their quality was assessed. Hydroxypropylated starches were detrimental for cooked pasta quality. Cross-linked starches made the reconstituted pasta firmer and even brittle when the degree of cross-linking was too high. These results indicate that starch properties play a role in pasta quality, although the gluten remains very important as an ultrastructure agent. It was concluded that, given a certain gluten ultrastructure, starch water uptake and gel properties and/or its interference with or breakdown of the continuous gluten network during cooking determine pasta quality.
Inert Reassessment Document for Trimethylolpropane - CAS No. 77-99-6
Trimethylolpropane is used in a large variety of commercial applications, including in the manufacturer of varnishes, resins; polyesters for polyurethane foams, textile finishes, plastictzers, and cross-linking agents for spandex fibers.
Effects of Chemical Cross-linkers on Caries-affected Dentin Bonding
Macedo, G.V.; Yamauchi, M.; Bedran-Russo, A.K.
2009-01-01
The achievement of a strong and stable bond between composite resin and dentin remains a challenge in restorative dentistry. Over the past two decades, dental materials have been substantially improved, with better handling and bonding characteristics. However, little attention has been paid to the contribution of collagen structure/stability to bond strength. We hypothesized that the induction of cross-linking in dentin collagen improves dentin collagen stability and bond strength. This study investigated the effects of glutaraldehyde- and grape seed extract-induced cross-linking on the dentin bond strengths of sound and caries-affected dentin, and on the stability of dentin collagen. Our results demonstrated that the application of chemical cross-linking agents to etched dentin prior to bonding procedures significantly enhanced the dentin bond strengths of caries-affected and sound dentin. Glutaraldehyde and grape seed extract significantly increased dentin collagen stability in sound and caries-affected dentin, likely via distinct mechanisms. PMID:19892915
Lai, Jui-Yang
2012-01-01
Chitosan is a naturally occurring cationic polysaccharide and has attracted much attention in the past decade as an important ophthalmic biomaterial. We recently demonstrated that the genipin (GP) cross-linked chitosan is compatible with human retinal pigment epithelial cells. The present work aims to further investigate the in vivo biocompatibility of GP-treated chitosan (GP-chi group) by adopting the anterior chamber of a rabbit eye model. The glutaraldehyde (GTA) cross-linked samples (GTA-chi group) were used for comparison. The 7-mm-diameter membrane implants made from either non-cross-linked chitosan or chemically modified materials with a cross-linking degree of around 80% were inserted in the ocular anterior chamber for 24 weeks and characterized by slit-lamp and specular microscopic examinations, intraocular pressure measurements, and corneal thickness measurements. The interleukin-6 expressions at mRNA level were also detected by quantitative real-time reverse transcription polymerase chain reaction. Results of clinical observations showed that the overall ocular scores in the GTA-chi groups were relatively high. In contrast, the rabbits bearing GP-chi implants in the anterior chamber of the eye exhibited no signs of ocular inflammation. As compared to the non-cross-linked counterparts, the GP-chi samples improved the preservation of corneal endothelial cell density and possessed better anti-inflammatory activities, indicating the benefit action of the GP cross-linker. In summary, the intracameral tissue response to the chemically modified chitosan materials strongly depends on the selection of cross-linking agents. PMID:23109832
Jóźwiak, Tomasz; Filipkowska, Urszula; Szymczyk, Paula; Kuczajowska-Zadrożna, Małgorzata; Mielcarek, Artur
2017-11-01
A hydrogel chitosan sorbent ionically cross-linked with sodium citrate and covalently cross-linked with epichlorohydrin was used to remove nutrients from an equimolar mixture of P-PO 4 , N-NO 2 and N-NO 3 . The scope of the study included, among other things, determination of the influence of pH on nutrient sorption effectiveness, nutrient sorption kinetics as well as determination of the maximum sorption capacity of cross-linked chitosan sorbents regarding P-PO 4 (H 2 PO 4 - , HPO 4 2- ), N-NO 2 (HNO 2 , NO 2 - ), and N-NO 3 (NO 3 - ). The effect of the type of the cross-linking agent on the affinity of the modified chitosan to each nutrient was studied as well. The kinetics of nutrient sorption on the tested chitosan sorbents was best described with the pseudo-second order model. The model of intramolecular diffusion showed that P-PO 4 , N-NO 2 and N-NO3 sorption on cross-linked hydrogel chitosan beads proceeded in two phases. The best sorbent of nutrients turned out to be chitosan cross-linked covalently with epichlorohydrin; with P-PO 4 , N-NO 2 and N-NO 3 sorption capacity reaching: 1.23, 0.94 and 0.76mmol/g, respectively (total of 2.92mmol/g). For comparison, the sorption capacity of chitosan cross-linked ionically with sodium citrate was: 0.43, 0.39 and 0.39mmol/g for P-PO 4 , N-NO 2 and N-NO 3 , respectively (total of 1.21mmol/g). Copyright © 2017 Elsevier B.V. All rights reserved.
Structural interactions between retroviral Gag proteins examined by cysteine cross-linking.
Hansen, M S; Barklis, E
1995-01-01
We have examined structural interactions between Gag proteins within Moloney murine leukemia virus (M-MuLV) particles by making use of the cysteine-specific cross-linking agents iodine and bis-maleimido hexane. Virion-associated wild-type M-MuLV Pr65Gag proteins in immature particles were intermolecularly cross-linked at cysteines to form Pr65Gag oligomers, from dimers to pentamers or hexamers. Following a systematic approach of cysteine-to-serine mutagenesis, we have shown that cross-linking of Pr65Gag occurred at cysteines of the nucleocapsid (NC) Cys-His motif, suggesting that the Cys-His motifs within virus particles are packed in close proximity. The M-MuLV Pr65Gag protein did not cross-link to the human immunodeficiency virus Pr55Gag protein when the two molecules were coexpressed, indicating either that they did not coassemble or that heterologous Gag proteins were not in close enough proximity to be cross-linked. Using an assembly-competent, protease-minus, cysteine-minus Pr65Gag protein as a template, novel cysteine residues were generated in the M-MuLV capsid domain major homology region (MHR). Cross-linking of proteins containing MHR cysteines showed above-background levels of Gag-Gag dimers but also identified a novel cellular factor, present in virions, that cross-linked to MHR residues. Although the NC cysteine mutation was compatible with M-MuLV particle assembly, deletions of the NC domain were not tolerated. These results suggest that the Cys-His motif is held in close proximity within immature M-MuLV particles by interactions between CA domains and/or non-Cys-His motif domains of the NC. PMID:7815493
Pandey, Satya Deo; Pal, Shilpa; Kumar N, Ganesh; Bansal, Ankita; Mallick, Sathi; Ghosh, Anindya S
2018-05-07
During the peptidoglycan (PG) maturation of mycobacteria, the glycan strands are interlinked by both 3-3 (between two meso-DAP) and 4-3 cross-links (between D-ala and meso-DAP), though there is a predominance (60-80%) of 3-3 cross-links. The DD-CPases act on pentapeptides to generate tetrapeptides that are used by LD-transpeptidases as substrates to form 3-3 cross-links. Therefore, DD-CPases play a crucial role in mycobacterial PG cross-link formation. However, the physiology of DD-CPases in mycobacteria is relatively unexplored. Here, we deleted two DD-CPase genes, msmeg_2433 , and msmeg_2432 , both individually and in combination, from Mycobacterium smegmatis mc 2 155. Though the single DD-CPase deletions had no significant impact on the mycobacterial physiology, many interesting functional alterations were observed in the double deletion mutant, viz. , a predominance in PG cross-link formation was shifted from 3-3 cross-links to 4-3, cell surface glycopeptidolipid (GPL) expression was reduced and susceptibility towards β-lactams and anti-tubercular agents was enhanced. Moreover, the existence of the double mutant within murine macrophages was better as compared to the parent. Interestingly, the complementation with any one of the DD-CPase genes could restore the wild-type phenotype. In a nutshell, we infer that the altered ratio of 4-3: 3-3 PG cross-links might have influenced the expression of surface GPLs, colony morphology, biofilm formation,, drug susceptibility and subsistence of the cells within macrophages. Importance The glycan strands in mycobacterial peptidoglycan (PG) are interlinked by both 3-3 and 4-3 cross-links. The DD-CPases generate tetrapeptides by acting on the pentapeptides, and LD-transpeptidases use tetrapeptides as substrates to form 3-3 cross-links. Here, we showed that simultaneous deletions of two DD-CPases alter the nature of PG cross-linking from 3-3 cross-links to 4-3 cross-links. The deletions subsequently decrease the expression of Glycopeptidolipids (a significant surface lipid present in many non-tuberculous mycobacteria including Mycobacterium smegmatis ) and affect other physiological parameters like cell morphology, growth rate, biofilm formation, antibiotic susceptibility and existence within murine macrophages. Thus, unraveling the physiology of DD-CPases might help us design anti-mycobacterial therapeutics in future. Copyright © 2018 American Society for Microbiology.
Karimi, Ali Reza; Tarighatjoo, Mahsa; Nikravesh, Golara
2017-12-01
In this work, 1,3,5-triazine-2,4,6-tribenzaldehyde was synthesized and chosen as the cross-linking agent for preparation of novel thermo- and pH-responsive hydrogels based on chitosan. The cross-linking proceeds through formation of imine bond by reaction of amino groups of chitosan with aldehyde groups of the cross-linker. The various amounts (6, 10, 14% w/w) of the cross-linker were used with respect to chitosan to produce three 1,3,5-triazine-2,4,6-tribenzaldehyde cross-linked chitosans. Then, their hydrogel nanocomposites were prepared by crosslinking of chitosan with 1,3,5-triazine-2,4,6-tribenzaldehyde in the presence of 0.1% and 0.3% (w/w) multi-walled carbon nanotubes (MWCNTs). The structure and properties of the hydrogels and their nanocomposites were characterized by FT-IR, 1 H NMR and scanning electron microscopy (SEM). The swelling behavior of prepared hydrogels and their nanocomposites at different pHs and temperatures was investigated. The results showed that they exhibit a pH and temperature-responsive swelling ratio. The swelling behavior of the prepared chitosan hydrogels was strongly dependent on the amounts of cross-linker and MWCNTs. In vitro controlled release behavior of metronidazole model drug was studied with prepared hydrogels and nanocomposite hydrogels. The pH, temperature and wt% of MWCNTs were found to strongly influence the drug release behavior of the hydrogels. Copyright © 2017 Elsevier B.V. All rights reserved.
... worsened after treatment with other medications, surgery, or radiation therapy. Mitomycin is a type of antibiotic that ... cancer, a type of lung cancer (non-small cell lung cancer; NSCLC), and malignant ... for other uses; ask your doctor or pharmacist for more information.
Trabeculectomy with mitomycin-C in neovascular galucoma patients.
Caça, Ihsan; Ari, Seyhmus; Sakalar, Yildirim Bayezit; Unlü, Kaan; Dogan, Eyüp
2008-01-01
We sought to determine the effectiveness of trabeculectomy with mitomycin-C (MMC) in neovascular glaucoma (NVG) patients. Trabeculectomy with MMC in NVG patients is a method that has high rate of short-term success.
Wei, Weijia; Zhang, Xiujuan; Chen, Xianfeng; Zhou, Mengjiao; Xu, Ruirui; Zhang, Xiaohong
2016-04-21
Many drug molecules can be directly used as nanomedicine without the requirement of any inorganic or organic carriers such as silica and liposome nanostructures. This new type of carrier-free drug nanoparticles (NPs) has great potential in clinical treatment because of its ultra-high drug loading capacity and biodegradability. For practical applications, it is essential for such nanomedicine to possess robust stability and minimal premature release of therapeutic molecules during circulation in the blood stream. To meet this requirement, herein, we develop GSH-responsive and crosslinkable amphiphilic polyethylene glycol (PEG) molecules to modify carrier-free drug NPs. These PEG molecules can be cross-linked on the surface of the NPs to endow them with greater stability and the cross-link is sensitive to intracellular environment for bio-responsive drug release. With this elegant design, our experimental results show that the liberation of DOX from DOX-cross-linked PEG NPs is dramatically slower than that from DOX-non-cross-linked PEG NPs, and the DOX release profile can be controlled by tuning the concentration of the reducing agent to break the cross-link between PEG molecules. More importantly, in vivo studies reveal that the DOX-cross-linked PEG NPs exhibit favorable blood circulation half-life (>4 h) and intense accumulation in tumor areas, enabling effective anti-cancer therapy. We expect this work will provide a powerful strategy for stabilizing carrier-free nanomedicines and pave the way to their successful clinical applications in the future.
Pairing of heterochromatin in response to cellular stress.
Abdel-Halim, H I; Mullenders, L H F; Boei, J J W A
2006-07-01
We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair.
Trabeculectomy augmented with mitomycin C application under the scleral flap
Beatty, S; Potamitis, T; Kheterpal, S; O'Neill, E
1998-01-01
AIM—The authors investigated the safety and intraocular pressure (IOP) lowering effectiveness of trabeculectomy augmented with mitomycin C application beneath the scleral flap, and assessed the influence of preoperative risk factors on the surgical outcome. METHODS—A retrospective study of 72 consecutive high risk eyes undergoing trabeculectomy with adjunctive mitomycin C (0.2 mg/ml) applied under the scleral flap for 5 minutes was performed. Each eye was ascribed a score based on the number of preoperative risk factors, and categorised into one of three risk factor groups. Success was described as unqualified where IOP was ⩽ 21 mm Hg without medication and qualified where antiglaucomatous therapy was required to maintain it at such a level. A life table analysis of IOP control was calculated. RESULTS—The mean IOP (SD) fell from a preoperative level of 28.4 (6.9) to a level of 16.63 (8.06) mm Hg at the last follow up (paired Student's t test: p< 0.0001). Fifty two eyes (72%) were classed as unqualified successes. The survival rates did not differ significantly between different risk factor groups (log rank test: χ2 = 0.967, p>0.1). The incidence of postoperative complications compared favourably with reports of mitomycin C application between Tenon's capsule and the undissected scleral bed. CONCLUSION—The results illustrate that mitomycin C applied beneath the scleral flap during trabeculectomy in high risk eyes is associated with a success rate comparable to other modes of application. The incidence of potentially serious complications such as conjunctival wound leak and prolonged hypotony was lower than previously published data reporting sub-Tenon's administration of mitomycin C. The number and nature of preoperative risk factors do not appear to influence the surgical outcome. A possible mechanism of action is proposed. Keywords: glaucoma; intraocular pressure; trabeculectomy; mitomycin C PMID:9640188
Gamma-irradiated cross-linked LDPE foams: Characteristics and properties
NASA Astrophysics Data System (ADS)
Cardoso, E. C. L.; Scagliusi, S. R.; Parra, D. F.; Lugão, A. B.
2013-03-01
Foamed polymers are future materials, as they are increasingly considered "green materials" due to their interesting properties at very low consumption of raw materials. They can be used to improve appearance of insulation structures, thermal and acoustic insulation, core materials for sandwich panels, fabrication of furniture and flotation materials or to reduce costs involving materials. Low-density polyethylene is widely used because of its excellent properties, such as softness, elasticity, processibility and insulation. In general, cross-linking is often applied to improve the thermal and mechanical properties of polyethylene products, due to the formation of a three-dimensional network. In particular for the production of PE foams, cross-linking is applied prior the expansion to control bubble formation, cell characteristics and final properties of the foam. However, the usual production process of PE foams is a process in which a gaseous blowing agent is injected into a melted thermoplastic polymer, under pressure, to form a solution between blowing agent and melted polymer. An extrusion system is provided for foaming the polymer, supplied to an extruder and moving through a rotating screw. The pressure must be high enough to keep the gas blowing agent (or foaming agent) in the solution with the melt. The foaming agent is then diffused and dissolved in the molten material to form a single-phase solution. In the present work carbon dioxide was used as the bowing agent, a chemically stable and non-toxic gas, with good diffusion coefficient; gas pressure used varied within a 20-40 bar range. Some requirements for physical foaming are required, as low friction heat generation, homogeneous melt temperature distribution, melt temperature at die exit just above crystallization temperature (die) and high melt strength during expansion. This work studied foams properties gamma-irradiated within 0, 10, 15, 20, 25, and 30 kGy, from a LDPE exhibiting 2.6 g/10 min Melt Index. Accomplished tests: DSC, gel-fraction, swelling ratio in various solvents, rheological measurements, infra-red spectroscopy and melt strength. It was verified that within a given radiation dose range; the material exhibited an optimization in viscoelastic properties, providing the desired melt strength range for obtaining foams.
NASA Astrophysics Data System (ADS)
Sehgal, Akhil
Electronic components such as organic light emitting diodes (OLED) and photo-voltaics have been of more focus with the advancement of technology. These electronics are susceptible to degradable in the presence of gases such as water vapor and oxygen. Being that these gases are constituents of the atmosphere and can be found in nearly every environment, certain protocols must take place to mitigate the issues that occur. New generation electronics are sensitive to oxidation and corrosion in the presence of extremely low concentrations of moisture and oxygen and therefore the development and improvements of gas barriers are vital for advancements in electronics technology. The improvements of appliances such as flexible solar cells and OLEDs require barriers that need to be flexible in order to achieve high longevity. The area of research has been focused on designing flexible polymer films with composite nanoparticles and cross-linking agents that have low permeability to moisture and oxygen gas. The polymers studied are in the family of methacrylates. Due to the properties of methacrylate polymers, it has been proposed that they are capable of having efficient barrier properties due to their ability to cross link and form crystalline structures with low chain mobility. The change in intensities of the FTIR peaks of different functional groups indicates the cross-linking and crystallinity of the polymer films. The UV-Vis data indicates high transparency of the films. SEM images of the films show continuous and well cured surfaces with minimal deviations, pores and defects. The addition of cross-linking agents and nanoparticles increased polymerization and cross-linking of the methacrylate polymer chains, therefore increasing inter-chain density and long range order. The incorporation of these additives increased the crystallinity of the films and by decreasing the distances and number of voids between polymer chains along with having minimal sorption sites for gases to bond to, the ability of gases such as moisture and oxygen to penetrate through the films has decreased.
Zaman, Uzma; Richter, Florian M.; Hofele, Romina; Kramer, Katharina; Sachsenberg, Timo; Kohlbacher, Oliver; Lenz, Christof; Urlaub, Henning
2015-01-01
Protein–RNA cross-linking by UV irradiation at 254 nm wavelength has been established as an unbiased method to identify proteins in direct contact with RNA, and has been successfully applied to investigate the spatial arrangement of protein and RNA in large macromolecular assemblies, e.g. ribonucleoprotein-complex particles (RNPs). The mass spectrometric analysis of such peptide-RNA cross-links provides high resolution structural data to the point of mapping protein–RNA interactions to specific peptides or even amino acids. However, the approach suffers from the low yield of cross-linking products, which can be addressed by improving enrichment and analysis methods. In the present article, we introduce dithiothreitol (DTT) as a potent protein–RNA cross-linker. In order to evaluate the efficiency and specificity of DTT, we used two systems, a small synthetic peptide from smB protein incubated with U1 snRNA oligonucleotide and native ribonucleoprotein complexes from S. cerevisiae. Our results unambiguously show that DTT covalently participates in cysteine-uracil crosslinks, which is observable as a mass increment of 151.9966 Da (C4H8S2O2) upon mass spectrometric analysis. DTT presents advantages for cross-linking of cysteine containing regions of proteins. This is evidenced by comparison to experiments where (tris(2-carboxyethyl)phosphine) is used as reducing agent, and significantly less cross-links encompassing cysteine residues are found. We further propose insertion of DTT between the cysteine and uracil reactive sites as the most probable structure of the cross-linking products. PMID:26450613
Roy, A; Krzykwa, E; Lemieux, R; Néron, S
2001-12-01
Several normal human cells, such as hematopoietic stem cells, dendritic cells, and B cells, can be cultured in vitro in defined optimal conditions. Several ex vivo culture systems require the use of feeder cells to support the growth of target cells. In such systems, proliferation of feeder cells has to be stopped, so that they can be used as nonreplicating viable support cells. Because feeder cells need to provide one or few active signals, it is important to maintain them in an metabolically active state, allowing continued expression of specific ligands or cytokines. Mitomycin C and gamma-irradiation treatments are commonly used to prepare nonproliferating feeder cells and are usually considered to be equivalent. Normal human B lymphocytes can be expanded in vitro in the presence of feeder cells expressing the CD40 ligand CD154. Here we compared the ability of gamma-irradiation- and mitomycin C-treated feeder cells to support the expansion of normal human B lymphocytes. The results indicate that expansion of B cells during a long-term culture was 100 times more potent using gamma-irradiated feeder cells compared to mitomycin C-treated cells. This difference could be related to a significant reduction in both cellular metabolism and level of CD154 expression observed in mitomycin C-treated feeder cells, but not in gamma-irradiated cells nor in control untreated cells. These results indicate that mitomycin C-treated feeder cells are metabolically altered, and consequently less efficient at maintaining cell expansion in the long-term cell culture system used.
Hu, Zhubing; Cools, Toon; Kalhorzadeh, Pooneh; Heyman, Jefri; De Veylder, Lieven
2015-01-01
To maintain genome integrity, DNA replication is executed and regulated by a complex molecular network of numerous proteins, including helicases and cell cycle checkpoint regulators. Through a systematic screening for putative replication mutants, we identified an Arabidopsis thaliana homolog of human Regulator of Telomere Length 1 (RTEL1), which functions in DNA replication, DNA repair, and recombination. RTEL1 deficiency retards plant growth, a phenotype including a prolonged S-phase duration and decreased cell proliferation. Genetic analysis revealed that rtel1 mutant plants show activated cell cycle checkpoints, specific sensitivity to DNA cross-linking agents, and increased homologous recombination, but a lack of progressive shortening of telomeres, indicating that RTEL1 functions have only been partially conserved between mammals and plants. Surprisingly, RTEL1 deficiency induces tolerance to the deoxynucleotide-depleting drug hydroxyurea, which could be mimicked by DNA cross-linking agents. This resistance does not rely on the essential replication checkpoint regulator WEE1 but could be blocked by a mutation in the SOG1 transcription factor. Taken together, our data indicate that RTEL1 is required for DNA replication and that its deficiency activates a SOG1-dependent replication checkpoint. © 2015 American Society of Plant Biologists. All rights reserved.
Propper, D J; Levitt, N C; O'Byrne, K; Braybrooke, J P; Talbot, D C; Ganesan, T S; Thompson, C H; Rajagopalan, B; Littlewood, T J; Dixon, R M; Harris, A L
2000-01-01
BW12C (5-[2-formyl-3-hydroxypenoxyl] pentanoic acid) stabilizes oxyhaemoglobin, causing a reversible left-shift of the oxygen saturation curve (OSC) and tissue hypoxia. The activity of mitomycin C (MMC) is enhanced by hypoxia. In this phase II study, 17 patients with metastatic colorectal cancer resistant to 5-fluorouracil (5-FU) received BW12C and MMC. BW12C was given as a bolus loading dose of 45 mg kg−1over 1 h, followed by a maintenance infusion of 4 mg kg−1h−1for 5 h. MMC 6 mg m−2was administered over 15 min immediately after the BW12C bolus. The 15 evaluable patients had progressive disease after a median of 2 (range 1–4) cycles of chemotherapy. Haemoglobin electrophoresis 3 and 5 h after the BW12C bolus dose showed a fast moving band consistent with the BW12C-oxyhaemoglobin complex, accounting for approximately 50% of total haemoglobin. The predominant toxicities – nausea/vomiting and vein pain – were mild and did not exceed CTC grade 2. Liver31P magnetic resonance spectroscopy of patients with hepatic metastases showed no changes consistent with tissue hypoxia. The principle of combining a hypoxically activated drug with an agent that increases tissue hypoxia is clinically feasible, producing an effect equivalent to reducing tumour oxygen delivery by at least 50%. However, BW12C in combination with MMC for 5-FU-resistant colorectal cancer is not an effective regimen. This could be related to drug resistance rather than a failure to enhance cytotoxicity. © 2000 Cancer Research Campaign PMID:10839290
Effect of curcumin caged silver nanoparticle on collagen stabilization for biomedical applications.
Srivatsan, Kunnavakkam Vinjimur; Duraipandy, N; Begum, Shajitha; Lakra, Rachita; Ramamurthy, Usha; Korrapati, Purna Sai; Kiran, Manikantan Syamala
2015-04-01
The current study aims at understanding the influence of curcumin caged silver nanoparticle (CCSNP) on stability of collagen. The results indicated that curcumin caged silver nanoparticles efficiently stabilize collagen, indicated by enhanced tensile strength, fibril formation and viscosity. The tensile strength of curcumin caged silver nanoparticle cross-linked collagen and elongation at break was also found to be higher than glutaraldehyde cross-linked collagen. The physicochemical characteristics of curcumin caged nanoparticle cross-linked collagen exhibited enhanced strength. The thermal properties were also good with both thermal degradation temperature and hydrothermal stability higher than native collagen. CD analysis showed no structural disparity in spite of superior physicochemical properties suggesting the significance of curcumin caged nanoparticle mediated cross-linking. The additional enhancement in the stabilization of collagen could be attributed to multiple sites for interaction with collagen molecule provided by curcumin caged silver nanoparticles. The results of cell proliferation and anti-microbial activity assays indicated that curcumin caged silver nanoparticles promoted cell proliferation and inhibited microbial growth making it an excellent biomaterial for wound dressing application. The study opens scope for nano-biotechnological strategies for the development of alternate non-toxic cross-linking agents facilitating multiple site interaction thereby improving therapeutic values to the collagen for biomedical application. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Jian; Zhang, Hongqin; An, Dianyun; Yu, Jian; Li, Wei; Shen, Teng; Wang, Jianxin
2014-10-01
Viscoelasticity is a useful parameter for characterizing the intrinsic properties of the cross-linked polyacrylate hydrogel used in cataplasm bases. The aim of this study was to investigate the effects of various formulation parameters on the rheological characteristics of polyacrylate hydrogel. The hydrogel layers were formed using a partially neutralized polyacrylate (Viscomate(™)), which contained acrylic acid and sodium acrylate in different copolymerization ratios, as the cross-linked gel framework. Dihydroxyaluminum aminoacetate (DAAA), which produces aluminum ions, was used as the cross-linking agent. Rheological analyses were performed using a "stress amplitude sweep" and a "frequency sweep". The results showed that greater amounts of acrylic acid in the structure of Viscomate as well as higher concentrations of DAAA and Viscomate led to an increase in the elastic modulus (G'). However, greater amounts of acrylic acid in the structure of Viscomate and higher concentrations of DAAA had an opposite on the viscous modulus (G″); this might be owing to higher steric hindrance. The results of this study can serve as guidelines for the optimization of formulations for cataplasms.
Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking.
Mayor, S; Rothberg, K G; Maxfield, F R
1994-06-24
Glycosyl-phosphatidylinositol (GPI)-anchored proteins have been reported to reside in clusters collected over small membrane invaginations called caveolae. The detection of different GPI-anchored proteins with fluorescently labeled monoclonal antibodies showed that these proteins are not constitutively concentrated in caveolae; they enter these structures independently after cross-linking with polyclonal secondary antibodies. Analysis of the cell surface distribution of the GPI-anchored folate receptor by electron microscopy confirms these observations. Thus, multimerization of GPI-anchored proteins regulates their sequestration in caveolae, but in the absence of agents that promote clustering they are diffusely distributed over the plasma membrane.
Effect of a vegan diet on biomarkers of chemoprevention in females.
Verhagen, H; Rauma, A L; Törrönen, R; de Vogel, N; Bruijntjes-Rozier, G C; Drevo, M A; Bogaards, J J; Mykkänen, H
1996-10-01
1. In order to study the potential beneficial effects of a vegan diet, a cross-sectional study was performed and several biomarkers of chemoprevention were measured in a population of female 'living food' eaters ('vegans'; n = 20) vs matched omnivorous controls (n = 20). 2. White blood cells obtained from fresh blood samples were subjected to the single-cell gel-electrophoresis assay. There was no statistically significant difference between the vegans and controls in the parameters 'tail length' and 'tail moment'. However, the 'tail moment' was significantly lower in a subset of the vegans (i.e.in those who did not use any vitamin and/or mineral supplements). 3. Fresh blood samples were exposed in vitro to the mutagen mitomycin C just prior to culturing. After culturing the number of binucleated lymphocytes with micronuclei was scored. There was no difference between the controls and vegans in the incidence of baseline micronuclei, nor in the number of mitomycin C-induced micronuclei. However, a significant correlation (r = -0.64, P < 0.01) between the number of mitomycin C-induced micronuclei and the activity of erythrocyte superoxide dismutase was found in the vegans. The number of baseline micronuclei increased with age in both groups. These findings may be of biological relevance. 4. The content of glutathione-S-transferase-alpha in plasma was not different between the vegans (n = 12) and controls (n = 12). 5. The present data indicate a few differences in biomarkers of chemopreventive potential in strict vegans vs matched omnivorous controls. The significance of these changes as biologically relevant indicators of beneficial effects of vegan diets in humans needs to be determined in studies with a larger number of subjects.
Al-Sharif, Eman M; Stone, Donald U
2016-01-01
PRK is a refractive surgery that reshapes the corneal surface by excimer laser photoablation to correct refractive errors. The effect of increased ultraviolet (UV) exposure on promoting post-PRK corneal haze has been reported in the literature; however, information is lacking regarding the effect of ambient UV exposure on physician practice patterns. The aim of this study was to evaluate the effect of ophthalmologists' practice location on their reported practice patterns to prevent post-PRK corneal haze. A cross-sectional observational study was conducted through an online survey sent to ophthalmologists performing PRK. The survey recorded the primary city of practice from which the two independent variables, latitude and average annual sunshine days, were determined. It also measured the frequency of use of postoperative preventive interventions (dependent variables) which are as follows: intraoperative Mitomycin-C, oral vitamin C, sunglasses, topical corticosteroids, topical cyclosporine, oral tetracyclines and amniotic membrane graft. Fifty-one ophthalmologists completed the survey. Practice locations' mean latitude was 36.4 degrees north, and average sunshine days annually accounted for 60% of year days. There was no significant relation between latitude/average annual sunshine days and usual post-PRK prophylactic treatments ( P > 0.05). The commonest protective maneuvers were sunglasses (78%), prolonged topical corticosteroids (57%), Mitomycin-C (39%) and oral vitamin C (37%). We found no significant difference in ophthalmologists' practice patterns to prevent post-PRK corneal haze in relation to practice location latitude and average sunshine days. Moreover, the results demonstrated that the most widely used postoperative measures to prevent post-PRK haze are sunglasses, Mitomycin-C, topical corticosteroids, and oral Vitamin C.
NASA Astrophysics Data System (ADS)
Sholichah, Enny; Purwono, Bambang; Nugroho, Pramono
2017-12-01
This research studied the effect of PVA as organic polymer and citric acid as crosslinker agent in the arrowroot starch/PVA blend films. The properties of films were investigated by water uptake, water vapor permeability, mechanical properties, thermal stability, spectra of FTIR and XRD patterns. PVA used in this research influenced the film properties at the highest concentration. The cross-linkingsinter or intra molecules of arrowroot and PVA were developed as ester bonds which are formed from the reaction of hydroxyl groups consisting of starch and PVA with citric acid. The ester bond was confirmed by FTIR spectra. The increase of the amount of citric acid affected significantly on physical, chemical and mechanical properties, water uptake, WVP and crystallinity. Water barrier level was reduced by decreasing of water uptake and WVP succeeded significantly with increased crosslinking. Cross-linking impact the thermal stability of the films. The elasticity of the films also increases the production of citric acid as a plasticizer in the making of the films as a food packaging material.
NASA Astrophysics Data System (ADS)
Morissette, Sherry L.
A new gelcasting system based on aqueous, alumina-poly(vinyl alcohol) (PVA) suspensions cross-linked by an organotitanate coupling agent has been developed. Both the chemorheological properties and forming behavior of this system exhibited a strong compositional dependence. A sol- gel phase diagram was established, which yielded the critical titanium concentration [Ti] c required for gelation at a given PVA volume fraction, as well as the minimum PVA volume fraction ( fminPVA = 0.0245) and titanium PVA concentration ([Ti]min = 9.984 x 10--4 g Ti/ml) below which gelation was not observed irrespective of solution composition. The gelation time of suspensions of constant PVA volume fraction ( fsolnPVA ) decreased with increasing cross-linking agent concentration, PVA temperature, and solids volume fraction. The steady-state viscosity and elastic modulus of polymer solutions ( fsolnPVA = 0.05) of varying [Ti] were well described by the PVA percolation model, giving scaling exponents of 0.84 and 1.79, respectively. The steady-state elastic modulus of gel casting suspensions, which provides a measure of their handling strength in the as-gelled state, increased with increasing solids volume fraction. Gelcasting suspensions were used as feedstock for solid free-form fabrication (SFF) of ceramic components. The influence of processing conditions (e.g., tip diameter, mixing rate, table speed, etc.) and suspension rheology on deposition behavior was investigated. Continuous printablity was achieved for tip diameters ranging from dt = 0.254 -- 1.370 mm for all mixing rates (Rmix 5 -- 300 rpm) and suspension compositions (i.e., fAl2O3 = 0.45, φPVA = 0.275, [Ti] 0 -- 6.30 x 10--3 g Ti/ml) probed, where the minimum tip diameter for continuous printing was 0.203 mm. Printed lines were uniform with good edge definition. Line dimensions were independent of mixing rate for the given process conditions. The as-cast alumina volume fraction ( fAl2O3 ) depended on casting conditions and cross-linking agent concentration, where fAl2O3 decreased with increasing tip diameter and increased with increasing cross-linking agent concentration. Free-fomied Al2O3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no detectable micro-defects (e.g., bubbles or cracking).
Xiang, Jianfeng; Xiang, Yanjie; Lin, Shengming; Xin, Dongwei; Liu, Xiaoyu; Weng, Lingling; Chen, Tao; Zhang, Minguang
2014-04-01
Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies in the world whose chemoprevention became increasingly important in HCC treatment. Although the anticancer effects of asparagus constituents have been investigated in several cancers, its effects on hepatocellular carcinoma have not been fully studied. In this study, we investigated the anticancer effects of the deproteinized asparagus polysaccharide on the hepatocellular carcinoma cells using the in vitro and in vivo experimental model. Our data showed that deproteinized asparagus polysaccharide might act as an effective inhibitor on cell growth in vitro and in vivo and exert potent selective cytotoxicity against human hepatocellular carcinoma Hep3B and HepG2 cells. Further study showed that it could potently induce cell apoptosis and G2/M cell cycle arrest in the more sensitive Hep3B and HepG2 cell lines. Moreover, deproteinized asparagus polysaccharide potentiated the effects of mitomycin both in vitro and in vivo. Mechanistic studies revealed that deproteinized asparagus polysaccharide might exert its activity through an apoptosis-associated pathway by modulating the expression of Bax, Bcl-2, and caspase-3. In conclusion, deproteinized asparagus polysaccharide exhibited significant anticancer activity against hepatocellular carcinoma cells and could sensitize the tumoricidal effects of mitomycin, indicating that it is a potential therapeutic agent (or chemosensitizer) for liver cancer therapy.
Yildiz, Kartal Hakan; Gezen, Ferruh; Cukur, Selma; Dosoglu, Murat
2007-01-01
This study examined the preventive effects of the local application of mitomycin C (MMC), 5-fluorouracil (5-FU), and cyclosporine A (CsA) in minimizing spinal epidural fibrosis in a rat laminectomy model. Thirty-two 2-year-old male Wistar albino rats, each weighing 400 ± 50 g, were divided into four equal groups: sham, MMC, 5-FU, and CsA. Each rat underwent laminectomy at the L5–L6 lumbar level. Cotton pads (4 × 4 mm2) soaked with MMC (0.5 mg/ml), 5-FU (5 ml/mg), or CsA (5 mg/ml) were placed on the exposed dura for 5 min. Thirty days after surgery, the rats were killed and the epidural fibrosis, fibroblast density, inflammatory cell density, and arachnoid fibrosis were quantified. The epidural and arachnoid fibroses were reduced significantly in the treatment groups compared to the sham group. Fibroblast cell density and inflammatory cell density were decreased significantly in the MMC and 5-FU groups, but were similar in the sham and CsA groups. The decreased rate of epidural fibrosis was promising. Further studies in humans are needed to determine the short- and long-term complications of the agents used here. PMID:17387523
Konstantinidis, I; Tsakiropoulou, E; Vital, I; Triaridis, S; Vital, V; Constantinidis, J
2008-06-01
Obstruction of the osteomeatal complex is the commonest anatomic finding in revision endoscopic sinus surgery. This study assesses the efficacy of topical mitomycin C in the middle meatus, intra- and postoperatively in the prevention of adhesion formation and restenosis of the maxillary sinus antrostomy. At the end of endoscopic surgery for chronic rhinosinusitis and four weeks postoperatively 30 patients received a pledget soaked with 1 ml of mitomycin C (0.5 mg/ml) in the middle meatus for 5 minutes while a pledget soaked in saline was placed in the contralateral side. Patients were assessed at least 6 months postoperatively by a blinded observer for the presence of synechiae and antrostomy stenosis. Medical records were reviewed for episodes of recurrent sinusitis. Adhesions were observed in 8 patients. All adhesions rated as moderate to severe (4 patients) were observed in the control side (p = 0.043). Restenosis was observed in 2 sides treated with mitomycin C and in 9 control sides (p = 0.032). Recurrent symptoms of sinusitis occurred in three patients on the saline side. Mitomycin C is safe and effective in the prevention of severe adhesions and antrostomy stenosis when applied twice, during surgery and the early postoperative period.
