Sample records for cross-sectional area width

  1. A computer program for analyzing channel geometry

    USGS Publications Warehouse

    Regan, R.S.; Schaffranek, R.W.

    1985-01-01

    The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)

  2. Hydraulic Geometry Characteristics of Continuous-Record Streamflow-Gaging Stations on Four Urban Watersheds Along the Main Stem of Gwynns Falls, Baltimore County and Baltimore City, Maryland

    USGS Publications Warehouse

    Doheny, Edward J.; Fisher, Gary T.

    2007-01-01

    Four continuous-record streamflow-gaging stations are currently being operated by the U.S. Geological Survey on the main stem of Gwynns Falls in western Baltimore County and Baltimore City, Maryland. The four streamflow-gaging stations drain urban or suburban watersheds with significantly different drainage areas. In addition to providing continuous- record discharge data at these four locations, operation of these stations also provides a long-term record of channel geometry variables such as cross-sectional area, channel width, mean channel depth, and mean velocity that are obtained from physical measurement of the discharge at a variety of flow conditions. Hydraulic geometry analyses were performed using discharge-measurement data from four continuous-record streamflow-gaging stations on the main stem of Gwynns Falls. Simple linear regression was used to develop relations that (1) quantify changes in cross-sectional area, channel width, mean channel depth, and mean velocity with changes in discharge at each station, and (2) quantify changes in these variables in the Gwynns Falls watershed with changes in drainage area and annual mean discharge. Results of the hydraulic geometry analyses indicated that mean velocity is more responsive to changes in discharge than channel width and mean channel depth for all four streamflow-gaging stations on the main stem of Gwynns Falls. For the two largest and most developed watersheds, on Gwynns Falls at Villa Nova, and Gwynns Falls at Washington Boulevard at Baltimore, the slope of the regression lines, or hydraulic exponents, indicated that mean velocity was more responsive to changes in discharge than any of the other hydraulic variables that were analyzed. This was true even when considering changes in cross-sectional area with discharge, which incorporates the combined effects of channel width and mean channel depth. A comparison of hydraulic exponents for Gwynns Falls to average values from previous work indicated that the velocity exponents for all four stations on the Gwynns Falls are larger than the average value of 0.34. For stations 01589300 and 01589352, the exponents for mean velocity are about twice as large as the average value. Analyses of cross-sectional area, channel width, mean channel depth, and mean velocity in conjunction with changes in drainage area and annual mean discharge indicated that channel width is much more responsive to changes in drainage area and annual mean discharge than are mean channel depth or mean velocity. Cross-sectional area, which combines the effects of channel width and mean channel depth, was also found to be highly responsive to changes in drainage area and annual mean discharge.

  3. Thermal performance of plate fin heat sink cooled by air slot impinging jet with different cross-sectional area

    NASA Astrophysics Data System (ADS)

    Mesalhy, O. M.; El-Sayed, Mostafa M.

    2015-06-01

    Flow and heat transfer characteristics of a plate-fin heat sink cooled by a rectangular impinging jet with different cross-sectional area were studied experimentally and numerically. The study concentrated on investigating the effect of jet width, fin numbers, and fin heights on thermal performance. Entropy generation minimization method was used to define the optimum design and operating conditions. It is found that, the jet width that minimizes entropy generation changes with heat sink height and fin numbers.

  4. Dimensions of the scala tympani in the human and cat with reference to cochlear implants.

    PubMed

    Hatsushika, S; Shepherd, R K; Tong, Y C; Clark, G M; Funasaka, S

    1990-11-01

    The width, height, and cross-sectional area of the scala tympani in both the human and cat were measured to provide dimensional information relevant to the design of scala tympani electrode arrays. Both the height and width of the human scala tympani decreased rapidly within the first 1.5 mm from the round window. Thereafter, they exhibit a gradual reduction in their dimension with increasing distance from the round window. The cross-sectional area of the human scala tympani reflects the changes observed in both the height and width. In contrast, the cat scala tympani exhibits a rapid decrease in its dimensions over the first 6 to 8 mm from the round window. However, beyond this point the cat scala tympani also exhibits a more gradual decrease in its dimensions. Finally, the width of the scala tympani, in both human and cat, is consistently greater than the height.

  5. A new automated method for the determination of cross-section limits in ephemeral gullies

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Ángel Campo-Bescós, Miguel; Casalí, Javier; Giménez, Rafael

    2017-04-01

    The assessment of gully erosion relies on the estimation of the soil volume enclosed by cross sections limits. Both 3D and 2D methods require the application of a methodology for the determination of the cross-section limits what has been traditionally carried out in two ways: a) by visual inspection of the cross-section by a certain expert operator; b) by the automated identification of thresholds for different geometrical variables such as elevation, slope or plan curvature obtained from the cross-section profile. However, for these last methods, typically, the thresholds are not of general application because they depend on absolute values valid only for the local gully conditions where they were derived. In this communication we evaluate an automated method for cross-section delimitation of ephemeral gullies and compare its performance with the visual assessment provided by five scientists experienced in gully erosion assessment, defining gully width, depth and area for a total of 60 ephemeral gullies cross-sections obtained from field surveys conducted on agricultural plots in Navarra (Spain). The automated method only depends on the calculation of a simple geometrical measurement, which is the bank trapezoid area for every point of each gully bank. This rectangle trapezoid (right-angled trapezoid) is defined by the elevation of a given point, the minimum elevation and the extremes of the cross-section. The gully limit for each bank is determined by the point in the bank with the maximum trapezoid area. The comparison of the estimates among the different expert operators showed large variation coefficients (up to 70%) in a number of cross-sections, larger for cross sections width and area and smaller for cross sections depth. The automated method produced comparable results to those obtained by the experts and was the procedure with the highest average correlation with the rest of the methods for the three dimensional parameters. The errors of the automated method when compared with the average estimate of the experts were occasionally high (up to 40%), in line with the variability found among experts. The automated method showed no apparent systematic errors which approximately followed a normal distribution, although these errors were slightly biased towards overestimation for the depth and area parameters. In conclusion, this study shows that there is not a single definition of gully limits even among gully experts where a large variability was found. The bank trapezoid method was found to be an automated, easy-to-use (readily implementable in a basic excel spread-sheet or programming scripts), threshold-independent procedure to determine consistently gully limits similar to expert-derived estimates. Gully width and area calculations were more prone to errors than gully depth, which was the least sensitive parameter.

  6. Regionalized equations for bankfull-discharge and channel characteristics of streams in New York State—Hydrologic Region 7 in western New York

    USGS Publications Warehouse

    Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.

    2006-01-01

    Computation of bankfull discharge and channel dimensions (width, depth, and cross-sectional area) at ungaged sites requires equations that relate bankfull discharge and channel dimensions to drainage-area at gaged sites. Bankfull-channel information commonly is needed for watershed assessments, stream channel classification, and the design of stream-restoration projects. Such equations are most accurate if they are derived on the basis of data from streams within a region of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. New York State contains eight hydrologic regions that were previously delineated on the basis of high-flow (flood) characteristics. This report presents drainage areas and associated bankfull characteristics (discharge and channel dimensions) for surveyed streams in western New York (Region 7).Stream-survey data and discharge records from seven active and three inactive USGS streamflow-gaging stations were used in regression analyses to relate drainage area to bankfull discharge and to bankfull channel width, depth, and cross-sectional area. The resulting equations are:(1) bankfull discharge, in cubic feet per second = 37.1*(drainage area, in square miles)0.765;(2) bankfull channel width, in feet = 10.8*(drainage area, in square miles)0.458;(3) bankfull channel depth, in feet = 1.47*(drainage area, in square miles)0.199; and(4) bankfull channel cross-sectional area, in square feet = 15.9*(drainage area, in square mile)0.656.The coefficients of determination (R2) for these four equations were 0.94, 0.89, 0.52, and 0.96, respectively. The high coefficients of determination for three of these equations (discharge, width, and cross-sectional area) indicate that much of the range in the variables was explained by the drainage area. The low coefficient of determination for the equation relating bankfull depth to drainage area, however, suggests that other factors also affected water depth. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.05 to 3.60 years; the mean recurrence interval was 2.13 years. The 10 surveyed streams were classified by Rosgen stream type; most were C- and E-type, with occasional B- and F-type cross sections. The equation (curve) for bankfull discharge for Region 7 was compared with those previously developed for four other hydrologic regions in New York State. The differences confirm that the hydraulic geometry of streams is affected by local climatic and physiographic conditions.

  7. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits.

    PubMed

    Beck, T J; Ruff, C B; Mourtada, F A; Shaffer, R A; Maxwell-Williams, K; Kao, G L; Sartoris, D J; Brodine, S

    1996-05-01

    A total of 626 U.S. male Marine Corps recruits underwent anthropometric measurements and dual-energy X-ray absorptiometry (DXA) scans of the femoral midshaft and the distal third of the tibia prior to a 12 week physical training program. Conventionally obtained frontal plane DXA scan data were used to measure the bone mineral density (BMD) as well as to derive the cross-sectional area, moment of inertia, section modulus, and bone width in the femur, tibia, and fibula. During training, 23 recruits (3.7%) presented with a total of 27 radiologically confirmed stress fractures in various locations in the lower extremity. After excluding 16 cases of shin splints, periostitis, and other stress reactions that did not meet fracture definition criteria, we compared anthropometric and bone structural geometry measurements between fracture cases and the remaining 587 normals. There was no significant difference in age (p = 0.8), femur length (p = 0.2), pelvic width (p = 0.08), and knee width at the femoral condyles (p = 0.06), but fracture cases were shorter (p = 0.01), lighter (p = 0.0006), and smaller in most anthropometric girth dimensions (p < 0.04). Fracture case bone cross-sectional areas (p < 0.001), moments of inertia (p < 0.001), section moduli (p < 0.001), and widths (p < 0.001) as well as BMD (p < 0.03) were significantly smaller in the tibia and femur. After correcting for body weight differences, the tibia cross-sectional area (p = 0.03), section modulus (p = 0.05), and width (p = 0.03) remained significantly smaller in fracture subjects. We conclude that both small body weight and small diaphyseal dimensions relative to body weight are factors predisposing to the development of stress fractures in this population. These results suggest that bone structural geometry measurements derived from DXA data may provide a simple noninvasive methodology for assessing the risk of stress fracture.

  8. Influence of the width and cross-sectional shape of major connectors of maxillary dentures on the accuracy of speech production.

    PubMed

    Wada, Junichiro; Hideshima, Masayuki; Inukai, Shusuke; Matsuura, Hiroshi; Wakabayashi, Noriyuki

    2014-01-01

    To investigate the effects of the width and cross-sectional shape of the major connectors of maxillary dentures located in the middle area of the palate on the accuracy of phonetic output of consonants using an originally developed speech recognition system. Nine adults (4 males and 5 females, aged 24-26 years) with sound dentition were recruited. The following six sounds were considered: [∫i], [t∫i], [ɾi], [ni], [çi], and [ki]. The experimental connectors were fabricated to simulate bars (narrow, 8-mm width) and plates (wide, 20-mm width). Two types of cross-sectional shapes in the sagittal plane were specified: flat and plump edge. The appearance ratio of phonetic segment labels was calculated with the speech recognition system to indicate the accuracy of phonetic output. Statistical analysis was conducted using one-way ANOVA and Tukey's test. The mean appearance ratio of correct labels (MARC) significantly decreased for [ni] with the plump edge (narrow connector) and for [ki] with both the flat and plump edge (wide connectors). For [çi], the MARCs tended to be lower with flat plates. There were no significant differences for the other consonants. The width and cross-sectional shape of the connectors had limited effects on the articulation of consonants at the palate. © 2015 S. Karger AG, Basel.

  9. Comparison of the arithmetic and geometric means in estimating crown diameter and crown cross-sectional area

    Treesearch

    KaDonna Randolph

    2010-01-01

    The use of the geometric and arithmetic means for estimating tree crown diameter and crown cross-sectional area were examined for trees with crown width measurements taken at the widest point of the crown and perpendicular to the widest point of the crown. The average difference between the geometric and arithmetic mean crown diameters was less than 0.2 ft in absolute...

  10. Hydraulic geometry of river cross sections; theory of minimum variance

    USGS Publications Warehouse

    Williams, Garnett P.

    1978-01-01

    This study deals with the rates at which mean velocity, mean depth, and water-surface width increase with water discharge at a cross section on an alluvial stream. Such relations often follow power laws, the exponents in which are called hydraulic exponents. The Langbein (1964) minimum-variance theory is examined in regard to its validity and its ability to predict observed hydraulic exponents. The variables used with the theory were velocity, depth, width, bed shear stress, friction factor, slope (energy gradient), and stream power. Slope is often constant, in which case only velocity, depth, width, shear and friction factor need be considered. The theory was tested against a wide range of field data from various geographic areas of the United States. The original theory was intended to produce only the average hydraulic exponents for a group of cross sections in a similar type of geologic or hydraulic environment. The theory does predict these average exponents with a reasonable degree of accuracy. An attempt to forecast the exponents at any selected cross section was moderately successful. Empirical equations are more accurate than the minimum variance, Gauckler-Manning, or Chezy methods. Predictions of the exponent of width are most reliable, the exponent of depth fair, and the exponent of mean velocity poor. (Woodard-USGS)

  11. The Achilles Tendon in Healthy Subjects: An Anthropometric and Ultrasound Mapping Study.

    PubMed

    Patel, Nick N; Labib, Sameh A

    Ultrasonography is an inexpensive, fast, and reliable imaging technique widely used to assess the Achilles tendon. Although significant data exists regarding pathologic tendon changes, ultrasound data from healthy individuals are more limited. We aimed to better characterize ultrasound Achilles tendon measurements in healthy individuals and identify important correlating factors. The information collected included patient demographics, body habitus, activity level, foot dominance, and resting ankle angle. Ultrasound analysis was performed bilaterally on the Achilles tendons of 50 subjects using a high-frequency transducer to measure tendon width, thickness, cross-sectional area, and length. Males had a significantly larger mean tendon length, width, thickness, and cross-sectional area. No statistically significant difference was found in any tendon dimension between the white and black participants. Similarly, no difference was found in any tendon parameter when comparing right versus left leg dominance. Healthy subjects had a mean ankle resting angle of 45.1° ± 24° with no statistically significant difference between right and left ankles. Considering all individuals, each tendon parameter (tendon length, width, thickness, and cross-sectional area) correlated positively with subject height, weight, tibia length, and foot size. Only the Achilles cross-sectional area correlated significantly with the activity level. The resting angle of the ankle correlated positively with both tendon length and thickness. In conclusion, we found significant variations in Achilles tendon anatomy in the healthy adult population. We have thoroughly characterized significant correlations between healthy tendon dimensions and various body habitus, activity levels, and ankle parameters. Greater knowledge of the normal Achilles tendon anatomy and characterization of its variations in the healthy population will potentially allow for better pathologic diagnosis and surgical repair. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Regional Curves of Bankfull Channel Geometry for Non-Urban Streams in the Piedmont Physiographic Province, Virginia

    USGS Publications Warehouse

    Lotspeich, R. Russell

    2009-01-01

    Natural-channel design involves constructing a stream channel with the dimensions, slope, and plan-view pattern that would be expected to transport water and sediment and yet maintain habitat and aesthetics consistent with unimpaired stream segments, or reaches. Regression relations for bankfull stream characteristics based on drainage area, referred to as 'regional curves,' are used in natural stream channel design to verify field determinations of bankfull discharge and stream channel characteristics. One-variable, ordinary least-squares regressions relating bankfull discharge, bankfull cross-sectional area, bankfull width, bankfull mean depth, and bankfull slope to drainage area were developed on the basis of data collected at 17 streamflow-gaging stations in rural areas with less than 20 percent urban land cover within the basin area (non-urban areas) of the Piedmont Physiographic Province in Virginia. These regional curves can be used to estimate the bankfull discharge and bankfull channel geometry when the drainage area of a watershed is known. Data collected included bankfull cross-sectional geometry, flood-plain geometry, and longitudinal profile data. In addition, particle-size distributions of streambed material were determined, and data on basin characteristics were compiled for each reach. Field data were analyzed to determine bankfull cross-sectional area, bankfull width, bankfull mean depth, bankfull discharge, bankfull channel slope, and D50 and D84 particle sizes at each site. The bankfull geometry from the 17 sites surveyed during this study represents the average of two riffle cross sections for each site. Regional curves developed for the 17 sites had coefficient of determination (R2) values of 0.950 for bankfull cross-sectional area, 0.913 for bankfull width, 0.915 for bankfull mean depth, 0.949 for bankfull discharge, and 0.497 for bankfull channel slope. The regional curves represent conditions for streams with defined channels and bankfull features in the Piedmont Physiographic Province in Virginia with drainage areas ranging from 0.29 to 111 square miles. All sites included in the development of the regional curves were located on streams with current or historical U.S. Geological Survey streamflow-gaging stations. These curves can be used to verify bankfull features identified in the field and bankfull stage for ungaged streams in non-urban areas.

  13. Regionalized equations for bankfull-discharge and channel characteristics of streams in New York State—Hydrologic Region 6 in the Southern Tier of New York

    USGS Publications Warehouse

    Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.

    2005-01-01

    Equations that relate bankfull discharge and channel characteristics (width, depth, and cross-sectional area) to drainage-area size at gaged sites are needed to define bankfull discharge and channel dimensions at ungaged sites and to provide information for watershed assessments, stream-channel classification, and the design of stream-restoration projects. Such equations are most accurate if derived from streams within an area of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. In New York State, eight hydrologic regions were previously defined on the basis of similar high-flow (flood) characteristics. This report presents drainage areas and associated bankfull characteristics (discharge and channel dimensions) for surveyed streams in southwestern New York (Region 6).Stream-survey data and discharge records from 11 active (currently gaged) sites and 3 inactive (discontinued) sites were used in regression analyses to relate bankfull discharge and bankfull channel width, depth, and cross-sectional area to the size of the drainage area. The resulting equations are:(1) bankfull discharge, in cubic feet per second = 48.0*(drainage area, in square miles)0.842;(2) bankfull channel width, in feet = 16.9*(drainage area, in square miles)0.419;(3) bankfull channel depth, in feet = 1.04*(drainage area, in square miles)0.244; and(4) bankfull channel cross-sectional area, in square feet = 17.6*(drainage area, in square miles)0.662.The coefficient of determination (R2) for these four equations were 0.90, 0.79, 0.64, and 0.89, respectively. The high correlation coefficients for bankfull discharge and cross-sectional area indicate that much of the variation in these variables is explained by the size of the drainage area. The smaller correlation coefficients for bankfull channel width and depth indicate that other factors also affect these relations. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.01 to 2.35 years; the mean recurrence interval was 1.54 years. The 14 surveyed streams were classified by Rosgen stream type; most were C-type reaches, with occasional B-type reaches. The Region 6 equation (curve) for bankfull discharge was compared with equations previously developed for four other large areas in New York State and southeastern Pennsylvania. The differences among results indicate that, although the equations need to be refined by region before being applied by water-resources managers to local planning and design efforts, similar regions have similar relations between bankfull discharge and channel characteristics.

  14. Subject-Specific Finite Element Analysis of the Carpal Tunnel Cross-Sectional to Examine Tunnel Area Changes in Response to Carpal Arch Loading

    PubMed Central

    Walia, Piyush; Erdemir, Ahmet; Li, Zong-Ming

    2017-01-01

    Background Manipulating the carpal arch width (i.e. distance between hamate and trapezium bones) has been suggested as a means to increase carpal tunnel cross-sectional area and alleviate median nerve compression. The purpose of this study was to develop a finite element model of the carpal tunnel and to determine an optimal force direction to maximize area. Methods A planar geometric model of carpal bones at hamate level was reconstructed from MRI with inter-carpal joint spaces filled with a linear elastic surrogate tissue. Experimental data with discrete carpal tunnel pressures (50, 100, 150, and 200 mmHg) and corresponding carpal bone movements were used to obtain material property of surrogate tissue by inverse finite element analysis. The resulting model was used to simulate changes of carpal arch widths and areas with directional variations of a unit force applied at the hook of hamate. Findings Inverse finite element model predicted the experimental area data within 1.5% error. Simulation of force applications showed that carpal arch width and area were dependent on the direction of force application, and minimal arch width and maximal area occurred at 138° (i.e. volar-radial direction) with respect to the hamate-to-trapezium axis. At this force direction, the width changed to 24.4 mm from its initial 25.1 mm (3% decrease), and the area changed to 301.6 mm2 from 290.3 mm2 (4% increase). Interpretation The findings of the current study guide biomechanical manipulation to gain tunnel area increase, potentially helping reduce carpal tunnel pressure and relieve symptoms of compression median neuropathy. PMID:28073093

  15. Recreation trails in Maine and New Hampshire: A comparison of notorized, non-motorized, and non-mechanized trails

    Treesearch

    Ethel Wilkerson; Andrew. Whitman

    2010-01-01

    We sampled 112 trail segments in Maine and New Hampshire to assess the impact of motorized and non-motorized recreation on trail conditions and stream sedimentation. On each segment, we assessed physical trail conditions (width, cross-sectional area, occurrence of excessively muddy and rutted/eroded sections), presence of trash, and sedimentation at stream crossings....

  16. Regional curve development and selection of a reference reach in the non-urban, lowland sections of the Piedmont physiographic province, Pennsylvania and Maryland

    USGS Publications Warehouse

    White, Kirk E.

    2001-01-01

    Stream-restoration projects utilizing naturalstream designs frequently are based on the bankfull- channel characteristics of a stream reach that is accommodating streamflow and sediment transport without excessive erosion or deposition. The bankfull channel is identified by the use of field indicators and confirmed with tools such as regional curves. Channel dimensions were surveyed at six streamflow-measurement stations operated by the U.S. Geological Survey in the Gettysburg-Newark Lowlands Section and Piedmont Lowlands Section of the Piedmont Physiographic Province in Pennsylvania and Maryland. Regional curves were developed from regression analyses of the relation between drainage area and cross-sectional area, mean depth, width, and streamflow of the bankfull channel. Regional curves were used to confirm the identification of the bankfull channel at a reference reach. Stream dimensions and characteristics of the reference reach were measured for extrapolation into the design of a steam-restoration project on Bermudian Creek in Adams County, Pa.Dimensions for cross-sectional area, mean depth, width, and computed streamflow of the bankfull channel in all surveyed riffle cross sections in the reference reach were within the 95-percent confidence interval bounding the regression line representing bankfull channel geometry in the Lowland Sections of the Piedmont Physiographic Province. The average bankfull cross-sectional area, bankfull mean depth, and computed bankfull discharge for riffle cross sections in the reference reach ranged from 15.4 to 16.5 percent less than estimates determined from the lowland regional curves. Average bankfull channel width was about 2 percent greater than estimates. Cross-sectional area, mean depth, and computed streamflow corresponding to the bankfull stage at the reference reach were 31.4, 44.4, and 9.6 percent less, respectively, than estimates derived from the regional curves developed by Dunne and Leopold in 1978. Average bankfull channel width at the reference reach was 16.7 percent greater than the Dunne and Leopold estimate.The concepts of regional curves and reference reaches can be valuable tools to support efforts in stream restoration. Practitioners of stream restoration need to recognize them as such and realize their limitations. The small number of stations available for analysis is a major limiting factor in the strength of the results of this investigation. Subjective selection criteria may have unnecessarily eliminated streamflow-measurement stations that could have been included in the regional curves. A bankfull discharge with a recurrence interval within the 1- to 2-year range was used as a criteria for confirmation of the bankfull stage at each streamflow-measurement station. Many researchers accept this range for recurrence interval of the bankfull discharge; however, literature provides contradictory evidence. The use of channel-characteristics data from a reference reach without any monitoring data to document the stability of the reference reach over time is a topic of debate.

  17. Characterization and evaluation of channel and hillslope erosion on the Zuni Indian Reservation, New Mexico, 1992-95

    USGS Publications Warehouse

    Gellis, A.C.

    1998-01-01

    Like many areas of the southwestern United States, the Zuni Indian Reservation, New Mexico, has high rates of erosion, ranging from 95 to greater than 1,430 cubic meters per square kilometer per year. Erosion on the Zuni Indian Reservation includes channel erosion (arroyo incision and channel widening) and hillslope (sheetwash) erosion. The U.S. Geological Survey conducted a 3-year (1992-95) study on channel erosion and hillslope erosion in the portion of the Rio Nutria watershed that drains entirely within the Zuni Indian Reservation. Results of the study can be used by the Zuni Tribe to develop a plan for watershed rehabilitation. Channel changes, gully growth, headcuts, and changes in dirt roads over time were examined to characterize and evaluate channel erosion in the Rio Nutria watershed. Channel cross-sectional changes included width, depth, width-to-depth ratio, area, and geometry. Relative rates of gully growth, headcuts, and changes in dirt roads over time were examined using aerial photographs. Results of resurveys conducted between 1992 and 1994 of 85 channel cross sections indicated aggradation of 72 percent of cross sections in three subbasins of the Rio Nutria watershed. Forty-eight percent of resurveyed cross sections showed an increase in cross-sectional area and erosion; nine of these are in tributaries. Some channels (43 percent) aggraded and increased in cross-sectional area. This increase in cross- sectional area is due mostly to widening. Channel widening is a more pervasive form of erosion than channel scour on the Zuni Indian Reservation. The tops of channels widened in 67 percent and the bottoms of channels widened in 44 percent of resurveyed cross sections. Narrow, deep triangular channels are more erosive than rectangular cross sections. Five land-cover types--three sites on mixed-grass pasture, two sites on sites on unchained pi?on and juniper, one site on sagebrush, one site on ponderosa pine, and two sites on chained pi?on and juniper--were each instrumented with sediment traps between 1992 and 1994 to measure hillslope erosion. Highest sediment yields were measured at chained areas and mixed- grass pasture. Annual yields from sites that were operated for more than a year were 11.7, 6.0, and 6.5 metric tons per square kilometer per year at a pi?on and juniper site, mixed-grass pasture site, and sagebrush site, respectively.

  18. The effects of lane width, shoulder width, and road cross-sectional reallocation on drivers' behavioral adaptations.

    PubMed

    Mecheri, Sami; Rosey, Florence; Lobjois, Régis

    2017-07-01

    Previous research has shown that lane-width reduction makes drivers operate vehicles closer to the center of the road whereas hard-shoulder widening induces a position farther away from the road's center. The goal of the present driving-simulator study was twofold. First, it was aimed at further investigating the respective effects of lane and shoulder width on in-lane positioning strategies, by examining vehicle distance from the center of the lane. The second aim was to assess the impact on safety of three possible cross-sectional reallocations of the width of the road (i.e., three lane-width reductions with concomitant shoulder widening at a fixed cross-sectional width) as compared to a control road. The results confirmed that lane-width reduction made participants drive closer to the road's center. However, in-lane position was affected differently by lane narrowing, depending on the traffic situation. In the absence of oncoming traffic, lane narrowing gave rise to significant shifts in the car's distance from the lane's center toward the edge line, whereas this distance remained similar across lane widths during traffic periods. When the shoulders were at least 0.50m wide, participants drove farther away from both the road center and the lane center. Road reallocation operations resulted in vehicles positioned farther away from the edge of the road and less swerving behavior, without generating higher driving speeds. Finally, it is argued that road-space reallocation may serve as a good low-cost tool for providing a recovery area for steering errors, without impairing drivers' behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. River meanders and channel size

    USGS Publications Warehouse

    Williams, G.P.

    1986-01-01

    This study uses an enlarged data set to (1) compare measured meander geometry to that predicted by the Langbein and Leopold (1966) theory, (2) examine the frequency distribution of the ratio radius of curvature/channel width, and (3) derive 40 empirical equations (31 of which are original) involving meander and channel size features. The data set, part of which comes from publications by other authors, consists of 194 sites from a large variety of physiographic environments in various countries. The Langbein-Leopold sine-generated-curve theory for predicting radius of curvature agrees very well with the field data (78 sites). The ratio radius of curvature/channel width has a modal value in the range of 2 to 3, in accordance with earlier work; about one third of the 79 values is less than 2.0. The 40 empirical relations, most of which include only two variables, involve channel cross-section dimensions (bankfull area, width, and mean depth) and meander features (wavelength, bend length, radius of curvature, and belt width). These relations have very high correlation coefficients, most being in the range of 0.95-0.99. Although channel width traditionally has served as a scale indicator, bankfull cross-sectional area and mean depth also can be used for this purpose. ?? 1986.

  20. Bankfull characteristics of Ohio streams and their relation to peak streamflows

    USGS Publications Warehouse

    Sherwood, James M.; Huitger, Carrie A.

    2005-01-01

    Regional curves, simple-regression equations, and multiple-regression equations were developed to estimate bankfull width, bankfull mean depth, bankfull cross-sectional area, and bankfull discharge of rural, unregulated streams in Ohio. The methods are based on geomorphic, basin, and flood-frequency data collected at 50 study sites on unregulated natural alluvial streams in Ohio, of which 40 sites are near streamflow-gaging stations. The regional curves and simple-regression equations relate the bankfull characteristics to drainage area. The multiple-regression equations relate the bankfull characteristics to drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope. Average standard errors of prediction for bankfull width equations range from 20.6 to 24.8 percent; for bankfull mean depth, 18.8 to 20.6 percent; for bankfull cross-sectional area, 25.4 to 30.6 percent; and for bankfull discharge, 27.0 to 78.7 percent. The simple-regression (drainage-area only) equations have the highest average standard errors of prediction. The multiple-regression equations in which the explanatory variables included drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope have the lowest average standard errors of prediction. Field surveys were done at each of the 50 study sites to collect the geomorphic data. Bankfull indicators were identified and evaluated, cross-section and longitudinal profiles were surveyed, and bed- and bank-material were sampled. Field data were analyzed to determine various geomorphic characteristics such as bankfull width, bankfull mean depth, bankfull cross-sectional area, bankfull discharge, streambed slope, and bed- and bank-material particle-size distribution. The various geomorphic characteristics were analyzed by means of a combination of graphical and statistical techniques. The logarithms of the annual peak discharges for the 40 gaged study sites were fit by a Pearson Type III frequency distribution to develop flood-peak discharges associated with recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The peak-frequency data were related to geomorphic, basin, and climatic variables by multiple-regression analysis. Simple-regression equations were developed to estimate 2-, 5-, 10-, 25-, 50-, and 100-year flood-peak discharges of rural, unregulated streams in Ohio from bankfull channel cross-sectional area. The average standard errors of prediction are 31.6, 32.6, 35.9, 41.5, 46.2, and 51.2 percent, respectively. The study and methods developed are intended to improve understanding of the relations between geomorphic, basin, and flood characteristics of streams in Ohio and to aid in the design of hydraulic structures, such as culverts and bridges, where stability of the stream and structure is an important element of the design criteria. The study was done in cooperation with the Ohio Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration.

  1. Regional Hydraulic Geometry Curves of the Northern Cascade Mountains, Chelan and King Counties, Washington State, USA

    NASA Astrophysics Data System (ADS)

    Gasperi, J. T.; McClung, J. M.; Hanson, D. L.

    2006-12-01

    The USDA-Natural Resources Conservation Service has developed regional hydraulic geometry curves relating drainage area to bankfull top width, mean depth and cross-sectional area for the east and west sides of the northern Cascade Mountains in Chelan and King Counties, Washington. NRCS surveyed 10 channel reaches with drainage areas from 1 to 1000 square miles within the Wenatchee River drainage of Chelan County and 10 channel reaches with drainage areas of 1 to 100 square miles within the Cedar and Green River drainages of King County. Selection criteria for stream reaches required a minimum of 20 years of USGS stream gage discharge records, unregulated flows and safe access. Survey data were collected with a Sokkia Total Station during low flow conditions from August 2004 to September 2005. NRCS measured a channel cross-section at each of the USGS stream gage sites and two or three additional cross-sections up and downstream. The authors also collected samples of bed material for gradation analysis and estimation of Manning's roughness coefficient, n. Bankfull elevations were estimated based on visual identification of field indicators and USGS flood discharges for the 50% exceedance probability event. Field data were evaluated with the Ohio DNR Reference Reach spreadsheet to determine bankfull top width, mean depth and cross-sectional area. We applied a simple linear regression to the data following USGS statistical methods to evaluate the closeness of fit between drainage area and bankfull channel dimensions. The resulting R2 values of 0.83 to 0.93 for the eastern Cascade data of Chelan County and 0.71 to 0.88 for the western Cascade data of King County indicate a close association between drainage area and bankfull channel dimensions for these two sets of data.

  2. Cross section for the subthreshold fission of 236U

    NASA Astrophysics Data System (ADS)

    Alekseev, A. A.; Bergman, A. A.; Berlev, A. I.; Koptelov, E. A.; Samylin, B. F.; Trufanov, A. M.; Fursov, B. I.; Shorin, V. S.

    2008-08-01

    The cross section for 236U fission in the neutron-energy range E n = 0.001 20 keV was measured by using the INR RAS (Institute of Nuclear Research, Russian Academy of Sciences, Moscow) LSDS-100 neutron spectrometer of the lead slowing-down spectrometer type. The resonance fission areas of the resonances at 5.45 eV and 1.28 keV were found, and the fission widths of these resonances were evaluated. The cross section for the 238U( n, f) fission process was measured, and the threshold sensitivity of the LSDS-100 to small values of fission cross sections was estimated. The well-known intermediate structure in the cross section for the neutron-induced subbarrier fission of 236U was confirmed.

  3. Removing the tree-ring width biological trend using expected basal area increment

    Treesearch

    Franco Biondi; Fares Qeadan

    2008-01-01

    One of the main elements of dendrochronological standardization is the removal of the biological trend, i.e., the progressive decline of ring width along a cross-sectional radius that is mostly caused by the corresponding increase in stem diameter over time. A very common option for removing this biological trend is to fit a modified negative exponential curve to the...

  4. Safe Zone Quantification of the Third Sacral Segment in Normal and Dysmorphic Sacra.

    PubMed

    Hwang, John S; Reilly, Mark C; Shaath, Mohammad K; Changoor, Stuart; Eastman, Jonathan; Routt, Milton Lee Chip; Sirkin, Michael S; Adams, Mark R

    2018-04-01

    To quantify the osseous anatomy of the dysmorphic third sacral segment and assess its ability to accommodate internal fixation. Retrospective chart review of a trauma database. University Level 1 Trauma Center. Fifty-nine patients over the age of 18 with computed tomography scans of the pelvis separated into 2 groups: a group with normal pelvic anatomy and a group with sacral dysmorphism. The sacral osseous area was measured on computed tomography scans in the axial, coronal, and sagittal planes in normal and dysmorphic pelves. These measurements were used to determine the possibility of accommodating a transiliac transsacral screw in the third sacral segment. In the normal group, the S3 coronal transverse width averaged 7.71 mm and the S3 axial transverse width averaged 7.12 mm. The mean S3 cross-sectional area of the normal group was 55.8 mm. The dysmorphic group was found to have a mean S3 coronal transverse width of 9.49 mm, an average S3 axial transverse width of 9.14 mm, and an S3 cross-sectional area of 77.9 mm. The third sacral segment of dysmorphic sacra has a larger osseous pathway available to safely accommodate a transiliac transsacral screw when compared with normal sacra. The S3 segment of dysmorphic sacra can serve as an additional site for screw placement when treating unstable posterior pelvic ring fractures.

  5. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells.

    PubMed

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-02

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  6. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  7. Bridge-scour analysis using the water surface profile (WSPRO) model

    USGS Publications Warehouse

    Mueller, David S.; ,

    1993-01-01

    A program was developed to extract hydraulic information required for bridge-scour computations, from the Water-Surface Profile computation model (WSPRO). The program is written in compiled BASIC and is menu driven. Using only ground points, the program can compute average ground elevation, cross-sectional area below a specified datum, or create a Drawing Exchange Format (DXF) fie of cross section. Using both ground points ad hydraulic information form the equal-conveyance tubes computed by WSPRO, the program can compute hydraulic parameters at a user-specified station or in a user-specified subsection of the cross section. The program can identify the maximum velocity in a cross section and the velocity and depth at a user-specified station. The program also can identify the maximum velocity in the cross section and the average velocity, average depth, average ground elevation, width perpendicular to the flow, cross-sectional area of flow, and discharge in a subsection of the cross section. This program does not include any help or suggestions as to what data should be extracted; therefore, the used must understand the scour equations and associated variables to the able to extract the proper information from the WSPRO output.

  8. Parsimonious mathematical characterization of channel shape and size

    USDA-ARS?s Scientific Manuscript database

    This work has two purposes: 1) using a Leopold and Maddock (1953) hydraulic geometry approach, present a mathematically parsimonious, two parameter, characterization of channel shape and size; and 2) analytically quantify cross-sectional area, top width, average depth, critical energy, and bankfull ...

  9. The Application of the Specific Gage Technique and Aerial Photographs in Kaskaskia River Degradation Studies

    NASA Astrophysics Data System (ADS)

    Du, X.

    2008-12-01

    The Kaskaskia River basin contains 136,000 acres of bottomland forest, the largest contiguous tract of bottomland forest remaining in the state of Illinois. Since the 1960's, the Carlyle Lake Dam impoundment and channelization activities have altered the natural hydrologic and ecological equilibrium of the Kaskaskia River. Morphological changes of the river channel have necessitated conservation and restoration efforts to create and maintain the sustainability, diversity, health, and connectivity of the river watershed. This study utilized the specific gage technique and historical aerial photographs to investigate the spatial and temporal changes of the river. Historical daily discharge and daily stage data from the Carlyle (1966 to 2002) and Venedy Station gages (1984 to 2003) were analyzed. Logs of daily discharge data were used to generate annual rating curves. The best fit equations were produced from annual rating regressions. A stage associated with a chosen reference discharge, the minimum available discharge (MAD), was calculated. A stage decreasing/increasing trend was used as a primary indicator of channel bed incision/aggradation. Pseudo specific gage analysis (PSGA) was used to model channel cross sectional geometry changes over time. PSGA applied similar procedures as compared to the specific gage technique. Instead of using the stage variable, PSGA utilized cross sectional width, cross-sectional area, mean velocity and gage height individually. At each gage, the historical change of each cross sectional parameter was plotted against the log of discharge. Ratings of specific stages, specific cross sectional width, specific depth, specific area, and specific velocity associated with the chosen discharge, MAD, were produced. The decreasing/increasing trend of each parameter mentioned above corresponded with changes of channel cross sectional geometries over time. Historical aerial photographs were also used to assess the bankfull channel width changing rates during the pre and post modification period. The statistical significance of the regression trendlines from the specific gage analyses and PSGA was tested. Results suggested that there was no significant channel bed incision trend near the river gages within the studied time period. A statistically significant increase in channel width changing rates was found during post-modification period. Following the channelization and dam construction on the Kaskaskia River, substantial channel bed widening has accelerated bank erosion and associated channel morphology change, which has consequently resulted in a net loss of riparian habitat in this important bottomland forest corridor in southern Illinois, USA.

  10. Morphomics of the Talus.

    PubMed

    Gorman, David; Handy, Ebram; Wang, Sikui; Irwin, Annette L; Wang, Stewart

    2016-11-01

    Previous studies of frontal crash databases reported that ankle fractures are among the most common lower extremity fractures. While not generally life threatening, these injuries can be debilitating. Laboratory research into the mechanisms of ankle fractures has linked dorsiflexion with an increased risk of tibia and fibula malleolus fractures. However, talus fractures were not produced in the laboratory tests and appear to be caused by more complex loading of the joint. In this study, an analysis of the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) for the years 2004-2013 was conducted to investigate foot-ankle injury rates in front seat occupants involved in frontal impact crashes. A logistic regression model was developed indicating occupant weight, impact delta velocity and gender to be significant predictors of talus fracture (p<0.05). Separately, a specific set of Computed Tomography (CT) scans from the International Center for Automotive Medicine (ICAM) scan database was used to characterize the talar dome. This control population consisted of 207 adults aged 18 to 84, with no foot or ankle trauma, and scans that had suitable coverage of the talus. Size of the talus was determined using medial-to-lateral width and anterior-to-posterior depth measurements. Geometry was assessed by evaluating the radius of the articulating talus and strength was assessed using a combination of cross sectional area and density. Demographics were studied to investigate correlation with talus measurements from the CT scan database. A multi-variable linear regression model of the morphomics showed gender to be statistically significant (p<0.05) for talus depth, width, cross-sectional area, radius and strength. Body Mass Index (BMI) was significant for depth and radius. Weight was significant for depth, width, density and strength. Stature was significant for depth, cross-sectional area, radius and strength. Age was significant for radius and density.

  11. Channel Width Change as a Potential Sediment Source, Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Lauer, J. W.; Echterling, C.; Lenhart, C. F.; Rausch, R.; Belmont, P.

    2017-12-01

    Turbidity and suspended sediment are important management considerations along the Minnesota River. The system has experience large and relatively consistent increases in both discharge and channel width over the past century. Here we consider the potential role of channel cross section enlargement as a sediment source. Reach-average channel width was digitized from aerial images dated between 1937 and 2015 along multiple sub-reaches of the Minnesota River and its major tributaries. Many of the sub-reaches include several actively migrating bends. The analysis shows relatively consistent increases in width over time, with average increase rates of 0.4 percent per year. Extrapolation to the river network using a regional relationship for cross-sectional area vs. drainage area indicates that large tributaries and main-stem reaches account for most of the bankfull cross-sectional volume in the basin. Larger tributaries and the main stem thus appear more important for widening related sediment production than small tributaries. On a basin-wide basis, widening could be responsible for a gross supply of more sediment than has been gaged at several main-stem sites, indicating that there may be important sinks for both sand and silt/clay size material distributed throughout the system. Sediment storage is probably largest along the lowest-slope reaches of the main stem. While channel width appears to have adjusted relatively quickly in response to discharge and other hydraulic modifications, net storage of sediment in floodplains probably occurs sufficiently slowly that depth adjustment will lag width adjustment significantly. Detailed analysis of the lower Minnesota River using a river segmenting approach allows for a more detailed assessment of reach-scale processes. Away from channel cutoffs, elongation of the channel at eroding bends is consistent with rates observed on other actively migrating rivers. However, the sinuosity increase has been more than compensated by several natural and engineered cutoffs. The sinuosity change away from cutoffs probably plays a relatively modest role in the reach's sediment budget. However, point bars and abandoned oxbow lakes are important zones of sediment storage that may be large enough to account for much of the widening-related production of sand in the reach.

  12. Influence of alluvial cover and lithology on the adjustment characteristics of semi-alluvial bedrock channels

    NASA Astrophysics Data System (ADS)

    Ferguson, Sean P.; Rennie, Colin D.

    2017-05-01

    A growing body of research has focused on evaluating the adjustment characteristics of semi-alluvial channels containing proximate bedrock, mixed, and alluvial sections. Active orogens have been the focus of most empirical field-based studies with comparatively less focus on semi-alluvial bedrock channels located in other regions. In this study, we present an inventory of channel geometry data collected from semi-alluvial bedrock channels in Ontario and Québec, Canada, which are not subject to tectonic uplift. Data were sourced from a variety of physiographic settings, permitting evaluation of the influence of alluvial cover, lithology, and gradient on cross-sectional channel form. Our results show no substantial difference in channel width or scaling behaviour amongst bedrock, mixed, and alluvial channels included in our study, except for sedimentary bedrock channels virtually bare of alluvial cover that represent a uniquely wide, distinct subgroup. Channel gradient does not appear to exhibit any observable control on channel width amongst our study rivers, suggesting that sedimentary bedrock channels form a distinct subgroup because of lithology. Comparatively, the widths of our bedrock channels formed in igneous/metamorphic bedrock are comparable to the widths of mixed channels and alluvial channels for a given discharge and drainage area. Our findings also suggest that cross-sectional adjustment of sedimentary bedrock channels is achieved through lateral erosion of the channel banks and downward erosion of the channel bed, whereas cross-sectional adjustment of igneous/metamorphic bedrock is primarily achieved through downward erosion of the bed with limited lateral erosion of the banks.

  13. Differential two-body compound nuclear cross section, including the width-fluctuation corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.; Herman, M.

    2014-09-02

    We figure out the compound angular differential cross sections, following mainly Fröbrich and Lipperheide, but with the angular momentum couplings that make sense for optical model work. We include the width-fluctuation correction along with calculations.

  14. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    PubMed Central

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-01-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer. PMID:28251983

  15. Regionalized equations for bankfull-discharge and channel characteristics of streams in New York State—Hydrologic Region 5 in central New York

    USGS Publications Warehouse

    Westergard, Britt E.; Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.

    2005-01-01

    Equations that relate drainage area to bankfull discharge and channel dimensions (width, depth, and cross-sectional area) at gaged sites are needed to define bankfull discharge and channel dimensions at ungaged sites and to provide information for the design of stream-restoration projects. Such equations are most accurate if derived from streams within an area of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. A study to develop equations to predict bankfull data for ungaged streams in New York established eight regions that coincided with previously defined hydrologic regions. This report presents drainage areas and bankfull characteristics (discharge and channel dimensions) for streams in central New York (Region 5) selected for this pilot study.Stream-survey data and discharge records from seven active (currently gaged) sites and nine inactive (discontinued gaged) sites were used in regression analyses to relate size of drainage area to bankfull discharge and bankfull channel width, depth, and cross-sectional area. The resulting equations are:(1) bankfull discharge, in cubic feet per second = 45.3*(drainage area, in square miles)0.856;(2) bankfull channel width, in feet = 13.5*(drainage area, in square miles)0.449;(3) bankfull channel depth, in feet = 0.801*(drainage area, in square miles)0.373; and(4) bankfull channel cross-sectional area, in square feet = 10.8*(drainage area, in square miles)0.823.The high correlation coefficients (R2) for these four equations (0.96, 0.92, 0.91, 0.98, respectively) indicate that much of the variation in the variables is explained by the size of the drainage area. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.11 to 3.40 years; the mean recurrence interval was 1.51 years. The 16 surveyed streams were classified by Rosgen stream type; most were mainly C-type reaches, with occasional B- and F-type reaches. The Region 5 equation was compared with equations developed for six other large areas in the Northeast. The major differences among results indicate a need to refine equations so they can be applied by water-resources managers to local planning and design efforts.

  16. Clinical Utility of Ultrasound Measurements of Plantar Fascia Width and Cross-Sectional AreaA Novel Technique.

    PubMed

    Bisi-Balogun, Adebisi; Rector, Michael

    2017-09-01

    We sought to develop a standardized protocol for ultrasound (US) measurements of plantar fascia (PF) width and cross-sectional area (CSA), which may serve as additional outcome variables during US examinations of both healthy asymptomatic PF and in plantar fasciopathy and determine its interrater and intrarater reliability. Ten healthy individuals (20 feet) were enrolled. Participants were assessed twice by two raters each to determine intrarater and interrater reliability. For each foot, three transverse scans of the central bundle of the PF were taken at its insertion at the medial calcaneal tubercle, identified in real time on the plantar surface of the foot, using a fine wire technique. Reliability was determined using intraclass correlation coefficients (ICC), standard errors of measurement (SEM), and limits of agreement (LOA) expressed as percentages of the mean. Reliability of PF width and CSA measurements was determined using PF width and CSA measurements from one sonogram measured once and the mean of three measurements from three sonograms each measured once. Ultrasound measurements of PF width and CSA showed a mean of 18.6 ± 2.0 mm and 69.20 ± 13.6 mm 2 respectively. Intra-reliability within both raters showed an ICC > 0.84 for width and ICC > 0.92 for CSA as well as a SEM% and LOA% < 10% for both width and CSA. Inter-rater reliability showed an ICC of 0.82 for width and 0.87 for CSA as well as a SEM% and LOA% < 10% for width and a SEM% < 10% and LOA% < 20% for CSA. Relative and absolute reliability within and between raters were higher when using the mean of three sonographs compared to one sonograph. Using this novel technique, PF CSA and width may be determined reliably using measurements from one sonogram or the mean of three sonograms. Measurement of PF CSA and width in addition to already established thickness and echogenicity measurements provides additional information on structural properties of the PF for clinicians and researchers in healthy and pathologic PF.

  17. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-02-15

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a givenmore » opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.« less

  18. Site-Specific Advantages in Skeletal Geometry and Strength at the Proximal Femur and Forearm in Young Female Gymnasts

    PubMed Central

    Dowthwaite, Jodi N.; Rosenbaum, Paula F.; Scerpella, Tamara A.

    2012-01-01

    Purpose We evaluated site-specific skeletal adaptation to loading during growth,comparing radius (RAD) and femoral neck (FN) DXA scans in young female gymnasts (GYM) and non-gymnasts (NON). Methods Subjects from an ongoing longitudinal study (8-26 yrs old) underwent annual DXA scans (proximal femur, forearm, total body) and anthropometry, completing maturity and physical activity questionnaires. This cross-sectional analysis used the most recent data meeting the following criteria: gynecological age ≤2.5 yrs post-menarche; GYM annual mean gymnastic exposure ≥5.0 h/wk in the prior year. Bone geometric and strength indices were derived from scans for 173 subjects (8-17 yrs old) via hip structural analysis (femoral narrow neck, NN) and similar radius formulae (1/3 and Ultradistal (UD)). Maturity was coded as M1 (Tanner I breast), M2 (pre-menarche, ≥Tanner II breast) or M3 (post-menarche). ANOVA and chi square compared descriptive data. Two factor ANCOVA adjusted for age, height, total body non-bone lean mass and percent body fat; significance was tested for main effects and interactions between gymnastic exposure and maturity. Results At the distal radius, GYM means were significantly greater than NON means for all variables (p<0.05). At the proximal femur, GYM exhibited narrower periosteal and endosteal dimensions, but greater indices of cortical thickness, BMC, aBMD and section modulus, with lower buckling ratio (p <0.05). However, significant interactions between maturity and loading were detected for the following: 1) FN bone mineral content (BMC), NN buckling ratio (GYM BMC advantages only in M1 and M3; for BMC and buckling ratio, M1 advantages were greatest; 2) 1/3 radius BMC, width, endosteal diameter, cortical cross-sectional area, section modulus (GYM advantages primarily post-menarche); 3) UD radius BMC and axial compressive strength (GYM advantages were larger with greater maturity, greatest post-menarche). Conclusions Maturity-specific comparisons suggested site-specific skeletal adaptation to loading during growth, with greater advantages at the radius versus the proximal femur. At the radius, GYM advantages included greater bone width, cortical cross-sectional area and cortical thickness; in contrast, at the femoral neck, GYM bone tissue cross-sectional area and cortical thickness were greater, but bone width was narrower than in NON. Future longitudinal analyses will evaluate putative maturity-specific differences. PMID:22342799

  19. 75 FR 33659 - Agency Information Collection Activities: Request for Comments for a New Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... tunnel construction completed; traffic data, including posted speed, design speed, current average daily... vertical clearance; minimum cross- sectional width; lane width(s); shoulder width(s); and pavement type. (3...