Gao, Jing; White, Evan M; Liu, Qiaohong; Locklin, Jason
2017-03-01
Poly quaternary "-oniums" derived from polyethylenimine (PEI), poly(vinyl-N-alkylpyridinium), or chitosan belong to a class of cationic polymers that are efficient antimicrobial agents. When dissolved in solution, the positively charged polycations are able to displace the divalent cations of the cellular phospholipid bilayer and disrupt the ionic cross-links and structural integrity of the membrane. However, when immobilized to a surface where confinement limits diffusion, poly -oniums still show excellent antimicrobial activity, which implies a different biocidal mode of action. Recently, a proposed mechanism, named phospholipid sponge effect, suggested that surface-bound polycationic networks are capable of recruiting negatively charged phospholipids out of the bacterial cell membrane and sequestering them within the polymer matrix.1 However, there has been insufficient evidence to support this hypothesis. In this study, a surface-bound N,N-dodecyl methyl-co-N,N-methylbenzophenone methyl quaternary PEI (DMBQPEI) was prepared to verify the phospholipid sponge effect. By tuning the irradiation time, the cross-linking densities of surface-bound DMBQPEI films were mediated. The modulus of films was measured by PeakForce Quantitative Nanomechanical Mapping (QNM) to indicate the cross-linking density variation with increasing irradiation time. A negative correlation between the film cross-linking density and the absorption of a negatively charged phospholipid (DPhPG) was observed, but no such correlations were observed with a neutral phospholipid (DPhPC), which strongly supported the action of anionic phospholipid suction proposed in the lipid sponge effect. Moreover, the killing efficiency toward S. aureus and E. coli was inversely affected by the cross-linking density of the films, providing evidence for the phospholipid sponge effect. The relationship between killing efficiency and film cross-linking density is discussed.
DNA Damage Induced by Alkylating Agents and Repair Pathways
Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo
2010-01-01
The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Xi; Warner, Samuel B.; Wagner, Kyle T.
Purpose: To examine the effect of radiation on in vitro drug activation and release of Promitil, a pegylated liposomal formulation of a mitomycin C (MMC) lipid-based prodrug; and examine the efficacy and toxicity of Promitil with concurrent radiation in colorectal cancer models. Methods and Materials: Promitil was obtained from Lipomedix Pharmaceuticals (Jerusalem, Israel). We tested the effects of radiation on release of active MMC from Promitil in vitro. We next examined the radiosensitization effect of Promitil in vitro. We further evaluated the toxicity of a single injection of free MMC or Promitil when combined with radiation by assessing the effects on blood counts and in-fieldmore » skin and hair toxicity. Finally, we compared the efficacy of MMC and Promitil in chemoradiotherapy using mouse xenograft models. Results: Mitomycin C was activated and released from Promitil in a controlled-release profile, and the rate of release was significantly increased in medium from previously irradiated cells. Both Promitil and MMC potently radiosensitized HT-29 cells in vitro. Toxicity of MMC (8.4 mg/kg) was substantially greater than with equivalent doses of Promitil (30 mg/kg). Mice treated with human-equivalent doses of MMC (3.3 mg/kg) experienced comparable levels of toxicity as Promitil-treated mice at 30 mg/kg. Promitil improved the antitumor efficacy of 5-fluorouracil–based chemoradiotherapy in mouse xenograft models of colorectal cancer, while equitoxic doses of MMC did not. Conclusions: We demonstrated that Promitil is an attractive agent for chemoradiotherapy because it demonstrates a radiation-triggered release of active drug. We further demonstrated that Promitil is a well-tolerated and potent radiosensitizer at doses not achievable with free MMC. These results support clinical investigations using Promitil in chemoradiotherapy.« less
Locoregional mitomycin C injection for esophageal stricture after endoscopic submucosal dissection.
Machida, H; Tominaga, K; Minamino, H; Sugimori, S; Okazaki, H; Yamagami, H; Tanigawa, T; Watanabe, K; Watanabe, T; Fujiwara, Y; Arakawa, T
2012-06-01
This prospective study aimed to evaluate the feasibility and safety of locoregional mitomycin C (MMC) injection to treat refractory esophageal strictures after endoscopic submucosal dissection (ESD) for superficial esophageal carcinoma. Patients with dysphagia and strictures that were refractory to repeated endoscopic balloon dilation (EBD) were eligible. After EBD, MMC was injected into the dilated site. Between June 2009 and August 2010, five patients were recruited. The treatment was performed once in two patients and twice in three patients with recurrent dysphagia or restenosis. In all patients, passing a standard endoscope through the site was easy and the dysphagia grade improved (grade 3→1 in 3 patients, grade 4→2 in 2 patients). No serious complications were noted. During the observation period of 4.8 months, neither recurrent dysphagia nor re-stricture appeared in any of the patients. The combination of locoregional MMC injections and EBD is feasible and safe for the treatment of esophageal strictures after ESD.Recently, endoscopic submucosal dissection (ESD) has been developed and accepted as a new endoscopic treatment for gastrointestinal tumors. ESD is a promising treatment for superficial esophageal carcinoma (SEC), and it has a reliable en bloc resection rate. However, the application of ESD for widespread lesions is challenging because of the high risk of the development of severe strictures, which lead to a low quality of life after ESD. Although endoscopic balloon dilation (EBD) is effective for benign strictures, it needs to be performed frequently until the dysphagia disappears 1. Mitomycin C (MMC), which is a chemotherapeutic agent derived from some Streptomyces species 2, reduces scar formation when topically applied to a surgical lesion. MMC has been applied to treat strictures in a variety of anatomical locations, including a variety of organs 3. The aim of this study was to prospectively evaluate both the feasibility and the safety of locoregional MMC injection therapy in patients with refractory esophageal strictures after ESD for SEC. © Georg Thieme Verlag KG Stuttgart · New York.
Russo, A; Tommasi, A M; Renzi, L
1996-11-01
A protocol for the simultaneous visualization of minor and major satellite DNA by primed in situ DNA synthesis (PRINS) was developed in cytokinesis-blocked murine splenocytes. After individuation of optimal experimental conditions, a micronucleus (MN) test was carried out by treating splenocytes in vitro with the clastogenic agent mitomycin C and the aneugenic compound Colcemid. It was found that PRINS gives highly reproducible results, also comparable with the literature on MN results obtained by fluorescent in situ hybridization (FISH). Therefore the PRINS methodology may be proposed as a fast alternative to FISH for the characterization of induced MN.
Jacociunas, Laura Vicedo; Dihl, Rafael Rodrigues; Lehmann, Mauricio; de Barros Falcão Ferraz, Alexandre; Richter, Marc François; da Silva, Juliana; de Andrade, Heloísa Helena Rodrigues
2014-01-01
The genotoxicity of bloom head (BHE) and leaf (LE) extracts from artichoke (Cynara scolymus L.), and their ability to modulate the mutagenicity and recombinogenicity of two alkylating agents (ethyl methanesulfonate – EMS and mitomycin C – MMC) and the intercalating agent bleomycin (BLM), were examined using the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Neither the mutagenicity nor the recombinogenicity of BLM or MMC was modified by co- or post-treatment with BHE or LE. In contrast, co-treatment with BHE significantly enhanced the EMS-induced genotoxicity involving mutagenic and/or recombinant events. Co-treatment with LE did not alter the genotoxicity of EMS whereas post-treatment with the highest dose of LE significantly increased this genotoxicity. This enhancement included a synergistic increase restricted to somatic recombination. These results show that artichoke extracts promote homologous recombination in proliferative cells of D. melanogaster. PMID:24688296
Jacociunas, Laura Vicedo; Dihl, Rafael Rodrigues; Lehmann, Mauricio; de Barros Falcão Ferraz, Alexandre; Richter, Marc François; da Silva, Juliana; de Andrade, Heloísa Helena Rodrigues
2014-03-01
The genotoxicity of bloom head (BHE) and leaf (LE) extracts from artichoke (Cynara scolymus L.), and their ability to modulate the mutagenicity and recombinogenicity of two alkylating agents (ethyl methanesulfonate - EMS and mitomycin C - MMC) and the intercalating agent bleomycin (BLM), were examined using the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Neither the mutagenicity nor the recombinogenicity of BLM or MMC was modified by co- or post-treatment with BHE or LE. In contrast, co-treatment with BHE significantly enhanced the EMS-induced genotoxicity involving mutagenic and/or recombinant events. Co-treatment with LE did not alter the genotoxicity of EMS whereas post-treatment with the highest dose of LE significantly increased this genotoxicity. This enhancement included a synergistic increase restricted to somatic recombination. These results show that artichoke extracts promote homologous recombination in proliferative cells of D. melanogaster.
Evans, Jessica J; Gygli, Patrick E; McCaskill, Julienne; DeVeaux, Linda C
2018-04-20
The haloarchaea are unusual in possessing genes for multiple homologs to the ubiquitous single-stranded DNA binding protein (SSB or replication protein A, RPA) found in all three domains of life. Halobacterium salinarum contains five homologs: two are eukaryotic in organization, two are prokaryotic and are encoded on the minichromosomes, and one is uniquely euryarchaeal. Radiation-resistant mutants previously isolated show upregulation of one of the eukaryotic-type RPA genes. Here, we have created deletions in the five RPA operons. These deletion mutants were exposed to DNA-damaging conditions: ionizing radiation, UV radiation, and mitomycin C. Deletion of the euryarchaeal homolog, although not lethal as in Haloferax volcanii , causes severe sensitivity to all of these agents. Deletion of the other RPA/SSB homologs imparts a variable sensitivity to these DNA-damaging agents, suggesting that the different RPA homologs have specialized roles depending on the type of genomic insult encountered.
Wang, Chia-ching J.; Sparano, Joseph; Palefsky, Joel M.
2016-01-01
SYNOPSIS Anal cancer is an increasingly common non-AIDS-defining cancer among HIV-infected individuals. It is associated with human papillomavirus (HPV), the most common sexually transmitted infectious agent. The 14 oncogenic types of HPV are causally associated with 5–10% of all cancers, notably anogenital cancers. HPV16 is the most common genotype detected in about 70% of anal cancers. The HPV types detected in anal cancer are included in the 9-valent vaccine. HPV vaccines have demonstrated efficacy in reducing anal precancerous lesions in HIV-infected individuals. The standard treatment for anal cancer has been fluorouracil (5-FU) and mitomycin (or cisplatin) as chemotherapy agents plus radiation, which can also be effectively used for the HIV-infected patients. Continued studies will be needed to test new treatment strategies in HIV-infected patients with anal cancer to determine which treatment protocols provide the best therapeutic index. PMID:27889034
Petrov, Iu P; Neguliaev, Iu A; Tsupkina, N V
2014-01-01
The comparative analysis of the number of nucleoli in cells of the established HeLa-M line was carried out before and after exposure to mitomycin C in a concentration of 10 μg/ml for 2 h. Using time-lapse microscopy, nucleoli in mother and their respective daughter cells were computed. It has been shown that the average number of nucleoli per cell is generally higher in daughter cells than in mother cells, and a standard deviation, on the contrary, decreases. An average number of nucleoli in daughter cells, whose mother cells had been treated with mitomycin C, was higher than in corresponding cells of control group. The separate analysis has been performed for the cells having from 1 to 4 nucleoli. Nonrandom complete coincidence of the number of nucleoli in mather and daughter cells has been typicaly shown for about 1/7 of the total cell population. Mitomycin C reduces this value of about 1.5 times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamo, J.H.; Gollamudi, S.; Green, W.R.
1991-08-01
A 193-nm excimer laser system was used to create deep stromal ablations in seven New Zealand white rabbits and shallow ablations in three. Eyes were randomized for treatment with topical mitomycin C, steroids, and erythromycin; topical steroids and erythromycin; or topical erythromycin only. All treatment regimens were instituted twice daily for 14 days. All eyes reepithelialized normally within 3 to 5 days. During 10 weeks of follow-up, all eyes developed moderate reticular subepithelial haze without significant differences among treatment groups. Results of light, fluorescence, and electron microscopic examination showed anterior stromal scarring and markedly reduced new subepithelial collagen formation inmore » the group treated with mitomycin C, corticosteroids, and erythromycin. Focal abnormalities of Descemet's membrane and endothelial abnormalities were present in all treatment groups. Combination therapy with topical steroids, mitomycin C, and erythromycin to control the corneal wound healing response after refractive laser surgery appears promising and warrants further study.« less
Identification of the bombesin receptor on murine and human cells by cross-linking experiments.
Kris, R M; Hazan, R; Villines, J; Moody, T W; Schlessinger, J
1987-08-15
The bombesin receptor present on the surface of murine and human cells was identified using 125I-labeled gastrin-releasing peptide as a probe, the cross-linking agent disuccinimidyl suberate, and sodium dodecyl sulfate gels. A clone of NIH-3T3 cells which possesses approximately 80,000 bombesin receptors/cell with a single binding constant of approximately 1.9 X 10(-9) M was used in these studies. In addition, we used Swiss 3T3 cells and a human glioma cell line which possesses approximately 100,000 and approximately 55,000 bombesin receptors/cell, respectively. Under conditions found optimal for binding, it is demonstrated that 125I-labeled gastrin-releasing peptide can be cross-linked specifically to a glycoprotein of apparent molecular mass of 65,000 daltons on the surface of the NIH-3T3 cells. Similar results were obtained when the cross-linked product was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing or non-reducing conditions. Moreover, the cross-linking reaction is specific and saturable and the 65,000-dalton polypeptide is not observed when the cross-linking experiments were performed with a NIH-3T3 cell line which is devoid of bombesin receptors. Interestingly, glycoproteins with apparent molecular weights of 75,000 were labeled specifically by 125I-labeled gastrin-releasing peptide when similar experiments were performed with Swiss 3T3 cells and with human glioma cell line GM-340. These different molecular weights may indicate differential glycosylation as treatment with the enzyme N-glycanase reduced the apparent molecular weight of the cross-linked polypeptide to 45,000. On the basis of these results it is concluded that the cross-linked polypeptides represent the bombesin receptor or the ligand-binding subunit of a putative larger bombesin receptor expressed on the surface of these cells.
Woods, C G; Leversha, M; Rogers, J G
1995-01-01
We report an infant with pre- and postnatal microcephaly and growth retardation, a distinctive face, and developmental delay. The initial diagnosis was of Seckel syndrome. He became pancytopenic at 16 months and died soon after. His bone marrow was of normal cellularity but had a small lymphocyte infiltration. Increased spontaneous chromosome breakage was seen in blood and fibroblasts. Mitomycin C induced chromosome damage was increased and comparable to that seen in Fanconi anaemia. Reports of similar patients are reviewed. This entity of severe intrauterine growth retardation and increased mitomycin C sensitivity is hypothesised to be a distinct chromosome breakage syndrome. Images PMID:7643362
Fu, Ywu-Jang; Qui, Hsuan-zhi; Liao, Kuo-Sung; Lue, Shingjiang Jessie; Hu, Chien-Chieh; Lee, Kueir-Rarn; Lai, Juin-Yih
2010-03-16
A thin SiO(x) selective surface layer was formed on a series of cross-linked poly(dimethylsiloxane) (PDMS) membranes by exposure to ultraviolet light at room temperature in the presence of ozone. The conversion of the cross-linked polysiloxane to SiO(x) was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX) microanalysis, contact angle analysis, and atomic force microscopy (AFM). The conversion of the cross-linked polysiloxane to SiO(x) increased with UV-ozone exposure time and cross-linking agent content, and the surface possesses highest conversion. The formation of a SiO(x) layer increased surface roughness, but it decreased water contact angle. Gas permeation measurements on the UV-ozone exposure PDMS membranes documented interesting gas separation properties: the O(2) permeability of the cross-linked PDMS membrane before UV-ozone exposure was 777 barrer, and the O(2)/N(2) selectivity was 1.9; after UV-ozone exposure, the permeability decreased to 127 barrer while the selectivity increased to 5.4. The free volume depth profile of the SiO(x) layer was investigated by novel slow positron beam. The results show that free volume size increased with the depth, yet the degree of siloxane conversion to SiO(x) does not affect the amount of free volume.
Cytotoxicity of silica-glass fiber reinforced composites.
Meriç, Gökçe; Dahl, Jon E; Ruyter, I Eystein
2008-09-01
Silica-glass fiber reinforced polymers can be used for many kinds of dental applications. The fiber reinforcement enhances the mechanical properties of the polymers, and they have good esthetic attributes. There is good initial bonding of glass fibers to polymers via an interface made from silane coupling agents. The aim of this in vitro study was to determine the cytotoxicity of two polymers reinforced with two differently sized silica-glass fibers before and after thermal cycling. Cytotoxicity of the polymers without fibers was also evaluated. Two different resin mixtures (A and B) were prepared from poly(vinyl chloridecovinylacetate) powder and poly(methyl methacrylate) (PMMA) dissolved in methyl methacrylate and mixed with different cross-linking agents. The resin A contained the cross-linking agents ethylene glycol dimethacrylate and 1,4-butanediol dimethacrylate, and for resin B diethylene glycol dimethacrylate was used. Woven silica-glass fibers were used for reinforcement. The fibers were sized with either linear poly(butyl methacrylate)-sizing or cross-linking PMMA-sizing. Cytotoxicity was evaluated by filter diffusion test (ISO 7405:1997) of newly made and thermocycled test specimens. Extracts were prepared according to ISO 10993-12 from newly made and from thermocycled specimens and tested by the MTT assay. The results from the experiments were statistically analyzed by one-way ANOVA and Tukey's test (rho<0.05). The filter diffusion test disclosed no change in staining intensity at the cell-test sample contact area indicating non-cytotoxicity in all experimental groups. Cell viability assessed by MTT assay was more than 90% in all experimental groups. All are non-cytotoxic. It can be concluded that correctly processed heat polymerized silica-glass fiber reinforced polymers induced no cytotoxicity and that thermocycling did not alter this property.
Experimental scleral cross-linking increases glaucoma damage in a mouse model
Kimball, Elizabeth C.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary E.; Oglesby, Ericka N.; Oveson, Brian C.; Quigley, Harry A.
2014-01-01
The purpose of this study was to assess the effect of a scleral cross-linking agent on susceptibility to glaucoma damage in a mouse model. CD1 mice underwent 3 subconjunctival injections of 0.5 M glyceraldehyde (GA) in 1 week, then had elevated intraocular pressure (IOP) induced by bead injection. Degree of cross-linking was measured by enzyme-linked immunosorbent assay (ELISA), scleral permeability was measured by fluorescence recovery after photobleaching (FRAP), and the mechanical effects of GA exposure were measured by inflation testing. Control mice had buffer injection or no injection in 2 separate glaucoma experiments. IOP was monitored by Tonolab and retinal ganglion cell (RGC) loss was measured by histological axon counting. To rule out undesirable effects of GA, we performed electroretinography and detailed histology of the retina. GA exposure had no detectable effects on RGC number, retinal structure or function either histologically or electrophysiologically. GA increased cross-linking of sclera by 37% in an ELISA assay, decreased scleral permeability (FRAP, p = 0.001), and produced a steeper pressure—strain behavior by in vitro inflation testing. In two experimental glaucoma experiments, GA-treated eyes had greater RGC axon loss from elevated IOP than either buffer-injected or control eyes, controlling for level of IOP exposure over time (p = 0.01, and 0.049, multivariable regression analyses). This is the first report that experimental alteration of the sclera, by cross-linking, increases susceptibility to RGC damage in mice. PMID:25285424
Gu, Li-sha; Kim, Young Kyung; Liu, Yan; Takahashi, Kei; Arun, Senthil; Wimmer, Courtney E.; Osorio, Raquel; Ling, Jun-qi; Looney, Stephen W.; Pashley, David H.; Tay, Franklin R.
2010-01-01
Immobilization of phosphoproteins on a collagen matrix is important for induction of intrafibrillar apatite mineralization. Unlike phosphate esters, polyphosphonic acid has no reactive sites for covalent binding to collagen amine groups. Binding of polyvinylphosphonic acid (PVPA), a biomimetic templating analog of matrix phosphoproteins, to collagen was found to be electrostatic in nature. Thus, an alternative retention mechanism was designed for immobilization of PVPA to collagen by cross-linking the latter with carbodiimide (EDC). This mechanism is based on the principle of size exclusion entrapment of PVPA molecules within the internal water compartments of collagen. By cross-linking collagen with EDC, a zero-length cross-linking agent, the sieving property of collagen is increased, enabling the PVPA to be immobilized within the collagen. Absence of covalent cross-linking between PVPA and collagen was confirmed by FT-IR spectroscopy. Based on these results, a concentration range for immobilized PVPA to template intrafibrillar apatite deposition was established and validated using a single-layer reconstituted type I collagen mineralization model. In the presence of a polyacrylic acid-containing mineralization medium, optimal intrafibrillar mineralization of the EDC-cross-linked collagen was achieved using 500 and 1,000 μg/mL PVPA. The mineralized fibrils exhibited a hierarchical order of intrafibrillar mineral infiltration, as manifested by the appearance of electron-dense periodicity within unstained fibrils. Understanding the basic processes in intrafibrillar mineralization of reconstituted collagen creates opportunities for the design of tissue engineering materials for hard tissue repair and regeneration. PMID:20688200
Degradable Hydrogels and Nanogels for the Delivery of Cells and Therapeutics
NASA Astrophysics Data System (ADS)
Boehnke, Natalie
Degradable polymeric materials such as hydrogels are extensively utilized as delivery vehicles due to their biocompatibility and tunable properties. Encapsulating therapeutic agents inside hydrogels stabilizes the cargo by preventing degradation, extending circulation time, and also allows for targeted release and delivery. Due to their small size and tunable properties, nano-scale hydrogels, or nanogels, are frequently utilized to deliver therapeutics to areas difficult to reach, such as tumors and the cytoplasm, through traditional means. To control hydro- and nanogel function, degradable cross-links can be installed, allowing for cargo release in response to specific stimuli, such as hydrolysis or reduction. This dissertation offers three degradable strategies that can be applied to synthesize hydrogels and nanogels for the stabilization and release of therapeutic cargo. In the first example, mixed imine cross-linking chemistry was applied to synthesize poly(ethylene glycol) (PEG)-based hydrogels with tunable degradability to encapsulate and deliver cells. Time to degradation of the gels could be controlled from 24 hours to more than 7 days by varying the hydrazone structure and the ratio of hydrazone and oxime cross-links. Encapsulated cells exhibited high viability up to at least 7 days, suggesting this system may be useful for cell delivery applications. In the second example, disulfide cross-links were utilized to form redox-responsive nanogels comprised of trehalose copolymers. The synthesis of a methacrylate trehalose monomer (TrMA) was optimized, improving the overall yield from 14% to 42%. TrMA was subsequently copolymerized with pyridyl disulfide ethyl methacrylate (PDSMA) using free radical polymerization conditions to form copolymers with two monomer ratios (1:1 and 2:1) which were cross-linked with 1 kDa PEG-dithiol via disulfide exchange to form uniform nanogels approximately 9 nm in diameter. The addition of a cross-linker eliminated the need to add reducing agent to facilitate cross-linking and nanogel formation, making this approach ideal for the encapsulation of sensitive therapeutic agents. Next, PDSMA-co-TrMA nanogels were utilized to encapsulate, stabilize, and release glucagon, an unstable peptide hormone used to treat hypoglycemia. The amines on glucagon were modified with thiol groups while retaining their positive charges for reversible conjugation and cross-linking. Glucagon-nanogel conjugates were synthesized with >80% conjugation yield, and the reversible disulfide linkage between peptide and polymer allowed for efficient cargo release under mild reducing conditions. The nanogels stabilized glucagon against aggregation in solution up to five days as well as solubilized the peptide at neutral pH. In vitro bioactivity of the modified peptide was found to be comparable to native glucagon, suggesting this may be a promising formulation strategy for further in vivo study. Finally, a series of dual-enzyme responsive peptides was synthesized by masking the epsilon-amine of lysine with protease substrates. After unmasking the amine by enzymatic cleavage, a second enzyme was able to cleave at the C terminus of lysine, which was monitored colorimetrically. Three different dual-enzyme responsive peptides were prepared, (AcAAF)K-pNA, (AcFG)K-pNA, and (AcDEVD)K-pNA, for chymotrypsin, papain, and caspase 3 sensitivity, respectively, followed by trypsin sensitivity after cleavage by the first enzyme. This modular peptide design could be useful for selective drug delivery, studies on dual enzyme activity, as well as for diagnostic enzyme screening.
Role of ABCB5 P-Glycoprotein in Breast Cancer Multidrug Resistance
2005-09-01
Hydroxyurea Doxorubicin Porfiromycin Mechlorethamine Fluorodopan Mitomycin Cytarabine (araC) Dianhydrogalactitol Gemcitabine Thiotepa N-N-Dibenzyl-daunomycin...0.0196 Mitomycin 0.4173 0.0318 Cytarabine (araC) 0.4163 0.0288 Dianhydrogalactitol 0.4105 0.0354 Gemcitabine 0.4088 0.0302 Thiotepa 0.4015 0.0232
Multiphoton Imaging of Rabbit Cornea Treated with Mitomycin C after Photorefractive Keratectomy
NASA Astrophysics Data System (ADS)
Hsueh, Chiu-Mei; Lo, Wen; Wang, Tsung-Jen; Hu, Fung-Rong; Dong, Chen-Yuan
2007-07-01
In this work we use multiphoton microscopy to observe the post surgery structure variation of rabbit cornea after photorefractive keratectomy (PRK). In addition, we added mitomycin C (MMC) to the post surgery rabbit cornea in order to investigate the effect of MMC treatment on the postoperative regeneration.
Chen, Nan; Zhang, Jie; Xu, Min; Wang, Ting; Wang, Yu-ling; Pei, Ying-hua
2013-09-01
To observe the inhibitory effect and potential mechanism of mitomycin C and paclitaxel on the proliferation of Human Pulmonary Fibroblast in vitro. So as to providing an experimental reference for the design of drug eluting airway stents. Cell viability was measured by MTT assay after different concentrations of mitomycin C or paclitaxel varying from 10(-1)1 mol/L to 10(-4) mol/L had been applied to the fibroblasts for 24, 48 or 72 h, respectively. Cell apoptosis was assessed by flow cytometry using dual staining with annexin V-FITC and propidium iodide 48 h after administering mitomycin C or paclitaxel at a concentration of 5×10(-6), 10(-5), 5×10(-5), 10(-4), 2×10(-4) mol/L, respectively. And the morphological character of cell apoptosis was observed by Hoechst 33342 fluorescent staining. The results of MTT revealed that cell proliferation were inhibited by mitomycin C and paclitaxel at all concentrations and exposure times. Among them, the inhibitory effect of mitomycin C were weak when the concentrations were between 10(-1)1 mol/L to 10(-8) mol/L. And within this context, the inhibitory ratio didn't correspond to the elevation of the concentration or the prolongation of the exposure times.However, when the concentration were between 10(-7) mol/L to 10(-4) mol/L, the inhibitory ratio rise progressively as the elevation of the concentration at all exposure times. The inhibitory ratio were 53.52%, 60.23%, 89.81% and 96.47% respectively when cells were treated by 10(-7), 10(-6), 10(-5) mol/L and 10(-4) mol/L mitomycin C for 72 h. An apparent "threshold dose effect" was observed in the paclitaxel treated groups.It's worth noting that the inhibitory ratio was only 48.22% when the cells had already been treated by 10(-5) mol/L paclitaxel for 72 h.However, when the concentration had reached 10(-4) mol/L, the inhibitory ratio sharply climbed to 93.38% even the cells had only been treated for 24 h. And the inhibitory ratio continued to rise as time prolonged. The results of cell apoptosis were consistent with MTT.When a significant inhibitory effect were detected by MTT, remarkable cell apoptosis could be observed by flow cytometry, and typical apoptotic cell could be identified by Hoechst 33342 fluorescent staining. A certain concentration of mitomycin C or paclitaxel can inhibit Human Pulmonary Fibroblast proliferation in vitro. Both of these two drugs have potential value for the preparation of drug eluting airway stents. In order to ensure the inhibitory effect, the eluting concentration of mitomycin C and paclitaxel should not be less than 10(-7) mol/L and 10(-5) mol/L. But the eluting concentration of these two drugs should not exceed 10(-4) mol/L when both of the inhibitory ratio of these two drugs were higher than 95%.On this basis, elevating the drug concentration has little significance for improving the inhibitory effect, but increase the risk of systemic toxicity. Inducing cell apoptosis is one of the potential mechanisms of mitomycin C and paclitaxel in inhibiting cell proliferation.
Yu, Shuangjiang; Ding, Jianxun; He, Chaoliang; Cao, Yue; Xu, Weiguo; Chen, Xuesi
2014-05-01
Nanoscale carriers that stably load drugs in blood circulation and release the payloads in desirable sites in response to a specific trigger are of great interest for smart drug delivery systems. For this purpose, a novel type of disulfide core cross-linked micelles, which are facilely fabricated by cross-linking of poly(ethylene glycol)/polyurethane block copolymers containing cyclic disulfide moieties via a thiol-disulfide exchange reaction, are developed. A broad-spectrum anti-cancer drug, doxorubicin (DOX), is loaded into the micelles as a model drug. The drug release from the core cross-linked polyurethane micelles (CCL-PUMs) loaded with DOX is suppressed in normal phosphate buffer saline (PBS), whereas it is markedly accelerated with addition of an intracellular reducing agent, glutathione (GSH). Notably, although DOX-loaded CCL-PUMs display lower cytotoxicity in vitro compared to either free DOX or DOX-loaded uncross-linked polyurethane micelles, the drug-loaded CCL-PUMs show the highest anti-tumor efficacy with reduced toxicity in vivo. Since enhanced anti-tumor efficacy and reduced toxic side effects are key aspects of efficient cancer therapy, the novel reduction-responsive CCL-PUMs may hold great potential as a bio-triggered drug delivery system for cancer therapy. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Leung, Justin Wai Chung; Wang, Yucai; Fong, Ka Wing; Huen, Michael Shing Yan; Li, Lei; Chen, Junjie
2012-03-20
The Fanconi anemia (FA) pathway participates in interstrand cross-link (ICL) repair and the maintenance of genomic stability. The FA core complex consists of eight FA proteins and two Fanconi anemia-associated proteins (FAAP24 and FAAP100). The FA core complex has ubiquitin ligase activity responsible for monoubiquitination of the FANCI-FANCD2 (ID) complex, which in turn initiates a cascade of biochemical events that allow processing and removal of cross-linked DNA and thereby promotes cell survival following DNA damage. Here, we report the identification of a unique component of the FA core complex, namely, FAAP20, which contains a RAD18-like ubiquitin-binding zinc-finger domain. Our data suggest that FAAP20 promotes the functional integrity of the FA core complex via its direct interaction with the FA gene product, FANCA. Indeed, somatic knockout cells devoid of FAAP20 displayed the hallmarks of FA cells, including hypersensitivity to DNA cross-linking agents, chromosome aberrations, and reduced FANCD2 monoubiquitination. Taking these data together, our study indicates that FAAP20 is an important player involved in the FA pathway.
Leung, Justin Wai Chung; Wang, Yucai; Fong, Ka Wing; Huen, Michael Shing Yan; Li, Lei; Chen, Junjie
2012-01-01
The Fanconi anemia (FA) pathway participates in interstrand cross-link (ICL) repair and the maintenance of genomic stability. The FA core complex consists of eight FA proteins and two Fanconi anemia-associated proteins (FAAP24 and FAAP100). The FA core complex has ubiquitin ligase activity responsible for monoubiquitination of the FANCI-FANCD2 (ID) complex, which in turn initiates a cascade of biochemical events that allow processing and removal of cross-linked DNA and thereby promotes cell survival following DNA damage. Here, we report the identification of a unique component of the FA core complex, namely, FAAP20, which contains a RAD18-like ubiquitin-binding zinc-finger domain. Our data suggest that FAAP20 promotes the functional integrity of the FA core complex via its direct interaction with the FA gene product, FANCA. Indeed, somatic knockout cells devoid of FAAP20 displayed the hallmarks of FA cells, including hypersensitivity to DNA cross-linking agents, chromosome aberrations, and reduced FANCD2 monoubiquitination. Taking these data together, our study indicates that FAAP20 is an important player involved in the FA pathway. PMID:22396592
Ionic Modification Turns Commercial Rubber into a Self-Healing Material.
Das, Amit; Sallat, Aladdin; Böhme, Frank; Suckow, Marcus; Basu, Debdipta; Wiessner, Sven; Stöckelhuber, Klaus Werner; Voit, Brigitte; Heinrich, Gert
2015-09-23
Invented by Charles Goodyear, chemical cross-linking of rubbers by sulfur vulcanization is the only method by which modern automobile tires are manufactured. The formation of these cross-linked network structures leads to highly elastic properties, which substantially reduces the viscous properties of these materials. Here, we describe a simple approach to converting commercially available and widely used bromobutyl rubber (BIIR) into a highly elastic material with extraordinary self-healing properties without using conventional cross-linking or vulcanising agents. Transformation of the bromine functionalities of BIIR into ionic imidazolium bromide groups results in the formation of reversible ionic associates that exhibit physical cross-linking ability. The reversibility of the ionic association facilitates the healing processes by temperature- or stress-induced rearrangements, thereby enabling a fully cut sample to retain its original properties after application of the self-healing process. Other mechanical properties, such as the elastic modulus, tensile strength, ductility, and hysteresis loss, were found to be superior to those of conventionally sulfur-cured BIIR. This simple and easy approach to preparing a commercial rubber with self-healing properties offers unique development opportunities in the field of highly engineered materials, such as tires, for which safety, performance, and longer fatigue life are crucial factors.
Jung, Yun-Chae; Park, Myung-Soo; Kim, Duck-Hyun; Ue, Makoto; Eftekhari, Ali; Kim, Dong-Won
2017-12-13
Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g -1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.
Tc-99m Labeled carrier for imaging
Henze, Eberhard
1984-01-01
Novel radionuclide imaging agents, having particular application for lymphangiography are provided by non-covalently binding Tc-99m to a pharmaceutically acceptable cross-linked polysaccharide. Upon injection of the Tc-99m labeled polysaccharide into the blood stream, optimum contrast can be obtained within one hour.
Novel aminobenzyl and imidobenzyl benzenes
NASA Technical Reports Server (NTRS)
Bell, V. L.; Pratt, J. R.; Stump, B. L.
1976-01-01
Compounds are useful as intermediates for several classes of polymers. Amines can function as cross-linking agents for epoxide and urethane polymers, as well as intermediates for synthesis of thermally-stable addition-type polyimides. Imide derivatives can be obtained by reacting amines with certain monoanhydrides containing olefinic unsaturation.
Sartuqui, Javier; Gravina, A Noel; Rial, Ramón; Benedini, Luciano A; Yahia, L'Hocine; Ruso, Juan M; Messina, Paula V
2016-09-01
Intrinsic material skills have a deep effect on the mechanical and biological performance of bone substitutes, as well as on its associated biodegradation properties. In this work we have manipulated the preparation of collagenous derived fiber mesh frameworks to display a specific composition, morphology, open macroporosity, surface roughness and permeability characteristics. Next, the effect of the induced physicochemical attributes on the scaffold's mechanical behavior, bone bonding potential and biodegradability were evaluated. It was found that the scaffold microstructure, their inherent surface roughness, and the compression strength of the gelatin scaffolds can be modulated by the effect of the cross-linking agent and, essentially, by mimicking the nano-scale size of hydroxyapatite in natural bone. A clear effect of bioactive hydroxyapatite nano-rods on the scaffolds skills can be appreciated and it is greater than the effect of the cross-linking agent, offering a huge perspective for the upcoming progress of bone implant technology. Copyright © 2016 Elsevier B.V. All rights reserved.
Bhat, Rajeev; Karim, A A
2014-07-01
Developing novel fish gelatin films with better mechanical properties than mammalian gelatin is a challenging but promising endeavor. Studies were undertaken to produce fish gelatin films by combining treatments with different sugars (ribose and lactose) followed 'by' 'and' ultraviolet (UV) radiation, as possible cross-linking agents. Increase in tensile strength and percent elongation at break was recorded, which was more significant in films without sugars that were exposed to UV radiation. Films with added ribose showed decreased solubility after UV treatment and exhibited higher swelling percentage than films with added lactose, which readily dissolved in water. FTIR spectra of all the films showed identical patterns, which indicated no major changes to have occurred in the functional groups as a result of interaction between gelatin, sugars and UV irradiation. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for food packaging purposes.
Wolter, R; Siede, W; Brendel, M
1996-02-05
The interstrand cross-link repair gene SNM1 of Saccharomyces cerevisiae was examined for regulation in response to DNA-damaging agents. Induction of SNM1-lacZ fusions was detected in response to nitrogen mustard, cis-platinum (II) diamine dichloride, UV light, and 8-methoxypsoralen + UVA, but not after heat-shock treatment or incubation with 2-dimethylaminoethylchloride, methylmethane sulfonate or 4-nitroquinoline-N-oxide. The promoter of SNM1 contains a 15 bp motif, which shows homology to the DRE2 box of the RAD2 promoter. Similar motifs have been found in promoter regions of other damage-inducible DNA repair genes. Deletion of this motif results in loss of inducibility of SNM1. Also, a putative negative upstream regulation sequence was found to be responsible for repression of constitutive transcription of SNM1. Surprisingly, no inducibility of SNM1 was found after treatment with DNA-damaging agents in strains without an intact DUN1 gene, while regulation seems unchanged in sad1 mutants.
[Exposure of normal Tenon's capsule fibroblasts from pterygium to 5-fluorouracil and mitomycin C].
Viveiros, Magda Massae Hata; Schellini, Silvana Artioli; Candeias, João; Padovani, Carlos Roberto
2007-01-01
To evaluate the fibroblast proliferation activity of normal Tenon's capsule from primary and recurrent patients with pterygium. A randomized prospective study was performed with 41 normal Tenon's capsule fragments from 21 primary and 20 recurrent patients with pterygium. The sample was collected from the inferior cul-de-sac. Proliferation rate from fibroblasts were evaluated after mitomycin C and 5-fluorouracil exposition. Data were submitted to statistical analysis. Of the 41 cultivated normal Tenon's capsules, only 1 from primary and 2 from recurrent pterygium patients proliferated. After antimitotic exposition, the proliferation rate was similar with both drugs. Mitomycin and 5-fluorouracil promote similar inhibition regarding proliferation of normal Tenon's fibroblast cultures.
Di Giorgio, C; Boyer, L; De Meo, M; Laurant, C; Elias, R; Ollivier, E
2015-07-01
DIG, a liquid herbal preparation made from a mixture of diluted mother tinctures of Berberis vulgaris, Taraxacum officinale and Arctium lappa, was assessed for its antimutagenic properties against mitomycin C. The micronucleus assay on Chinese hamster ovary (CHO)-K1 cells was used to evaluate the in vitro anticlastogenic activity of DIG compared to those of separately diluted mother tinctures. The micronucleus assay was performed on mouse erythrocytes and the comet assay was performed on mouse liver, kidney, lung, brain and testicles to assess the protective effects of DIG (0.2 and 2 % at libitum) against an intraperitoneal injection of mitomycin C (1 mg Kg(-1)) in mice. DIG exerted a powerful anticlastogenic activity, under both pretreatment and simultaneous treatment conditions as assessed by the micronucleus assay in CHO-K1 cells. Its protective activity was greater than that observed for each mother tincture. DIG reduced micronuclei levels in mouse erythrocytes and suppressed >80 % of DNA strand breaks in the liver, kidney, lung, brain and testicles of mice exposed to mitomycin C.
Liu, Y; Chatterjee, A; Chatterjee, A K
1994-12-01
In most soft-rotting Erwinia spp., including E. carotovora subsp. carotovora strain 71 (Ecc71), production of the plant cell wall degrading enzyme pectin lyase (Pnl) is activated by DNA-damaging agents such as mitomycin C (MC). Induction of Pnl production in Ecc71 requires a functional recA gene and the rdg locus. DNA sequencing and RNA analyses revealed that the rdg locus contains two regulatory genes, rdgA and rdgB, in separate transcriptional units. There is high homology between RdgA and repressors of lambdoid phages, specially phi 80. RdgB, however, has significant homology with transcriptional activators of Mu phage. Both RdgA and RdgB are also predicted to possess helix-turn-helix motifs. By replacing the rdgB promoter with the IPTG-inducible tac promoter, we have determined that rdgB by itself can activate Pnl production in Escherichia coli. However, deletion analysis of rdg+ DNA indicated that, when driven by their native promoters, functions of both rdgA and rdgB are required for the induction of pnlA expression by MC treatment. While rdgB transcription occurs only after MC treatment, a substantial level of rdgA mRNA is detected in the absence of MC treatment. Moreover, upon induction with MC, a new rdgA mRNA species, initiated from a different start site, is produced at a high level. Thus, the two closely linked rdgA and rdgB genes, required for the regulation of Pnl production, are expressed differently in Ecc71.
Murakami, Kaoru; Ishihara, Masayuki; Aoki, Hiroshi; Nakamura, Shingo; Nakamura, Shin-Ichiro; Yanagibayashi, Satoshi; Takikawa, Megumi; Kishimoto, Satoko; Yokoe, Hidetaka; Kiyosawa, Tomoharu; Sato, Yasunori
2010-01-01
To create a moist environment for rapid wound healing, a hydrosheet composed of alginate, chitin/chitosan, and fucoidan (ACF-HS) has been developed as a functional wound dressing. The aim of this study was to evaluate the accelerating effect of ACF-HS on wound healing for rat mitomycin C-treated healing-impaired wounds. Full-thickness skin defects were made on the back of rats and mitomycin C was applied onto the wound for 10 minutes to prepare a healing-impaired wound. After thoroughly washing out the mitomycin C, ACF-HS was applied to the healing-impaired wounds. The rats were later euthanized and histological sections of the wounds were prepared. The histological examinations showed significantly advanced granulation tissue and capillary formations in the healing-impaired wounds treated with ACF-HS on days 7 and 14, in comparison with that in alginate fiber (Kaltostat), hydrogel wound dressing (DuoACTIVE), and nontreatment (negative control). Furthermore, in cell culture studies, ACF-HS-absorbed serum and fibroblast growth factor-2 was found to be proliferative for fibroblasts and endothelial cells, respectively, and ACF-HS-absorbed serum was found to be chemoattractive for fibroblasts. However, our results may not be strictly comparable with general healing-impaired wound models in humans because of the cell damage by mitomycin C. In addition, more biocompatibility studies of fucoidan are essential due to the possibility of renal toxicity. © 2010 by the Wound Healing Society.
Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins
Rinde, J.A.; Newey, H.A.
1981-02-24
Primary diamines are disclosed of the formula shown in a diagram wherein R is a straight chain saturated hydrocarbon of 2 to 4 carbons, a disubstituted benzene ring, or disubstituted dibenzomethane for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and pre-impregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses as room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.
Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins
Rinde, James A. [Livermore, CA; Newey, Herbert A. [Lafayette, CA
1981-02-24
Primary diamines of the formula ##STR1## wherein R is a straight chain saturated hydrocarbon of 2 to 4 carbons, a disubstituted benzene ring, or disubstituted dibenzo methane for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and pre-impregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses as room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.
Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay
USDA-ARS?s Scientific Manuscript database
Biodegradable foamlike materials based on a naturally occurring polymer (casein protein) and sodium montmorillonite clay (Na+-MMT) were produced through a simple freeze-drying process. By utilizing DL-glyceraldehyde (GC) as a chemical cross-linking agent, the structural integrity of these new aeroge...
Polymeric foams from cross-linkable poly-N-ary lenebenzimidazoles
NASA Technical Reports Server (NTRS)
Harrison, E. S.; Delano, C. B.; Riccitello, S. R. (Inventor)
1978-01-01
Foamed cross-linked poly-N-arylenebinzimidazoles are prepared by mixing an organic tetraamine and an ortho substituted aromatic dicarboxylic acid anhydride in the presence of a blowing agent, and then heating the prepolymer to a temperature sufficient to complete polymerization and foaming of the reactants. In another embodiment of the process, the reactants are heated to form a prepolymer. The prepolymer is then cured at higher temperatures to complete foaming and polymerization.
Lin, F L; Sternberg, N
1984-05-01
We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants.
Mitomycin C: a promising agent for the treatment of canine corneal scarring
Gupta, Rangan; Yarnall, Benjamin W.; Giuliano, Elizabeth A.; Kanwar, Jagat R.; Buss, Dylan G.; Mohan, Rajiv R.
2012-01-01
Objective To evaluate the safety and efficacy of mitomycin C (MMC) in prevention of canine corneal scarring. Methods With an in vitro approach using healthy canine corneas, cultures of primary canine corneal fibroblasts or myofibroblasts were generated. Primary canine corneal fibroblasts were obtained by growing corneal buttons in minimal essential medium supplemented with 10% fetal bovine serum. Canine corneal myofibroblasts were produced by growing cultures in serum-free medium containing transforming growth factor β1 (1 ng/mL). Trypan blue assay and phase-contrast microscopy were used to evaluate the toxicity of three doses of MMC (0.002%, 0.02% and 0.04%). Real-time PCR, immunoblot, and immunocytochemistry techniques were used to determine MMC efficacy to inhibit markers of canine corneal scarring. Results A single 2-min treatment of 0.02% or less MMC did not alter canine corneal fibroblast or keratocyte phenotype, viability, or growth. The 0.02% dose substantially reduced myofibroblast formation (up to 67%; P < 0.001), as measured by the change in RNA and protein expression of fibrosis biomarkers (α-smooth muscle actin and F-actin). Conclusion This in vitro study suggests that a single 2-min 0.02% MMC treatment to the canine corneal keratocytes is safe and may be useful in decreasing canine corneal fibrous metaplasia. In vivo studies are warranted. PMID:21929607
Lev, Avital; Deihimi, Safoora; Shagisultanova, Elena; Xiu, Joanne; Lulla, Amriti R; Dicker, David T; El-Deiry, Wafik S
2017-09-02
Colorectal cancer (CRC) is a leading cause of cancer-related deaths in the United States. We analyzed 26 MSI-High and 558 non-MSI-High CRC tumors. BRCA2 mutations were highly enriched (50%) in MSI-High CRC. Immunohistochemistry showed that BRCA2-mutated MSI-High CRC had high c-MET (64%) expression compared with BRCA-WT (17%). We hypothesized a mechanistic link between BRCA2-deficiency and c-MET overexpression and synergistic interaction between drugs that treat BRCA-deficient tumors (mitomycin C (MMC) or PARP inhibitors) and c-MET inhibitors (crizotinib). We tested CRC cell lines for sensitivity to MMC plus crizotinib or other drug combinations including PARP-inhibitors. Combined treatment of tumor cells with crizotinib and MMC led to increased apoptosis as compared with each drug alone. Additionally, combination treatment with increasing concentrations of both drugs demonstrated a synergistic anti-cancer effect (CI = 0.006-0.74). However, we found no evidence for c-MET upregulation upon effective BRCA2 knockdown in tumor cells -/+DNA damage. Although we found no mechanistic link between BRCA2 deficiency and c-MET overexpression, c-MET is frequently overexpressed in CRC and BRCA2 is mutated especially in MSI-H CRC. The combination of crizotinib with MMC appeared synergistic regardless of MSI or BRCA2 status. Using an in-vivo CRC xenograft model we found reduced tumor growth with combined crizotinib and MMC therapy (p = 0.0088). Our preclinical results support clinical testing of the combination of MMC and crizotinib in advanced CRC. Targeting cell survival mediated by c-MET in combination with targeting DNA repair may be a reasonable strategy for therapy development in CRC or other cancers.
Formation mechanism of glyoxal-DNA adduct, a DNA cross-link precursor.
Vilanova, B; Fernández, D; Casasnovas, R; Pomar, A M; Alvarez-Idaboy, J R; Hernández-Haro, N; Grand, A; Adrover, M; Donoso, J; Frau, J; Muñoz, F; Ortega-Castro, J
2017-05-01
DNA nucleobases undergo non-enzymatic glycation to nucleobase adducts which can play important roles in vivo. In this work, we conducted a comprehensive experimental and theoretical kinetic study of the mechanisms of formation of glyoxal-guanine adducts over a wide pH range in order to elucidate the molecular basis for the glycation process. Also, we performed molecular dynamics simulations to investigate how open or cyclic glyoxal-guanine adducts can cause structural changes in an oligonucleotide model. A thermodynamic study of other glycating agents including methylglyoxal, acrolein, crotonaldehyde, 4-hydroxynonenal and 3-deoxyglucosone revealed that, at neutral pH, cyclic adducts were more stable than open adducts; at basic pH, however, the open adducts of 3-deoxyglucosone, methylglyoxal and glyoxal were more stable than their cyclic counterparts. This result can be ascribed to the ability of the adducts to cross-link DNA. The new insights may contribute to improve our understanding of the connection between glycation and DNA cross-linking. Copyright © 2017 Elsevier B.V. All rights reserved.
López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José
2016-01-20
Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application. Copyright © 2015 Elsevier Ltd. All rights reserved.
Peles, Zachi; Zilberman, Meital
2012-01-01
Naturally derived materials are becoming widely used in the biomedical field. Soy protein has advantages over various types of natural proteins employed for biomedical applications due to its low price, non-animal origin and relatively long storage time and stability. In the current study soy protein isolate (SPI) was investigated as a matrix for wound dressing applications. The antibiotic drug gentamicin was incorporated into the matrix for local controlled release and, thus, protection against bacterial infection. Homogeneous yellowish films were cast from aqueous solutions. After cross-linking they combined high tensile strength and Young's modulus with the desired ductility. The plasticizer type, cross-linking agent and method of cross-linking were found to strongly affect the tensile properties of the SPI films. Selected SPI films were tested for relevant physical properties and the gentamicin release profile. The cross-linking method affected the degree of water uptake and the weight loss profile. The water vapor transmission rate of the films was in the desired range for wound dressings (∼2300 g m(-2) day(-1)) and was not affected by the cross-linking method. The gentamicin release profile exhibited a moderate burst effect followed by a decreasing release rate which was maintained for at least 4 weeks. Diffusion was the dominant release mechanism of gentamicin from cross-linked SPI films. Appropriate selection of the process parameters yielded SPI wound dressings with the desired mechanical and physical properties and drug release behavior to protect against bacterial infection. These unique structures are thus potentially useful as burn and ulcer dressings. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Eliezar, Jeaniffer; Scarano, Wei; Boase, Nathan R B; Thurecht, Kristofer J; Stenzel, Martina H
2015-02-09
The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.
Lucchese, Guglielmo
2016-01-01
Language disorders and infections may occur together and often concur, to a different extent and via different modalities, in characterizing brain pathologies, such as schizophrenia, autism, epilepsies, bipolar disorders, frontotemporal neurodegeneration, and encephalitis, inter alia. The biological mechanism(s) that might channel language dysfunctions and infections into etiological pathways connected to neuropathologic sequelae are unclear. Searching for molecular link(s) between language disorders and infections, the present study explores the language-associated NMDA 2A subunit for peptide sharing with pathogens that have been described in concomitance with neuropsychiatric diseases. It was found that a vast peptide commonality links the human glutamate ionotropic receptor NMDA 2A subunit to infectious agents. Such a link expands to and interfaces with neuropsychiatric disorders in light of the specific allocation of NMDA 2A gene expression in brain areas related to language functions. The data hint at a possible pathologic scenario based on anti-pathogen immune responses cross-reacting with NMDA 2A in the brain.
Induced chromosomal aberrations in somatic cells of Nigella sativa L. by mitomycin C.
Kumar, P; Nizam, J
1978-01-01
A cytological study was carried out on root tips of Nigella sativa L. by treatment with Mitomycin C at 0.001% for six time intervals (10, 15, 20, 30, 40, and 50 min). The chromosomal abnormalities were increasingly proportionate to the increase in time of treatment. The seedlings treated with a 0.001% concentration of Mitomycin C for 10 min. did not show any significant effect. At other time intervals, the effect was observed to be quite significant. Beyond 40 min. treatment almost all the cells would become sticky. Thirty minutes' treatment showed significant effect, inducing various types of chromosomal aberrations in the anaphase, such as bridges and fragments of 34.13% and 48.07%, respectively.
Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows.
Chen, Fei; Ren, Yongyuan; Guo, Jiangna; Yan, Feng
2017-01-31
Thermo- and electro-dual responsive poly(ionic liquid) (PIL) based electrolytes were synthesized by co-polymerization of N-isopropylacrylamide (NIPAM) with (or without) 3-butyl-1-vinyl-imidazolium bromide ([BVIm][Br]) using diallyl-viologen (DAV) as both the cross-linking agent and electrochromic material.
USDA-ARS?s Scientific Manuscript database
The NADPH oxidase complex of a sclerotial mycoparasite Coniothyrium minitans, an important biocontrol agent against crop diseases caused by Sclerotinia sclerotiorum, was identified and its functions involved in conidiation and mycoparasitism were studied. Gene knock-out and complementation experimen...
2004-01-01
of SM to impede the migration of H,0 2 -damaged mal ian cell lethality with bifunctional alkylating agents . Chemr. Biol. Iriterui. 38:75-86.DNA is an...3100 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010-5400 N-3 position of adenine, and alkylation leads to depurination of Sulfur...mustard (SM) is a blistering agent that produces DNA DNA strands. Subsequent breakage of phosphodiester bonds at strand breaks. To detect SM-induced DNA
Human serum reduces mitomycin-C cytotoxicity in human tenon's fibroblasts.
Crowston, Jonathan G; Wang, Xiao Y; Khaw, Peng T; Zoellner, Hans; Healey, Paul R
2006-03-01
To determine the effect of human serum factors on mitomycin-C (MMC) cytotoxicity in cultured human subconjunctival Tenon's capsule fibroblasts. Fibroblast monolayers were treated with 5-minute applications of mitomycin-C (0.4 mg/mL) and incubated in culture medium with or without additional human serum. Fibroblast apoptosis was quantified by direct cell counts based on nuclear morphology, flow cytometry with annexin-V/propidium iodide, and a lactate dehydrogenase release assay. The number of viable fibroblasts and fibroblast proliferation were measured with a colorimetric MTT assay and by bromodeoxyuridine (BrdU) labeling. Mitomycin-C induced significant levels of fibroblast apoptosis. The addition of human serum resulted in a 40% reduction in MMC-induced fibroblast apoptosis (range, 31.3%-55.3%; P = 0.021) as determined by nuclear morphology and a 32.4% reduction measured by annexin-V/PI. There was a corresponding dose-dependent increase in the number of viable fibroblasts. Serum did not restore proliferation in MMC-treated fibroblasts. Factors present in human serum reduce MMC cytotoxicity in cultured human Tenon's fibroblasts. Human serum increased the number of viable fibroblasts by inhibiting MMC-induced fibroblast apoptosis. Serum factors access aqueous humor after trabeculectomy and may therefore influence the clinical outcome of MMC treatment.
Gemcitabine: Selective cytotoxicity, induction of inflammation and effects on urothelial function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farr, Stefanie E; Chess-Williams, Russ; McDermott,
Intravesical gemcitabine has recently been introduced for the treatment of superficial bladder cancer and has a favourable efficacy and toxicity profile in comparison to mitomycin c (MMC), the most commonly used chemotherapeutic agent. The aim of this study was to assess the cytotoxic potency of gemcitabine in comparison to MMC in urothelial cell lines derived from non-malignant (UROtsa) and malignant (RT4 and T24) tissues to assess selectivity. Cells were treated with gemcitabine or mitomycin C at concentrations up to the clinical doses for 1 or 2 h respectively (clinical duration). Treatment combined with hyperthermia was also examined. Cell viability, ROSmore » formation, urothelial function (ATP, acetylcholine and PGE2 release) and secretion of inflammatory cytokines were assessed. Gemcitabine displayed a high cytotoxic selectivity for the two malignant cell lines (RT4, T24) compared to the non-malignant urothelial cells (UROtsa, proliferative and non-proliferative). In contrast, the cytotoxic effects of MMC were non-selective with equivalent potency in each of the cell lines. The cytotoxic effect of gemcitabine in the malignant cell lines was associated with an elevation in free radical formation and was significantly decreased in the presence of an equilibrative nucleoside transporter inhibitor. Transient changes in urothelial ATP and PGE{sub 2} release were observed, with significant increase in release of interleukin-6, interleukin-8 and interleukin-1β from urothelial cells treated with gemcitabine. The selectivity of gemcitabine for malignant urothelial cells may account for the less frequent adverse urological effects with comparison to other commonly used chemotherapeutic agents. - Highlights: • Intravesical gemcitabine has recently been introduced to treat bladder cancer. • Gemcitabine is selectively toxic for malignant urothelial cells. • Urothelial ATP, PGE{sub 2} and inflammatory cytokines were altered by gemcitabine. • Selectivity of gemcitabine may account for less frequent urological side effects.« less
Glutathione metabolism as a determinant of therapeutic efficacy: a review.
Arrick, B A; Nathan, C F
1984-10-01
Glutathione, as the chief nonprotein intracellular sulfhydryl, affects the efficacy and interactions of a variety of antineoplastic interventions, mainly through nucleophilic thioether formation or oxidation-reduction reactions. Thus, glutathione plays a role in the detoxification and repair of cellular injury by such diverse agents as mechlorethamine, melphalan, cyclophosphamide, nitrosoureas, 6-thiopurine, 4'-(9-acridinylamino)methanesulfon-m-anisidide, the quinone antibiotics (including Adriamycin, daunorubicin, and mitomycin C), the sesquiterpene lactones (such as vernolepin), and other sulfhydryl-reactive diterpenes (like jatrophone). Glutathione may play a similar role in host and tumor cell responses to radiation, hyperthermia, and the reactive reduction products of oxygen secreted by inflammatory cells. Further, glutathione participates in the formation of toxic metabolites of such chemotherapeutics as azathioprine and bleomycin and may affect the cellular uptake of other agents, such as methotrexate. It seems likely that alterations in glutathione metabolism of tumor or host as a result of one therapeutic intervention may affect the outcome of concurrent treatments. Knowledge of these interactions may be useful in designing combination therapy for neoplastic disease.
Nikolova, Teodora; Marini, Federico; Kaina, Bernd
2017-10-01
Genotoxicity testing relies on the quantitative measurement of adverse effects, such as chromosome aberrations, micronuclei, and mutations, resulting from primary DNA damage. Ideally, assays will detect DNA damage and cellular responses with high sensitivity, reliability, and throughput. Several novel genotoxicity assays may fulfill these requirements, including the comet assay and the more recently developed γH2AX assay. Although they are thought to be specific for genotoxicants, a systematic comparison of the assays has not yet been undertaken. In the present study, we compare the γH2AX focus assay with the alkaline and neutral versions of the comet assay, as to their sensitivities and limitations for detection of genetic damage. We investigated the dose-response relationships of γH2AX foci and comet tail intensities at various times following treatment with four prototypical genotoxicants, methyl methanesulfonate (MMS), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), mitomycin C, and hydrogen peroxide (H 2 O 2 ) and we tested whether there is a correlation between the endpoints, i.e., alkali-labile sites and DNA strand breaks on the one hand and the cell's response to DNA double-strand breaks and blocked replication forks on the other. Induction of γH2AX foci gave a linear dose response and all agents tested were positive in the assay. The increase in comet tail intensity was also a function of dose; however, mitomycin C was almost completely ineffective in the comet assay, and the doses needed to achieve a significant effect were somewhat higher for some treatments in the comet assay than in the γH2AX foci assay, which was confirmed by threshold analysis. There was high correlation between tail intensity and γH2AX foci for MMS and H 2 O 2 , less for MNNG, and none for mitomycin C. From this we infer that the γH2AX foci assay is more reliable, sensitive, and robust than the comet assay for detecting genotoxicant-induced DNA damage. Copyright © 2017 Elsevier B.V. All rights reserved.
Link, K H; Aigner, K R; Kuehn, W; Schwemmle, K; Kern, D H
1986-09-01
Clinical response of liver metastases treated by high-dose intraarterial chemotherapy (HDIAC) delivered via the hepatic artery was predicted by a modification of the human tumor colony-forming assay (HTCFA) originally described by Hamburger and Salmon [Science (Wash. DC), 197:461-463, 1977. In a first set of experiments, the immediate clinical response to HDIAC was determined in 12 patients with colorectal liver metastases. Biopsies were taken immediately before and after HDIAC, and cells were plated in the HTCFA. Three patients received intraoperative 4-epidoxorubicin and another 9 received mitomycin C by 15-min intraarterial infusions. Sensitivity in the HTCFA was defined as 50% inhibition of colony formation in tumors exposed to the chemotherapeutic agent, compared to the untreated controls. Clinical response was accurately predicted by the HTCFA in 11 of 12 cases. Eight patients had a regression of disease following HDIAC treatment with mitomycin C, as evidenced by either greater than 50% reduction in carcinoembryonic antigen serum level (7 patients) or regression of tumor by computed tomography scan (1 patient). Three patients had no evidence of clinical response to epidoxorubicin, and their tumors were resistant to epidoxorubicin in the HTCFA. One tumor was sensitive to mitomycin C in the HTCFA, but serum carcinoembryonic antigen in the patient continued to increase following HDIAC. The HTCFA was also performed on untreated biopsies following incubation in vitro with the drug used for HDIAC. Results correlated with clinical response in all 12 cases. In a second set of experiments, the HTCFA was used to predict the long-term clinical response to HDIAC of 30 patients with liver metastases. One patient had breast cancer metastases, one patient had carcinoid liver metastases, 4 had liver metastases of malignant melanoma, and 24 patients had colorectal liver metastases. All 21 of the patients whose tumors were sensitive in vitro had clinical response, while 6 of 9 patients predicted by the HTCFA to be resistant had no clinical response. Our results demonstrate a high correlation between the HTCFA and clinical response.
Green and Smart: Hydrogels to Facilitate Independent Practical Learning
ERIC Educational Resources Information Center
Hurst, Glenn A.
2017-01-01
A laboratory experiment was developed to enable students to investigate the use of smart hydrogels for potential application in targeted drug delivery. This is challenging for students to explore practically because of the extremely high risks of handling cross-linking agents such as glutaraldehyde. Genipin is a safe and green alternative that has…
21 CFR 172.230 - Microcapsules for flavoring substances.
Code of Federal Regulations, 2013 CFR
2013-04-01
... limitations Succinylated gelatin—Not to exceed 15 percent by combined weight of the microcapsule and flavoring oil. Succinic acid content of the gelatin is 4.5 to 5.5 percent. Arabinogalactan—Complying with § 172... Glutaraldehyde—As cross-linking agent for insolubilizing a coacervate of gum arabic and gelatin. n-Octyl alcohol...
21 CFR 172.230 - Microcapsules for flavoring substances.
Code of Federal Regulations, 2012 CFR
2012-04-01
... limitations Succinylated gelatin—Not to exceed 15 percent by combined weight of the microcapsule and flavoring oil. Succinic acid content of the gelatin is 4.5 to 5.5 percent. Arabinogalactan—Complying with § 172... Glutaraldehyde—As cross-linking agent for insolubilizing a coacervate of gum arabic and gelatin. n-Octyl alcohol...
Polyvinyl pyridine microspheres
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)
1980-01-01
Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.
Polyvinyl pyridine microspheres
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)
1979-01-01
Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Transportation in 49 CFR 173.53, and 173.100. This document is available at any MSHA Metal and Nonmetal Safety..., plus a thickener. Water gel. An explosive material containing substantial portions of water, oxidizers, and fuel, plus a cross-linking agent. [50 FR 4054, Jan. 29, 1985, as amended at 67 FR 38385, June 4...
Polyvinyl alcohol hydrogels for iontohporesis
NASA Astrophysics Data System (ADS)
Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali
2013-06-01
Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.
Release of Self-Healing Agents in a Material: What Happens Next?
Lee, Min Wook; Yoon, Sam S; Yarin, Alexander L
2017-05-24
A microfluidic chip-like setup consisting of a vascular system of microchannels alternatingly filled with either a resin monomer or a curing agent is used to study the intrinsic physical healing mechanism in self-healing materials. It is observed that, as a prenotched crack propagates across the chip, the resin and curing agent are released from the damaged channels. Subsequently, both the resin and the curing agent wet the surrounding polydimethylsiloxane (PDMS) matrix and spread over the crack banks until the two blobs come in contact, mix, and polymerize through an organometallic cross-linking reaction. Moreover, the polymerized domains form a system of pillars, which span the crack banks on the opposite side. This "stitching" phenomenon prevents further propagation of the crack.
Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels.
Peng, Huan; Rübsam, Kristin; Jakob, Felix; Schwaneberg, Ulrich; Pich, Andrij
2016-11-14
This paper reports a facile approach for encapsulation of enzymes in nanogels. Our approach is based on the use of reactive copolymers able to get conjugated with enzyme and build 3D colloidal networks or biohybrid nanogels. In a systematic study, we address the following question: how the chemical structure of nanogel network influences the biocatalytic activity of entrapped enzyme? The developed method allows precise control of the enzyme activity and improvement of enzyme resistance against harsh store conditions, chaotropic agents, and organic solvents. The nanogels were constructed via direct chemical cross-linking of water-soluble reactive copolymers poly(N-vinylpyrrolidone-co-N-methacryloxysuccinimide) with proteins such as enhanced green fluorescent protein (EGFP) and cellulase in water-in-oil emulsion. The water-soluble reactive copolymers with controlled amount of reactive succinimide groups and narrow dispersity were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Poly(ethylene glycol) bis(3-aminopropyl) and branched polyethylenimine were utilized as model cross-linkers to optimize synthesis of nanogels with different architectures in the preliminary experiments. Biofluorescent nanogels with different loading amount of EGFP and varying cross-linking densities were obtained. We demonstrate that the biocatalytic activity of cellulase-conjugated nanogels (CNG) can be elegantly tuned by control of their cross-linking degrees. Circular dichroism (CD) spectra demonstrated that the secondary structures of the immobilized cellulase were changed in the aspect of α-helix contents. The secondary structures of cellulase in highly cross-linked nanogels were strongly altered compared with loosely cross-linked nanogels. The fluorescence resonance energy transfer (FRET) based study further revealed that nanogels with lower cross-linking degree enable higher substrate transport rate, providing easier access to the active site of the enzyme. The biohybrid nanogels demonstrated significantly improved stability in preserving enzymatic activity compared with free cellulase. The functional biohybrid nanogels with tunable enzymatic activity and improved stability are promising candidates for applications in biocatalysis, biomass conversion, or energy utilization fields.
NASA Astrophysics Data System (ADS)
Sherlock, Benjamin E.; Harvestine, Jenna N.; Mitra, Debika; Haudenschild, Anne; Hu, Jerry; Athanasiou, Kyriacos A.; Leach, J. Kent; Marcu, Laura
2018-03-01
We investigate the use of a fiber-based, multispectral fluorescence lifetime imaging (FLIm) system to nondestructively monitor changes in mechanical properties of collagen hydrogels caused by controlled application of widely used cross-linking agents, glutaraldehyde (GTA) and ribose. Postcross-linking, fluorescence lifetime images are acquired prior to the hydrogels being processed by rheological or tensile testing to directly probe gel mechanical properties. To preserve the sterility of the ribose-treated gels, FLIm is performed inside a biosafety cabinet (BSC). A pairwise correlation analysis is used to quantify the relationship between mean hydrogel fluorescence lifetimes and the storage or Young's moduli of the gels. In the GTA study, we observe strong and specific correlations between fluorescence lifetime and the storage and Young's moduli. Similar correlations are not observed in the ribose study and we postulate a reason for this. Finally, we demonstrate the ability of FLIm to longitudinally monitor dynamic cross-link formation. The strength of the GTA correlations and deployment of our fiber-based FLIm system inside the aseptic environment of a BSC suggests that this technique may be a valuable tool for the tissue engineering community where longitudinal assessment of tissue construct maturation in vitro is highly desirable.
Hierarchically assembled theranostic nanostructures for siRNA delivery and imaging applications.
Shrestha, Ritu; Elsabahy, Mahmoud; Luehmann, Hannah; Samarajeewa, Sandani; Florez-Malaver, Stephanie; Lee, Nam S; Welch, Michael J; Liu, Yongjian; Wooley, Karen L
2012-10-24
Dual functional hierarchically assembled nanostructures, with two unique functions of carrying therapeutic cargo electrostatically and maintaining radiolabeled imaging agents covalently within separate component building blocks, have been developed via the supramolecular assembly of several spherical cationic shell cross-linked nanoparticles clustered around a central anionic shell cross-linked cylinder. The shells of the cationic nanoparticles and the hydrophobic core domain of the anionic central cylindrical nanostructure of the assemblies were utilized to complex negatively charged nucleic acids (siRNA) and to undergo radiolabeling, respectively, for potential theranostic applications. The assemblies exhibited exceptional cell transfection and radiolabeling efficiencies, providing an overall advantage over the individual components, which could each facilitate only one or the other of the functions.
Mechanism of cell death resulting from DNA interstrand cross-linking in mammalian cells
Osawa, T; Davies, D; Hartley, J A
2011-01-01
DNA interstrand cross-links (ICLs) are critical cytotoxic lesions produced by cancer chemotherapeutic agents such as the nitrogen mustards and platinum drugs; however, the exact mechanism of ICL-induced cell death is unclear. Here, we show a novel mechanism of p53-independent apoptotic cell death involving prolonged cell-cycle (G2) arrest, ICL repair involving HR, transient mitosis, incomplete cytokinesis, and gross chromosomal abnormalities resulting from ICLs in mammalian cells. This characteristic ‘giant' cell death, observed by using time-lapse video microscopy, was reduced in ICL repair ERCC1- and XRCC3-deficient cells. Collectively, the results illustrate the coordination of ICL-induced cellular responses, including cell-cycle arrest, DNA damage repair, and cell death. PMID:21814285
Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I
2004-04-01
Cross-linked chitosan sponges as controlled release drug carrier systems were developed. Tramadol hydrochloride, a centrally acting analgesic, was used as a model drug. The sponges were prepared by freeze-drying 1.25% and 2.5% (w/w) high and low M.wt. chitosan solutions, respectively, using glutaraldehyde as a cross-linking agent. The hardness of the prepared sponges was a function of glutaraldehyde concentration and volume where the optimum concentration that offered accepted sponge consistency was 5%. Below or above 5%, very soft or very hard and brittle sponges were obtained, respectively. The determined drug content in the prepared sponges was uniform and did not deviate markedly from the calculated amount. Scanning electron microscopy (SEM) was used to characterize the internal structures of the sponges. The SEM photos revealed that cross-linked high M.wt. chitosan sponges have larger size surface pores that form connections (channels) with the interior of the sponge than cross-linked low M.wt. ones. Moreover, crystals of the incorporated Tramadol hydrochloride were detected on the lamellae and within pores in both chitosan sponges. Differences in pore size and dissolution medium uptake capacity were crucial factors for the more delayed drug release from cross-linked low M.wt. chitosan sponges over high M.wt. ones at pH 7.4. Kinetic analysis of the release data using linear regression followed the Higuchi diffusion model over 12 hours. Setting storage conditions at room temperature under 80-92% relative humidity resulted in soft, elastic, and compressible sponges.
Chemical pleurodesis for malignant pleural effusions.
Walker-Renard, P B; Vaughan, L M; Sahn, S A
1994-01-01
To provide information about available agents for chemical pleurodesis. A MEDLINE search (1966 to October 1992) was conducted using the terms malignant pleural effusion and pleurodesis. All articles containing references to patients with recurrent, symptomatic, malignant pleural effusions treated with chemical pleurodesis were selected and reviewed for pleurodesis regimen, number of patients treated, success rate (complete response), and adverse effects. The agents studied included doxycycline, minocycline, tetracycline, bleomycin, cisplatin, doxorubicin, etoposide, fluorouracil, interferon-beta, mitomycin-c, Corynebacterium parvum, methylprednisolone, and talc. Independent extraction by three observers. Studies including a total of 1168 patients with malignant pleural effusions were reviewed for efficacy of the pleurodesis agent and studies including 1140 patients were reviewed for toxicity. Chemical pleurodesis produced a complete response in 752 (64%) of 1168 patients. The success rate of the pleurodesis agents varied from 0% with etoposide to 93% with talc. Corynebacterium parvum, the tetracyclines, and bleomycin had success rates of 76%, 67%, and 54%, respectively. The most commonly reported adverse effects were pain (265 of 1140, 23%) and fever (220 of 1140, 19%). Doxycycline and minocycline, with success rates of 72% and 86%, respectively, appear to be effective tetracycline-replacement agents in the few patients studied. Talc appears to be the most effective and least expensive agent; however, insufflation has the disadvantages of the expense of thoracoscopy and the usual need for general anesthesia. Bleomycin appears to be less effective than talc and the tetracyclines and is substantially more expensive.
Expression of the cloned ColE1 kil gene in normal and Kilr Escherichia coli.
Altieri, M; Suit, J L; Fan, M L; Luria, S E
1986-01-01
The kil gene of the ColE1 plasmid was cloned under control of the lac promoter. Its expression under this promoter gave rise to the same pattern of bacterial cell damage and lethality as that which accompanies induction of the kil gene in the colicin operon by mitomycin C. This confirms that cell damage after induction is solely due to expression of kil and is independent of the cea or imm gene products. Escherichia coli derivatives resistant to the lethal effects of kil gene expression under either the normal or the lac promoter were isolated and found to fall into several classes, some of which were altered in sensitivity to agents that affect the bacterial envelope. PMID:2946661
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavropoulos, D.J.; Tomkins, D.J.; Allingham-Hawkins, D.J.