  20. Changes in nasal volume after surgically assisted bone-borne rapid maxillary expansion.

    PubMed

    Deeb, Wayel; Hansen, Lars; Hotan, Thorsten; Hietschold, Volker; Harzer, Winfried; Tausche, Eve

    2010-06-01

    The purposes of this study were to detect, locate, and examine the changes in transverse nasal width, area, and volume from bone-borne, surgically assisted rapid maxillary expansion (SARME) with the Dresden distractor by using computer tomography (CT). Sixteen patients (average age, 28.7 years) underwent axial CT scanning before and 6 months after SARME. They also underwent CT fusion on specific bony structures. The nasal bone width was examined in the coronal plane. The cross-sectional images of the nasal cavity were taken of the area surrounding the apertura piriformis, the choanae, and in between. We calculated cross-sectional areas and nasal volume according to these data. All but 2 patients had an increase in nasal volume of at least 5.1% (SD, 4.6%). The largest value of 35.3% (SD, 45.8%) was measured anteriorly on the nasal floor, decreasing cranially and posteriorly. This correlated with the V-shaped opening of the sutura palatina. There was no significant correlation between increase in nasal volume and transversal expansion. Because most of the air we breathe passes over the lower nasal floor, SARME is likely to improve nasal breathing. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  1. Determination of vessel cross-sectional area by thresholding in Radon space

    PubMed Central

    Gao, Yu-Rong; Drew, Patrick J

    2014-01-01

    The cross-sectional area of a blood vessel determines its resistance, and thus is a regulator of local blood flow. However, the cross-sections of penetrating vessels in the cortex can be non-circular, and dilation and constriction can change the shape of the vessels. We show that observed vessel shape changes can introduce large errors in flux calculations when using a single diameter measurement. Because of these shape changes, typical diameter measurement approaches, such as the full-width at half-maximum (FWHM) that depend on a single diameter axis will generate erroneous results, especially when calculating flux. Here, we present an automated method—thresholding in Radon space (TiRS)—for determining the cross-sectional area of a convex object, such as a penetrating vessel observed with two-photon laser scanning microscopy (2PLSM). The thresholded image is transformed back to image space and contiguous pixels are segmented. The TiRS method is analogous to taking the FWHM across multiple axes and is more robust to noise and shape changes than FWHM and thresholding methods. We demonstrate the superior precision of the TiRS method with in vivo 2PLSM measurements of vessel diameter. PMID:24736890

  2. Impact of a large flood on mountain river habitats, channel morphology, and valley infrastructure

    NASA Astrophysics Data System (ADS)

    Hajdukiewicz, Hanna; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Radecki-Pawlik, Artur

    2016-11-01

    The Biała River, Polish Carpathians, was considerably modified by channelization and channel incision in the twentieth century. To restore the Biała, establishing an erodible corridor was proposed in two river sections located in its mountain and foothill course. In these sections, longer, unmanaged channel reaches alternate with short, channelized reaches; and channel narrowing and incision increases in the downstream direction. In June 2010 an 80-year flood occurred on the river; and this study aims at determining its effects on physical habitat conditions for river biota, channel morphology, and valley-floor infrastructure. Surveys of 10 pairs of closely located, unmanaged and channelized cross sections, performed in 2009 and in the late summer 2010, allowed us to assess the flood-induced changes to physical habitat conditions. A comparison of channel planforms determined before (2009) and after (2012) the flood provided information on the degree of channel widening as well as changes in the width of particular elements of the river's active zone in eight stretches of the Biała. The impact of the flood on valley-floor infrastructure was confronted with the degree of river widening in unmanaged and channelized river reaches. Before the flood, unmanaged cross sections were typified by finer bed material and greater lateral variability in depth-averaged and near-bed flow velocity than channelized cross sections. The flood tended to equalize habitat conditions in both types of river cross sections, obliterating differences (in particular physical habitat parameters) between channelized and unmanaged channel reaches. River widening mostly reflected an increase in the area of channel bars, whereas the widening of low-flow channels was less pronounced. A comparison of channel planform from 2009 and 2012 indicated that intense channel incision typical of downstream sections limited river widening by the flood. Active channel width increased by half in the unmanaged cross sections and by one-third in the channelized cross sections. However, damage to the valley-floor infrastructure was practically limited to the channelized river reaches with reinforced channel banks. This indicates incompetent management of riparian areas rather than the degree of river widening as a principal reason for the economic losses during the flood.

  3. Analysis and classification of topographic flow steering and inferred geomorphic processes as a function of discharge in a mountain river

    NASA Astrophysics Data System (ADS)

    Gore, J.; Pasternack, G. B.; Wiener, J.

    2016-12-01

    Process-based river classification tends to be done at reach to catchment scales assuming channels are uniform and thus differentiated by the simple specific stream power metric. In fact, mountain rivers are highly variable at subreach scales to the point that local topographic steering may be the dominant control on geomorphic processes. This study presents a new framework for characterizing how stage-dependent topographic steering varies continuously down a river, leading to a classification of subreach landforms on the basis of the geomorphic mechanism of flow convergence routing. The two remote mountain river segments were located in the 3480-km2 Yuba River, with the upper South Yuba having a substantial sediment supply from legacy hydraulic gold mining and the mainstem Yuba downstream of New Bullards Bar Dam having a restricted sediment supply. Meter-scale DEMs were produced for both cases using airborne LiDAR and survey data. DEMs were slope detrended to focus the analysis on cross-sectional variability. DEMs were then heavily smoothed to allow for automated tracing of the valley centerline, and then cross-sectional rectangles were spaced every 5 m. The average width (W) and detrended bed elevation (Z) of the wetted area was computed from the DEM for each raster for 6-7 different river stages. Both width and cross-sectionally averaged bed elevation were standardized. The product of these two variables was computed as a measure of cross-sectional area, and is termed the geomorphic covariance (Czw) series when plotted along each river corridor. Cwz was then used to classify each cross-section as one of five distinct landform types: nozzle, wide bar, normal channel, constricted pool, and oversized pool- with this classification varying with discharge such that a section could, for example, function as a nozzle during low flow but an oversized pool at high flow, or any other combination. Longitudinal profiles of bed elevation, width, covariance, and landform type were analyzed for their stage-dependent patterns to understand their geomorphic significance and to contrast the two rivers. This new method may be the first example of a hierarchical, process-based classification at the subreach scale in which one mechanism is assessed for how it varies not only in space, but as a function of discharge.

  4. Air-photo based change in channel width in the Minnesota River basin: Modes of adjustment and implications for sediment budget

    NASA Astrophysics Data System (ADS)

    Wesley Lauer, J.; Echterling, Caitlyn; Lenhart, Christian; Belmont, Patrick; Rausch, Rachel

    2017-11-01

    The Minnesota River and major tributaries have experienced large increases in discharge over the past century. Aerial photograph-based measurements of channel width were made for the 1938-2015 period at 16 multibend subreaches by digitizing the area between vegetation lines and dividing by centerline length. Results show considerable increases in width for the main stem (0.62 ± 0.10%/y) and major tributaries (0.31 ± 0.08%/y) but are inconclusive for smaller channels (width < 25 m). Width change for a 146.5-km reach of the lower Minnesota River between 1938 and 2008 is similar to that from the subreach-scale analysis. Widening was associated with lateral centerline movement and temporal change in at-a-station hydraulic geometry for water surface width, indicating that widening is associated with cross-sectional change and not simply upward movement of the vegetation line. Digital elevation model analysis and regional hydraulic geometry show that the main stem and larger tributaries account for the vast majority ( 85%) of bankfull channel volume. High-order channels are thus disproportionately responsible for sediment production through cross section enlargement, although floodplains or off-channel water bodies adjacent to these channels likely represent important sediment sinks. Because channel enlargement can play an important role in sediment production, it should be considered in sediment reduction strategies in the Minnesota River basin and carefully evaluated in other watersheds undergoing long-term increases in discharge.

  5. Evaluation of the adaptation of zirconia-based fixed partial dentures using micro-CT technology.

    PubMed

    Borba, Márcia; Miranda, Walter Gomes; Cesar, Paulo Francisco; Griggs, Jason Allan; Bona, Alvaro Della

    2013-01-01

    The objective of the study was to measure the marginal and internal fit of zirconia-based all-ceramic three-unit fixed partial dentures (FPDs) (Y-TZP - LAVA, 3M-ESPE), using a novel methodology based on micro-computed tomography (micro-CT) technology. Stainless steel models of prepared abutments were fabricated to design FPDs. Ten frameworks were produced with 9 mm2 connector cross-sections using a LAVATM CAD-CAM system. All FPDs were veneered with a compatible porcelain. Each FPD was seated on the original model and scanned using micro-CT. Files were processed using NRecon and CTAn software. Adobe Photoshop and Image J software were used to analyze the cross-sectional images. Five measuring points were selected, as follows: MG - marginal gap; CA - chamfer area; AW - axial wall; AOT - axio-occlusal transition area; OA - occlusal area. Results were statistically analyzed by Kruskall-Wallis and Tukey's post hoc test (α= 0.05). There were significant differences for the gap width between the measurement points evaluated. MG showed the smallest median gap width (42 µm). OA had the highest median gap dimension (125 µm), followed by the AOT point (105 µm). CA and AW gap width values were statistically similar, 66 and 65 µm respectively. Thus, it was possible to conclude that different levels of adaptation were observed within the FPD, at the different measuring points. In addition, the micro-CT technology seems to be a reliable tool to evaluate the fit of dental restorations.

  6. Relationship between iris surface features and angle width in Asian eyes.

    PubMed

    Sidhartha, Elizabeth; Nongpiur, Monisha Esther; Cheung, Carol Y; He, Mingguang; Wong, Tien Yin; Aung, Tin; Cheng, Ching-Yu

    2014-10-23

    To examine the associations between iris surface features with anterior chamber angle width in Asian eyes. In this prospective cross-sectional study, we recruited 600 subjects from a large population-based study, the Singapore Epidemiology of Eye Diseases (SEED) study. We obtained standardized digital slit-lamp iris photographs and graded the iris crypts (by number and size), furrows (by number and circumferential extent), and color (higher grade denoting darker iris). Vertical and horizontal cross-sections of anterior chamber were imaged using anterior segment optical coherence tomography. Angle opening distance (AOD), angle recess area (ARA), and trabecular-iris space area (TISA) were measured using customized software. Associations of the angle width with the iris surface features in the subject's right eyes were assessed using linear regression analysis. A total of 464 eyes of the 464 subjects (mean age: 57.5 ± 8.6 years) had complete and gradable data for crypts and color, and 423 eyes had gradable data for furrows. After adjustment for age, sex, ethnicity, pupil size, and corneal arcus, higher crypt grade was independently associated with wider AOD750 (β [change in angle width per grade higher] = 0.018, P = 0.023), ARA750 (β = 0.022, P = 0.049), and TISA750 (β = 0.011, P = 0.019), and darker iris was associated narrower ARA750 (β = -0.025, P = 0.044) and TISA750 (β = -0.013, P = 0.011). Iris surface features, assessed and measured from slit-lamp photographs, correlated well with anterior chamber angle width; irises with more crypts and lighter color were associated with wider angle. These findings may provide another imaging modality to assess angle closure risk based on iris surface features. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  7. Complete band gaps of phononic crystal plates with square rods.

    PubMed

    El-Naggar, Sahar A; Mostafa, Samia I; Rafat, Nadia H

    2012-04-01

    Much of previous work has been devoted in studying complete band gaps for bulk phononic crystal (PC). In this paper, we theoretically investigate the existence and widths of these gaps for PC plates. We focus our attention on steel rods of square cross sectional area embedded in epoxy matrix. The equations for calculating the dispersion relation for square rods in a square or a triangular lattice have been derived. Our analysis is based on super cell plane wave expansion (SC-PWE) method. The influence of inclusions filling factor and plate thickness on the existence and width of the phononic band gaps has been discussed. Our calculations show that there is a certain filling factor (f=0.55) below which arrangement of square rods in a triangular lattice is superior to the arrangement in a square lattice. A comparison between square and circular cross sectional rods reveals that the former has superior normalized gap width than the latter in case of a square lattice. This situation is switched in case of a triangular lattice. Moreover, a maximum normalized gap width of 0.7 can be achieved for PC plate of square rods embedded in a square lattice and having height 90% of the lattice constant. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Normal Cerebellar Growth by Using Three-dimensional US in the Preterm Infant from Birth to Term-corrected Age.

    PubMed

    Benavente-Fernández, Isabel; Rodríguez-Zafra, Enrique; León-Martínez, Jesús; Jiménez-Gómez, Gema; Ruiz-González, Estefanía; Fernández-Colina, Rosalía Campuzano; Lechuga-Sancho, Alfonso M; Lubián-López, Simón P

    2018-04-03

    Purpose To establish cross-sectional and longitudinal reference values for cerebellar size in preterm infants with normal neuroimaging findings and normal 2-year neurodevelopmental outcome by using cranial ultrasonography (US). Materials and Methods This prospective study consecutively enrolled preterm infants admitted to a neonatal intensive care unit from June 2011 to June 2014 with a birth weight of less than or equal to 1500 g and/or gestational age (GA) of less than or equal to 32 weeks. They underwent weekly cranial US from birth to term-equivalent age and magnetic resonance (MR) imaging at term-equivalent age. The infants underwent neurodevelopmental assessments at age 2 years with Bayley Scales of Infant and Toddler Development, 3rd edition (BSID-III). Patients with adverse outcomes (death or abnormal neuroimaging findings and/or BSID-III score of <85) were excluded. The following measurements were performed: vermis height, craniocaudal diameter, superior width, inferior width, vermis area, and transcerebellar diameter. Statistical analyses were conducted by using multilevel analyses. Results A total of 137 infants with a mean GA at birth of 29.4 weeks (range, 25-32 weeks) were included. Transcerebellar diameter increased by 1.04 mm per week on average; vermis height and craniocaudal diameter increased by 0.55 mm and 0.59 mm, respectively. Superior vermian width increased by an average of 0.45 mm, whereas inferior vermian width increased by an average of 0.51 mm per week. Vermis area was found to increase by 0.22 cm 2 per week on average. The sex effect was significant (female lower than male) for vermis height (P < .05), craniocaudal diameter (P < .05), inferior vermian width (P <. 05), and vermis area (P <. 05). Conclusion Cross-sectional and longitudinal reference values were established for cerebellar growth in preterm infants, which may be included in routine cranial US. © RSNA, 2018 Online supplemental material is available for this article.

  9. Dissociative recombination of O2(+), NO(+) and N2(+)

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1983-01-01

    A new L(2) approach for the calculation of the threshold molecular capture width needed for the determination of DR cross sections was developed. The widths are calculated with Fermi's golden rule by substituting Rydberg orbitals for the free electron continuum coulomb orbital. It is shown that the calculated width converges exponentially as the effective principal quantum number of the Rydberg orbital increases. The threshold capture width is then easily obtained. Since atmospheric recombination involves very low energy electrons, the threshold capture widths are essential to the calculation of DR cross sections for the atmospheric species studied here. The approach described makes use of bound state computer codes already in use. A program that collects width matrix elements over CI wavefunctions for the initial and final states is described.

  10. The relationship between muscularity, muscle:bone ratio and cut dimensions in male and female lamb carcasses and the measurement of muscularity using image analysis.

    PubMed

    Hopkins, D L

    1996-12-01

    Dorsal images of 57 whole lamb carcasses (mean 22.5 kg, SD 2.3 kg) were obtained on a slaughter chain using a video camera. The lambs represented two sexes (29 cryptorchids, 28 ewes) and one genotype (Poll Dorset × Border Leicester × Merino). Cryptorchid carcasses were significantly (P < 0.05) leaner than ewe carcasses at a common weight but there was little difference in dimensional measurements of M. longissimus thoracis et lumborum (LL). The cryptorchid carcasses had a significantly better conformation (based on the EUROP system) even when adjusted to the same carcass weight and subcutaneous fat level. From the hindleg and chump the following muscles were dissected and weighed: M. semimembranosus, M. adductor femoris, M. semitendinosus, M. biceps femoris, and M. quadriceps femoris. The femur was weighed, the length measured and a muscularity value calculated as described by Purchas et al. (1991 Meat Sci., 30, 181). There was no significant effect of sex on muscularity or muscle to bone ratio (M:B). Cryptorchid carcasses produced heavier (P < 0.05) round and midloin cuts but lighter (P < 0.05) chump and ribloin cuts. Overall there was no significant sex effect on the yield of hindquarter cuts. Correlation showed a significant (P < 0.001) association between LL area and muscularity, with a lower correlation between round and topside cross-sectional area and muscularity. Neither muscle cross-sectional area nor muscularity was significantly related to M:B ratios. Muscularity increased with increasing carcass weight (P < 0.001) but M:B did not. Prediction of muscularity was significantly (P < 0.05) improved by adding to hot carcass weight a measure of the combined width across the hind legs at interval three, as taken from video images, there being five equally-spaced intervals from the groin to the gambrel. A similar result was achieved by using carcass width at the third interval of five-eventy spaced intervals between the minimum shoulder width and the point of maximum loin width. There was no significant (P > 0.05) effect of sex on the relationships. It is concluded that muscularity could be used to indicate carcasses that have cuts with greater cross-sectional areas and that a video image analysis approach could potentially be used to derive an estimate of muscularity. The value to the meat marketing chain of identifying carcasses with large crosssectional areas remains to be established.

  11. Morphological Analyses and Simulated Flood Elevations in a Watershed with Dredged and Leveed Stream Channels, Wheeling Creek, Eastern Ohio

    USGS Publications Warehouse

    Sherwood, James M.; Huitger, Carrie A.; Ebner, Andrew D.; Koltun, G.F.

    2008-01-01

    The USGS, in cooperation with the Ohio Emergency Management Agency, conducted a study in the Wheeling Creek Basin to (1) evaluate and contrast land-cover characteristics from 2001 with characteristics from 1979 and 1992; (2) compare current streambed elevation, slope, and geometry with conditions present in the late 1980s; (3) look for evidence of channel filling and over widening in selected undredged reaches; (4) estimate flood elevations for existing conditions in both undredged and previously dredged reaches; (5) evaluate the height of the levees required to contain floods with selected recurrence intervals in previously dredged reaches; and (6) estimate flood elevations for several hypothetical dredging and streambed aggradation scenarios in undredged reaches. The amount of barren land in the Wheeling Creek watershed has decreased from 20 to 1 percent of the basin area based on land-cover characteristics from 1979 and 2001. Barren lands appear to have been converted primarily to pasture, presumably as a result of surface-mine reclamation. Croplands also decreased from 13 to 8 percent of the basin area. The combined decrease in barren lands and croplands is approximately offset by the increase in pasture. Stream-channel surveys conducted in 1987 and again in 2006 at 21 sites in four previously dredged reaches of Wheeling Creek indicate little change in the elevation, slope, and geometry of the channel at most sites. The mean change in width-averaged bed and thalweg elevations for the 21 cross sections was 0.1 feet. Bankfull widths, mean depths, and cross-sectional areas measured at 12 sites in undredged reaches were compared to estimates determined from regional equations. The mean percentage difference between measured and estimated bankfull widths was -0.2 percent, suggesting that bankfull widths in the Wheeling Creek Basin are generally about the same as regional averages for undisturbed basins of identical drainage area. For bankfull mean depth and cross-sectional area, the mean percentage differences between the measured and estimated values were -16.0 and -11.2, respectively. The predominantly negative bias in differences between the measured and estimated values indicates that bankfull mean depths and cross-sectional areas in studied reaches generally are smaller than the regional trend. This may be an indication of channel filling and over widening or it may reflect insufficient representation in the regional dataset of basins with characteristics like that of Wheeling Creek. Step-backwater models were constructed for four previously dredged reaches to determine the height of levees required to contain floods with recurrence intervals of 2, 10, 50, and 100 years. Existing levees (all of which are uncertified) were found to contain the 100-year flood at only 20 percent of the surveyed cross sections. At the other 80 percent of the surveyed cross sections, levee heights would have to be raised an average of 2.5 feet and as much as 6.3 feet to contain the 100-year flood. Step-backwater models also were constructed for three undredged reaches to assess the impacts of selected dredging and streambed aggradation scenarios on water-surface elevations corresponding to the 2-, 10-, 50-, and 100-year floods. Those models demonstrated that changes in water-surface elevations associated with a given depth of dredging were proportionately smaller for larger floods due to the fact that more of the flood waters are outside of the main channel. For example, 2.0 feet of dredging in the three study reaches would lower the water-surface elevation an average of 1.30 feet for the 2-year flood and 0.64 feet for the 100-year flood.

  12. Bankfull-channel geometry and discharge curves for the Rocky Mountains Hydrologic Region in Wyoming

    USGS Publications Warehouse

    Foster, Katharine

    2012-01-01

    Regional curves relate bankfull-channel geometry and bankfull discharge to drainage area in regions with similar runoff characteristics and are used to estimate the bankfull discharge and bankfull-channel geometry when the drainage area of a stream is known. One-variable, ordinary least-squares regressions relating bankfull discharge, cross-sectional area, bankfull width, and bankfull mean depth to drainage area were developed from data collected at 35 streamgages in or near Wyoming. Watersheds draining to these streamgages are within the Rocky Mountains Hydrologic Region of Wyoming and neighboring states.

  13. Determination of Cross-Sectional Area of Focused Picosecond Gaussian Laser Beam

    NASA Technical Reports Server (NTRS)

    Ledesma, Rodolfo; Fitz-Gerald, James; Palmieri, Frank; Connell, John

    2018-01-01

    Measurement of the waist diameter of a focused Gaussian-beam at the 1/e(sup 2) intensity, also referred to as spot size, is key to determining the fluence in laser processing experiments. Spot size measurements are also helpful to calculate the threshold energy and threshold fluence of a given material. This work reports an application of a conventional method, by analyzing single laser ablated spots for different laser pulse energies, to determine the cross-sectional area of a focused Gaussian-beam, which has a nominal pulse width of approx. 10 ps. Polished tungsten was used as the target material, due to its low surface roughness and low ablation threshold, to measure the beam waist diameter. From the ablative spot measurements, the ablation threshold fluence of the tungsten substrate was also calculated.

  14. Recombinant human bone morphogenetic protein-2 stimulates bone formation during interfrontal suture expansion in rabbits.

    PubMed

    Liu, Sean Shih-Yao; Xu, Haisong; Sun, Jun; Kontogiorgos, Elias; Whittington, Patrick R; Misner, Kenner G; Kyung, Hee-Moon; Buschang, Peter H; Opperman, Lynne A

    2013-08-01

    Suture expansion stimulates bone growth to correct craniofacial deficiencies but has a high potential of treatment relapse. The objective of this study was to investigate whether there is a dose-dependent relationship between the recombinant human bone morphogenetic protein-2 (rhBMP-2) and bone formation during suture expansion. Fifty 6-week-old male New Zealand white rabbits were randomly assigned to 5 groups to receive 0 (control), 0.01, 0.025, 0.1, or 0.4 mg/mL of rhBMP-2 delivered by absorbable collagen sponge placed over the interfrontal suture. The suture was expanded for 33 days by 200 g of constant force via a spring anchored with 2 miniscrew implants. Distance of suture expansion, suture volume, and cross-sectional area after expansion were measured using radiographs with bone markers and microcomputed tomography. Suture widths and mineralization appositional rates were calculated based on the widths between bone labels under an epifluorescent microscope. Software (Multilevel Win 2.0; University of Bristol, Bristol, United Kingdom) was used to model distance of suture expansion over time as polynomials to compare group differences. Wilcoxon signed rank tests were performed to compare the suture volume and cross-sectional area, mineral apposition rate, and suture width between groups. The significance level was set at P = 0.05. Whereas the sutures were expanded in all groups, sutures were expanded by significantly greater amounts in the control and the 0.01 mg/mL groups without fusing the sutures than in the 0.025, 0.1, and 0.4 mg/mL groups with fusing sutures. Compared with the controls, the 0.01 mg/mL group showed significantly lower suture volumes, cross-sectional areas, and suture widths after expansion. The mineral apposition rate was significantly higher in the 0.01 mg/mL group than in the controls from days 10 to 30. The 0.01 mg/mL dose of rhBMP-2 delivered by absorbable collagen sponge can stimulate bone formation at the bony edges of the suture during suture expansion; however, higher concentrations cause suture fusion. With an appropriate concentration, rhBMP-2 might facilitate suture expansion for clinical uses. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  15. Elastic guided waves in a layered plate with rectangular cross section.

    PubMed

    Mukdadi, O M; Desai, Y M; Datta, S K; Shah, A H; Niklasson, A J

    2002-11-01

    Guided waves in a layered elastic plate of rectangular cross section (finite width and thickness) has been studied in this paper. A semianalytical finite element method in which the deformation of the cross section is modeled by two-dimensional finite elements and analytical representation of propagating waves along the length of the plate has been used. The method is applicable to arbitrary number of layers and general anisotropic material properties of each layer, and is similar to the stiffness method used earlier to study guided waves in a laminated composite plate of infinite width. Numerical results showing the effect of varying the width of the plate on the dispersion of guided waves are presented and are compared with those for an infinite plate. In addition, effect of thin anisotropic coating or interface layers on the guided waves is investigated.

  16. Ground beetle communities in a mountain river subjected to restoration: The Raba River, Polish Carpathians.

    PubMed

    Bednarska, Agnieszka J; Wyżga, Bartłomiej; Mikuś, Paweł; Kędzior, Renata

    2018-01-01

    Effects of passive restoration of mountain rivers on the organisms inhabiting exposed riverine sediments are considerably less understood than those concerning aquatic biota. Thus, the effects of a recovery of the Raba River after abandonment of maintenance of its channelization scheme on ground beetle (Coleoptera: Carabidae) communities were investigated by comparing 6 unmanaged cross-sections and 6 cross-sections from adjacent channelized reaches. In each cross-section, ground beetles were collected from 12 sampling sites in spring, summer, and autumn, and 8 habitat parameters characterizing the cross-sections and sampling sites were determined. Within a few years after abandonment of the Raba River channelization scheme, the width of this gravel-bed river increased up to three times and its multi-thread pattern became re-established. Consequently, unmanaged river cross-sections had significantly larger channel width and more low-flow channels and eroding cutbanks than channelized cross-sections. Moreover, sampling sites in the unmanaged cross-sections were typified by significantly steeper average surface slope and larger average distance from low-flow channels than the sites in channelized cross-sections. In total, 3992 individuals from 78 taxa were collected during the study. The ground beetle assemblages were significantly more abundant and richer in species in the unmanaged than in the channelized cross-sections but no significant differences in carabid diversity indices between the two cross-section types were recorded. Redundancy Analysis indicated active river zone width as the only variable explaining differences in abundance and species richness among the cross-sections. Multiple regression analysis indicated species diversity to predominantly depend on the degree of plant cover and substrate grain size. The study showed that increased availability of exposed sediments in the widened river reaches allowed ground beetles to increase their abundance and species richness within a few years after the onset of river restoration, but more time may be needed for development of more diverse carabid communities. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ultrasonographic assessment of the atlanto-occipital space in healthy Thoroughbred foals and Thoroughbred foals with neonatal maladjustment syndrome.

    PubMed

    Mackenzie, C J; Haggett, E F; Pinchbeck, G L; Marr, C M

    2017-05-01

    Ultrasonography of the atlanto-occipital (AO) space may be useful as a non-invasive diagnostic tool in neonatal foals. The aims of the study were establish a range of values for ultrasonographic measurements of the AO space in healthy Thoroughbred foals and to compare these variables in healthy foals with foals diagnosed with neonatal maladjustment syndrome (NMS). Ultrasonography of the AO space was performed on 38 healthy Thoroughbred foals and 28 Thoroughbred foals with NMS≤4days of age. Transverse image spinal cord height (P=0.001), width (P<0.001) and spinal cord cross sectional area (P<0.001), and longitudinal image dorsoventral diameter of the ventral spinal artery, were significantly smaller in foals with NMS than in healthy foals. Ratios of spinal canal to cord width and cross sectional area were significantly smaller in healthy foals than in foals with NMS (P<0.001). Spinal canal variables were not significantly different between groups. Several ultrasonographic measurements of the AO space were significantly different between healthy foals and foals with NMS. Further investigation is warranted to investigate the clinical application of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cavity detection and delineation research. Part 4: Microgravimetric survey: Manatee Springs Site, Florida

    NASA Astrophysics Data System (ADS)

    Butler, D. K.; Whitten, C. B.; Smith, F. L.

    1983-03-01

    Results of a microgravimetric survey at Manatee Springs, Levy County, Fla., are presented. The survey area was 100 by 400 ft, with 20-ft gravity station spacing, and with the long dimension of the area approximately perpendicular to the known trend of the main cavity. The main cavity is about 80 to 100 ft below the surface and has a cross section about 16 to 20 ft in height and 30 to 40 ft in width beneath the survey area. Using a density contrast of -1.3 g/cucm, the gravity anomaly is calculated to be -35 micro Gal with a width at half maximum of 205 ft. The microgravimetric survey results clearly indicate a broad negative anomaly coincident with the location and trend of the cavity system across the survey area. The anomaly magnitude and width are consistent with those calculated from the known depth and dimensions of the main cavity. In addition, a small, closed negative anomaly feature, superimposed on the broad negative feature due to the main cavity, satisfactorily delineated a small secondary cavity feature which was discovered and mapped by cave divers.

  19. A morphological comparison of narrow, low-gradient streams traversing wetland environments to alluvial streams.

    PubMed

    Jurmu, Michael C

    2002-12-01

    Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.

  20. Proposed alternative revision strategy for broken S1 pedicle screw: radiological study, review of the literature, and case reports.

    PubMed

    Elgafy, Hossein; Miller, Jacob D; Benedict, Gregory M; Seal, Ryan J; Liu, Jiayong

    2013-07-01

    There have been many reports outlining differing methods for managing a broken S1 screw. To the authors' best knowledge, the technique used in the present study has not been described previously. It involves insertion of a second pedicle screw without removing the broken screw shaft. Radiological study, literature review, and two case reports of the surgical technique. To report a proposed new surgical technique for management of broken S1 pedicle screws. Computed tomography (CT) scans of 50 patients with a total of 100 S1 pedicles were analyzed. There were 25 male and 25 female patients with an average age of 51 years ranging from 36 to 68 years. The cephalad-caudal length, medial-lateral width, and cross-sectional area of the S1 pedicle were measured and compared with the diameter of a pedicle screw to illustrate the possibility of inserting a second screw in S1 pedicle without removal of the broken screw shaft. Two case reports of the proposed technique are presented. The left and right S1 pedicle cross-sectional area in female measured 456.00 ± 4.00 and 457.00 ± 3.00 mm(2), respectively. The left and right S1 pedicle cross-section area in male measured 638.00 ± 2.00 and 639.00 ± 1.00 mm(2), respectively. There were statistically significant differences when comparing male and female S1 pedicle length, width, and cross-sectional area (p<.05). At 2-year follow-up, the two case reports of the proposed technique showed resolution of low back pain and radicular pain. Plain radiograph and CT scan showed posterolateral fusion mass and hardware in good position with no evidence of screw loosening. The S1 pedicle dimensions measured on CT scan reviewed in the present study showed that it may be anatomically feasible to place a second screw through the S1 pedicle without the removal of the broken screw shaft. This treatment method will reduce the complications associated with other described revision strategies for broken S1 screws. Published by Elsevier Inc.

  1. Cross-Sectional Data for Selected Reaches of the Chattahoochee River within the Chattahoochee River National Recreation Area, Georgia, 2004

    USGS Publications Warehouse

    Dalton, Melinda S.

    2006-01-01

    This report presents hydrologic data for selected reaches of the Chattahoochee River within the Chattahoochee River National Recreation Area (CRNRA). Data about transect location, width, depth, and velocity of flow for selected reaches of the river are presented in tabular form. The tables contain measurements collected from shoal and run habitats identified as critical sites for the CRNRA. In shoal habitats, measurements were collected while wading using a digital flowmeter and laser range finder. In run habitats, measurements were collected using acoustic Doppler current profiling. Fifty-three transects were established in six reaches throughout the CRNRA; 24 in shoal habitat, 26 in run habitat, and 3 in pool habitat. Illustrations in this report contain information about study area location, hydrology, transect locations, and cross-sectional information. A study area location figure is followed by figures identifying locations of transects within each individual reach. Cross-sectional information is presented for each transect, by reach, in a series of graphs. The data presented herein can be used to complete preliminary habitat assessments for the Chattahoochee River within the CRNRA. These preliminary assessments can be used to identify reaches of concern for future impacts associated with continual development in the Metropolitan Atlanta area and potential water allocation agreements between Georgia, Florida, and Alabama.

  2. Absolute second order nonlinear susceptibility of Pt nanowire arrays on MgO faceted substrates with various cross-sectional shapes

    NASA Astrophysics Data System (ADS)

    Ogata, Yoichi; Mizutani, Goro

    2013-08-01

    We have measured optical second harmonic generation (SHG) intensity from three types of Pt nanowires with 7 nm widths of elliptical and boomerang cross-sectional shapes and with 2 nm width elliptical cross-sectional shapes on the MgO faceted templates. From the SHG intensities, we calculated the absolute value of the nonlinear susceptibility χ(2) integrated in the direction of the wire-layer thickness. The tentatively obtained bulk χ(2)B of the wire layer was very large, approaching the value of the well-known nonlinear optical material BaTiO3.

  3. Correlation analysis of the optics of progressive addition lenses.

    PubMed

    Sheedy, James E

    2004-05-01

    To investigate the relations between selected key optical parameters and the sizes of the clear viewing areas of progressive addition lenses (PALs). The optics of 28 PALs (plano with +2.00 D add) currently on the market were measured with a Rotlex Class Plus lens analyzer. Horizontal cross sections were analyzed in 1 mm vertical steps with respect to the fitting cross. Distance, intermediate, and near viewing zone widths and areas were calculated from the measurements. The maximum amount of unwanted astigmatism, minimum zone width (0.50 DC limit), and maximum power rate in the corridor were also recorded for each lens. Correlation coefficients were determined for all relations. Each of the three viewing zone areas had a significant negative relation with the other (r of -0.4 to -0.8), indicating design tradeoff. Maximum power rate was significantly related to minimum zone width (r = -0.695), which was significantly related to maximum astigmatism (r = -0.616), but there was not a significant relation between maximum power rate and maximum astigmatism. Higher power rates and narrower minimum zones were significantly related to smaller intermediate and larger near zones (r = 0.4 to 0.9). Maximum astigmatism was related to distance zone width (r = 0.42) and to intermediate zone size (r = -0.4 to -0.56), but not significantly related to near viewing zone. Power rate and astigmatism each vary relatively uniformly across each lens. The fundamental relation appears to be between power rate and zone width, each of which is highly related to sizes of the intermediate and near viewing zones. The maximum amount of astigmatism is related to zone width, but not to maximum power rate. The amount of astigmatism is unrelated to the size of the near zone. The pattern of correlations between the optical and viewing zone parameters help identify the underlying optical relations of PALs.

  4. Regression models of discharge and mean velocity associated with near-median streamflow conditions in Texas: utility of the U.S. Geological Survey discharge measurement database

    USGS Publications Warehouse

    Asquith, William H.

    2014-01-01

    A database containing more than 16,300 discharge values and ancillary hydraulic attributes was assembled from summaries of discharge measurement records for 391 USGS streamflow-gauging stations (streamgauges) in Texas. Each discharge is between the 40th- and 60th-percentile daily mean streamflow as determined by period-of-record, streamgauge-specific, flow-duration curves. Each discharge therefore is assumed to represent a discharge measurement made for near-median streamflow conditions, and such conditions are conceptualized as representative of midrange to baseflow conditions in much of the state. The hydraulic attributes of each discharge measurement included concomitant cross-section flow area, water-surface top width, and reported mean velocity. Two regression equations are presented: (1) an expression for discharge and (2) an expression for mean velocity, both as functions of selected hydraulic attributes and watershed characteristics. Specifically, the discharge equation uses cross-sectional area, water-surface top width, contributing drainage area of the watershed, and mean annual precipitation of the location; the equation has an adjusted R-squared of approximately 0.95 and residual standard error of approximately 0.23 base-10 logarithm (cubic meters per second). The mean velocity equation uses discharge, water-surface top width, contributing drainage area, and mean annual precipitation; the equation has an adjusted R-squared of approximately 0.50 and residual standard error of approximately 0.087 third root (meters per second). Residual plots from both equations indicate that reliable estimates of discharge and mean velocity at ungauged stream sites are possible. Further, the relation between contributing drainage area and main-channel slope (a measure of whole-watershed slope) is depicted to aid analyst judgment of equation applicability for ungauged sites. Example applications and computations are provided and discussed within a real-world, discharge-measurement scenario, and an illustration of the development of a preliminary stage-discharge relation using the discharge equation is given.

  5. Elevated temperature and CO(2) concentration effects on xylem anatomy of Scots pine.

    PubMed

    Kilpeläinen, Antti; Gerendiain, Ane Zubizarreta; Luostarinen, Katri; Peltola, Heli; Kellomäki, Seppo

    2007-09-01

    We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross-sectional area, the greatest decrease occurring in the elevated [CO(2)] treatment. It seemed that xylem anatomy was affected more by elevated temperature than by elevated [CO(2)] and that the effects of temperature were confined to the earlywood.

  6. Habitat use by a freshwater dolphin in the low-water season

    USGS Publications Warehouse

    Braulik, Gill T.; Reichert, Albert P.; Ehsan, Tahir; Khan, Samiullah; Northridge, Simon P.; Alexander, Jason S.; Garstang, Richard

    2012-01-01

    1. Many river dolphin populations are most vulnerable during the low-water season when habitat is limited. Indus River dolphin habitat selection in the dry season was investigated using Generalized Linear Models of dolphin distribution and abundance in relation to physical features of river geomorphology and channel geometry in cross-section. 2. Dolphins selected locations in the river with significantly greater mean depth, maximum depth, cross-sectional area, and hydraulic radius, and significantly narrower river width and a lower degree of braiding than areas where dolphins were absent. They were also recorded with higher frequency at river constrictions and at confluences. 3. Channel cross-sectional area was the most important factor affecting dolphin presence and abundance, with the area of water below 1 m in depth exerting the greatest influence. Indus dolphins avoided channels with small cross-sectional area (2), presumably owing to the risk of entrapment and reduced foraging opportunities. 4. Channel geometry had a greater ability to explain dolphin distribution than river geomorphology; however, both analyses indicated similar types of habitat selection. The dolphin–habitat relationships identified in the river geomorphology analysis were scale-dependent, indicating that dolphin distribution is driven by the occurrence of discrete small-scale features, such as confluences and constrictions, as well as by broader-scale habitat complexes. 5. There are numerous plans to impound or extract more water from the Indus River system. If low-water season flows are allowed to decrease further, the amount of deeper habitat will decline, there may be insufficient patches of suitable habitat to support the dolphin population through the low-water season, and dolphins may become isolated within deeper river sections, unable or unwilling to traverse through shallows between favourable patches of habitat.

  7. Indirect study of 12C(α,γ)16O reaction

    NASA Astrophysics Data System (ADS)

    Hammache, F.; Oulebsir, N.; Roussel, P.; Pellegriti, M. G.; Audouin, L.; Beaumel, D.; Bouda, A.; Descouvemont, P.; Fortier, S.; Gaudefroy, L.; Kiener, J.; Lefebvre-Schuhl, A.; Tatischeff, V.

    2016-01-01

    The radiative capture reaction 12C(α,γ)16O plays an important role in helium burning in massive stars and their subsequent evolution [1]. However, despite various experimental studies, the cross section of this reaction at stellar energies remains highly uncertain. The extrapolation down to stellar energy (Ecm˜300 keV) of the measured cross sections at higher energies is made difficult by the overlap of various contributions of which some are badly known such as that of the 2+ (Ex=6.92 MeV) and 1- (Ex=7.12 MeV) sub-threshold states of 16O. Hence, to further investigate the contribution of these two-subthreshold resonances to the 12C(α,γ)16O cross section, a new determination of their a-reduced widths and so their a- spectroscopic-factors was performed using 12C(7Li,t)16O transfer reaction measurements at two incident energies and a detailed DWBA analysis of the data [2]. The measured and calculated differential cross sections are presented as well as the obtained spectroscopic factors and the a- reduced widths as well as the assymptotic normalization constants (ANC) for the 2+ and 1- subthreshold states. Finally, the results obtained from the R-matrix calculations of the 12C(α,γ)16O cross section using our obtained a-reduced widths for the two sub-threshold resonances are presented and discussed.

  8. Estimating Single-Event Logic Cross Sections in Advanced Technologies

    NASA Astrophysics Data System (ADS)

    Harrington, R. C.; Kauppila, J. S.; Warren, K. M.; Chen, Y. P.; Maharrey, J. A.; Haeffner, T. D.; Loveless, T. D.; Bhuva, B. L.; Bounasser, M.; Lilja, K.; Massengill, L. W.

    2017-08-01

    Reliable estimation of logic single-event upset (SEU) cross section is becoming increasingly important for predicting the overall soft error rate. As technology scales and single-event transient (SET) pulse widths shrink to widths on the order of the setup-and-hold time of flip-flops, the probability of latching an SET as an SEU must be reevaluated. In this paper, previous assumptions about the relationship of SET pulsewidth to the probability of latching an SET are reconsidered and a model for transient latching probability has been developed for advanced technologies. A method using the improved transient latching probability and SET data is used to predict logic SEU cross section. The presented model has been used to estimate combinational logic SEU cross sections in 32-nm partially depleted silicon-on-insulator (SOI) technology given experimental heavy-ion SET data. Experimental SEU data show good agreement with the model presented in this paper.

  9. Riparian vegetation controls on the hydraulic geometry of streams

    NASA Astrophysics Data System (ADS)

    McBride, M.

    2010-12-01

    A synthesis of field measurements, remote observations, and numerical modeling techniques highlights the significance of riparian vegetation in determining the geometry of streams and impacting sediment transport dynamics in temperate, Piedmont regions. Specifically, forested and grassy riparian vegetation establish streams with significantly different widths and with different timescales for attaining a state of dynamic equilibrium. The interactions between riparian vegetation, channel form, and channel dynamics are scale dependent. Scale dependency arises because of variations in ratios of vegetation length scales and geomorphic scales (e.g., channel width and depth). Stream reaches with grassy vegetation experience more frequent overbank discharges, migrate more quickly, and exhibit a more classic dynamic equilibrium than forested reaches. These phenomena are relevant to current watershed management efforts that aim to reduce sediment and nutrient loads to receiving water bodies, such as the Chesapeake Bay. The reforestation of riparian buffers is a common restoration technique that intends to improve water quality, temperature regimes, and in-stream physical habitat. Passive reforestation of riparian areas along a tributary to Sleepers River in Danville, VT, USA caused an increase in channel width and cross-sectional area over a 40-year period. From a comparison of historical records and current cross-sectional dimensions, the channel widening resulted in the mobilization of approximately 85 kg/ha/yr of floodplain sediments. Long-term monitoring of suspended sediments in an adjacent watershed indicates that this sediment source may account for roughly 40 percent of the total suspended sediment load. In some instances, increased sediment loads associated with channel widening may be an unforeseen consequence that compromises riparian restoration efforts.

  10. Scaling relations in mountain streams: colluvial and Quaternary controls

    NASA Astrophysics Data System (ADS)

    Brardinoni, Francesco; Hassan, Marwan; Church, Michael

    2010-05-01

    In coastal British Columbia, Canada, the glacial palimpsest profoundly affects the geomorphic structure of mountain drainage basins. In this context, by combining remotely sensed, field- and GIS-based data, we examine the scaling behavior of bankfull width and depth with contributing area in a process-based framework. We propose a novel approach that, by detailing interactions between colluvial and fluvial processes, provides new insights on the geomorphic functioning of mountain channels. This approach evaluates the controls exerted by a parsimonious set of governing factors on channel size. Results indicate that systematic deviations from simple power-law trends in bankfull width and depth are common. Deviations are modulated by interactions between the inherited glacial and paraglacial topography (imposed slope), coarse grain-size fraction, and chiefly the rate of colluvial sediment delivery to streams. Cumulatively, departures produce distal cross-sections that are typically narrower and shallower than expected. These outcomes, while reinforcing the notion that mountain drainage basins in formerly glaciated systems are out of balance with current environmental conditions, show that cross-sectional scaling relations are useful metrics for understanding colluvial-alluvial interactions.

  11. Bankfull discharge and channel characteristics of streams in New York State

    USGS Publications Warehouse

    Mulvihill, Christiane I.; Baldigo, Barry P.; Miller, Sarah J.; DeKoskie, Douglas; DuBois, Joel

    2009-01-01

    Equations that relate drainage area to bankfull discharge and channel characteristics (such as width, depth, and cross-sectional area) at gaged sites are needed to help define bankfull discharge and channel characteristics at ungaged sites and can be used in stream-restoration and protection projects, stream-channel classification, and channel assessments. These equations are intended to serve as a guide for streams in areas of similar hydrologic, climatic, and physiographic conditions. New York State contains eight hydrologic regions that were previously delineated on the basis of high-flow (flood) characteristics. This report seeks to increase understanding of the factors affecting bankfull discharge and channel characteristics to drainage-area size relations in New York State by providing an in-depth analysis of seven previously published regional bankfull-discharge and channel-characteristics curves.Stream-survey data and discharge records from 281 cross sections at 82 streamflow-gaging stations were used in regression analyses to relate drainage area to bankfull discharge and bankfull-channel width, depth, and cross-sectional area. The R2 and standard errors of estimate of each regional equation were compared to the R2 and standard errors of estimate for the statewide (pooled) model to determine if regionalizing data reduced model variability. It was found that regional models typically yield less variable results than those obtained using pooled statewide equations, which indicates statistically significant regional differences in bankfull-discharge and channel-characteristics relations.Statistical analysis of bankfull-discharge relations found that curves for regions 4 and 7 fell outside the 95-percent confidence interval bands of the statewide model and had intercepts that were significantly diferent (p≤0.10) from the other five hydrologic regions.Analysis of channel-characteristics relations found that the bankfull width, depth, and cross-sectional area curves for region 3 were significantly different p(≤0.05) from the other six regions.It was hypothesized that some regional variability could be reduced by creating models for streams with similar physiographic and climatic characteristics. Available data on streamflow patterns and previous regional-curve research suggested that mean annual runoff, Rosgen stream type, and water-surface slope were the variables most likely to influence regional bankfull discharge and channel characteristics to drainage-area size relations. Results showed that although all of these factors had an influence on regional relations, most stratified models have lower 2 values and higher standard errors of estimate than the regional models.The New York statewide (pooled) bankfull-discharge equation and equations for regions 4 and 7 were compared with equations for four other regions in the Northeast to evaluate region-to-region differences, and assess the ability of individual curves to produce results more accurate than those that would be obtained from one model of the northeastern United States. Results indicated that model slopes lack significant diferences, though intercepts are significantly different. Comparison of bankfull-discharge estimates using different models shows that results could vary by as much as 100 percent depending on which model was used and indicated that regionalization improved model accuracy.

  12. Electron Stark Broadening Database for Atomic N, O, and C Lines

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Yao, Winifred M.; Wray, Alan A.; Carbon, Duane F.

    2012-01-01

    A database for efficiently computing the electron Stark broadening line widths for atomic N, O, and C lines is constructed. The line width is expressed in terms of the electron number density and electronatom scattering cross sections based on the Baranger impact theory. The state-to-state cross sections are computed using the semiclassical approximation, in which the atom is treated quantum mechanically whereas the motion of the free electron follows a classical trajectory. These state-to-state cross sections are calculated based on newly compiled line lists. Each atomic line list consists of a careful merger of NIST, Vanderbilt, and TOPbase line datasets from wavelength 50 nm to 50 micrometers covering the VUV to IR spectral regions. There are over 10,000 lines in each atomic line list. The widths for each line are computed at 13 electron temperatures between 1,000 K 50,000 K. A linear least squares method using a four-term fractional power series is then employed to obtain an analytical fit for each line-width variation as a function of the electron temperature. The maximum L2 error of the analytic fits for all lines in our line lists is about 5%.

  13. Hydrodynamic optimization of membrane bioreactor by horizontal geometry modification using computational fluid dynamics.

    PubMed

    Yan, Xiaoxu; Wu, Qing; Sun, Jianyu; Liang, Peng; Zhang, Xiaoyuan; Xiao, Kang; Huang, Xia

    2016-01-01

    Geometry property would affect the hydrodynamics of membrane bioreactor (MBR), which was directly related to membrane fouling rate. The simulation of a bench-scale MBR by computational fluid dynamics (CFD) showed that the shear stress on membrane surface could be elevated by 74% if the membrane was sandwiched between two baffles (baffled MBR), compared with that without baffles (unbaffled MBR). The effects of horizontal geometry characteristics of a bench-scale membrane tank were discussed (riser length index Lr, downcomer length index Ld, tank width index Wt). Simulation results indicated that the average cross flow of the riser was negatively correlated to the ratio of riser and downcomer cross-sectional area. A relatively small tank width would also be preferable in promoting shear stress on membrane surface. The optimized MBR had a shear elevation of 21.3-91.4% compared with unbaffled MBR under same aeration intensity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Macrosegregation Resulting from Directional Solidification Through an Abrupt Change in Cross-Sections

    NASA Technical Reports Server (NTRS)

    Lauer, M.; Poirier, D. R.; Ghods, M.; Tewari, S. N.; Grugel, R. N.