1994-09-01
Cells from all four Fanconi anemia complementation groups show hypersensitivity to cell-killing by mitomycin C (MMC), diepoxybutane (DEB) and other DNA cross-linking agents, and increased spontaneous and DEB-induced chromosome aberrations (CA). The extent of these phenotypes varies between lymphoblastoid cell lines from different complementation groups. Our data showed that the difference in MMC hypersensitivity and DEB-CA was not always coupled. While 230N (FA-B) had higher DEB-induced CA/cell than 536N (FA-C) (7.42 vs. 4.46 respectively), that latter was much more sensitive to cell-killing by MMC (dose at 10% survival, D{sub 10}: 5.2 vs. 1.2 ng/ml respectively). Strathdes et al. (1992) clonedmore » a cDNA Fanconi anemia complementation group C (FACC) which complemented the hypersensitivity to MMC and DEB cell-killing of FA-C cells (536N) but not cells from the other three complementation groups. The present study was initiated to determine whether chromosome instability in 536N is also complemented by the FACC (FAC3) cDNA. The pREP4-FAC3 vector was transfected into 536N and transfectants selected with hygromycin B. The DEB D{sub 10} of 536N (1.0 {mu}M) was corrected to the control level (16.2 {mu}M for 3TO) by FACC (15.1 {mu}M for 536N-FACC), as previously demonstrated. Chromosome instability (cab, cse, ctb, cte) was determined without and with 0.1 {mu}g/ml DEB treatment. Spontaneous CA of 536N (0.30 aberrations/cell) was corrected to the control level (0.04 for 3TO) by FACC (0.06 for 536N-FACC). Similarly, the DEB-induced CA was corrected (2.74 for 536N vs. 0.06 and 0.02 for 3TO and 536N-FACC respectively). Thus, at least for FA complementation group C, hypersensitivity to cell-killing and chromosome instability are not dissociated and are most likely caused by the same gene defect.« less
Ex-PRESS outcomes using mitomycin-C, Ologen alone, Ologen with 5-fluorouracil.
Menda, Shivali A; Lowry, Eugene A; Porco, Travis C; Stamper, Robert L; Rubin, Michel R; Han, Ying
2015-06-01
To compare the complication rate and effectiveness of mitomycin C (MMC), Ologen alone, and Ologen with 5-fluorouracil (5-FU) as adjunctives with Ex-PRESS mini shunt for medically uncontrolled glaucoma. Retrospective comparative study of 59 Ex-PRESS mini shunt trabeculectomy operations coupled with Ologen implantation alone, transient MMC application or Ologen implantation with 5-FU as adjunctive treatment. Eight eyes (7 patients) received Ologen alone, 37 eyes (34 patients) received MMC, and 14 eyes (14 patients) received Ologen with 5-FU as adjunctive therapy. Baseline characteristics, adjunctive used during operation, along with outcomes including intraocular pressure (IOP), number of anti-hypertensive drops, visual acuity, and complications were documented and compared. The primary outcome was IOP at 12 months. Variables were compared with r × c Fisher tests. The Ologen only group had a significantly higher IOP at 12 months (20.5 ± 10.23 mmHg) compared with Ologen combined with 5-FU (12.2 ± 1.47 mmHg) or MMC (13.8 ± 4.37 mmHg) (p = 0.015, linear mixed model). The Ologen only cohort also had a higher re-operation rate (p = 0.01, Fisher's Exact Test) and higher rate of bleb leak (p = 0.02, Fisher's Exact Test). Visual acuity was similar among all three groups. 5-FU with Ologen is as effective as MMC in maintaining IOP following Ex-PRESS shunt surgery at 1 year. However, Ologen alone may not be as effective as the other two adjunctive agents.
Hydrostatic pressure enhances mitomycin C induced apoptosis in urothelial carcinoma cells.
Chen, Shao-Kuan; Chung, Chih-Ang; Cheng, Yu-Che; Huang, Chi-Jung; Ruaan, Ruoh-Chyu; Chen, Wen-Yih; Li, Chuan; Tsao, Chia-Wen; Hu, Wei-Wen; Chien, Chih-Cheng
2014-01-01
Urothelial carcinoma (UC) of the bladder is the second most common cancer of the genitourinary system. Clinical UC treatment usually involves transurethral resection of the bladder tumor followed by adjuvant intravesical immunotherapy or chemotherapy to prevent recurrence. Intravesical chemotherapy induces fewer side effects than immunotherapy but is less effective at preventing tumor recurrence. Improvement to intravesical chemotherapy is, therefore, needed. Cellular effects of mitomycin C (MMC) and hydrostatic pressure on UC BFTC905 cells were assessed. The viability of the UC cells was determined using cellular proliferation assay. Changes in apoptotic function were evaluated by caspase 3/7 activities, expression of FasL, and loss of mitochondrial membrane potential. Reduced cell viability was associated with increasing hydrostatic pressure. Caspase 3/7 activities were increased following treatment of the UC cells with MMC or hydrostatic pressure. In combination with 10 kPa hydrostatic pressure, MMC treatment induced increasing FasL expression. The mitochondria of UC cells displayed increasingly impaired membrane potentials following a combined treatment with 10 μg/ml MMC and 10 kPa hydrostatic pressure. Both MMC and hydrostatic pressure can induce apoptosis in UC cells through an extrinsic pathway. Hydrostatic pressure specifically increases MMC-induced apoptosis and might minimize the side effects of the chemotherapy by reducing the concentration of the chemical agent. This study provides a new and alternative approach for treatment of patients with UC following transurethral resection of the bladder tumor. Copyright © 2014 Elsevier Inc. All rights reserved.
Lin, F L; Sternberg, N
1984-01-01
We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants. Images PMID:6328272
A drug-induced accelerated senescence (DIAS) is a possibility to study aging in time lapse.
Alili, Lirija; Diekmann, Johanna; Giesen, Melanie; Holtkötter, Olaf; Brenneisen, Peter
2014-06-01
Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. Accordingly, a stress-induced senescence-like phenotype of human dermal fibroblasts can be induced in vitro by the exposure of human diploid fibroblasts to subcytotoxic concentrations of hydrogen peroxide. However, several biomarkers of replicative senescence e.g. cell cycle arrest and enlarged morphology are abrogated 14 days after treatment, indicating that reactive oxygen species (ROS) rather acts as a trigger for short-term senescence (1-3 days) than being responsible for the maintenance of the senescence-like phenotype. Further, DNA-damaging factors are discussed resulting in a permanent senescent cell type. To induce long-term premature senescence and to understand the molecular alterations occurring during the aging process, we analyzed mitomycin C (MMC) as an alkylating DNA-damaging agent and ROS producer. Human dermal fibroblasts (HDF), used as model for skin aging, were exposed to non-cytotoxic concentrations of MMC and analyzed for potential markers of cellular aging, for example enlarged morphology, activity of senescence-associated-ß-galactosidase, cell cycle arrest, increased ROS production and MMP1-activity, which are well-documented for HDF in replicative senescence. Our data show that mitomycin C treatment results in a drug-induced accelerated senescence (DIAS) with long-term expression of senescence markers, demonstrating that a combination of different susceptibility factors, here ROS and DNA alkylation, are necessary to induce a permanent senescent cell type.
Marriott, Andrew S; Copeland, Nikki A; Cunningham, Ryan; Wilkinson, Mark C; McLennan, Alexander G; Jones, Nigel J
2015-09-01
The level of intracellular diadenosine 5', 5'''-P(1),P(4)-tetraphosphate (Ap4A) increases several fold in mammalian cells treated with non-cytotoxic doses of interstrand DNA-crosslinking agents such as mitomycin C. It is also increased in cells lacking DNA repair proteins including XRCC1, PARP1, APTX and FANCG, while >50-fold increases (up to around 25 μM) are achieved in repair mutants exposed to mitomycin C. Part of this induced Ap4A is converted into novel derivatives, identified as mono- and di-ADP-ribosylated Ap4A. Gene knockout experiments suggest that DNA ligase III is primarily responsible for the synthesis of damage-induced Ap4A and that PARP1 and PARP2 can both catalyze its ADP-ribosylation. Degradative proteins such as aprataxin may also contribute to the increase. Using a cell-free replication system, Ap4A was found to cause a marked inhibition of the initiation of DNA replicons, while elongation was unaffected. Maximum inhibition of 70-80% was achieved with 20 μM Ap4A. Ap3A, Ap5A, Gp4G and ADP-ribosylated Ap4A were without effect. It is proposed that Ap4A acts as an important inducible ligand in the DNA damage response to prevent the replication of damaged DNA. Copyright © 2015 Elsevier B.V. All rights reserved.
Ozerhan, Ismail Hakkı; Urkan, Murat; Meral, Ulvi Mehmet; Unlu, Aytekin; Ersöz, Nail; Demirag, Funda; Yagci, Gokhan
2016-01-01
Intra-abdominal adhesions (IA) may occur after abdominal surgery and also may lead to complications such as infertility, intestinal obstruction and chronic pain. The aim of this study was to compare the effects of Mitomycin-C (MM-C) and sodium hyaluronate/carboxymethylcellulose [NH/CMC] on abdominal adhesions in a cecal abrasion model and to investigate the toxicity of MM-C on complete blood count (CBC) and bone marrow analyses. The study comprised forty rats in four groups (Control, Sham, Cecal abrasion + MM-C, and Cecal abrasion + NH/CMC). On postoperative day 21, all rats except for the control (CBC + femur resection) group, were sacrificed. Macroscopical and histopathological evaluations of abdominal adhesions were performed. In order to elucidate the side effects of MM-C; CBC analyses and femur resections were performed to examine bone marrow cellularity. CBC analyses and bone marrow cellularity assessment revealed no statistically significant differences between MM-C, NH/CMC and control groups. No significant differences in inflammation scores were observed between the groups. The MM-C group had significantly lower fibrosis scores compared to the NH/CMC and sham groups. Although the adhesion scores were lower in the MM-C group, the differences were not statistically significant. Despite its potential for systemic toxicity, MM-C may show some anti-fibrosis and anti-adhesive effects. MM-C is a promising agent for the prevention of IAs, and as such, further trials are warranted to study efficacy.
DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni
2018-07-01
Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Development of bioactive coatings based on γ-irradiated proteins to preserve strawberries
NASA Astrophysics Data System (ADS)
Vu, K. D.; Hollingsworth, R. G.; Salmieri, S.; Takala, P. N.; Lacroix, M.
2012-08-01
Gamma irradiation was applied for creating cross-linked proteins to enhance the physicochemical properties of edible films made of calcium caseinate, whey protein isolate and glycerol. The characteristics of γ irradiated cross-linked proteins were analyzed by Fourier Transform Infrared spectroscopy. A second derivative spectra exhibited changes in band intensities that were correlated to an increase of β-sheet structure and a decrease of α-helix and unordered fractions of γ irradiated-cross-linked proteins as compared to the control without irradiation. Furthermore, on addition of methylcellulose to the irradiated protein matrix it was found that it has potential in enhancing the puncture strength and has no detrimental effect on water vapor permeability of protein based films. Finally, these film formulations were used as bioactive edible coatings containing natural antimicrobial agents (limonene and peppermint) to preserve the shelf life of fresh strawberries during storage. The bioactive coatings containing peppermint was found to be more efficient as preserving coatings than the formulations containing limonene. Irradiated proteins/methylcellulose/peppermint formulation had only 40% of decay at day 8 while it was 65% for the control.
A novel fish collagen scaffold as dural substitute.
Li, Qing; Mu, Lanlan; Zhang, Fenghua; Sun, Yue; Chen, Quan; Xie, Cuicui; Wang, Hongmei
2017-11-01
The novel fish collagen scaffolds were prepared by lyophilization. The collagen sponges and chitosan were chemically cross-linked with the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a cross-linking agent by pressing in one special mould. The collagen scaffolds were analyzed by scanning electron microscopy (SEM) and mechanical property, and the in vitro collagenase degradation was tested. The results revealed that the scaffold has a suitable porosity, elasticity and prevent fluid leakage, suggesting potential applications in the tissue-engineered. In vitro collagenase degradation demonstrated that the collagen cross-linking with EDC by pressing played an important role in their resistance to biodegradation. Moreover, the scaffold proved excellent biocompatibility for the activity and proliferation of mouse embryonic fibroblasts cells (MEFs) in vitro. The rabbit dural defect model demonstrated that the scaffolds could prevent brain tissue adhesion, which reduce the opportunity of inflammation, facilitate the growth of fibroblasts and enhance the tissue regeneration and healing. The novel fish collagen scaffold as dural substitute, demonstrate a capability for using in the field of tissue engineering. Copyright © 2017. Published by Elsevier B.V.
The Aggregation Paths and Products of Aβ42 Dimers Are Distinct from Those of the Aβ42 Monomer.
O'Malley, Tiernan T; Witbold, William M; Linse, Sara; Walsh, Dominic M
2016-11-08
Extracts of Alzheimer's disease (AD) brain that contain what appear to be sodium dodecyl sulfate-stable amyloid β-protein (Aβ) dimers potently block LTP and impair memory consolidation. Brain-derived dimers can be physically separated the Aβ monomer, consist primarily of Aβ42, and resist denaturation by chaotropic agents. In nature, covalently cross-linked Aβ dimers could be generated in two ways: by the formation of a dityrosine (DiY) or an isopeptide ε-(γ-glutamyl)-lysine (Q-K) bond. We enzymatically cross-linked recombinant Aβ42 monomer to produce DiY and Q-K dimers and then used a range of biophysical methods to study their aggregation. Both Q-K and DiY dimers aggregate to form soluble assemblies distinct from the fibrillar aggregates formed by the Aβ monomer. The results suggest that the cross-links disfavor fibril formation from Aβ dimers, thereby enhancing the concentration of soluble aggregates akin to those in aqueous extracts of AD brain. Thus, it seems that Aβ dimers may play an important role in determining the formation of soluble rather than insoluble aggregates.
DNA packaging by the Bacillus subtilis defective bacteriophage PBSX.
Anderson, L M; Bott, K F
1985-01-01
Defective bacteriophage PBSX, a resident of all Bacillus subtilis 168 chromosomes, packages fragments of DNA from all portions of the host chromosome when induced by mitomycin C. In this study, the physical process for DNA packaging of both chromosomal and plasmid DNAs was examined. Discrete 13-kilobase (kb) lengths of DNA were packaged by wild-type phage, and the process was DNase I resistant and probably occurred by a head-filling mechanism. Genetically engineered isogenic host strains having a chloramphenicol resistance determinant integrated as a genetic flag at two different regions of the chromosome were used to monitor the packaging of specific chromosomal regions. No dramatic selectivity for these regions could be documented. If the wild-type strain 168 contains autonomously replicating plasmids, especially pC194, the mitomycin C induces an increase in size of resident plasmid DNA, which is then packaged as 13-kb pieces into phage heads. In strain RB1144, which lacks substantial portions of the PBSX resident phage region, mitomycin C treatment did not affect the structure of resident plasmids. Induction of PBSX started rolling circle replication on plasmids, which then became packaged as 13-kb fragments. This alteration or cannibalization of plasmid replication resulting from mitomycin C treatment requires for its function some DNA within the prophage deletion of strain RB1144. Images PMID:3923209
Fhit-deficient normal and cancer cells are mitomycin C and UVC resistant
Ottey, M; Han, S-Y; Druck, T; Barnoski, B L; McCorkell, K A; Croce, C M; Raventos-Suarez, C; Fairchild, C R; Wang, Y; Huebner, K
2004-01-01
To identify functions of the fragile tumour suppressor gene, FHIT, matched pairs of Fhit-negative and -positive human cancer cell clones, and normal cell lines established from Fhit −/− and +/+ mice, were stressed and examined for differences in cell cycle kinetics and survival. A larger fraction of Fhit-negative human cancer cells and murine kidney cells survived treatment with mitomycin C or UVC light compared to matched Fhit-positive cells; ∼10-fold more colonies of Fhit-deficient cells survived high UVC doses in clonigenic assays. The human cancer cells were synchronised in G1, released into S and treated with UVC or mitomycin C. At 18 h post mitomycin C treatment ∼6-fold more Fhit-positive than -negative cells had died, and 18 h post UVC treatment 3.5-fold more Fhit-positive cells were dead. Similar results were obtained for the murine −/− cells. After low UVC doses, the rate of DNA synthesis in −/− cells decreased more rapidly and steeply than in +/+ cells, although the Atr–Chk1 pathway appeared intact in both cell types. UVC surviving Fhit −/− cells appear transformed and exhibit >5-fold increased mutation frequency. This increased mutation burden could explain the susceptibility of Fhit-deficient cells in vivo to malignant transformation. PMID:15494723
Wu, Yonghui; Luo, Jingyi; Wu, Cuiming; Xu, Tongwen; Fu, Yanxun
2011-05-26
Bionic multisilicon copolymers have long-main chains and many branched chains, and contain multifunctional groups of -N(+)(CH(3))(3)Cl(-) and -Si(OCH(3))(3), which are similar to the stem, branch, fruit, and acetabula of a vine from bionic aspect, respectively. They have high flexibility, charge density, and cross-linking ability and thus can be used as novel cross-linking agents for preparing anion-exchange hybrid membranes. High content of -Si(OCH(3))(3) groups (68-78%) is suitable to enhance membrane stabilities. The membranes are stable in 65 °C water up to 120 h and can keep integrity in 2 mol/L NaOH for 192 h. High content of -N(+)(CH(3))(3)Cl(-) groups (42-55%) is suitable to enhance membrane electrical properties. The membranes have low membrane resistance (R(m), 0.59-0.94 Ω cm(2)) and high diffusion dialysis performance. The acid (H(+)) dialysis coefficients (U(H)) are in the range of 0.007-0.075 m h(-1) at room temperature and 0.015-0.115 m h(-1) at 40 °C. The separation factor (S(H/Fe)) can reach up to 43 at room temerature and 49 at 40 °C. All of the membranes are highly homogeneous, mechanically stable (21-31 MPa, 25-147%), and thermally stable (227-275 °C for halide form membranes, and 157-172 °C for OH(-) form membranes). Hence, the investigation of multisilicon copolymers will give rise to a new developing field in material and membrane sciences.
Mechanical characterization of proanthocyanidin-dentin matrix interaction
Castellan, Carina Strano; Pereira, Patricia Nobrega; Grande, Rosa Helena Miranda; Bedran-Russo, Ana Karina
2010-01-01
Objectives To characterize the properties of dentin matrix treated with two proanthocyanidin rich cross-linking agents and their effect on dentin bonded interfaces. Methods Sound human molars were cut into 0.5 mm thick dentin slabs, demineralized and either treated with one of two cross-linking agents (grape seed - GSE and cocoa seed - COE extracts) or left untreated. The modulus of elasticity of demineralized dentin was assessed after 10 or 60 min and the swelling ratio after 60 min treatment. Bacterial collagenase was also used to assess resistance to enzymatic degradation of samples subjected to ultimate tensile strength. The effect of GSE or COE on the resin-dentin bond strength was evaluated after 10 or 60 min of exposure time. Data were statistically analyzed at a 95% confidence interval. Results Both cross-linkers increased the elastic modulus of demineralized dentin as exposure time increased. Swelling ratio was lower for treated samples when compared to control groups. No statistically significant changes to the UTS indicate that collagenase had no effect on dentin matrix treated with either GSE or COE. Dentin-resin bonds significantly increased following treatment with GSE regardless of the application time or adhesive system used. Significance Increased mechanical properties and stability of dentin matrix can be achieved by the use of PA-rich collagen cross-linkers most likely due to the formation of a PA-collagen complex. The short term dentin-resin bonds can be improved after 10 minutes dentin treatment. PMID:20650510
Protein specific polymeric immunomicrospheres
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor); Rembaum, Alan (Inventor)
1980-01-01
Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Seo-Hyun; School of Life Sciences and Biotechnology, Korea University, Seoul; Lee, Yoon-Jin
Purpose: HSP27 or HSP25 negatively regulates apoptosis pathways after radiation or chemotherapeutic agents. Abrogation of HSP27 function may be a candidate target for overcoming radio- and chemoresistance. Methods and Materials: Zerumbone (ZER), a cytotoxic component isolated from Zingiber zerumbet smith. Clonogenic survival assay and flow cytometry after Annexin V staining were performed to determine in vitro sensitization effects of ZER with ionizing radiation. A nude mouse xenografting system was also applied to detect in vivo radiosensitizing effects of ZER. Results: ZER produced cross-linking of HSP27, which was dependent on inhibition of the monomeric form of HSP27. ZER was directly insertedmore » between the disulfide bond in the HSP27 dimer and modified normal HSP27 dimerization. Pretreatment with ZER before radiation inhibited the binding affinity between HSP27 and apoptotic molecules, such as cytochrome c and PKC{delta}, and induced sensitization in vitro and in an in vivo xenografted nude mouse system. Structural analogs lacking only the carbonyl group in ZER, such as {alpha}-humulene (HUM) and 8-hydroxy-humulen (8-OH-HUM), did not affect normal cross-linking of HSP27 and did not induce radiosensitization. Conclusions: We suggest that altered cross-linking of HSP27 by ZER is a good strategy for abolishing HSP27-mediated resistance.« less
Choi, Seo-Hyun; Lee, Yoon-Jin; Seo, Woo Duck; Lee, Hae-June; Nam, Joo-Won; Lee, Yoo Jin; Kim, Joon; Seo, Eun-Kyoung; Lee, Yun-Sil
2011-03-15
HSP27 or HSP25 negatively regulates apoptosis pathways after radiation or chemotherapeutic agents. Abrogation of HSP27 function may be a candidate target for overcoming radio- and chemoresistance. Zerumbone (ZER), a cytotoxic component isolated from Zingiber zerumbet smith. Clonogenic survival assay and flow cytometry after Annexin V staining were performed to determine in vitro sensitization effects of ZER with ionizing radiation. A nude mouse xenografting system was also applied to detect in vivo radiosensitizing effects of ZER. ZER produced cross-linking of HSP27, which was dependent on inhibition of the monomeric form of HSP27. ZER was directly inserted between the disulfide bond in the HSP27 dimer and modified normal HSP27 dimerization. Pretreatment with ZER before radiation inhibited the binding affinity between HSP27 and apoptotic molecules, such as cytochrome c and PKCδ, and induced sensitization in vitro and in an in vivo xenografted nude mouse system. Structural analogs lacking only the carbonyl group in ZER, such as α-humulene (HUM) and 8-hydroxy-humulen (8-OH-HUM), did not affect normal cross-linking of HSP27 and did not induce radiosensitization. We suggest that altered cross-linking of HSP27 by ZER is a good strategy for abolishing HSP27-mediated resistance. Copyright © 2011 Elsevier Inc. All rights reserved.
Chen, Pei-Ru; Chen, Ming-Hong; Sun, Jui-Sheng; Chen, Mei-Hsiu; Tsai, Chien-Chen; Lin, Feng-Huei
2004-11-01
We previously developed a biodegradable composite with potentially good biocompatibility composed by tricalcium phosphate and gluataraldehyde cross-linking gelatin (GTG) with good mechanical property feasible for surgical manipulation. The purpose of this study was to evaluate the feasibility of immobilizing nerve growth factor (NGF) onto the composite (GTG) with carbodiimide (GEN composite). Cultured Schwann cells were seeded onto the GTG and GEN composites. For comparison, GTG membrane soaked in NGF solution without carbodiimide (GN composite) as cross-linking agent was also used to culture Schwann cells. Cell morphology was observed by a scanning electron microscope. Cell survival, cytotoxicity and cellular metabolism on the NGF-grafted GTG membrane were assessed quantitatively in terms of cell protein content, leakage of cytosolic lactate dehydrogenase (LDH) activity and by the well-established MTT assay, respectively. The result of LDH study did not show significant difference among GTG, NGF-modified GTG and control group. This indicated that GTG composite, whether cross-linking with NGF or not, has little cytotoxic effect. Comparing the protein content and MTT assay among GEN, GN composite and control group, the data confirmed more attachment of Schwann cells on GEN composite. Although GTG cross-linking with NGF did not promote Schwann cell proliferation, the techniques we used in this study provided a method to fabricate a novel biomaterial incorporation of Schwann cells and covalently immobilized NGF.
'Petite' mutagenesis and mitotic crossing-over in yeast by DNA-targeted alkylating agents.
Ferguson, L R; Turner, P M; Gourdie, T A; Valu, K K; Denny, W A
1989-12-01
Although the biological properties (cytotoxicity, mutagenicity and carcinogenicity) of alkylating agents result from their bonding interactions with DNA, such compounds generally do not show any special binding affinity for DNA. A series of acridine-linked aniline mustards of widely-varying alkylator reactivity have been designed as DNA-directed alkylating agents. We have considered whether such DNA targeting has an effect on mutagenic properties by evaluating this series of drugs in comparison with their untargeted counterparts for toxic, recombinogenic and mutagenic properties in Saccharomyces cerevisiae strain D5. The simple untargeted aniline mustards are effective inducers of mitotic crossing-over in this strain, but resemble other reported alkylators in being rather inefficient inducers of the "petite" or mitochondrial mutation in yeast. However, the majority of the DNA-targeted mustards were very efficient petite mutagens, while showing little evidence of mitotic crossing-over or other nuclear events. The 100% conversion of cells into petites and the lack of a differential between growing and non-growing cells are similar to the effects of the well characterised mitochondrial mutagen ethidium bromide. These data suggest very different modes of action between the DNA-targeted alkylators and their non-targeted counterparts.
Controlled release of mitomycin C from PHEMAH-Cu(II) cryogel membranes.
Bakhshpour, Monireh; Yavuz, Handan; Denizli, Adil
2018-02-19
Molecular imprinting technique was used for the preparation of antibiotic and anti-neoplastic chemotherapy drug (mitomycin C) imprinted cryogel membranes (MMC-ICM). The membranes were synthezied by using metal ion coordination interactions with N-methacryloyl-(l)-histidine methyl ester (MAH) functional monomer and template molecules (i.e. MMC). The 2-hydroxyethyl methacrylate (HEMA) monomer and methylene bisacrylamide (MBAAm) crosslinker were used for the preparation of mitomycin C imprinted cryogel membranes by radical suspension polymerization technique. The imprinted cryogel membranes were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and swelling degree measurements. Cytotoxicity of MMC-ICMs was investigated using mouse fibroblast cell line L929. Time-dependent release of MMC was demonstrated within 150 h from cryogel membranes. Cryogels demonstrated very high MMC loading efficiency (70-80%) and sustained MMC release over hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansson, J.; Keyse, S.M.; Lindahl, T.
Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurementsmore » of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links.« less
Bai, Huiping; Xiong, Caiyun; Wang, Chunqiong; Liu, Peng; Dong, Su; Cao, Qiue
2018-05-01
A rhodium (III) ion carbon paste electrode (CPE) based on an ion imprinted polymer (IIP) as a new modifying agent has been prepared and studied. Rh(III) ion imprinted polymer was synthesized by copolymerization of acrylamide-Rh(III) complex and ethylene glycol dimethacrylate according to the precipitation polymerization. Acrylamide acted as both functional monomer and complexing agent to create selective coordination sites in a cross-linked polymer. The ion imprinted carbon paste electrode (IIP-CPE) was prepared by mixing rhodium IIP-nanoparticles and graphite powder in n-eicosane as an adhesive and then embedding them in a Teflon tube. Amperometric i-t curve method was applied as the determination technique. Several parameters, including the functional monomer, molar ratio of template, monomer and cross-linking agent, the amounts of IIP, the applied potential, the buffer solution and pH have been studied. According to the results, IIP-CPE showed a considerably higher response in comparison with the electrode embedded with non-imprinted polymer (NIP), indicating the formation of suitable recognition sites in the IIP structure during the polymerization stage. The introduced electrode showed a linear range of 1.00×10-8~3.0×10-5 mol·L-1 and detection limit of 6.0 nmol L-1 (S/N = 3). The IIP-CPE was successfully applied for the trace rhodium determination in catalyst and plant samples with RSD of less than 3.3% (n = 5) and recoveries in the range of 95.5~102.5%.
Epoxy Monomers Cured by High Cellulosic Nanocrystal Loading.
Khelifa, Farid; Habibi, Youssef; Bonnaud, Leila; Dubois, Philippe
2016-04-27
The present study focuses on the use of cellulose nanocrystals (CNC) as the main constituent of a nanocomposite material and takes advantage of hydroxyl groups, characteristic of the CNC chemical structure, to thermally cross-link an epoxy resin. An original and simple approach is proposed, based on the collective sticking of CNC building blocks with the help of a DGEBA/TGPAP-based epoxy resin. Scientific findings suggest that hydroxyl groups act as a toxic-free cross-linking agent of the resin. The enhanced protection against water degradation as compared to neat CNC film and the improvement of mechanical properties of the synthesized films are attributed to a good compatibility between the CNC and the resin. Moreover, the preservation of CNC optical properties at high concentrations opens the way to applying these materials in photonic devices.
Dextran/Albumin hydrogel sealant for Dacron(R) vascular prosthesis.
Lisman, Anna; Butruk, Beata; Wasiak, Iga; Ciach, Tomasz
2014-05-01
In this paper, the authors describe a novel type of hydrogel coating prepared from the copolymer of human serum albumin and oxidized dextran. The material was designed as a hydrogel sealant for polyester (Dacron®)-based vascular grafts. Dextran was chosen as a coating material due to its anti-thrombogenic properties. Prepared hydrogels were compared with similar, already known biomaterial made from gelatine with the same cross-linking agent. Obtained hydrogels, prepared from various ratios of oxidized dextran/albumin or oxidized dextran/gelatine, showed different cross-linking densities, which caused differences in swelling, degradation rate and mechanical properties. Permeability tests confirmed the complete tightness of the hydrogel-modified prosthesis. Results showed that application of the hydrogel coating provided leakage-free prosthesis and eliminated the need of pre-clotting.
Pant, Kamala; Roden, Nicholas; Zhang, Charles; Bruce, Shannon; Wood, Craig; Pendino, Kimberly
2015-12-01
14-Hydroxycodeinone (14-HC) is an α,β-unsaturated ketone impurity found in oxycodone drug substance and has a structural alert for genotoxicity. 14-HC was tested in a combined Modified and Standard Comet Assay to determine if the slight decrease in % Tail DNA noted in a previously conducted Standard Comet Assay with 14-HC could be magnified to clarify if the response was due to cross-linking activity. One limitation of the Standard Comet Assay is that DNA cross-links cannot be reliably detected. However, under certain modified testing conditions, DNA cross-links and chemical moieties that elicit such cross-links can be elucidated. One such modification involves the induction of additional breakages of DNA strands by gamma or X-ray irradiation. To determine if 14-HC is a DNA crosslinker in vivo, a Modified Comet Assay was conducted using X-ray irradiation as the modification to visualize crosslinking activity. In this assay, 14-HC was administered orally to mice up to 320 mg/kg/day. Results showed a statistically significant reduction in percent tail DNA in duodenal cells at 320 mg/kg/day, with a nonstatistically significant but dose-related reduction in percent tail DNA also observed at the mid dose of 160 mg/kg/day. Similar decreases were not observed in cells from the liver or stomach, and no increases in percent tail DNA were noted for any tissue in the concomitantly conducted Standard Comet Assay. Taken together, 14-HC was identified as a cross-linking agent in the duodenum in the Modified Comet Assay. © 2015 Wiley Periodicals, Inc.
Jackson, Paul J M; Rahman, Khondaker M; Thurston, David E
2017-01-01
The pyrrolobenzodiazepine (PBD) and duocarmycin families are DNA-interactive agents that covalently bond to guanine (G) and adenine (A) bases, respectively, and that have been joined together to create synthetic dimers capable of cross-linking G-G, A-A, and G-A bases. Three G-A alkylating dimers have been reported in publications to date, with defined DNA-binding sites proposed for two of them. In this study we have used molecular dynamics simulations to elucidate preferred DNA-binding sites for the three published molecular types. For the PBD-CPI dimer UTA-6026 (1), our simulations correctly predicted its favoured binding site (i.e., 5'-C(G)AATTA-3') as identified by DNA cleavage studies. However, for the PBD-CI molecule ('Compound 11', 3), we were unable to reconcile the results of our simulations with the reported preferred cross-linking sequence (5'-ATTTTCC(G)-3'). We found that the molecule is too short to span the five base pairs between the A and G bases as claimed, but should target instead a sequence such as 5'-ATTTC(G)-3' with two less base pairs between the reacting G and A residues. Our simulation results for this hybrid dimer are also in accord with the very low interstrand cross-linking and in vitro cytotoxicity activities reported for it. Although a preferred cross-linking sequence was not reported for the third hybrid dimer ('27eS', 2), our simulations predict that it should span two base pairs between covalently reacting G and A bases (e.g., 5'-GTAT(A)-3'). Copyright © 2016. Published by Elsevier Ltd.
Development of casein microgels from cross-linking of casein micelles by genipin.
Silva, Naaman F Nogueira; Saint-Jalmes, Arnaud; de Carvalho, Antônio F; Gaucheron, Frédéric
2014-09-02
Casein micelles are porous colloidal particles, constituted of casein molecules, water, and minerals. The vulnerability of the supramolecular structure of casein micelles face to changes in the environmental conditions restrains their applications in other domains besides food. Thus, redesigning casein micelles is a challenge to create new functionalities for these biosourced particles. The objective of this work was to create stable casein microgels from casein micelles using a natural cross-linker, named genipin. Suspensions of purified casein micelles (25 g L(-1)) were mixed with genipin solutions to have final concentrations of 5, 10, and 20 mM genipin. Covalently linked casein microgels were formed via cross-linking of lysyl and arginyl residues of casein molecules. The reacted products exhibited blue color. The cross-linking reaction induced gradual changes on the colloidal properties of the particles. The casein microgels were smaller and more negatively charged and presented smoother surfaces than casein micelles. These results were explained based on the cross-linking of free NH2 present in an external layer of κ-casein. Light scattering and rheological measurements showed that the reaction between genipin and casein molecules was intramicellar, as one single population of particles was observed and the values of viscosity (and, consequently, the volume fraction of the particles) were reduced. Contrary to the casein micelles, the casein microgels were resistant to the presence of dissociating agents, e.g., citrate (calcium chelating) and urea, but swelled as a consequence of internal electrostatic repulsion and the disruption of hydrophobic interactions between protein chains. The casein microgels did not dissociate at the air-solution interface and formed solid-like interfaces rather than a viscoelastic gel. The potential use of casein microgels as adaptable nanocarriers is proposed in the article.
Phosphodiester-mediated reaction of cisplatin with guanine in oligodeoxyribonucleotides.
Campbell, Meghan A; Miller, Paul S
2008-12-02
The cancer chemotherapeutic agent cis-diamminedichloroplatinum(II) or cisplatin reacts primarily with guanines in DNA to form 1,2-Pt-GG and 1,3-Pt-GNG intrastrand cross-links and, to a lesser extent, G-G interstrand cross-links. Recent NMR evidence has suggested that cisplatin can also form a coordination complex with the phosphodiester internucleotide linkage of DNA. We have examined the effects of the phosphodiester backbone on the reactions of cisplatin with oligodeoxyribonucleotides that lack or contain a GTG sequence. Cisplatin forms a stable adduct with TpT that can be isolated by reversed phase HPLC. The cis-Pt-TpT adduct contains a single Pt, as determined by atomic absorption spectroscopy (AAS) and by electrospray ionization mass spectrometry (ESI-MS), and is resistant to digestion by snake venom phosphodiesterase. Treatment of the adduct with sodium cyanide regenerates TpT. Similar adduct formation was observed when T(pT)(8) was treated with cisplatin, but not when the phosphodiester linkages of T(pT)(8) were replaced with methylphosphonate groups. These results suggest that the platinum may be coordinated with the oxygens of the thymine and possibly with those of the phosphodiester group. As expected, reaction of a 9-mer containing a GTG sequence with cisplatin yielded an adduct that contained a 1,3-Pt-GTG intrastrand cross-link. However, we found that the number and placement of phosphodiesters surrounding a GTG sequence significantly affected intrastrand cross-link formation. Increasing the number of negatively charged phosphodiesters in the oligonucleotide increased the amount of GTG platination. Surrounding the GTG sequence with nonionic methylphosphonate linkages inhibited or eliminated cross-link formation. These observations suggest that interactions between cisplatin and the negatively charged phosphodiester backbone may play an important role in facilitating platination of guanine nucleotides in DNA.
Sherlock, Benjamin E; Harvestine, Jenna N; Mitra, Debika; Haudenschild, Anne; Hu, Jerry; Athanasiou, Kyriacos A; Leach, J Kent; Marcu, Laura
2018-03-01
We investigate the use of a fiber-based, multispectral fluorescence lifetime imaging (FLIm) system to nondestructively monitor changes in mechanical properties of collagen hydrogels caused by controlled application of widely used cross-linking agents, glutaraldehyde (GTA) and ribose. Postcross-linking, fluorescence lifetime images are acquired prior to the hydrogels being processed by rheological or tensile testing to directly probe gel mechanical properties. To preserve the sterility of the ribose-treated gels, FLIm is performed inside a biosafety cabinet (BSC). A pairwise correlation analysis is used to quantify the relationship between mean hydrogel fluorescence lifetimes and the storage or Young's moduli of the gels. In the GTA study, we observe strong and specific correlations between fluorescence lifetime and the storage and Young's moduli. Similar correlations are not observed in the ribose study and we postulate a reason for this. Finally, we demonstrate the ability of FLIm to longitudinally monitor dynamic cross-link formation. The strength of the GTA correlations and deployment of our fiber-based FLIm system inside the aseptic environment of a BSC suggests that this technique may be a valuable tool for the tissue engineering community where longitudinal assessment of tissue construct maturation in vitro is highly desirable. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Conjunctival dysfunction and mitomycin C-induced hypotony.
Sihota, R; Dada, T; Gupta, S D; Sharma, S; Arora, R; Agarwal, H C
2000-10-01
To determine the role of a physically intact conjunctiva in the development of chronic hypotony after mitomycin C-enhanced trabeculectomy. Three patients with mitomycin C-related hypotonic maculopathy, but without a leak on Siedel test, had a thorough evaluation of the bleb area and an anterior segment fluorescein angiography. The bleb was excised and a pedicle flap, rotated from the temporal conjunctiva, was sutured to cover the defect superiorly. The scleral flap and its sutures were not disturbed. The excised bleb was subjected to light and electron microscopy. The Seidel test result was negative in all patients, but late phases of the anterior segment angiography showed a generalized seepage of aqueous from the bleb. After revision of the bleb, there was a gradual increase in the intraocular pressure, a reversal of the hypotonic maculopathy, and consequent improvement in visual acuity in all three patients, stable up to a minimum follow-up of 18 months. On histopathologic examination, the basement membrane was thickest under thin areas of the epithelium and thinnest below thicker epithelial layers. A dysfunctional conjunctival barrier, as evidenced by the "sweating" of the bleb and histopathologic alterations in the epithelial barrier, could be responsible for the hypotonic maculopathy in these patients. Excision of the conjunctiva alone and replacement by a pedicle conjunctival graft offers a safe and effective method of treating chronic hypotony after mitomycin C-augmented trabeculectomy in such patients.
Bailey, J N R; Waite, A E; Clayton, W J; Rustin, M H A
2007-04-01
Keloid scars are formed by over-activity of fibroblasts producing collagen and they cause significant morbidity both from their appearance and from their symptoms. Existing treatments are often unsatisfactory. Topical mitomycin C is known to inhibit fibroblast proliferation. To determine whether application of mitomycin C to the base of shave-removed keloids would prevent their recurrence. Ten patients had all or part of their keloid shave-removed. After haemostasis topical mitomycin C 1 mg mL(-1) was applied for 3 min. This application was repeated after 3 weeks. The keloids were photographed before treatment and the patients were reviewed every 2 months for a total of 6 months when a final photograph of the keloid site was taken. The patients and the Clinical Trials Unit staff scored the outcome on a linear analogue scale of 0-10, where 0 = disappointed and 10 = delighted. The pretreatment and 6-month post-treatment photographs were also assessed by two dermatologists who were not involved in the clinical trial. Four of the 10 patients were delighted with the outcome of treatment and only one was disappointed. On average there was an 80% satisfied outcome. This new treatment of keloids has been shown to be effective in the majority of patients but further studies are required to confirm this benefit.
Preparation of small bio-compatible microspheres
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)
1979-01-01
Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such a hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.
21 CFR 176.180 - Components of paper and paperboard in contact with dry food.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Tetraethylenepentamine Polymerization cross-linking agent. α-[p-(1,1,3,3-Tetramethylbutyl)phenyl]-omega hydroxypoly... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Components of paper and paperboard in contact with... preservative in coatings and sizings. 1,2-Benzisothiazolin-3-one (CAS Registry No. 2634-33-5) For use only as a...
Sagara, Hideto; Iida, Tomohiro; Saito, Kimimori; Noji, Hiroki; Ogasawara, Masashi; Oyamada, Hiroshi
2012-01-01
Background Sodium hyaluronate and autologous serum eye drops are used to treat ocular surface disease (OSD) and are reported to prevent and treat late-onset bleb leaks following trabeculectomy with mitomycin C. In this study, we evaluated the efficacy of a combination of sodium hyaluronate and autologous serum eye drops and treatment for obstructive meibomian gland dysfunction as a therapy for late-onset bleb leaks after trabeculectomy with mitomycin C. Methods This was a retrospective, interventional, nonsimultaneous study of 12 subjects (12 eyes) of mean age of 64.3 ± 18.3 years with OSD and apparent late-onset bleb leaks following trabeculectomy with mitomycin C between 1998 and 2008. We compared patients diagnosed with leakages before July 2005, who had been treated with separate eye drop solutions containing 0.1% sodium hyaluronate, 50% autologous serum, and 0.3% ofloxacin (sodium hyaluronate and autologous serum group, n = 7), with patients diagnosed from August 2005 to December 2008, who were treated with a combination of eye drops (0.1% sodium hyaluronate, 50% autologous serum, and 0.08% levofloxacin hydrate) and eyelid massage and warm compresses for obstructive meibomian gland dysfunction (combination eye drop group, n = 5). Results Leakage was resolved in one patient (14.3%) in the separately treated sodium hyaluronate and autologous serum eye drop group and in five patients (100%) in the combination eye drop group (P = 0.015). The period after resolution of leakage with conservative treatment was 23 months in the one eye in the sodium hyaluronate and autologous serum group and 36–61 (mean 52.4 ± 10.1) months in the five eyes in the combination eye drop group. Conclusion Late-onset bleb leaks following trabeculectomy with mitomycin C can be treated effectively using a combination of sodium hyaluronate and autologous serum eye drops, eyelid massage, and warm compresses. Furthermore, combining eye drops may improve patient adherence to the drug regimen by decreasing the frequency of administration. PMID:22927739
Singh, Baljit; Dhiman, Abhishek
2017-01-01
No doubt, the prevention of infection is an indispensable aspect of the wound management, but, simultaneous wound pain relief is also required. Therefore, herein this article, incorporation of antibiotic agent 'gentamicin' and pain relieving agent 'lidocaine' into hydrogel wound dressings, prepared by using acacia gum, carbopol and poly(2-hydroxyethylmethacrylate) polymers, has been carried out. The hydrogels were evaluated as a drug carrier for model drugs gentamicin and lidocaine. Synthesis of hydrogel wound dressing was carried out by free radical polymerization technique. The drug loading was carried out by swelling equilibrium method and gel strength of hydrogels was measured by a texture analyzer. Porous microstructure of the hydrogel was observed in cryo-SEM images. The hydrogel showed mesh size 37.29 nm, cross-link density 2.19× 10-5 mol/cm3, molecular weight between two cross-links 60.25× 10-3 g/mol and gel strength 0.625±0.112 N in simulated wound fluid. It is concluded that the pH of swelling medium has influenced the network structure of hydrogel i.e., molecular weight of the polymer chain between two neighboring cross links, crosslink density and the corresponding mesh size. A good correlation was established between gel strength and network parameters. Cryo-SEM images showed porous morphology of hydrogels. These hydrogels were found to be biodegradable and antimicrobial in nature. Drug release occurred through Fickian diffusion mechanism and release profile was best fitted in first order model. Overall it is concluded that modification in GA has led to formation of a porous hydrogels for wound dressing applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Hu, Xiufeng; Wang, Ning; Liu, Lu; Liu, Wenguang
2013-01-01
A hydrogen bonding strengthened hydrogel was prepared by radical copolymerization of poly(ethylene glycol) methacrylated β-cyclodextrin (PEG-β-CD) and 2-vinyl-4,6-diamino-1,3,5-triazine (VDT) monomer. PEG-β-CD served not only as a cross-linker, but also as a built-in solubilizing agent of the hydrophobic drug in the gel. Increasing VDT content resulted in a notable enhancement in the mechanical strengths of hydrogels whose equilibrium water contents could be modulated from 75% to 85% by varying the ratio of PEG-β-CD cross-linker. It was shown that copolymerizing more PEG-β-CDs could load higher amount of ibuprofen (IBU) in the gels and contribute to a slower release rate of IBU. Plasmid DNA could be anchored onto the surface of hydrogels due to the hydrogen bonding between the base pairs and diaminotriazine, thereby mediating efficient reverse gene transfection of luciferase gene in COS-7 cells cultured on the gel surface. The cytocompatible PEG-β-CD-cross-linked PVDT hydrogels with multifunction of drug and gene delivery hold a potential as tissue engineering scaffold.
Advanced glycation End-products (AGEs): an emerging concern for processed food industries.
Sharma, Chetan; Kaur, Amarjeet; Thind, S S; Singh, Baljit; Raina, Shiveta
2015-12-01
The global food industry is expected to increase more than US $ 7 trillion by 2014. This rise in processed food sector shows that more and more people are diverging towards modern processed foods. As modern diets are largely heat processed, they are more prone to contain high levels of advanced glycation end products (AGEs). AGEs are a group of complex and heterogeneous compounds which are known as brown and fluorescent cross-linking substances such as pentosidine, non-fluorescent cross-linking products such as methylglyoxal-lysine dimers (MOLD), or non-fluorescent, non-cross linking adducts such as carboxymethyllysine (CML) and pyrraline (a pyrrole aldehyde). The chemistry of the AGEs formation, absorption and bioavailability and their patho-biochemistry particularly in relation to different complications like diabetes and ageing discussed. The concept of AGEs receptor - RAGE is mentioned. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Different methods of detection and quantification along with types of agents used for the treatment of AGEs are reviewed. Generally, ELISA or LC-MS methods are used for analysis of foods and body fluids, however lack of universally established method highlighted. The inhibitory effect of bioactive components on AGEs by trapping variety of chemical moieties discussed. The emerging evidence about the adverse effects of AGEs makes it necessary to investigate the different therapies to inhibit AGEs.
Anthracycline-Formaldehyde Conjugates and Their Targeted Prodrugs
NASA Astrophysics Data System (ADS)
Koch, Tad H.; Barthel, Benjamin L.; Kalet, Brian T.; Rudnicki, Daniel L.; Post, Glen C.; Burkhart, David J.
The sequence of research leading to a proposal for anthracycline cross-linking of DNA is presented. The clinical anthracycline antitumor drugs are anthraquinones, and as such are redox active. Their redox chemistry leads to induction of oxidative stress and drug metabolites. An intermediate in reductive glycosidic cleavage is a quinone methide, once proposed as an alkylating agent of DNA. Subsequent research now implicates formaldehyde as a mediator of anthracycline-DNA cross-linking. The cross-link at 5'-GC-3' sites consists of a covalent linkage from the amino group of the anthracycline to the 2-amino group of the G-base through a methylene from formaldehyde, hydrogen bonding from the 9-OH to the G-base on the opposing strand, and hydrophobic interactions through intercalation of the anthraquinone. The combination of these interactions has been described as a virtual cross-link of DNA. The origin of the formaldehyde in vivo remains a mystery. In vitro, doxorubicin reacts with formaldehyde to give firstly a monomeric oxazolidine, doxazolidine, and secondly a dimeric oxazolidine, doxoform. Doxorubicin reacts with formaldehyde in the presence of salicylamide to give the N-Mannich base conjugate, doxsaliform. Doxsaliform is several fold more active in tumor cell growth inhibition than doxorubicin, but doxazolidine and doxoform are orders of magnitude more active than doxorubicin. Exploratory research on the potential for doxsaliform and doxazolidine as targeted cytotoxins is presented. A promising lead design is pentyl PABC-Doxaz, targeted to a carboxylesterase enzyme overexpressed in liver cancer cells and/or colon cancer cells.
Lopes-Kulishev, Carina O; Alves, Ingrid R; Valencia, Estela Y; Pidhirnyj, María I; Fernández-Silva, Frank S; Rodrigues, Ticiane R; Guzzo, Cristiane R; Galhardo, Rodrigo S
2015-09-01
The SOS response is a universal bacterial regulon involved in the cellular response to DNA damage and other forms of stress. In Caulobacter crescentus, previous work has identified a plethora of genes that are part of the SOS regulon, but the biological roles of several of them remain to be determined. In this study, we report that two genes, hereafter named mmcA and mmcB, are involved in the defense against DNA damage caused by mitomycin C (MMC), but not against lesions induced by other common DNA damaging agents, such as UVC light, methyl methanesulfonate (MMS) and hydrogen peroxide. mmcA is a conserved gene that encodes a member of the glyoxalases/dioxygenases protein family, and acts independently of known DNA repair pathways. On the other hand, epistasis analysis showed that mmcB acts in the same pathway as imuC (dnaE2), and is required specifically for MMC-induced mutagenesis, but not for that induced by UV light, suggesting a role for MmcB in translesion synthesis-dependent repair of MMC damage. We show that the lack of MMC-induced mutability in the mmcB strain is not caused by lack of proper SOS induction of the imuABC operon, involved in translesion synthesis (TLS) in C. crescentus. Based on this data and on structural analysis of a close homolog, we propose that MmcB is an endonuclease which creates substrates for ImuABC-mediated TLS patches. Copyright © 2015 Elsevier B.V. All rights reserved.
Disruption of the FA/BRCA pathway in bladder cancer.
Neveling, K; Kalb, R; Florl, A R; Herterich, S; Friedl, R; Hoehn, H; Hader, C; Hartmann, F H; Nanda, I; Steinlein, C; Schmid, M; Tonnies, H; Hurst, C D; Knowles, M A; Hanenberg, H; Schulz, W A; Schindler, D
2007-01-01
Bladder carcinomas frequently show extensive deletions of chromosomes 9p and/or 9q, potentially including the loci of the Fanconi anemia (FA) genes FANCC and FANCG. FA is a rare recessive disease due to defects in anyone of 13 FANC genes manifesting with genetic instability and increased risk of neoplasia. FA cells are hypersensitive towards DNA crosslinking agents such as mitomycin C and cisplatin that are commonly employed in the chemotherapy of bladder cancers. These observations suggest the possibility of disruption of the FA/BRCA DNA repair pathway in bladder tumors. However, mutations in FANCC or FANCG could not be detected in any of 23 bladder carcinoma cell lines and ten surgical tumor specimens by LOH analysis or by FANCD2 immunoblotting assessing proficiency of the pathway. Only a single cell line, BFTC909, proved defective for FANCD2 monoubiquitination and was highly sensitive towards mitomycin C. This increased sensitivity was restored specifically by transfer of the FANCF gene. Sequencing of FANCF in BFTC909 failed to identify mutations, but methylation of cytosine residues in the FANCF promoter region was demonstrated by methylation-specific PCR, HpaII restriction and bisulfite DNA sequencing. Methylation-specific PCR uncovered only a single instance of FANCF promoter hypermethylation in surgical specimens of further 41 bladder carcinomas. These low proportions suggest that in contrast to other types of tumors silencing of FANCF is a rare event in bladder cancer and that an intact FA/BRCA pathway might be advantageous for tumor progression. Copyright (c) 2007 S. Karger AG, Basel.
Chang, Shu-Wen; Chou, San-Fang; Yu, Shuen-Yuen
2010-01-01
The purpose of this study was to investigate the effect of dexamethasone (DEX) on mitomycin C (MMC)-induced inflammatory cytokine expression in corneal fibroblasts. Primary human corneal fibroblasts were treated with MMC, dexamethasone, or in combination. Morphological changes and cell growth were documented using phase-contrast microscopy and PicoGreen assay, respectively. Cell apoptosis was evaluated by annexin V/propidium iodide staining, whereas viability was tested by the live/dead assay and analyzed by flow cytometry. The relative expression of interleukin-8 and monocyte chemoattractant protein-1 was investigated with quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Mitogen-activated protein kinase activation and mitogen-activated protein kinase phosphatase-1 expression were documented by Western blot analysis. We found that MMC induced corneal fibroblast elongation, apoptosis, and retarded cell growth, whereas DEX did not significantly alter cell morphology or viability. The combination of DEX and MMC did not induce additional apoptosis and cell death. DEX dose dependently down-regulated basal and MMC-induced interleukin-8 and monocyte chemoattractant protein-1 mRNA expression and protein secretion. DEX attenuated MMC-induced p38 and Jun N-terminal kinases activation and up-regulated expression. These suggested that DEX may inhibit MMC-induced interleukin-8 and monocyte chemoattractant protein-1 by up-regulating MKP-1 expression, which subsequently deactivated p38 and Jun N-terminal kinases activation. Combined MMC and DEX treatment may facilitate corneal wound healing.
Szymańska, Emilia; Winnicka, Katarzyna; Wieczorek, Piotr; Sacha, Paweł Tomasz; Tryniszewska, Elżbieta Anna
2014-01-01
The combination of an antifungal agent and drug carrier with adjunctive antimicrobial properties represents novel strategy of complex therapy in pharmaceutical technology. The goal of this study was to investigate the unmodified and ion cross-linked chitosan’s influence on anti-Candida activity of clotrimazole used as a model drug in hydrogels. It was particularly crucial to explore whether the chitosans’ structure modification by β-glycerophosphate altered its antifungal properties. Antifungal studies (performed by plate diffusion method according to CLSI reference protocol) revealed that hydrogels obtained with chitosan/β-glycerophosphate displayed lower anti-Candida effect, probably as a result of weakened polycationic properties of chitosan in the presence of ion cross-linker. Designed chitosan hydrogels with clotrimazole were found to be more efficient against tested Candida strains and showed more favorable drug release profile compared to commercially available product. These observations indicate that novel chitosan formulations may be considered as promising semi-solid delivery system of clotrimazole. PMID:25272230
Szymańska, Emilia; Winnicka, Katarzyna; Wieczorek, Piotr; Sacha, Paweł Tomasz; Tryniszewska, Elżbieta Anna
2014-09-30
The combination of an antifungal agent and drug carrier with adjunctive antimicrobial properties represents novel strategy of complex therapy in pharmaceutical technology. The goal of this study was to investigate the unmodified and ion cross-linked chitosan's influence on anti-Candida activity of clotrimazole used as a model drug in hydrogels. It was particularly crucial to explore whether the chitosans' structure modification by β-glycerophosphate altered its antifungal properties. Antifungal studies (performed by plate diffusion method according to CLSI reference protocol) revealed that hydrogels obtained with chitosan/β-glycerophosphate displayed lower anti-Candida effect, probably as a result of weakened polycationic properties of chitosan in the presence of ion cross-linker. Designed chitosan hydrogels with clotrimazole were found to be more efficient against tested Candida strains and showed more favorable drug release profile compared to commercially available product. These observations indicate that novel chitosan formulations may be considered as promising semi-solid delivery system of clotrimazole.
Photoinduced collagen cross-linking: a new approach to venous insufficiency.
Frullini, Alessandro; Manetti, Leonardo; Di Cicco, Emiliano; Fortuna, Damiano
2011-08-01
What little research has been done on methods of venous valve function recovery with radiofrequency has had disappointing results. Valvuloplasty has some supporters, but the majority of physicians do not consider it a valid therapeutic option. To test a new method of treating varicose veins based on their collagen structure. This procedure it is not a thermal treatment, but it is fast, with significant shrinking and preservation of the endothelium. In the laboratory, we subjected greater saphenous vein specimens to irradiation with a blue light-emitting diode generated (wavelength 450-480 nm) while a riboflavin solution (vitamin B2) was administered. The riboflavin acts as a cross-linking agent, and the blue light as the activator. In this photo-induced reaction, oxygen singlet is produced with oxidative deamination, forming new covalent bonds between collagen fibrils and water. In venous specimens, we demonstrated fast and significant shrinkaged without histologic evidence of endothelial damage and with evident change in mechanical properties of varicose veins. Photochemically induced collagen cross-linking to restructure varicose veins is only a research field but may become an important tool for recovery of vein diameter and valve function. © 2011 by the American Society for Dermatologic Surgery, Inc.
Liu, Shi Gang; Li, Na; Ling, Yu; Kang, Bei Hua; Geng, Shuo; Li, Nian Bing; Luo, Hong Qun
2016-02-23
We report that fluorescence properties and morphology of hyperbranched polyethylenimine (hPEI) cross-linked with formaldehyde are highly dependent on the pH values of the cross-linking reaction. Under acidic and neutral conditions, water-soluble fluorescent copolymer particles (CPs) were produced. However, under basic conditions, white gels with weak fluorescence emission would be obtained. The water-soluble hPEI-formaldehyde (hPEI-F) CPs show strong intrinsic fluorescence without the conjugation to any classical fluorescent agents. By the combination of spectroscopy and microscopy techniques, the mechanism of fluorescence emission was discussed. We propose that the intrinsic fluorescence originates from the formation of a Schiff base in the cross-linking process between hPEI and formaldehyde. Schiff base bonds are the fluorescence-emitting moieties, and the compact structure of hPEI-F CPs plays an important role in their strong fluorescence emission. The exploration on fluorescence mechanism may provide a new strategy to prepare fluorescent polymer particles. In addition, the investigation shows that the hPEI-F CPs hold potential as a fluorescent probe for the detection of copper ions in aqueous media.
Wang, Chuandong; Yuan, Weien; Xiao, Fei; Gan, Yaokai; Zhao, Xiaotian; Zhai, Zhanjing; Zhao, Xiaoying; Zhao, Chen; Cui, Penglei; Jin, Tuo; Chen, Xiaodong; Zhang, Xiaoling
2017-01-01
Small-interfering RNA (siRNA) provides a rapid solution for drug design and provides new methods to develop customizable medicines. Polyethyleneimine 25 kDa (PEI25kDa) is an effective transfection agent used in siRNA delivery. However, the lack of degradable linkage causes undesirable toxicity, hindering its clinical application. We designed a low-molecular-weight cross-linked polyethylenimine named PEI-Et (Mn:1220, Mw:2895) by using degradable ethylene biscarbamate linkage with lower cytotoxicity and higher knockdown efficiency than PEI25kDa in delivery Chordin siRNA to human bone mesenchymal stem cells (hBMSCs). Suppression of Chordin by using anti-Chordin siRNA delivered by PEI-Et improved bone regeneration in vitro and in vivo associated with the bone morphogenetic protein-2 (BMP-2) mediated smad1/5/8 signaling pathway. Results of this study suggest that Chordin siRNA can be potentially used to improve osteogenesis associated with the BMP-2-mediated Smad1/5/8 signaling pathway and biodegradable biscarbamate cross-linked low-molecular-weight polyethylenimine (PEI-Et) is a therapeutically feasible carrier material to deliver anti-Chordin siRNA to hBMSCs.
Targeted Delivery of Ubiquitin-Conjugated BH3 Peptide-Based Mcl-1 Inhibitors into Cancer Cells
2015-01-01
BH3 peptides are key mediators of apoptosis and have served as the lead structures for the development of anticancer therapeutics. Previously, we reported the application of a simple cysteine-based side chain cross-linking chemistry to NoxaBH3 peptides that led to the generation of the cross-linked NoxaBH3 peptides with increased cell permeability and higher inhibitory activity against Mcl-1 (Muppidi, A., Doi, K., Edwardraja, S., Drake, E. J., Gulick, A. M., Wang, H.-G., Lin, Q. (2012) J. Am. Chem. Soc.134, 1473422920569). To deliver cross-linked NoxaBH3 peptides selectively into cancer cells for enhanced efficacy and reduced systemic toxicity, here we report the conjugation of the NoxaBH3 peptides with the extracellular ubiquitin, a recently identified endogenous ligand for CXCR4, a chemokine receptor overexpressed in cancer cells. The resulting ubiquitin-NoxaBH3 peptide conjugates showed increased inhibitory activity against Mcl-1 and selective killing of the CXCR4-expressing cancer cells. The successful delivery of the NoxaBH3 peptides by ubiquitin into cancer cells suggests that the ubiquitin/CXCR4 axis may serve as a general route for the targeted delivery of anticancer agents. PMID:24410055
Moreira, M A; Souza, N O; Sousa, R S; Freitas, D Q; Lemos, M V; De Paula, D M; Maia, F J N; Lomonaco, D; Mazzetto, S E; Feitosa, V P
2017-10-01
Several polyphenols from renewable sources were surveyed for dentin biomodification. However, phenols from cashew nut shell liquid (CNSL, Anacardium occidentale) and from Aroeira (Myracrodruon urundeuva) extract have never been evaluated. The present investigation aimed to compare the dentin collagen crosslinking (biomodification) effectiveness of polyphenols from Aroeira stem bark extract, proanthocyanidins (PACs) from grape-seed extract (Vitis vinifera), cardol and cardanol from CNSL after clinically relevant treatment for one minute. Three-point bending test was used to obtain the elastic modulus of fully demineralized dentin beams before and after biomodification, whilst color change and mass variation were evaluated after four weeks water biodegradation. Color aspect was assessed by optical images after biodegradation whereas collagen cross-linking was investigated by micro-Raman spectroscopy. Statistical analysis was performed with repeated-measures two way ANOVA and Tukey's test (p<0.05). The increase in elastic modulus after biomodification was in the order cardol>cardanol>aroeira=PACs with cardol solution achieving mean 338.2% increase. The mass increase after biomodification followed the same order aforementioned. Nevertheless, after four weeks aging, more hydrophobic agent (cardanol) induced the highest resistance against water biodegradation. Aroeira and cardol attained intermediate outcomes whereas PACs provided the lower resistance. Tannin-based agents (Aroeira and PACs) stained the specimens in dark brown color. No color alteration was observed with cardol and cardanol treatments. All four agents achieved crosslinking in micro-Raman after one minute application. In conclusion, major components of CNSL yield overall best dentin biomodification outcomes when applied for one minute without staining the dentin collagen. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Broder, L E; Sridhar, K S; Selawry, O S; Charyulu, K N; Rao, R K; Saldana, M J; Lenz, C
1992-12-01
Forty-three ambulatory patients with locally advanced or metastatic bronchogenic adenocarcinoma were sequentially treated with two potentially mutually non-cross-resistant chemotherapy regimens. A new regimen, MVPF (mitomycin-c, vinblastine, procarbazine, and 5-fluorouracil), was given until progressive disease occurred. Then, a second regimen--MOCC (methotrexate, vincristine [Oncovin], cyclophosphamide, and CCNU)--was initiated. At further progression, regional disease patients received radiotherapy, whereas extensive disease patients received Phase II agents. Of the 43 patients entered on the study, 40 were evaluable. Three patients withdrew early due to poor tolerance of the regimen. The response rate for MVPF was 33% (12 of 40 PR, 1 of 40 CR) compared to a 4% (1 of 23 PR) response for MOCC (difference: p < or = .03), for a total response rate of 35%. Although there was an initial improvement in survival for responders (31.7 weeks) versus nonresponders (15.7 weeks) at the 75th percentile (p < or = .05), there was no significant difference in median survival. The hematologic toxicity was equivalent for both groups, whereas nonhematologic toxicity revealed a high incidence of nausea and vomiting in the MVPF group. It is concluded that this approach lent itself well to ambulatory care, and MVPF could be considered an alternative to cyclophosphamide-based regimens. However, the absence of a meaningful CR rate and lack of influence of response on median survival were factors limiting its effectiveness.
Shukla, Anil Kumar; Patra, Sanjukta
2012-01-01
Abstract The current work focuses on the study of polymeric, biodegradable nanoparticles (NPs) for the encapsulation of doxorubicin and mitomycin C (anti-leishmanial drugs), and their efficient delivery to macrophages, the parasite's home. The biodegradable polymer methoxypoly-(ethylene glycol)-b-poly (lactic acid) (MPEG-PLA) was used to prepare polymeric NPs encapsulating doxorubicin and mitomycin C. The morphology, mean diameter, and surface area of spherical NPs were determined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and BET surface area analysis. X-ray diffraction was performed to validate drug encapsulation. An in vitro release profile of the drugs suggested a fairly slow release. These polymeric NPs were efficiently capable of releasing drug inside macrophages at a slower pace than the free drug, which was monitored by epi-fluorescence microscopy. Encapsulation of doxorubicin and mitomycin C into NPs also decreases cellular toxicity in mouse macrophages (J774.1A). PMID:22925019
Ivarsen, Anders; Hjortdal, Jesper Ø
2014-06-01
To report the outcome of topography-guided photorefractive keratectomy (PRK) after complicated small incision lenticule extraction (SMILE). Retrospective case series of 5 eyes with irregular topography and ghost images after complicated SMILE. All eyes received transepithelial topography-guided PRK. Two eyes were treated with 0.02% mitomycin C. Patients were examined after a minimum of 3 months with evaluation of uncorrected (UDVA) and corrected (CDVA) distance visual acuity, Pentacam tomography (Oculus Optikgeräte, Wetzlar, Germany), and whole-eye aberrometry. In 3 eyes, subjective symptoms were diminished and UDVA, CDVA, topography, and corneal wavefront aberrations were improved. The remaining 2 eyes developed significant haze with worsened topography and wavefront aberrations. One eye experienced a two-line reduction in CDVA. Eyes with haze development had not been treated with mitomycin C. Transepithelial topography-guided PRK may reduce visual symptoms after complicated SMILE if postoperative haze can be controlled. To reduce the risk of haze development, application of mitomycin C may be considered. Copyright 2014, SLACK Incorporated.
The role of mitomycin C in surgery of the frontonasal recess: a prospective open pilot study.
Amonoo-Kuofi, Kwame; Lund, Valerie J; Andrews, Peter; Howard, David J
2006-01-01
Mitomycin C (MMC) inhibits fibroblast proliferation. The objective of this study was to determine the efficacy of MMC in reducing frontal ostium stenosis after endoscopic sinus surgery. A prospective open pilot study was conducted in 28 patients who had undergone one or more previous surgical interventions for frontal sinusitis. MMC solution was applied to the frontal ostial region via an endoscopic or combined endoscopic and external approach. Patency of the frontal ostium was evaluated endoscopically during regular follow-up. If restenosis was observed further, endoscopic application of MMC was undertaken. There were 17 men and 11 women (mean age, 51.7 years; range, 26-86 years). Mean number of applications was 1.5 (range, 1:3). Mean follow-up was 19 months (range, 6-32 months). Patency rate was 86%. Mitomycin appears to have an important role in reducing postoperative scarring, which may obviate the need for repeated and more extensive surgery.
Effect of mitomycin C on endoscopic dacryocystorhinostomy.
Apuhan, Tayfun; Yıldırım, Yavuz Selim; Eroglu, Faruk; Sipahier, Ali
2011-11-01
The objectives of the study were to retrospectively analyze the efficacy of intraoperative mitomycin C (MMC) in endoscopic dacryocystorhinostomy (END-DCR) and compare it with external dacryocystorhinostomy (EXT-DCR). For the comfort of the patients, the procedures were performed under general anesthesia. Intraoperatively during the END-DCR, we applied a cotton pledget soaked in a 0.5 mg/mL solution of MMC for 2.5 minutes. In each patient, a silicone tube was placed into the nasal cavity via the superior and inferior punctae and fixed in the vestibule. We retrospectively analyzed the medical records of patients who underwent END-DCR and EXT-DCR. A retrospective review was performed on the medical records of 43 patients (with a total of 49 affected cases) who were admitted to our clinics with a primary complaint of epiphora. The overall success rates were 91% in END-DCR+MMC and 71.5% in EXT-DCR. Mitomycin C, in appropriate doses, minimizes postoperative granulations and fibrosis. Adjunctive use of MMC is considered to increase the success rate of END-DCR.
Ionic Liquid Epoxy Resin Monomers
NASA Technical Reports Server (NTRS)
Paley, Mark S. (Inventor)
2013-01-01
Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.
Pelletized ponderosa pine bark for adsorption of toxic heavy metals from water
Miyoung Oh; Mandla A. Tshabalala
2007-01-01
Bark flour from ponderosa pine (Pinus ponderosa) was consolidated into pellets using citric acid as cross-linking agent. The pellets were evaluated for removal of toxic heavy metals from synthetic aqueous solutions. When soaked in water, pellets did not leach tannins, and they showed high adsorption capacity for Cu(ll), Zn(ll), Cd(ll). and Ni(ll) under both equilibrium...
Induction of micronuclei by HTLV-I Tax: a cellular assay for function.
Majone, F; Semmes, O J; Jeang, K T
1993-03-01
Cellular chromosomal damage is ubiquitously seen in HTLV-I-transformed lymphocytes. It is also characteristic of cells that have been exposed to mutagens. A sensitive measurement for mutagen-induced DNA damage is the formation of micronuclei in treated cells. Because current evidence suggests that HTLV-I Tax is etiologically linked to transformation, we tested for its activity in inducing micronuclei. We show here that transfection into cells of a Tax-producing plasmid rapidly induced the formation of micronuclei. This effect cooperated with that of a mutagen (mitomycin C) and was correlated with the inherent trans-activation capacity of Tax. These findings suggest that a commonly used mutagen assay could be a quick biological test for putatively oncogenic proteins.
An evaluation of the choice of feeder cell growth arrest for the production of cultured epidermis.
Chugh, Rishi Man; Chaturvedi, Madhusudan; Yerneni, Lakshmana Kumar
2015-12-01
Growth arrested 3T3 cells have been used as feeder cells in human epidermal keratinocyte cultures to produce cultured epidermal autografts for the treatment of burns. The feeder cells were ideally growth-arrested by gamma-irradiation. Alternatively, growth arrest by mitomycin C treatment is a cost effective option. We compared the functional efficacy of these two approaches in keratinocyte cultures by colony forming efficiency, the net growth area of colonies, BrdU labeling and histological features of cultured epidermal sheets. The growth area estimation involved a semi-automated digital technique using the Adobe Photoshop and comprised of isolation and enumeration of red pixels in Rhodamine B-stained keratinocyte colonies. A further refinement of the technique led to the identification of critical steps to increasing the degree of accuracy and enabling its application as an extension of colony formation assay. The results on feeder cell functionality revealed that the gamma irradiated feeders influenced significantly higher colony forming efficiency and larger growth area than the mitomycin C treated feeders. The BrdU labeling study indicated significant stimulation of the overall keratinocyte proliferation by the gamma irradiated feeders. The cultured epidermal sheets produced by gamma feeders were relatively thicker than those produced by mitomycin C feeders. We discussed the clinical utility of mitomycin C feeders from the viewpoint of cost-effective burn care in developing countries. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Wang, Yitong; Wang, Ling; Yan, Miaomiao; Dong, Shuli; Hao, Jingcheng
2017-08-30
Functional DNA molecules have been introduced into polymer-based nanocarrier systems to incorporate chemotherapy drugs for cancer therapy. Here is the first report of dual-responsive microgels composed of a core of Au nanorods and a shell of magnetic ionic liquid and DNA moieties in the cross-linking network simultaneously, as effective drug delivery vectors. TEM images indicated a magnetic polymer shell has an analogous "doughnut" shape which loosely surround the AuNRs core. When irradiated with a near-infrared-light (near-IR) laser, Au nanorods are the motors which convert the light to heat, leading to the release of the encapsulated payloads with high controllability. DNA acts not only as a cross-linker agent, but also as a gatekeeper to regulate the release of drugs. The internalization study and MTT assay confirm that these core-shell DNA microgels are excellent candidates which can enhance the cytotoxicity of cancer cells controlled by near-IR laser and shield the high toxicity of chemotherapeutic agents to improve the killing efficacy of chemotherapeutic agents efficiently in due course.
Gridelli, C; Perrone, F; Palmeri, S; D'Aprile, M; Cognetti, F; Rossi, A; Gebbia, V; Pepe, R; Veltri, E; Airoma, G; Russo, A; Incoronato, P; Scinto, A F; Palazzolo, G; Natali, M; Leonardi, V; Gallo, C; De Placido, S; Bianco, A R
1996-10-01
To compare mitomycin C plus vindesine plus etoposide (MEV) vs. mitomycin C plus vindesine plus cisplatin (MVP) in the treatment of stage IV non-small-cell lung cancer. 204 patients were entered in a phase III multicentre randomised trial from June 1990 to December 1994 and stratified according to the ECOG performance status (0-1 vs. 2). MVP was given in the following dosages: mitomycin C 8 mg/m2+vindesine 3 mg/m2+cisplatin 100 mg/m2 i.v. day 1 and vindesine 3 mg/m2 i.v. day 8 with cycles repeated every 4 weeks. MEV was given in the following dosages: mitomycin C 8 mg/m2+vindesine 3 mg/ m2 i.v. day 1 and etoposide 100 mg/m2 i.v. days 1 to 3 with cycles repeated every 3 weeks. For both treatments a maximum of 6 cycles was planned. Response and toxicity were evaluated according to WHO. Subjective responses were assessed by numerical scales. Analyses were made on the basis of intent to treat. The objective response rate was 21.4% (1 CR + 21 PR among 103 patients) in the MEV and 28.7% (1 CR + 28 PR among 101 patients) in the MVP arm (P = 0.48). Symptoms were similar in the two arms. 196 patients progressed and 182 died. The median times to progression were 10 weeks (95% CI 9-12) and 12 weeks (95% CI 10-15) and median survivals were 29 weeks (95% CI 25-36) and 28 weeks (95% CI 25-35) in the MEV and MVP arms, respectively. The relative risks of progressing and of dying were 0.89 (95% CL 0.66-1.20) and 0.96 (95% CL 0.71-1.30), respectively, for patients receiving MVP as compared with those receiving MEV at multivariate analysis adjusted by sex, age, histologic type, number of metastatic sites, performance status at entry, and centre. In the present study, no significant differences were observed in response rate, survival or palliation of symptoms between the MEV and MVP regimens, while toxicity was significantly more frequent and severe with MVP. Thus, MEV should be considered a reasonable alternative to the MVP regimen in the treatment of stage IV NSCLC.