    2017-01-01

    Simulations of the directional solidification of two hypoeutectic alloys (Al-7Si alloy and Al-19Cu) and resulting macrosegregation patterns are presented. The casting geometries include abrupt changes in cross-section from a larger width of 9.5 mm to a narrower 3.2 mm width then through an expansion back to a width of 9.5 mm. The alloys were chosen as model alloys because they have similar solidification shrinkages, but the effect of Cu on changing the density of the liquid alloy is about an order of magnitude greater than that of Si. The simulations compare well with experimental castings that were directionally solidified in a graphite mold in a Bridgman furnace. In addition to the simulations of the directional solidification in graphite molds, some simulations were effected for solidification in an alumina mold. This study showed that the mold must be included in numerical simulations of directional solidification because of its effect on the temperature field and solidification. For the model alloys used for the study, the simulations clearly show the interaction of the convection field with the solidifying alloys to produce a macrosegregation pattern known as "steepling" in sections with a uniform width. Details of the complex convection- and segregation-patterns at both the contraction and expansion of the cross-sectional area are revealed by the computer simulations. The convection and solidification through the expansions suggest a possible mechanism for the formation of stray grains. The computer simulations and the experimental castings have been part of on-going ground-based research with the goal of providing necessary background for eventual experiments aboard the ISS. For casting practitioners, the results of the simulations demonstrate that computer simulations should be applied to reveal interactions between alloy solidification properties, solidification conditions, and mold geometries on macrosegregation. The simulations also presents the possibility of engineering the mold-material to avoid, or mitigate, the effects of thermosolutal convection and macrosegregation by selecting a mold material with suitable thermal properties, especially its thermal conductivity.

  15. Fog Collection on Polyethylene Terephthalate (PET) Fibers: Influence of Cross Section and Surface Structure.

    PubMed

    Azad, M A K; Krause, Tobias; Danter, Leon; Baars, Albert; Koch, Kerstin; Barthlott, Wilhelm

    2017-06-06

    Fog-collecting meshes show a great potential in ensuring the availability of a supply of sustainable freshwater in certain arid regions. In most cases, the meshes are made of hydrophilic smooth fibers. Based on the study of plant surfaces, we analyzed the fog collection using various polyethylene terephthalate (PET) fibers with different cross sections and surface structures with the aim of developing optimized biomimetic fog collectors. Water droplet movement and the onset of dripping from fiber samples were compared. Fibers with round, oval, and rectangular cross sections with round edges showed higher fog-collection performance than those with other cross sections. However, other parameters, for example, width, surface structure, wettability, and so forth, also influenced the performance. The directional delivery of the collected fog droplets by wavy/v-shaped microgrooves on the surface of the fibers enhances the formation of a water film and their fog collection. A numerical simulation of the water droplet spreading behavior strongly supports these findings. Therefore, our study suggests the use of fibers with a round cross section, a microgrooved surface, and an optimized width for an efficient fog collection.

  16. Development of a general method for obtaining the geometry of microfluidic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razavi, Mohammad Sayed, E-mail: m.sayedrazavi@gmail.com; Salimpour, M. R.; Shirani, Ebrahim

    2014-01-15

    In the present study, a general method for geometry of fluidic networks is developed with emphasis on pressure-driven flows in the microfluidic applications. The design method is based on general features of network's geometry such as cross-sectional area and length of channels. Also, the method is applicable to various cross-sectional shapes such as circular, rectangular, triangular, and trapezoidal cross sections. Using constructal theory, the flow resistance, energy loss and performance of the network are optimized. Also, by this method, practical design strategies for the fabrication of microfluidic networks can be improved. The design method enables rapid prediction of fluid flowmore » in the complex network of channels and is very useful for improving proper miniaturization and integration of microfluidic networks. Minimization of flow resistance of the network of channels leads to universal constants for consecutive cross-sectional areas and lengths. For a Y-shaped network, the optimal ratios of consecutive cross-section areas (A{sub i+1}/A{sub i}) and lengths (L{sub i+1}/L{sub i}) are obtained as A{sub i+1}/A{sub i} = 2{sup −2/3} and L{sub i+1}/L{sub i} = 2{sup −1/3}, respectively. It is shown that energy loss in the network is proportional to the volume of network. It is also seen when the number of channels is increased both the hydraulic resistance and the volume occupied by the network are increased in a similar manner. Furthermore, the method offers that fabrication of multi-depth and multi-width microchannels should be considered as an integral part of designing procedures. Finally, numerical simulations for the fluid flow in the network have been performed and results show very good agreement with analytic results.« less

  17. Drainage networks after wildfire

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2005-01-01

    Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.

  18. Nailfold capillary morphological characteristics of hand-arm vibration syndrome: a cross-sectional study

    PubMed Central

    Chen, QingSong; Chen, GuiPing; Xiao, Bin; Lin, HanSheng; Qu, HongYing; Zhang, DanYing; Shi, MaoGong; Lang, Li; Yang, Bei; Yan, MaoSheng

    2016-01-01

    Objective The purpose of this study was to investigate the characteristics of nailfold capillaroscopy associated with hand-arm vibration syndrome (HAVS). Methods In total, 113 male gold miners were recruited: 35 workers who were chronically exposed to vibration and developed vibration-induced white finger were defined as the HAVS group, 39 workers who were exposed to vibration but did not have HAVS were classified as the vibration-exposed controls (VEC) group, and 39 workers without vibration exposure were categorised as the non-VEC (NVEC) group. Video capillaroscopy was used to capture images of the 2nd, 3rd and 4th fingers of both hands. The following nailfold capillary characteristics were included: number of capillaries/mm, avascular areas, haemorrhages and enlarged capillaries. The experiments were carried out in the same winter. All characteristics were evaluated under blinded conditions. Results Significant differences in all morphological characteristics existed between the groups (p<0.05). Avascular areas in the HAVS, VEC and NVEC groups appeared in 74.3%, 43.6% and 25.0% of participants, respectively. A higher percentage of participants had haemorrhages in the HAVS group (65.7%) compared with the other groups (VEC: 7.7% and NVEC: 7.5%). The number of capillaries/mm, input limb width, output limb width, apical width, and ratio of output limb and input limb all had more than 70% sensitivity or specificity of their cut-off value. Conclusions Nailfold capillary characteristics, especially the number of capillaries/mm, avascular areas, haemorrhages, output limb width, input limb width and apical width alterations, revealed significant associations with HAVS. PMID:27888176

  19. The dynamics of bedrock channel adjustment: Modeling the influence of sediment supply, weathering, and lithology on channel cross-sectional and longitudinal shape

    NASA Astrophysics Data System (ADS)

    Wobus, C.; Tucker, G.; Anderson, R.; Kean, J.; Small, E.; Hancock, G.

    2007-12-01

    The cross-sectional form of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate changes in channel cross-sectional geometry through time. We have developed a 2D numerical model that computes the formation of a channel in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Boundary shear stress is calculated using a simple approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local boundary surface. The resulting model predictions for the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with the predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ~3%, and the predicted peak shear stress is consistent to within ~7%. The efficiency of our model makes it suitable for calculations of long-term morphologic change both in single cross-sections and in series of cross-sections arrayed downstream. For a uniform substrate, the model predicts a strong tendency toward a fixed width-to-depth ratio, regardless of gradient or discharge. The model predicts power-law relationships between width and discharge with an exponent near 2/5, and between width and gradient with an exponent near -1/5. Recent enhancements to the model include the addition of sediment, which increases the width-to-depth ratio at steady state by favoring erosion of the channel walls relative to the channel bed (the "cover effect"). Inclusion of a probability density function of discharges with a simple parameterization of weathering along channel banks leads to the formation of model strath terraces. Downstream changes in substrate erodibility or tectonic uplift rate lead to step-function changes in channel width, consistent with empirical observations. Finally, explicit inclusion of bedload transport allows channel width, gradient, and the pattern of sediment flux to evolve dynamically, allowing us to explore the response of bedrock channels to both spatial patterns of rock uplift, and temporal variations in sediment input.

  20. Functional anatomy and ultrasound examination of the canine penis.

    PubMed

    Goericke-Pesch, Sandra; Hölscher, Catharina; Failing, Klaus; Wehrend, Axel

    2013-07-01

    The aim of this study was to identify the functional-anatomical structures of the canine penis during and after erection to demonstrate the respective changes to provide a basis for further examinations of pathological conditions like priapism. Additionally, a gray-scale analysis was performed to quantify results from the ultrasound examination. In total, 80 dogs were examined. In group (Gr.) A, 44 intact or castrated dogs were examined, and in Gr. B, 36 dogs were examined during erection and after complete detumescence of the penis. The following parameters were assessed: (1) using physical measurements: length of the Pars longa glandis [Plg] and length of the Bulbus glandis [Bg]; and (2) using ultrasound: total penile diameter, width of the erectile tissue of the Plg, diameter of the Corpus spongiosum [Cs] including the penile bone and urethra, vertical diameter, circumference of the penis, cross-sectional area, and area of the Cs including the urethra. The mentioned parameters could be assessed in all dogs of Gr. A and Gr. B with the only exception being the urethra that could be visualized using ultrasound in some dogs only and predominantly in the erected penis (Gr. B). Concomitantly, the erectile tissue of the Plg and the Cs was more heterogenous and hypo- to anechoic during erection compared with dogs in Gr. A and Gr. B after detumescence. Comparing the results in Gr. B, the length of the Plg and the Bg were decreased approximately 40.6% and 38.0%, the total width of the penis 40.5%, the total width of the erectile tissue of the Plg 48.0%, and the width of the Cs 15.6% during detumescence compared with erection. Comparing the decrease in size at the different locations (apex penis, middle of Plg, middle of Bg) for vertical diameter, total circumference, and cross-section area, it was largest at the Bg. B-mode ultrasound is a suitable tool to investigate not only the morpho-functional structures of the resting canine penis, but also of the erected and detumescent penis, and to investigate the underlying changes during erection and detumenscence. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Material dependence of 2H(d,p)3H cross section at the very low energies

    NASA Astrophysics Data System (ADS)

    Kılıç, Ali İhsan; Czerski, Konrad; Kuştan-Kılıç, Fadime; Targosz-Sleczka, Natalia; Weissbach, Daniel; Huke, Armin; Ruprecht, Götz

    2017-09-01

    Calculations of the material dependence of 2H(d,p)3H cross section and neutron-to-proton branching ratio of d+d reactions have been performed including a concept of the 0+ threshold single particle resonance. The resonance has been assumed to explain the enhanced electron screening effect observed in the d+d reaction for different metallic targets. Here, we have included interference effects between the flat and resonance part of the cross section, which allowed us to enlighten observed suppression of the neutron channel in some metals such as Sr and Li. Since the position of the resonance depends on the screening energy that strongly depends on the local electron density. The resonance width, observed for the d+d reactions in the very hygroscopic metals (Sr and Li) and therefore probably contaminated by oxides, should be much larger than for other metals. Thus, the interference term of the cross section depending on the total resonance width provides the material dependences.

  2. Low-energy and very-low energy total cross sections for electron collisions with N2

    NASA Astrophysics Data System (ADS)

    Kitajima, Masashi; Kishino, Takaya; Okumura, Takuma; Kobayashi, Naomasa; Sayama, Atsushi; Mori, Yuma; Hosaka, Kouichi; Odagiri, Takeshi; Hoshino, Masamitsu; Tanaka, Hiroshi

    2017-06-01

    Absolute grand total cross sections for electron scattering from N2 are obtained in the energy range from 20 eV down to 5 meV with very narrow electron energy width of 9 meV using the threshold-photoelectron source. Total cross sections obtained in the present study are compared with the previous experimentally obtained results. At the very-low energy region below 50 meV, the present total cross sections are somewhat smaller than those reported by the Aarhus group [S.V. Hoffmann et al., Rev. Sci. Instrum. 73, 4157 (2002)], which has been the only experimental work that provided the total cross sections in the very-low energy region. The energy positions of the peaks in the total cross sections due to the 2Πg shape resonance are obtained with higher accuracy, due to the improved uncertainty of the energy position in the present measurement compared to the previous works. The resonance structure in the total cross sections due to the Feshbach resonances of N2 at around 11.5 eV are also observed. Analysis of the resonant structure was carried out in order to determine the values of resonance width of Feshbach resonances of N2. Contribution to the Topical Issue: "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  3. Tensile properties of the transverse carpal ligament and carpal tunnel complex.

    PubMed

    Ugbolue, Ukadike C; Gislason, Magnus K; Carter, Mark; Fogg, Quentin A; Riches, Philip E; Rowe, Philip J

    2015-08-01

    A new sophisticated method that uses video analysis techniques together with a Maillon Rapide Delta to determine the tensile properties of the transverse carpal ligament-carpal tunnel complex has been developed. Six embalmed cadaveric specimens amputated at the mid-forearm and aged (mean (SD)): 82 (6.29) years were tested. The six hands were from three males (four hands) and one female (two hands). Using trigonometry and geometry the elongation and strain of the transverse carpal ligament and carpal arch were calculated. The cross-sectional area of the transverse carpal ligament was determined. Tensile properties of the transverse carpal ligament-carpal tunnel complex and Load-Displacement data were also obtained. Descriptive statistics, one-way ANOVA together with a post-hoc analysis (Tukey) and t-tests were incorporated. A transverse carpal ligament-carpal tunnel complex novel testing method has been developed. The results suggest that there were no significant differences between the original transverse carpal ligament width and transverse carpal ligament at peak elongation (P=0.108). There were significant differences between the original carpal arch width and carpal arch width at peak elongation (P=0.002). The transverse carpal ligament failed either at the mid-substance or at their bony attachments. At maximum deformation the peak load and maximum transverse carpal ligament displacements ranged from 285.74N to 1369.66N and 7.09mm to 18.55mm respectively. The transverse carpal ligament cross-sectional area mean (SD) was 27.21 (3.41)mm(2). Using this method the results provide useful biomechanical information and data about the tensile properties of the transverse carpal ligament-carpal tunnel complex. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A New Approach to Scaling Channel Width in Bedrock Rivers and its Implications for Modeling Fluvial Incision

    NASA Astrophysics Data System (ADS)

    Finnegan, N. J.; Roe, G.; Montgomery, D. R.; Hallet, B.

    2004-12-01

    The fundamental role of bedrock channel incision on the evolution of mountainous topography has become a central concept in tectonic geomorphology over the past decade. During this time the stream power model of bedrock river incision has immerged as a valuable tool for exploring the dynamics of bedrock river incision in time and space. In most stream power analyses, river channel width--a necessary ingredient for calculating power or shear stress per unit of bed area--is assumed to scale solely with discharge. However, recent field-based studies provide evidence for the alternative view that channel width varies locally, much like channel slope does, in association with spatial changes in rock uplift rate and erodibility. This suggests that simple scaling relations between width and discharge, and hence estimates of stream power, don't apply in regions where rock uplift and erodibility vary spatially. It also highlights the need for an alternative to the traditional assumptions of hydraulic geometry to further investigation of the coupling between bedrock river incision and tectonic processes. Based on Manning's equation, basic mass conservation principles, and an assumption of self-similarity for channel cross sections, we present a new relation for scaling the steady-state width of bedrock river channels as a function of discharge (Q), channel slope (S), and roughness (Ks): W \\propto Q3/8S-3/16Ks1/16. In longitudinally simple, uniform-concavity rivers from the King Range in coastal Northern California, the model emulates traditional width-discharge relations that scale channel width with the square root of discharge. More significantly, our relation describes river width trends for the Yarlung Tsangpo in SE Tibet and the Wenatchee River in the Washington Cascades, both rivers that narrow considerably as they incise terrain with spatially varied rock uplift rates and/or lithology. We suggest that much of observed channel width variability is a simple consequence of the tendency for water to flow faster in steeper reaches and therefore maintain smaller channel cross sections. We demonstrate that using conventional scaling relations for bedrock channel width can significantly underestimate stream power variability in bedrock channels, and that our model improves estimates of spatial patterns of bedrock incision rates.

  5. Doubly differential cross sections for galactic heavy-ion fragmentation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Norbury, John W.; Khandelwal, Govind S.; Townsend, Lawrence W.

    1987-01-01

    An abrasion-ablation T-matrix formulation is applied to the calculation of double differential-cross sections in projectile fragmentation of 2.1 GeV/nucleon O-16 on Be-9 and 86 MeV/nucleon C-12 on C-12 and Ag-108. An exponential parameterization of the ablation T-matrix is used and the total width of the intermediate states is taken as a parameter. Fitted values of the total width to experimental results are used to predict the lifetime of the ablation stage and indicate a decay time on the order of 10 to the -19th power sec.

  6. M ξ, M αβ, M γ and M m X-ray production cross-sections for elements with 71⩽ z⩽92 at 5.96 keV photon energy

    NASA Astrophysics Data System (ADS)

    Sharma, Manju; Sharma, Veena; Kumar, Sanjeev; Puri, S.; Singh, Nirmal

    2006-11-01

    The M ξ, M αβ, M γ and M m X-ray production (XRP) cross-sections have been measured for the elements with 71⩽ Z⩽92 at 5.96 keV incident photon energy satisfying EM1< Einc< EL3, where EM1(L3) is the M 1(L 3) subshell binding energy. These XRP cross-sections have been calculated using photoionization cross-sections based on the relativistic Dirac-Hartree-Slater (RDHS) model with three sets of X-ray emission rates, fluorescence, Coster-Kronig and super Coster-Kronig yields based on (i) the non-relativistic Hartree-Slater (NRHS) potential model, (ii) the RDHS model and (iii) the relativistic Dirac-Fock (RDF) model. For the third set, the M i ( i=1-5) subshell fluorescence yields have been calculated using the RDF model-based X-ray emission rates and total widths reevaluated to incorporate the RDF model-based radiative widths. The measured cross-sections have been compared with the calculated values to check the applicability of the physical parameters based on different models.

  7. Neutron resonance parameters of 6830Zn+n and statistical distributions of level spacings and widths

    NASA Astrophysics Data System (ADS)

    Garg, J. B.; Tikku, V. K.; Harvey, J. A.; Halperin, J.; Macklin, R. L.

    1982-04-01

    Discrete values of the parameters (E0, gΓn, Jπ, Γγ, etc.) of the resonances in the reaction 6830Zn + n have been determined from total cross section measurements from a few keV to 380 keV with a nominal resolution of 0.07 ns/m for the highest energy and from capture cross section measurements up to 130 keV using the pulsed neutron time-of-flight technique with a neutron burst width of 5 ns. The cross section data were analyzed to determine the parameters of the resonances using R-matrix multilevel codes. These results have provided values of average quantities as follows: S0=(2.01+/-0.34), S1=(0.56+/-0.05), S2=(0.2+/-0.1) in units of 10-4, D0=(5.56+/-0.43) keV and D1=(1.63+/-0.14) keV. From these measurements we have also determined the following average radiation widths: (Γ¯γ)l=0=(302+/-60) meV and (Γ¯γ)l=1=(157 +/-7) meV. The investigation of the statistical properties of neutron reduced widths and level spacings showed excellent agreement of the data with the Porter-Thomas distribution for s- and p-wave neutron widths and with the Dyson-Mehta Δ3 statistic and the Wigner distribution for the s-wave level spacing distribution. In addition, a correlation coefficient of ρ=0.50+/-0.10 between Γ0n and Γγ has been observed for s-wave resonances. The value of <σnγ> at (30+/-10) keV is 19.2 mb. NUCLEAR REACTIONS 3068Zn(n,n), 3068Zn(n,γ), E=few keV to 380, 130 keV, respectively. Measured total and capture cross sections versus neutron energy, deduced resonance parameters, E0, Jπ, gΓn, Γγ, S0, S1, S2, D0, D1.

  8. Nailfold capillary morphological characteristics of hand-arm vibration syndrome: a cross-sectional study.

    PubMed

    Chen, QingSong; Chen, GuiPing; Xiao, Bin; Lin, HanSheng; Qu, HongYing; Zhang, DanYing; Shi, MaoGong; Lang, Li; Yang, Bei; Yan, MaoSheng

    2016-11-25

    The purpose of this study was to investigate the characteristics of nailfold capillaroscopy associated with hand-arm vibration syndrome (HAVS). In total, 113 male gold miners were recruited: 35 workers who were chronically exposed to vibration and developed vibration-induced white finger were defined as the HAVS group, 39 workers who were exposed to vibration but did not have HAVS were classified as the vibration-exposed controls (VEC) group, and 39 workers without vibration exposure were categorised as the non-VEC (NVEC) group. Video capillaroscopy was used to capture images of the 2nd, 3rd and 4th fingers of both hands. The following nailfold capillary characteristics were included: number of capillaries/mm, avascular areas, haemorrhages and enlarged capillaries. The experiments were carried out in the same winter. All characteristics were evaluated under blinded conditions. Significant differences in all morphological characteristics existed between the groups (p<0.05). Avascular areas in the HAVS, VEC and NVEC groups appeared in 74.3%, 43.6% and 25.0% of participants, respectively. A higher percentage of participants had haemorrhages in the HAVS group (65.7%) compared with the other groups (VEC: 7.7% and NVEC: 7.5%). The number of capillaries/mm, input limb width, output limb width, apical width, and ratio of output limb and input limb all had more than 70% sensitivity or specificity of their cut-off value. Nailfold capillary characteristics, especially the number of capillaries/mm, avascular areas, haemorrhages, output limb width, input limb width and apical width alterations, revealed significant associations with HAVS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. CT analysis of nasal volume changes after surgically-assisted rapid maxillary expansion.

    PubMed

    Tausche, Eve; Deeb, Wayel; Hansen, Lars; Hietschold, Volker; Harzer, Winfried; Schneider, Matthias

    2009-07-01

    Aim of this study was to detect the changes in nasal volume due to bone-borne, surgically-assisted rapid palatal expansion (RPE) with the Dresden Distractor using computed tomography (CT). 17 patients (mean age 28.8) underwent axial CT scanning before and 6 months after RPE. The nasal bone width was examined in the coronal plane. Cross-sectional images of the nasal cavity were taken of the area surrounding the piriform aperture, choanae and in between. Bony nasal volume was computed by connecting the three cross-sectional areas. All but two patients showed a 4.8% increase in nasal volume (SD 4.6%). The highest value, 33.3% (SD 45.1%), was measured anteriorly at the level of the nasal floor. This correlated with the midpalatal suture's V-shaped opening. There was no significant correlation between an increase in nasal volume and transverse dental arch expansion. As most of the air we breathe passes the lower nasal floor, an improvement in nasal breathing is likely.

  10. Extracting cross sections and water levels of vegetated ditches from LiDAR point clouds

    NASA Astrophysics Data System (ADS)

    Roelens, Jennifer; Dondeyne, Stefaan; Van Orshoven, Jos; Diels, Jan

    2016-12-01

    The hydrologic response of a catchment is sensitive to the morphology of the drainage network. Dimensions of bigger channels are usually well known, however, geometrical data for man-made ditches is often missing as there are many and small. Aerial LiDAR data offers the possibility to extract these small geometrical features. Analysing the three-dimensional point clouds directly will maintain the highest degree of information. A longitudinal and cross-sectional buffer were used to extract the cross-sectional profile points from the LiDAR point cloud. The profile was represented by spline functions fitted through the minimum envelop of the extracted points. The cross-sectional ditch profiles were classified for the presence of water and vegetation based on the normalized difference water index and the spatial characteristics of the points along the profile. The normalized difference water index was created using the RGB and intensity data coupled to the LiDAR points. The mean vertical deviation of 0.14 m found between the extracted and reference cross sections could mainly be attributed to the occurrence of water and partly to vegetation on the banks. In contrast to the cross-sectional area, the extracted width was not influenced by the environment (coefficient of determination R2 = 0.87). Water and vegetation influenced the extracted ditch characteristics, but the proposed method is still robust and therefore facilitates input data acquisition and improves accuracy of spatially explicit hydrological models.

  11. Electron Spectroscopic Studies of Surfaces and Interfaces for Adhesive Bonding.

    DTIC Science & Technology

    1980-01-01

    published theoretical cross-sections for photoionization . These concentrations are listed in Table 5. There is very good agreement between the surface...and using Scofield cross sections for the is levels. Before adsorption, the carbon to oxygen ratio was 1.3, on exposure to methanol at room temperature...the surface region. Cross sections were taken from the data of Scofield ’, and the results are listed in Tables 3 and 4. 46 TABLE 2 MEASURED FULL WID)THS

  12. Cross-sectional structural parameters from densitometry

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Whalen, Robert T.

    2002-01-01

    Bone densitometry has previously been used to obtain cross-sectional properties of bone from a single X-ray projection across the bone width. Using three unique projections, we have extended the method to obtain the principal area moments of inertia and orientations of the principal axes at each scan cross-section along the length of the scan. Various aluminum phantoms were used to examine scanner characteristics to develop the highest accuracy possible for in vitro non-invasive analysis of cross-sectional properties. Factors considered included X-ray photon energy, initial scan orientation, the angle spanned by the three scans (included angle), and I(min)/I(max) ratios. Principal moments of inertia were accurate to within +/-3.1% and principal angles were within +/-1 degrees of the expected value for phantoms scanned with included angles of 60 degrees and 90 degrees at the higher X-ray photon energy (140 kVp). Low standard deviations in the error (0.68-1.84%) also indicate high precision of calculated measurements with these included angles. Accuracy and precision decreased slightly when the included angle was reduced to 30 degrees. The method was then successfully applied to a pair of excised cadaveric tibiae. The accuracy and insensitivity of the algorithms to cross-sectional shape and changing isotropy (I(min)/I(max)) values when various included angles are used make this technique viable for future in vivo studies.

  13. Investigation of α -induced reactions on Sb isotopes relevant to the astrophysical γ process

    NASA Astrophysics Data System (ADS)

    Korkulu, Z.; Özkan, N.; Kiss, G. G.; Szücs, T.; Gyürky, Gy.; Fülöp, Zs.; Güray, R. T.; Halász, Z.; Rauscher, T.; Somorjai, E.; Török, Zs.; Yalçın, C.

    2018-04-01

    Background: The reaction rates used in γ -process nucleosynthesis network calculations are mostly derived from theoretical, statistical model cross sections. Experimental data is scarce for charged particle reactions at astrophysical, low energies. Where experimental (α ,γ ) data exists, it is often strongly overestimated by Hauser-Feshbach statistical model calculations. Further experimental α -capture cross sections in the intermediate and heavy mass region are necessary to test theoretical models and to gain understanding of heavy element nucleosynthesis in the astrophysical γ process. Purpose: The aim of the present work is to measure the 121Sb(α ,γ )125I , 121Sb(α ,n )124I , and 123Sb(α ,n )126I reaction cross sections. These measurements are important tests of astrophysical reaction rate predictions and extend the experimental database required for an improved understanding of p-isotope production. Method: The α -induced reactions on natural and enriched antimony targets were investigated using the activation technique. The (α ,γ ) cross sections of 121Sb were measured and are reported for the first time. To determine the cross section of the 121Sb(α ,γ )125I , 121Sb(α ,n )124I , and 123Sb(α ,n )126I reactions, the yields of γ rays following the β decay of the reaction products were measured. For the measurement of the lowest cross sections, the characteristic x rays were counted with a low-energy photon spectrometer detector. Results: The cross section of the 121Sb(α ,γ )125I , 121Sb(α ,n )124I , and 123Sb(α ,n )126I reactions were measured with high precision in an energy range between 9.74 and 15.48 MeV, close to the astrophysically relevant energy window. The results are compared with the predictions of statistical model calculations. The (α ,n) data show that the α widths are predicted well for these reactions. The (α ,γ ) results are overestimated by the calculations but this is because of the applied neutron and γ widths. Conclusions: Relevant for the astrophysical reaction rate is the α width used in the calculations. While for other reactions the α widths seem to have been overestimated and their energy dependence was not described well in the measured energy range, this is not the case for the reactions studied here. The result is consistent with the proposal that additional reaction channels, such as Coulomb excitation, may have led to the discrepancies found in other reactions.

  14. Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding

    NASA Astrophysics Data System (ADS)

    Shi, Jianjun; Zhu, Ping; Fu, Geyan; Shi, Shihong

    2018-05-01

    Coaxial laser inside wire cladding method is very promising as it has a very high efficiency and a consistent interaction between the laser and wire. In this paper, the energy and mass conservation law, and the regression algorithm are used together for establishing the mathematical models to study the relationship between the layer geometry characteristics (width, height and cross section area) and process parameters (laser power, scanning velocity and wire feeding speed). At the selected parameter ranges, the predicted values from the models are compared with the experimental measured results, and there is minor error existing, but they reflect the same regularity. From the models, it is seen the width of the cladding layer is proportional to both the laser power and wire feeding speed, while it firstly increases and then decreases with the increasing of the scanning velocity. The height of the cladding layer is proportional to the scanning velocity and feeding speed and inversely proportional to the laser power. The cross section area increases with the increasing of feeding speed and decreasing of scanning velocity. By using the mathematical models, the geometry characteristics of the cladding layer can be predicted by the known process parameters. Conversely, the process parameters can be calculated by the targeted geometry characteristics. The models are also suitable for multi-layer forming process. By using the optimized process parameters calculated from the models, a 45 mm-high thin-wall part is formed with smooth side surfaces.

  15. Hydraulic geometry and streamflow of channels in the Piceance Basin, Rio Blanco and Garfield counties, Colorado

    USGS Publications Warehouse

    Elliott, J.G.; Cartier, K.D.

    1986-01-01

    The influence of streamflow and basin characteristics on channel geometry was investigated at 18 perennial and ephemeral stream reaches in the Piceance basin of northwestern Colorado. Results of stepwise multiple regression analyses indicated that the variabilities of mean bankfull depth (D) and bankfull cross-sectional flow area (Af) were predominantly a function of bankfull discharge (QB), and that most of the variability in channel slopes (S) could be explained by drainage area (DA). None of the independent variables selected for the study could account for a large part of the variability in bankfull channel width (W). (USGS)

  16. Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices

    DOEpatents

    Nilson, Robert; Griffiths, Stewart

    2005-10-04

    The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.

  17. Measurement of stream channel habitat using sonar

    USGS Publications Warehouse

    Flug, Marshall; Seitz, Heather; Scott, John

    1998-01-01

    An efficient and low cost technique using a sonar system was evaluated for describing channel geometry and quantifying inundated area in a large river. The boat-mounted portable sonar equipment was used to record water depths and river width measurements for direct storage on a laptop computer. The field data collected from repeated traverses at a cross-section were evaluated to determine the precision of the system and field technique. Results from validation at two different sites showed average sample standard deviations (S.D.s) of 0.12 m for these complete cross-sections, with coefficient of variations of 10%. Validation using only the mid-channel river cross-section data yields an average sample S.D. of 0.05 m, with a coefficient of variation below 5%, at a stable and gauged river site using only measurements of water depths greater than 0.6 m. Accuracy of the sonar system was evaluated by comparison to traditionally surveyed transect data from a regularly gauged site. We observed an average mean squared deviation of 46.0 cm2, considering only that portion of the cross-section inundated by more than 0.6 m of water. Our procedure proved to be a reliable, accurate, safe, quick, and economic method to record river depths, discharges, bed conditions, and substratum composition necessary for stream habitat studies.

  18. Spinal cord atrophy in anterior-posterior direction reflects impairment in multiple sclerosis.

    PubMed

    Lundell, H; Svolgaard, O; Dogonowski, A-M; Romme Christensen, J; Selleberg, F; Soelberg Sørensen, P; Blinkenberg, M; Siebner, H R; Garde, E

    2017-10-01

    To investigate how atrophy is distributed over the cross section of the upper cervical spinal cord and how this relates to functional impairment in multiple sclerosis (MS). We analysed the structural brain MRI scans of 54 patients with relapsing-remitting MS (n=22), primary progressive MS (n=9), secondary progressive MS (n=23) and 23 age- and sex-matched healthy controls. We measured the cross-sectional area (CSA), left-right width (LRW) and anterior-posterior width (APW) of the spinal cord at the segmental level C2. We tested for a nonparametric linear relationship between these atrophy measures and clinical impairments as reflected by the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Impairment Scale (MSIS). In patients with MS, CSA and APW but not LRW were reduced compared to healthy controls (P<.02) and showed significant correlations with EDSS, MSIS and specific MSIS subscores. In patients with MS, atrophy of the upper cervical cord is most evident in the antero-posterior direction. As APW of the cervical cord can be readily derived from standard structural MRI of the brain, APW constitutes a clinically useful neuroimaging marker of disease-related neurodegeneration in MS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Cross-Sectional Transport Imaging in a Multijunction Solar Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haegel, Nancy M.; Ke, Chi-Wen; Taha, Hesham

    2015-06-14

    Combining highly localized electron-beam excitation at a point with the spatial resolution capability of optical near-field imaging, we have imaged carrier transport in a cross-sectioned multijunction (GaInP/GaInAs/Ge) solar cell. We image energy transport associated with carrier diffusion throughout the full width of the middle (GaInAs) cell and luminescent coupling from point excitation in the top cell GaInP to the middle cell. Supporting cathodoluminescence and near-field photoluminescence measurements demonstrate excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results as well as transport limitations on the spatial resolution of cross-sectional measurements.

  20. UV photoabsorption cross sections of CO, N2, and SO2 for studies of the ISM and planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Rufus, J.; Yoshino, K.; Parkinson, W. H.; Stark, Glenn; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    We report high-resolution laboratory measurements of photoabsorption cross sections of CO, N2, and SO2 in the wavelength range 80 to 320 nm. The motivation is to provide the quantitative data that are needed to analyze observations of absorption by, and to model photochemical processes in, the interstellar medium and a number of planetary atmospheres. Because of the high resolution of the spectrometers used, we can minimize distortion of the spectrum that occurs when instrument widths are greater than the widths of spectral features being measured. In many cases, we can determine oscillator strengths of individual rotational lines - a unique feature of our work.

  1. Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Morimune, Keiyo; Set, Sze Y.; Yamashita, Shinji

    2007-01-01

    The authors demonstrate a nonblocked all-fiber mode locker operated by the interaction of carbon nanotubes with the evanescent field of propagating light in a tapered fiber. Symmetric cross section of the device with the randomly oriented nanotubes guarantees the polarization insensitive operation of the pulse formation. In order to minimize the scattering, the carbon nanotubes are deposited within a designed area around the tapered waist. The demonstrated passively pulsed laser has the repetition rate of 7.3MHz and the pulse width of 829fs.

  2. Fabrication of parabolic cylindrical microlens array by shaped femtosecond laser

    NASA Astrophysics Data System (ADS)

    Luo, Zhi; Yin, Kai; Dong, Xinran; Duan, Ji'an

    2018-04-01

    A simple and efficient technique for fabricating parabolic cylindrical microlens arrays (CMLAs) on the surface of fused silica by shaped femtosecond (fs) laser direct-writing is demonstrated. By means of spatially shaping of a Gaussian fs laser beam to a Bessel distribution, an inversed cylindrical shape laser intensity profile is formed in a specific cross-sectional plane among the shaped optical field. Applying it to experiments, large area close-packed parabolic CMLAs with line-width of 37.5 μm and array size of about 5 × 5 mm are produced. The cross-sectional outline of obtained lenslets has a satisfied parabolic profile and the numerical aperture (NA) of lenslets is more than 0.35. Furthermore, the focusing performance of the fabricated CMLA is also tested in this work and it has been demonstrated that the focusing power of the CMLA with a parabolic profile is better than that with a semi-circular one.

  3. Modelling the flooding capacity of a Polish Carpathian river: A comparison of constrained and free channel conditions

    NASA Astrophysics Data System (ADS)

    Czech, Wiktoria; Radecki-Pawlik, Artur; Wyżga, Bartłomiej; Hajdukiewicz, Hanna

    2016-11-01

    The gravel-bed Biała River, Polish Carpathians, was heavily affected by channelization and channel incision in the twentieth century. Not only were these impacts detrimental to the ecological state of the river, but they also adversely modified the conditions of floodwater retention and flood wave passage. Therefore, a few years ago an erodible corridor was delimited in two sections of the Biała to enable restoration of the river. In these sections, short, channelized reaches located in the vicinity of bridges alternate with longer, unmanaged channel reaches, which either avoided channelization or in which the channel has widened after the channelization scheme ceased to be maintained. Effects of these alternating channel morphologies on the conditions for flood flows were investigated in a study of 10 pairs of neighbouring river cross sections with constrained and freely developed morphology. Discharges of particular recurrence intervals were determined for each cross section using an empirical formula. The morphology of the cross sections together with data about channel slope and roughness of particular parts of the cross sections were used as input data to the hydraulic modelling performed with the one-dimensional steady-flow HEC-RAS software. The results indicated that freely developed cross sections, usually with multithread morphology, are typified by significantly lower water depth but larger width and cross-sectional flow area at particular discharges than single-thread, channelized cross sections. They also exhibit significantly lower average flow velocity, unit stream power, and bed shear stress. The pattern of differences in the hydraulic parameters of flood flows apparent between the two types of river cross sections varies with the discharges of different frequency, and the contrasts in hydraulic parameters between unmanaged and channelized cross sections are most pronounced at low-frequency, high-magnitude floods. However, because of the deep incision of the river, both cross section types are typified by a similar, low potential for the retention of floodwater in floodplain areas. The study indicated that even though river restoration has only begun here, it already brings beneficial effects for flood risk management, reducing flow energy and shear forces exerted on the bed and banks of the channel in unmanaged river reaches. Only within wide, unmanaged channel reaches can the flows of low-frequency, high-magnitude floods be conveyed with relatively low shear forces exerted on the channel boundary. In contrast, in channelized reaches, flow velocity and shear forces are substantially higher, inevitably causing bank erosion and channel incision.

  4. Heavy residues from very mass asymmetric heavy ion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanold, Karl Alan

    1994-08-01

    The isotopic production cross sections and momenta of all residues with nuclear charge (Z) greater than 39 from the reaction of 26, 40, and 50 MeV/nucleon 129Xe + Be, C, and Al were measured. The isotopic cross sections, the momentum distribution for each isotope, and the cross section as a function of nuclear charge and momentum are presented here. The new cross sections are consistent with previous measurements of the cross sections from similar reaction systems. The shape of the cross section distribution, when considered as a function of Z and velocity, was found to be qualitatively consistent with thatmore » expected from an incomplete fusion reaction mechanism. An incomplete fusion model coupled to a statistical decay model is able to reproduce many features of these reactions: the shapes of the elemental cross section distributions, the emission velocity distributions for the intermediate mass fragments, and the Z versus velocity distributions. This model gives a less satisfactory prediction of the momentum distribution for each isotope. A very different model based on the Boltzman-Nordheim-Vlasov equation and which was also coupled to a statistical decay model reproduces many features of these reactions: the shapes of the elemental cross section distributions, the intermediate mass fragment emission velocity distributions, and the Z versus momentum distributions. Both model calculations over-estimate the average mass for each element by two mass units and underestimate the isotopic and isobaric widths of the experimental distributions. It is shown that the predicted average mass for each element can be brought into agreement with the data by small, but systematic, variation of the particle emission barriers used in the statistical model. The predicted isotopic and isobaric widths of the cross section distributions can not be brought into agreement with the experimental data using reasonable parameters for the statistical model.« less

  5. A tool to estimate bar patterns and flow conditions in estuaries when limited data is available

    NASA Astrophysics Data System (ADS)

    Leuven, J.; Verhoeve, S.; Bruijns, A. J.; Selakovic, S.; van Dijk, W. M.; Kleinhans, M. G.

    2017-12-01

    The effects of human interventions, natural evolution of estuaries and rising sea-level on food security and flood safety are largely unknown. In addition, ecologists require quantified habitat area to study future evolution of estuaries, but they lack predictive capability of bathymetry and hydrodynamics. For example, crucial input required for ecological models are values of intertidal area, inundation time, peak flow velocities and salinity. While numerical models can reproduce these spatial patterns, their computational times are long and for each case a new model must be developed. Therefore, we developed a comprehensive set of relations that accurately predict the hydrodynamics and the patterns of channels and bars, using a combination of the empirical relations derived from approximately 50 estuaries and theory for bars and estuaries. The first step is to predict local tidal prisms, which is the tidal prism that flows through a given cross-section. Second, the channel geometry is predicted from tidal prism and hydraulic geometry relations. Subsequently, typical flow velocities can be estimated from the channel geometry and tidal prism. Then, an ideal estuary shape is fitted to the measured planform: the deviation from the ideal shape, which is defined as the excess width, gives a measure of the locations where tidal bars form and their summed width (Leuven et al., 2017). From excess width, typical hypsometries can be predicted per cross-section. In the last step, flow velocities are calculated for the full range of occurring depths and salinity is calculated based on the estuary shape. Here, we will present a prototype tool that predicts equilibrium bar patterns and typical flow conditions. The tool is easy to use because the only input required is the estuary outline and tidal amplitude. Therefore it can be used by policy makers and researchers from multiple disciplines, such as ecologists, geologists and hydrologists, for example for paleogeographic reconstructions.

  6. Generalized additive regression models of discharge and mean velocity associated with direct-runoff conditions in Texas: Utility of the U.S. Geological Survey discharge measurement database

    USGS Publications Warehouse

    Asquith, William H.; Herrmann, George R.; Cleveland, Theodore G.

    2013-01-01

    A database containing more than 17,700 discharge values and ancillary hydraulic properties was assembled from summaries of discharge measurement records for 424 U.S. Geological Survey streamflow-gauging stations (stream gauges) in Texas. Each discharge exceeds the 90th-percentile daily mean streamflow as determined by period-of-record, stream-gauge-specific, flow-duration curves. Each discharge therefore is assumed to represent discharge measurement made during direct-runoff conditions. The hydraulic properties of each discharge measurement included concomitant cross-sectional flow area, water-surface top width, and reported mean velocity. Systematic and statewide investigation of these data in pursuit of regional models for the estimation of discharge and mean velocity has not been previously attempted. Generalized additive regression modeling is used to develop readily implemented procedures by end-users for estimation of discharge and mean velocity from select predictor variables at ungauged stream locations. The discharge model uses predictor variables of cross-sectional flow area, top width, stream location, mean annual precipitation, and a generalized terrain and climate index (OmegaEM) derived for a previous flood-frequency regionalization study. The mean velocity model uses predictor variables of discharge, top width, stream location, mean annual precipitation, and OmegaEM. The discharge model has an adjusted R-squared value of about 0.95 and a residual standard error (RSE) of about 0.22 base-10 logarithm (cubic meters per second); the mean velocity model has an adjusted R-squared value of about 0.67 and an RSE of about 0.063 fifth root (meters per second). Example applications and computations using both regression models are provided. - See more at: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HE.1943-5584.0000635#sthash.jhGyPxgZ.dpuf

  7. Mean-flow measurements of the flow field diffusing bend

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.

    1982-01-01

    Time-average measurements of the low-speed turbulent flow in a diffusing bend are presented. The experimental geometry consists of parallel top and bottom walls and curved diverging side walls. The turning of the center line of this channel is 40 deg, the area ratio is 1.5 and the ratios of height and center-line length to throat width are 1.5 and 3, respectively. The diffusing bend is preceded and followed by straight constant area sections. The inlet boundary layers on the parallel walls are artificially thickened and occupy about 30% of the channel height; those on the side walls develop naturally and are about half as thick. The free-stream speed at the inlet was approximately 30 m/sec for all the measurements. Inlet boundary layer mean velocity and turbulence intensity profiles are presented, as are data for wall static pressures, and at six cross sections, surveys of the velocity-vector and static-pressure fields. The dominant feature of the flow field is a pair of counter-rotating streamwise vortices formed by the cross-stream pressure gradient in the bend on which an overall deceleration is superimposed.

  8. The orientation distribution of tunneling-related quantities

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Refaie, A. I.; Botros, M. M.

    2018-03-01

    In the nuclear tunneling processes involving deformed nuclei, most of the tunneling-related quantities depend on the relative orientations of the participating nuclei. In the presence of different multipole deformations, we study the variation of a few relevant quantities for the α-decay and the sub-barrier fusion processes, in an orientation degree of freedom. The knocking frequency and the penetration probability are evaluated within the Wentzel-Kramers-Brillouin approximation. The interaction potential is calculated with Skyrme-type nucleon-nucleon interaction. We found that the width of the potential pocket, the Coulomb barrier radius, the penetration probability, the α-decay width, and the fusion cross-section follow consistently the orientation-angle variation of the radius of the deformed nucleus. The orientation distribution patterns of the pocket width, the barrier radius, the logarithms of the penetrability, the decay width, and the fusion cross-section are found to be highly analogous to pattern of the deformed-nucleus radius. The curve patterns of the orientation angle distributions of the internal pocket depth, the Coulomb barrier height and width, as well as the knocking frequency simulate inversely the variation of the deformed nucleus radius. The predicted orientation behaviors will be of a special interest in predicting the optimum orientations for the tunneling processes.

  9. Laboratory measurements of VUV N2 photoabsorption cross sections and line widths: applications to planetary atmospheric transmission models

    NASA Astrophysics Data System (ADS)

    Smith, P. L.; Stark, G.; Yoshino, K.

    2003-05-01

    The analyses of VUV occultation measurements of the N2-rich atmospheres of Titan and Triton are hampered by the lack of fundamental spectroscopic data for N2. There is a need for reliable photoabsorption cross sections and line widths for the 100 electronic bands of N2 in the 80 to 100 nm wavelength region. We present analyses of new measurements of individual line strengths and widths in N2 bands in the region 94 to 100 nm. Within individual bands, we find significant departures from the predicted line strength distributions based on isolated band models. Line width analyses within each band indicate that predissociation-broadening is often highly dependent on the rotational quantum number. We illustrate the importance of N2 line widths in the analysis of occultation measurements via N2 transmission models over selected wavelength regions. We have continued to compile on-line molecular spectroscopic atlas based on our N2 laboratory data: http://cfa-www.harvard.edu/amdata/ampdata/N2ARCHIVE/n2home.html. The archive includes published and unpublished 14N2, 14N15N, and 15N2 line lists and spectroscopic identifications, excited state energy levels, band and line f-values, a summary of published band f-value and line width measurements, and a cross-referenced summary of the relevant N2 literature. The listings are searchable by wavelength interval or band identification and are suitable for down-loading in a convenient format. We gratefully acknowledge funding support from NASA grant NAG5-9059 and the Smithsonian Institution Atherton-Seidell Grant Program.

  10. Radiation-Induced Damage to Microstructure of Parotid Gland: Evaluation Using High-Resolution Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Tomoko, E-mail: tkan@grape.med.tottori-u.ac.j; Kodani, Kazuhiko; Michimoto, Koichi

    Purpose: To elucidate the radiation-induced damage to the microstructure of the parotid gland using high-resolution magnetic resonance imaging. Methods and Materials: High-resolution magnetic resonance imaging of the parotid gland was performed before radiotherapy (RT) and during the RT period or {<=}3 weeks after RT completion for 12 head-and-neck cancer patients using a 1.5-T scanner with a microscopy coil. The maximal cross-sectional area of the gland was evaluated, and changes in the internal architecture of the gland were assessed both visually and quantitatively. Results: Magnetic resonance images were obtained at a median parotid gland dose of 36 Gy (range, 11-64). Accordingmore » to the quantitative analysis, the maximal cross-sectional area of the gland was reduced, the width of the main duct was narrowed, and the intensity ratio of the main duct lumen to background was significantly decreased after RT (p <.0001). According to the visual assessment, the width of the main duct tended to narrow and the contrast of the duct lumen tended to be decreased, but no significant differences were noted. The visibility of the duct branches was unclear in 10 patients (p = .039), and the septum became dense in 11 patients (p = .006) after RT. Conclusion: High-resolution magnetic resonance imaging is a noninvasive method of evaluating radiation-induced changes to the internal architecture of the parotid gland. Morphologic changes in the irradiated parotid gland were demonstrated during the RT course even when a relatively small dose was delivered to the gland.« less

  11. Absorption Of Crushing Energy In Square Composite Tubes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1992-01-01

    Report describes investigation of crash-energy-absorbing capabilities of square-cross-section tubes of two matrix/fiber composite materials. Both graphite/epoxy and Kevlar/epoxy tubes crushed in progressive and stable manner. Ratio between width of cross section and thickness of wall determined to affect energy-absorption significantly. As ratio decreases, energy-absorption capability increases non-linearly. Useful in building energy-absorbing composite structures.

  12. Non-LTE gallium abundance in HgMn stars

    NASA Astrophysics Data System (ADS)

    Zboril, M.; Berrington, K. A.

    2001-07-01

    We present, for the first time, the Non-LTE gallium equivalent widths for the most prominent gallium transitions as identified in real spectra and in (hot) mercury-manganese star. The common feature of the departure coefficients is to decrease near the stellar surface, the collision rates are dominant in many cases and the Non-LTE equivalent widths are generally smaller. In particular, the abundance difference as derived from UV and visual lines is reduced. The photoionization cross sections were computed by means of standard R-matrix formalism. The gallium cross-sections are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/987

  13. Localization and pattern of graviresponse across the pulvinus of barley Hordeum vulgare

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Lu, C. R.; Ghosheh, N. S.; Kaufman, P. B.

    1989-01-01

    Pulvini of excised stem segments from barley (Hordeum vulgare cv Larker') were pretreated with 1 millimolar coumarin before gravistimulation to reduce longitudinal cell expansion and exaggerate radial cell enlargement. The cellular localization and pattern of graviresponse across individual pulvini were then evaluated by cutting the organ in cross-section, photographing the cross-section, and then measuring pulvinus thickness and the radial width of cortical and epidermal cells in enlargements of the photomicrographs. With respect to orientation during gravistimulation, we designated the uppermost point of the cross-section 0 degrees and the lowermost point 180 degrees. A gravity-induced increase in pulvinus thickness was observable within 40 degrees of the vertical in coumarin-treated pulvini. In upper halves of coumarin-treated gravistimulated pulvini, cells in the inner cortex and inner epidermis had increased radial widths, relative to untreated gravistimulated pulvini. In lower halves of coumarin-treated pulvini, cells in the central and outer cortex and in the outer epidermis showed the greatest increase in radial width. Cells comprising the vascular bundles also increased in radial width, with this pattern following that of the central cortex. These results indicate (a) that all cell types are capable of showing a graviresponse, (b) that the graviresponse occurs in both the top and the bottom of the responding organ, and (c) that the magnitude of the response increases approximately linearly from the uppermost point to the lowermost. These results are also consistent with models of gravitropism that link the pattern and magnitude of the graviresponse to graviperception via statolith sedimentation.