Manickam, Balamurugan; Sreedharan, Rajesh; Elumalai, Manogaran
2014-01-01
One of the popular approaches in controlling drug delivery from the polymeric carriers is suitably achieved by the inclusion of crosslinking agents into the formulations at different concentrations. Nevertheless, addition of the chemical crosslinkers such as glutaraldehyde, formaldehyde etc, used in the drug delivery systems causes very serious cytotoxic reactions. These chemical crosslinking agents did not offer any significant advantageous effects when compared to the natural crosslinking agents for instance genipin, which is quite less toxic, biocompatible and offers very stable crosslinked products. Based on the earlier reports the safety of this particular natural crosslinker is very well established, since it has been widely used as a Chinese traditional medicine for long-time, isolated from fruits of the plant Gardenia jasminoides Ellis. This concise article largely portrayed the value of this unique natural crosslinker, utilized in controlling the drug delivery from the various formulations.
Bilal, Muhammad; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong
2017-03-01
In the present study, horseradish peroxidase (HRP), in-house isolated crude cocktail enzyme, from Armoracia rusticana was cross-linked using a new type of cross-linking agent, i.e., ethylene glycol-bis [succinic acid N-hydroxysuccinimide, (EG-NHS)], which is mild in nature as compared to the glutaraldehyde (GA). The HRP-immobilized cross-linked enzyme aggregates (HRP-CLEAs) were developed using a wider range of EG-NHS and notably no adverse effect was observed. In a comparative evaluation, in the case of EG-NHS, a high-level stability in the residual activity was recorded, whereas a sharp decrease was observed in the case of glutaraldehyde. Following initial cross-linker evaluation, the HRP-CLEAs were tested to investigate their bio-catalytic efficacy for bioremediation purposes using a newly developed packed bed reactor system (PBRS). A maximal of 94.26% degradation of textile-based methyl orange dye was recorded within the shortest time frame, following 91.73% degradation of basic red 9, 84.35% degradation of indigo, 81.47% degradation of Rhodamin B, and 73.6% degradation of Rhodamine 6G, respectively, under the same working environment. Notably, the HRP-CLEAs retained almost 60% of its original activity after methyl orange dye degradation in seven consecutive cycles using PBRS. Furthermore, after HRP-CLEAs-mediated treatment in the PBRS, a significant toxicity reduction in the dye samples was recorded as compared to their pristine counterparts. In conclusion, the results suggest that the newly developed HRP-CLEAs have a great potential for industrial exploitation, to tackle numerous industrial dye-based emergent pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Preparation and characterization of (St-DVB-MAA) ion exchange resins
NASA Astrophysics Data System (ADS)
Jiang, Shanquan; Sun, Xiangwei; Ling, Lixing; Wang, Shumin; Wu, Wufeng; Cheng, Shihong; Hu, Yue; Zhong, Chunyan
2017-08-01
In this paper, used polyvinyl alcohol as dispersing agent, Benzoyl peroxide as initiator of polymerization, Divinyl benzene as cross-linking agent, Styrene and 2-Methylpropenoic acid as monomer, ion exchange resin (copolymer of St-DVB-MAA)were prepared by suspension polymerization on 80°C. The structures, components and properties of the prepared composite micro gels were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA). The experiment of ion exchange was conducted by resin to deal with copper ions in the solution. The result showed that performance of the ion exchange capacity was excellent, which impacted by pH.
Bossi, A; Whitcombe, M J; Uludag, Y; Fowler, S; Chianella, I; Subrahmanyam, S; Sanchez, I; Piletsky, S A
2010-05-15
A "grafting from" approach has been used for controlled deposition of cross-linked polymers by living radical polymerisation. Borosilicate glass was modified with N,N-diethylaminodithiocarbamoylpropyl(trimethoxy)silane, in order to confine the iniferter reactive groups solely at its surface, then placed in solution with monomers and cross-linker. The polymerisation was initiated by UV irradiation. Formation of the cross-linked polymers was studied in terms of time course of the reaction, type of monomers incorporated and influence of oxygen. Grafted surfaces were characterised by AFM, FT-IR, ellipsometry and contact angle measurements. The ability to control the grafted layer improved dramatically when the chain terminator agent, N,N-N',N'-tetraethyl thiuram disulphide (TED) was added. Upon irradiation TED increases the concentration of passive capping radicals and decreases the possibility of recombination of active macro-radicals, thus prolonging their lifetime. In the absence of TED the thickness of produced coatings was below 10 nm. TED added at different concentrations assisted in the formation of grafted layers of 10-130 nm thickness. Iniferter chemistry in the presence of TED can be used for growing nanometre-scale polymer layers on solid supports. It constitutes a robust general platform for controlled grafting and offer a general solution to address the needs of surface derivatisation in sensors technology. 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, E.M. Jr.; Gale, G.R.
Cisplatin, an agent widely used in the chemotherapy of a variety of human malignancies, is often dose-limited owing to its nephrotoxicity. Some of the approaches under consideration, regarding the reduction of cisplatin nephrotoxicity, include the use of hydration and osmotic diuresis, pharmacological diuretics, chelating agents or agents which otherwise react with cisplatin or reverse cisplatin-induced deoxyribonucleic acid cross-links, and antioxidants to destroy free radicals, especially superoxide radicals, produced by cisplatin. The effects of each of these and other interventions on cisplatin-induced nephrotoxicity are delineated, along with their proposed mechanisms and effects on therapeutic efficacy. The current status of development ofmore » organoplatinum analogs yielding congeners with less nephrotoxicity and greater efficacy is discussed briefly. Finally, a possible role of endogenous and/or exogenous prostaglandins in protecting against or reversing heavy metal nephrotoxicity is suggested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, Etsuo; Fukuda, Hozumi; Shibuya, Hitoshi
The authors investigate the frequency of sister chromatid exchange (SCE) after the addition of gadolinium (Gd)-DTPA to venous blood samples. Venous blood was obtained from nonsmokers. Samples were incubated with Gd-DTPA alone or in combination with mitomycin C, cytarabine, and dimethyl sulfoxide (DMSO), and then evaluated for SCEs. The frequency of SCE increased with the concentration of Gd-DTPA and as each chemotherapeutic agent was added. Sister chromatid exchange frequencies were lower when the blood was treated with a combination of Gd-DTPA and DMSO compared with Gd-DTPA alone. The increase in frequency of SCE seen after the addition of Gd-DTPA wasmore » decreased by the addition of DMSO, indicating the production of hydroxyl radicals. The effect likely is dissociation-related. 14 refs., 6 tabs.« less
An improved brine shrimp larvae lethality microwell test method.
Zhang, Yi; Mu, Jun; Han, Jinyuan; Gu, Xiaojie
2012-01-01
This article described an improved brine shrimp larvae lethality microwell test method. A simply designed connecting vessel with alternative photoperiod was used to culture and collect high yield of active Artemia parthenogenetica nauplii for brine shrimp larvae lethality microwell test. Using this method, pure A. parthenogenetica nauplii suspension was easily cultured and harvested with high density about 100-150 larvae per milliliter and the natural mortality was reduced to near zero by elimination of unnecessary artificial disturbance. And its sensitivity was validated by determination of LC(50)-24 h of different reference toxicants including five antitumor agents, two pesticides, three organic pollutants, and four heavy metals salts, most of which exhibited LC(50)-24 h between 0.07 and 58.43 mg/L except for bleomycin and mitomycin C with LC(50)-24 h over 300 mg/L.
A review of Explosives Used in Explosive Excavation Research Laboratory Projects Since 1969
1974-12-01
Boron compounds Potassium dichramat« Antimony compounds Bismuth compounds P«riodat«s Litharge Guar gum (polysaccSarid«) Storch Acrylomid... gum , and gelled with a cross- linking agent. The i-arliest slurries used Government surplus TNT as a fuel-sensitizer, but the majority o...Nonexplosive TNT PETN RDX Rentalite Composition B Guanidine nitrate Smokeless powder Nitres*: ch Alky’amine nitrates Nit.omannite Aluminum Sugar
Oligosilylarylnitrile: The Thermoresistant Thermosetting Resin with High Comprehensive Properties.
Wang, Mingcun; Ning, Yi
2018-04-11
One of the highest thermoresistant thermosetting resins ever studied so far, oligosilylarylnitrile resin, was investigated first in this study. Oligosilylarylnitrile was synthesized by lithium-reduced Wurtz-Fittig condensation reaction, and the prepared viscous resin exhibited moderate rheological behaviors while heated purely or together with 20% polysilazane as a cross-linking agent. The thermal curing temperatures were found by differential scanning calorimetry at 268 °C (pure) and 158 °C (with the polysilazane cross-linking agent), which is comparably close to that of polysilylarylacetylene resin (normally at 220-250 °C) but much lower than those of polyimide and phthalonitrile resins (normally >300 °C), indicating the admirable material processability of oligosilylnitrile. The cured oligosilylarylnitrile resins have extremely high thermal resistance, indicated by the results of thermogravimetric analysis (the mass residue at 800 °C is >90% under N 2 ) and dynamic mechanical analysis (the glass-transition temperature is >420 °C). The mechanical property of the oligosilylarylnitrile-matrixed silica-cloth reinforced laminate is comparably close to those of polyimide and phthalonitrile but much higher than that of polysilylarylacetylene, indicating the enviable thermal and mechanical properties of oligosilylnitrile. Thus, among the high-temperature resins ever studied so far, the oligosilylarylnitrile resin was found to have the almost best comprehensive characteristics of processability and properties.
Adesina, Simeon K; Wight, Scott A; Akala, Emmanuel O
2014-11-01
Nanoparticle size is important in drug delivery. Clearance of nanoparticles by cells of the reticuloendothelial system has been reported to increase with increase in particle size. Further, nanoparticles should be small enough to avoid lung or spleen filtering effects. Endocytosis and accumulation in tumor tissue by the enhanced permeability and retention effect are also processes that are influenced by particle size. We present the results of studies designed to optimize cross-linked biodegradable stealth polymeric nanoparticles fabricated by dispersion polymerization. Nanoparticles were fabricated using different amounts of macromonomer, initiators, crosslinking agent and stabilizer in a dioxane/DMSO/water solvent system. Confirmation of nanoparticle formation was by scanning electron microscopy (SEM). Particle size was measured by dynamic light scattering (DLS). D-optimal mixture statistical experimental design was used for the experimental runs, followed by model generation (Scheffe polynomial) and optimization with the aid of a computer software. Model verification was done by comparing particle size data of some suggested solutions to the predicted particle sizes. Data showed that average particle sizes follow the same trend as predicted by the model. Negative terms in the model corresponding to the cross-linking agent and stabilizer indicate the important factors for minimizing particle size.
Cross-linked high amylose starch derivatives for drug release III. Diffusion properties.
Mulhbacher, Jérôme; Mateescu, Mircea Alexandru
2005-06-13
Acetate (Ac-), aminoethyl (AE-) and carboxymethyl (CM-) derivatives of cross-linked high amylose starch (HASCL-6) were previously shown to control the release of drugs over 20 h from highly loaded (up to 60% drug) monolithic tablets. This report presents a diffusion analysis, aimed to facilitate a better understanding of the mechanisms involved in the control of the drug release from these hydrogels. The diffusion was found to depend on the molecular weight of the diffusant, whereas the partition coefficient depended on the affinities of the diffusant for the polymers and for the dissolution media via attractive or repulsive ionic interactions. The diffusion was also affected by the swelling of CM-HASCL-6, which, unexpectedly, increased with the decrease of the ionic strength. This diffusion analysis completes the swelling studies of HASCL-6 and of its derivatives, allowing the prediction of release kinetics of various active agents.
Yuksel, Erdem; Yalcin, Nuriye Gokçen; Kilic, Gaye; Cubuk, Mehmet Ozgur; Ozmen, Mehmet Cuneyt; Altay, Aylin; Çağlar, Kayhan; Bilgihan, Kamil
2016-01-01
To investigate the agents of bacterial contamination of contact lenses after corneal collagen cross-linking (CCL), and to present the possible changes of ocular flora after riboflavin/ultraviolet A. Seventy-two contact lenses of patients who underwent CCL and 41 contact lenses of patients who underwent photorefractive keratectomy (PRK) as control group were enrolled to the study. After 48 h of incubation, broth culture media was transferred to plates. Samples were accepted as positive if one or more colony-forming units were shown. There were positive cultures in 12 (16.7%) contact lenses in the CCL group and 5 (12.2%) had positive cultures in PRK group. Coagulase-negative staphlycocci (CNS) were the most frequent microorganism. Alpha hemolytic streptococci and Diphteroid spp. were the other isolated microorganisms. Bacterial colonization can occur during and early after the CCL procedure in epithelial healing. To prevent corneal infections after the treatment, prophylactic antibiotics should be prescribed.
Superabsorbing gel for actinide, lanthanide, and fission product decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, Michael D.; Mertz, Carol J.
The present invention provides an aqueous gel composition for removing actinide ions, lanthanide ions, fission product ions, or a combination thereof from a porous surface contaminated therewith. The composition comprises a polymer mixture comprising a gel forming cross-linked polymer and a linear polymer. The linear polymer is present at a concentration that is less than the concentration of the cross-linked polymer. The polymer mixture is at least about 95% hydrated with an aqueous solution comprising about 0.1 to about 3 percent by weight (wt %) of a multi-dentate organic acid chelating agent, and about 0.02 to about 0.6 molar (M)more » carbonate salt, to form a gel. When applied to a porous surface contaminated with actinide ions, lanthanide ions, and/or other fission product ions, the aqueous gel absorbs contaminating ions from the surface.« less
Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer
Li, Yuzhan; Pruitt, Cole; Rios, Orlando; ...
2015-04-10
Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less
Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuzhan; Pruitt, Cole; Rios, Orlando
Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less
Vedaldi, D; Dall'Acqua, F; Caffieri, S; Baccichetti, F; Carlassare, F; Bordin, F; Chilin, A; Guiotto, A
1991-01-01
Photochemical and photobiological properties of a new isoster of psoralen, 4,4',5'-trimethyl-8-azapsoralen (4,4',5'-TMAP), have been studied. This compound shows a high DNA-photobinding rate, higher than that of 8-methoxypsoralen (8-MOP), forming both monoadducts and inter-strand cross-links. The yield of cross-links, however, is markedly lower than that of 8-MOP. Antiproliferative activity of 4,4',5'-TMAP, in terms of DNA synthesis inhibition in Ehrlich ascites tumor cells, is higher than that of 8-MOP. Mutagenic activity on E. coli WP2 R46+ cells appeared similar to or even lower than that of 8-MOP. This new compound applied on depilated guinea pig skin and irradiated with UVA did not show any skin-phototoxicity. On the basis of these properties 4,4',5'-TMAP appears to be a potential photochemotherapeutic agent.
Identification of mammalian proteins cross-linked to DNA by ionizing radiation.
Barker, Sharon; Weinfeld, Michael; Zheng, Jing; Li, Liang; Murray, David
2005-10-07
Ionizing radiation (IR) is an important environmental risk factor for various cancers and also a major therapeutic agent for cancer treatment. Exposure of mammalian cells to IR induces several types of damage to DNA, including double- and single-strand breaks, base and sugar damage, as well as DNA-DNA and DNA-protein cross-links (DPCs). Little is known regarding the biological consequences of DPCs. Identifying the proteins that become cross-linked to DNA by IR would be an important first step in this regard. We have therefore undertaken a proteomics study to isolate and identify proteins involved in IR-induced DPCs. DPCs were induced in AA8 Chinese hamster ovary or GM00637 human fibroblast cells using 0-4 gray of gamma-rays under either aerated or hypoxic conditions. DPCs were isolated using a recently developed method, and proteins were identified by mass spectrometry. We identified 29 proteins as being cross-linked to DNA by IR under aerated and/or hypoxic conditions. The identified proteins include structural proteins, actin-associated proteins, transcription regulators, RNA-splicing components, stress-response proteins, cell cycle regulatory proteins, and GDP/GTP-binding proteins. The involvement of several proteins (actin, histone H2B, and others) in DPCs was confirmed by using Western blot analysis. The dose responsiveness of DPC induction was examined by staining one-dimensional SDS-polyacrylamide gels with SYPRO Tangerine followed by analysis using fluorescence imaging. Quantitation of the fluorescence signal indicated no significant difference in total yields of IR-induced DPCs generated under aerated or hypoxic conditions, although differences were observed for several individual protein bands.
Salian, Vishal D; Vaughan, Asa D; Byrne, Mark E
2012-06-01
In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture. Copyright © 2012 John Wiley & Sons, Ltd.
Franke, Karolin; Kettering, Melanie; Lange, Kathleen; Kaiser, Werner A; Hilger, Ingrid
2013-01-01
The presence of multidrug resistance-associated protein (MRP) in cancer cells is known to be responsible for many therapeutic failures in current oncological treatments. Here, we show that the combination of different effectors like hyperthermia, iron oxide nanoparticles, and chemotherapeutics influences expression of MRP 1 and 3 in an adenocarcinoma cell line. BT-474 cells were treated with magnetic nanoparticles (MNP; 1.5 to 150 μg Fe/cm(2)) or mitomycin C (up to 1.5 μg/cm(2), 24 hours) in the presence or absence of hyperthermia (43°C, 15 to 120 minutes). Moreover, cells were also sequentially exposed to these effectors (MNP, hyperthermia, and mitomycin C). After cell harvesting, mRNA was extracted and analyzed via reverse transcription polymerase chain reaction. Additionally, membrane protein was isolated and analyzed via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. When cells were exposed to the effectors alone or to combinations thereof, no effects on MRP 1 and 3 mRNA expression were observed. In contrast, membrane protein expression was influenced in a selective manner. The effects on MRP 3 expression were less pronounced compared with MRP 1. Treatment with mitomycin C decreased MRP expression at high concentrations and hyperthermia intensified these effects. In contrast, the presence of MNP only increased MRP 1 and 3 expression, and hyperthermia reversed these effects. When combining hyperthermia, magnetic nanoparticles, and mitomycin C, no further suppression of MRP expression was observed in comparison with the respective dual treatment modalities. The different MRP 1 and 3 expression levels are not associated with de novo mRNA expression, but rather with an altered translocation of MRP 1 and 3 to the cell membrane as a result of reactive oxygen species production, and with shifting of intracellular MRP storage pools, changes in membrane fluidity, etc, at the protein level. Our results could be used to develop new treatment strategies by repressing mechanisms that actively export drugs from the target cell, thereby improving the therapeutic outcome in oncology.
Franke, Karolin; Kettering, Melanie; Lange, Kathleen; Kaiser, Werner A; Hilger, Ingrid
2013-01-01
Purpose The presence of multidrug resistance-associated protein (MRP) in cancer cells is known to be responsible for many therapeutic failures in current oncological treatments. Here, we show that the combination of different effectors like hyperthermia, iron oxide nanoparticles, and chemotherapeutics influences expression of MRP 1 and 3 in an adenocarcinoma cell line. Methods BT-474 cells were treated with magnetic nanoparticles (MNP; 1.5 to 150 μg Fe/cm2) or mitomycin C (up to 1.5 μg/cm2, 24 hours) in the presence or absence of hyperthermia (43°C, 15 to 120 minutes). Moreover, cells were also sequentially exposed to these effectors (MNP, hyperthermia, and mitomycin C). After cell harvesting, mRNA was extracted and analyzed via reverse transcription polymerase chain reaction. Additionally, membrane protein was isolated and analyzed via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Results When cells were exposed to the effectors alone or to combinations thereof, no effects on MRP 1 and 3 mRNA expression were observed. In contrast, membrane protein expression was influenced in a selective manner. The effects on MRP 3 expression were less pronounced compared with MRP 1. Treatment with mitomycin C decreased MRP expression at high concentrations and hyperthermia intensified these effects. In contrast, the presence of MNP only increased MRP 1 and 3 expression, and hyperthermia reversed these effects. When combining hyperthermia, magnetic nanoparticles, and mitomycin C, no further suppression of MRP expression was observed in comparison with the respective dual treatment modalities. Discussion The different MRP 1 and 3 expression levels are not associated with de novo mRNA expression, but rather with an altered translocation of MRP 1 and 3 to the cell membrane as a result of reactive oxygen species production, and with shifting of intracellular MRP storage pools, changes in membrane fluidity, etc, at the protein level. Our results could be used to develop new treatment strategies by repressing mechanisms that actively export drugs from the target cell, thereby improving the therapeutic outcome in oncology. PMID:23378758
Condell, Orla; Iversen, Carol; Cooney, Shane; Power, Karen A.; Walsh, Ciara; Burgess, Catherine
2012-01-01
Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities. PMID:22367085
Condell, Orla; Iversen, Carol; Cooney, Shane; Power, Karen A; Walsh, Ciara; Burgess, Catherine; Fanning, Séamus
2012-05-01
Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.
NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig E. Barnes
2013-03-05
A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosingmore » the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).« less
Vijayakumar, Vijayalekshmi; Khastgir, Dipak
2018-01-01
A series of novel ionic cross-linked chitosan (CS) based hybrid nanocomposites were prepared by using polyaniline/nano silica (PAni/SiO 2 ) as inorganic filler and sulfuric acid as an ionic cross-linking agent. The CS-PAni/SiO 2 nanocomposites show enhanced mechanical properties and improved oxidative stabilities. These nanocomposites can be effectively used as environmental friendly proton exchange membranes. Incorporation of PAni/SiO 2 into CS matrix enhances water uptake and facilitates the phase separation which enables the formation of hydrophilic domains and improves the proton transport. Moreover, the doped polyaniline also provides some additional pathways for proton conduction. The membrane containing 3wt% loading of PAni/SiO 2 in chitosan (CS-PAni/SiO 2 -3) exhibits high proton conductivity at 80°C (8.39×10 -3 Scm -1 ) in fully hydrated state due to its excellent water retention properties. Moreover, methanol permeability of the ionic cross-linked CS-PAni/SiO 2 nanocomposite membranes significantly reduces with the addition of PAni/SiO 2 nano particles. The CS-PAni/SiO 2 -3 composite membrane displays the best overall performance as a polymer electrolyte membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.
Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction.
Fairbanks, Benjamin D; Singh, Samir P; Bowman, Christopher N; Anseth, Kristi S
2011-04-26
Various techniques have been adopted to impart a biological responsiveness to synthetic hydrogels for the delivery of therapeutic agents as well as the study and manipulation of biological processes and tissue development. Such techniques and materials include polyelectrolyte gels that swell and deswell with changes in pH, thermosensitive gels that contract at physiological temperatures, and peptide cross-linked hydrogels that degrade upon peptidolysis by cell-secreted enzymes. Herein we report a unique approach to photochemically deform and degrade disulfide cross-linked hydrogels, mitigating the challenges of light attenuation and low quantum yield, permitting the degradation of hydrogels up to 2 mm thick within 120 s at low light intensities (10 mW/cm(2) at 365 nm). Hydrogels were formed by the oxidation of thiol-functionalized 4-armed poly(ethylene glycol) macromolecules. These disulfide cross-linked hydrogels were then swollen in a lithium acylphosphinate photoinitiator solution. Upon exposure to light, photogenerated radicals initiate multiple fragmentation and disulfide exchange reactions, permitting and promoting photodeformation, photowelding, and photodegradation. This novel, but simple, approach to generate photoadaptable hydrogels portends the study of cellular response to mechanically and topographically dynamic substrates as well as novel encapsulations by the welding of solid substrates. The principles and techniques described herein hold implications for more than hydrogel materials but also for photoadaptable polymers more generally.
Yu, Chen; Tang, Xiaozhi; Liu, Shaowei; Yang, Yuling; Shen, Xinchun; Gao, Chengcheng
2018-05-22
In this study, Laponite RD (LRD) cross-linked hydrogels consisting of starch, polyvinyl alcohol (PVA) were prepared by freezing/thawing process and the influence of LRD content on structure and properties of hydrogels was investigated. FTIR showed a new structure of hydrogen bonding might result from cross-linking reactions between LRD and polymers. X-ray diffraction (XRD) analysis showed that high degree of exfoliation of LRD clay layers had occurred during the preparation of hydrogels. The synergistic effect of physical cross-linking by freeze/thaw cycles and by LRD led to more porous, uniform and stable network, which was shown in SEM images. The melting temperature decreased and thermal stability got improved with the increase of LRD content. Reswelling ratios of hydrogels had the highest value when LRD content was 10%. Additionally, cadmium ion absorption capacity of the hydrogel was studied and the results showed that increasing the concentration of LRD increased absorption ratio and amount of Cd 2+ ion in the solution. In a word, LRD could be used as a physical crosslinker and reinforced agent for starch-PVA based hydrogels and the formed hydrogels could be used as novel type and high capacity absorbent materials in heavy metal removing processes. Copyright © 2018. Published by Elsevier B.V.
Functionalized graphene oxide nanoparticles for cancer cell-specific delivery of antitumor drug.
Zhao, Xubo; Yang, Liangwei; Li, Xiaorui; Jia, Xu; Liu, Lei; Zeng, Jin; Guo, Jinshan; Liu, Peng
2015-01-21
The unique reduction-triggered functional graphene oxide nanoparticles (GON) with well-defined size and uniform distribution were designed as an innovative drug delivery platform for cancer treatment for the first time, via the redox radical polymerization of methacrylic acid from the polyethylene glycol (PEG) modified GON (GON-PEG), following by cross-linking with cystamine. Thermogravimetric analysis demonstrates that the typical PMAA2-GON-PEG carriers contain about 16 wt % PEG segments and 33 wt % poly(methacrylic acid) (PMAA) brushes. PEG moieties are incorporated to make the drug delivery platforms stealthy during blood circulation. Notably, introducing the cross-linked PMAA brushes efficiently minimizes the premature release of doxorubicin (DOX) in the stimulated normal tissues, and accelerates DOX release in the stimulated tumor tissues through response to reduce agent. The carriers showed a 6-fold faster releasing rate at pH 5.0 in the presence of 10 mM glutathione (GSH) (stimulated tumor tissues) than at pH 7.4 with 10 μM GSH (stimulated normal tissues). In vitro cytotoxicity test also showed that the cross-linked PMAA2-GON-PEG (CPMAA2-GON-PEG) carriers had remarkable cytocompatibility, and that the DOX-loaded CPMAA2-GON-PEG had excellent killing capability to SiHa cells.
Sarici, Ahmet M; Arvas, Sema; Pazarli, Halit
2013-09-01
To report the results of patients undergoing combined excision, cryotherapy, and intraoperative mitomycin-C (EXCRIM) for primary ocular surface squamous neoplasia (OSSN) METHODS: A retrospective review of a non-comparative interventional case series. Histopathologically confirmed primary localized (less than four clock hours) OSSN treated with EXCRIM using adjuvant 0.02 % mitomycin-C (MMC) were included in the study. The main outcome measures were recurrence and complications related to MMC. The study enrolled 28 eyes of 28 patients with OSSN with a median age of 64.5 (range 43 to 84) years. The mean tumor size was 6.9 × 4.35 mm. There was corneal involvement in 23 of 28 (82 %). Seven patients (21 %) had delayed epithelial healing. Two of eight patients (25 %) with squamous cell carcinoma (SCC) had positive lateral margins. There were no recurrences over a mean follow-up of 49 months (range 24 to 96). The excision of OSSN combined with cryotherapy and intraoperative MMC is effective with a low recurrence rate. Long-term follow-up yielded favorable results.
Histopathology of a functioning mitomycin-C trabeculectomy.
Liang, Steve Y-W; Lee, Graham A; Whitehead, Kevin
2009-04-01
The ideal trabeculectomy bleb is diffuse, normally vascularized and characterized by microcystic change in the overlying conjunctiva. We compare and contrast the histopathology of a normally functioning mitomycin-C trabeculectomy site obtained from an eye enucleated for iris melanoma with abnormal blebs discussed in the literature. Representative sections of the normally functioning bleb were examined under the light microscope. The conjunctiva is composed of a uniform three-layered non-keratinizing stratified squamous epithelium overlying a single layer of oedematous basal cells. The conjunctival stroma consisted of loose connective tissue, traversed by capillaries and scattered small cystic spaces lined by endothelial cells. There were no goblet cells and few inflammatory cells and fibroblasts. The scleral trapdoor was evident as a cleft in the scleral wall in communication with the anterior chamber at the surgically created sclerostomy. Because the histopathological findings in our case correlate well with this clinical appearance, we conclude that whereas augmentation with anti-metabolites, such as mitomycin-C, can be associated with significantly altered conjunctival histopathology and consequent hypotony, but, if used carefully, normal architecture is conserved.
Increasing dwell time of mitomycin C in the upper tract with a reverse thermosensitive polymer.
Wang, Agnes J; Goldsmith, Zachariah G; Neisius, Andreas; Astroza, Gaston M; Oredein-McCoy, Olugbemisola; Iqbal, Muhammad W; Simmons, W Neal; Madden, John F; Preminger, Glenn M; Inman, Brant A; Lipkin, Michael E; Ferrandino, Michael N
2013-03-01
Abstract Background and Purpose: Topical chemotherapy for urothelial cancer is dependent on adequate contact time of the chemotherapeutic agent with the urothelium. To date, there has not been a reliable method of maintaining this contact for renal or ureteral urothelial carcinoma. We evaluated the safety and feasibility of using a reverse thermosensitive polymer to improve dwell times of mitomycin C (MMC) in the upper tract. Using a porcine model, four animals were treated ureteroscopically with both upper urinary tracts receiving MMC mixed with iodinated contrast. One additional animal received MMC percutaneously. The treatment side had ureteral outflow blocked with a reverse thermosensitive polymer plug. MMC dwell time was monitored fluoroscopically and intrarenal pressures measured. Two animals were euthanized immediately, and three animals were euthanized 5 days afterward. In control kidneys, drainage occurred at a mean of 5.3±0.58 minutes. Intrarenal pressures stayed fairly stable: 9.7±14.0 cm H20. In treatment kidneys, dwell time was extended to 60 minutes, when the polymer was washed out. Intrarenal pressures in the treatment kidneys peaked at 75.0±14.7 cm H20 and reached steady state at 60 cm H20. Pressures normalized after washout of the polymer with cool saline. Average washout time was 11.8±9.6 minutes. No histopathologic differences were seen between the control and treatment kidneys, or with immediate compared with delayed euthanasia. A reverse thermosensitive polymer can retain MMC in the upper urinary tract and appears to be safe from our examination of intrarenal pressures and histopathology. This technique may improve the efficacy of topical chemotherapy in the management of upper tract urothelial carcinoma.
Solubilization and Stability of Mitomycin C Solutions Prepared for Intravesical Administration.
Myers, Alan L; Zhang, Yan-Ping; Kawedia, Jitesh D; Zhou, Ximin; Sobocinski, Stacey M; Metcalfe, Michael J; Kramer, Mark A; Dinney, Colin P N; Kamat, Ashish M
2017-06-01
Mitomycin C (MMC) is an antitumor agent that is often administered intravesically to treat bladder cancer. Pharmacologically optimized studies have suggested varying methods to optimize delivery, with drug concentration and solution volume being the main drivers. However, these MMC concentrations (e.g. 2.0 mg/mL) supersede its solubility threshold, raising major concerns of inferior drug delivery. In this study, we seek to confirm that the pharmacologically optimized MMC concentrations are achievable in clinical practice through careful modifications of the solution preparation methods. MMC admixtures (1.0 and 2.0 mg/mL) were prepared in normal saline using conventional and alternative compounding methods. Conventional methodology resulted in poorly soluble solutions, with many visible particulates and crystallates. However, special compounding methods, which included incubation of solutions at 50 °C for 50 min followed by storage at 37 °C, were sufficient to solubilize drug. Chemical degradation of MMC solutions was determined over 6 h using high-performance liquid chromatography (HPLC) analytics, while physical stability was tested in parallel. Immediately following the 50 min incubation, both MMC solutions exhibited approximately 5-7% drug degradation. Based on the measured concentrations and linear regression of degradation plots, additional storage of these solutions at 37 °C for 5 h retained chemical stability criterion (< 10% overall drug loss). No physical changes were observed in any solutions at any test time points. We recommend that the described alternative preparation methods may improve intravesicular delivery of MMC in this urological setting, and advise that clinicians employing these changes should closely monitor patients for MMC toxicities and pharmacodynamics (change in clinical outcomes) that result from the potential enhancement of MMC exposure in the bladder.
Buss, Dylan G; Sharma, Ajay; Giuliano, Elizabeth A; Mohan, Rajiv R
2010-07-01
Mitomycin C (MMC) is used clinically to treat corneal scarring in human patients. We investigated the safety and efficacy of MMC to treat corneal scarring in horses by examining its effects at the early and late stages of disease using an in vitro model. An in vitro model of equine corneal fibroblast (ECF) developed was used. The ECF or myofibroblast cultures were produced by growing primary ECF in the presence or absence of transforming growth factor beta-1 (TGFbeta1) under serum-free conditions. The MMC dose for the equine cornea was defined with dose-dependent trypan blue exclusion and (3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays after applying MMC to the cultures once for 2 min. The efficacy of MMC to control corneal scarring in horses was determined by measuring mRNA and protein expression of corneal scarring markers (alpha-smooth muscle actin and F-actin) with western blotting, immunocytochemistry and/or quantitative real-time polymerase chain reactions. A single 2-min treatment of 0.02% or less MMC did not alter ECF phenotype, viability, or cellular proliferation whereas 0.05% or higher MMC doses showed mild-to-moderate cellular toxicity. The TGFbeta1 at 1 ng/mL showed significant myofibroblast formation in ECF under serum-free conditions. A single 2-min, 0.02% MMC treatment 24 h (early) after TGFbeta1 stimulation significantly reduced conversion of ECF to myofibroblasts, however, a single 0.02% MMC treatment 11 days after TGFbeta1 stimulation showed moderate myofibroblast inhibition. That MMC safely and effectively reduced scarring in ECF by reducing the degree of transdifferentiation of corneal fibroblasts to myofibroblasts in vitro. Further clinical in vivo investigations are warranted using MMC in horses.
Analysis of a FANCE Splice Isoform in Regard to DNA Repair.
Bouffard, Frédérick; Plourde, Karine; Bélanger, Simon; Ouellette, Geneviève; Labrie, Yvan; Durocher, Francine
2015-09-25
The FANC-BRCA DNA repair pathway is activated in response to interstrand crosslinks formed in DNA. A homozygous mutation in 1 of the 17 Fanconi anemia (FA) genes results in malfunctions of this pathway and development of FA syndrome. The integrity of this protein network is essential for good maintenance of DNA repair process and genome stability. Following the identification of an alternatively splice isoform of FANCE (Fanconi anemia complementation group E) significantly expressed in breast cancer individuals from high-risk non-BRCA1/2 families, we studied the impact of this FANCE splice isoform (FANCEΔ4) on DNA repair processes. We have demonstrated that FANCEΔ4 mRNA was efficiently translated into a functional protein and expressed in normal and breast cancer cell lines. Following treatment with the crosslinking agent mitomycin C, EUFA130 (FANCE-deficient) cells infected with FANCEΔ4 were blocked into G2/M phase, while cell survival was significantly reduced compared with FANCE-infected EUFA130 cells. In addition, FANCEΔ4 did not allow FANCD2 and FANCI monoubiquitination, which represents a crucial step of the FANC-BRCA functional pathway. As observed for FANCE wild-type protein, localization of FANCEΔ4 protein was confined to the nucleus following mitomycin C treatment. Although FANCEΔ4 protein showed interaction with FANCE, FANCEΔ4 did not support normal function of FANCE protein in this pathway and could have deleterious effects on FANCE protein activity. We have demonstrated that FANCEΔ4 seems to act as a regulator of FANCD2 protein expression level by promoting its degradation. This study highlights the importance of an efficient regulation of alternative splicing expression of FA genes for proper DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chou, San-Fang; Chang, Shu-Wen; Chuang, Jia-Ling
2007-05-01
To investigate the expression of chemokines and their signaling pathways after application of mitomycin C (MMC) to corneal fibroblasts. Primary porcine and human corneal fibroblasts from passages 3 to 6 were treated with MMC at concentrations of 0.05, 0.1, or 0.2 mg/mL for 1, 2, 5, or 10 minutes. The relative expression of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) were investigated with reverse transcription, and quantitative real-time polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA). The effects of MMC on the activation of kinases were analyzed by Western blot analysis with specific antiphosphokinase antibodies. The signaling pathways by which MMC regulates the expression of IL-8 and MCP-1 were evaluated by pharmacological kinase-specific inhibitors. The expression of IL-8 and MCP-1 were upregulated after MMC treatment in a time- and concentration-dependent manner. Furthermore, the upregulated expression of IL-8 and MCP-1 increased with longer incubation time. MMC treatment enhanced the phosphorylation of p38, JNK, and ERK at different time points. The MMC-related IL-8 and MCP-1 expression was inhibited by both a p38 inhibitor (SB203580) and an ERK inhibitor (PD98059). A JNK inhibitor (SP600125) reduced the expression of MMC-induced MCP-1 but not of IL-8. MMC treatment upregulated the expression of IL-8 and MCP-1 mRNA and protein secretion by the activation of mitogen-activated protein kinases (MAPKs) in corneal fibroblasts.