  14. Laser backscattered from partially convex targets of large sizes in random media for E-wave polarization.

    PubMed

    El-Ocla, Hosam

    2006-08-01

    The characteristics of a radar cross section (RCS) of partially convex targets with large sizes up to five wavelengths in free space and random media are studied. The nature of the incident wave is an important factor in remote sensing and radar detection applications. I investigate the effects of beam wave incidence on the performance of RCS, drawing on the method I used in a previous study on plane-wave incidence. A beam wave can be considered a plane wave if the target size is smaller than the beam width. Therefore, to have a beam wave with a limited spot on the target, the target size should be larger than the beam width (assuming E-wave incidence wave polarization. The effects of the target configuration, random medium parameters, and the beam width on the laser RCS and the enhancement in the radar cross section are numerically analyzed, resulting in the possibility of having some sort of control over radar detection using beam wave incidence.

  15. Probing the top-quark width using the charge identification of b jets

    DOE PAGES

    Giardino, Pier Paolo; Zhang, Cen

    2017-07-18

    We propose a new method for measuring the top-quark width based on the on-/off-shell ratio of b -charge asymmetry in pp → Wbj production at the LHC. The charge asymmetry removes virtually all backgrounds and related uncertainties, while remaining systematic and theoretical uncertainties can be taken under control by the ratio of cross sections. Limited only by statistical error, in an optimistic scenario, we find that our approach leads to good precision at high integrated luminosity, at a few hundred MeV assuming 300 – 3000 fb -1 at the LHC. The approach directly probes the total width, in such amore » way that model-dependence can be minimized. It is complementary to existing cross section measurements which always leave a degeneracy between the total rate and the branching ratio, and provides valuable information about the properties of the top quark. Here, the proposal opens up new opportunities for precision top measurements using a b-charge identification algorithm.« less

  16. Development of regional curves of bankfull-channel geometry and discharge for streams in the non-urban, Piedmont Physiographic Province, Pennsylvania and Maryland

    USGS Publications Warehouse

    Cinotto, Peter J.

    2003-01-01

    Stream-restoration projects utilizing natural stream designs frequently are based on the bankfull-channel characteristics of stream reaches that can accommodate streamflow and sediment transport without excessive erosion or deposition and lie within a watershed that has similar runoff characteristics. The bankfull channel at an ungaged impaired site or reference reach is identified by use of field indicators and is confirmed with tools such as regional curves. Channel dimensions were surveyed at 14 streamflow-measurement stations operated by the U.S. Geological Survey (USGS) in the Gettysburg-Newark Lowland Section, Piedmont Lowland Section, and the Piedmont Upland Section of the Piedmont Physiographic Province1 in Pennsylvania and Maryland. From the surveyed channel dimensions, regional curves were developed from regression analyses of the relations between drainage area and the cross-sectional area, mean depth, width, and streamflow of the bankfull channel at these sites. Bankfull cross-sectional area and bankfull discharge have the strongest relation to drainage area as evidenced by R2 values of 0.94 and 0.93, respectively. The relation between bankfull crosssectional area and drainage area has a p-value of less than 0.001; no p-value is presented for the relation between bankfull discharge and drainage area because of a non-normal residual distribution. The relation between bankfull width and drainage area has an R2 value of 0.80 and a p-value of less than 0.001 indicating a moderate linear relation between all stations. The relation between bankfull mean depth and drainage area, with an R2 value of 0.72 and a p-value of less than 0.001, also indicates a moderate linear relation between all stations. The concept of regional curves can be a valuable tool to support efforts in stream restoration. Practitioners of stream restoration need to recognize it as such and realize the limitations. The small number of USGS streamflow-measurement stations available for analysis is a major limiting factor in the strength of the results of this investigation, as is the inherent problem of directly associating streamflow-measurement station data to geomorphic analysis of a stream reach. Subjective selection criteria may have unnecessarily eliminated streamflow-measurement stations that could have been included in the regional curves and (or) added those that may belong within a different region. A bankfull discharge with a recurrence interval within the 1- to 2-year range commonly is used as a criterion for the confirmation of the bankfull stage at each streamflow-measurement station. Many researchers accept this range for recurrence interval of the bankfull discharge; however, literature provides contradictory evidence.

  17. Electron Raman scattering in a strained ZnO/MgZnO double quantum well

    NASA Astrophysics Data System (ADS)

    Mojab-abpardeh, M.; Karimi, M. J.

    2018-02-01

    In this work, the electron Raman scattering in a strained ZnO / MgZnO double quantum wells is studied. The energy eigenvalues and the wave functions are obtained using the transfer matrix method. The effects of Mg composition, well width and barrier width on the internal electric field in well and barrier layers are investigated. Then, the influences of these parameters on the differential cross-section of electron Raman scattering are studied. Results indicate that the position, magnitude and the number of the peaks depend on the Mg composition, well width and barrier width.

  18. Relation between Streamflow of Swiftcurrent Creek, Montana, and the Geometry of Passage for Bull Trout (Salvelinus confluentus)

    USGS Publications Warehouse

    Auble, Gregor T.; Holmquist-Johnson, Christopher L.; Mogen, Jim T.; Kaeding, Lynn R.; Bowen, Zachary H.

    2009-01-01

    Operation of Sherburne Dam in northcentral Montana has typically reduced winter streamflow in Swiftcurrent Creek downstream of the dam and resulted in passage limitations for bull trout (Salvelinus confluentus). We defined an empirical relation between discharge in Swiftcurrent Creek between Sherburne Dam and the downstream confluence with Boulder Creek and fish passage geometry by considering how the cross-sectional area of water changed as a function of discharge at a set of cross sections likely to limit fish passage. With a minimum passage window of 15 x 45 cm, passage at the cross sections increased strongly with discharge over the range of 1.2 to 24 cfs. Most cross sections did not satisfy the minimum criteria at 1.2 cfs, 25 percent had no passage at 12.7 cfs, whereas at 24 cfs all but one of 26 cross sections had some passage and 90 percent had more than 3 m of width satisfying the minimum criteria. Sensitivity analysis suggests that the overall results are not highly dependent on exact dimensions of the minimum passage window. Combining these results with estimates of natural streamflow in the study reach further suggests that natural streamflow provided adequate passage at some times in most months and locations in the study reach, although not for all individual days and locations. Limitations of our analysis include assumptions about minimum passage geometry, measurement error, limitations of the cross-sectional model we used to characterize passage, the relation of Sherburne Dam releases to streamflow in the downstream study reach in the presence of ephemeral accretions, and the relation of passage geometry as we have measured it to fish responses of movement, stranding, and mortality, especially in the presence of ice cover.

  19. Do suburban residents want to pay for wide streets? a survey on consumer preference and ability to afford towards wide street and on-street parking in American suburbia.

    DOT National Transportation Integrated Search

    2016-08-01

    All local governments in the U.S. set the street minimum width and cross-section design for local : neighborhood streets. Because local streets typically require no more than two traffic lanes (approx. 20 feet : wide), a minimum width of 26 feet or w...

  20. Assessment of the Airway Characteristics in Children with Cleft Lip and Palate using Cone Beam Computed Tomography

    PubMed Central

    Marwah, Nikhil

    2016-01-01

    ABSTRACT Objective: The aim of our study is to use cone beam computed tomography (CBCT) to assess the dimensional changes in the nasopharyngeal soft-tissue characteristics in children of Indian origin with repaired cleft lip and palate (CLP) and to compare the results with patients with ideal occlusion. Materials and methods: A sample of 20 children (10 girls, 10 boys) with repaired CLP was selected. Cone beam computed tomography scans were taken to measure the nasopharyngeal airway changes in terms of linear measurements and sagittal cross-sectional areas. Error analysis was performed to prevent systematic or random errors. Independent means t-tests and Pearson correlation analysis were used to evaluate sex differences and the correlations among the variables. Results: Nasopharyngeal soft-tissue characteristics were different in the control and the study groups. Subjects with repaired CLP had lesser lower aerial width, lower adenoidal width and lower airway width. The upper airway width was also significantly lesser. The retropalatal and the total airway area were significantly greater in the control group. Conclusion: The narrow pharyngeal airway in patients with CLP might result in functional impairment of breathing in patients. Further investigations are necessary to clarify the relationship between pharyngeal structure and airway function in patients with CLP. How to cite this article: Agarwal A, Marwah N. Assessment of the Airway Characteristics in Children with Cleft Lip and Palate using Cone Beam Computed Tomography. Int J Clin Pediatr Dent 2016;9(1):5-9. PMID:27274147

  1. Computer vision-based evaluation of pre- and postrigor changes in size and shape of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar) fillets during rigor mortis and ice storage: effects of perimortem handling stress.

    PubMed

    Misimi, E; Erikson, U; Digre, H; Skavhaug, A; Mathiassen, J R

    2008-03-01

    The present study describes the possibilities for using computer vision-based methods for the detection and monitoring of transient 2D and 3D changes in the geometry of a given product. The rigor contractions of unstressed and stressed fillets of Atlantic salmon (Salmo salar) and Atlantic cod (Gadus morhua) were used as a model system. Gradual changes in fillet shape and size (area, length, width, and roundness) were recorded for 7 and 3 d, respectively. Also, changes in fillet area and height (cross-section profiles) were tracked using a laser beam and a 3D digital camera. Another goal was to compare rigor developments of the 2 species of farmed fish, and whether perimortem stress affected the appearance of the fillets. Some significant changes in fillet size and shape were found (length, width, area, roundness, height) between unstressed and stressed fish during the course of rigor mortis as well as after ice storage (postrigor). However, the observed irreversible stress-related changes were small and would hardly mean anything for postrigor fish processors or consumers. The cod were less stressed (as defined by muscle biochemistry) than the salmon after the 2 species had been subjected to similar stress bouts. Consequently, the difference between the rigor courses of unstressed and stressed fish was more extreme in the case of salmon. However, the maximal whole fish rigor strength was judged to be about the same for both species. Moreover, the reductions in fillet area and length, as well as the increases in width, were basically of similar magnitude for both species. In fact, the increases in fillet roundness and cross-section height were larger for the cod. We conclude that the computer vision method can be used effectively for automated monitoring of changes in 2D and 3D shape and size of fish fillets during rigor mortis and ice storage. In addition, it can be used for grading of fillets according to uniformity in size and shape, as well as measurement of fillet yield measured in thickness. The methods are accurate, rapid, nondestructive, and contact-free and can therefore be regarded as suitable for industrial purposes.

  2. An analytic approach to optimize tidal turbine fields

    NASA Astrophysics Data System (ADS)

    Pelz, P.; Metzler, M.

    2013-12-01

    Motivated by global warming due to CO2-emission various technologies for harvesting of energy from renewable sources are developed. Hydrokinetic turbines get applied to surface watercourse or tidal flow to gain electrical energy. Since the available power for hydrokinetic turbines is proportional to the projected cross section area, fields of turbines are installed to scale shaft power. Each hydrokinetic turbine of a field can be considered as a disk actuator. In [1], the first author derives the optimal operation point for hydropower in an open-channel. The present paper concerns about a 0-dimensional model of a disk-actuator in an open-channel flow with bypass, as a special case of [1]. Based on the energy equation, the continuity equation and the momentum balance an analytical approach is made to calculate the coefficient of performance for hydrokinetic turbines with bypass flow as function of the turbine head and the ratio of turbine width to channel width.

  3. Optimization and Prediction of Angular Distortion and Weldment Characteristics of TIG Square Butt Joints

    NASA Astrophysics Data System (ADS)

    Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.

    2014-05-01

    Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.

  4. Total Hadron Cross Section, New Particles, and Muon Electron Events in e{sup +}e{sup -} Annihilation at SPEAR

    DOE R&D Accomplishments Database

    Richter, B.

    1976-01-01

    The review of total hadron electroproduction cross sections, the new states, and the muon--electron events includes large amount of information on hadron structure, nine states with width ranging from 10's of keV to many MeV, the principal decay modes and quantum numbers of some of the states, and limits on charm particle production. 13 references. (JFP)

  5. A COMBINATION OF PRELIMINARY ELECTROWEAK MEASUREMENTS AND CONSTRAINTS ONTHE STANDARD MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowson, Peter C.

    2002-09-12

    This note presents a combination of published and preliminary electroweak results from the four LEP collaborations and the SLD collaboration which were prepared for the 2001 summer conferences. Averages from Z resonance results are derived for hadronic and leptonic cross sections, the leptonic forward-backward asymmetries, the {tau} polarization asymmetries, the b{bar b} and c{bar c} partial widths and forward-backward asymmetries and the qq charge asymmetry. Above the Z resonance, averages are derived for di-fermion cross sections and forward-backward asymmetries, W-pair, Z-pair and single-W production cross section, electroweak gauge boson couplings, W mass and width and W decay branching ratios. Formore » the first time, total and differential cross sections for di-photon production are combined. The main changes with respect to the experimental results presented in summer 2000 are updates to the Z-pole heavy flavour results from SLD and LEP and to the W mass from LEP. The results are compared with precise electroweak measurements from other experiments. Using a new evaluation of the hadronic vacuum polarization, the parameters of the Standard Model are evaluated, first using the combined LEP electroweak measurements, and then using the full set of electroweak results.« less

  6. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  7. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  8. Regional Relations in Bankfull Channel Characteristics determined from flow measurements at selected stream-gaging stations in West Virginia, 1911-2002

    USGS Publications Warehouse

    Messinger, Terence; Wiley, Jeffrey B.

    2004-01-01

    Three bankfull channel characteristics?cross-sectional area, width, and depth?were significantly correlated with drainage area in regression equations developed for two regions in West Virginia. Channel characteristics were determined from analysis of flow measurements made at 74 U.S. Geological Survey stream-gaging stations at flows between 0.5 and 5.0 times bankfull flow between 1911 and 2002. Graphical and regression analysis were used to delineate an 'Eastern Region' and a 'Western Region,' which were separated by the boundary between the Appalachian Plateaus and Valley and Ridge Physiographic Provinces. Streams that drained parts of both provinces had channel characteristics typical of the Eastern Region, and were grouped with it. Standard error for the six regression equations, three for each region, ranged between 8.7 and 16 percent. Cross-sectional area and depth were greater relative to drainage area for the Western Region than they were for the Eastern Region. Regression equations were defined for streams draining between 46.5 and 1,619 square miles for the Eastern Region, and between 2.78 and 1,354 square miles for the Western Region. Stream-gaging stations with two or more cross sections where flow had been measured at flows between 0.5 and 5.0 times the 1.5-year flow showed poor replication of channel characteristics compared to the 95-percent confidence intervals of the regression, suggesting that within-reach variability for the stream-gaging stations may be substantial. A disproportionate number of the selected stream-gaging stations were on large (drainage area greater than 100 square miles) streams in the central highlands of West Virginia, and only one stream-gaging station that met data-quality criteria was available to represent the region within about 50 miles of the Ohio River north of Parkersburg, West Virginia. Many of the cross sections were at bridges, which can change channel shape. Although the data discussed in this report may not be representative of channelcharacteristics on many or most streams, the regional equations in this report provide useful information for field identification of bankfull indicators.

  9. Micropatterning of TiO2 thin films by MOCVD and study of their growth tendency.

    PubMed

    Hwang, Ki-Hwan; Kang, Byung-Chang; Jung, Duk Young; Kim, Youn Jea; Boo, Jin-Hyo

    2015-03-23

    In this work, we studied the growth tendency of TiO2 thin films deposited on a narrow-stripe area (<10 μm). TiO2 thin films were selectively deposited on OTS patterned Si(100) substrates by MOCVD. The experimental data showed that the film growth tendency was divided into two behaviors above and below a line patterning width of 4 μm. The relationship between the film thickness and the deposited area was obtained as a function of f(x) = a[1 - e((-bx))]c. To find the tendency of the deposition rate of the TiO2 thin films onto the various linewidth areas, the relationship between the thickness of the TiO2 thin film and deposited linewidth was also studied. The thickness of the deposited TiO2 films was measured from the alpha-step profile analyses and cross-sectional SEM images. At the same time, a computer simulation was carried out to reveal the relationship between the TiO2 film thickness and deposited line width. The theoretical results suggest that the mass (velocity) flux in flow direction is directly affected to the film thickness.

  10. Three-dimensional simulation of rivulet and film flows over an inclined plate: Effects of solvent properties and contact angle

    DOE PAGES

    Singh, Rajesh K.; Galvin, Janine E.; Sun, Xin

    2015-12-10

    We numerically investigated the film flow down an inclined plate using the volume of fluid (VOF) method. The flow simulations have been systematically carried out for a wide range of parameters, such as inlet size, inclination angle, contact angle, flow rates and solvent properties (viscosity and surface tension). Based on the simulation results, scaling theory is proposed for both interfacial area and for film thickness in terms of the Kapitza number (Ka).The Kapitza number is advantageous because it depends only on solvent properties. The Kapitza number decreases with increased solvent viscosity and is fixed for a given fluid. Here, tomore » investigate the effects of solvent properties on interfacial area a small inlet cross-section was used. The interfacial area decreases with increased value of Ka. The time to reach pseudo-steady state of rivulet is also observed to increase with decreasing Ka. For a fixed flow rate, the inlet cross-section has marginal effect on the interfacial area; however, the developed width of the rivulet remains unchanged. In addition to inlet size, flow rate and solvent properties, the impact of contact angle on film thickness and interfacial area was also investigated. The contact angle has negligible effect for a fully wetted plate, but it significantly affects the interfacial area of the rivulet. Finally, a scaling theory for interfacial area in terms of the contact angle and Ka is presented.« less

  11. Generation and amplification of sub-THz radiation in a rare gases plasma formed by a two-color femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.

    2018-06-01

    A new approach to constructing the source of radiation in the sub-THz frequency range is discussed. It is based on the strong-field ionization of heavy rare gases with Ramsauer minimum in the transport cross-section by a two-color () femtosecond laser pulse. Then a four-photon nonlinear process ( are the frequencies from the spectral width of the pulse with frequency ω, and is the frequency from the spectral width of the second harmonic 2ω) with a transition to the initial state results in a low-frequency spontaneous emission that can be amplified in the strongly nonequilibrium laser plasma if the position of the photoelectron peaks is located in the region of growing energy transport cross-section.

  12. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.

    PubMed

    Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T

    2011-08-15

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics

    PubMed Central

    Kocaoglu, Omer P.; Cense, Barry; Jonnal, Ravi S.; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T.

    2011-01-01

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3 μm3 resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29–62yrs). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a seven month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30–50μm, thickness: 10–15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30–45μm, thickness: 20–40μm). Width and thickness RNFB measurements taken seven months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were −0.1±4.0 μm (width) and 0.3±1.5 μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. PMID:21722662

  14. Theoretical studies of dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1985-01-01

    The calculation of dissociative recombination rates and cross sections over a wide temperature range by theoretical quantum chemical techniques is described. Model calculations on electron capture by diatomic ions are reported which illustrate the dependence of the rates and cross sections on electron energy, electron temperature, and vibrational temperature for three model crossings of neutral and ionic potential curves. It is shown that cross sections for recombination to the lowest vibrational level of the ion can vary by several orders of magnitude depending upon the position of the neutral and ionic potential curve crossing within the turning points of the v = 1 vibrational level. A new approach for calculating electron capture widths is reported. Ab initio calculations are described for recombination of O2(+) leading to excited O atoms.

  15. Sex- and age-related differences in mid-thigh composition and muscle quality determined by computed tomography in middle-aged and elderly Japanese.

    PubMed

    Kasai, Takehiro; Ishiguro, Naoki; Matsui, Yasumoto; Harada, Atsushi; Takemura, Marie; Yuki, Atsumu; Kato, Yuki; Otsuka, Rei; Ando, Fujiko; Shimokata, Hiroshi

    2015-06-01

    Sex- and age-related differences in mid-thigh composition and muscle quality remain unclear. The present study aimed to clarify these differences using computed tomography in middle-aged and elderly Japanese. A total of 2310 participants (age 40-89 years), who were randomly selected from the local residents, underwent computed tomography examination of the right mid-thigh. Thigh circumference and cross-sectional areas of the thigh, muscle, quadriceps, non-quadriceps, fat, and bone were measured. Knee extension strength and muscle quality index (knee extension strength/quadriceps cross-sectional area) were also assessed. Sex- and age-related differences in these indices were analyzed. The thigh cross-sectional area in men and women decreased by 0.6% and 0.5%/year, respectively, because of a decrease in muscle cross-sectional area (men 75.2%, women 40.6%), fat cross-sectional area (men 24.4%, women 59.6%) and bone cross-sectional area (men 0.5%, women -0.2%). Muscle cross-sectional area in men and women decreased by 0.6% and 0.4%/year, respectively, because of a decrease in quadriceps cross-sectional area (men 65.6%, women 81.6%) and non-quadriceps cross-sectional area (men 34.4%, women 18.4%). Muscle quality in men and women decreased by 0.4% and 0.3%/year, respectively. Thigh cross-sectional area decreased with age mainly because of a decrease in muscle cross-sectional area in men and fat cross-sectional area in women. The rate of decrease in muscle cross-sectional area was 1.5-fold higher in men than in women. Muscle cross-sectional area decreased with age mainly because of a decrease in quadriceps cross-sectional area, especially in women. Decrease in muscle quality with age was similar in both sexes. © 2014 Japan Geriatrics Society.

  16. Production and cross-sectional characterization of aligned co-electrospun hollow microfibrous bulk assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Feng-Lei; The School of Materials, The University of Manchester, Manchester M13 9PL; CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester

    2015-11-15

    The development of co-electrospun (co-ES) hollow microfibrous assemblies of an appreciable thickness is critical for many practical applications, including filtration membranes and tissue-mimicking scaffolds. In this study, thick uniaxially aligned hollow microfibrous assemblies forming fiber bundles and strips were prepared by co-ES of polycaprolactone (PCL) and polyethylene oxide (PEO) as shell and core materials, respectively. Hollow microfiber bundles were deposited on a fixed rotating disc, which resulted in non-controllable cross-sectional shapes on a macroscopic scale. In comparison, fiber strips were produced with tuneable thickness and width by additionally employing an x–y translation stage in co-ES. Scanning electron microscopy (SEM) imagesmore » of cross-sections of fiber assemblies were analyzed to investigate the effects of production time (from 0.5 h to 12 h), core flow rate (from 0.8 mL/h to 2.0 mL/h) and/or translation speed (from 0.2 mm/s to 5 mm/s) on the pores and porosity. We observed significant changes in pore size and shape with core flow rate but the influence of production time varied; five strips produced under the same conditions had reasonably good size and porosity reproducibility; pore sizes didn't vary significantly from strip bottom to surface, although the porosity gradually decreased and then returned to the initial level. - Highlights: • Hollow microfibrous assemblies based on co-electrospinning are demonstrated. • The thickness and width of co-electrospun strips were controllable. • Cross-sections of fibres had non-normally distributed pore sizes and shapes. • Cross-sections were significantly influenced by production time and flow rate. • Co-electrospun strips had reasonably good reproducible cross-sections.« less

  17. High-resolution imaging of retinal nerve fiber bundles in glaucoma using adaptive optics scanning laser ophthalmoscopy.

    PubMed

    Takayama, Kohei; Ooto, Sotaro; Hangai, Masanori; Ueda-Arakawa, Naoko; Yoshida, Sachiko; Akagi, Tadamichi; Ikeda, Hanako Ohashi; Nonaka, Atsushi; Hanebuchi, Masaaki; Inoue, Takashi; Yoshimura, Nagahisa

    2013-05-01

    To detect pathologic changes in retinal nerve fiber bundles in glaucomatous eyes seen on images obtained by adaptive optics (AO) scanning laser ophthalmoscopy (AO SLO). Prospective cross-sectional study. Twenty-eight eyes of 28 patients with open-angle glaucoma and 21 normal eyes of 21 volunteer subjects underwent a full ophthalmologic examination, visual field testing using a Humphrey Field Analyzer, fundus photography, red-free SLO imaging, spectral-domain optical coherence tomography, and imaging with an original prototype AO SLO system. The AO SLO images showed many hyperreflective bundles suggesting nerve fiber bundles. In glaucomatous eyes, the nerve fiber bundles were narrower than in normal eyes, and the nerve fiber layer thickness was correlated with the nerve fiber bundle widths on AO SLO (P < .001). In the nerve fiber layer defect area on fundus photography, the nerve fiber bundles on AO SLO were narrower compared with those in normal eyes (P < .001). At 60 degrees on the inferior temporal side of the optic disc, the nerve fiber bundle width was significantly lower, even in areas without nerve fiber layer defect, in eyes with glaucomatous eyes compared with normal eyes (P = .026). The mean deviations of each cluster in visual field testing were correlated with the corresponding nerve fiber bundle widths (P = .017). AO SLO images showed reduced nerve fiber bundle widths both in clinically normal and abnormal areas of glaucomatous eyes, and these abnormalities were associated with visual field defects, suggesting that AO SLO may be useful for detecting early nerve fiber bundle abnormalities associated with loss of visual function. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. L X-ray fluorescence cross sections of some rare earth elements ( Z = 62, 64, 66, 68 and 70) at 17.8, 22.6 and 25.8 keV

    NASA Astrophysics Data System (ADS)

    Mandal, A. C.; Santra, S.; Mitra, D.; Sarkar, M.; Bhattacharya, D.

    2005-06-01

    L X-ray fluorescence cross sections of the elements with Z = 62, 64, 66, 68 and 70 have been measured at 17.8, 22.6 and 25.8 keV using an X-ray tube and secondary exciters of Mo, Ag and Sn. The measured cross sections have been compared with the theoretical predictions and with the data of others. Theoretical values calculated using photoionisation cross sections from Scofield [Lawrence Livermore Laboratory, UCRL-51326, 1973], fluorescence yields and Coster-Kronig transition probabilities from Puri et al. [X-ray Spectrom. 22 (1993) 358] and radiative widths from Campbell and Wang [At. Data Nucl. Data Tables 43 (1989) 281] show good agreement with our data. Except two sets of data on Lγ cross sections, all the data of other groups agree well with those of ours.

  19. Statistical Features of the Thermal Neutron Capture Cross Sections

    DOE PAGES

    Hussein, M. S.; Carlson, B. V.; Kerman, A. K.

    2016-02-01

    In this paper, we discuss the existence of huge thermal neutron capture cross sections in several nuclei. The values of the cross sections are several orders of magnitude bigger than expected at these very low energies. We lend support to the idea that this phenomenon is random in nature and is similar to what we have learned from the study of parity violation in the actinide region. The idea of statistical doorways is advanced as a unified concept in the delineation of large numbers in the nuclear world. The average number of maxima per unit mass, < n A >more » in the capture cross section is calculated and related to the underlying cross section correlation function and found to be < n A > = 3/(π√2γ A), where γ A is a characteristic mass correlation width which designates the degree of remnant coherence in the system. Finally, we trace this coherence to nucleosynthesis which produced the nuclei whose neutron capture cross sections are considered here.« less

  20. Statistical Features of the Thermal Neutron Capture Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussein, M. S.; Carlson, B. V.; Kerman, A. K.

    In this paper, we discuss the existence of huge thermal neutron capture cross sections in several nuclei. The values of the cross sections are several orders of magnitude bigger than expected at these very low energies. We lend support to the idea that this phenomenon is random in nature and is similar to what we have learned from the study of parity violation in the actinide region. The idea of statistical doorways is advanced as a unified concept in the delineation of large numbers in the nuclear world. The average number of maxima per unit mass, < n A >more » in the capture cross section is calculated and related to the underlying cross section correlation function and found to be < n A > = 3/(π√2γ A), where γ A is a characteristic mass correlation width which designates the degree of remnant coherence in the system. Finally, we trace this coherence to nucleosynthesis which produced the nuclei whose neutron capture cross sections are considered here.« less

  1. STED microscopy visualizes energy deposition of single ions in a solid-state detector beyond diffraction limit

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Henrich, M.; Jäkel, O.; Engelhardt, J.; Abdollahi, A.; Greilich, S.

    2017-05-01

    Fluorescent nuclear track detectors (FNTDs) allow for visualization of single-particle traversal in clinical ion beams. The point spread function of the confocal readout has so far hindered a more detailed characterization of the track spots—the ion’s characteristic signature left in the FNTD. Here we report on the readout of the FNTD by optical nanoscopy, namely stimulated emission depletion microscopy. It was firstly possible to visualize the track spots of carbon ions and protons beyond the diffraction limit of conventional light microscopy with a resolving power of approximately 80 nm (confocal: 320 nm). A clear discrimination of the spatial width, defined by the full width half maximum of track spots from particles (proton and carbon ions), with a linear energy transfer (LET) ranging from approximately 2-1016 keV µm-1 was possible. Results suggest that the width depends on LET but not on particle charge within the uncertainties. A discrimination of particle type by width thus does not seem possible (as well as with confocal microscopy). The increased resolution, however, could allow for refined determination of the cross-sectional area facing substantial energy deposition. This work could pave the way towards development of optical nanoscopy-based analysis of radiation-induced cellular response using cell-fluorescent ion track hybrid detectors.

  2. Superconductor-insulator transition in long MoGe nanowires.

    PubMed

    Kim, Hyunjeong; Jamali, Shirin; Rogachev, A

    2012-07-13

    The properties of one-dimensional superconducting wires depend on physical processes with different characteristic lengths. To identify the process dominant in the critical regime we have studied the transport properties of very narrow (9-20 nm) MoGe wires fabricated by advanced electron-beam lithography in a wide range of lengths, 1-25  μm. We observed that the wires undergo a superconductor-insulator transition (SIT) that is controlled by cross sectional area of a wire and possibly also by the width-to-thickness ratio. The mean-field critical temperature decreases exponentially with the inverse of the wire cross section. We observed that a qualitatively similar superconductor-insulator transition can be induced by an external magnetic field. Our results are not consistent with any currently known theory of the SIT. Some long superconducting MoGe nanowires can be identified as localized superconductors; namely, in these wires the one-electron localization length is much smaller than the length of a wire.

  3. Quantifying gully erosion contribution from morphodynamic analysis of historical aerial photographs in a large catchment SW Spain

    NASA Astrophysics Data System (ADS)

    Hayas, Antonio; Giráldez, Juan V.; Laguna, Ana; Peña, Peña; Vanwalleghem, Tom

    2015-04-01

    Gully erosion is widely recognized as an important erosion process and source of sediment, especially in Mediterranean basins. Recent advances in monitoring techniques, such as ground-based LiDAR, drone-bounded cameras or photoreconstruction, allow quantifying gully erosion rates with unprecedented accuracy. However, many studies only focus on gully growth during a short period. In agricultural areas, farmers frequently erase gullies artificially. Over longer time scales, this results in an important dynamic of gully growth and infilling. Also, given the significant temporal variability of precipitation, land use and the proper gully erosion processes, gully growth is non-linear over time. This study therefore aims at analyzing gully morphodynamics over a long time scale (1957-2011) in a large catchment in order to quantify gully erosion processes and its contribution to overall sediment dynamics. The 20 km2 study area is located in SW Spain. The extension of the gully network was digitized by photographic interpretation based on aerial photographs from 1957, 1981, 1985, 1999, 2002, 2005, 2007, 2009 and 2011. Gully width was measured at representative control points for each of these years. During this period, the dominant land use changed considerably from herbaceous crops to olive orchards. A field campaign was conducted in 2014 to measure current gully width and depth. Total gully volume and uncertainty was determined by Monte Carlo-based simulations of gully cross-sectional area for unmeasured sections. The extension of the gully network both increased and decreased in the study period. Gully density varied between 1.93 km km-2 in 1957, with a minimum of 1.37 km km-2 in 1981 and a maximum of 5.40 km km-2 in 2011. Gully width estimated in selected points from the orthophotos range between 0.9 m and 59.2 m, and showed a good lognormal fit. Field campaigns results in a collection of cross-section measures with gullies widths between 1.87 and 28.5 m and depths from 0.55 m to 5.02 m. A gully width-depth relation was established according to a logarithm expression with an overall r2 of 0.82. As no historical information on gully depth was available, this relation was assumed to be constant over time. Monte Carlo simulation was then used to generate width and depth values for the different gully segments, based on different lognormal distributions fitted to the estimated gully widths from 1957-2011 and on the width-depth regression. The calculated mean gully volume between 1953 and 2011 varied between 145.103 m3 and 2454.103 m3. The contribution of gully erosion to the overall sediment budget was found to be relatively stable between 1957-2008 with a mean value of 11.2 ton ha-1 year-1, while in the period 2008-2011 which includes frequent rainy days winter resulted in a mean value of 604 ton ha-1 year-1. Uncertainty estimates by Monte Carlo place the estimated contribution of gully erosion for this last period between 523-694 ton ha-1 year-1. The relation between gully erosion rates and driving factors such as land use change and rainfall was analysed in order to explain this variation. The high gully erosion rates of the period 2008-2011 could be linked to extreme rainfall events. This study has determined gully erosion rates with a high temporal resolution over several decades. The results show that gully erosion rates are highly variable and therefore that a simple interpolation between the start and end date would highly underestimate gully contribution during certain years, such as for example between 2005-2011. Overall, gully erosion is shown to be an important process of sediment generation in Mediterranean basins.

  4. Hydrologic, ecologic, and geomorphic responses of Brewery Creek to construction of a residential subdivision, Dane County, Wisconsin, 1999-2002

    USGS Publications Warehouse

    Selbig, William R.; Jopke, Peter L.; Marhshall, David W.; Sorge, Michael J.

    2004-01-01

    Other physical, biological, and ecological surveys including macroinvertebrates, fish, habitat, and geomorphology were done on segments of Brewery Creek affected by the study area. Macroinvertebrate sampling results (Hilsenhoff Biotic Index value, or HBI), on Brewery Creek ranged from 'very good' to 'good' water-quality with no appreciable differences during any phase of construction activity. Results for fish-community composition, however, were within the 'poor' range (Index of Biotic Integrity value, or IBI) during each year of testing. A general absence of intolerant species, with the exception of brown trout, reflects the low IBI values. Habitat values did not change significantly from preconstruction to postconstruction phases. Although installation of a double-celled culvert in Brewery Creek most likely altered the width-to-depth ratio in that reach, the overall habitat rating remained 'fair'. Fluvial geomorphology classifications including channel cross sections, bed- and bank-erosion surveys, and pebble counts did not indicate that stream geomorphic characteristics were altered by home-construction activity in the study area. Increases in fine-grained sediment at various cross sections were attributed to instream erosion processes, such as bank slumping, rather than increases in sediment delivery from the nearby construction site.

  5. Quantum-confinement effects on conduction band structure of rectangular cross-sectional GaAs nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, H., E-mail: tanaka@semicon.kuee.kyoto-u.ac.jp; Morioka, N.; Mori, S.

    2014-02-07

    The conduction band structure and electron effective mass of GaAs nanowires with various cross-sectional shapes and orientations were calculated by two methods, a tight-binding method and an effective mass equation taking the bulk full-band structure into account. The effective mass of nanowires increases as the cross-sectional size decreases, and this increase in effective mass depends on the orientations and substrate faces of nanowires. Among [001], [110], and [111]-oriented rectangular cross-sectional GaAs nanowires, [110]-oriented nanowires with wider width along the [001] direction showed the lightest effective mass. This dependence originates from the anisotropy of the Γ valley of bulk GaAs. Themore » relationship between effective mass and bulk band structure is discussed.« less

  6. Intrinsic polarization control in rectangular GaN nanowire lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Luk, Ting S.; ...

    2016-02-01

    In this study, we demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444kW/cm 2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent controlmore » over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.« less

  7. Trunk Muscle Size and Composition Assessment in Older Adults with Chronic Low Back Pain: An Intra-Examiner and Inter-Examiner Reliability Study.

    PubMed

    Sions, Jaclyn Megan; Smith, Andrew Craig; Hicks, Gregory Evan; Elliott, James Matthew

    2016-08-01

    To evaluate intra- and inter-examiner reliability for the assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area, i.e., total cross-sectional area minus intramuscular fat, from T1-weighted magnetic resonance images obtained in older adults with chronic low back pain. Reliability study. n = 13 (69.3 ± 8.2 years old) After lumbar magnetic resonance imaging, two examiners produced relative cross-sectional area measurements of multifidi, erector spinae, psoas, and quadratus lumborum by tracing regions of interest just inside fascial borders. Pixel-intensity summaries were used to determine muscle-to-fat infiltration indices; relative muscle cross-sectional area was calculated. Intraclass correlation coefficients were used to estimate intra- and inter-examiner reliability; standard error of measurement was calculated. Intra-examiner intraclass correlation coefficient point estimates for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area were excellent for multifidi and erector spinae across levels L2-L5 (ICC = 0.77-0.99). At L3, intra-examiner reliability was excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area for both psoas and quadratus lumborum (ICC = 0.81-0.99). Inter-examiner intraclass correlation coefficients ranged from poor to excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area. Assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area in older adults with chronic low back pain can be reliably determined by one examiner from T1-weighted images. Such assessments provide valuable information, as muscle-to-fat infiltration indices and relative muscle cross-sectional area indicate that a substantial amount of relative cross-sectional area may be magnetic resonance-visible intramuscular fat in older adults with chronic low back pain. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Current-induced domain wall motion in permalloy nanowires with a rectangular cross-section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, J. H.; Miao, B. F.; Sun, L.

    2011-11-01

    We performed micromagnetic simulations of the current-induced domain wall motion in permalloy nanowires with rectangular cross-section. In the absence of the nonadiabatic spin-transfer term, a threshold current, J{sub c} is required to drive the domain wall moving continuously. We find that J{sub c} is proportional to the maximum cross product of the demagnetization field and magnetization orientation of the domain wall and the domain wall width. With varying both the wire thickness and width, a minimum threshold current in the order of 10{sup 6} A/cm{sup 2} is obtained when the thickness is equivalent to the wire width. With the nonadiabaticmore » spin-transfer term, the calculated domain wall velocity {nu} equals to the adiabatic spin transfer velocity u when the current is far above the Walker limit J{sub w}. Below J{sub w}, {nu}=({beta}/{alpha})u, where {beta} is the nonadiabatic parameter and {alpha} is the damping factor. For different {beta}, we find the Walker limit can be scaled as J{sub w}=({alpha}/{beta}-{alpha})J{sub c}. Our simulations agree well with the one dimensional analytical calculation, suggesting the findings are the general behaviors of the systems in this particular geometry.« less

  9. Investigation of charge stripping scheme for uranium ions at 1-20 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Kuboki, Hironori; Harada, Hiroyuki; Saha, Pranab K.

    2018-05-01

    We investigated a possibility to obtain charge distributions of uranium ions under the conditions to meet the requirements of the booster synchrotron proposed for heavy ion acceleration at J-PARC. The charge distribution is expected to have a width as narrow as possible to realize multi-charge acceleration. The main candidate of stripping material is a carbon foil because we can obtain narrower distributions than gas stripper and a lot of data is available. Besides that, the thickness of the stripping material should be less than 142 μg cm-2 because the energy loss in the stripping material would be compensated by an auxiliary accelerating cavity in the synchrotron ring. We studied the impact energy with which the charge distribution attains equilibrium within this thickness and has the narrowest width. The width is estimated over 1-20 MeV/nucleon by the calculation using the ionization and electron capture cross sections. Scaling factors are introduced to reproduce the experimental data and are determined to be 2.0 and 0.08 for the cross sections of ionization and electron capture, respectively. We concluded that the narrowest width can be obtained at 5.5 MeV/nucleon with a 109-μg cm-2-thick carbon foil.

  10. Hydraulic-Geometry Relations for Rivers in Coastal and Central Maine

    USGS Publications Warehouse

    Dudley, Robert W.

    2004-01-01

    Hydraulic-geometry relations (curves) were derived for 15 sites on 12 rivers in coastal and central Maine on the basis of site-specific (at-a-station) hydraulic-geometry relations and hydraulic models. At-a-station hydraulic-geometry curves, expressed as well-established power functions, describe the relations between channel geometry, velocity, and flow at a given point on a river. The derived at-a-station hydraulic-geometry curves indicate that, on average, a given increase in flow at a given river cross section in the study area will be nearly equally conveyed by increases in velocity and channel cross-sectional area. Regional curves describing the bankfull streamflow and associated channel geometry as functions of drainage area were derived for use in stream-channel assessment and restoration projects specific to coastal and central Maine. Regional hydraulic-geometry curves were derived by combining hydraulic-geometry information for 15 river cross sections using bankfull flow as the common reference streamflow. The exponents of the derived regional hydraulic-geometry relations indicate that, in the downstream direction, most of the conveyance of increasing contribution of flow is accommodated by an increase in cross-sectional area?with about 50 percent of the increase in flow accommodated by an increase in channel width, and 32 percent by an increase in depth. The remaining 18 percent is accommodated by an increase in streamflow velocity. On an annual-peak-series basis, results of this study indicate that the occurrence of bankfull streamflow for rivers in Maine is more frequent than the 1.5-year streamflow. On a flow-duration basis, bankfull streamflow for rivers in coastal and central Maine is equaled or exceeded approximately 8.1 percent of the time on mean?or about 30 days a year. Bankfull streamflow is roughly three times that of the mean annual streamflow for the sites investigated in this study. Regional climate, snowmelt hydrology, and glacial geology may play important roles in dictating the magnitude and frequency of occurrence of bankfull streamflows observed for rivers in coastal and central Maine.

  11. HIGH PRECISION K-SHELL PHOTOABSORPTION CROSS SECTIONS FOR ATOMIC OXYGEN: EXPERIMENT AND THEORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, B. M.; Ballance, C. P.; Bowen, K. P.

    2013-07-01

    Photoabsorption of atomic oxygen in the energy region below the 1s {sup -1} threshold in X-ray spectroscopy from Chandra and XMM-Newton is observed in a variety of X-ray binary spectra. Photoabsorption cross sections determined from an R-matrix method with pseudo-states and new, high precision measurements from the Advanced Light Source (ALS) are presented. High-resolution spectroscopy with E/{Delta}E Almost-Equal-To 4250 {+-} 400 was obtained for photon energies from 520 eV to 555 eV at an energy resolution of 124 {+-} 12 meV FWHM. K-shell photoabsorption cross section measurements were made with a re-analysis of previous experimental data on atomic oxygen atmore » the ALS. Natural line widths {Gamma} are extracted for the 1s {sup -1}2s {sup 2}2p {sup 4}({sup 4} P)np {sup 3} P Degree-Sign and 1s {sup -1}2s {sup 2}2p {sup 4}({sup 2} P)np {sup 3} P Degree-Sign Rydberg resonances series and compared with theoretical predictions. Accurate cross sections and line widths are obtained for applications in X-ray astronomy. Excellent agreement between theory and the ALS measurements is shown which will have profound implications for the modeling of X-ray spectra and spectral diagnostics.« less

  12. Determination of γ -ray widths in 15N using nuclear resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Szücs, T.; Bemmerer, D.; Caciolli, A.; Fülöp, Zs.; Massarczyk, R.; Michelagnoli, C.; Reinhardt, T. P.; Schwengner, R.; Takács, M. P.; Ur, C. A.; Wagner, A.; Wagner, L.

    2015-07-01

    Background: The stable nucleus 15N is the mirror of 15O, the bottleneck in the hydrogen burning CNO cycle. Most of the 15N level widths below the proton emission threshold are known from just one nuclear resonance fluorescence (NRF) measurement, with limited precision in some cases. A recent experiment with the AGATA demonstrator array determined level lifetimes using the Doppler shift attenuation method in 15O. As a reference and for testing the method, level lifetimes in 15N have also been determined in the same experiment. Purpose: The latest compilation of 15N level properties dates back to 1991. The limited precision in some cases in the compilation calls for a new measurement to enable a comparison to the AGATA demonstrator data. The widths of several 15N levels have been studied with the NRF method. Method: The solid nitrogen compounds enriched in 15N have been irradiated with bremsstrahlung. The γ rays following the deexcitation of the excited nuclear levels were detected with four high-purity germanium detectors. Results: Integrated photon-scattering cross sections of 10 levels below the proton emission threshold have been measured. Partial γ -ray widths of ground-state transitions were deduced and compared to the literature. The photon-scattering cross sections of two levels above the proton emission threshold, but still below other particle emission energies have also been measured, and proton resonance strengths and proton widths were deduced. Conclusions: Gamma and proton widths consistent with the literature values were obtained, but with greatly improved precision.

  13. Negative Magnetoresistance in Amorphous Indium Oxide Wires

    PubMed Central

    Mitra, Sreemanta; Tewari, Girish C; Mahalu, Diana; Shahar, Dan

    2016-01-01

    We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions. PMID:27876859

  14. Tailoring the dispersion behavior of silicon nanophotonic slot waveguides.

    PubMed

    Mas, Sara; Caraquitena, José; Galán, José V; Sanchis, Pablo; Martí, Javier

    2010-09-27

    We investigate the chromatic dispersion properties of silicon channel slot waveguides in a broad spectral region centered at ~1.5 μm. The variation of the dispersion profile as a function of the slot fill factor, i.e., the ratio between the slot and waveguide widths, is analyzed. Symmetric as well as asymmetric geometries are considered. In general, two different dispersion regimes are identified. Furthermore, our analysis shows that the zero and/or the peak dispersion wavelengths can be tailored by a careful control of the geometrical waveguide parameters including the cross-sectional area, the slot fill factor, and the slot asymmetry degree.

  15. Search for narrow-width tt(bar) resonances in pp(bar) collisons at sqrt(s)=1.8TeV

    NASA Astrophysics Data System (ADS)

    Jain, Supriya

    2004-03-01

    We present a preliminary result on a search for narrow-width resonances that decay into ttbar pairs using 130 pb^{-1} of lepton plus jets data in ppbar collisions at center of mass energy = 1.8 TeV. No significant deviation from Standard Model prediction is observed. 95% C.L. upper limits on the production cross section of the narrow-width resonance times its branching fraction to ttbar are presented for different resonance masses, M_X. We also exclude the existence of a leptophobic topcolor particle, X, with M_X < 560 GeV/c^2 for a width \\Gamma_X = 0.012 M_X.

  16. Downstream Variation of Bankfull Geometry for the Continental and Overseas Hydro-Eco-Regions of France.

    NASA Astrophysics Data System (ADS)

    Tamisier, V.; Gob, F.; Thommeret, N.; Bilodeau, C.; Raufaste, S.; Kreutzenberger, K.

    2016-12-01

    Bankfull channel geometry is a fundamental and widely used concept in hydrology, fluvial geomorphology, and ecosystem studies. We develop and compare downstream hydraulic geometry relationships for bankfull channel width (w) and depth (d) as a function of drainage area A, respectively w=aAb (DHGwA) and d=cAf (DHGdA), for the 12 of the 21 French Hydro-Eco-Regions which are defined in terms of climate, topography and geology. The models have been built from a database (CARHYCE) that includes 1500 river reaches for which a unique standardized field protocol was used. River reach morphology was described based on a survey of 15 cross-sections spaced at intervals of one bankfull width. Sediment size and riverine vegetation were also measured and characterized. This database covers a wide range of French river diversity in terms of geomorphic types and anthropogenic impacts. Sampled stream reaches range from 1 to 70 000 km² in drainage area, 1 to 320 m in bankfull width and 0.3 to 8.5 m in bankfull depth. Approximately 500 poorly disturbed reaches were identified from several indices of disturbance at reach and basin scale (large dams, urbanization, channelization, etc.). For these reference sites, drainage areas display strong power-law relationships with both the width and the depth in most Hydro-Eco-Regions, with coefficients of determination (R²) ranging from 0.73 to 0.91 for DHGwA and from 0.57 to 0.77 for DHGdA (p-value < 0.001, t-test). The DHG exponent b and f ranges from 0.36 to 0.5 for DHGwA and from 0.21 to 0.3 for DHGdA. This implies that widths increase more strongly than depths with increasing drainage areas. The relative position of the models are compared to the national model and discussed with regard to the geologic, climatic and topographic characteristics. In Hydro-Eco-Regions which exhibit poor DHG relationships, the role of spatial variability in natural controls (climate, topography and geology) is discussed. Finally, reaches identified as potentially disturbed by human activities are compared to the reference models.

  17. Validation of annual growth rings in freshwater mussel shells using cross dating .Can

    Treesearch

    Andrew L. Rypel; Wendell R. Haag; Robert H. Findlay

    2009-01-01

    We examined the usefulness of dendrochronological cross-dating methods for studying long-term, interannual growth patterns in freshwater mussels, including validation of annual shell ring formation. Using 13 species from three rivers, we measured increment widths between putative annual rings on shell thin sections and then removed age-related variation by...

  18. Anomalous dark growth rings in black cherry

    Treesearch

    Robert P. Long; David W. Trimpey; Michael C. Wiemann; Susan L. Stout

    2012-01-01

    Anomalous dark growth rings have been observed in black cherry (Prunus serotina) sawlogs from northwestern Pennsylvania making the logs unsuitable for veneer products. Thirty-six cross sections with dark rings, each traceable to one of ten stands, were obtained from a local mill and sections were dated and annual ring widths were measured. One or...

  19. Real-time line-width measurements: a new feature for reticle inspection systems

    NASA Astrophysics Data System (ADS)

    Eran, Yair; Greenberg, Gad; Joseph, Amnon; Lustig, Cornel; Mizrahi, Eyal

    1997-07-01

    The significance of line width control in mask production has become greater with the lessening of defect size. There are two conventional methods used for controlling line widths dimensions which employed in the manufacturing of masks for sub micron devices. These two methods are the critical dimensions (CD) measurement and the detection of edge defects. Achieving reliable and accurate control of line width errors is one of the most challenging tasks in mask production. Neither of the two methods cited above (namely CD measurement and the detection of edge defects) guarantees the detection of line width errors with good sensitivity over the whole mask area. This stems from the fact that CD measurement provides only statistical data on the mask features whereas applying edge defect detection method checks defects on each edge by itself, and does not supply information on the combined result of error detection on two adjacent edges. For example, a combination of a small edge defect together with a CD non- uniformity which are both within the allowed tolerance, may yield a significant line width error, which will not be detected using the conventional methods (see figure 1). A new approach for the detection of line width errors which overcomes this difficulty is presented. Based on this approach, a new sensitive line width error detector was developed and added to Orbot's RT-8000 die-to-database reticle inspection system. This innovative detector operates continuously during the mask inspection process and scans (inspects) the entire area of the reticle for line width errors. The detection is based on a comparison of measured line width that are taken on both the design database and the scanned image of the reticle. In section 2, the motivation for developing this new detector is presented. The section covers an analysis of various defect types, which are difficult to detect using conventional edge detection methods or, alternatively, CD measurements. In section 3, the basic concept of the new approach is introduced together with a description of the new detector and its characteristics. In section 4, the calibration process that took place in order to achieve reliable and repeatable line width measurements is presented. The description of an experiments conducted in order to evaluate the sensitivity of the new detector is given in section 5, followed by a report of the results of this evaluation. The conclusions are presented in section 6.