Cross reactivity of commercial anti-dengue immunoassays in patients with acute Zika virus infection.
Felix, Alvina Clara; Souza, Nathalia C Santiago; Figueiredo, Walter M; Costa, Angela A; Inenami, Marta; da Silva, Rosangela M G; Levi, José Eduardo; Pannuti, Claudio Sergio; Romano, Camila Malta
2017-08-01
Several countries have local transmission of multiple arboviruses, in particular, dengue and Zika viruses, which have recently spread through many American countries. Cross reactivity among Flaviviruses is high and present a challenge for accurate identification of the infecting agent. Thus, we evaluated the level of cross reactivity of anti-dengue IgM/G Enzyme-Linked Immunosorbent Assays (ELISA) from three manufacturers against 122 serum samples obtained at two time-points from 61 patients with non-dengue confirmed Zika virus infection. All anti-dengue ELISAs cross reacted with serum from patients with acute Zika infection at some level and a worrisome number of seroconversion for dengue IgG and IgM was observed. These findings may impact the interpretation of currently standard criteria for dengue diagnosis in endemic regions. © 2017 Wiley Periodicals, Inc.
Sun, Jiao-Tong; Piao, Ji-Gang; Wang, Long-Hai; Javed, Mohsin; Hong, Chun-Yan; Pan, Cai-Yuan
2013-09-01
A versatile one-pot strategy for the preparation of reversibly cross-linked polymer-coated mesoporous silica nanoparticles (MSNs) via surface reversible addition-fragmentation chain transfer (RAFT) polymerization is presented for the first time in this paper. The less reactive monomer oligo(ethylene glycol) acrylate (OEGA) and the more reactive cross-linker N,N'-cystaminebismethacrylamide (CBMA) are chosen to be copolymerized on the external surfaces of RAFT agent-functionalized MSNs to form the cross-linked polymer shells. Owing to the reversible cleavage and restoration of disulfide bonds via reduction/oxidation reactions, the polymer shells can control the on/off switching of the nanopores and regulate the drug loading and release. The redox-responsive release of doxorubicin (DOX) from this drug carrier is realized. The protein adsorption, in vitro cytotoxicity assays, and endocytosis studies demonstrate that this biocompatible vehicle is a potential candidate for delivering drugs. It is expected that this versatile grafting strategy may help fabricate satisfying MSN-based drug delivery systems for clinical application. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker.
Sojitra, Uttam V; Nadar, Shamraja S; Rathod, Virendra K
2017-02-10
Pectinase was immobilized onto chitosan magnetic nanoparticles (CMNPs) by dextran polyaldehyde as a macromolecular cross-linking agent. The parameters like cross-linking concentration, time and CMNPs to enzyme ratio were optimized. Further, prepared magnetic pectinase nanobiocatalyst was characterized by FT-IR and XRD. The thermal kinetic studies for immobilized pectinase showed two folds improved thermal stability in the range of 55-75°C as compared to free form. The V max and K m values of immobilized pectinase were found to be nearly equal to native form which indicated that conformational flexibility of pectinase was retained even after immobilization. The residual activity of immobilized pectinase was 85% after seven successive cycles of reuse, while it retained upto 89% residual activity on storage of fifteen days which exhibited excellent stability and durability. The conformational changes in pectinase after immobilization were evaluated by FT-IR spectroscopy data analysis tools. Finally, magnetic pectinase nanobiocatalyst was employed for apple juice clarification which showed turbidity reduction upto 74% after 150min treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Solomon, B; Sahle, F F; Gebre-Mariam, T; Asres, K; Neubert, R H H
2012-01-01
Citronella oil (CO) has been reported to possess a mosquito-repellent action. However, its application in topical preparations is limited due to its rapid volatility. The objective of this study was therefore to reduce the rate of evaporation of the oil via microencapsulation. Microcapsules (MCs) were prepared using gelatin simple coacervation method and sodium sulfate (20%) as a coacervating agent. The MCs were hardened with a cross-linking agent, formaldehyde (37%). The effects of three variables, stirring rate, oil loading and the amount of cross-linking agent, on encapsulation efficiency (EE, %) were studied. Response surface methodology was employed to optimize the EE (%), and a polynomial regression model equation was generated. The effect of the amount of cross-linker was insignificant on EE (%). The response surface plot constructed for the polynomial equation provided an optimum area. The MCs under the optimized conditions provided EE of 60%. The optimized MCs were observed to have a sustained in vitro release profile (70% of the content was released at the 10th hour of the study) with minimum initial burst effect. Topical formulations of the microencapsulated oil and non-microencapsulated oil were prepared with different bases, white petrolatum, wool wax alcohol, hydrophilic ointment (USP) and PEG ointment (USP). In vitro membrane permeation of CO from the ointments was evaluated in Franz diffusion cells using cellulose acetate membrane at 32 °C, with the receptor compartment containing a water-ethanol solution (50:50). The receptor phase samples were analyzed with GC/MS, using citronellal as a reference standard. The results showed that microencapsulation decreased membrane permeation of the CO by at least 50%. The amount of CO permeated was dependent on the type of ointment base used; PEG base exhibited the highest degree of release. Therefore, microencapsulation reduces membrane permeation of CO while maintaining a constant supply of the oil. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhou, Xiaopeng; Wang, Jingkai; Fang, Weijing; Tao, Yiqing; Zhao, Tengfei; Xia, Kaishun; Liang, Chengzhen; Hua, Jianming; Li, Fangcai; Chen, Qixin
2018-04-15
Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration and consequent lower back pain. Although adipose-derived stem cell (ADSC)-based therapy is regarded to be promising for the treatment of degenerated NP, there is a lack of viable cell carriers to transplant ADSCs into the NP while maintaining cell function. In this study, we developed a type II collagen/chondroitin sulfate (CS) composite hydrogel-like ADSC (CCSA) delivery system with genipin as the cross-linking agent. The induction effect of the scaffold on ADSC differentiation was studied in vitro, and a rat coccygeal vertebrae degeneration model was used to investigate the regenerative effect of the CCSA system on the degenerated NP in vivo. The results showed that the CCSA delivery system cross-linked with 0.02% genipin was biocompatible and promoted the expressions of NP-specific genes. After the injection of the CCSA system, the disc height, water content, extracellular matrix synthesis, and structure of the degenerated NP were partly restored. Our CCSA delivery system uses minimally invasive approaches to promote the regeneration of degenerated NP and provides an exciting new avenue for the treatment of degenerative disc disease. Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration and consequent lower back pain. Stem cell-based tissue engineering is a promising method in NP regeneration, but there is a lack of viable cell carriers to transplant ADSCs into the NP while maintaining cell function. In this study, we developed a type II collagen/chondroitin sulfate (CS) composite hydrogel-like ADSC (CCSA) delivery system with genipin as the cross-linking agent. Although several research groups have studied the fabrication of injectable hydrogel with biological matrix, our study differs from other works. We chose type II collagen and CS, the two primary native components in the NP, as the main materials and combined them according to the natural ratio of collagen and sGAG in the NP. The delivery system is preloaded with ADSCs and can be injected into the NP with a needle, followed by in situ gelation. Genipin is used as a cross-linker to improve the bio-stability of the scaffold, with low cytotoxicity. We investigated the stimulatory effects of our scaffold on the differentiation of ADSCs in vitro and the regenerative effect of the CCSA delivery system on degenerated NP in vivo. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Size-Tunable and Functional Core-Shell Structured Silica Nanoparticles for Drug Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Fangli; Guo, Ya Nan; Liu, Jun
2010-02-18
Size-tunable silica cross-linked micellar core-shell nanoparticles (SCMCSNs) were successfully synthesized from a Pluronic nonionic surfactant (F127) template system with organic swelling agents such as 1,3,5-trimethylbenzene (TMB) and octanoic acid at room temperature. The size and morphology of SCMCSNs were directly evidenced by TEM imaging and DLS measurements (up to ~90 nm). Pyrene and coumarin 153 (C153) were used as fluorescent probe molecules to investigate the effect and location of swelling agent molecules. Papaverine as a model drug was used to measure the loading capacity and release property of nanoparticles. The swelling agents can enlarge the nanoparticle size and improve themore » drug loading capacity of nanoparticles. Moreover, the carboxylic acid group of fatty acid can adjust the release behavior of the nanoparticles.« less
[SOS response of DNA repair and genetic cell instability under hypoxic conditions].
Vasil'eva, S V; Strel'tsova, D A
2011-01-01
The SOS DNA repair pathway is induced in E. coli as a multifunctional cell response to a wide variety of signals: UV, X or gamma-irradiation, mitomycin C or nalidixic acid treatment, thymine starvation, etc. Triggering of the system can be used as a general and early sign of DNA damage. Additionally, the SOS-response is known to be an "error-prone" DNA repair pathway and one of the sources of genetic instability. Hypoxic conditions are established to be the major factor of genetic instability as well. In this paper we for the first time studied the SOS DNA repair response under hypoxic conditions induced by the well known aerobic SOS-inducers. The SOS DNA repair response was examined as a reaction of E. coli PQ37 [sfiA::lacZ] cells to UVC, NO-donating agents and 4NQO. Here we provide evidence that those agents were able to induce the SOS DNA repair response in E. coli at anaerobic growth conditions. The process does not depend on the transcriptional activity of the universal protein of E. col anaerobic growth Fnr [4Fe-4S]2+ or can not be referred to as an indicator of genetic instability in hypoxic conditions.
Expedition Memory: Towards Agent-based Web Services for Creating and Using Mars Exploration Data.
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Briggs, Geoff; Sims, Mike
2005-01-01
Explorers ranging over kilometers of rugged, sometimes "feature-less" terrain for over a year could be overwhelmed by tracking and sharing what they have done and learned. An automated system based on the existing Mobile Agents design [ I ] and Mars Exploration Rover experience [2], could serve as an "expedition memory" that would be indexed by voice as wel1 as a web interface, linking people, places, activities, records (voice notes, photographs, samples). and a descriptive scientific ontology. This database would be accessible during EVAs by astronauts, annotated by the remote science team, linked to EVA plans, and allow cross indexing between sites and expeditions. We consider the basic problem, our philosophical approach, technical methods, and uses of the expedition memory for facilitating long-term collaboration between Mars crews and Earth support teams. We emphasize that a "memory" does not mean a database per se, but an interactive service that combines different resources, and ultimately could be like a helpful librarian.
Endoscopic laser treatment of subglottic and tracheal stenosis
NASA Astrophysics Data System (ADS)
Correa, Alex J.; Garrett, C. Gaelyn; Reinisch, Lou
1999-06-01
The ideal laser produces discrete wounds in a reproducible manner. The CO2 laser with its 10.6 micron wavelength is highly absorbed by water, its energy concentrated at the point of impact and the longer wavelength creates less scatter in tissue. The development of binocular endoscopic delivery system for use with binocular microlaryngoscopes have aided in using CO2 laser to treat patients with subglottic and tracheal stenosis. Often, patients with these disease processes require multiple endoscopic or open reconstructive procedures and my ultimately become tracheotomy dependent. The canine model of subglottic stenosis that has been develop allows testing of new agents as adjuncts to laser treatment. Mitomycin-C is an antibiotic with antitumor activity used in chemotherapy and also in ophthalmologic surgery due to its known inhibition of fibroblast proliferation. Current studies indicate this drug to have significant potential for improving our current management of this disease process.
Locating and Activating Molecular ‘Time Bombs’: Induction of Mycolata Prophages
Dyson, Zoe A.; Brown, Teagan L.; Farrar, Ben; Doyle, Stephen R.; Tucci, Joseph; Seviour, Robert J.; Petrovski, Steve
2016-01-01
Little is known about the prevalence, functionality and ecological roles of temperate phages for members of the mycolic acid producing bacteria, the Mycolata. While many lytic phages infective for these organisms have been isolated, and assessed for their suitability for use as biological control agents of activated sludge foaming, no studies have investigated how temperate phages might be induced for this purpose. Bioinformatic analysis using the PHAge Search Tool (PHAST) on Mycolata whole genome sequence data in GenBank for members of the genera Gordonia, Mycobacterium, Nocardia, Rhodococcus, and Tsukamurella revealed 83% contained putative prophage DNA sequences. Subsequent prophage inductions using mitomycin C were conducted on 17 Mycolata strains. This led to the isolation and genome characterization of three novel Caudovirales temperate phages, namely GAL1, GMA1, and TPA4, induced from Gordonia alkanivorans, Gordonia malaquae, and Tsukamurella paurometabola, respectively. All possessed highly distinctive dsDNA genome sequences. PMID:27487243
[The significance of extravasation in oncological care].
Zatkóné Puskás, Gabriella
2008-03-01
The treatment of cancer may be associated with various chemotherapy-induced mucocutaneous reactions. One of the mucocutaneous adverse effects of antineoplastic drugs is the toxic local tissue reaction, the extravasation, which occurs in less than 1-2% of cytotoxic infusions. The standard management of vesicant extravasation includes: discontinuing all local infusions, aspiration of any residual drug, elevating the involved limb, local cooling or warm compresses, local anesthesia, antidotes (sodium thiosulfate for alkylating agents, dimethylsulfoxide (DMSO) for anthracyclines and mitomycin, and hyaluronidase for the vinca alkaloids), and finally surgical debridement with plastic surgery reconstruction. Because the anthracyclines are topoisomerase II poisons that are antagonized by topoisomerase II catalytic inhibitors such as dexrazoxane, it seems to be the treatment of choice immediately after extravasation of doxorubicin, epirubicin, daunorubicin, etc. One systemic dose of dexrazoxane after the accident may significantly reduce the toxic tissue lesions. Repeated intralesional injections of GM-CSF may accelerate the wound healing without the need of skin grafts.
Yu-Wai-Man, Cynthia; Khaw, Peng Tee
2015-01-01
Ocular fibrosis leads to significant visual impairment and blindness in millions of people worldwide, and is one of the largest areas of unmet need in clinical ophthalmology. The antimetabolites, mitomycin C and 5-fluorouracil, are the current gold standards used primarily to prevent fibrosis after glaucoma surgery, but have potentially blinding complications like tissue damage, breakdown and infection. This review thus focuses on the development of new classes of small molecule therapeutics to prevent post-surgical fibrosis in the eye, especially in the context of glaucoma filtration surgery. We discuss recent advances and innovations in ophthalmic wound healing research, including antibodies, RNAi, gene therapy, nanoparticles, liposomes, dendrimers, proteoglycans and small molecule inhibitors. We also review the challenges involved in terms of drug delivery, duration of action and potential toxicity of new anti-fibrotic agents in the eye. PMID:25983855
Target drug delivery system as a new scarring modulation after glaucoma filtration surgery
2011-01-01
Background Excessive wound healing following glaucoma filtration surgery is the main determinant of surgical failure, resulting from the activation of human Tenon's capsule fibroblasts (HTFs). To mitigate the excessive wound healing, the topicall use of antiproliferative agents, such as mitomycin C (MMC) and 5-fluorouracil (5-FU), has increased the surgery success rate, but the traditional administration of these agents can result in a variety of toxicities with nonspecific damage. However, modulation of the wound healing process to prevent excessive fibroblast proliferation and scar formation can play a major role in improving the outcome of surgery. Therefore, the search for alternative modes of drug delivery and new agents is needed to minimize the ocular complications and improve the success of surgery. We have shown that there is a postoperative overexpression of the LDL receptor (LDLr) in the activated HTFs may provide a novel target for drug delivery systems. Presentation of the Hypothesis We hypothesize that antifibrotic agents (MMC) encapsulated in LDLr targeting drug delivery system (LDL-MMC-chitosan nanoparticles) may be proposed in anti-scarring therapy to increase the safety and effectiveness and to reduce toxicity. Testing the Hypothesis A chitosan-based polymeric predrug of MMC was synthesized and its cytotoxicity was proved to be low. In addition, we propose hyaluronic acid film as a container to release LDL-MMC-chitosan nanoparticles gradually at subconjunctival filtering site after glaucoma filtration surgery to eliminate the LDL-MMC-chitosan nanoparticles. Implications of the Hypothesis and discussion This strategy can be applicable to anti-scarring therapy during excessive conjunctival wound healing. This hypothesis integrates advantages of the targeting drug delivery and antifibrotic agents, such as high efficiency, convenience, and lower the toxicity. PMID:21736763
Almobarak, Faisal A; Alharbi, Ali H; Morales, Jose; Aljadaan, Ibrahim
2017-05-01
To evaluate the intermediate and long-term outcomes of mitomycin C-enhanced trabeculectomy as a first glaucoma procedure in uveitic glaucoma. Retrospective cohort study included 70 eyes of 50 patients with uveitic glaucoma who underwent mitomycin C-enhanced trabeculectomy as a first glaucoma procedure at King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia between 1996 and 2014. The main outcome measures were: the intraocular pressure (IOP), the number of antiglaucoma medications, the presence of visually threatening complications, and the need for further surgeries to control the IOP. Surgical outcome of each eye was classified as an absolute success, qualified success, or failure, based on the main outcome measures. The mean follow-up period was 77.0 months (±40.9). The IOP and number of antiglaucoma medications decreased significantly from a mean of 39.5 mm Hg (±8.9) and 3.7 (±0.8) to 14.4 mm Hg (±6.9) and 1 (±1.3) at the last follow-up, respectively (P<0.001 for both). The cumulative probabilities of success were 60% and 35.7% at 36 and 60 months postoperatively, respectively. The most common complications were cataract development and progression (45.3%), hypotony (IOP ≤5 mm Hg) (30%) and IOP spike≥30 mm Hg (10%). Eighteen eyes (25.7%) needed a second procedure to control the IOP. Although mitomycin C-enhanced trabeculectomy offers reasonable intermediate and long-term IOP control and safety in uveitic glaucoma, a significant number of patients needed further procedures to control the pressure. Thus, continuous monitoring of the pressure and inflammation are crucial.
Nuclear abnormalities in erythrocytes of parrots (Aratinga canicularis) related to genotoxic damage.
Gómez-Meda, Belinda C; Zamora-Perez, Ana L; Luna-Aguirre, Jaime; González-Rodríguez, Andrés; Ramos-Ibarra, M Luisa; Torres-Bugarín, Olivia; Batista-González, Cecilia M; Zúñiga-González, Guillermo M
2006-06-01
Nuclear abnormalities in erythrocytes, as micronuclei and nuclear buds (BE), are considered potential biomarkers of genotoxic exposure. We described previously the frequency of spontaneous micronucleated erythrocytes (MNE) in the species Aratinga canicularis. Here, we have used this species to evaluate the induction of MNE and BE by mitomycin-C. Animals were given a single intracoelomic injection of 0, 2, 3 or 4 mg/kg mitomycin-C on two consecutive days. A drop of blood was obtained after 0, 24, 48 and 72 h, and stained smears were used to count micronucleated polychromatic erythrocytes (MNPCE) and polychromatic erythrocytes with buds (BPCE)/1000 polychromatic erythrocytes. The number of MNE and BE in 10 000 total erythrocytes was also counted. MNPCE and BPCE frequencies were elevated at 24, 48, and 72 h after the administration of the lower dose (P<0.03). At a 3 mg/kg dose, the frequency of MNPCE increased at 48 and 72 h (P<0.04) whereas the number of BPCE increased, but not significantly. Administration of 4 mg/kg mitomycin-C increased the number of MNE observed at 72 h (P<0.03), the number of MNPCE at 48 h (P<0.01) and 72 h (P<0.006), the BE frequency at 72 h (P<0.05), and the frequency of BPCE at 48 and 72 h (P<0.001). While mitomycin-C appears to produce a parallel increase in MNPCE and BPCE frequencies, the MNE seemed to be a more sensitive indicator of genotoxicity than the BE. This suggests that evaluating BE and MNE in routine haematological analysis should be considered to evaluate environmental genotoxic exposure.
Cui, Qi N; Hsia, Yen C; Lin, Shan C; Stamper, Robert L; Rose-Nussbaumer, Jennifer; Mehta, Nitisha; Porco, Travis C; Naseri, Ayman; Han, Ying
2017-03-01
To examine the effect of mitomycin c and 5-flurouracil on treatment outcomes following Ahmed glaucoma valve implantation. Retrospective consecutive case series. Fifty patients who received Ahmed glaucoma valve implantation from 1999 to 2013 in the San Francisco Veterans Administration Hospital. The +INJECTION group received intraoperative mitomycin c followed by postoperative mitomycin c and/or 5-flurouracil, whereas the -INJECTION group did not. Primary outcome was treatment success at 1 year post-implantation. Intraocular pressure, hypertensive phase, and the number of glaucoma medications were also examined. Twenty-six patients/eyes in the +INJECTION group and 24 patients/eyes in the -INJECTION group were included. Treatment success was higher in the +INJECTION compared with the -INJECTION group (86 vs. 58%; P = 0.04). Intraocular pressure was lower in the +INJECTION compared with the -INJECTION group at 1, 3, 6 and 12 months (P ≪ 0.00001, P = 0.00003, 0.0008 and 0.024). Hypertensive phase occurred less often in the +INJECTION compared with the -INJECTION group (3.8 vs. 54%; P = 0.021). The +INJECTION group required fewer medications compared with the -INJECTION group (P = 0.02, 0.002, 0.003 and 0.008 at 1, 3, 6 and 12 months). Complication rates were comparable between groups (46.2 and 54.2%; P = 0.63). Adjuvant treatment with antifibrotics following Ahmed glaucoma valve implantation decreased the hypertensive phase and improved surgical outcomes without impacting complication rates at 1 year. This study postulates a role for antifibrotics in the postoperative management of Ahmed glaucoma valves. © 2016 Royal Australian and New Zealand College of Ophthalmologists.
Adjustable release of mitomycin C for inhibition of scar tissue formation after filtration surgery.
Merritt, Sonia R; Velasquez, Gia; von Recum, Horst A
2013-11-01
The aim of this study is to demonstrate a drug delivery system with the capacity to adjust the release of mitomycin C (MMC), based on polymer composition, and inhibit fibroblast proliferation to a better effect than is currently used in glaucoma filtration surgery. The polymer used in this work is made from the oligosaccharide cyclodextrin, from which others and we have demonstrated adjustable release of small molecule drugs due to specific molecular interactions or "affinity" between drug and the cyclodextrin polymer. To adjust release rate, cyclodextrin polymers were synthesized in either dimethylformamide (DMF) or dimethyl sulfoxide, (DMSO) at a crosslinking ratio of 1:0.16 or 1:0:32 (molecule of glucose: molecule of crosslinker). The polymers were then loaded with mitomycin C, dried, and release evaluated in a physiological environment. Drug release was determined by visible spectroscopy. Released aliquots of mitomycin C were incubated with 3T3 fibroblast cells to determine cytotoxic or inhibitory effect through a cell proliferation assay. We show that by using affinity between drug and polymer, we can adjust MMC release rates to be slower and more sustained than from conventional, diffusion-only polymers, for both the DMF polymers (p = 0.00526) and the DMSO polymers (p = 0.0113). The incorporated and released MMC maintains inhibition of fibroblast proliferation much longer than is possible with a one-time application. Affinity polymers with 1:0.16 and 1:0.32 crosslink ratio showed significant inhibition of proliferation for up to 100 h (p = 0.018 and p = 0.014 respectively). The use of our controlled drug delivery technology applied after surgery could have a greater therapeutic impact than the current one-time applications of MMC. Copyright © 2013 Elsevier Ltd. All rights reserved.
Adjustable release of mitomycin C for inhibition of scar tissue formation after filtration surgery
Merritt, Sonia R.; Velasquez, Gia; von Recum, Horst A.
2016-01-01
The aim of this study is to demonstrate a drug delivery system with the capacity to adjust the release of mitomycin C (MMC), based on polymer composition, and inhibit fibroblast proliferation to a better effect than is currently used in glaucoma filtration surgery. The polymer used in this work is made from the oligosaccharide cyclodextrin, from which others and we have demonstrated adjustable release of small molecule drugs due to specific molecular interactions or “affinity” between drug and the cyclodextrin polymer. To adjust release rate, cyclodextrin polymers were synthesized in either dimethylformamide (DMF) or dimethyl sulfoxide, (DMSO) at a crosslinking ratio of 1:0.16 or 1:0:32 (molecule of glucose: molecule of crosslinker). The polymers were then loaded with mitomycin C, dried, and release evaluated in a physiological environment. Drug release was determined by visible spectroscopy. Released aliquots of mitomycin C were incubated with 3T3 fibroblast cells to determine cytotoxic or inhibitory effect through a cell proliferation assay. We show that by using affinity between drug and polymer, we can adjust MMC release rates to be slower and more sustained than from conventional, diffusion-only polymers, for both the DMF polymers (p = 0.00526) and the DMSO polymers (p = 0.0113). The incorporated and released MMC maintains inhibition of fibroblast proliferation much longer than is possible with a one-time application. Affinity polymers with 1:0.16 and 1:0.32 crosslink ratio showed significant inhibition of proliferation for up to 100 h (p = 0.018 and p = 0.014 respectively). The use of our controlled drug delivery technology applied after surgery could have a greater therapeutic impact than the current one-time applications of MMC. PMID:23911951
Zhang, Wei; Hu, Jiabo; Ma, Quanhui; Hu, Sanqiang; Wang, Yanyan; Wen, Xiangmei; Ma, Yongbin; Xu, Hong; Qian, Hui; Xu, Wenrong
2014-09-01
An immortalized mouse fetal liver stromal cell line, named KM3, has demonstrated the potential to support the growth and maintenance of human embryonic stem cells (hESCs). In this study, the characteristics of KM3 cells were examined following cryopreservation at -70°C and in liquid nitrogen for 15, 30 and 60 days following treatment with 10 μg/ml mitomycin C. In addition, whether the KM3 cells were suitable for use as feeder cells to support the growth of hESCs was evaluated. The inhibition of mitosis without cell death was observed when the KM3 cells were treated with 10 μg/ml mitomycin C for 2 h. The morphology of the KM3 cells cryopreserved in liquid nitrogen for 60 days was not markedly changed, and the cell survival rate was 84.60±1.14%. By contrast, the survival rate of the KM3 cells was 66.40±2.88% following cryopreservation at -70°C for 60 days; the cells readily detached, were maintained for a shorter time, and had a reduced expression level of basic fibroblast growth factor. hESCs cultured on KM3 cells cryopreserved in liquid nitrogen for 60 days showed the typical bird's nest structure, with clear boundaries and a differentiation rate of 16.33±2.08%. The differentiation rate of hESCs cultured on KM3 cells cryopreserved at -70°C for 60 days was 37.67±3.51%. These results indicate that the cryopreserved KM3 cells treated with mitomycin C may be directly used in the subculture of hESCs, and the effect is relatively good with -70°C short-term or liquid nitrogen cryopreservation.
Abolmaali, Samira Sadat; Tamaddon, Ali; Yousefi, Gholamhossein; Javidnia, Katayoun; Dinarvand, Rasoul
2014-01-01
A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn(2+) were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn(2+), and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks.
Abolmaali, Samira Sadat; Tamaddon, Ali; Yousefi, Gholamhossein; Javidnia, Katayoun; Dinarvand, Rasoul
2014-01-01
A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn2+ were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn2+, and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman’s assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks. PMID:24944513
Nanoparticles as strengthening agents in polymer systems
NASA Astrophysics Data System (ADS)
Shahid, Naureen
2005-11-01
Carboxylate-substituted alumina nanoparticles are produced solvent free using mechanical shear. The general nature of this method has been demonstrated for L-lysine-, stearate, and p-hydroxybenzoate-derived materials. The reaction rate and particle size is controlled by a combination of temperature and shear rate. The nanoparticles are spectroscopically equivalent to those reported from aqueous syntheses, however, the average particle size can be decreased and the particle size distribution narrowed depending on the reaction conditions. Lysine and p-hydroxybenzoato alumoxanes have been introduced in carbon fiber reinforced epoxide resin composites. Different preparation conditions have been studied to obtain composite with enhanced performances that are ideal for the motor sports and aerospace industries. A new composite material has been fabricated utilizing surface-modified carboxylate alumoxane nanoparticles and the biodegradable polymer poly(propylene fumarate)/poly(propylene fumarate)-diacrylate (PPF/PPF-DA). For this study, composites were prepared using various functional groups including: a surfactant alumoxane to enhance nanoparticle dispersion into the polymer; an activated-alumoxane to enhance nanoparticle interaction with the polymer matrix; a mixed alumoxane containing both activated and surfactant groups. Nanocomposites prepared with all types of alumoxane, as well as blank polymer resin and unmodified boehmite, underwent mechanical testing and were characterized by SEM and microprobe analysis. A nanocomposite composed of mixed alumoxane nanoparticles dispersed in PPF/PPF-DA exhibited increased flexural modulus compared to polymer resin alone, and a significant enhancement over both the activated and surfacted alumoxanes. Boric acid is used as the cross-linking agent in oil well drilling industry even though the efficacy of the borate ion, [B(OH)4]- , as a cross-linking agent is poor. The reaction product of boric acid and the polysaccharide guaran (the major component of guar gum) has been investigated by 11B NMR spectroscopy. By comparison with the 11B NMR of boric acid and phenyl boronic acid complexes of 1,2-diols [HOCMe2CMe2OH, cis-C6H 10(OH)2, trans-C6H10(OH) 2, o-C6H4(OH)2], 1,3-diols (neol-H2), monosaccharides (L-fucose, mannose and galactose) and disaccharides (celloboise and sucrose) it is found that the guaran polymer is cross-linked via a borate complex of two 1,2-diols both forming chelate 5-membered ring cycles, this contrasts with previous proposals. (Abstract shortened by UMI.)
In and out of the minor groove: interaction of an AT-rich DNA with the drug CD27
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acosta-Reyes, Francisco J.; Dardonville, Christophe; Koning, Harry P. de
New features of an antiprotozoal DNA minor-groove binding drug, which acts as a cross-linking agent, are presented. It also fills the minor groove of DNA completely and prevents the access of proteins. These features are also expected for other minor-groove binding drugs when associated with suitable DNA targets. The DNA of several pathogens is very rich in AT base pairs. Typical examples include the malaria parasite Plasmodium falciparum and the causative agents of trichomoniasis and trypanosomiases. This fact has prompted studies of drugs which interact with the minor groove of DNA, some of which are used in medical practice. Previousmore » studies have been performed almost exclusively with the AATT sequence. New features should be uncovered through the study of different DNA sequences. In this paper, the crystal structure of the complex of the DNA duplex d(AAAATTTT){sub 2} with the dicationic drug 4, 4′-bis(imidazolinylamino)diphenylamine (CD27) is presented. The drug binds to the minor groove of DNA as expected, but it shows two new features that have not previously been described: (i) the drugs protrude from the DNA and interact with neighbouring molecules, so that they may act as cross-linking agents, and (ii) the drugs completely cover the whole minor groove of DNA and displace bound water. Thus, they may prevent the access to DNA of proteins such as AT-hook proteins. These features are also expected for other minor-groove binding drugs when associated with all-AT DNA. These findings allow a better understanding of this family of compounds and will help in the development of new, more effective drugs. New data on the biological interaction of CD27 with the causative agent of trichomoniasis, Trichomonas vaginalis, are also reported.« less
VRPI Thermoresponsive Reversibly Attachable Patch for Temporary Intervention in Ocular Trauma
2015-11-01
that it is emphasized that there was no adhesive resistance to removal after introduction of cold irrigation despite the rigidity. Milestone 5...space effort must be invested in developing ways to ensure that the PNIPAN remains fixed to the substrate surface or resists uptake by the surrounding...Hess, B. Hartmann, M.D. Lechner, W. Lazik. “Influence of the Cross-linking Agent on the Gel Structure of Starch Derivatives”. Starch . (2001). 53. 6. X
NASA Astrophysics Data System (ADS)
Baruah, Upama; Chowdhury, Devasish
2016-04-01
Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.
Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K
2014-06-02
A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV).
Kymionis, George D; Liakopoulos, Dimitrios A; Grentzelos, Michael A; Tsoulnaras, Konstantinos I; Detorakis, Efstathios T; Cochener, Béatrice; Tsilimbaris, Miltiadis K
2015-08-01
To evaluate the effect of a regenerative agent (RGTA) [Cacicol20-poly(carboxymethyl glucose sulfate); OTR3, Paris, France] on corneal reepithelialization and pain after corneal cross-linking (CXL) for keratoconus. In this prospective comparative (contralateral) clinical study, patients with bilateral progressive keratoconus underwent CXL treatment. The corneal epithelium during CXL was removed using transepithelial phototherapeutic keratectomy (Cretan protocol). One eye of each patient was randomly instilled with an RGTA (Cacicol20) once a day (study group), whereas the fellow eye was instilled with artificial tears (control group). Patients were examined daily until complete reepithelialization. Postoperative examinations included slit-lamp biomicroscopy to assess the epithelial defect size and subjective evaluation of pain. The study enrolled 18 patients (36 eyes). The mean epithelial defect size for study and control groups was 19.6 ± 4.2 mm versus 21.5 ± 2.8 mm, respectively, at day 1 (P = 0.019) and 6.4 ± 3.4 mm versus 7.9 ± 4.3 mm, respectively, at day 2 (P = 0.014). At day 3 postoperatively, 61.1% of study eyes were fully reepithelialized, compared with 11.1% of control eyes (P = 0.002). RGTA (Cacicol20) instillation seems to result in faster corneal reepithelialization after CXL in this study. However, there was no significant effect in subjective pain/discomfort.
Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent
Jones, Brad H.; Wheeler, David R.; Black, Hayden T.; ...
2017-06-29
Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less
Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Brad H.; Wheeler, David R.; Black, Hayden T.
Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less
Chiellini, E; Cinelli, P; Imam, S H; Mao, L
2001-01-01
As a part of an ongoing project on the production of composite materials based on poly(vinyl alcohol) (PVA) and polymeric materials from renewable resources, the present paper reports on the incorporation of agricultural waste materials as organic fillers in a film matrix based on PVA as continuous phase. In this study lignocellulosic fibers byproducts, derived from sugar cane (SC) and apple (AP) and orange (OR) fruit juice extraction, were cast from PVA aqueous solutions. The effect of fiber type and composition on the relative properties of cast films was evaluated and compared. OR resulted to be suitable for blending in higher amounts by weight than SC and AP. Glycerol and urea were added as plasticizing agents and were observed to be effective in giving flexible films. Additionally, cornstarch was added to further increase the composition of polymers from renewable resources in cost-effective and ecoefficient composite film formulations. The prepared films resulted sensitive to moisture and water. To reduce water sensitivity, hexamethoxymethylmelamine (HMMM) was tested as a cross-linking agent for the present composite formulations. Cross-linked films exhibited significant improvement in water-resistance that can be taken as a tuneable structural feature for customized applications. The mechanical properties of the prepared composite films (elongation at break, tensile strength, Young modulus) were found to be dependent upon the nature and content of the filler and on environmental conditions.
NASA Astrophysics Data System (ADS)
Lo, Wen; Wang, Tsung-Jen; Chen, Wei-Liang; Hsueh, Chiu-Mei; Chen, Shean-Jen; Chen, Yang-Fang; Chou, Hsiu-Chu; Lin, Pi-Jung; Hu, Fung-Rong; Dong, Chen-Yuan
2010-05-01
We applied multiphoton autofluorescence (MAF) and second-harmonic generation (SHG) microscopy to monitor corneal wound healing after photorefractive keratectomy (PRK). Our results show that keratocyte activation can be observed by an increase in its MAF, while SHG imaging of corneal stroma can show the depletion of Bowman's layer after PRK and the reticular collagen deposition in the wound healing stage. Furthermore, quantification of the keratocyte activation and collagen deposition in conjunction with immunohistochemistry and histological images demonstrate the effectiveness of mitomycin C (MMC) in suppressing myofibroblast proliferation and collagen regeneration in the post-PRK wound healing process.
Familial polyposis coli: no evidence for increased sensitivity to mitomycin C.
Mazzullo, H A; Attwood, J; Delhanty, J D
1988-01-01
Spontaneous chromosome instability is well established for the dominantly inherited cancer prone condition, familial polyposis coli (FPC), but conflicting results have been obtained regarding sensitivity to mitomycin C (MMC). We have investigated cell survival in fibroblasts and the induction of sister chromatid exchanges and chromosome damage in lymphocytes and fibroblasts after MMC treatment. We can find no evidence for a differential response of FPC cells as measured by any of these parameters, although individual FPC fibroblast cultures did show an enhanced chromosomal response. Overall, the FPC mutation does not appear to result in defective DNA repair in response to MMC. PMID:2835481
Aberrant wound-healing response in mitomycin C-treated leaking blebs: a histopathologic study.