  20. ''Reading'' the photoelectron {beta}-parameter spectrum in a resonance region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolmatov, V. K.; Guler, E.; Manson, S. T.

    2007-09-15

    The behavior of the dipole photoelectron angular distribution parameter {beta}{sub nl}({omega}) in the vicinity of autoionizing resonances is discussed. It is shown that from this behavior, surprisingly, many photoionization parameters that cannot be measured experimentally can be extracted. These are the energy positions and ordering of autoionizing resonance minima in the partial photoionization cross sections {sigma}{sub l+1} and {sigma}{sub l-1}, the energies at which these two cross sections intersect, and signs and magnitudes of the cos({delta}{sub l+1}-{delta}{sub l-1}) ({delta}{sub l{+-}}{sub 1} being the phase shifts of the dipole photoionization amplitudes D{sub l{+-}}{sub 1}, respectively) through the autoionizing resonance energy region.more » Based on this, a deeper interpretation of such effects as the width-narrowing, width-fluctuating, and q-reversal in the {beta}{sub nl} parameter spectrum in the autoionizing resonance energy region is given. As an example, calculated data for partial photoionization cross sections {sigma}{sub 3d{r_reversible}}{sub f} and {sigma}{sub 3d{r_reversible}}{sub p}, and {beta}{sub 3d} parameters for 3d photoelectrons from Cr{sup +} are presented.« less

  1. Multifractal detrended cross-correlation analysis in the MENA area

    NASA Astrophysics Data System (ADS)

    El Alaoui, Marwane; Benbachir, Saâd

    2013-12-01

    In this paper, we investigated multifractal cross-correlations qualitatively and quantitatively using a cross-correlation test and the Multifractal detrended cross-correlation analysis method (MF-DCCA) for markets in the MENA area. We used cross-correlation coefficients to measure the level of this correlation. The analysis concerns four stock market indices of Morocco, Tunisia, Egypt and Jordan. The countries chosen are signatory of the Agadir agreement concerning the establishment of a free trade area comprising Arab Mediterranean countries. We computed the bivariate generalized Hurst exponent, Rényi exponent and spectrum of singularity for each pair of indices to measure quantitatively the cross-correlations. By analyzing the results, we found the existence of multifractal cross-correlations between all of these markets. We compared the spectrum width of these indices; we also found which pair of indices has a strong multifractal cross-correlation.

  2. Compton Scattering Cross Sections in Strong Magnetic Fields: Advances for Neutron Star Applications

    NASA Astrophysics Data System (ADS)

    Ickes, Jesse; Gonthier, Peter L.; Eiles, Matthew; Baring, Matthew G.; Wadiasingh, Zorawar

    2014-08-01

    Various telescopes including RXTE, INTEGRAL, Suzaku and Fermi have detected steady non-thermal X-ray emission in the 10 ~ 200 keV band from strongly magnetic neutron stars known as magnetars. Magnetic inverse Compton scattering is believed to be a leading candidate for the production of this intense X-ray radiation. Generated by electrons possessing ultra-relativistic energies, this leads to attractive simplifications of the magnetic Compton cross section. We have recently addressed such a case by developing compact analytic expressions using correct spin-dependent widths acquired through the implementation of Sokolov & Ternov (ST) basis states, focusing specifically on ground state-to-ground state scattering. Such scattering in magnetar magnetospheres can cool electrons down to mildly-relativistic energies. Moreover, soft gamma-ray flaring in magnetars may well involve strong Comptonization in expanding clouds of mildly-relativistic pairs. These situations necessitate the development of more general magnetic scattering cross sections, where the incoming photons acquire substantial incident angles relative to the field in the rest frame of the electron, and the intermediate state can be excited to arbitrary Landau levels. Here, we highlight results from such a generalization using ST formalism. The cross sections treat the plethora of harmonic resonances associated with various cyclotron transitions between Landau states. Polarization dependence of the cross section for the four scattering modes is illustrated and compared with the non-relativistic Thompson cross section with classical widths. Results will find application to various neutron star problems, including computation of Eddington luminosities and polarization mode-switching rates in transient magnetar fireballs.We express our gratitude for the generous support of Michigan Space Grant Consortium, the National Science Foundation (grants AST-0607651, AST-1009725, AST-1009731 and PHY/DMR-1004811), and the NASA Astrophysics Theory Program through grants NNX06AI32G, NNX09AQ71G and NNX10AC59A.

  3. Quickbird Satellite in-orbit Modulation Transfer Function (MTF) Measurement Using Edge, Pulse and Impulse Methods for Summer 2003

    NASA Technical Reports Server (NTRS)

    Helder, Dennis; Choi, Taeyoung; Rangaswamy, Manjunath

    2005-01-01

    The spatial characteristics of an imaging system cannot be expressed by a single number or simple statement. However, the Modulation Transfer Function (MTF) is one approach to measure the spatial quality of an imaging system. Basically, MTF is the normalized spatial frequency response of an imaging system. The frequency response of the system can be evaluated by applying an impulse input. The resulting impulse response is termed the Point Spread function (PSF). This function is a measure of the amount of blurring present in the imaging system and is itself a useful measure of spatial quality. An underlying assumption is that the imaging system is linear and shift-independent. The Fourier transform of the PSF is called the Optical Transfer Function (OTF) and the normalized magnitude of the OTF is the MTF. In addition to using an impulse input, a knife-edge in technique has also been used in this project. The sharp edge exercises an imaging system at all spatial frequencies. The profile of an edge response from an imaging system is called an Edge Spread Function (ESF). Differentiation of the ESF results in a one-dimensional version of the Point Spread Function (PSF). Finally, MTF can be calculated through use of Fourier transform of the PSF as stated previously. Every image includes noise in some degree which makes MTF of PSF estimation more difficult. To avoid the noise effects, many MTF estimation approaches use smooth numerical models. Historically, Gaussian models and Fermi functions were applied to reduce the random noise in the output profiles. The pulse-input method was used to measure the MTF of the Landsat Thematic Mapper (TM) using 8th order even functions over the San Mateo Bridge in San Francisco, California. Because the bridge width was smaller than the 30-meter ground sample distance (GSD) of the TM, the Nyquist frequency was located before the first zero-crossing point of the sinc function from the Fourier transformation of the bridge pulse. To avoid the zero-crossing points in the frequency domain from a pulse, the pulse width should be less than the width of two pixels (or 2 GSD's), but the short extent of the pulse results in a poor signal-to-noise ratio. Similarly, for a high-resolution satellite imaging system such as Quickbird, the input pulse width was critical because of the zero crossing points and noise present in the background area. It is important, therefore, that the width of the input pulse be appropriately sized. Finally, the MTF was calculated by taking ratio between Fourier transform of output and Fourier transform of input. Regardless of whether the edge, pulse and impulse target method is used, the orientation of the targets is critical in order to obtain uniformly spaced sub-pixel data points. When the orientation is incorrect, sample data points tend to be located in clusters that result in poor reconstruction of the edge or pulse profiles. Thus, a compromise orientation must be selected so that all spectral bands can be accommodated. This report continues by outlining the objectives in Section 2, procedures followed in Section 3, descriptions of the field campaigns in Section 4, results in Section 5, and a brief summary in Section 6.

  4. The effects of road crossings on prairie stream habitat and function

    USGS Publications Warehouse

    Bouska, Wesley W.; Keane, Timothy; Paukert, Craig P.

    2010-01-01

    Improperly designed stream crossing structures may alter the form and function of stream ecosystems and habitat and prohibit the movement of aquatic organisms. Stream sections adjoining five concrete box culverts, five low-water crossings (concrete slabs vented by one or multiple culverts), and two large, single corrugated culvert vehicle crossings in eastern Kansas streams were compared to reference reaches using a geomorphologic survey and stream classification. Stream reaches were also compared upstream and downstream of crossings, and crossing measurements were used to determine which crossing design best mimicked the natural dimensions of the adjoining stream. Four of five low-water crossings, three of five box culverts, and one of two large, single corrugated pipe culverts changed classification from upstream to downstream of the crossings. Mean riffle spacing upstream at low-water crossings (8.6 bankfull widths) was double that of downstream reaches (mean 4.4 bankfull widths) but was similar upstream and downstream of box and corrugated pipe culverts. There also appeared to be greater deposition of fine sediments directly upstream of these designs. Box and corrugated culverts were more similar to natural streams than low-water crossings at transporting water, sediments, and debris during bankfull flows.

  5. Molecular processes in a high temperature shock layer

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1985-01-01

    The development of techniques for the calculation of electron capture widths, electronic wave functions, cross sections and rates needed for the description of the dissociative recombination (DR) of molecular ions with electrons were described. The cross sections and rates were calculated by using harmonic oscillator wave functions for the ion and a delta function approximation for the continuum vibrational wave function in the repulsive dissociative channel. In order to obtain DR cross sections of quantitative accuracy, a computer program which solves the one dimensional nuclear motion wave equation was revised to calculate the cross sections and rates. The program and the new results are described. Included is a discussion of large windows found in the dissociative recombination cross sections from excited ion vibrational levels. These windows have not been previously reported in the literature. The magnitude of the DR cross sections for several dissociative routes are sensitive to the location of the crossing of the neutral and ion potential curves. Studies of the effects of basis set and CI wave function size on vertical excitation energies are described. Preliminary studies on N2 and O2 using large scale wave functions are also reported.

  6. Investigation of flood routing by a dynamic wave model in trapezoidal channels

    NASA Astrophysics Data System (ADS)

    Sulistyono, B. A.; Wiryanto, L. H.

    2017-08-01

    The problems of flood wave propagation, in bodies of waters, cause by intense rains or breaking of control structures, represent a great challenge in the mathematical modeling processes. This research concerns about the development and application of a mathematical model based on the Saint Venant's equations, to study the behavior of the propagation of a flood wave in trapezoidal channels. In these equations, the momentum equation transforms to partial differential equation which has two parameters related to cross-sectional area and discharge of the channel. These new formulas have been solved by using an explicit finite difference scheme. In computation procedure, after computing the discharge from the momentum equation, the cross-sectional area will be obtained from the continuity equation for a given point of channel. To evaluate the behavior of the control variables, several scenarios for the main channel as well as for flood waves are considered and different simulations are performed. The simulations demonstrate that for the same bed width, the peak discharge in trapezoidal channel smaller than in rectangular one at a specific distance along the channel length and so, that roughness coefficient and bed slope of the channel play a strong game on the behavior of the flood wave propagation.

  7. Sonographic evaluation of the greater occipital nerve in unilateral occipital neuralgia.

    PubMed

    Cho, John Chin-Suk; Haun, Daniel W; Kettner, Norman W

    2012-01-01

    Occipital neuralgia is a headache that may result from greater occipital nerve entrapment. Entrapped peripheral nerves typically have an increase in cross-sectional area. The purpose of this study was to measure the cross-sectional area and circumference of symptomatic and asymptomatic greater occipital nerves in patients with unilateral occipital neuralgia and to correlate the greater occipital nerve cross-sectional area with headache severity, sex, and body mass index. Both symptomatic and contralateral asymptomatic greater occipital nerve cross-sectional areas and circumferences were measured by a single examiner using sonography in 17 patients. The Wilcoxon signed rank test and Spearman rank order correlation coefficient were used to analyze the data. Significant differences between the cross-sectional areas and circumferences of the symptomatic and asymptomatic greater occipital nerves were noted (P < .001). No difference existed in cross-sectional area (P = .40) or circumference (P = .10) measurements of the nerves between male and female patients. A significant correlation existed between the body mass index and symptomatic (r = 0.424; P = .045) and asymptomatic (r = 0.443; P = .037) cross-sectional areas. There was no correlation shown between the cross-sectional area of the symptomatic nerve and the severity of Headache Impact Test 6 scores (r = -0.342; P = .179). We report sonographic evidence showing an increased cross-sectional area and circumference of the symptomatic greater occipital nerve in patients with unilateral occipital neuralgia.

  8. Development of regional curves relating bankfull-channel geometry and discharge to drainage area for streams in Pennsylvania and selected areas of Maryland

    USGS Publications Warehouse

    Chaplin, Jeffrey J.

    2005-01-01

    Natural-stream designs are commonly based on the dimensions of the bankfull channel, which is capable of conveying discharges that transport sediment without excessive erosion or deposition. Regional curves relate bankfull-channel geometry and discharge to drainage area in watersheds with similar runoff characteristics and commonly are utilized by practitioners of natural-stream design to confirm or refute selection of the field-identified bankfull channel. Data collected from 66 streamflow-gaging stations and associated stream reaches between December 1999 and December 2003 were used in one-variable ordinary least-squares regression analyses to develop regional curves relating drainage area to cross-sectional area, discharge, width, and mean depth of the bankfull channel. Watersheds draining to these stations are predominantly within the Piedmont, Ridge and Valley, and Appalachian Plateaus Physiographic Provinces of Pennsylvania and northern Maryland. Statistical analyses of physiography, percentage of watershed area underlain by carbonate bedrock, and percentage of watershed area that is glaciated indicate that carbonate bedrock, not physiography or glaciation, has a controlling influence on the slope of regional curves. Regional curves developed from stations in watersheds underlain by 30 percent or less carbonate bedrock generally had steeper slopes than the corresponding relations developed from watersheds underlain by greater than 30 percent carbonate bedrock. In contrast, there is little evidence to suggest that regional curves developed from stations in the Piedmont or Ridge and Valley Physiographic Province are different from the corresponding relations developed from stations in the Appalachian Plateaus Physiographic Province. On the basis of these findings, regional curves are presented to represent two settings that are independent of physiography: (1) noncarbonate settings characterized by watersheds with carbonate bedrock underlying 30 percent or less of watershed area, and (2) carbonate settings characterized by watersheds with carbonate bedrock underlying greater than 30 percent of watershed area. All regional curves presented in this report have slopes that are significantly different from zero and normally distributed residuals that vary randomly with drainage area. Drainage area explains the most variability in bankfull cross-sectional area and bankfull discharge in the noncarbonate setting (R2 = 0.92 for both). Less variability is explained in bankfull width and depth (R2 = 0.81 and 0.72, respectively). Regional curves representing the carbonate setting are generally not as statistically robust as the corresponding noncarbonate relations because there were only 11 stations available to develop these curves and drainage area cannot explain variance resulting from karst features. The carbonate regional curves generally are characterized by less confidence, lower R2 values, and higher residual standard errors. Poor representation by watersheds less than 40 mi2 causes the carbonate regional curves for bankfull discharge, cross-sectional area, and mean depth to be disproportionately influenced by the smallest watershed (values of Cook's Distance range from 3.6 to 8.4). Additional bankfull discharge and channel-geometry data from small watersheds might reduce this influence, increase confidence, and generally improve regional curves representing the carbonate setting. Limitations associated with streamflow-gaging station selection and development of the curves result in some constraints for the application of regional curves presented in this report. These curves apply only to streams within the study area in watersheds having land use, streamflow regulation, and drainage areas that are consistent with the criteria used for station selection. Regardless of the setting, the regional curves presented here are not intended for use as the sole method for estimation of bankfull characteristics; however, th

  9. Assessment of an in-channel redistribution technique for large woody debris management in Locust Creek, Linn County, Missouri

    USGS Publications Warehouse

    Heimann, David C.

    2017-10-24

    The U.S. Geological Survey, in cooperation with the Missouri Department of Conservation and Missouri Department of Natural Resources, completed a study to assess a mechanical redistribution technique used for the management of large woody debris (LWD) jams in Locust Creek within Pershing State Park and Fountain Grove Conservation Area, Linn County, Missouri. Extensive LWD jams were treated from 1996 to 2009 using a low-impact technique in which LWD from the jams was redistributed to reopen the channel and to mimic the natural geomorphic process of channel migration and adjustment to an obstruction. The scope of the study included the comparison of selected channel geometry characteristics and bed material particle-size distribution in seven LWD treatment reaches with that of adjacent untreated reaches (unaffected by LWD accumulations) of Locust Creek. A comparison of 1996 and 2015 survey cross sections in treated and untreated reaches and photograph documentation were used to assess channel geomorphic change and the stability of redistributed LWD. The physical characteristics of LWD within jams present in the study reach during 2015–16 also were documented.Based on the general lack of differences in channel metrics between treated and untreated reaches, it can be concluded that the mechanical redistribution technique has been an effective treatment of extensive LWD jams in Locust Creek. Channel alterations, including aggradation, streamflow piracy, and diversions, have resulted in temporal and spatial changes in the Locust Creek channel that may affect future applications of the redistribution technique in Pershing State Park. The redistribution technique was used to effectively manage LWD in Locust Creek at a potentially lower financial cost and reduced environmental disturbance than the complete removal of LWD.A comparison of four channel metrics (bankfull cross-sectional area, channel width, streamflow capacity, and width-depth ratio) for individual treatment reaches with adjacent untreated reaches indicated no statistically significant difference in most comparisons. Where statistically significant differences in channel metrics were determined between individual reaches, the channel metrics in treatment reaches were significantly less than adjacent untreated reaches in some comparisons, and significantly greater than adjacent untreated reaches in others. Without immediate posttreatment cross sections in treated and untreated reaches for comparison, it is impossible to say with certainty that a lack of significant differences in channel metrics is a result of posttreatment channel adjustment or, conversely, that any significant differences that remain are a result of the treatment of LWD.Characteristics of LWD in accumulations sampled within the study area in 2015 indicate that most sampled pieces were in the 1–2 foot diameter size class, the 5–16 foot length class, and the advanced decay class. Most of documented LWD pieces were loose and not buried, about 20 percent on average had a root wad attached, and about 6.5 percent on average were sawn logs. Most of sampled material was less than one-half of the bankfull channel width, indicating it was easily transportable, and the advanced decay class of material entering the study area indicated that it was likely sourced from outside of Pershing State Park.Redistributed LWD associated with treatment seems to be intact in the 1996 treated reaches from direct observation and from inference because there was net channel aggradation between 1996 and 2015 in comparison surveys. The change in channel area resulting from aggradation in time (1996 to 2015) in treated and untreated reaches exceeded the differences in channel characteristics between the treated and untreated channels in 2015 surveys.

  10. Sorting Out Effects of Active Stream Restoration: Channel Morphology, Channel Change Processes and Potential Controls

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.

    2017-12-01

    In many active restoration projects, instream structures or modifications are designed to produce specific change in channel form, such as reduced W:D or increased pool depth, yet there is little monitoring to evaluate effectiveness. Active restoration often takes place within a context of other land management changes that can have an effect on channel form. Thus, the effects of active restoration are difficult to separate from the effects of other management actions. We measured morphologic response to restoration designs on sections of the Middle Fork John Day River, a gravel-cobble bed river under a cattle grazing regime in the Blue Mountain of Oregon. Since 2000, restoration actions have included elimination of cattle grazing in the riparian zone (passive restoration), riparian planting of woody vegetation, instream log structures for fish habitat and pool maintenance, and elimination of a major flow diversion. We listed the hypothetical effects of each of these management changes, showing overlap among effects of active and passive restoration. Repeat cross-section and longitudinal profile surveys over eight years, and repeat aerial imagery, documented changes in channel width, depth and bed morphology, and processes of change (bank erosion or aggradation, point bar erosion or aggradation, bed incision or aggradation), in two restored reaches and two adjacent control (unrestored) reaches. Morphologic changes were modest. Bankfull cross-section area, width, and W:D all decreased slightly in both restored reaches. Control reaches were unchanged or increased slightly. Processes of change were markedly different among the four reaches, with different reaches dominated by different processes. One restored reach was dominated by slight bed aggradation, increased pool depth and deep pools/km, while the other restored reach was dominated by bank erosion, bar aggradation and slight bed incision, along with increased deep pools/km. The longitudinal profile showed significant re-arrangement of bed morphology. The spatial context of processes and controls allows some separation of the effectiveness of different management actions. Active restoration directly increased pool depth, but passive restoration apparently had more impact on aggradation/degradation and width.

  11. Flat midsubstance of the anterior cruciate ligament with tibial "C"-shaped insertion site.

    PubMed

    Siebold, Rainer; Schuhmacher, Peter; Fernandez, Francis; Śmigielski, Robert; Fink, Christian; Brehmer, Axel; Kirsch, Joachim

    2015-11-01

    This anatomical cadaver study was performed to investigate the flat appearance of the midsubstance shape of the anterior cruciate ligament (ACL) and its tibial "C"-shaped insertion site. The ACL midsubstance and the tibial ACL insertion were dissected in 20 cadaveric knees (n = 6 fresh frozen and n = 14 paraffined). Magnifying spectacles were used for all dissections. Morphometric measurements were performed using callipers and on digital photographs. In all specimens, the midsubstance of the ACL was flat with a mean width of 9.9 mm, thickness of 3.9 mm and cross-sectional area of 38.7 mm(2). The "direct" "C"-shaped tibial insertion runs from along the medial tibial spine to the anterior aspect of the lateral meniscus. The mean width (length) of the "C" was 12.6 mm, its thickness 3.3 mm and area 31.4 mm(2). The centre of the "C" was the bony insertion of the anterior root of the lateral meniscus overlayed by fat and crossed by the ACL. No posterolateral (PL) inserting ACL fibres were found. Together with the larger "indirect" part (area 79.6 mm(2)), the "direct" one formed a "duck-foot"-shaped footprint. The tibial ACL midsubstance and tibial "C"-shaped insertion are flat and are resembling a "ribbon". The centre of the "C" is the bony insertion of the anterior root of the lateral meniscus. There are no central or PL inserting ACL fibres. Anatomical ACL reconstruction may therefore require a flat graft and a "C"-shaped tibial footprint reconstruction with an anteromedial bone tunnel for single bundle and an additional posteromedial bone tunnel for double bundle.

  12. Advanced Antennas Enabled by Electromagnetic Metamaterials

    DTIC Science & Technology

    2014-12-01

    radiation patterns of a conical horn antenna and three soft horns with various homogeneous metasurface liners. The maximum cross-polarization level was...inhomogencous metasurface liners covering both the flared horn section and the straight waveguide section. The mctahorn is fed by a circular waveguide...with a diameter of 20 mm. (b) The sizes of the metallic patches at each row of the metasurface in the flared horn section. Both the length and width

  13. A passive guard for low thermal conductivity measurement of small samples by the hot plate method

    NASA Astrophysics Data System (ADS)

    Jannot, Yves; Degiovanni, Alain; Grigorova-Moutiers, Veneta; Godefroy, Justine

    2017-01-01

    Hot plate methods under steady state conditions are based on a 1D model to estimate the thermal conductivity, using measurements of the temperatures T 0 and T 1 of the two sides of the sample and of the heat flux crossing it. To be consistent with the hypothesis of the 1D heat flux, either a hot plate guarded apparatus is used, or the temperature is measured at the centre of the sample. On one hand the latter method can be used only if the ratio thickness/width of the sample is sufficiently low and on the other hand the guarded hot plate method requires large width samples (typical cross section of 0.6  ×  0.6 m2). That is why both methods cannot be used for low width samples. The method presented in this paper is based on an optimal choice of the temperatures T 0 and T 1 compared to the ambient temperature T a, enabling the estimation of the thermal conductivity with a centered hot plate method, by applying the 1D heat flux model. It will be shown that these optimal values do not depend on the size or on the thermal conductivity of samples (in the range 0.015-0.2 W m-1 K-1), but only on T a. The experimental results obtained validate the method for several reference samples for values of the ratio thickness/width up to 0.3, thus enabling the measurement of the thermal conductivity of samples having a small cross-section, down to 0.045  ×  0.045 m2.

  14. Total width of 125 GeV Higgs boson.

    PubMed

    Barger, Vernon; Ishida, Muneyuki; Keung, Wai-Yee

    2012-06-29

    By using the LHC and Tevatron measurements of the cross sections to various decay channels relative to the standard model Higgs boson, the total width of the putative 125 GeV Higgs boson is determined as 6.1(-2.9)(+7.7) MeV. We describe a way to estimate the branching fraction for the Higgs-boson decay to dark matter. We also discuss a no-go theorem for the γγ signal of the Higgs boson at the LHC.

  15. Constraints on Resonant Dark Matter Annihilation

    NASA Astrophysics Data System (ADS)

    Backovic, Mihailo

    Resonant dark matter annihilation drew much attention in the light of recent measurements of charged cosmic ray fluxes. Interpreting the anomalous signal in the positron fraction as a sign of dark matter annihilation in the galactic halo requires cross sections orders of magnitudes higher than the estimates coming from thermal relic abundance. Resonant dark matter annihilation provides a mechanism to bridge the apparent contradiction between thermal relic abundance and the positron data measured by PAMELA and FERMI satellites. In this thesis, we analyze a class of models which allow for dark matter to annihilate through an s-channel resonance. Our analysis takes into account constraints from thermal relic abundance and the recent measurements of charged lepton cosmic ray fluxes, first separately and then simultaneously. Consistency of resonant dark matter annihilation models with thermal relic abundance as measured by WMAP serves to construct a relationship between the full set of masses, couplings and widths involved. Extensive numerical analysis of the full four dimensional parameter space is summarized by simple analytic approximations. The expressions are robust enough to be generalized to models including additional annihilation channels. We provide a separate treatment of resonant annihilation of dark matter in the galac- tic halo. We find model-independent upper limits on halo dark matter annihilation rates and show that the most efficient annihilation mechanism involves s-channel resonances. Widths that are large compared to the energy spread in the galactic halo are capable of saturating unitarity bounds without much difficulty. Partial wave unitarity prevents the so called Sommerfeld factors from producing large changes in cross sections. In addition, the approximations made in Sommerfeld factors break down in the kinematic regions where large cross section enhancements are often cited. Simultaneous constraints from thermal relic abundance and halo annihilation serve to produce new limits on dark matter masses and couplings. Past considerations of only a part of the resonant annihilation parameter set to motivate large annihilation cross section enhancements in the halo while maintaining correct relic abundance are generally incomplete. Taking into account only the resonance mass and width to show that large cross section enhancements are possible does not in principle guarantee that the enhancement will be achieved. We extend the calculation to include the full resonant parameter set. As a result, we obtain new limits on dark matter masses and couplings.

  16. Cross section measurements of radiative KL2,3 RRS in 24Cr and L3M4,5 RRS in 59Pr for Mn Kα1,2 X-rays

    NASA Astrophysics Data System (ADS)

    Sharma, Veena; Upmanyu, Arun; Singh, Ranjit; Singh, Gurjot; Sharma, Hitesh; Kumar, Sanjeev; Mehta, D.

    2017-06-01

    The KL2,3 and L3M4,5 radiative resonant Raman scattering (RRS) cross sections have been measured for the quasimonochromatic Mn Kα1,2 X-rays (5.895 keV) in 24Cr (K-shell level width (ΓK) =1.08 eV) and 59 Pr (L3-subshell level width (ΓL3) =3.60 eV), respectively, using targets in metallic and various chemical forms. The incident Mn Kα1,2 X-ray energy is lower than the K-shell binding energy of 24Cr and L3-subshell binding energy of 59Pr by 94 ΓK (Cr) and 94 ΓL3 (Pr), respectively. The experimental measurements were performed with a low energy Ge detector (LEGe) and a radioactive 55Fe annular source in conjunction with 24Cr absorber. The measured cross section values for the 24Cr and 59 Pr elements in their various oxidation states are found to be same within experimental errors. The measurements were further extended to investigate alignment of the intermediate L3-subshell (J =3/2) virtual vacancy states in 59Pr through angular distribution measurements for RRS photon emission, which is found to be isotropic within experimental errors.

  17. Design of the Cross Section Shape of AN Aluminum Crash Box for Crashworthiness Enhancement of a CAR

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Huh, H.; Lee, G. H.; Yoo, J. S.; Lee, M. Y.

    This paper deals with the crashworthiness of an aluminum crash box for an auto-body with the various shapes of cross section such as a rectangle, a hexagon and an octagon. First, crash boxes with various cross sections were tested with numerical simulation to obtain the energy absorption capacity and the mean load. In case of the simple axial crush, the octagon shape shows higher mean load and energy absorption than the other two shapes. Secondly, the crash boxes were assembled to a simplified auto-body model for the overall crashworthiness. The model consists of a bumper, crash boxes, front side members and a sub-frame representing the behavior of a full car at the low speed impact. The analysis result shows that the rectangular cross section shows the best performance as a crash box which deforms prior to the front side member. The hexagonal and octagonal cross sections undergo torsion and local buckling as the width of cross section decreases while the rectangular cross section does not. The simulation result of the rectangular crash box was verified with the experimental result. The simulation result shows close tendency in the deformed shape and the load-displacement curve to the experimental result.

  18. Positron annihilation processes update

    NASA Technical Reports Server (NTRS)

    Guessoum, Nidhal; Skibo, Jeffrey G.; Ramaty, Reuven

    1997-01-01

    The present knowledge concerning the positron annihilation processes is reviewed, with emphasis on the data of the cross sections of the various processes of interest in astrophysical applications. Recent results are presented including results on reaction rates and line widths, the validity of which is verified.

  19. Evolution of geometric and hydraulic parameters as function of discharge in two streams in the National Petroleum Reserve-Alaska

    NASA Astrophysics Data System (ADS)

    Vas, D. A.; Toniolo, H. A.; Bailey, J.; Kemnitz, R.

    2013-12-01

    Abstract The National Petroleum Reserve-Alaska (NPR-A) is a vast 22.8 million acre area that extends from the foot hills of the Brooks Range to the Beaufort Sea. The United States Department of Interior, Bureau of Land Management (BLM) in association with University of Alaska Fairbanks (UAF) is conducting hydrological research to establish baseline conditions to aid future infrastructure development related to oil and gas in the NPR-A region. Field measurements (discharge, cross-sectional area, top width, water slope) were carried out in Spring 2011, 2012 and 2013, during receding water levels in the streams when the flows were ice-free. The river gauges are located approximately 15 miles south of the rivers mouth on Beaufort Sea and 13 miles from each other. The contributing watershed areas upstream of the gauging stations are 620 and 128 square miles for Judy Creek and Ublutuoch River respectively. The streams have very different channel characteristics and sediment loads. The Judy Creek channel is somewhat unstable; bed sediment contains sand and fine gravel with a heavy sediment load during spring. Bed sediment on Ublutuoch River mainly comprise of coarse gravel, with heavily brush-vegetated steep banks and very limited sediment load during spring. We present a preliminary set of hydraulic geometric relationships describing the variation of channel width, depth, and velocity as function of discharge at the gauging sites on the rivers. Empirical equations indicate that exponents for channel width have similar values in both rivers (approximately 0.38), while exponents for velocity display different values and signs. Exponents for channel depth range from 0.55 to 0.71. Differences in prevailing sediment transport conditions seem to be, at least partially, responsible for the variation in the exponents. Additionally, roughness coefficients are reported.

  20. Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Waite, Andrew M.

    2013-01-01

    Regression equations were developed for estimating bankfull geometry—width, mean depth, cross-sectional area—and discharge for streams in Massachusetts. The equations provide water-resource and conservation managers with methods for estimating bankfull characteristics at specific stream sites in Massachusetts. This information can be used for the adminstration of the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a protected riverfront area extending from the mean annual high-water line corresponding to the elevation of bankfull discharge along each side of a perennial stream. Additionally, information on bankfull channel geometry and discharge are important to Federal, State, and local government agencies and private organizations involved in stream assessment and restoration projects. Regression equations are based on data from stream surveys at 33 sites (32 streamgages and 1 crest-stage gage operated by the U.S. Geological Survey) in and near Massachusetts. Drainage areas of the 33 sites ranged from 0.60 to 329 square miles (mi2). At 27 of the 33 sites, field data were collected and analyses were done to determine bankfull channel geometry and discharge as part of the present study. For 6 of the 33 sites, data on bankfull channel geometry and discharge were compiled from other studies done by the U.S. Geological Survey, Natural Resources Conservation Service of the U.S. Department of Agriculture, and the Vermont Department of Environmental Conservation. Similar techniques were used for field data collection and analysis for bankfull channel geometry and discharge at all 33 sites. Recurrence intervals of the bankfull discharge, which represent the frequency with which a stream fills its channel, averaged 1.53 years (median value 1.34 years) at the 33 sites. Simple regression equations were developed for bankfull width, mean depth, cross-sectional area, and discharge using drainage area, which is the most significant explanatory variable in estimating these bankfull characteristics. The use of drainage area as an explanatory variable is also the most commonly published method for estimating these bankfull characteristics. Regional curves (graphic plots) of bankfull channel geometry and discharge by drainage area are presented. The regional curves are based on the simple regression equations and can be used to estimate bankfull characteristics from drainage area. Multiple regression analysis, which includes basin characteristics in addition to drainage area, also was used to develop equations. Variability in bankfull width, mean depth, cross-sectional area, and discharge was more fully explained by the multiple regression equations that include mean-basin slope and drainage area than was explained by equations based on drainage area alone. The Massachusetts regional curves and equations developed in this study are similar, in terms of values of slopes and intercepts, to those developed for other parts of the northeastern United States. Limitations associated with site selection and development of the equations resulted in some constraints for the application of equations and regional curves presented in this report. The curves and equations are applicable to stream sites that have (1) less than about 25 percent of their drainage basin area occupied by urban land use (commercial, industrial, transportation, and high-density residential), (2) little to no streamflow regulation, especially from flood-control structures, (3) drainage basin areas greater than 0.60 mi2 and less than 329 mi2, and (4) a mean basin slope greater than 2.2 percent and less than 23.9 percent. The equations may not be applicable where streams flow through extensive wetlands. The equations also may not apply in areas of Cape Cod and the Islands and the area of southeastern Massachusetts close to Cape Cod with extensive areas of coarse-grained glacial deposits where none of the study sites are located. Regardless of the setting, the regression equations are not intended for use as the sole method of estimating bankfull characteristics; however, they may supplement field identification of the bankfull channel when used in conjunction with field verified bankfull indicators, flood-frequency analysis, or other supporting evidence.

  1. Determination of spectroscopic properties of atmospheric molecules from high resolution vacuum ultraviolet cross section and wavelength measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.; Freeman, D. E.

    1993-01-01

    An account is given of progress during the six-month period 1 Nov. 1992 to 30 Apr. 1993 on work on (1) cross section measurements of the Schumann-Runge continuum; (2) the determination of the predissociation linewidths of the Schumann-Runge bands of O2; (3) the determination of the molecular constants of the ground state of O2; (4) cross section measurements of CO2 in wavelength region 120-170 nm; and (4) determination of dissociation energy of O2. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (FWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Below 175 nm and in the region of the S-R continuum, synchrotron radiation is suitable for cross section measurements. All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen and penetration of solar radiation into the Earth's atmosphere.

  2. Occurrence of riverine wetlands on floodplains along a climatic gradient

    USGS Publications Warehouse

    Kroes, D.E.; Brinson, M.M.

    2004-01-01

    The relation between the occurrence of riverine wetlands in floodplains along a humid to semi-arid climatic continuum was studied in two regions. The first included 36 mid-reach streams from Colorado to Iowa, USA, a region with a broad range of PET ratios (potential evapotranspiration/precipitation) from 0.70 to 1.75. The second region included 16 headwater streams in eastern North Carolina with PET ratios ranging from 0.67 to 0.83. Wetland boundaries were identified in the field along transects perpendicular to the floodplain. The width of jurisdictional wetlands was compared with flood-prone width (FPW) and expressed as a percent. An increase in PET ratio corresponded to an exponential decrease in the percentage of the FPW that is wetland. Soil texture, duration of overbank flow, and stream order did not correlate with percentage of FPW that was wetland. Streams with a PET ratio greater than 0.98 did not have wetlands associated with them. Greater channel cross-sectional areas correlated positively with greater wetland widths in both study regions. Overbank flow did not appear to contribute to wetland prevalence. Supplemental ground-water sources, however, as indicated by greater base flows, could not be ruled out as sources contributing to wetland occurrence. ?? 2004, The Society of Wetland Scientists.

  3. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  4. Sonographic evaluation of sciatic nerves in patients with unilateral sciatica.

    PubMed

    Kara, Murat; Özçakar, Levent; Tiftik, Tülay; Kaymak, Bayram; Özel, Sumru; Akkuş, Selami; Akinci, Ayşen

    2012-09-01

    To evaluate the sciatic nerves of patients with unilateral sciatica by using an ultrasound, and to determine whether ultrasonographic findings were related to clinical and electrophysiologic parameters. Cross-sectional study. Physical medicine and rehabilitation departments of a university hospital and a rehabilitation hospital. Consecutive patients (N=30; 10 men, 20 women) with complaints of low back pain and unilateral sciatica of more than 1 month of duration were enrolled. Not applicable. All patients underwent a substantial clinical assessment, and they were also evaluated by electromyogram and magnetic resonance imaging. Pain was evaluated by a visual analog scale and the Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) Scale. A linear array probe (7.5-12MHz) was used to scan sciatic nerves bilaterally in the prone position. Sciatic nerve diameters-thickness (short axis) and width (long axis)-and cross-sectional areas were measured bilaterally at the same levels, proximal to the bifurcation and midthigh. The values pertaining to the unaffected limbs were taken as controls. When compared with the unaffected sides, mean values for sciatic nerve measurements-long axis at bifurcation level (P=.017) and cross-sectional area at midthigh level (P=.005)-were significantly larger on the affected sides. Swelling ratios negatively correlated with symptom duration (r=-.394, P=.038) and LANSS scores (r=-.451, P=.016) at only midthigh level. Sciatic nerves seem to be enlarged on the side of sciatica in patients with low back pain. Our preliminary results may provide insight into better understanding the lower limb radiating pain in this group of patients. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Interactions between river channel processes and riparian vegetation - an example from the Lužnice River, Czech Republic

    NASA Astrophysics Data System (ADS)

    Krejci, Lukas; Macka, Zdenek

    2010-05-01

    Riparian vegetation responds to hydrogemorphic processes and environmental changes and also controls these processes. Our study focuses on the interactions between woody riparian vegetation (live and dead trees) and river channel morphology on the example of three 1 km long reaches of the Lužnice River in southern Czech Republic. Here, we propose that despite spatial proximity, identical hydrological and sedimentological controls, three river reaches have different geomorphology due to varying character of riparian woody vegetation and different character and abundance of large in-stream wood (LW). Upstream, middle and downstream reaches vary markedly in channel dimensions (width, depth) and the present day rate of lateral erosion. Three reaches also show the different in-stream wood loads which are dependent mainly on the character of the riparian vegetation, and on the lateral activity of the channel. The highest wood load was recorded at the downstream reach with 102,162 m3/ha, the lowest at the middle reach 37,041 m3/ha, the upstream reach has load 81,370 m3/ha. Upper reach woody vegetation is the mixture of willow, alder, chokecherry and oak. The reach is only slightly sinuous with the moderate rate of incision and lateral erosion. The channel width and depth are 13 m and 2,1 m respectively, the mean cross section area is 27,3 m2. Erosion in the reach is slightly enhanced by the river training works upstream (canalisation, weir construction). Middle reach woody vegetation mostly consist of willow. Tree-tops often incline into the channel, thus, dissipating effectively the energy of the river flow. The reach is moderately sinuous and rather laterally stable. The channel width and depth are 10 m and 2,5 m respectively, the mean cross section area is 25 m2. The reach approximates the natural condition of the pristine river. The impact of river training works is minor only with the road bridge upstream. This reach in the most natural condition shows the lowest in-stream wood load and lowest rate of the present day bank erosion. Downstream reach woody vegetation is discontinuous, alternating with pastures. Riparian trees are the mixture of poplar, willow, alder and oak. The reach is highly sinuous with distinct meanders and laterally very dynamic. The channel width and depth are 15 m and 3,7 m respectively, the mean cross section area is 55,5 m2. The highest bank erosion was noted at the locations with pastures. The specific feature of this reach are fossil oak logs, which are exhumed from the alluvial sediments by the rapid lateral erosion. The enhanced incision and lateral erosion is the combined effect of riparian forest clearance and river training works (canalisation) downstream. The planform changes of the river since 1952 have been studied by analysis of the aerial images. It was derived that floodplain area of 12 450 m2, 16 318 m2 and 20 687 m2 was eroded, of which 10 465 m2, 8496 m2 and 10 733 m2 was wooded land at the upstream, middle and downstream reaches. We estimated that this rate of bank erosion delivered 644, 510 and 628 trees to the river channel since 1952. These numbers represent 390%, 1130% and 285% of the present day number of LW pieces in the river channel. Approximate turnover rates of LW can be estimated from these data. Present day rate of bank erosion and LW input is monitored at selected concave banks by repeated geodetic surveying. The Lužnice River has a sandy bed and LW modifies bed and bank morphology profoundly. We found that 33%, 29% and 36% of LW pieces caused localized erosion (pool formation) and 37%, 24% and 21 % caused local deposition at upstream, middle and downstream river reaches. The research was supported by Czech Science Foundation, grant no. 205/08/0926.

  6. Hydrologic data on channel adjustments, 1970 to 1975, on the Rio Grande downstream from Cochiti Dam, New Mexico before and after closure

    USGS Publications Warehouse

    Dewey, Jack D.; Roybal, F.E.; Funderburg, D.E.

    1979-01-01

    Cross-section channel profiles, sediment transport and hydrologic data have been observed and computed for a series of pre-dam and post-dam investigations from 1970 to 1975 at 37 cross sections established along a 59-mile study reach from Cochiti Dam to Isleta Diversion Dam, New Mexico. Cochiti Dam began impounding water in November 1973. Because the dam will trap virtually all of the sediment load originating upstream and water discharge will be controlled, it is expected that equilibrium values of channel width, depth, slope and sediment-transport capability in the existing main stem of the Rio Grande will change. Changes in cross sections with time and space and changes in size distribution of sediments are documented. (Woodard-USGS).

  7. Dielectron widths of the Gamma(1S,2S,3S) resonances.

    PubMed

    Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Savinov, V; Aquines, O; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E

    2006-03-10

    We determine the dielectron widths of the Gamma(1S), Gamma(2S), and Gamma(3S) resonances with better than 2% precision by integrating the cross section of e+e- -->Gamma over the e+e- center-of-mass energy. Using e+e- energy scans of the Gamma resonances at the Cornell Electron Storage Ring and measuring Gamma production with the CLEO detector, we find dielectron widths of 1.252+/-0.004(sigma(stat))+/-0.019(sigma(syst)) keV, 0.581+/-0.004+/-0.009 keV, and 0.413+/-0.004+/-0.006 keV for the Gamma(1S), Gamma(2S), and Gamma(3S), respectively.

  8. Crustal architecture of the oblique-slip conjugate margins of George V Land and southeast Australia

    USGS Publications Warehouse

    Stagg, H.M.J.; Reading, A.M.

    2007-01-01

    A conceptual, lithospheric-scale cross-section of the conjugate, oblique-slip margins of George V Land, East Antarctica, and southeast Australia (Otway Basin) has been constructed based on the integration of seismic and sample data. This cross-section is characterised by asymmetry in width and thickness, and depth-dependent crustal extension at breakup in the latest Maastrichtian. The broad Antarctic margin (~360 km apparent rift width) developed on thick crust (~42 km) of the Antarctic craton, whereas the narrow Otway margin (~220 km) developed on the thinner crust (~31 km) of the Ross–Delamerian Orogen. The shallow basement (velocities ~5.5 km.s-1) and the deep continental crust (velocities >6.4 km.s-1) appear to be largely absent across the central rift, while the mid-crustal, probably granitic layer (velocities ~6 km.s-1) is preserved. Comparison with published numerical models suggests that the shallow basement and deep crust may have been removed by simple shear, whereas the mid-crust has been ductilely deformed.

  9. Anthropometry of external auditory canal by non-contactable measurement.

    PubMed

    Yu, Jen-Fang; Lee, Kun-Che; Wang, Ren-Hung; Chen, Yen-Sheng; Fan, Chun-Chieh; Peng, Ying-Chin; Tu, Tsung-Hsien; Chen, Ching-I; Lin, Kuei-Yi

    2015-09-01

    Human ear canals cannot be measured directly with existing general measurement tools. Furthermore, general non-contact optical methods can only conduct simple peripheral measurements of the auricle and cannot obtain the internal ear canal shape-related measurement data. Therefore, this study uses the computed tomography (CT) technology to measure the geometric shape of the ear canal and the shape of the ear canal using a non-invasive method, and to complete the anthropometry of external auditory canal. The results of the study show that the average height and width of ear canal openings, and the average depth of the first bend for men are generally longer, wider and deeper than those for women. In addition, the difference between the height and width of the ear canal opening is about 40% (p < 0.05). Hence, the circular cross-section shape of the earplugs should be replaced with an elliptical cross-section shape during manufacturing for better fitting. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. Extreme erosion response after wildfire in the Upper Ovens, south-east Australia: Assessment of catchment scale connectivity by an intensive field survey

    NASA Astrophysics Data System (ADS)

    Box, Walter; Keestra, Saskia; Nyman, Petter; Langhans, Christoph; Sheridan, Gary

    2015-04-01

    South-eastern Australia is generally regarded as one of the world's most fire-prone environments because of its high temperatures, low rainfall and flammable native Eucalyptus forests. Modifications to the landscape by fire can lead to significant changes to erosion rates and hydrological processes. Debris flows in particular have been recognised as a process which increases in frequency as a result of fire. This study used a debris flow event in the east Upper Ovens occurred on the 28th of February 2013 as a case study for analysing sediment transport processes and connectivity of sediment sources and sinks. Source areas were identified using a 15 cm resolution areal imagery and a logistic regression model was made based on fire severity, aridity index and slope to predict locations of source areas. Deposits were measured by making cross-sections using a combination of a differential GPS and a total station. In total 77 cross-sections were made in a 14.1 km2 sub-catchment and distributed based on channel gradient and width. A more detailed estimation was obtained by making more cross-sections where the volume per area is higher. Particle size distribution between sources and sink areas were obtained by combination of field assessment, photography imagery analyses and sieve and laser diffraction. Sediment was locally eroded, transported and deposited depending on factors such as longitude gradient, stream power and the composition of bed and bank material. The role of headwaters as sediment sinks changed dramatically as a result of the extreme erosion event in the wildfire affected areas. Disconnected headwaters became connected to low order streams due to debris flow processes in the contributing catchment. However this redistribution of sediment from headwaters to the drainage network was confined to upper reaches of the Ovens. Below this upper part of the catchment the event resulted in redistribution of sediment already existing in the channel through a combination of debris flows and hyperconcentrated flows. These results indicate that there is a stepwise outflow of sediment influencing long-term erosion rates and landform development.

  11. Correlation of mandibular impacted tooth and bone morphology determined by cone beam computed topography on a premise of third molar operation.

    PubMed

    Momin, M A; Matsumoto, K; Ejima, K; Asaumi, R; Kawai, T; Arai, Y; Honda, K; Yosue, T

    2013-05-01

    To determine the width and morphology of the mandible in the impacted third molar region, and to identify the location of the mandibular canal prior to planning impacted third molar operations. Cone beam computed tomography (CBCT) data of 87 mandibular third molars from 62 Japanese patients were analyzed in this study. The width of the lingual cortical bone and apex-canal distance were measured from cross-sectional images in which the cortical bone was thinnest at the lingual side in the third molar region. Images were used for measuring the space (distance between the inner border of the lingual cortical bone and outer surface of the third molar root), apex-canal distance (distance from the root of the third molar tooth to the superior border of the inferior alveolar canal) and the cortical bone (width between the inner and outer borders of the lingual cortical bone). The means of the space, apex-canal distance and lingual cortical width were 0.31, 1.99, and 0.68 mm, respectively. Impacted third molar teeth (types A-C) were observed at the following frequencies: type A (angular) 37 %; type B (horizontal), 42 %; type C (vertical), 21 %. The morphology of the mandible at the third molar region (types D-F) was observed as: type D (round), 49 %; type E (lingual extended), 18 %; and type F (lingual concave), 32 %. The width and morphology of the mandible with impacted teeth and the location of the mandibular canal at the third molar region could be clearly determined using cross-sectional CBCT images.

  12. Channel evolution of the Hatchie River near the U.S. Highway 51 crossing in Lauderdale and Tipton counties, West Tennessee

    USGS Publications Warehouse

    Bryan, B.A.

    1989-01-01

    An investigation was conducted to describe the channel cross-section evolution near the bridge crossing of the Hatchie River at U.S. Highway 51 in Lauderdale and Tipton Counties, in West Tennessee. The study also included velocity and discharge distributions near the bridge crossing, and definition of streamflow duration and flood frequencies at the bridge site and comparison of these statistics with flows prior to the bridge collapse. Cross-section measurements at the site indicated that the channel was widening at a rate of 0.8 ft/year from 1931 through about 1975. The channel bed was stable at an elevation of about 235 ft. Construction of a south bound bridge in 1974 and 1975 reduced the effective flow width from about 4,000 to about 1,000 ft. Data collected from 1975 to 1981 indicated that the channel bed degraded to an elevation of about 230 ft and the widening rate increased to about 4.5 ft/year. The channel bed returned to approximately the pre-construction elevation of 235 ft as channel width increased. The widening rate decreased to about 1.8 ft/year from 1981 through 1989. Channel-geometry data indicated that recent channel morphology changes along the toe of the right bank have resulted in continued bank undercutting and bank failure. Cross-section geometry and flow-velocity distributions from measurements made from April 6 through 10, 1989, indicate that there is a high-flow meander pattern through this river reach and that the bridges are located at the point where the current strikes the right bank. (USGS)

  13. Influence of irradiation on development of Caribbean fruit fly (diptera: tephritidae) larvae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nation, J.L.; Milne, K.; Dykstra, T.M.

    1995-05-01

    Larvae of the Caribbean fruit fly, Anastrepha suspensa (Loew), were irradiated at hatching with 0, 5, 10, 20, 50, 75, 100 and 150 Gy doses from a Cesium-137 source and dissected for measurements of the supraesophageal ganglion (brain) and proventriculus (B/Prv) as mature third instars. Cross-sectional area of a plane through the brain and proventriculus, and simple dorsal width measurements of the two organs were evaluated as indicators of radiation exposure. Brain area, brain width, and brain/proventriculus (B/Prv) ratios were significantly different from controls in insects treated with a dose {ge}20 Gy. Detailed dissections of hatching larvae exposed to 50more » Gy revealed reductions in brain growth, small and misshapen compound eye and leg imaginal disks, and a ventral nerve cord that was elongated and sinuous. Larvae irradiated on the 1st d of each of the three instars had smaller brains, with the percentage of reduction in brain size being greater the younger the larvae were at the time of exposure. Brain and proventriculus measurements and calculated B/Prv values are indicative of irradiation in Caribbean fruit fly larvae, but the procedure may not be adaptable for routine use by quarantine inspectors. 14 refs., 4 figs., 2 tabs.« less

  14. Diagnostic utility of sonography and correlation between sonographic and clinical findings in patients with carpal tunnel syndrome.

    PubMed

    Tajika, Tsuyoshi; Kobayashi, Tsutomu; Yamamoto, Atsushi; Kaneko, Tetsuya; Takagishi, Kenji

    2013-11-01

    First, we investigated the accuracy of carpal tunnel syndrome diagnosis by comparing the cross-sectional area of the median nerve measured at the level of proximal inlet of the carpal tunnel with that measured at the level of the distal radioulnar joint on sonography. Second, we evaluated the correlation between sonographic and neurophysiologic findings and clinical findings assessed by the Carpal Tunnel Syndrome Instrument of the Japanese Society for Surgery of the Hand (JSSH). Fifty wrists in 34 patients and 81 wrists in 45 healthy volunteers were examined. The proximal cross-sectional area and the difference (Δ) between the proximal and distal cross-sectional areas were calculated for each wrist. Nerve conduction velocity tests were performed for all patients with carpal tunnel syndrome. The proximal, distal, and Δ cross-sectional areas were compared for the two groups. We examined the correlation between the proximal, distal, and Δ areas, nerve conduction velocity findings, and JSSH scores in the patients. The diagnosis of carpal tunnel syndrome determined by the Δ cross-sectional area was more accurate than the diagnosis determined by the proximal area on receiver operating characteristic curve analysis (P = .006). Statistically significant correlations were found between proximal area, Δ area, and nerve conduction velocity findings (proximal, r = 0.45; P = .0013; Δ, r = 0.44; P = .001). The proximal and distal areas were positively correlated with the JSSH symptom severity score (proximal, r= 0.39; P= .005; distal, r = 0.35; P = .014). The cross-sectional area method using sonography has excellent performance for diagnosing carpal tunnel syndrome. It was useful for measuring the proximal and distal cross-sectional areas to evaluated the symptom severity and for calculating the Δ cross-sectional area to assess motor nerve damage in patients with carpal tunnel syndrome.

  15. Prediction for the transverse momentum distribution of Drell-Yan dileptons at GSI PANDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linnyk, O.; Gallmeister, K.; Leupold, S.

    2006-02-01

    We predict the triple differential cross section of the Drell-Yan process pp{yields}l{sup +}l{sup -}X in the kinematical regimes relevant for the upcoming PANDA experiment, using a model that accounts for quark virtuality as well as primordial transverse momentum. We find a cross section magnitude of up to 10 nb in the low mass region. A measurement with 10% accuracy is desirable in order to constrain the partonic transverse momentum dispersion and the spectral function width within {+-}50 MeV and to study their evolution with M and {radical}(s)

  16. Energy-absorption capability and scalability of square cross section composite tube specimens

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Static crushing tests were conducted on graphite/epoxy and Kevlar/epoxy square cross section tubes to study the influence of specimen geometry on the energy-absorption capability and scalability of composite materials. The tube inside width-to-wall thickness (W/t) ratio was determined to significantly affect the energy-absorption capability of composite materials. As W/t ratio decreases, the energy-absorption capability increases nonlinearly. The energy-absorption capability of Kevlar epoxy tubes was found to be geometrically scalable, but the energy-absorption capability of graphite/epoxy tubes was not geometrically scalable.

  17. Gingival recession: a cross-sectional clinical investigation.

    PubMed

    Goutoudi, P; Koidis, P T; Konstantinidis, A

    1997-06-01

    In this cross-sectional study, risk and potentially causative factors of gingival recession were examined and their relationship to apical migration of the gingival margin evaluated. Thirty eight patients (18-60 years), displaying one or more sites with gingival recession but without any significant periodontal disease participated. A total of 28 parameters were evaluated in both 'test' teeth (50 teeth with gingival recession) and 'control' teeth (50 contralateral teeth). The results revealed that gingival margin recession was associated with both high inflammatory and plaque scores, with decreased widths of keratinized and attached gingiva and with the subjects' toothbrush bristle hardness.

  18. [Relationship between image quality and cross-sectional area of phantom in three-dimensional positron emission tomography scan].

    PubMed

    Osawa, Atsushi; Miwa, Kenta; Wagatsuma, Kei; Takiguchi, Tomohiro; Tamura, Shintaro; Akimoto, Kenta

    2012-01-01

    The image quality in (18)FDG PET/CT often degrades as the body size increases. The purpose of this study was to evaluate the relationship between image quality and the body size using original phantoms of variable cross-sectional areas in PET/CT. We produced five water phantoms with different cross-sectional areas. The long axis of phantom was 925 mm, and the cross-sectional area was from 324 to 1189 cm(2). These phantoms with the sphere (diameter 10 mm) were filled with (18)F-FDG solution. The radioactivity concentration of background in the phantom was 1.37, 2.73, 4.09 and 5.46 kBq/mL. The scanning duration was 30 min in list mode acquisition for each measurement. Background variability (N(10 mm)), noise equivalent count rates (NECR(phantom)), hot sphere contrast (Q(H,10 mm)) as physical evaluation and visual score of sphere detection were measured, respectively. The relationship between image quality and the various cross-sectional areas was also analyzed under the above-mentioned conditions. As cross-sectional area increased, NECR(phantom) progressively decreased. Furthermore, as cross-sectional area increased, N(10 mm) increased and Q(H,10 mm) decreased. Image quality became degraded as body weight increased because noise and contrast contributed to image quality. The visual score of sphere detection deteriorated in high background radioactivity concentration because a false positive detection in cross-sectional area of the phantom increased. However, additional increases in scanning periods could improve the visual score. We assessed tendencies in the relationship between image quality and body size in PET/CT. Our results showed that time adjustment was more effective than dose adjustment for stable image quality of heavier patients in terms of the large cross-sectional area.

  19. Cross-sectional transport imaging in a multijunction solar cell

    DOE PAGES

    Haegel, Nancy M.; Ke, Chi -Wen; Taha, Hesham; ...

    2016-12-01

    Here, we combine a highly localized electron-beam point source excitation to generate excess free carriers with the spatial resolution of optical near-field imaging to map recombination in a cross-sectioned multijunction (Ga 0.5In 0.5P/GaIn 0.01As/Ge) solar cell. By mapping the spatial variations in emission of light for fixed generation (as opposed to traditional cathodoluminescence (CL), which maps integrated emission as a function of position of generation), it is possible to directly monitor the motion of carriers and photons. We observe carrier diffusion throughout the full width of the middle (GaInAs) cell, as well as luminescent coupling from point source excitation inmore » the top cell GaInP to the middle cell. Supporting CL and near-field photoluminescence (PL) measurements demonstrate the excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results, as well as transport limitations on the spatial resolution of conventional cross-sectional far-field measurements.« less

  20. Dissociative recombination of HCl+

    NASA Astrophysics Data System (ADS)

    Larson, Åsa; Fonseca dos Santos, Samantha; E. Orel, Ann

    2017-08-01

    The dissociative recombination of HCl+, including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0 , to the first three excited vibrational states, v = 1 , v = 2 , and v = 3 , are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  1. Dissociative recombination of HCl.

    PubMed

    Larson, Åsa; Fonseca Dos Santos, Samantha; E Orel, Ann

    2017-08-28

    The dissociative recombination of HCl + , including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0, to the first three excited vibrational states, v = 1, v = 2, and  v = 3, are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  2. Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M. (Inventor); Watkins, Ronnie M. (Inventor); Hofer, Richard R. (Inventor)

    2012-01-01

    An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet.

  3. Laboratory Measurements of SO2 and N2 Absorption Spectra for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Stark, Glenn

    2003-01-01

    This laboratory project focuses on the following topics: 1) Measurement of SO2 ultraviolet absorption cross sections; and 2) N2 band and Line Oscillator Strengths and Line Widths in the 80 to 100 nm region. Accomplishments for these projects are summarized.

  4. Interference in the gg→h→γγ On-Shell Rate and the Higgs Boson Total Width.

    PubMed

    Campbell, John; Carena, Marcela; Harnik, Roni; Liu, Zhen

    2017-11-03

    We consider interference between the Higgs signal and QCD background in gg→h→γγ and its effect on the on-shell Higgs rate. The existence of sizable strong phases leads to destructive interference of about 2% of the on-shell cross section in the standard model. This effect can be enhanced by beyond the standard model physics. In particular, since it scales differently from the usual rates, the presence of interference allows indirect limits to be placed on the Higgs width in a novel way, using on-shell rate measurements. Our study motivates further QCD calculations to reduce uncertainties. We discuss possible width-sensitive observables, both using total and differential rates and find that the HL-LHC can potentially indirectly constrain widths of order tens of MeV.

  5. A three-microphone acoustic reflection technique using transmitted acoustic waves in the airway.

    PubMed

    Fujimoto, Yuki; Huang, Jyongsu; Fukunaga, Toshiharu; Kato, Ryo; Higashino, Mari; Shinomiya, Shohei; Kitadate, Shoko; Takahara, Yutaka; Yamaya, Atsuyo; Saito, Masatoshi; Kobayashi, Makoto; Kojima, Koji; Oikawa, Taku; Nakagawa, Ken; Tsuchihara, Katsuma; Iguchi, Masaharu; Takahashi, Masakatsu; Mizuno, Shiro; Osanai, Kazuhiro; Toga, Hirohisa

    2013-10-15

    The acoustic reflection technique noninvasively measures airway cross-sectional area vs. distance functions and uses a wave tube with a constant cross-sectional area to separate incidental and reflected waves introduced into the mouth or nostril. The accuracy of estimated cross-sectional areas gets worse in the deeper distances due to the nature of marching algorithms, i.e., errors of the estimated areas in the closer distances accumulate to those in the further distances. Here we present a new technique of acoustic reflection from measuring transmitted acoustic waves in the airway with three microphones and without employing a wave tube. Using miniaturized microphones mounted on a catheter, we estimated reflection coefficients among the microphones and separated incidental and reflected waves. A model study showed that the estimated cross-sectional area vs. distance function was coincident with the conventional two-microphone method, and it did not change with altered cross-sectional areas at the microphone position, although the estimated cross-sectional areas are relative values to that at the microphone position. The pharyngeal cross-sectional areas including retropalatal and retroglossal regions and the closing site during sleep was visualized in patients with obstructive sleep apnea. The method can be applicable to larger or smaller bronchi to evaluate the airspace and function in these localized airways.

  6. Spectral Analysis of the Shuttle Glow. SPAS II/IBSS Mission - AIS hardware

    DTIC Science & Technology

    1992-04-23

    Mirror Lens C Reflection) CiraCylindrical/-Lens • Plane Mirror j _Slit Slit Mro Fig. 7. Cross section through the reflective foreoptics of the UV Fig. 6...selection. The gratings in the The slit width of 0.045 mm restricted the angular spectrograph are deposited on Zerodur blanks, which width of the FOV...of th*i short fee-1 hlaa, t do, lmw b*WdW 3Wa APO=E OPTIC I VOL 31, ft. 16 1 1~ toes I 48 Secondary Mlirror Primary Mirror - lntaeranas Ptten Image

  7. Optic nerve size evaluated by magnetic resonance imaging in children with optic nerve hypoplasia, multiple pituitary hormone deficiency, isolated growth hormone deficiency, and idiopathic short stature.

    PubMed

    Birkebaek, Niels Holtum; Patel, Leena; Wright, Neville Bryce; Grigg, John Russell; Sinha, Smeeta; Hall, Catherine Margaret; Price, David Anthony; Lloyd, Ian Christopher; Clayton, Peter Ellis

    2004-10-01

    To objectively define criteria for intracranial optic nerve (ON) size in ON hypoplasia (ONH) on magnetic resonance imaging (MRI) scans. Intracranial ON sizes from MRI were compared between 46 children with ONH diagnosed by ophthalmoscopy (group 1, isolated ONH, 8 children; and group 2, ONH associated with abnormalities of the hypothalamic-pituitary axis and septum pellucidum, 38 children) and children with multiple pituitary hormone deficiency (group 3, multiple pituitary hormone deficiency, 14 children), isolated growth hormone deficiency (group 4, isolated growth hormone deficiency, 15 children), and idiopathic short stature (group 5, idiopathic short stature, 10 children). Intracranial ON size was determined by the cross-sectional area, calculated as [pi x (1/2) height x (1/2) width]. Groups 1 and 2 had lower intracranial ON size than did groups 3, 4, and 5 (P < .001). No patients in groups 3 through 5 who had MRI after 12 months of age (when 95% adult size of ONs is attained) had ONs <2.9 mm 2 . Visual acuity correlated significantly with ON size (P < .01). Magnetic resonance imaging of the ONs with cross-sectional area <2.9 mm 2 in a short child more than 12 months of age, with or without hypothalamic-pituitary axis abnormalities, confirms the clinical diagnosis of ONH.

  8. Slow-electron collisions with CO molecules in an exact-exchange plus parameter-free polarization model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, A.; Norcross, D.W.

    1992-02-01

    We report low-energy (0.001--10-eV) electron-CO scattering cross sections obtained using an exact-exchange (via a separable-exchange formulation) plus a parameter-free correlation-polarization model in the fixed-nuclei approximation (FNA). The differential, total, and momentum-transfer cross sections are reported for rotationally elastic, inelastic, and summed processes. To remove the limitations of the FNA with respect to the convergence of total and differential cross sections, the multipole-extracted-adiabatic-nuclei approximation is used. The position and width of the well-known {sup 2}{Pi} shape-resonance structure in the cross section around 2 eV are reproduced quite well; however, some discrepancy between theory and experiment in the magnitude of the totalmore » cross section in the resonance region exists. We also present results for {sup 2}{Pi} shape-resonance parameters as a function of internuclear separation. Differential-cross-section results agree well with the measurements of Tanaka, Srivastava, and Chutjian (J. Chem. Phys. 69, 5329 (1978)) but are about a factor of 2 larger than the results obtained by Jung {ital et} {ital al}. (J. Phys. B 15, 3535 (1982)) in the vicinity of the {sup 2}{Pi} resonance.« less

  9. Cross-section fluctuations in chaotic scattering systems.

    PubMed

    Ericson, Torleif E O; Dietz, Barbara; Richter, Achim

    2016-10-01

    Exact analytical expressions for the cross-section correlation functions of chaotic scattering systems have hitherto been derived only under special conditions. The objective of the present article is to provide expressions that are applicable beyond these restrictions. The derivation is based on a statistical model of Breit-Wigner type for chaotic scattering amplitudes which has been shown to describe the exact analytical results for the scattering (S)-matrix correlation functions accurately. Our results are given in the energy and in the time representations and apply in the whole range from isolated to overlapping resonances. The S-matrix contributions to the cross-section correlations are obtained in terms of explicit irreducible and reducible correlation functions. Consequently, the model can be used for a detailed exploration of the key features of the cross-section correlations and the underlying physical mechanisms. In the region of isolated resonances, the cross-section correlations contain a dominant contribution from the self-correlation term. For narrow states the self-correlations originate predominantly from widely spaced states with exceptionally large partial width. In the asymptotic region of well-overlapping resonances, the cross-section autocorrelation functions are given in terms of the S-matrix autocorrelation functions. For inelastic correlations, in particular, the Ericson fluctuations rapidly dominate in that region. Agreement with known analytical and experimental results is excellent.

  10. Random-matrix approach to the statistical compound nuclear reaction at low energies using the Monte-Carlo technique [PowerPoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawano, Toshihiko

    2015-11-10

    This theoretical treatment of low-energy compound nucleus reactions begins with the Bohr hypothesis, with corrections, and various statistical theories. The author investigates the statistical properties of the scattering matrix containing a Gaussian Orthogonal Ensemble (GOE) Hamiltonian in the propagator. The following conclusions are reached: For all parameter values studied, the numerical average of MC-generated cross sections coincides with the result of the Verbaarschot, Weidenmueller, Zirnbauer triple-integral formula. Energy average and ensemble average agree reasonably well when the width I is one or two orders of magnitude larger than the average resonance spacing d. In the strong-absorption limit, the channel degree-of-freedommore » ν a is 2. The direct reaction increases the inelastic cross sections while the elastic cross section is reduced.« less

  11. A Spine Loading Model of Women in the Military

    DTIC Science & Technology

    1999-10-01

    Table 1.8. Left erector spinae anatomical cross-sectional areas ..................................... 42 Table 1.9. Right rectus abdominis anatomical...cross-sectional areas ................................ 43 Table 1.10. Left rectus abdominis anatomical cross-sectional areas...Right rectus abdominis coronal plane moment-arms ....................................... 59 Table 1.26. Left rectus abdominis coronal plane moment-arms

  12. Average Cross-Sectional Area of DebriSat Fragments Using Volumetrically Constructed 3D Representations

    NASA Technical Reports Server (NTRS)

    Scruggs, T.; Moraguez, M.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.

    2016-01-01

    Debris fragments from the hypervelocity impact testing of DebriSat are being collected and characterized for use in updating existing satellite breakup models. One of the key parameters utilized in these models is the ballistic coefficient of the fragment which is directly related to its area-to-mass ratio. However, since the attitude of fragments varies during their orbital lifetime, it is customary to use the average cross-sectional area in the calculation of the area-to-mass ratio. The average cross-sectional area is defined as the average of the projected surface areas perpendicular to the direction of motion and has been shown to be equal to one-fourth of the total surface area of a convex object. Unfortunately, numerous fragments obtained from the DebriSat experiment show significant concavity (i.e., shadowing) and thus we have explored alternate methods for computing the average cross-sectional area of the fragments. An imaging system based on the volumetric reconstruction of a 3D object from multiple 2D photographs of the object was developed for use in determining the size characteristic (i.e., characteristics length) of the DebriSat fragments. For each fragment, the imaging system generates N number of images from varied azimuth and elevation angles and processes them using a space-carving algorithm to construct a 3D point cloud of the fragment. This paper describes two approaches for calculating the average cross-sectional area of debris fragments based on the 3D imager. Approach A utilizes the constructed 3D object to generate equally distributed cross-sectional area projections and then averages them to determine the average cross-sectional area. Approach B utilizes a weighted average of the area of the 2D photographs to directly compute the average cross-sectional area. A comparison of the accuracy and computational needs of each approach is described as well as preliminary results of an analysis to determine the "optimal" number of images needed for the 3D imager to accurately measure the average cross sectional area of objects with known dimensions.

  13. Quantitative magnetic resonance imaging analysis of the cross-sectional areas of the anconeus epitrochlearis muscle, cubital tunnel, and ulnar nerve with the elbow in extension in patients with and without ulnar neuropathy.

    PubMed

    Eng, Hing Y; Gunio, Drew A; Benitez, Carlos L

    2018-05-10

    The purpose of this study was to assess the cross-sectional area of the anconeus epitrochlearis muscle (AEM), cubital tunnel, and ulnar nerve with the elbow in extension in patients with and without ulnar neuropathy. We performed a retrospective, level IV review of elbow magnetic resonance imaging (MRI) studies. Elbow MRI studies of 32 patients with an AEM (26 men and 6 women, aged 18-60 years), 32 randomly selected patients without an AEM (aged 16-71 years), and 32 patients with clinical ulnar neuritis (22 men and 10 women, aged 24-76 years) were reviewed. We evaluated the ulnar nerve cross-sectional area proximal to, within, and distal to the cubital tunnel; AEM cross-sectional area; and cubital tunnel cross-sectional area. We found no significant difference in the nerve caliber between patients with and without an AEM. No correlation was found between the AEM cross-sectional area and ulnar nerve cross-sectional area within the cubital tunnel (r = 0.14). The mean cubital tunnel cross-sectional area was larger in patients with an AEM. Only 4 of the 32 patients with an AEM had findings of ulnar neuritis on MRI. Of the 32 patients with a clinical diagnosis of ulnar neuritis, only 2 had an AEM. With the elbow in extension, the presence or cross-sectional area of an AEM does not correlate with the area of the ulnar nerve or cubital tunnel. Only a small number of individuals with MRI evidence of an AEM had clinical evidence of ulnar neuropathy. Likewise, MRI evidence of an AEM was found in only a small number of individuals with clinical evidence of ulnar neuropathy. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... waters less than 15 feet (4.6 meters) deep as measured from mean low water 36 (914) 18 (457) Other offshore areas under water less than 12 ft (3.7 meters) deep as measured from mean low water 36 (914) 18... residential areas 36 (914) 30 (762) Crossing of inland bodies of water with a width of at least 100 feet (30...

  15. Interference in the g g → h → γ γ On-Shell Rate and the Higgs Boson Total Width

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John; Carena, Marcela; Harnik, Roni

    We consider interference between the Higgs signal and QCD background inmore » $$gg\\rightarrow h \\rightarrow \\gamma\\gamma$$ and its effect on the on-shell Higgs rate. The existence of sizable strong phases leads to destructive interference of about 2% of the on-shell cross section in the Standard Model. This effect can be enhanced by beyond the standard model physics. In particular, since it scales differently from the usual rates, the presence of interference allows indirect limits to be placed on the Higgs width in a novel way, using on-shell rate measurements. Our study motivates further QCD calculations to reduce uncertainties. We discuss potential width-sensitive observables, both using total and differential rates and find that the HL-LHC can potentially indirectly probe widths of order tens of MeV.« less

  16. Effect of Width of Kerf on Machining Accuracy and Subsurface Layer After WEDM

    NASA Astrophysics Data System (ADS)

    Mouralova, K.; Kovar, J.; Klakurkova, L.; Prokes, T.

    2018-02-01

    Wire electrical discharge machining is an unconventional machining technology that applies physical principles to material removal. The material is removed by a series of recurring current discharges between the workpiece and the tool electrode, and a `kerf' is created between the wire and the material being machined. The width of the kerf is directly dependent not only on the diameter of the wire used, but also on the machine parameter settings and, in particular, on the set of mechanical and physical properties of the material being machined. To ensure precise machining, it is important to have the width of the kerf as small as possible. The present study deals with the evaluation of the width of the kerf for four different metallic materials (some of which were subsequently heat treated using several methods) with different machine parameter settings. The kerf is investigated on metallographic cross sections using light and electron microscopy.

  17. Vastus medialis cross-sectional area is positively associated with patella cartilage and bone volumes in a pain-free community-based population

    PubMed Central

    Berry, Patricia A; Teichtahl, Andrew J; Galevska-Dimitrovska, Ana; Hanna, Fahad S; Wluka, Anita E; Wang, Yuanyuan; Urquhart, Donna M; English, Dallas R; Giles, Graham G; Cicuttini, Flavia M

    2008-01-01

    Introduction Although vastus medialis and lateralis are important determinants of patellofemoral joint function, their relationship with patellofemoral joint structure is unknown. The aim of this study was to examine potential determinants of vastus medialis and lateralis cross-sectional areas and the relationship between the cross-sectional area and patella cartilage and bone volumes. Methods Two hundred ninety-seven healthy adult subjects had magnetic resonance imaging of their dominant knee. Vastus medialis and lateralis cross-sectional areas were measured 37.5 mm superior to the quadriceps tendon insertion at the proximal pole of the patella. Patella cartilage and bone volumes were measured from these images. Demographic data and participation in vigorous physical activity were assessed by questionnaire. Results The determinants of increased vastus medialis and lateralis cross-sectional areas were older age (P ≤ 0.002), male gender (P < 0.001), and greater body mass index (P ≤ 0.07). Participation in vigorous physical activity was positively associated with vastus medialis cross-sectional area (regression coefficient [beta] 90.0; 95% confidence interval [CI] 38.2, 141.7) (P < 0.001) but not with vastus lateralis cross-sectional area (beta 10.1; 95% CI -18.1, 38.3) (P = 0.48). The cross-sectional area of vastus medialis only was positively associated with patella cartilage volume (beta 0.6; 95% CI 0.23, 0.94) (P = 0.001) and bone volume (beta 3.0; 95% CI 1.40, 4.68) (P < 0.001) after adjustment for potential confounders. Conclusions Our results in a pain-free community-based population suggest that increased cross-sectional area of vastus medialis, which is associated with vigorous physical activity, and increased patella cartilage and bone volumes may benefit patellofemoral joint health and reduce the long-term risk of patellofemoral pathology. PMID:19077298

  18. School Planning Safe Transporting.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Education, Trenton. Bureau of Pupil Transportation.

    Prepared for boards of education and municipal planning authorities, school site selection is related to school bus safety. Consideration of direction and density of traffic flow, street crossings, curbing, drainage, road width, parking areas, number of pupils and personnel, number of buses, method of transportation, schedules and extra-curricular…

  19. Error estimates for ice discharge calculated using the flux gate approach

    NASA Astrophysics Data System (ADS)

    Navarro, F. J.; Sánchez Gámez, P.

    2017-12-01

    Ice discharge to the ocean is usually estimated using the flux gate approach, in which ice flux is calculated through predefined flux gates close to the marine glacier front. However, published results usually lack a proper error estimate. In the flux calculation, both errors in cross-sectional area and errors in velocity are relevant. While for estimating the errors in velocity there are well-established procedures, the calculation of the error in the cross-sectional area requires the availability of ground penetrating radar (GPR) profiles transverse to the ice-flow direction. In this contribution, we use IceBridge operation GPR profiles collected in Ellesmere and Devon Islands, Nunavut, Canada, to compare the cross-sectional areas estimated using various approaches with the cross-sections estimated from GPR ice-thickness data. These error estimates are combined with those for ice-velocities calculated from Sentinel-1 SAR data, to get the error in ice discharge. Our preliminary results suggest, regarding area, that the parabolic cross-section approaches perform better than the quartic ones, which tend to overestimate the cross-sectional area for flight lines close to the central flowline. Furthermore, the results show that regional ice-discharge estimates made using parabolic approaches provide reasonable results, but estimates for individual glaciers can have large errors, up to 20% in cross-sectional area.

  20. Applications and Engineering Analysis of Lotus Roots under External Water Pressure

    PubMed Central

    Wang, Chang Jiang; Mynors, Diane

    2016-01-01

    Engineers can learn from nature for inspirations to create new designs. The internal structure of lotus roots with several oval holes was studied in this paper for engineering inspirations. The structural performance of lotus roots under outside water pressure was simulated and compared with various cross-sectional areas. The distribution of stresses in the cross-sectional area of lotus roots was analysed and presented. It was found that the maximum compressive stresses in the cross-sectional area of lotus roots were occurring at the long axis ends of the holes. This was very different from that of circular holes. Further analysis on the triaxiality factors revealed that the cross-sectional area of the lotus root resulted in large areas of high triaxiality factors. The resulting hydrostatic stress in the cross-sectional area of lotus root ranges from zero to 2.7 times the applied outside pressure. In contrast, the hydrostatic stress in a cylindrical cross-sectional area is a fixed value. The study showed that the lotus root and the orientation of the oval holes could be mimicked in the design of new structures, for example, underwater pipes and vessels. PMID:28127228

  1. Risk-based planning analysis for a single levee

    NASA Astrophysics Data System (ADS)

    Hui, Rui; Jachens, Elizabeth; Lund, Jay

    2016-04-01

    Traditional risk-based analysis for levee planning focuses primarily on overtopping failure. Although many levees fail before overtopping, few planning studies explicitly include intermediate geotechnical failures in flood risk analysis. This study develops a risk-based model for two simplified levee failure modes: overtopping failure and overall intermediate geotechnical failure from through-seepage, determined by the levee cross section represented by levee height and crown width. Overtopping failure is based only on water level and levee height, while through-seepage failure depends on many geotechnical factors as well, mathematically represented here as a function of levee crown width using levee fragility curves developed from professional judgment or analysis. These levee planning decisions are optimized to minimize the annual expected total cost, which sums expected (residual) annual flood damage and annualized construction costs. Applicability of this optimization approach to planning new levees or upgrading existing levees is demonstrated preliminarily for a levee on a small river protecting agricultural land, and a major levee on a large river protecting a more valuable urban area. Optimized results show higher likelihood of intermediate geotechnical failure than overtopping failure. The effects of uncertainty in levee fragility curves, economic damage potential, construction costs, and hydrology (changing climate) are explored. Optimal levee crown width is more sensitive to these uncertainties than height, while the derived general principles and guidelines for risk-based optimal levee planning remain the same.

  2. Pressure broadening of the ((dt. mu. )dee)* formation resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, J.S.; Leon, M.; Padial, N.T.

    1988-12-27

    The treatment of ((dt..mu..)dee)* formation at high densities as a pressure broadening process is discussed. Cross sections for collisions of the complex (dt..mu..)dee, and of the D/sub 2/ molecule from which it is formed, with the bath molecules have been accurately calculated. These cross sections are used to calculate the collisional width in three variations of the impact approximation that have been proposed for this problem. In general, the quasistatic approximation is shown to satisfy the usual conditions of muon-catalyzed fusion better than does the impact approximation. A preliminary rough treatment is presented to illustrate the quasistatic approximation.

  3. Northern/Intermountain Regions' fish habitat inventory: Grazed, rested, and ungrazed reference stream reaches, Silver King Creek, California

    Treesearch

    C. Kerry Overton; Gwynne L. Chandler; Janice A. Pisano

    1994-01-01

    Stream reaches that have been rested from livestock grazing appear to have stable banks and more bank undercuts than grazed stream sections. Ungrazed reference streams that are similar in parent geology, precipitation, channel type, habitat types, drainage area, and stream width had greater bank stability values and lower width-todepth ratios than those of grazed and...

  4. Quantitative anatomy of the growing clavicle in the human fetus: CT, digital image analysis, and statistical study.

    PubMed

    Wiśniewski, Marcin; Baumgart, Mariusz; Grzonkowska, Magdalena; Małkowski, Bogdan; Flisiński, Piotr; Dombek, Małgorzata; Szpinda, Michał

    2017-08-01

    Knowledge of dimensions of fetal long bones is useful in both the assessment of fetal growth and early detection of inherited defects. Measurements of the fetal clavicle may facilitate detection of numerous defects, e.g., cleidocranial dysplasia, Holt-Oram syndrome, Goltz syndrome, and Melnick-Needles syndrome. Using the methods of CT, digital image analysis, and statistics, the size of the growing clavicle in 42 spontaneously aborted human fetuses (21 males and 21 females) at ages of 18-30 weeks was studied. Without any male-female and right-left significant differences, the best fit growth models for the growing clavicle with relation to age in weeks were as follows: y = -54.439 + 24.673 × ln(age) ± 0.237 (R 2  = 0.86) for length, y = -12.042 + 4.906 × ln(age) ± 0.362 (R 2  = 0.82) for width of acromial end, y = -4.210 + 2.028 × ln(age) ± 0.177 (R 2  = 0.77) for width of central part, y = -4.687 + 2.364 × ln(age) ± 0.242 (R 2  = 0.70) for width of sternal end, y = -51.078 + 4.174 × ln(age) ± 6.943 (R 2  = 0.82) for cross-sectional area, and y = -766.948 + 281.774 × ln(age) ± 19.610 (R 2  = 0.84) for volume. With no sex and laterality differences, the clavicle grows logarithmically with respect to its length, width, and volume, and linearly with respect to its projection surface area. The obtained morphometric data of the growing clavicle are considered normative for their respective weeks of gestation and may be of relevance in the diagnosis of congenital defects.

  5. Material mechanical characterization method for multiple strains and strain rates

    DOEpatents

    Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli

    2016-01-19

    A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.

  6. Measurement of the Z 0 mass and width with the opal detector at LEP

    NASA Astrophysics Data System (ADS)

    Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Bavaria, G.; Beard, C.; Beck, F.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Bloodworth, I. J.; Bock, P.; Boerner, H.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Cohen, I.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Davies, O. W.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchesneau, D.; Duchovni, E.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gandois, B.; Ganel, O.; Gary, J. W.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grosse-Wiesmann, P.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hatzifotiadou, D.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Heintze, J.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Hinde, P. S.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Imori, M.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jin, E.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Koepke, L.; Kokott, T. P.; Koshiba, M.; Kowalewski, R.; Kreutzmann, H.; von Krogh, J.; Kroll, J.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Lasota, M. M. B.; Layter, J. G.; le Du, P.; Leblanc, P.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Muller, A.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Patrick, G. N.; Pawley, S. J.; Perez, A.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Possoz, A.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Roehner, F.; Rollnik, A.; Roney, J. M.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; von der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk, G.; van den Plas, D.; Vandalen, G. J.; Virtue, C. J.; Wagner, A.; Wahl, C.; Wang, H.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yamashita, H.; Yang, Y.; Yekutieli, G.; Zeuner, W.; Zorn, G. T.; Zylberajch, S.; OPAL Collaboration

    1989-11-01

    We report an experimental determination of the cross section for e +e - → hadrons from a scan around the Z 0 pole. On the basis of 4350 hadronic events collected over seven energy points between 89.26 GeV and 93.26 GeV we obtain a mass of mz=91.01±0.05±0.05 GeV, and a total decay width of Γz=2.60±0.13 GeV. In the context of the standard model t these results imply 3.1 ± 0.4 neutrino generations.

  7. Search for resonant tt[overline] production in pp[overline] collisions at sqrt[s]=1.96 TeV.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-06-13

    We report on a search for narrow-width particles decaying to a top and antitop quark pair. The data set used in the analysis corresponds to an integrated luminosity of 680 pb(-1) collected with the Collider Detector at Fermilab in run II. We present 95% confidence level upper limits on the cross section times branching ratio. Assuming a specific top-color-assisted technicolor production model, the leptophobic Z' with width Gamma(Z')=0.012M(Z'), we exclude the mass range M(Z')<725 GeV/c(2) at the 95% confidence level.

  8. Phonon Conduction in Silicon Nanobeam Labyrinths

    DOE PAGES

    Park, Woosung; Romano, Giuseppe; Ahn, Ethan C.; ...

    2017-07-24

    Here we study single-crystalline silicon nanobeams having 470 nm width and 80 nm thickness cross section, where we produce tortuous thermal paths (i.e. labyrinths) by introducing slits to control the impact of the unobstructed “line-of-sight” (LOS) between the heat source and heat sink. The labyrinths range from straight nanobeams with a complete LOS along the entire length to nanobeams in which the LOS ranges from partially to entirely blocked by introducing slits, s = 95, 195, 245, 295 and 395 nm. The measured thermal conductivity of the samples decreases monotonically from ~47 W m -1K -1 for straight beam tomore » ~31 W m -1 K -1 for slit width of 395 nm. A model prediction through a combination of the Boltzmann transport equation and ab initio calculations shows an excellent agreement with the experimental data to within ~8%. The model prediction for the most tortuous path (s = 395 nm) is reduced by ~14% compared to a straight beam of equivalent cross section. This study suggests that LOS is an important metric for characterizing and interpreting phonon propagation in nanostructures.« less

  9. Three-dimensional morphology of the palate in subjects with isolated cleft palate at the stage of permanent dentition.

    PubMed

    Smahel, Zbynek; Trefný, Pavel; Formánek, Pavel; Müllerová, Ziva; Peterka, Miroslav

    2003-11-01

    Three-dimensional analysis of palate size and shape in patients with isolated cleft palate at the stage of permanent dentition. Cross-sectional study using Fourier transform profilometry. Twenty-nine randomly selected dental casts of approximately 15-year-old boys with isolated cleft palate and 28 dental casts of normal boys of the same age. All patients were operated on by the same method (pushback and pharyngeal flap surgery) at a mean age of 4.5 years. Data on the palate height in 210 defined locations (pixels). The palate in isolated clefts is narrower throughout its whole extent and lower from the level of the first premolars. The difference, as compared with controls, increases in a posterior direction. At the level of the first molars, palatal height is reduced by one-quarter, the area of the transversal section by more than one-third. The shaping of the palate vault is, on average, symmetrical with a marked interindividual variability. Palatal height does not depend on the width of the dentoalveolar arch, and the height of the primary palate is not reduced. The smaller width and reduced height from the level of the first premolars posteriorly confirm the substantially reduced space available for the tongue in patients with isolated cleft palate. Deviations are on the average symmetrical, and the anterior part of the palate is not shallower.

  10. Bathymetric survey of Carroll Creek Tributary to Lake Tuscaloosa, Tuscaloosa County, Alabama, 2010

    USGS Publications Warehouse

    Lee, K.G.; Kimbrow, D.R.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the City of Tuscaloosa, conducted a bathymetric survey of Carroll Creek, on May 12-13, 2010. Carroll Creek is one of the major tributaries to Lake Tuscaloosa and contributes about 6 percent of the surface drainage area. A 3.5-mile reach of Carroll Creek was surveyed to prepare a current bathymetric map, determine storage capacities at specified water-surface elevations, and compare current conditions to historical cross sections. Bathymetric data were collected using a high-resolution interferometric mapping system consisting of a phase-differencing bathymetric sonar, navigation and motion-sensing system, and a data acquisition computer. To assess the accuracy of the interferometric mapping system and document depths in shallow areas of the study reach, an electronic total station was used to survey 22 cross sections spaced 50 feet apart. The data were combined and processed and a Triangulated Irregular Network (TIN) and contour map were generated. Cross sections were extracted from the TIN and compared with historical cross sections. Between 2004 and 2010, the area (cross section 1) at the confluence of Carroll Creek and the main run of LakeTuscaloosa showed little to no change in capacity area. Another area (cross section 2) showed a maximum change in elevation of 4 feet and an average change of 3 feet. At the water-surface elevation of 224 feet (National Geodetic Vertical Datum of 1929), the cross-sectional area has changed by 260 square feet for a total loss of 28 percent of cross-sectional storage area. The loss of area may be attributed to sedimentation in Carroll Creek and (or) the difference in accuracy between the two surveys.

  11. Tendon retraction with rotator cuff tear causes a decrease in cross-sectional area of the supraspinatus muscle on magnetic resonance imaging.

    PubMed

    Fukuta, Shoji; Tsutsui, Takahiko; Amari, Rui; Wada, Keizo; Sairyo, Koichi

    2016-07-01

    Muscle atrophy and fatty degeneration of the rotator cuff muscles have been reported as negative prognostic indicators after rotator cuff repair. Although the Y-shaped view is widely used for measuring the cross-sectional area of the supraspinatus muscle, the contribution of retraction of the torn tendon as well as muscle atrophy must be considered. The purpose of this study was to clarify the relationship between cross-sectional area and tendon retraction or size of the tear. This study included 76 shoulders that were evaluated arthroscopically for the presence and size of tears. Cross-sectional areas of rotator cuff muscles were measured from the Y-shaped view to 3 more medial slices. The occupation ratio and tangent sign were evaluated on the Y-shaped view. The retraction of torn tendon was also measured on the oblique coronal images. On the Y-shaped view, the cross-sectional area of the supraspinatus and the occupation ratio decreased in conjunction with the increase in tear size. A significant decrease in cross-sectional area was noted only in large and massive tears on more medial slices from the Y-shaped view. Significant decreases in the cross-sectional area of the infraspinatus were observed in large and massive tears on all images. A negative correlation was found between tendon retraction and cross-sectional area, which was strongest on the Y-shaped view. To avoid the influence of retraction of the supraspinatus tendon, sufficient medial slices from the musculotendinous junction should be used for evaluation of muscle atrophy. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Continuous measurements of water surface height and width along a 6.5km river reach for discharge algorithm development

    NASA Astrophysics Data System (ADS)

    Tuozzolo, S.; Durand, M. T.; Pavelsky, T.; Pentecost, J.

    2015-12-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite will provide measurements of river width and water surface elevation and slope along continuous swaths of world rivers. Understanding water surface slope and width dynamics in river reaches is important for both developing and validating discharge algorithms to be used on future SWOT data. We collected water surface elevation and river width data along a 6.5km stretch of the Olentangy River in Columbus, Ohio from October to December 2014. Continuous measurements of water surface height were supplemented with periodical river width measurements at twenty sites along the study reach. The water surface slope of the entire reach ranged from during 41.58 cm/km at baseflow to 45.31 cm/km after a storm event. The study reach was also broken into sub-reaches roughly 1km in length to study smaller scale slope dynamics. The furthest upstream sub-reaches are characterized by free-flowing riffle-pool sequences, while the furthest downstream sub-reaches were directly affected by two low-head dams. In the sub-reaches immediately upstream of each dam, baseflow slope is as low as 2 cm/km, while the furthest upstream free-flowing sub-reach has a baseflow slope of 100 cm/km. During high flow events the backwater effect of the dams was observed to propagate upstream: sub-reaches impounded by the dams had increased water surface slopes, while free flowing sub-reaches had decreased water surface slopes. During the largest observed flow event, a stage change of 0.40 m affected sub-reach slopes by as much as 30 cm/km. Further analysis will examine height-width relationships within the study reach and relate cross-sectional flow area to river stage. These relationships can be used in conjunction with slope data to estimate discharge using a modified Manning's equation, and are a core component of discharge algorithms being developed for the SWOT mission.

  13. Post-prior equivalence for transfer reactions with complex potentials

    NASA Astrophysics Data System (ADS)

    Lei, Jin; Moro, Antonio M.

    2018-01-01

    In this paper, we address the problem of the post-prior equivalence in the calculation of inclusive breakup and transfer cross sections. For that, we employ the model proposed by Ichimura et al. [Phys. Rev. C 32, 431 (1985), 10.1103/PhysRevC.32.431], conveniently generalized to include the part of the cross section corresponding the transfer to bound states. We pay particular attention to the case in which the unobserved particle is left in a bound state of the residual nucleus, in which case the theory prescribes the use of a complex potential, responsible for the spreading width of the populated single-particle states. We see that the introduction of this complex potential gives rise to an additional term in the prior cross-section formula, not present in the usual case of real binding potentials. The equivalence is numerically tested for the 58Ni(d ,p X ) reaction.

  14. Discovery of previously unrecognised local faults in London, UK, using detailed 3D geological modelling

    NASA Astrophysics Data System (ADS)

    Aldiss, Don; Haslam, Richard

    2013-04-01

    In parts of London, faulting introduces lateral heterogeneity to the local ground conditions, especially where construction works intercept the Palaeogene Lambeth Group. This brings difficulties to the compilation of a ground model that is fully consistent with the ground investigation data, and so to the design and construction of engineering works. However, because bedrock in the London area is rather uniform at outcrop, and is widely covered by Quaternary deposits, few faults are shown on the geological maps of the area. This paper discusses a successful resolution of this problem at a site in east central London, where tunnels for a new underground railway station are planned. A 3D geological model was used to provide an understanding of the local geological structure, in faulted Lambeth Group strata, that had not been possible by other commonly-used methods. This model includes seven previously unrecognised faults, with downthrows ranging from about 1 m to about 12 m. The model was constructed in the GSI3D geological modelling software using about 145 borehole records, including many legacy records, in an area of 850 m by 500 m. The basis of a GSI3D 3D geological model is a network of 2D cross-sections drawn by a geologist, generally connecting borehole positions (where the borehole records define the level of the geological units that are present), and outcrop and subcrop lines for those units (where shown by a geological map). When the lines tracing the base of each geological unit within the intersecting cross-sections are complete and mutually consistent, the software is used to generate TIN surfaces between those lines, so creating a 3D geological model. Even where a geological model is constructed as if no faults were present, changes in apparent dip between two data points within a single cross-section can indicate that a fault is present in that segment of the cross-section. If displacements of similar size with the same polarity are found in a series of adjacent cross-sections, the presence of a fault can be substantiated. If it is assumed that the fault is planar and vertical, then the pairs of constraining data points in each cross-section form a two-dimensional envelope within which the surface trace of the fault must lie. Generally, the broader the area of the model, the longer the envelope defined by the pairs of boreholes is, resulting in better constraint of the fault zone width and azimuth. Repetition or omission of the local stratigraphy in the constraining boreholes can demonstrate reverse or normal dip-slip motion. Even if this is not possible, borehole intercepts at the base of the youngest bedrock unit or at the top of the oldest bedrock unit can constrain the minimum angle of dip of the fault plane. Assessment of the maximum angle of dip requires intrusive investigation. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an NERC copyright. This license does not conflict with the regulations of the Crown Copyright.

  15. Damage accumulation in closed cross-section, laminated, composite structures

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1996-01-01

    The need for safe, lightweight, less expensive, and more reliable launch vehicle components is being driven by the competitiveness of the commercial launch market. The United States has lost 2/3 of the commercial lunch market to Europe. As low cost Russian and Chinese vehicles become available, the US market share could be reduced even further. This international climate is driving the Single Stage To Orbit (SSTO) program at NASA. The goal of the SSTO program is to radically reduce the cost of safe, routine transportation to and from space with a totally reusable launch vehicle designed for low-cost aircraft-like operations. Achieving this goal will require more efficient uses of materials. Composite materials can provide this program with the material and structural efficiencies needed to stay competitive in the international launch market place. In satellite systems the high specific properties, design flexibility, improved corrosion and wear resistance, increased fatigue life, and low coefficient of thermal expansion that are characteristic of composite materials can all be used to improve the overall satellite performance. Some of the satellites that may be able to take advantage of these performance characteristics are the Tethered Satellite Systems (TOSCIFER, AIRSEDS, TSS2, SEDS1, and SEDS2), AXAF, GRO, and the next generation Hubble Space Telescope. These materials can also be utilized in projects at the NASAIMSFC Space Optics Technology and System Center of Excellence. The successful implementation of composite materials requires accurate performance characterization. Materials characterization data for composite materials is typically generated using flat coupons of finite width. At the free edge of these coupons the stress state is exacerbated by the presence of stiffness and geometric discontinuities. The exacerbated stress state has been shown to dominate the damage accumulation in these materials and to have a profound affect on the material constants. Space structures typically have closed cross-sections, absent of free edges. As a result, composite material characterization data generated using finite width flat specimens does not accurately reflect the performance of the composite materials used in a closed cross-section structural configuration. Several investigators have recognized the need to develop characterization techniques for composite materials in closed cross-sectioned structures. In these investigations test methods were developed and cylindrical specimens were evaluated. The behavior of the cylindrical specimens were observed to depart from behavior typical of flat coupons. However, no attempts were made to identify and monitor the progression of damage in these cylindrical specimens during loading. The identification and monitoring of damage is fundamental to the characterization of composite materials in closed cross-section configurations. In the study reported here, a closed cross-sectioned test method was developed to monitor damage progression in 2 in. diameter cylindrical specimens and 1.5 in. finite width flat coupons subjected to quasi-static, tensile loading conditions. Damage in these specimen configurations was monitored using pulse echo ultrasonic, acoustic emission, and X-ray techniques.

  16. Experimental and numerical modeling of heat transfer in directed thermoplates

    DOE PAGES

    Khalil, Imane; Hayes, Ryan; Pratt, Quinn; ...

    2018-03-20

    We present three-dimensional numerical simulations to quantify the design specifications of a directional thermoplate expanded channel heat exchanger, also called dimpleplate. Parametric thermofluidic simulations were performed independently varying the number of spot welds, the diameter of the spot welds, and the thickness of the fluid channel within the laminar flow regime. Results from computational fluid dynamics simulations show an improvement in heat transfer is achieved under a variety of conditions: when the thermoplate has a relatively large cross-sectional area normal to the flow, a ratio of spot weld spacing to channel length of 0.2, and a ratio of the spotmore » weld diameter with respect to channel width of 0.3. Lastly, experimental results performed to validate the model are also presented.« less

  17. Experimental and numerical modeling of heat transfer in directed thermoplates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Imane; Hayes, Ryan; Pratt, Quinn

    We present three-dimensional numerical simulations to quantify the design specifications of a directional thermoplate expanded channel heat exchanger, also called dimpleplate. Parametric thermofluidic simulations were performed independently varying the number of spot welds, the diameter of the spot welds, and the thickness of the fluid channel within the laminar flow regime. Results from computational fluid dynamics simulations show an improvement in heat transfer is achieved under a variety of conditions: when the thermoplate has a relatively large cross-sectional area normal to the flow, a ratio of spot weld spacing to channel length of 0.2, and a ratio of the spotmore » weld diameter with respect to channel width of 0.3. Lastly, experimental results performed to validate the model are also presented.« less

  18. Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope.

    PubMed

    Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D

    2013-02-01

    We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0-400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument.

  19. Spectroscopy of Pionic Atoms in 122Sn (d, 3He) Reaction and Angular Dependence of the Formation Cross Sections

    NASA Astrophysics Data System (ADS)

    Nishi, T.; Itahashi, K.; Berg, G. P. A.; Fujioka, H.; Fukuda, N.; Fukunishi, N.; Geissel, H.; Hayano, R. S.; Hirenzaki, S.; Ichikawa, K.; Ikeno, N.; Inabe, N.; Itoh, S.; Iwasaki, M.; Kameda, D.; Kawase, S.; Kubo, T.; Kusaka, K.; Matsubara, H.; Michimasa, S.; Miki, K.; Mishima, G.; Miya, H.; Nagahiro, H.; Nakamura, M.; Noji, S.; Okochi, K.; Ota, S.; Sakamoto, N.; Suzuki, K.; Takeda, H.; Tanaka, Y. K.; Todoroki, K.; Tsukada, K.; Uesaka, T.; Watanabe, Y. N.; Weick, H.; Yamakami, H.; Yoshida, K.; piAF Collaboration

    2018-04-01

    We observed the atomic 1 s and 2 p states of π- bound to 121Sn nuclei as distinct peak structures in the missing mass spectra of the 122Sn(d ,3He) nuclear reaction. A very intense deuteron beam and a spectrometer with a large angular acceptance let us achieve a potential of discovery, which includes the capability of determining the angle-dependent cross sections with high statistics. The 2 p state in a Sn nucleus was observed for the first time. The binding energies and widths of the pionic states are determined and found to be consistent with previous experimental results of other Sn isotopes. The spectrum is measured at finite reaction angles for the first time. The formation cross sections at the reaction angles between 0° and 2° are determined. The observed reaction-angle dependence of each state is reproduced by theoretical calculations. However, the quantitative comparison with our high-precision data reveals a significant discrepancy between the measured and calculated formation cross sections of the pionic 1 s state.