Elner, Victor M; Newman-Casey, Paula Anne; Patil, A Jayaprakash; Flint, Andrew; Biswas, Jyotirmay; Moroi, Sayoko E; Pushparaj, Vaijayanthi; Edward, Deepak P
2009-08-01
To characterize histopathologic features of leaking mitomycin C-treated blebs and aberrant wound healing that may lead to persistent conjunctival thinning and leakage. Forty mitomycin C-treated filtering blebs excised for persistent leaks from 40 patients were examined histopathologically using hematoxylin-eosin, periodic acid-Schiff, Masson trichrome, and Alcian blue histochemical stains. Ninety percent of the leaking blebs contained epithelial-stromal domes with areas of acellular stroma covered by attenuated epithelium. Seventy-five percent of the blebs demonstrated varying degrees of fibrovascular repair growing from the bleb margin, either beneath or interdigitating with the acellular zone. A novel observation in 65% of specimens was Alcian blue-positive myxoid stroma at the interface between the fibrovascular proliferation and the epithelial-stromal dome. The association between the presence of fibrovascular proliferation and Alcian blue-staining myxoid stroma was significant by Fisher exact test (P = .002). A desirable filtration bleb requires a sufficient reparative fibrovascular response to maintain an epithelial-stromal barrier to prevent leakage. Fibroblasts must lay down a continuous collagen-rich fibrous layer, rather than merely myxoid stroma, beneath the conjunctival epithelium to promote bleb stability. Surgical techniques and postsurgical care should aim to attain this desired outcome.
The effect of mitomycin C after long-term storage on human Tenon's fibroblast proliferation.
Hu, D; Chen, P P; Oda, D
1999-10-01
To investigate the effect of mitomycin C (MMC) after long-term storage on proliferation of human Tenon's fibroblasts in vitro. Human Tenon's fibroblasts in tissue culture were exposed for 5 minutes to MMC (0.4 mg/mL) that was either freshly prepared or had been stored for as long as 18 months at either 4 degrees C or -20 degrees C. The MTT colorimetric assay was used to determine the inhibition of proliferation as measured indirectly by mitochondrial activity. The inhibition rate was 88% using fresh MMC, and declined to a mean of 73% when using MMC that had been stored for as long as 18 months at 4 degrees C; this decrease was not statistically significant. The mean inhibition for MMC stored at -20 degrees C was 68%, and this was significantly less than inhibition with fresh MMC. Inhibition did not vary significantly with MMC after different storage times. Mitomycin C continues to have strong in vitro antiproliferative effects when stored for as long as 18 months at 4 degrees C or -20 degrees C. A significant decline in potency compared with fresh MMC occurs when MMC is stored at -20 degrees C.
A New Class of Antibody-Drug Conjugates with Potent DNA Alkylating Activity.
Miller, Michael L; Fishkin, Nathan E; Li, Wei; Whiteman, Kathleen R; Kovtun, Yelena; Reid, Emily E; Archer, Katie E; Maloney, Erin K; Audette, Charlene A; Mayo, Michele F; Wilhelm, Alan; Modafferi, Holly A; Singh, Rajeeva; Pinkas, Jan; Goldmacher, Victor; Lambert, John M; Chari, Ravi V J
2016-08-01
The promise of tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADC) has now been realized, evidenced by the approval of two ADCs, both of which incorporate highly cytotoxic tubulin-interacting agents, for cancer therapy. An ongoing challenge remains in identifying potent agents with alternative mechanisms of cell killing that can provide ADCs with high therapeutic indices and favorable tolerability. Here, we describe the development of a new class of potent DNA alkylating agents that meets these objectives. Through chemical design, we changed the mechanism of action of our novel DNA cross-linking agent to a monofunctional DNA alkylator. This modification, coupled with linker optimization, generated ADCs that were well tolerated in mice and demonstrated robust antitumor activity in multiple tumor models at doses 1.5% to 3.5% of maximally tolerated levels. These properties underscore the considerable potential of these purpose-created, unique DNA-interacting conjugates for broadening the clinical application of ADC technology. Mol Cancer Ther; 15(8); 1870-8. ©2016 AACR. ©2016 American Association for Cancer Research.
Bonhomme, V; Boveroux, P; Brichant, J F; Laureys, S; Boly, M
2012-01-01
This paper reviews the current knowledge about the mechanisms of anesthesia-induced alteration of consciousness. It is now evident that hypnotic anesthetic agents have specific brain targets whose function is hierarchically altered in a dose-dependent manner. Higher order networks, thought to be involved in mental content generation, as well as sub-cortical networks involved in thalamic activity regulation seems to be affected first by increasing concentrations of hypnotic agents that enhance inhibitory neurotransmission. Lower order sensory networks are preserved, including thalamo-cortical connectivity into those networks, even at concentrations that suppress responsiveness, but cross-modal sensory interactions are inhibited. Thalamo-cortical connectivity into the consciousness networks decreases with increasing concentrations of those agents, and is transformed into an anti-correlated activity between the thalamus and the cortex for the deepest levels of sedation, when the subject is non responsive. Future will tell us whether these brain function alterations are also observed with hypnotic agents that mainly inhibit excitatory neurotransmission. The link between the observations made using fMRI and the identified biochemical targets of hypnotic anesthetic agents still remains to be identified.
Metabolic interactions between cysteamine and epigallocatechin gallate.
Izzo, Valentina; Pietrocola, Federico; Sica, Valentina; Durand, Sylvère; Lachkar, Sylvie; Enot, David; Bravo-San Pedro, José Manuel; Chery, Alexis; Esposito, Speranza; Raia, Valeria; Maiuri, Luigi; Maiuri, Maria Chiara; Kroemer, Guido
2017-02-01
Phase II clinical trials indicate that the combination of cysteamine plus epigallocatechin gallate (EGCG) is effective against cystic fibrosis in patients bearing the most frequent etiological mutation (CFTRΔF508). Here, we investigated the interaction between both agents on cultured respiratory epithelia cells from normal and CFTRΔF508-mutated donors. We observed that the combination of both agents affected metabolic circuits (and in particular the tricarboxylic acid cycle) in a unique way and that cysteamine plus EGCG reduced cytoplasmic protein acetylation more than each of the 2 components alone. In a cell-free system, protein cross-linking activity of EGCG was suppressed by cysteamine. Finally, EGCG was able to enhance the conversion of cysteamine into taurine in metabolic flux experiments. Altogether, these results indicate that multiple pharmacological interactions occur between cysteamine and EGCG, suggesting that they contribute to the unique synergy of both agents in restoring the function of mutated CFTRΔF508.
Metabolic interactions between cysteamine and epigallocatechin gallate
Izzo, Valentina; Pietrocola, Federico; Sica, Valentina; Durand, Sylvère; Lachkar, Sylvie; Enot, David; Bravo-San Pedro, José Manuel; Chery, Alexis; Esposito, Speranza; Raia, Valeria; Maiuri, Luigi; Maiuri, Maria Chiara; Kroemer, Guido
2017-01-01
ABSTRACT Phase II clinical trials indicate that the combination of cysteamine plus epigallocatechin gallate (EGCG) is effective against cystic fibrosis in patients bearing the most frequent etiological mutation (CFTRΔF508). Here, we investigated the interaction between both agents on cultured respiratory epithelia cells from normal and CFTRΔF508-mutated donors. We observed that the combination of both agents affected metabolic circuits (and in particular the tricarboxylic acid cycle) in a unique way and that cysteamine plus EGCG reduced cytoplasmic protein acetylation more than each of the 2 components alone. In a cell-free system, protein cross-linking activity of EGCG was suppressed by cysteamine. Finally, EGCG was able to enhance the conversion of cysteamine into taurine in metabolic flux experiments. Altogether, these results indicate that multiple pharmacological interactions occur between cysteamine and EGCG, suggesting that they contribute to the unique synergy of both agents in restoring the function of mutated CFTRΔF508. PMID:28059601
EVIDENCE FOR BASE EXCISION REPAIR PROCESSING OF DNA INTERSTRAND CROSSLINKS
Kothandapani, Anbarasi; Patrick, Steve M
2013-01-01
Many bifunctional alkylating agents and anticancer drugs exert their cytotoxicity by producing cross links between the two complementary strands of DNA, termed interstrand crosslinks (ICLs). This blocks the strand separating processes during DNA replication and transcription, which can lead to cell cycle arrest and apoptosis. Cells use multiple DNA repair systems to eliminate the ICLs. Concerted action of repair proteins involved in Nucleotide Excision Repair and Homologous Recombination pathways are suggested to play a key role in the ICL repair. However, recent studies indicate a possible role for Base Excision Repair (BER) in mediating the cytotoxicity of ICL inducing agents in mammalian cells. Elucidating the mechanism of BER mediated modulation of ICL repair would help in understanding the recognition and removal of ICLs and aid in the development of potential therapeutic agents. In this review, the influence of BER proteins on ICL DNA repair and the possible mechanisms of action are discussed. PMID:23219605
Zhao, Xi; Wu, Xiaoli; Zhou, Hui; Jiang, Tao; Chen, Chun; Liu, Mingshi; Jin, Yuanbao; Yang, Dongsheng
2014-11-01
To optimize the preparation factors for argan oil microcapsule using complex coacervation of chitosan cross-linked with gelatin based on hybrid-level orthogonal array design via SPSS modeling. Eight relatively significant factors were firstly investigated and selected as calculative factors for the orthogonal array design from the total of ten factors effecting the preparation of argan oil microcapsule by utilizing the single factor variable method. The modeling of hybrid-level orthogonal array design was built in these eight factors with the relevant levels (9, 9, 9, 9, 7, 6, 2 and 2 respectively). The preparation factors for argan oil microcapsule were investigated and optimized according to the results of hybrid-level orthogonal array design. The priorities order and relevant optimum levels of preparation factors standard to base on the percentage of microcapsule with the diameter of 30~40 μm via SPSS. Experimental data showed that the optimum factors were controlling the chitosan/gelatin ratio, the systemic concentration and the core/shell ratio at 1:2, 1.5% and 1:7 respectively, presetting complex coacervation pH at 6.4, setting cross-linking time and complex coacervation at 75 min and 30 min, using the glucose-delta lactone as the type of cross-linking agent, and selecting chitosan with the molecular weight of 2000~3000.
Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprong, Debbie; Janssen, Hilde L.; Vens, Conchita
2006-02-01
Purpose: To determine the role of DNA repair in hypoxic radioresistance. Methods and Materials: Chinese hamster cell lines with mutations in homologous recombination (XRCC2, XRCC3, BRAC2, RAD51C) or nonhomologous end-joining (DNA-PKcs) genes were irradiated under normoxic (20% oxygen) and hypoxic (<0.1% oxygen) conditions, and the oxygen enhancement ratio (OER) was calculated. In addition, Fanconi anemia fibroblasts (complementation groups C and G) were compared with fibroblasts from nonsyndrome patients. RAD51 foci were studied using immunofluorescence. Results: All hamster cell lines deficient in homologous recombination showed a decrease in OER (1.5-2.0 vs. 2.6-3.0 for wild-types). In contrast, the OER for the DNA-PKcs-deficientmore » line was comparable to wild-type controls. The two Fanconi anemia cell strains also showed a significant reduction in OER. The OER for RAD51 foci formation at late times after irradiation was considerably lower than that for survival in wild-type cells. Conclusion: Homologous recombination plays an important role in determining hypoxic cell radiosensitivity. Lower OERs have also been reported in cells deficient in XPF and ERCC1, which, similar to homologous recombination genes, are known to play a role in cross-link repair. Because Fanconi anemia cells are also sensitive to cross-linking agents, this strengthens the notion that the capacity to repair cross-links determines hypoxic radiosensitivity.« less
Cross-linked polyimides for integrated optics
NASA Astrophysics Data System (ADS)
Singer, Kenneth D.; Kowalczyk, Tony C.; Nguyen, Hung D.; Beuhler, Allyson J.; Wargowski, David A.
1997-01-01
We have investigated a promising class of polyimide materials for both passive and active electro-optic devices, namely crosslinkable polyimides. These fluorinated polyimides are soluble in the imidized form and are both thermally and photo-crosslinkable leading to easy processability into waveguide structures and the possibility of stable electro-optic properties. We have fabricated channel and slab waveguides and investigated the mechanism of optical propagation loss using photothermal deflection spectroscopy and waveguide loss spectroscopy, and found the losses to arise from residual absorption due to the formation of charge transfer states. The absorption is inhibited by fluorination leading to propagation losses as low as 0.3 dB/cm in the near infrared. Because of the ability to photocrosslink, channel waveguides are fabricated using a simple wet-etch process. Channel waveguides so formed are observed to have no excess loss over slab structures. Solubility followed by thermal cross-linking allows the formation of multilayer structures. We have produced electro-optic polymers by doping with the nonlinear optical chromophores, DCM and DADC; and a process of concurrent poling and thermal crosslinking. Multilayer structures have been investigated and poling fields optimized in the active layer by doping the cladding with an anti-static agent. The high glass-transition temperature and cross-linking leads to very stable electro-optic properties. We are currently building electro-optic modulators based on these materials. Progress and results in this area also are reported.
Li, Ang; Zhang, Donghui
2016-03-14
Amphiphilic block copolypeptoids consisting of a hydrophilic poly(N-ethyl glycine) segment and a hydrophobic poly[(N-propargyl glycine)-r-(N-decyl glycine)] random copolymer segment [PNEG-b-P(NPgG-r-NDG), EPgD] have been synthesized by sequential primary amine-initiated ring-opening polymerization (ROP) of the corresponding N-alkyl N-carboxyanhydride monomers. The block copolypeptoids form micelles in water and the micellar core can be cross-linked with a disulfide-containing diazide cross-linker by copper-mediated alkyne-azide cycloaddition (CuAAC) in aqueous solution. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical micelles with uniform size for both the core-cross-linked micelles (CCLMs) and non-cross-linked micelles (NCLMs) precursors for selective block copolypeptoid polymers. The CCLMs exhibited increased dimensional stability relative to the NCLMs in DMF, a nonselective solvent for the core and corona segments. Micellar dissociation of CCLMs can be induced upon addition of a reducing agent (e.g., dithiothreitol) in dilute aqueous solutions, as verified by a combination of fluorescence spectroscopy, size exclusion chromatography (SEC), and (1)H NMR spectroscopic measurement. Doxorubicin (DOX), an anticancer drug, can be loaded into the hydrophobic core of CCLMs with a maximal 23% drug loading capacity (DLC) and 37% drug loading efficiency (DLE). In vitro DOX release from the CCLMs can be triggered by DTT (10 mM), in contrast to significantly reduced DOX release in the absence of DTT, attesting to the reductively responsive characteristic of the CCLMs. While the CCLMs exhibited minimal cytotoxicity toward HepG2 cancer cells, DOX-loaded CCLMs inhibited the proliferation of the HepG2 cancer cells in a concentration and time dependent manner, suggesting the controlled release of DOX from the DOX-loaded CCLMS in the cellular environment.
Nanotemplated polyelectrolyte films as porous biomolecular delivery systems
Gand, Adeline; Hindié, Mathilde; Chacon, Diane; van Tassel, Paul R; Pauthe, Emmanuel
2014-01-01
Biomaterials capable of delivering controlled quantities of bioactive agents, while maintaining mechanical integrity, are needed for a variety of cell contacting applications. We describe here a nanotemplating strategy toward porous, polyelectrolyte-based thin films capable of controlled biomolecular loading and release. Films are formed via the layer-by-layer assembly of charged polymers and nanoparticles (NP), then chemically cross-linked to increase mechanical rigidity and stability, and finally exposed to tetrahydrofuran to dissolve the NP and create an intra-film porous network. We report here on the loading and release of the growth factor bone morphogenetic protein 2 (BMP-2), and the influence of BMP-2 loaded films on contacting murine C2C12 myoblasts. We observe nanotemplating to enable stable BMP-2 loading throughout the thickness of the film, and find the nanotemplated film to exhibit comparable cell adhesion, and enhanced cell differentiation, compared with a non-porous cross-linked film (where BMP-2 loading is mainly confined to the film surface). PMID:25482416
Lin, Qiang; Huo, Qing; Qin, Yingzhe; Zhao, Zhuo; Tao, Fengyun
2017-01-01
ABSTRACT This study investigates the preparation of ligustrazine hydrochloride carboxymethyl chitosan and collagen microspheres. This experiment investigates effects of the ratio of carboxymethyl chitosan and collagen blend, water to oil ratio, stirring speed, and other factors on the microsphere properties. The experiment had the following conditions: a 1:2 proportion of carboxymethyl chitosan and collagen, a 1:2 proportion of drugs and materials, a 5:1 proportion of oil phase and water phase, 0.5% of span80, a 600r/min stirring speed, 3 ml of a cross-linking agent, 3 h of cross-linking curing, 1.25 ± 0.05 mm diameter LTH microcapsules, a 54.08% envelop rate, and a 14.16% carrier rate. The microspheres release rate reached 66% within 1 h, then steadily released within 5 h in vitro. The experimental results showed that the ligustrazine hydrochloride microsphere production process was stable and exhibited a good release effect compared with other ligustrazine hydrochloride tablets and pills. PMID:27689792
Lim, Lim Sze; Rosli, Noor Afizah; Ahmad, Ishak; Mat Lazim, Azwan; Mohd Amin, Mohd Cairul Iqbal
2017-01-01
pH-sensitive poly(acrylic acid) (PAA) hydrogel reinforced with cellulose nanocrystals (CNC) was prepared. Acrylic acid (AA) was subjected to chemical cross-linking using the cross-linking agent MBA (N,N-methylenebisacrylamide) with CNC entrapped in the PAA matrix. The quantity of CNC was varied between 0, 5, 10, 15, 20, and 25 wt %. X-ray diffraction (XRD) data showed an increase in crystallinity with the addition of CNC, while rheology tests demonstrated a significant increase in the storage modulus of the hydrogel with an increase in CNC content. It was found that the hydrogel reached maximum swelling at pH 7. The potential of the resulting hydrogels to act as drug carriers was then evaluated by means of the drug encapsulation efficiency test using theophylline as a model drug. It was observed that 15% CNC/PAA hydrogel showed the potential to be used as drug carrier system. PMID:29156613
Motaali, Soheila; Pashaeiasl, Maryam; Akbarzadeh, Abolfazl; Davaran, Soodabeh
2017-05-01
In the present study, magnetic and thermo/pH-sensitive (multiresponsive) nanocomposites based on N-isopropylacrylamide (NIPAAM) were synthesized and characterized. Nanocomposites were synthesized by free radical emulsion polymerization of NIPAAM as thermosensitive monomer and N,N-dimethyl-aminoethyl methacrylate (DMAEMA) as pH-sensitive monomer in the presence of methylene-bis-acrylamide as cross-linking agent. Doxorubicin, an anti-cancer drug, was loaded into these nanocomposites via equilibrium swelling method. Thermo/pH-sensitive cross-linked poly (NIPAAM-DMAEMA)-Fe 3 O 4 nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The volume of the loaded drug and drug release amount was determined by UV measurements. The results showed that this thermo/pH-sensitive magnetic nanocomposite has a high drug-loading efficiency. Doxorubicin was released at 40 °C and pH 5.8 more than the 37 °C and pH 7.4.
Gand, Adeline; Hindié, Mathilde; Chacon, Diane; Van Tassel, Paul R; Pauthe, Emmanuel
2014-01-01
Biomaterials capable of delivering controlled quantities of bioactive agents, while maintaining mechanical integrity, are needed for a variety of cell contacting applications. We describe here a nanotemplating strategy toward porous, polyelectrolyte-based thin films capable of controlled biomolecular loading and release. Films are formed via the layer-by-layer assembly of charged polymers and nanoparticles (NP), then chemically cross-linked to increase mechanical rigidity and stability, and finally exposed to tetrahydrofuran to dissolve the NP and create an intra-film porous network. We report here on the loading and release of the growth factor bone morphogenetic protein 2 (BMP-2), and the influence of BMP-2 loaded films on contacting murine C2C12 myoblasts. We observe nanotemplating to enable stable BMP-2 loading throughout the thickness of the film, and find the nanotemplated film to exhibit comparable cell adhesion, and enhanced cell differentiation, compared with a non-porous cross-linked film (where BMP-2 loading is mainly confined to the film surface).
Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites.
Munarin, F; Petrini, P; Gentilini, R; Pillai, R S; Dirè, S; Tanzi, M C; Sglavo, V M
2015-01-01
Pectin-based biocomposite hydrogels were produced by internal gelation, using different hydroxyapatite (HA) powders from commercial source or synthesized by the wet chemical method. HA possesses the double functionality of cross-linking agent and inorganic reinforcement. The mineralogical composition, grain size, specific surface area and microstructure of the hydroxyapatite powders are shown to strongly influence the properties of the biocomposites. Specifically, the grain size and specific surface area of the HA powders are strictly correlated to the gelling time and rheological properties of the hydrogels at room temperature. Pectin pH is also significant for the formation of ionic cross-links and therefore for the hydrogels stability at higher temperatures. The obtained results point out that micrometric-size hydroxyapatite can be proposed for applications which require rapid gelling kinetics and improved mechanical properties; conversely the nanometric hydroxyapatite synthesized in the present work seems the best choice to obtain homogeneous hydrogels with more easily controlled gelling kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.
Jayakumar, S; Sudha, P N
2013-03-15
Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components. Copyright © 2012 Elsevier B.V. All rights reserved.
Humbert, Pascal; Przyklenk, Michael; Vemmer, Marina; Patel, Anant V
2017-02-01
Calcium chloride (CC) is the most common cross-linker for the encapsulation of biocontrol microorganisms in alginate beads. The aim of this study was to evaluate if calcium gluconate (CG) can replace CC as cross-linker and at the same time improve viability after drying and rehydration, hygroscopic properties, shelf life and nutrient supply. Hence, the biocontrol fungi Metarhizium brunneum and Saccharomyces cerevisiae were encapsulated in Ca-alginate beads supplemented with starch. Beads were dried and maximum survival was found in beads cross-linked with CG. Beads prepared with CG showed lower hygroscopic properties, but a higher shelf life for encapsulated fungi. Moreover, we demonstrated that gluconate has a nutritive effect on encapsulated fungi, leading to increased mycelium growth of M. brunneum and to enhanced CO 2 release from beads containing Saccharomyces cerevisiae. The application of CG as cross-linker will pave the way towards increasing drying survival and shelf life of various, especially drying-sensitive microbes.
Lee, Jin Woo; Park, Joon Yeong; Park, Seung Hun; Kim, Min Ju; Song, Bo Ram; Yun, Hee-Woong; Kang, Tae Woong; Choi, Hak Soo; Kim, Young Jick; Min, Byoung Hyun; Kim, Moon Suk
2018-07-01
In this work, we chose cartilage acellular matrix (CAM) as a promising antiadhesive material because CAM effectively inhibits the formation of blood vessels, and we used electrospinning to prepare antiadhesive barriers. Additionally, we synthesized N-hydroxysuccinimide (NHS)-poly(caprolactone-co-lactide-co-glycolide)-NHS (MP) copolymers (to tune degradation) as a cross-linking agent for CAM. This is the first report on the development of electrospun cross-linked (Cx) CAM/MP (CA/P) nanofiber (NF) (Cx-CA/P-NF) with a tunable degradation period as an antiadhesive barrier. Compared with the CA/P-NF before cross-linking, the electrospun Cx-CA/P-NF after cross-linking showed different biodegradation. Cx-CA/P-NF significantly inhibited the in vitro attachment and proliferation of human umbilical vein endothelial cells (HUVECs), as confirmed by an MTT assay and scanning electron microscopy images. Cx-CA/P-NFs implanted between a surgically damaged peritoneal wall and cecum gradually degraded in 7 days; this process was monitored by NIR imaging. The in vivo evaluation of the anti-tissue adhesive effect of Cx-CA/P-NFs revealed little adhesion, few blood vessels, and negligible inflammation at 7 days determined by hematoxylin and eosin staining. ED1 staining of Cx-CA/P-NFs showed infiltration of few macrophages because of the inflammatory response to the Cx-CA/P-NF as compared with an untreated injury model. Additionally, Cx-CA/P-NFs significantly suppressed the formation of blood vessels between the peritoneal wall and cecum, according to CD31 staining. Overall, Cx-CA/P-NFs yielded little adhesion, infiltration by macrophages, or formation of blood vessels in a postoperative antiadhesion assay. Thus, it is reasonable to conclude that the Cx-CA/P-NF designed herein successfully works as an antiadhesive barrier with a tunable degradation period. The cartilage acellular matrix (CAM) can inhibit the formation of fibrous tissue bridges and blood vessels between the tissue at an injured site and the surrounding healthy tissues. However, CAM has not been rigorously investigated as an antiadhesive barrier. In this manuscript, the cross-linked CAM nanofiber (Cx-CA/P-NF) designed herein successfully works as an antiadhesive barrier. Cx-CA/P-NFs yielded little adhesion, infiltration by macrophages, or formation of blood vessels in a postoperative antiadhesion assay. Moreover, we demonstrated the suitable properties of Cx-CA/P-NF such as easy cross-linking by maintaining the antiadhesive properties, controllable biodegradation, and in vivo antiadhesive effect of Cx-CA/P-NF. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Process for impregnating a concrete or cement body with a polymeric material
Mattus, A.J.; Spence, R.D.
1988-05-04
A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.
Process for impregnating a concrete or cement body with a polymeric material
Mattus, Alfred J.; Spence, Roger D.
1989-01-01
A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.
In situ self cross-linking of polyvinyl alcohol battery separators
NASA Technical Reports Server (NTRS)
Philipp, W. H.; Hsu, L. C.; Sheibley, D. W. (Inventor)
1979-01-01
A battery separator was produced from a polyvinyl alcohol sheet structure which was subjected to an in situ, self crosslinking process by selective oxidation of the 1,2 diol units present in the polyvinyl alcohol sheet structure. The 1,2 diol units were cleaved to form aldehyde end groups which subsequently crosslink through acetalization of the 1,3 diol units of the polyvinyl alcohol. Selective oxidation was achieved using a solution of a suitable oxidizing agent such as periodic acid or lead tetraacetate.
Avila-Salas, Fabian; Marican, Adolfo; Villaseñor, Jorge; Arenas-Salinas, Mauricio; Argandoña, Yerko; Caballero, Julio; Durán-Lara, Esteban F
2018-01-04
This study describes the in-silico design, synthesis, and evaluation of a cross-linked PVA hydrogel (CLPH) for the absorption of organophosphorus pesticide dimethoate from aqueous solutions. The crosslinking effectiveness of 14 dicarboxilic acids was evaluated through in-silico studies using semiempirical quantum mechanical calculations. According to the theoretical studies, the nanopore of PVA cross-linked with malic acid (CLPH-MA) showed the best interaction energy with dimethoate. Later, using all-atom molecular dynamics simulations, three hydrogels with different proportions of PVA:MA (10:2, 10:4, and 10:6) were used to evaluate their interactions with dimethoate. These results showed that the suitable crosslinking degree for improving the affinity for the pesticide was with 20% ( W %) of the cross-linker. In the experimental absorption study, the synthesized CLPH-MA20 recovered 100% of dimethoate from aqueous solutions. Therefore, the theoretical data were correlated with the experimental studies. Surface morphology of CLPH-MA20 by Scanning Electron Microscopy (SEM) was analyzed. In conclusion, the ability of CLPH-MA20 to remove dimethoate could be used as a technological alternative for the treatment of contaminated water.
F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks
NASA Astrophysics Data System (ADS)
Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon
2015-12-01
Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.
Avila-Salas, Fabian; Marican, Adolfo; Villaseñor, Jorge; Argandoña, Yerko
2018-01-01
This study describes the in-silico design, synthesis, and evaluation of a cross-linked PVA hydrogel (CLPH) for the absorption of organophosphorus pesticide dimethoate from aqueous solutions. The crosslinking effectiveness of 14 dicarboxilic acids was evaluated through in-silico studies using semiempirical quantum mechanical calculations. According to the theoretical studies, the nanopore of PVA cross-linked with malic acid (CLPH-MA) showed the best interaction energy with dimethoate. Later, using all-atom molecular dynamics simulations, three hydrogels with different proportions of PVA:MA (10:2, 10:4, and 10:6) were used to evaluate their interactions with dimethoate. These results showed that the suitable crosslinking degree for improving the affinity for the pesticide was with 20% (W%) of the cross-linker. In the experimental absorption study, the synthesized CLPH-MA20 recovered 100% of dimethoate from aqueous solutions. Therefore, the theoretical data were correlated with the experimental studies. Surface morphology of CLPH-MA20 by Scanning Electron Microscopy (SEM) was analyzed. In conclusion, the ability of CLPH-MA20 to remove dimethoate could be used as a technological alternative for the treatment of contaminated water. PMID:29300312
Srinivasulu, S; Vidhya, S; Sujatha, M; Mahalaxmi, S
2012-01-01
This in vitro study evaluated the shear bond strength of composite resin to deep dentin using a total etch adhesive after treatment with two collagen cross-linking agents at varying time intervals. Thirty freshly extracted human maxillary central incisors were sectioned longitudinally into equal mesial and distal halves (n=60). The proximal deep dentin was exposed, maintaining a remaining dentin thickness (RDT) of approximately 1 mm. The specimens were randomly divided into three groups based on the surface treatment of dentin prior to bonding as follows: group I (n=12, control): no prior dentin surface treatment; group II (n=24): dentin surface pretreated with 10% sodium ascorbate; and group III (n=24): dentin surface pretreated with 6.5% proanthocyanidin. Groups II and III were further subdivided into two subgroups of 12 specimens each, based on the pretreatment time of five minutes (subgroup A) and 10 minutes (subgroup B). Shear bond strength of the specimens was tested with a universal testing machine, and the data were statistically analyzed. Significantly higher shear bond strength to deep dentin was observed in teeth treated with 10% sodium ascorbate (group II) and 6.5% proanthocyanidin (group III) compared to the control group (group I). Among the collagen cross-linkers used, specimens treated with proanthocyanidin showed significantly higher shear bond strength values than those treated with sodium ascorbate. No significant difference was observed between the five-minute and 10-minute pretreatment times in groups II and III. It can be concluded that dentin surface pretreatment with both 10% sodium ascorbate and 6.5% proanthocyanidin resulted in significant improvement in bond strength of resin composite to deep dentin.
EDC Cross-linking of Decellularized Tissue: A Promising Approach?
Lehmann, Nadine; Christ, Torsten; Daugs, Aila; Bloch, Oliver; Holinski, Sebastian
2017-07-01
Decellularization of xenogenous cardiovascular structures is a promising approach to create scaffolds for tissue engineering. Unfortunately, handling and pliability of the unfixed tissue is challenging. N-(3-dimethylaminopropyl)-N9-ethylcarbodiimide (EDC) is an alternative cross-linking agent to glutaraldehyde (GA). Applied in native tissue, it provides biocompatibility and shows no potential for calcification. In addition, EDC can be used to link growth factors (GFs) to tissue scaffolds after decellularization. EDC cross-linking could thereby help to improve decellularized tissue without the toxicity of GA. Porcine aortic wall tissue specimens (TS) were decellularized, treated with EDC, and coated with fibroblast growth factor (FGF) or vascular endothelial growth factor (VEGF). Afterward, TS were subcutaneously implanted in 36 Lewis rats along with one decellularized TS without EDC treatment. After 2, 4, and 6 weeks TS were explanted from 12 rats, respectively. Vital cells were evaluated by RNA quantification, general cellular infiltration by hematoxylin and eosin staining (H&E), macrophage infiltration by CD68 staining, calcification by Von-Kossa staining, and tissue degradation by measurement of TS thickness. Quantification of vital cells showed reduced reseeding of EDC-treated TS compared to noncross-linked TS after 2 (p < 0.05) and 4 weeks (p < 0.05), while after 6 weeks only EDC+VEGF showed fewer viable cells (p < 0.01). Histological evaluation confirmed a reduced infiltration of EDC-treated TS. Macrophage infiltration decreased in all groups from 2 to 6 weeks, with the smallest population in EDC+VEGF-treated TS (p > 0.05). In EDC+FGF-treated TS, macrophages were reduced after 2 weeks compared to noncross-linked TS (p < 0.05), while after 4 and 6 weeks no significant difference was found (p > 0.05). Von-Kossa staining revealed no calcification in any of the specimens. Thickness of noncross-linked and EDC+FGF-treated TS was not different at the respective times of explantation, but decreased in both groups toward 6 weeks. EDC cross-linking combined with GF coating of decellularized aortic wall tissue showed encouraging results. The treatment did not impair the advantages of decellularized tissue such as long-term recellularization, absence of calcification, and tissue integrity. Based on the low macrophage infiltration and minimal tissue degradation, treatment with EDC and VEGF could be useful after decellularization. However, further research is necessary to verify these findings in models, including mechanical stress.
Murray, V
1999-01-01
This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.
NASA Astrophysics Data System (ADS)
Schaumann, Gabriele E.; Conte, Pellegrino; Jäger, Alexander; Alonzo, Giuseppe; Bertmer, Marko
2010-05-01
The molecular size of humic substances is still under debate and is believed to range up to several hundred thousands Dalton, although a number of recent studies suggest much lower molecular weights. Nowadays an increasing number of authors suggest a model of molecular aggregates. One explanation why results on the molecular mass of humic materials are contradictory, may be that individual OM molecules are linked via intermolecular interactions, by bridges of water molecules or by cations bridging cation exchange sites (Schaumann, 2006a, b). Properties of such cross-linked systems can be similar to macromolecular systems revealing covalent cross-links. In this context, multivalent cations play an important ecological role, serving as reversible cross-linking agent. Formation and disruption of such cation bridges may close or open sorption sites in soil organic matter. Although cross-linking by multivalent cations has been proposed in many studies, the cross-linking effect has not yet been demonstrated on the molecular scale. The objective of this study was to investigate the interactions between cations and peat organic matter using NMR wideline techniques as well as static and fast field cycling (FFC) NMR relaxometry. Peat treated with solutions containing either Na+, Ca2+ or Al3+ was investigated in air-dried state for longitudinal relaxation times (T1) and NMR wideline characteristics. T1 distributions were separated into two Gaussian functions which were interpreted to represent two proton populations belonging to two environments of differing mobility. The relaxation rates (R1 = T1-1) in the cation treated samples spread over a range of 87-123 s-1 (R1a: fast component) and 32-42 s-1 (R1b: slow component). The rates in all treatments are significantly different from each other. and decrease in the order conditioned sample > desalinated sample > Na-treated sample. The treatment with multivalent cations affects R1a and R1b in different ways and needs more detailed explanation. Wideline proton NMR spectra can be used to quantify proton containing material, mainly water, based on their mobility. Spectra were decomposed into a Gaussian and Lorentzian line and changes to mobility after heat treatment indicate the water binding strength. In this study, differences in the various NMR parameters on the cation treatments will be presented and discussed with respect to the crosslinking hypothesis.
Noronha, Anne M; Noll, David M; Wilds, Christopher J; Miller, Paul S
2002-01-22
The preparation and physical properties of short DNA duplexes that contain a N(4)C-ethyl-N(4)C interstrand cross-link are described. Duplexes that contain an interstrand cross-link between mismatched C-C residues and duplexes in which the C residues of a -CG- or -GC- step are linked to give "staggered" interstrand cross-links were prepared using a novel N(4)C-ethyl-N(4)C phosphoramidite reagent. Duplexes with the C-C mismatch cross-link have UV thermal transition temperatures that are 25 degrees C higher than the melting temperatures of control duplexes in which the cross-link is replaced with a G-C base pair. It appears that this cross-link stabilizes adjacent base pairs and does not perturb the structure of the helix, a conclusion that is supported by the CD spectrum of this duplex and by molecular models. An even higher level of stabilization, 49 degrees C, is seen with the duplex that contains a -CG- staggered cross-link. Molecular models suggest that this cross-link may induce propeller twisting in the cross-linked base pairs, and the CD spectrum of this duplex exhibits an unusual negative band at 298 nm, although the remainder of the spectrum is similar to that of B-form DNA. Mismatched C-C or -CG- staggered cross-linked duplexes that have complementary overhanging ends can undergo self-ligation catalyzed by T4 DNA ligase. Analysis of the ligated oligomers by nondenaturing polyacrylamide gel electrophoresis shows that the resulting oligomers migrate in a manner similar to that of a mixture of non-cross-linked control oligomers and suggests that these cross-links do not result in significant bending of the helix. However, the orientation of the staggered cross-link can have a significant effect on the structure and stability of the cross-linked duplex. Thus, the thermal stability of the duplex that contains a -GC- staggered cross-link is 10 degrees C lower than the melting temperature of the control, non-cross-linked duplex. Unlike the -CG- staggered cross-link, in which the cross-linked base pairs can still maintain hydrogen bond contacts, molecular models suggest that formation of the -GC- staggered cross-link disrupts hydrogen bonding and may also perturb adjacent base pairs leading to an overall reduction in helix stability. Duplexes with specifically positioned and oriented cross-links can be used as substrates to study DNA repair mechanisms.