  20. Resonant vibrational-excitation cross sections and rate constants for low-energy electron scattering by molecular oxygen

    NASA Astrophysics Data System (ADS)

    Laporta, V.; Celiberto, R.; Tennyson, J.

    2013-04-01

    Resonant vibrational-excitation cross sections and rate constants for electron scattering by molecular oxygen are presented. Transitions between all 42 vibrational levels of O_2({X}\\, ^3\\Sigma_g^{-}) are considered. Molecular rotations are parametrized by the rotational quantum number J, which is considered in the range 1-151. The lowest four resonant states of O_2^- , 2Πg, 2Πu, ^4\\Sigma_u^- and ^2\\Sigma_u^- are taken into account. The calculations are performed using the fixed-nuclei R-matrix approach to determine the resonance positions and widths, and the boomerang model to characterize the nuclei motion. Two energy regions below and above 4 eV are investigated: the first one is characterized by sharp structures in the cross section and the second by a broad resonance peaked at 10 eV. The computed cross sections are compared with theoretical and experimental results available in the literature for both energy regions, and are made available for use by modelers. The effect of including rotational motion is found to be non-negligible.

  1. Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope

    PubMed Central

    Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J.; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D.

    2013-01-01

    We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0–400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument. PMID:23412564

  2. Inertial migration of deformable droplets in a microchannel

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Xue, Chundong; Zhang, Li; Hu, Guoqing; Jiang, Xingyu; Sun, Jiashu

    2014-11-01

    The microfluidic inertial effect is an effective way of focusing and sorting droplets suspended in a carrier fluid in microchannels. To understand the flow dynamics of microscale droplet migration, we conduct numerical simulations on the droplet motion and deformation in a straight microchannel. The results are compared with preliminary experiments and theoretical analysis. In contrast to most existing literature, the present simulations are three-dimensional and full length in the streamwise direction and consider the confinement effects for a rectangular cross section. To thoroughly examine the effect of the velocity distribution, the release positions of single droplets are varied in a quarter of the channel cross section based on the geometrical symmetries. The migration dynamics and equilibrium positions of the droplets are obtained for different fluid velocities and droplet sizes. Droplets with diameters larger than half of the channel height migrate to the centerline in the height direction and two equilibrium positions are observed between the centerline and the wall in the width direction. In addition to the well-known Segré-Silberberg equilibrium positions, new equilibrium positions closer to the centerline are observed. This finding is validated by preliminary experiments that are designed to introduce droplets at different initial lateral positions. Small droplets also migrate to two equilibrium positions in the quarter of the channel cross section, but the coordinates in the width direction are between the centerline and the wall. The equilibrium positions move toward the centerlines with increasing Reynolds number due to increasing deformations of the droplets. The distributions of the lift forces, angular velocities, and the deformation parameters of droplets along the two confinement direction are investigated in detail. Comparisons are made with theoretical predictions to determine the fundamentals of droplet migration in microchannels. In addition, existence of the inner equilibrium position is linked to the quartic velocity distribution in the width direction through a simple model for the slip angular velocities of droplets.

  3. Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants.

    PubMed

    Maciel, Alfredo; Presbítero, Gerardo; Piña, Cristina; del Pilar Gutiérrez, María; Guzmán, José; Munguía, Nadia

    2015-01-01

    A clear understanding of the dependence of mechanical properties of bone remains a task not fully achieved. In order to estimate the mechanical properties in bones for implants, pore cross-section area, calcium content, and apparent density were measured in trabecular bone samples for human implants. Samples of fresh and defatted bone tissue, extracted from one year old bovines, were cut in longitudinal and transversal orientation of the trabeculae. Pore cross-section area was measured with an image analyzer. Compression tests were conducted into rectangular prisms. Elastic modulus presents a linear tendency as a function of pore cross-section area, calcium content and apparent density regardless of the trabecular orientation. The best variable to estimate elastic modulus of trabecular bone for implants was pore cross-section area, and affirmations to consider Nukbone process appropriated for marrow extraction in trabecular bone for implantation purposes are proposed, according to bone mechanical properties. Considering stress-strain curves, defatted bone is stiffer than fresh bone. Number of pores against pore cross-section area present an exponential decay, consistent for all the samples. These graphs also are useful to predict elastic properties of trabecular samples of young bovines for implants.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John; Carena, Marcela; Harnik, Roni

    We consider interference between the Higgs signal and QCD background inmore » $$gg\\rightarrow h \\rightarrow \\gamma\\gamma$$ and its effect on the on-shell Higgs rate. The existence of sizable strong phases leads to destructive interference of about 2% of the on-shell cross section in the Standard Model. This effect can be enhanced by beyond the standard model physics. In particular, since it scales differently from the usual rates, the presence of interference allows indirect limits to be placed on the Higgs width in a novel way, using on-shell rate measurements. Our study motivates further QCD calculations to reduce uncertainties. We discuss potential width-sensitive observables, both using total and differential rates and find that the HL-LHC can potentially indirectly probe widths of order tens of MeV.« less

  5. An evaluation of the reliability of muscle fiber cross-sectional area and fiber number measurements in rat skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    Background: The reliability of estimating muscle fiber cross-sectional area (measure of muscle fiber size) and fiber number from only a subset of fibers in rat hindlimb muscle cross-sections has not been systematically evaluated. This study examined the variability in mean estimates of fiber cross-s...

  6. Higgs-stoponium mixing near the stop-antistop threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodwin, Geoffrey T.; Chung, Hee Sok; Wagner, Carlos E. M.

    Supersymmetric extensions of the standard model contain additional heavy neutral Higgs bosons that are coupled to heavy scalar top quarks (stops). This system exhibits interesting field theoretic phenomena when the Higgs mass is close to the stop-antistop production threshold. Existing work in the literature has examined the digluon-to-diphoton cross section near threshold and has focused on enhancements in the cross section that might arise either from the perturbative contributions to the Higgs-to-digluon and Higgs-to-diphoton form factors or from mixing of the Higgs boson with stoponium states. Near threshold, enhancements in the relevant amplitudes that go as inverse powers of themore » stop-antistop relative velocity require resummations of perturbation theory and/or nonperturbative treatments. We present a complete formulation of threshold effects at leading order in the stop-antistop relative velocity in terms of nonrelativistic effective field theory. We give detailed numerical calculations for the case in which the stop-antistop Green’s function is modeled with a Coulomb-Schr¨odinger Green’s function. We find several general effects that do not appear in a purely perturbative treatment. Higgs-stop-antistop mixing effects displace physical masses from the threshold region, thereby rendering the perturbative threshold enhancements inoperative. In the case of large Higgs-stop-antistop couplings, the displacement of a physical state above threshold substantially increases its width, owing to its decay width to a stop-antistop pair, and greatly reduces its contribution to the cross section.« less

  7. Hip Structural Analysis in Adolescent Boys With Anorexia Nervosa and Controls

    PubMed Central

    Katzman, Debra K.; Clarke, Hannah; Snelgrove, Deirdre; Brigham, Kathryn; Miller, Karen K.; Klibanski, Anne

    2013-01-01

    Context: We have reported lower hip bone mineral density (BMD) in adolescent boys with anorexia nervosa (AN) compared with controls. Although studies have described bone structure in girls with AN, these data are not available for boys. Hip structural analysis (HSA) using dual-energy x-ray absorptiometry is a validated technique to assess hip geometry and strength while avoiding radiation associated with quantitative computed tomography. Objective: We hypothesized that boys with AN would have impaired hip structure/strength (assessed by HSA) compared with controls. Design and Setting: We conducted a cross-sectional study at a clinical research center. Subjects and Intervention: We used HSA techniques on hip dual-energy x-ray absorptiometry scans in 31 previously enrolled boys, 15 with AN and 16 normal-weight controls, 12 to 19 years old. Results: AN boys had lower body mass index SD score (P < .0001), testosterone (P = .0005), and estradiol (P = .006) than controls. A larger proportion of AN boys had BMD Z-scores <−1 at the femoral neck (60% vs 12.5%, P = 0008). Using HSA, at the narrow neck and trochanter region, boys with AN had lower cross-sectional area (P = .03, 0.02) and cortical thickness (P = .02, 0.03). Buckling ratio at the trochanter region was higher in AN (P = .008). After controlling for age and height, subperiosteal width at the femoral shaft, cross-sectional moment of inertia (narrow neck and femoral shaft), and section modulus (all sites) were lower in AN. The strongest associations of HSA measures were observed with lean mass, testosterone, and estradiol. On multivariate analysis, lean mass remained associated with most HSA measures. Conclusions: Boys with AN have impaired hip geometric parameters, associated with lower lean mass. PMID:23653430

  8. Longitudinal sensitivity to change of MRI-based muscle cross-sectional area versus isometric strength analysis in osteoarthritic knees with and without structural progression: pilot data from the Osteoarthritis Initiative.

    PubMed

    Dannhauer, Torben; Sattler, Martina; Wirth, Wolfgang; Hunter, David J; Kwoh, C Kent; Eckstein, Felix

    2014-08-01

    Biomechanical measurement of muscle strength represents established technology in evaluating limb function. Yet, analysis of longitudinal change suffers from relatively large between-measurement variability. Here, we determine the sensitivity to change of magnetic resonance imaging (MRI)-based measurement of thigh muscle anatomical cross sectional areas (ACSAs) versus isometric strength in limbs with and without structural progressive knee osteoarthritis (KOA), with focus on the quadriceps. Of 625 "Osteoarthritis Initiative" participants with radiographic KOA, 20 had MRI cartilage and radiographic joint space width loss in the right knee isometric muscle strength measurement and axial T1-weighted spin-echo acquisitions of the thigh. Muscle ACSAs were determined from manual segmentation at 33% femoral length (distal to proximal). In progressor knees, the reduction in quadriceps ACSA between baseline and 2-year follow-up was -2.8 ± 7.9 % (standardized response mean [SRM] = -0.35), and it was -1.8 ± 6.8% (SRM = -0.26) in matched, non-progressive KOA controls. The decline in extensor strength was more variable than that in ACSAs, both in progressors (-3.9 ± 20%; SRM = -0.20) and in non-progressive controls (-4.5 ± 28%; SRM = -0.16). MRI-based analysis of quadriceps muscles ACSAs appears to be more sensitive to longitudinal change than isometric extensor strength and is suggestive of greater loss in limbs with structurally progressive KOA than in non-progressive controls.

  9. Normal growth and development of the lips: a 3-dimensional study from 6 years to adulthood using a geometric model

    PubMed Central

    FERRARIO, VIRGILIO F.; SFORZA, CHIARELLA; SCHMITZ, JOHANNES H.; CIUSA, VERONICA; COLOMBO, ANNA

    2000-01-01

    A 3-dimensional computerised system with landmark representation of the soft-tissue facial surface allows noninvasive and fast quantitative study of facial growth. The aims of the present investigation were (1) to provide reference data for selected dimensions of lips (linear distances and ratios, vermilion area, volume); (2) to quantify the relevant growth changes; and (3) to evaluate sex differences in growth patterns. The 3-dimensional coordinates of 6 soft-tissue landmarks on the lips were obtained by an optoelectronic instrument in a mixed longitudinal and cross-sectional study (2023 examinations in 1348 healthy subjects between 6 y of age and young adulthood). From the landmarks, several linear distances (mouth width, total vermilion height, total lip height, upper lip height), the vermilion height-to-mouth width ratio, some areas (vermilion of the upper lip, vermilion of the lower lip, total vermilion) and volumes (upper lip volume, lower lip volume, total lip volume) were calculated and averaged for age and sex. Male values were compared with female values by means of Student's t test. Within each age group all lip dimensions (distances, areas, volumes) were significantly larger in boys than in girls (P < 0.05), with some exceptions in the first age groups and coinciding with the earlier female growth spurt, whereas the vermilion height-to-mouth width ratio did not show a corresponding sexual dimorphism. Linear distances in girls had almost reached adult dimensions in the 13–14 y age group, while in boys a large increase was still to occur. The attainment of adult dimensions was faster in the upper than in the lower lip, especially in girls. The method used in the present investigation allowed the noninvasive evaluation of a large sample of nonpatient subjects, leading to the definition of 3-dimensional normative data. Data collected in the present study could represent a data base for the quantitative description of human lip morphology from childhood to young adulthood. PMID:10853963

  10. Photoionization using the xchem approach: Total and partial cross sections of Ne and resonance parameters above the 2 s22 p5 threshold

    NASA Astrophysics Data System (ADS)

    Marante, Carlos; Klinker, Markus; Kjellsson, Tor; Lindroth, Eva; González-Vázquez, Jesús; Argenti, Luca; Martín, Fernando

    2017-08-01

    The XCHEM approach interfaces well established quantum chemistry packages with scattering numerical methods in order to describe single-ionization processes in atoms and molecules. This should allow one to describe electron correlation in the continuum at the same level of accuracy as quantum chemistry methods do for bound states. Here we have applied this method to study multichannel photoionization of Ne in the vicinity of the autoionizing states lying between the 2 s22 p5 and 2 s 2 p6 ionization thresholds. The calculated total photoionization cross sections are in very good agreement with the absolute measurement of Samson et al. [J. Electron Spectrosc. Relat. Phenom. 123, 265 (2002), 10.1016/S0368-2048(02)00026-9], and with independent benchmark calculations performed at the same level of theory. From these cross sections, we have extracted resonance positions, total autoionization widths, Fano profile parameters, and correlation parameters for the lowest three autoionizing states. The values of these parameters are in good agreement with those reported in earlier theoretical and experimental work. We have also evaluated β asymmetry parameter and partial photoionization cross sections and, from the latter, partial autoionization widths and Starace parameters for the same resonances, not yet available in the literature. Resonant features in the calculated β parameter are in good agreement with the experimental observations. We have found that the three lowest resonances preferentially decay into the 2 p-1ɛ d continuum rather than into the 2 p-1ɛ s one [Phys. Rev. A 89, 043415 (2014), 10.1103/PhysRevA.89.043415], in agreement with previous expectations, and that in the vicinity of the resonances the partial 2 p-1ɛ s cross section can be larger than the 2 p-1ɛ d one, in contrast with the accepted idea that the latter should amply dominate in the whole energy range. These results show the potential of the XCHEM approach to describe highly correlated process in the ionization continuum of many-electron systems, in particular molecules, for which the XCHEM code has been specifically designed.

  11. Evidences of a Stalled-slab Beneath the Coast Ranges, California, From Seismicity and Converted Phases

    NASA Astrophysics Data System (ADS)

    Cao, A.; Liu, K. H.; Gao, S. S.

    2001-12-01

    In spite of numerous geophysical studies, the existence and geometry of a stalled slab beneath the Coast Ranges remains vague. In this study we use the distribution of mantle earthquakes and P-to-S converted phases from tilt interfaces to address the problem. Based on the CNSS catalog, in the period between 01/1960 and 04/2001, there were about 450 earthquakes occurred at depth larger than 35 km in the vicinity of the Coast Ranges. When plotted along east-west cross-sections, those earthquakes show a clear slab-like image, similar to the upper part of classic Benioff zones along subducting oceanic slabs. One of such cross-sections, which has a width of 20 km and a latitude of 39N, is located in the so-called 'slabless window' suggested by several previous geologic and geophysic studies, implying the existence of a stalled-slab along the cross-section. The mantle earthquakes can be explained as the result of stress concentration caused by heterogeneities in elastic properties associated with the cold slab, and of changes in mineralogical phases in the upper-most mantle in and around the slab. The existence of the slab is supported by clear azimuthal variations of the amplitude and arrival time of P-to-S converted phases from a tilt interface at about 70 km depth recorded by a broadband seismic station in the area. Our analysis shows that the converted phase is probably from a subducted oceanic lithosphere dipping to the east. The strike of the slab is approximately parallel to the Coast Ranges.

  12. Congenital lumbar spinal stenosis: a prospective, control-matched, cohort radiographic analysis.

    PubMed

    Singh, Kern; Samartzis, Dino; Vaccaro, Alexander R; Nassr, Ahmad; Andersson, Gunnar B; Yoon, S Tim; Phillips, Frank M; Goldberg, Edward J; An, Howard S

    2005-01-01

    Degenerative lumbar spinal stenosis manifests primarily after the sixth decade of life as a result of facet hypertrophy and degenerative disc disease. Congenital stenosis, on the other hand, presents earlier in age with similar clinical findings but with multilevel involvement and fewer degenerative changes. These patients may have subtle anatomic variations of the lumbar spine that may increase the likelihood of thecal sac compression. However, to the authors' knowledge, no quantitative studies have addressed various radiographic parameters of symptomatic, congenitally stenotic individuals to normal subjects. To radiographically quantify and compare the anatomy of the lumbar spine in symptomatic, congenitally stenotic individuals to age- and sex-matched, asymptomatic, nonstenotic controlled individuals. A prospective, control-matched, cohort radiographic analysis. Axial and sagittal magnetic resonance imaging (MRI) and lateral, lumbar, plain radiographs of 20 surgically treated patients who were given a clinical diagnosis of congenital lumbar stenosis by the senior author were randomized with images of 20, asymptomatic age- and sex-matched subjects. MRIs and lateral, lumbar, plain radiographs were independently quantitatively assessed by two individuals. Measurements obtained from the axial MRIs included: midline anterior-posterior (AP) vertebral body diameter, vertebral body width, midline AP canal diameter, canal width, spinal canal cross-sectional area, pedicle length, and pedicle width. From the sagittal MRIs, the following measurements were calculated: AP vertebral body diameter, vertebral body height, and AP canal diameter at the mid-vertebral level. On the lateral, lumbar, plain radiograph (L3 level), the AP diameters of the vertebral body spinal canal were measured. The images of these 40 individuals were then randomized and distributed in a blinded fashion to five separate spine surgeons who graded the presence and severity of congenital stenosis utilizing a five-tier scale. Images consisting of 15 symptomatic individuals, graded definitely congenitally stenotic (mean age, 51.7 years; range, 43-65 years), and 15 asymptomatic individuals, graded definitely not stenotic (mean age, 50.7 years; range, 41-55 years), were age- and sex-matched and included for further review. From these 30 patients, a lateral, lumbar, plain radiograph and axial and sagittal MRIs (T1/T2 weighted) from L2-L5 were quantitatively analyzed. Rater reliability was assessed by Kappa coefficient testing. The cross-sectional area of the canal was significantly smaller in the congenitally stenotic patients at all lumbar levels measured (L2: 176 mm(2) vs. 259 mm(2), L3: 177 mm(2) vs. 275 mm(2), L4: 183 mm(2) vs. 283 mm(2), L5: 213 mm(2) vs. 323 mm(2), p<.05). Pedicle length was markedly shorter in the stenosis group at each lumbar level (L2: 5.9 mm vs. 8.9 mm, L3: 6.0 mm vs. 8.8 mm, L4: 6.5 mm vs. 9.2 mm, L5: 5.8 mm vs. 9.1 mm, p<.05). Furthermore, midline, axial AP canal diameter, vertebral body width, and sagittal AP canal diameter were all significantly smaller than the control patients (p<.05). A ratio of the AP diameter of the pedicle length to the vertebral body was also noted to be statistically significant on both the lateral plain radiographs (L3: 0.426 vs. 0.704) and sagittal MRI (L2: 0.343 vs. 0.461, L3: 0.361 vs. 0.461, L4: 0.362 vs. 0.481, L5: 0.354 vs. 0.452, p<.05). No difference was noted comparing the AP diameter of the vertebral body (axial and sagittal images), vertebral body height, canal width, and pedicle width. Kappa testing coefficient indicated a strong rater reliability (k=0.81, 95% confidence interval: 0.62-0.94). Congenital lumbar stenosis has not been clearly defined radiographically. Clinically, congenitally stenotic patients present at a younger age with fewer degenerative changes and multiple levels of involvement. Radiographically, these patients have a shorter pedicular length and as a result a smaller cross-sectional spinal canal area (mean critical values of 6.5 mm and 213 mm(2) were observed, respectively). The mean critical ratios were 0.43 (2:1 AP vertebral body: pedicle length) on the lateral lumbar radiograph and 0.36 on the sagittal MRI. The altered canal anatomy resulting from a decreased pedicle length may anatomically predispose these patients to earlier complaints of symptomatic neurogenic claudication. Identification of the presence of congenital stenosis should increase the treating surgeon's awareness of the potential need for multilevel treatment.

  13. Prostaglandin E2 Increased Rat Cortical Bone Mass When Administered Immediately Following Ovariectomy

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Jee, Webster S.S.; Zeng, Qing Qiang; Li, Mei; Lin, Bai Yun

    1993-01-01

    To investigate the effects of ovariectomy and the simultaneous administration of prostaglandin E2 (PGE2) on rat tibial shaft cortical bone histomorphometry, thirty-five 3 month-old female Sprague-Dawley rats were either ovariectomized (OVX), or sham ovariectomy (sham-OVX). The OVX rats were divided into three groups and treated with 0, 1 and 6 mg PGE2/kg/day for 90 days. The double fluorescent labeled undecalcified tibial shaft cross sections (proximal to the tibiofibular junction) of all the subjects were used for histomorphometry analysis. No differences in cross-sectional area and cortical bone area were found between sham-OVX and OVX controls, but OVX increased marrow area, intracortical porosity area and endocortical eroded perimeter. Periosteal and endocortical bone formation rates decreased with aging yet OVX prevented these changes. These OVX-induced increases in marrow area and endocortical eroded perimeter were prevented by 1 mg PGE2/kg/day treatment and added bone to periosteal and endocortical surfaces and to the marrow cavity. At the 6 mg/kg/day dose level, PGE2-treated OVX rats increased total tissue area, cortical bone area, marrow trabmular bone area, minimal cortical width and intracortical porosity area, and decreased marrow area compared to basal, sham-OVX and OVX controls. In addition, periosteal bone formation was elevated in the 6 mg PGE2/kg/day-treated OVX rats compared to OVX controls. Endocortical eroded perimeter increased from basal and sham-OVX control levels, but decreased from OVX control levels in the 6 mg PGE2/kg/day-treated OVX rats. Our study confirmed that ovariectomy does not cause osteopenia in tibial shaft cortical bone in rats, but it does stimulate endocortical bone resorption and enlarges marrow area. The new findings from the present study demonstrate that PGE2 prevents the OVX-induced increases in endocortical bone resorption and marrow area and adds additional bone to periosteal and endocortical surfaces and to marrow cavity to increase total bone mass in the tibial shaft of OVX rats when given immediately following ovafiectomy.

  14. Measurement of diffraction dissociation cross sections in pp collisions at $$\\sqrt{s}$$ = 7 TeV

    DOE PAGES

    Khachatryan, Vardan

    2015-07-06

    Measurements of diffractive dissociation cross sections in pp collisions at √s=7 TeV are presented in kinematic regions defined by the masses M X and M Y of the two final-state hadronic systems separated by the largest rapidity gap in the event. The differential cross sections are measured as a function of ξ X = M2 X /s in the region -5.5 < log 10ξ X < -2.5, for log 10M Y < 0.5, dominated by single dissociation (SD), and 0.5 < log10M Y < 1.1, dominated by double dissociation (DD), where M X and M Y are given in GeV.more » The inclusive pp cross section is also measured as a function of the width of the central pseudorapidity gap Δη for Δη > 3, log 10 M X > 1.1, and log 10M Y > 1.1, a region dominated by DD. The cross sections integrated over these regions are found to be, respectively, 2.99 ± 0.02(stat) +0.32 -0.29(syst) mb, 1.18 ± 0.02(stat) ± 0.13(syst) mb, and 0.58 ± 0.01(stat) +0.13 -0.11(syst) mb, and are used to extract extrapolated total SD and DD cross sections. In addition, the inclusive differential cross section, dσ/dΔη F, for events with a pseudorapidity gap adjacent to the edge of the detector, is measured over Δη F = 8.4 units of pseudorapidity. The results are compared to those of other experiments and to theoretical predictions and found compatible with slowly rising diffractive cross sections as a function of center-of-mass energy.« less

  15. Measurement of diffractive dissociation cross sections in p p collisions at √{s }=7 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Plestina, R.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Heister, A.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Lukina, O.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Vuosalo, C.; Woods, N.; CMS Collaboration

    2015-07-01

    Measurements of diffractive dissociation cross sections in p p collisions at √{s }=7 TeV are presented in kinematic regions defined by the masses MX and MY of the two final-state hadronic systems separated by the largest rapidity gap in the event. Differential cross sections are measured as a function of ξX=MX2/s in the region -5.5 3 , log10MX>1.1 , and log10MY>1.1 , a region dominated by DD. The cross sections integrated over these regions are found to be, respectively, 2.99 ±0.02 (stat)-0.29+0.32(syst) mb , 1.18 ±0.02 (stat) ±0.13 (syst) mb , and 0.58 ±0.01 (stat)-0.11+0.13(syst) mb , and are used to extract extrapolated total SD and DD cross sections. In addition, the inclusive differential cross section, d σ /d Δ ηF , for events with a pseudorapidity gap adjacent to the edge of the detector, is measured over Δ ηF=8.4 units of pseudorapidity. The results are compared to those of other experiments and to theoretical predictions and found compatible with slowly rising diffractive cross sections as a function of center-of-mass energy.

  16. Predicting changes in hydrologic retention in an evolving semi-arid alluvial stream

    USGS Publications Warehouse

    Harvey, J.W.; Conklin, M.H.; Koelsch, R.S.

    2003-01-01

    Hydrologic retention of solutes in hyporheic zones or other slowly moving waters of natural channels is thought to be a significant control on biogeochemical cycling and ecology of streams. To learn more about factors affecting hydrologic retention, we repeated stream-tracer injections for 5 years in a semi-arid alluvial stream (Pinal Creek, Ariz.) during a period when streamflow was decreasing, channel width increasing, and coverage of aquatic macrophytes expanding. Average stream velocity at Pinal Creek decreased from 0.8 to 0.2 m/s, average stream depth decreased from 0.09 to 0.04 m, and average channel width expanded from 3 to 13 m. Modeling of tracer experiments indicated that the hydrologic retention factor (Rh), a measure of the average time that solute spends in storage per unit length of downstream transport, increased from 0.02 to 8 s/m. At the same time the ratio of cross-sectional area of storage zones to main channel cross-sectional area (As/A) increased from 0.2 to 0.8 m2/m2, and average water residence time in storage zones (ts) increased from 5 to 24 min. Compared with published data from four other streams in the US, Pinal Creek experienced the greatest change in hydrologic retention for a given change in streamflow. The other streams differed from Pinal Creek in that they experienced a change in streamflow between tracer experiments without substantial geomorphic or vegetative adjustments. As a result, a regression of hydrologic retention on streamflow developed for the other streams underpredicted the measured increases in hydrologic retention at Pinal Creek. The increase in hydrologic retention at Pinal Creek was more accurately predicted when measurements of the Darcy-Weisbach friction factor were used (either alone or in addition to streamflow) as a predictor variable. We conclude that relatively simple measurements of channel friction are useful for predicting the response of hydrologic retention in streams to major adjustments in channel morphology as well as changes in streamflow. Published by Elsevier Ltd.

  17. Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.

    PubMed

    Straume, T; Dobson, R L; Kwan, T C

    1989-01-01

    Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.

  18. Subglacial meltwater channels on the Antarctic continental shelf

    NASA Astrophysics Data System (ADS)

    Kirkham, J. D.; Hogan, K.; Dowdeswell, J. A.; Larter, R. D.; Arnold, N. S.; Nitsche, F. O.; Golledge, N. R.

    2017-12-01

    Extensive submarine channel networks exist on the Antarctic continental shelf. The genesis of the channels has been attributed to the flow of subglacial meltwater beneath a formerly more expansive Antarctic Ice Sheet (AIS), implying that there was an active subglacial hydrological system beneath the past AIS which influenced its ice flow dynamics and mass-loss behaviour. However, the dimensions of the channels are inconsistent with the minimal quantities of meltwater produced under the AIS at present; consequently, their formative mechanism, and its implications for past ice-sheet dynamics, remain unresolved. Here, analysis of >100,000 km2 of multibeam bathymetric data is used to produce the most comprehensive inventory of Antarctic submarine channelised landforms to date. Over 2700 bedrock channels are mapped across four locations on the inner continental shelves of the Bellingshausen and Amundsen Seas. Morphometric analysis reveals highly similar distributions of channel widths, depths, cross-sectional areas and geometric properties, with subtle differences present between channels located in the Bellingshausen Sea compared to those situated in the Amundsen Sea region. The channels are 75-3400 m wide, 3-280 m deep, 160-290,000 m2 in cross-sectional area, and exhibit V-shaped cross-sectional geometries that are typically eight times as wide as they are deep. The features are comparable, but substantially larger, than the system of channels known as the Labyrinth in the McMurdo Dry Valleys whose genesis has been attributed to catastrophic outburst floods, sourced from subglacial lakes, during the middle Miocene. A similar process origin is proposed for the channels observed on the Antarctic continental shelf, formed through the drainage of relict subglacial lake basins, including some 59 identified using submarine geomorphological evidence and numerical modelling calculations. Water is predicted to accumulate in the subglacial lakes over centuries to millennia and to drain over daily to monthly timescales, potentially influencing past ice-sheet dynamics.

  19. Dimensional changes of upper airway after rapid maxillary expansion: a prospective cone-beam computed tomography study.

    PubMed

    Chang, Yoon; Koenig, Lisa J; Pruszynski, Jessica E; Bradley, Thomas G; Bosio, Jose A; Liu, Dawei

    2013-04-01

    The aim of this prospective study was to use cone-beam computed tomography to assess the dimensional changes of the upper airway in orthodontic patients with maxillary constriction treated by rapid maxillary expansion. Fourteen orthodontic patients (mean age, 12.9 years; range, 9.7-16 years) were recruited. The patients with posterior crossbite and constricted maxilla were treated with rapid maxillary expansion as the initial part of their comprehensive orthodontic treatments. Before and after rapid maxillary expansion cone-beam computed tomography scans were taken to measure the retropalatal and retroglossal airway changes in terms of volume, and sagittal and cross-sectional areas. The transverse expansions by rapid maxillary expansion were assessed between the midlingual alveolar bone plates at the maxillary first molar and first premolar levels. The measurements of the before and after rapid maxillary expansion scans were compared by using paired t tests with the Bonferroni adjustment for multiple comparisons. After rapid maxillary expansion, significant and equal amounts of 4.8 mm of expansion were observed at the first molar (P = 0.0000) and the first premolar (P = 0.0000) levels. The width increase at the first premolar level (20.0%) was significantly greater than that at the first molar level (15.0%) (P = 0.035). As the primary outcome variable, the cross-sectional airway measured from the posterior nasal spine to basion level was the only parameter showing a significant increase of 99.4 mm(2) (59.6%) after rapid maxillary expansion (P = 0.0004). These results confirm the findings of previous studies of the effect of rapid maxillary expansion on the maxilla. Additionally, we found that only the cross-sectional area of the upper airway at the posterior nasal spine to basion level significantly gains a moderate increase after rapid maxillary expansion. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  20. The Effect of Sea Surface Slicks on the Doppler Spectrum Width of a Backscattered Microwave Signal.

    PubMed

    Karaev, Vladimir; Kanevsky, Mikhail; Meshkov, Eugeny

    2008-06-06

    The influence of a surface-active substance (SAS) film on the Doppler spectrum width at small incidence angles is theoretically investigated for the first time for microwave radars with narrow-beam and knife-beam antenna patterns. It is shown that the requirements specified for the antenna system depend on the radar motion velocity. A narrow-beam antenna pattern should be used to detect slicks by an immobile radar, whereas radar with a knife-beam antenna pattern is needed for diagnostics from a moving platform. The study has revealed that the slick contrast in the Doppler spectrum width increases as the radar wavelength diminishes, thus it is preferable to utilize wavelengths not larger than 2 cm for solving diagnostic problems. The contrast in the Doppler spectrum width is generally weaker than that in the radar backscattering cross section; however, spatial and temporal fluctuations of the Doppler spectrum width are much weaker than those of the reflected signal power. This enables one to consider the Doppler spectrum as a promising indicator of slicks on water surface.

  1. [Computation of the cross-sectional area of the cable in the power circuit of the X-ray machine].

    PubMed

    Meng, Xin-min; Feng, Da-yu

    2007-01-01

    The source impedance of the power circuit in the x-ray machine is analyzed in the paper and based on the voltage drop generated by the impedance, the cross-sectional area of the cable is calculated. In the end, the cross-sectional areas of the cables, corresponding to their respective distances between the transformers and the switchboards are given.

  2. Velocity associated characteristics of force production in college weight lifters.

    PubMed

    Kanehisa, H; Fukunaga, T

    1999-04-01

    To determine velocity specific isokinetic forces and cross sectional areas of reciprocal muscle groups in Olympic weight lifters. The cross sectional area of the flexor or extensor muscles of the elbow or knee joint was determined by a B-mode ultrasonic apparatus in 34 college weight lifters and 31 untrained male subjects matched for age. Maximum voluntary force produced in the flexion and extension of the elbow and knee joints was measured on an isokinetic dynamometer at 60, 180, and 300 degrees/s. The average cross sectional area was 31-65% higher, and the force was 19-62% higher in weight lifters than in the untrained subjects. The ratio of force to cross sectional area was the same in both groups. The weight lifters showed a lower velocity associated decline in force than untrained subjects in the elbow and knee flexors but not in the extensors. These results indicate that for muscle contractions with velocities between 60 degrees/s and 300 degrees/s the difference in isokinetic force between weight lifters and untrained subjects can be primarily attributed to the difference in the muscle cross sectional area. However, the lower velocity associated decline in force implies that weight lifters may have a higher force per cross sectional area than untrained subjects at velocities above 300 degrees/s.

  3. Experiment to verify the permeability of Hele-Shaw cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartline, B.K.; Lister, C.R.B.

    1978-04-01

    A fluid layer sandwiched between 2 flat plates (Hele-Shaw cell) has been assumed to model a saturated porous medium with permeability, D2/12, dependent only on the gap width, D. For situations where the properties of the porous matrix are important, such as thermal convection, the total cross section (Y) of the sandwich should enter into the computation of permeability. To decide which of these approaches is valid, the onset of convection was observed in a Hele-Shaw cell with constant gap width but spatially varying wall thickness. Convection begins in the thin-walled section at a lower temperature difference than it doesmore » where the walls are thick. Data confirm that D3/12Y is the permeability of Hele-Shaw cells used to model thermal convection in porous layers.« less

  4. Fabrication mechanism of friction-induced selective etching on Si(100) surface

    PubMed Central

    2012-01-01

    As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surface. To understand the mechanism involved, the cross-sectional microstructure of a scratched area was examined, and the mask ability of the tip-disturbed silicon layer was studied. Transmission electron microscope observation and scanning Auger nanoprobe analysis suggested that the scratched area was covered by a thin superficial oxidation layer followed by a thick distorted (amorphous and deformed) layer in the subsurface. After the surface oxidation layer was removed by HF etching, the residual amorphous and deformed silicon layer on the scratched area can still serve as an etching mask in KOH solution. The results may help to develop a low-destructive, low-cost, and flexible nanofabrication technique suitable for machining of micro-mold and prototype fabrication in micro-systems. PMID:22356699

  5. Fabrication mechanism of friction-induced selective etching on Si(100) surface.

    PubMed

    Guo, Jian; Song, Chenfei; Li, Xiaoying; Yu, Bingjun; Dong, Hanshan; Qian, Linmao; Zhou, Zhongrong

    2012-02-23

    As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surface. To understand the mechanism involved, the cross-sectional microstructure of a scratched area was examined, and the mask ability of the tip-disturbed silicon layer was studied. Transmission electron microscope observation and scanning Auger nanoprobe analysis suggested that the scratched area was covered by a thin superficial oxidation layer followed by a thick distorted (amorphous and deformed) layer in the subsurface. After the surface oxidation layer was removed by HF etching, the residual amorphous and deformed silicon layer on the scratched area can still serve as an etching mask in KOH solution. The results may help to develop a low-destructive, low-cost, and flexible nanofabrication technique suitable for machining of micro-mold and prototype fabrication in micro-systems.

  6. Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton-proton collisions at $$\\sqrt s$$ = 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; et al.

    2018-06-10

    A search is presented for single production of a vector-like quark (T) decaying to a Z boson and a top quark, with the Z boson decaying leptonically and the top quark decaying hadronically. The search uses data collected by the CMS experiment in proton–proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb -1. The presence of forward jets is a particular characteristic of single production of vector-like quarks that is used in the analysis. For the first time, different T quark width hypotheses are studied, from negligibly small to 30%more » of the new particle mass. At the 95% confidence level, the product of cross section and branching fraction is excluded above values in the range 0.26–0.04 pb for T quark masses in the range 0.7–1.7 TeV, assuming a negligible width. A similar sensitivity is observed for widths of up to 30% of the T quark mass. The production of a heavy Z' boson decaying to Tt, with T→ tZ , is also searched for, and limits on the product of cross section and branching fractions for this process are set between 0.13 and 0.06 pb for Z' boson masses in the range from 1.5 to 2.5 TeV.« less

  7. Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton-proton collisions at √{ s } = 13TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Stoykova, S.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elgammal, S.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Panizzi, L.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pantano, D.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Glege, F.; Gulhan, D.; Gundacker, S.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Adiguzel, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; O'Brien, D.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Benaglia, A.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-06-01

    A search is presented for single production of a vector-like quark (T) decaying to a Z boson and a top quark, with the Z boson decaying leptonically and the top quark decaying hadronically. The search uses data collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9fb-1. The presence of forward jets is a particular characteristic of single production of vector-like quarks that is used in the analysis. For the first time, different T quark width hypotheses are studied, from negligibly small to 30% of the new particle mass. At the 95% confidence level, the product of cross section and branching fraction is excluded above values in the range 0.26-0.04 pb for T quark masses in the range 0.7-1.7 TeV, assuming a negligible width. A similar sensitivity is observed for widths of up to 30% of the T quark mass. The production of a heavy Z‧ boson decaying to Tt, with T → tZ, is also searched for, and limits on the product of cross section and branching fractions for this process are set between 0.13 and 0.06 pb for Z‧ boson masses in the range from 1.5 to 2.5 TeV.

  8. Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton–proton collisions at s = 13 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-04-23

    Here, a search is presented for single production of a vector-like quark (T) decaying to a Z boson and a top quark, with the Z boson decaying leptonically and the top quark decaying hadronically. The search uses data collected by the CMS experiment in proton–proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb -1. The presence of forward jets is a particular characteristic of single production of vector-like quarks that is used in the analysis. For the first time, different T quark width hypotheses are studied, from negligibly small tomore » 30% of the new particle mass. At the 95% confidence level, the product of cross section and branching fraction is excluded above values in the range 0.26–0.04 pb for T quark masses in the range 0.7–1.7 TeV, assuming a negligible width. A similar sensitivity is observed for widths of up to 30% of the T quark mass. The production of a heavy Z' boson decaying to Tt, with T→ tZ , is also searched for, and limits on the product of cross section and branching fractions for this process are set between 0.13 and 0.06 pb for Z' boson masses in the range from 1.5 to 2.5 TeV.« less

  9. Negative ion resonance measurements in the autoionizing region of helium measured across the complete angular scattering range (0°-180°)

    NASA Astrophysics Data System (ADS)

    Ward, R.; Cubric, D.; Bowring, N.; King, G. C.; Read, F. H.; Fursa, D. V.; Bray, I.

    2013-02-01

    Excitation function measurements for the decay of the 2s22p 2P and 2s2p2 2D triply excited negative ion resonances in helium to singly excited n = 2 states have been measured. These excitation functions have been determined across the complete angular range (0-180°) using a magnetic angle changer with a soft-iron core. The convergent close-coupling method has been used to calculate the cross sections, with the underlying complexity of the problem not yet being able to be fully resolved. Agreement between the present experimental data and previous experimental data is good, with these excitation functions confirming the presence of an unusual (2s22p)2P resonance behaviour in the 21S channel at 90°, where this would not usually be expected. Resonance energy and width values have been obtained, with a mean energy for the (2s22p)2P resonance of 57.20 ± 0.08 eV and a mean width of 73 ± 20 meV, and a mean energy of the (2s2p2)2D resonance of 58.30 ± 0.08 eV and a mean width of 59 ± 27 meV. Resonant cross section and ρ2 values have been calculated across the angular range for the first time, providing angular distribution data on decay propensities for both resonances.

  10. Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton–proton collisions at s = 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, a search is presented for single production of a vector-like quark (T) decaying to a Z boson and a top quark, with the Z boson decaying leptonically and the top quark decaying hadronically. The search uses data collected by the CMS experiment in proton–proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb -1. The presence of forward jets is a particular characteristic of single production of vector-like quarks that is used in the analysis. For the first time, different T quark width hypotheses are studied, from negligibly small tomore » 30% of the new particle mass. At the 95% confidence level, the product of cross section and branching fraction is excluded above values in the range 0.26–0.04 pb for T quark masses in the range 0.7–1.7 TeV, assuming a negligible width. A similar sensitivity is observed for widths of up to 30% of the T quark mass. The production of a heavy Z' boson decaying to Tt, with T→ tZ , is also searched for, and limits on the product of cross section and branching fractions for this process are set between 0.13 and 0.06 pb for Z' boson masses in the range from 1.5 to 2.5 TeV.« less

  11. Broad Feshbach resonance in the 6Li-40K mixture.

    PubMed

    Tiecke, T G; Goosen, M R; Ludewig, A; Gensemer, S D; Kraft, S; Kokkelmans, S J J M F; Walraven, J T M

    2010-02-05

    We study the widths of interspecies Feshbach resonances in a mixture of the fermionic quantum gases 6Li and 40K. We develop a model to calculate the width and position of all available Feshbach resonances for a system. Using the model, we select the optimal resonance to study the {6}Li/{40}K mixture. Experimentally, we obtain the asymmetric Fano line shape of the interspecies elastic cross section by measuring the distillation rate of 6Li atoms from a potassium-rich 6Li/{40}K mixture as a function of magnetic field. This provides us with the first experimental determination of the width of a resonance in this mixture, DeltaB=1.5(5) G. Our results offer good perspectives for the observation of universal crossover physics using this mass-imbalanced fermionic mixture.

  12. Determination of the width of the top quark.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Åsman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bazterra, V; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Ćwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; DeVaughan, K; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Joshi, J; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Novaes, S F; Nunnemann, T; Obrant, G; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Owen, M; Padilla, M; Pangilinan, M; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petrillo, G; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strauss, E; Strauss, M; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Welty-Rieger, L; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2011-01-14

    We extract the total width of the top quark, Γ(t), from the partial decay width Γ(t → Wb) measured using the t-channel cross section for single top-quark production and from the branching fraction B(t → Wb) measured in tt events using up to 2.3  fb(-1) of integrated luminosity collected by the D0 Collaboration at the Tevatron pp Collider. The result is Γ(t) = 1.99(-0.55)(+0.69)  GeV, which translates to a top-quark lifetime of τ(t) = (3.3(-0.9)(+1.3)) × 10(-25)   s. Assuming a high mass fourth generation b' quark and unitarity of the four-generation quark-mixing matrix, we set the first upper limit on |V(tb')| < 0.63 at 95% C.L.

  13. Jamming of Cylindrical Grains in Featureless Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Barr, Nicholas; Weible, Seth; Friedl, Nicholas

    2013-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel. With a grain height less than the grain diameter, these grains resemble aspirin tablets, poker chips, or coins. Unidisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. Channel widths are chosen so that no combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College

  14. Determination of mean surface position and sea state from the radar return of a short-pulse satellite altimeter

    NASA Technical Reports Server (NTRS)

    Barrick, D. E.

    1972-01-01

    Using the specular point theory of scatter from a very rough surface, the average backscatter cross section per unit area per radar cell width is derived for a cell located at a given height above the mean sea surface. This result is then applied to predict the average radar cross section observed by a short-pulse altimeter as a function of time for two modes of operation: pulse-limited and beam-limited configurations. For a pulse-limited satellite altimeter, a family of curves is calculated showing the distortion of the leading edge of the receiver output signal as a function of sea state (i.e., wind speed). A signal processing scheme is discussed that permits an accurate determination of the mean surface position--even in high seas--and, as a by-product, the estimation of the significant seawave height (or wind speed above the surface). Comparison of these analytical results with experimental data for both pulse-limited and beam-limited operation lends credence to the model. Such a model should aid in the design of short-pulse altimeters for accurate determination of the geoid over the oceans, as well as for the use of such altimeters for orbital sea-state monitoring.

  15. Longitudinal aerodynamic performance of a series of power-law and minimum wave drag bodies at Mach 6 and several Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.

    1974-01-01

    Experimental data have been obtained for two series of bodies at Mach 6 and Reynolds numbers, based on model length, from 1.4 million to 9.5 million. One series consisted of axisymmetric power-law bodies geometrically constrained for constant length and base diameter with values of the exponent n of 0.25, 0.5, 0.6, 0.667, 0.75, and 1.0. The other series consisted of positively and negatively cambered bodies of polygonal cross section, each having a constant longitudinal area distribution conforming to that required for minimizing zero-lift wave drag at hypersonic speeds under the geometric constraints of given length and volume. At the highest Reynolds number, the power-law body for minimum drag is blunter (exponent n lower) than predicted by inviscid theory (n approximately 0.6 instead of n = 0.667); however, the peak value of lift-drag ratio occurs at n = 0.667. Viscous effects were present on the bodies of polygonal cross section but were less pronounced than those on the power-law bodies. The trapezoidal bodies with maximum width at the bottom were found to have the highest maximum lift-drag ratio and the lowest mimimum drag.

  16. Design of a nanopatterned long focal-length planar focusing collector for concentrated solar power

    NASA Astrophysics Data System (ADS)

    Ding, Qing; Choubal, Aakash; Toussaint, Kimani C.

    2017-02-01

    Concentrated solar power (CSP) facilities heavily utilize parabolic troughs to collect and concentrate sunlight onto receivers that deliver solar thermal energy to heat engines for generating electricity. However, parabolic troughs are bulky and heavy and result in a large capital investment for CSP plants, thereby making it difficult for CSP technology to be competitive with photovoltaics. We present the design of a planar focusing collector (PFC) with focal length beyond the micron scale. The PFC design is based on the use of a nanostructured silver surface for linearly polarized singlewavelength light. The designed PFC consists of metallic nanogrooves on a dielectric substrate. The geometric properties, namely the width and depth, of a single-unit nanogroove allows for full control of the optical phase at desired spatial coordinates along the nanogroove short-axis for a single wavelength. Moreover, we show numerically that such phase control can be used to construct a phase front that mimics that of a cylindrical lens. In addition, we determine the concentration ratio by comparing the width of our PFC design to the cross-sectional width of its focal spot. We also determine the conversion efficiency at long focal lengths by evaluating the ratio of the collected optical power to the incoming optical power. Finally, we examine the focusing behavior across multiple wavelengths and angles of incidence. Our work shows how nano-optics and plasmonics could contribute to this important area of CSP technology.

  17. SO_2 Absorption Cross Sections and N_2 VUV Oscillator Strengths for Planetary Atmosphere Studies

    NASA Astrophysics Data System (ADS)

    Smith, Peter L.; Stark, G.; Rufus, J.; Pickering, J. C.; Cox, G.; Huber, K. P.

    1998-09-01

    The determination of the chemical composition of the atmosphere of Io from Hubble Space Telescope observations in the 190-220 nm wavelength region requires knowledge of the photoabsorption cross sections of SO_2 at temperatures ranging from about 110 K to 300 K. We are engaged in a laboratory program to measure SO_2 absorption cross sections with very high resolving power (lambda /delta lambda =~ 450,000) and at a range of temperatures appropriate to the Io atmosphere. Previous photoabsorption measurements, with lambda /delta lambda =~ 100,000, have been unable to resolve the very congested SO_2 spectrum, and, thus, to elucidate the temperature dependence of the cross sections. Our measurements are being performed at Imperial College, London, using an ultraviolet Fourier transform spectrometer. We will present our recently completed room temperature measurements of SO_2 cross sections in the 190-220 nm region and plans for extending these to ~ 195 K. Analyses of Voyager VUV occultation measurements of the N_2-rich atmospheres of Titan and Triton have been hampered by the lack of fundamental spectroscopic data for N_2, in particular, by the lack of reliable f-values and line widths for electronic bands of N_2 in the 80-100 nm wavelength region. We are continuing our program of measurements of band oscillator strengths for the many (approximately 100) N_2 bands between 80 and 100 nm. We report new f-values, derived from data obtained at the Photon Factory (Tsukuba, Japan) synchrotron radiation facility with lambda /delta lambda =~ 130,000, of 37 bands in the 80-86 nm region and 21 bands in the 90-95 nm region. We have also begun the compilation of a searchable archive of N_2 data on the World Wide Web; see http://cfa-www.harvard. edu/amp/data/n2/n2home.html. The archive, covering the spectroscopy of N_2 between 80 and 100 nm, will include published and unpublished (14) N_2, (14) N(15) N, and (15) N_2 line lists and spectroscopic identifications, excited state energy levels, band and line f-values, a summary of published band f-value and line width measurements, and a cross-referenced summary of the relevant N_2 literature.

  18. Influence of Laser Power on the Shape of Single Tracks in Scanner Based Laser Wire Cladding

    NASA Astrophysics Data System (ADS)

    Barroi, A.; Gonçalves, D. Albertazzi; Hermsdorf, J.; Kaierle, S.; Overmeyer, L.

    The shape of the cladding tracks is extremely important for producing layers or structures by adding them sequently. This paper shows the influence of the laser power of a diode laser in the range of 500 to 1000 W on the shapes of single tracks in scanner based laser wire cladding. The scanner was used to oscillate the beam perpendiculary to the welding direction. Stainless steel (ER 318 Si) wire with a 0.6 mm diameter was used as deposition material. Height, width, penetration, molten area and weld seam angles of single tracks were obtained from cross-sections at three different positions of each track. The influence of these different positions on the results depends on the traverse speed. The paper discusses this influence in respect to the heat dissipation in the substrate material.

  19. Neutron capture cross-section studies of Tellurium isotopes for neutrinoless double beta decay applications

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, Werner

    2014-09-01

    The CUORE detector at Gran Sasso, aimed at searching for neutrinoless double-beta decay of 130Te, employs an array of TeO2 bolometer modules. To understand and identify the contribution of muon and (α,n) induced neutrons to the CUORE background, fast neutron cature cross-section data of the tellurium isotopes 126Te, 128Te and 130Te have been measured with the activation method at eight different energies in the neutron energy range 0.5-7.5 MeV. Plastic pill boxes of diameter 1.6 cm and width 1 cm containing Te were irradiated with mono-energetic neutrons produced via the 3H(p,n)3He and 2H(d,n)3He reactions. The cross-sections were determined relative to the 197Au(n, γ)198Au and 115In(n,n')115m In standard cross sections. The activities of the products were measured using 60% lead-shielded HPGe detectors at TUNL's low background counting facility. The present results are compared with the evaluated data from TENDL-2012, ENDF/B-VII.1, JEFF-3.2 and JENDL-4.0, as well as with literature data.

  20. Spectral optical coherence tomography: a novel technique for cornea imaging.

    PubMed

    Kaluzny, Bartłomiej J; Kaluzy, Bartłomiej J; Kałuzny, Jakub J; Szkulmowska, Anna; Gorczyńska, Iwona; Szkulmowski, Maciej; Bajraszewski, Tomasz; Wojtkowski, Maciej; Targowski, Piotr

    2006-09-01

    Spectral optical coherence tomography (SOCT) is a new, noninvasive, noncontact, high-resolution technique that provides cross-sectional images of the objects that weakly absorb and scatter light. SOCT, because of very short acquisition time and high sensitivity, is capable of providing tomograms of substantially better quality than the conventional OCT. The aim of this paper is to show the application of the SOCT to cross-sectional imaging of the cornea and its pathologies. Eleven eyes with different corneal pathologies were examined with a slit lamp and the use of a prototype SOCT instrument constructed in the Institute of Physics, Nicolaus Copernicus University, Toruń, Poland. Our SOCT system provides high-resolution (4 microm axial, 10 microm transversal) tomograms composed of 3000-5000 A-scans with an acquisition time of 120-200 ms. The quality of the images is adequate for detailed cross-sectional evaluation of various corneal pathologies. Objective assessment of the localization, size, shape, and light-scattering properties of the changed tissue is possible. Corneal and epithelial thickness and the depth and width of lesions can be estimated. SOCT technique allows acquiring clinically valuable cross-sectional optical biopsy of the cornea and its pathologies.

  1. Cross-Section Measurements via the Activation Technique at the Cologne Clover Counting Setup

    NASA Astrophysics Data System (ADS)

    Heim, Felix; Mayer, Jan; Netterdon, Lars; Scholz, Philipp; Zilges, Andreas

    The activation technique is a widely used method for the determination of cross-section values for charged-particle induced reactions at astrophysically relevant energies. Since network calculations of nucleosynthesis processes often depend on reaction rates calculated in the scope of the Hauser-Feshbach statistical model, these cross-sections can be used to improve the nuclear-physics input-parameters like optical-model potentials (OMP), γ-ray strength functions, and nuclear level densities. In order to extend the available experimental database, the 108Cd(α, n)111Sn reaction cross section was investigated at ten energies between 10.2 and 13.5 MeV. As this reaction at these energies is almost only sensitive on the α-decay width, the results were compared to statistical model calculations using different models for the α-OMP. The irradiation as well as the consecutive γ-ray counting were performed at the Institute for Nuclear Physics of the University of Cologne using the 10 MV FN-Tandem accelerator and the Cologne Clover Counting Setup. This setup consists of two clover- type high purity germanium (HPGe) detectors in a close face-to-face geometry to cover a solid angle of almost 4π.

  2. Photoionization of the beryllium isoelectronic sequence: Relativistic and nonrelativistic R-matrix calculations

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Chun

    The photoionization of the beryllium-like isoelectronic series has been studied. The bound state wave functions of the target ions were built with CIV3 program. The relativistic Breit-Pauli R-matrix method was used to calculate the cross sections in the photon energy range between the ionization threshold and 1s24 f7/2 threshold for each ion. For the total cross sections of Be, B+, C+2, N+3, and O +4, our results match experiment well. The comparison between the present work and other theoretical works are also discussed. We show the comparison with our LS results as it indicates the importance of relativistic effects on different ions. In the analysis, the resonances converging to 1 s22lj and 1s 23lj were identified and characterized with quantum defects, energies and widths using the eigenphase sum methodology. We summarize the general appearance of resonances along the resonance series and along the isoelectronic sequence. Partial cross sections are also reported systematically along the sequence. All calculations were performed on the NERSC system. INDEX WORDS: Photoionization, R-matrix, Cross section, Beryllium-like ion, Resonance

  3. Is localized infrared spectroscopy now possible in the electron microscope?

    PubMed

    Rez, Peter

    2014-06-01

    The recently developed in-column monochromators make it possible to record energy-c spectra with resolutions better than 30 meV from nanometer-sized regions. It should therefore in principle be possible to detect localized vibrational excitations. The scattering geometry in the electron microscope means that bond stretching in the specimen plane or longitudinal optic phonons dominate the scattering. Most promising for initial studies are vibrations with energies between 300 and 400 meV from hydrogen bonded to other atoms. Estimates of the scattering cross-sections on the basis of a simple model show that they are about the same as inner shell scattering cross-sections. Cross-sections also increase with charge transfer between the atoms, and theory incorporating realistic charge distributions shows that signal/noise is the only limitation to high-resolution imaging. Given the magnitude of the scattering cross-sections, minimizing the tail of the zero-loss peak is just as important as achieving a small-width at half-maximum. Improvements in both resolution and controlling the zero-loss tail will be necessary before it is practical to detect optic phonons in solids between 40 and 60 meV.

  4. Velocity associated characteristics of force production in college weight lifters

    PubMed Central

    Kanehisa, H.; Fukunaga, T.

    1999-01-01

    OBJECTIVE: To determine velocity specific isokinetic forces and cross sectional areas of reciprocal muscle groups in Olympic weight lifters. METHODS: The cross sectional area of the flexor or extensor muscles of the elbow or knee joint was determined by a B-mode ultrasonic apparatus in 34 college weight lifters and 31 untrained male subjects matched for age. Maximum voluntary force produced in the flexion and extension of the elbow and knee joints was measured on an isokinetic dynamometer at 60, 180, and 300 degrees/s. RESULTS: The average cross sectional area was 31-65% higher, and the force was 19-62% higher in weight lifters than in the untrained subjects. The ratio of force to cross sectional area was the same in both groups. The weight lifters showed a lower velocity associated decline in force than untrained subjects in the elbow and knee flexors but not in the extensors. CONCLUSIONS: These results indicate that for muscle contractions with velocities between 60 degrees/s and 300 degrees/s the difference in isokinetic force between weight lifters and untrained subjects can be primarily attributed to the difference in the muscle cross sectional area. However, the lower velocity associated decline in force implies that weight lifters may have a higher force per cross sectional area than untrained subjects at velocities above 300 degrees/s. 




 PMID:10205693

  5. Measurement of the Number of Light Neutrino Generations, Z Resonance Parameters, and Absolute Luminosity at the Aleph Detector

    NASA Astrophysics Data System (ADS)

    Wear, James A.

    Measurements of the production cross section sigma (e^+e^-to Z to hadrons) have been made with the ALEPH detector in a seven-point energy scan across the Z resonance at the LEP e^+e^ - collider. The selection of hadronic Z decays is performed with a systematic uncertainty of 0.3%, resulting in 147,836 events. The absolute luminosity has been determined with a systematic uncertainty of 0.9%. These hadronic cross sections and ALEPH's measurement of Z decay into charged leptons, sigma(e^+e^ -to Z to l^+l^ -), are used in fits to extract parameters of the Z resonance in a model-independent way. The Z mass and total width are measured to be M_{Z } = 91.177 +/- 0.010 _{exp} +/- 0.020_{LEP} GeV and Gamma_{Z} = 2.482 +/- 0.018_{exp} +/- 0.006_{LEP } GeV where the second errors are due to LEP beam energy uncertainties. The Z decay partial widths are measured to be Gamma_{h} = 1.738 +/- 0.016 GeV, Gamma_{l} = 83.45 +/- 0.76 MeV, and Gamma_ {inv} = 0.493 +/- 0.015 GeV. The Born-level peak hadronic cross section is sigma_sp{had}{0 } = 41.58 +/- 0.44 nb, R = Gamma_{h }/Gamma_{l} = 20.83 +/- 0.21, and Gamma_{inv}/Gamma _{l} = 5.91 +/- 0.18. The number of light neutrino generations is determined to be N_{nu} = 2.96 +/- 0.09 and the Standard Model electroweak mixing angle to be sin^2 theta_{W} = 0.2325 +/- 0.0027.

  6. Relationship between paraspinal muscle cross-sectional area and relative proprioceptive weighting ratio of older persons with lumbar spondylosis.

    PubMed

    Ito, Tadashi; Sakai, Yoshihito; Nakamura, Eishi; Yamazaki, Kazunori; Yamada, Ayaka; Sato, Noritaka; Morita, Yoshifumi

    2015-07-01

    [Purpose] The purpose of this study was to examine the relationship between the paraspinal muscle cross-sectional area and the relative proprioceptive weighting ratio during local vibratory stimulation of older persons with lumbar spondylosis in an upright position. [Subjects] In all, 74 older persons hospitalized for lumbar spondylosis were included. [Methods] We measured the relative proprioceptive weighting ratio of postural sway using a Wii board while vibratory stimulations of 30, 60, or 240 Hz were applied to the subjects' paraspinal or gastrocnemius muscles. Back strength, abdominal muscle strength, and erector spinae muscle (L1/L2, L4/L5) and lumbar multifidus (L1/L2, L4/L5) cross-sectional areas were evaluated. [Results] The erector spinae muscle (L1/L2) cross-sectional area was associated with the relative proprioceptive weighting ratio during 60Hz stimulation. [Conclusion] These findings show that the relative proprioceptive weighting ratio compared to the erector spinae muscle (L1/L2) cross-sectional area under 60Hz proprioceptive stimulation might be a good indicator of trunk proprioceptive sensitivity.

  7. Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary)

    NASA Astrophysics Data System (ADS)

    Kiss, Tímea; Fiala, Károly; Sipos, György

    2008-06-01

    In the last few years an increase in the frequency and magnitude of floods was detected on the Tisza River, endangering large areas of Hungary. The causes of these record floods were complex, including both natural and human induced factors. This paper focuses on river management works and their effect on planimetric and cross-sectional parameters, with special attention to the flood conductivity changes to the river channel. During 19th century river regulation works, half of the total length of the Tisza River was altered by cut-offs, while in the 20th century mostly revetments and groynes were constructed. Subsequently, horizontal and vertical channel parameters have changed considerably due to semi-natural bed processes. In order to reveal changes, hydrological map series (1842, 1890, 1929, 1957, 1976 and 1999) and cross-sectional surveys from the same dates were analysed. Prior to the intensive human interventions (before 1890s) the river's course was highly sinuous with some very sharp bends. Due to cut-offs both the length and sinuosity of the Tisza River decreased by 35%, while the lengths of straight sections and the river's slope doubled. As a consequence the river incised by up to 3.8 m until the 1929 survey, resulting better flood conductivity, which improved flood safety. In the 1920s river management favoured bank stabilisation in order to stop the lateral migration of the channel. Despite these measures, meander development has continued, however, in a distorted manner. This is reflected by the opposing processes of lengthening centre-line on the one hand and gradually decreasing radius of curvature on the other. These processes can be explained by the continuous development of natural point-bars on the convex bank, and the lack of lateral retreat on the concave stabilised bank. The width of the river decreased by 17-45%, while its mean and maximum depth increased by 5-48%. The area of cross-sections influenced by revetments decreased by 6-19%, resulting in a 6-15% decline in flood conductivity. The non-stabilised sections were influenced by upstream revetments. Therefore, their parameters show similar changes, but with a smaller rate. At present, the flood conductivity of the channel is worse than it was in its natural state. In all, it was found that the ongoing process of cross-sectional distortion is a significant factor in increasing flood stage and hazard, and high floods can be expected more frequently in the future partly due to this factor.

  8. Atomic Scale Dynamics of Contact Formation in the Cross-Section of InGaAs Nanowire Channels

    DOE PAGES

    Chen, Renjie; Jungjohann, Katherine L.; Mook, William M.; ...

    2017-03-23

    In the alloyed and compound contacts between metal and semiconductor transistor channels we see that they enable self-aligned gate processes which play a significant role in transistor scaling. At nanoscale dimensions and for nanowire channels, prior experiments focused on reactions along the channel length, but the early stage of reaction in their cross sections remains unknown. We report on the dynamics of the solid-state reaction between metal (Ni) and semiconductor (In 0.53Ga 0.47As), along the cross-section of nanowires that are 15 nm in width. Unlike planar structures where crystalline nickelide readily forms at conventional, low alloying temperatures, nanowires exhibit amore » solid-state amorphization step that can undergo a crystal regrowth step at elevated temperatures. Here, we capture the layer-by-layer reaction mechanism and growth rate anisotropy using in situ transmission electron microscopy (TEM). Our kinetic model depicts this new, in-plane contact formation which could pave the way for engineered nanoscale transistors.« less

  9. Phase transition solutions in geometrically constrained magnetic domain wall models

    NASA Astrophysics Data System (ADS)

    Chen, Shouxin; Yang, Yisong

    2010-02-01

    Recent work on magnetic phase transition in nanoscale systems indicates that new physical phenomena, in particular, the Bloch wall width narrowing, arise as a consequence of geometrical confinement of magnetization and leads to the introduction of geometrically constrained domain wall models. In this paper, we present a systematic mathematical analysis on the existence of the solutions of the basic governing equations in such domain wall models. We show that, when the cross section of the geometric constriction is a simple step function, the solutions may be obtained by minimizing the domain wall energy over the constriction and solving the Bogomol'nyi equation outside the constriction. When the cross section and potential density are both even, we establish the existence of an odd domain wall solution realizing the phase transition process between two adjacent domain phases. When the cross section satisfies a certain integrability condition, we prove that a domain wall solution always exists which links two arbitrarily designated domain phases.

  10. Stakeout surveys for check dams in gullied areas by using the FreeXSap photogrammetric method

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Marín-Moreno, Víctor; Taguas, Encarnación V.

    2017-04-01

    Prior to any check dam construction work, it is necessary to carry out field stakeout surveys to define the layout of the dam series according to spacing criteria. While in expensive and complex settings, accurate measurement techniques might be justified (e.g. differential GPS), for small to medium-sized check dams typical of areas affected by gully erosion, simpler methodologies might be more cost-efficient. Innovative 3D photogrammetric techniques based on Structure-from-Motion (SfM) algorithms have proved to be useful across different geomorphological applications and have been successfully applied for gully assessment. In this communication, we present an efficient methodology consisting of the application of a free interface for photogrammetric reconstruction (FreeXSap) combined with simple distance measurements to obtain channel cross-sections determining the width and height of the check dam for a particular cross-section. We will illustrate its use for a hundred-meter-long gully under conventional agriculture in Córdoba (Spain). FreeXSap is an easy-to-use graphical user interface written in Matlab Code (Mathworks, 2016) for the reconstruction of 3D models from image sets taken with digital consumer-grade cameras. The SfM algorithms are based on MicMac scripts (Pierrot-Deseilligny and Cléry, 2011) along with routines specifically developed for the orientation, determination and geometrical analysis of cross-sections. It only requires the collection of a few pictures of a channel cross-section (normally below 5) by the camera operator to build an accurate 3D model, while a second operator holds a pole in vertical position (with the help of a bubble level attached to the pole) in order to provide orientation and scale for further processing. The spacing between check dams was determined using the head-to-toe rule by using a clinometer App on a Smartphone. In this work we will evaluate the results of the application of this methodology in terms of time and cost requirements and the capabilities and operation procedure of FreeXSap will be presented. This tool will be available for free download. REFERENCES Pierrot-Deseilligny, M and Cléry, I. APERO, an Open Source Bundle Adjusment Software for Automatic Calibration and Orientation of a Set of Images. Proceedings of the ISPRS Commission V Symposium, Image Engineering and Vision Metrology, Trento, Italy, 2-4 March 2011.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, John Leonard; Couture, Aaron Joseph; Koehler, Paul E.

    An accurate knowledge of the neutron capture cross section is important for many applications. Experimental measurements are important since theoretical calculations of capture have been notoriously difficult, with the ratio of measured to calculated cross sections often a factor of 2 or more in the 10 keV to 1 MeV region. However, a direct measurement of capture cannot be made on many interesting radioactive nuclides because of their short half-life or backgrounds caused by their nuclear decay. On the other hand, neutron transmission measurements of the total cross section are feasible for a wide range of radioactive nuclides since themore » detectors are far from the sample, and often are less sensitive to decay radiation. The parameters extracted from a total cross section measurement, which include the average resonance spacing, the neutron strength function, and the average total radiation width, (Γ γ), provide tight constraints on the calculation of the capture cross section, and when applied produce much more accurate results. These measurements can be made using the intense epithermal neutron flux at the Lujan Center on relatively small quantities of target material. It was the purpose of this project to investigate and develop the capability to make these measurements. A great deal of progress was made towards establishing this capability during 2016, including setting up the flight path and obtaining preliminary results, but more work remains to be done.« less

  12. Longitudinal Fracture Analysis of a Two-Dimensional Functionally Graded Beam

    NASA Astrophysics Data System (ADS)

    Rizov, V.

    2017-11-01

    Longitudinal fracture in a two-dimensional functionally graded beam is analyzed. The modulus of elasticity varies continuously in the beam cross-section. The beam is clamped in its right-hand end. The external loading consists of one longitudinal force applied at the free end of the lower crack arm. The longitudinal crack is located in the beam mid-plane. The fracture is studied in terms of the strain energy release rate. The solution derived is used to elucidate the effects of material gradients along the height as well as along the width of the beam cross-section on the fracture behaviour. The results obtained indicate that the fracture in two-dimensional functionally graded beams can be regulated efficiently by employing appropriate material gradients.

  13. Theoretical study of ArH+ dissociative recombination and electron-impact vibrational excitation

    NASA Astrophysics Data System (ADS)

    Abdoulanziz, A.; Colboc, F.; Little, D. A.; Moulane, Y.; Mezei, J. Zs; Roueff, E.; Tennyson, J.; Schneider, I. F.; Laporta, V.

    2018-06-01

    Cross sections are presented for dissociative recombination and electron-impact vibrational excitation of the ArH+ molecular ion at electron energies appropriate for the interstellar environment. The R-matrix method is employed to determine the molecular structure data, i.e. the position and width of the resonance states. The cross sections and the corresponding Maxwellian rate coefficients are computed using a method based on the Multichannel Quantum Defect Theory. The main result of the paper is the very low dissociative recombination rate found at temperatures below 1000K. This is in agreement with the previous upper limit measurement in merged beams and offers a realistic explanation to the presence of ArH+ in exotic interstellar conditions.

  14. Effect of the nuclear medium on α -cluster excitation in 6Li

    NASA Astrophysics Data System (ADS)

    Yamagata, Tamio; Nakayama, Shintaro; Akimune, Hidetoshi; Miyamoto, Syuji

    2017-04-01

    The giant dipole resonance (GDR) in 6Li was investigated via the 6Li(γ ,x n ) reactions by using quasi-mono-energy γ rays in an energy range from 4.9 to 53.6 MeV. The γ rays were generated via Compton backscattering of Nd laser photons with relativistic energy electrons in an electron storage ring, NewSUBARU. The energy resolution in a full width at half maximum of γ ray was simulated to be 5 % at 50 MeV. Photoneutrons were detected with a 4 π -type neutron detector consisting of 41 3He-gas proportional counters. The (γ ,n ) cross sections were dominant, while the (γ ,2 n ) and (γ ,3 n ) cross sections were negligibly small. The energy integral of photoneutron cross sections up to 53.6 MeV was 59 MeV mb , which exhausted 65 % of the Thomas-Reiche-Kuhn sum rule. The GDR in 6Li was found to consist of mainly two components. The peak energy and the width for the low-energy component were Er=12 ±1 MeV and Γ =21 ±2 MeV . Those for the high-energy component were Er=33 ±2 MeV and Γ =30 ±2 MeV. The low-energy component corresponded to the GDR in 6Li. The high-energy component was inferred to be the GDR owing to an α -cluster excitation in 6Li. The existence of this component was recently proposed and was suggested by the experimental studies of the (p ,p') , (3He,t ) , and (7Li,7Be) reactions. The observed resonance shape of the high-energy component was well reproduced by modifying the GDR shape of a theoretical prediction for 4He at Er=26 MeV with Γ =20 MeV ; with increasing the excitation energy by 7 MeV (Q value was more negative), widening the width by 1.5 ±0.1 times, and decreasing a peak height by 0.29 ±0.02 times. As a result, the magnitude of the energy integral of the cross sections for the high-energy component observed in the present work was 0.86 ±0.06 times that in the theoretical prediction of the 4He(γ ,n ) reaction. It is a well-known fact that a frequency of a vibrating system is inversely proportional to the size of the system. We suggest that in excitation of the α cluster in 6Li, the mass of the α cluster increases by 7 ±2 MeV , the size of the α cluster in 6Li is smaller than that of the free 4He by ˜20 % , and the width of the GDR is broader than that of 4He by 1.5 times owing to the nuclear medium effect.

  15. Investigation of the reaction 74Ge(p,γ)75As using the in-beam method to improve reaction network predictions for p nuclei

    NASA Astrophysics Data System (ADS)

    Sauerwein, A.; Endres, J.; Netterdon, L.; Zilges, A.; Foteinou, V.; Provatas, G.; Konstantinopoulos, T.; Axiotis, M.; Ashley, S. F.; Harissopulos, S.; Rauscher, T.

    2012-09-01

    Background: Astrophysical models studying the origin of the neutron-deficient p nuclides require knowledge of proton capture cross sections at low energy. The production site of the p nuclei is still under discussion but a firm basis of nuclear reaction rates is required to address the astrophysical uncertainties. Data at astrophysically relevant interaction energies are scarce. Problems with the prediction of charged particle capture cross sections at low energy were found in the comparisons between previous data and calculations in the Hauser-Feshbach statistical model of compound reactions.Purpose: A measurement of 74Ge(p,γ)75As at low proton energies, inside the astrophysically relevant energy region, is important in several respects. The reaction is directly important because it is a bottleneck in the reaction flow which produces the lightest p nucleus 74Se. It is also an important addition to the data set required to test reaction-rate predictions and to allow an improvement in the global p+nucleus optical potential required in such calculations.Method: An in-beam experiment was performed, making it possible to measure in the range 2.1≤Ep≤3.7MeV, which is for the most part inside the astrophysically relevant energy window. Angular distributions of the γ-ray transitions were measured with high-purity germanium detectors at eight angles relative to the beam axis. In addition to the total cross sections, partial cross sections for the direct population of 12 levels were determined.Results: The resulting cross sections were compared to Hauser-Feshbach calculations using the code smaragd. Only a constant renormalization factor of the calculated proton widths allowed a good reproduction of both total and partial cross sections. The accuracy of the calculation made it possible to check the spin assignment of some states in 75As. In the case of the 1075-keV state, a double state with spins and parities of 3/2- and 5/2- is needed to explain the experimental partial cross sections. A change in parity from 5/2+ to 5/2- is required for the state at 401 keV. Furthermore, in the case of 74Ge, studying the combination of total and partial cross sections made it possible to test the γ width, which is essential in the calculation of the astrophysical 74As(n,γ)75As rate.Conclusions: Between data and statistical model prediction a factor of about two was found. Nevertheless, the improved astrophysical reaction rate of 74Ge(p,γ) (and its reverse reaction) is only 28% larger than the previous standard rate. The prediction of the 74As(n,γ)75As rate (and its reverse) was confirmed, the newly calculated rate differs only by a few percent from the previous prediction. The in-beam method with high-efficiency detectors proved to be a powerful tool for studies in nuclear astrophysics and nuclear structure.

  16. Low energy scattering cross section ratios of 14N(p ,p ) 14N

    NASA Astrophysics Data System (ADS)

    deBoer, R. J.; Bardayan, D. W.; Görres, J.; LeBlanc, P. J.; Manukyan, K. V.; Moran, M. T.; Smith, K.; Tan, W.; Uberseder, E.; Wiescher, M.; Bertone, P. F.; Champagne, A. E.; Islam, M. S.

    2015-04-01

    Background: The slowest reaction in the first CNO cycle is 14N(p ,γ ) 15O , therefore its rate determines the overall energy production efficiency of the entire cycle. The cross section presents several strong resonance contributions, especially for the ground-state transition. Some of the properties of the corresponding levels in the 15O compound nucleus remain uncertain, which affects the uncertainty in extrapolating the capture cross section to the low energy range of astrophysical interest. Purpose: The 14N(p ,γ ) 15O cross section can be described by using the phenomenological R matrix. Over the energy range of interest, only the proton and γ -ray channels are open. Since resonance capture makes significant contributions to the 14N(p ,γ ) 15O cross section, resonant proton scattering data can be used to provide additional constraints on the R -matrix fit of the capture data. Methods: A 4 MV KN Van de Graaff accelerator was used to bombard protons onto a windowless gas target containing enriched 14N gas over the proton energy range from Ep=1.0 to 3.0 MeV. Scattered protons were detected at θlab=90 , 120∘, 135∘, 150∘, and 160∘ using ruggedized silicon detectors. In addition, a 10 MV FN Tandem Van de Graaff accelerator was used to accelerate protons onto a solid Adenine (C5H5N5 ) target, of natural isotopic abundance, evaporated onto a thin self-supporting carbon backing, over the energy range from Ep=1.8 to 4.0 MeV. Scattered protons were detected at 28 angles between θlab=30 .4∘ and 167 .7∘ by using silicon photodiode detectors. Results: Relative cross sections were extracted from both measurements. While the relative cross sections do not provide as much constraint as absolute measurements, they greatly reduce the dependence of the data on otherwise significant systematic uncertainties, which are more difficult to quantify. The data are fit simultaneously using an R -matrix analysis and level energies and proton widths are extracted. Even with relative measurements, the statistics and large angular coverage of the measurements result in more confident values for the energies and proton widths of several levels; in particular, the broad resonance at Ec.m.=2.21 MeV, which corresponds to the 3 /2+ level at Ex=9.51 MeV in 15O . In particular, the s - and d -wave angular-momentum channels are separated. Conclusion: The relative cross sections provide a consistent set of data that can be used to better constrain a full multichannel R -matrix extrapolation of the capture data. It has been demonstrated how the scattering data reduce the uncertainty through a preliminary Monte Carlo uncertainty analysis, but several other issues remain that make large contributions to the uncertainty, which must be addressed by further capture and lifetime measurements.

  17. High Resolution UV SO2 Absorption Cross Sections and VUV N2 Oscillator Strengths for Planetary Atmospheres Studies

    NASA Astrophysics Data System (ADS)

    Smith, P. L.; Stark, G.; Rufus, J.

    2000-10-01

    The determination of the chemical composition of the atmosphere of Io in the 190-220 nm wavelength region requires a knowledge of the photoabsorption cross section of SO2 at temperatures ranging from 110 to 300 K. We are continuing our laboratory program to measure SO2 absorption cross sections with very high resolving power (450,000) at a range of temperatures appropriate to the Io atmosphere. Previous photoabsorption measurements have been unable to resolve the very congested SO2 spectrum. Out measurements are being undertaken at Imperial College, London, using an ultraviolet Fourier transform spectrometer. We recently completed room temperature measurements of SO2 cross sections in the 190-220 nm region (Stark et al., JGR Planets 104, 16,585 (1999)). Current laboratory work is focusing on a complementary set of measurements at 160 K. Preliminary results will be presented. Analyses of Voyager VUV occultation measurements of the N2-rich atmospheres of Titan and Triton are hampered by the lack of fundamental spectroscopic data for N2, in particular, by the lack of reliable f-values and line widths for electronic bands of N2 in the 80-100 nm wavelength region. We are continuing our program to measure band oscillator strengths for about 100 N2 bands between 80-100 nm. We have begun an on-line molecular spectroscopic atlas [http://cfa-www.harvard.edu/amdata/ampdata/N2ARCHIVE/n2home.html]. The archive includes published and unpublished 14N2, 14N15N, and 15N2 line lists and spectroscopic identifications, excited state energy levels, band and line f-values, a summary of published band f-value and line width measurements, and a cross-referenced summary of the relevant N2 literature. The listings are searchable by wavelength interval or band identification and are suitable for down-loading in a convenient format. This work was supported in part by NASA Grant NAG5-6222 and the Smithsonian Institution Atherton Seidel Grant Program.

  18. Local Deplanation Of Double Reinforced Beam Cross Section Under Bending

    NASA Astrophysics Data System (ADS)

    Baltov, Anguel; Yanakieva, Ana

    2015-12-01

    Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).

  19. Evaluation of Two Protocols to Measure the Accuracy of Fixed Dental Prostheses: An In Vitro Study.

    PubMed

    Schönberger, Joana; Erdelt, Kurt-Jürgen; Bäumer, Daniel; Beuer, Florian

    2017-02-02

    The aim of this in vitro study was to compare two measurement protocols of the internal and marginal fit of three-unit zirconia fixed dental prostheses (FDPs). Forty-four FDPs were fabricated for standardized dies by two laboratory CAD/CAM systems: Cercon (n = 22) and Ceramill (n = 22). The fitting was tested using a replica technique (RT = technique 1) with a light-body silicone stabilized with heavy-body material. After producing the replicas, cross-sections were made in the buccolingual and mesiodistal directions. FDPs were cemented on definitive dies, embedded, and sectioned (CST = technique 2). The marginal and internal fits were measured under an optical microscope at 50x magnification with a special software program. Data evaluation was performed according to prior studies at a level of significance of 5%. The mean internal gap width was 51 ± 36 μm for the RT and 52 ± 35 μm for the cross-section technique (CST) (p = 0.74). The mean marginal gap width was 27 ± 18 μm for RT and 30 ± 19 μm for CST (p = 0.19). Statistical tests showed no significant differences (p > 0.05). Both techniques can be used for fit evaluation; however, the noninvasive RT is suitable for clinical use. © 2017 by the American College of Prosthodontists.

  20. Application of energy derivative method to determine the structural components' contribution to deceleration in crashes.

    PubMed

    Nagasaka, Kei; Mizuno, Koji; Thomson, Robert

    2018-03-26

    For occupant protection, it is important to understand how a car's deceleration time history in crashes can be designed using efficient of energy absorption by a car body's structure. In a previous paper, the authors proposed an energy derivative method to determine each structural component's contribution to the longitudinal deceleration of a car passenger compartment in crashes. In this study, this method was extended to 2 dimensions in order to analyze various crash test conditions. The contribution of each structure estimated from the energy derivative method was compared to that from a conventional finite element (FE) analysis method using cross-sectional forces. A 2-dimensional energy derivative method was established. A simple FE model with a structural column connected to a rigid body was used to confirm the validity of this method and to compare with the result of cross-sectional forces determined using conventional analysis. Applying this method to a full-width frontal impact simulation of a car FE model, the contribution and the cross-sectional forces of the front rails were compared. In addition, this method was applied to a pedestrian headform FE simulation in order to determine the influence of the structural and inertia forces of the hood structures on the deceleration of the headform undergoing planar motion. In an oblique impact of the simple column and rigid body model, the sum of the contributions of each part agrees with the rigid body deceleration, which indicates the validity of the 2-dimensional energy derivative method. Using the energy derivative method, it was observed that each part of the column contributes to the deceleration of the rigid body by collapsing in the sequence from front to rear, whereas the cross-sectional force at the rear of the column cannot detect the continuous collapse. In the full-width impact of a car, the contributions of the front rails estimated in the energy derivative method was smaller than that using the cross-sectional forces at the rear end of the front rails due to the deformation of the passenger compartment. For a pedestrian headform impact, the inertial and structural forces of the hood contributed to peaks of the headform deceleration in the initial and latter phases, respectively. Using the 2-dimensional energy derivative method, it is possible to analyze an oblique impact or a pedestrian headform impact with large rotations. This method has advantages compared to the conventional approach using cross-sectional forces because the contribution of each component to system deceleration can be determined.

  1. Bone Area Histomorphometry.

    PubMed

    Andronowski, Janna M; Crowder, Christian

    2018-05-21

    Quantifying the amount of cortical bone loss is one variable used in histological methods of adult age estimation. Measurements of cortical area tend to be subjective and additional information regarding bone loss is not captured considering cancellous bone is disregarded. We describe whether measuring bone area (cancellous + cortical area) rather than cortical area may improve histological age estimation for the sixth rib. Mid-shaft rib cross-sections (n = 114) with a skewed sex distribution were analyzed. Ages range from 16 to 87 years. Variables included: total cross-sectional area, cortical area, bone area, relative bone area, relative cortical area, and endosteal area. Males have larger mean total cross-sectional area, bone area, and cortical area than females. Females display a larger mean endosteal area and greater mean relative measure values. Relative bone area significantly correlates with age. The relative bone area variable will provide researchers with a less subjective and more accurate measure than cortical area. © 2018 American Academy of Forensic Sciences.

  2. The relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles in healthy elderly.

    PubMed

    Kajisa, E; Tohara, H; Nakane, A; Wakasugi, Y; Hara, K; Yamaguchi, K; Yoshimi, K; Minakuchi, S

    2018-03-01

    We conducted a clinical cross-sectional study to examine the relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles and whole skeletal muscle mass. Subjects were healthy 39 males and 51 females without dysphagia and sarcopenia, aged 65 years and older. Jaw-opening force was measured three times using a jaw-opening sthenometer; the maximum of these three was taken as the measurement value. The cross-sectional area of the geniohyoid and anterior belly of the digastric muscles were evaluated using ultrasonography. The skeletal muscle mass index, gait speed and grip strength were evaluated according to the diagnostic criteria of the Asian Working Group for Sarcopenia. For each sex, a multiple regression analysis determined the factors that affect jaw-opening force. Jaw-opening force was associated with the cross-sectional area of the geniohyoid muscle in males (regression coefficient [β] = 0.441, 95% confidence interval [CI] = 14.28-56.09) and females (β = 0.28, 95% CI = 3.10-54.57). Furthermore, in females only, jaw-opening force was associated with the skeletal muscle mass index (β = 0.40, 95% CI = 3.67-17.81). In contrast, jaw-opening force was not associated with the cross-sectional area of the anterior belly of the digastric muscle in either sex. In healthy elderly males and females, jaw-opening force was positively associated with the cross-sectional area of the geniohyoid muscle. However, the jaw-opening force was positively associated with the skeletal muscle mass index only in females. © 2017 John Wiley & Sons Ltd.

  3. Beam limiter for thermonuclear fusion devices

    DOEpatents

    Kaminsky, Manfred S.

    1976-01-01

    A beam limiter circumscribes the interior surface of a vacuum vessel to inhibit collisions of contained plasma and the vessel walls. The cross section of the material making up the limiter has a flatsided or slightly concave portion of increased width towards the plasma and portions of decreased width towards the interior surface of the vessel. This configuration is designed to prevent a major fraction of the material sputtered, vaporized and blistered from the limiter from reaching the plasma. It also allows adequate heat transfer from the wider to the narrower portions. The preferred materials for the beam limiter are solids of sintered, particulate materials of low atomic number with low vapor pressure and low sputtering and blistering yields.

  4. Surgical management of cross-bites in orthognathic surgery: Surgically assisted rapid maxillary expansion (SARME) versus two-piece maxilla.

    PubMed

    Seeberger, Robin; Gander, Evelyn; Hoffmann, Jürgen; Engel, Michael

    2015-09-01

    The surgical treatment of cross-bites includes surgically-assisted maxillary expansion (SARME) or maxillary-bipartition during bimaxillary surgery. This study evaluates and compares the changes in the teeth and lower nasal passage, as well as the stability of the expansion. The measurements were performed on the cone-beam computed tomography (CBCT) scans of 32 patients with transverse (width) deficiencies of the maxilla. To expand the maxilla, 12 patients underwent the two-piece maxilla method, while 20 patients received SARME. The mean distraction width for SARME was 6.8 mm (SD 3.7), while that for the two-piece maxilla was 4.1 mm (SD 1.6). The expansion with SARME was over the entire length of the maxilla, from anterior to posterior, whereas the expansion of the two-piece patient group was only in the posterior part of the maxilla. The segments of the maxilla opened nearly parallel in SARME, while they were reverse V-shaped in the two-piece maxilla, from anterior to posterior. A key point in the planning of combined orthodontic-orthognathic therapy with surgical correction of a cross-bite is the precise determination of the area where the width needs to be increased, and the amount of correction needed to treat the patient using minimal surgical procedures. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  5. Habitat use of juvenile pallid sturgeon and shovelnose sturgeon with implications for water-level management in a downstream reservoir

    USGS Publications Warehouse

    Gerrity, Paul C.; Guy, C.S.; Gardner, W.M.

    2008-01-01

    Natural recruitment of pallid sturgeon Scaphirhynchus albus has not been observed in the Missouri River above Fort Peck Reservoir, Montana, for at least 20 years. To augment the population, age-1 hatchery-reared juvenile pallid sturgeon were released in 1998. The objective of this study was to evaluate the habitat use of these fish and compare it with that of indigenous shovelnose sturgeon S. platorynchus. Twenty-nine juvenile pallid sturgeon and 21 indigenous shovelnose sturgeon were implanted with radio transmitters in 2003 and 2004. The two species showed no differences in habitat use in terms of mean depth, cross-sectional relative depth, longitudinal relative depth, column velocity, bottom velocity, and channel width. However, there were seasonal differences within both species for cross-sectional relative depth, column velocity, and channel width. Both shovelnose sturgeon and juvenile pallid sturgeon were primarily associated with silt and sand substrate. However, shovelnose sturgeon were associated with gravel and cobble substrate more than juvenile pallid sturgeon. Shovelnose sturgeon and juvenile pallid sturgeon both selected reaches without islands and avoided reaches with islands; the two species also selected main-channel habitat and avoided secondary channels. Mean home range was similar between juvenile pallid sturgeon (15 km; 90% confidence interval, ??5.0 km) and shovelnose sturgeon (16.5 km; ??4.7 km). Spatial distribution differed between the two species, with shovelnose sturgeon using upstream areas more often than juvenile pallid sturgeon. Twenty-eight percent of juvenile pallid sturgeon frequented 60 km of lotie habitat that would be inundated by Fort Peck Reservoir at maximum pool. Stocking juvenile pallid sturgeon can successfully augment the wild pallid sturgeon population in the Missouri River above Fort Peck Reservoir, which is crucial to the long-term recovery of the species. However, water-level management in downstream reservoirs such as Fort Peck can influence the amount of habitat available for pallid sturgeon. ?? Copyright by the American Fisheries Society 2008.

  6. Do river channels decrease in width downstream on Distributive Fluvial Systems? An evaluation of modern mega-fans

    NASA Astrophysics Data System (ADS)

    Espinoza, T. N.; Scuderi, L. A.; Weissmann, G. S.; Hartley, A. J.

    2014-12-01

    Recent studies on aggradational continental sedimentary basins globally show that fluvial deposits in most modern sedimentary basins are dominated Distributive Fluvial Systems (DFS). DFS's are identified by: (1) pattern of channels and floodplain deposits that radiate outward from an apex located where the river enters the sedimentary basin, (2) deposition where an alluvial system becomes unconfined upon entering the sedimentary basin, (3) broadly fan shaped deposit that is convex upward across the DFS and concave upward down-fan, and (4) if the DFS is incised, an intersection point above which the alluvial system is held in an incised valley and below which it distributes sediment across an active depositional lobe. Several papers about DFS hypothesized that rivers on DFS decrease in size down-fan. We are testing this hypothesis through evaluation of LANDSAT and STRM data from large DFS described by Hartley et al (2010). We use ArcGIS to: (1) open the images and merge them together if there are more than one image corresponding to the DFS being studied, (2) use a Maximum Likelihood Analysis in six classes to segment different features on the DFS (e.g. exposed sands, water, vegetation, and other fan environments), (3) isolate the classes that correspond to the active channel belt (e.g., exposed sand bars and water), (4) divide the active channel belt into 1000 m long sections, (5) determine the area of active channel belt in each section, and (6) calculate the average width of the river in each section (e.g., W = area/1000m). We present our result for each DFS river on a graph that shows the change in width downstream. Our final product will be a dataset that contains width versus distance down-fan from the apex for as many of the large DFS from Hartley et al (2010) as possible. If the hypothesis is supported, the decrease in width could have a substantial predictive significance on sandstone geometry in fluvial successions.

  7. Metatarsal Shape and Foot Type: A Geometric Morphometric Analysis.

    PubMed

    Telfer, Scott; Kindig, Matthew W; Sangeorzan, Bruce J; Ledoux, William R

    2017-03-01

    Planus and cavus foot types have been associated with an increased risk of pain and disability. Improving our understanding of the geometric differences between bones in different foot types may provide insights into injury risk profiles and have implications for the design of musculoskeletal and finite-element models. In this study, we performed a geometric morphometric analysis on the geometry of metatarsal bones from 65 feet, segmented from computed tomography (CT) scans. These were categorized into four foot types: pes cavus, neutrally aligned, asymptomatic pes planus, and symptomatic pes planus. Generalized procrustes analysis (GPA) followed by permutation tests was used to determine significant shape differences associated with foot type and sex, and principal component analysis was used to find the modes of variation for each metatarsal. Significant shape differences were found between foot types for all the metatarsals (p < 0.01), most notably in the case of the second metatarsal which showed significant pairwise differences across all the foot types. Analysis of the principal components of variation showed pes cavus bones to have reduced cross-sectional areas in the sagittal and frontal planes. The first (p = 0.02) and fourth metatarsals (p = 0.003) were found to have significant sex-based differences, with first metatarsals from females shown to have reduced width, and fourth metatarsals from females shown to have reduced frontal and sagittal plane cross-sectional areas. Overall, these findings suggest that metatarsal bones have distinct morphological characteristics that are associated with foot type and sex, with implications for our understanding of anatomy and numerical modeling of the foot.

  8. How do Watershed Characteristics and Precipitation Influence Post-Wildfire Valley Sediment Storage and Delivery Over Time?

    NASA Astrophysics Data System (ADS)

    Brogan, D. J.; Nelson, P. A.; MacDonald, L. H.

    2016-12-01

    Considerable advances have been made in understanding post-wildfire runoff, erosion, and mass wasting at the hillslope and small watershed scale, but the larger-scale effects on flooding, water quality, and sedimentation are often the most significant impacts. The problem is that we have virtually no watershed-specific tools to quantify the proportion of eroded sediment that is stored or delivered from watersheds larger than about 2-5 km2. In this study we are quantifying how channel and valley bottom characteristics affect post-wildfire sediment storage and delivery. Our research is based on intensive monitoring of sediment storage over time in two 15 km2 watersheds (Skin Gulch and Hill Gulch) burned in the 2012 High Park Fire using repeated cross section and longitudinal surveys from fall 2012 through summer 2016, five airborne laser scanning (ALS) datasets from fall 2012 through summer 2015, and both radar and ground-based precipitation measurements. We have computed changes in sediment storage by differencing successive cross sections, and computed spatially explicit changes in successive ALS point clouds using the multiscale model to model cloud comparison (M3C2) algorithm. These channel changes are being related to potential morphometric controls, including valley width, valley slope, confinement, contributing area, valley expansion or contraction, topographic curvature (planform and profile), and estimated sediment inputs. We hypothesize that maximum rainfall intensity and lateral confinement will be the primary independent variables that describe observed patterns of erosion and deposition, and that the results can help predict post-wildfire sediment delivery and identify high priority areas for restoration.

  9. Aerodynamic Accounting Technique for Determining Effects of Nuclear Damage to Aircraft. Volume 2. Program User Guide

    DTIC Science & Technology

    1978-02-28

    of type I). 2.6 (1,5) Interference factor 2.7 (1,6) Number of bodies of type I 2.8 (1,7)* Maximum cross -sectional area 2.9 (1,8...height, cross -sectional area, etc. listed for each body type describes a single body. The total number of bodies of each type must also be specified even...71+1) (1,6) Number of bodies of Type I (78+1) (1,7)** Maximum cross -sectional area (85+1) (1,8) Base atreamtube area (92+1) (119) Nose length

  10. Limits on the Higgs boson lifetime and width from its decay to four charged leptons

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Carvalho Antunes de Oliveira, A.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Thomas, L.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-Palcek, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; McGinn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; Cms Collaboration

    2015-10-01

    Constraints on the lifetime and width of the Higgs boson are obtained from H →Z Z →4 ℓ events using data recorded by the CMS experiment during the LHC run 1 with an integrated luminosity of 5.1 and 19.7 fb-1 at a center-of-mass energy of 7 and 8 TeV, respectively. The measurement of the Higgs boson lifetime is derived from its flight distance in the CMS detector with an upper bound of τH<1.9 ×10-13 s at the 95% confidence level (C.L.), corresponding to a lower bound on the width of ΓH>3.5 ×10-9 MeV . The measurement of the width is obtained from an off-shell production technique, generalized to include anomalous couplings of the Higgs boson to two electroweak bosons. From this measurement, a joint constraint is set on the Higgs boson width and a parameter fΛ Q that expresses an anomalous coupling contribution as an on-shell cross-section fraction. The limit on the Higgs boson width is ΓH<46 MeV with fΛ Q unconstrained and ΓH<26 MeV for fΛ Q=0 at the 95% C.L. The constraint fΛ Q<3.8 ×10-3 at the 95% C.L. is obtained for the expected standard model Higgs boson width.

  11. Advanced septa size quantitation determines the evaluation of histological fibrosis outcome in chronic hepatitis B patients.

    PubMed

    Wang, Bingqiong; Sun, Yameng; Zhou, Jialing; Wu, Xiaoning; Chen, Shuyan; Wu, Shanshan; Liu, Hui; Wang, Tailing; Ou, Xiaojuan; Jia, Jidong; You, Hong

    2018-05-21

    Hepatitis B (HBV)-related fibrosis can be reversed after effective antiviral therapy. However, detailed changes of collagen characteristics during fibrosis regression remain unclear. Paired biopsy samples obtained from chronic hepatitis B patients were imaged with second harmonic generation/two photon excitation fluorescence (SHG/TPEF)-based microscopy to identify and quantify collagen features in portal, septal, and fibrillar areas. According to the changes of Ishak stage and qFibrosis score, a total of 117 patients with paired liver biopsy appeared to have four different outcomes after 78-week antiviral therapy: fast reverse (9%), reverse (63%), stable (15%), or progress (13%) on fibrosis. Among 71 collagen features identified by SHG/TPEF analysis, the most prominent fibrosis reversion occurred in the "septal" area, followed by the "fibrillar" area, but not in the "portal" area (P < 0.001). Further analysis of 1060 individual septa identified four parameters that correlated with fibrosis reversion: average width, maximum width, number of fibers, and number of cross-link fibers (P < 0.001). Average septal width was independently associated with regressive septa (odds ratio (OR) = 5.22, 95% confidence interval (CI): 4.17-6.53; P < 0.001), with an AUROC of 0.96 (95% CI: 0.95-0.97). The threshold used to discriminate reversal of fibrosis was 30 μm. In conclusion, septal collagen was determined to be the most useful histological feature for evaluation of dynamic changes in liver fibrosis. Septal width was the most predictive indicator of prognosis in liver fibrosis.

  12. Bonding measurement -Strength and fracture mechanics approaches.

    PubMed

    Anunmana, Chuchai; Wansom, Wiroj

    2017-07-26

    This study investigated the effect of cross-sectional areas on interfacial fracture toughness and bond strength of bilayered dental ceramics. Zirconia core ceramics were veneered and cut to produce specimens with three different cross-sectional areas. Additionally, monolithic specimens of glass veneer were also prepared. The specimens were tested in tension until fracture at the interface and reported as bond strength. Fracture surfaces were observed, and the apparent interfacial toughness was determined from critical crack size and failure stress. The results showed that cross-sectional area had no effect on the interfacial toughness whereas such factor had a significant effect on interfacial bond strength. The study revealed that cross-sectional area had no effect on the interfacial toughness, but had a significant effect on interfacial bond strength. The interfacial toughness may be a more reliable indicator for interfacial bond quality than interfacial bond strength.

  13. Experimental and Numerical Analysis of a DECSMAR Structure’s Deployment and Deployed Performance

    DTIC Science & Technology

    2007-04-01

    compromise of deployed performance due to the hinge cross- section, Nitinol SMA wires can be embedded in the composite lay-up across the reduced...100 !m 0˚ 2 (two, 1.47 mm width wires positioned along longitudinal edges) Nitinol 305 !m N/A 3 IM7/977-2 100 !m 0˚ batten transition 1 IM7

  14. Electroweak results from the tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, D.

    1997-01-01

    Electroweak results are presented from the CDF and DO experiments based on data collected in recent runs of the Fermilab Tevatron Collider. The measurements include the mass and width of the W boson, the production cross sections of the W and Z bosons, and the W charge asymmetry. Additional results come from studies of events with pairs of electroweak gauge bosons and include limits on anomalous couplings.

  15. Association between light-to-dark changes in angle width and iris parameters in light, dark and changes from light-to-dark conditions.

    PubMed

    Lee, Roland Y; Lin, Shuai-Chun; Chen, Rebecca I; Barbosa, Diego T; Lin, Shan C

    2016-09-01

    To evaluate the association between light-to-dark changes in angle width parameters and iris parameters in light, dark and changes from light-to-dark conditions. In this prospective, cross-sectional study, anterior segment optical coherence tomography images, obtained under light and dark conditions, were analysed to determine angle opening distance measured at 500 μm from the scleral spur (AOD500), trabecular-iris space area at 500 μm from the scleral spur (TISA500), iris thickness measured at 750 μm from the scleral spur (IT750), iris thickness measured at 2000 μm from the scleral spur (IT2000), iris area (IArea) and pupil diameter (PD). Multivariable linear mixed-effect regression models were used to evaluate the association between light-to-dark changes in angle width parameters (AOD500, TISA500) and iris parameters (IT750, IT2000, IArea, PD) in light, dark and changes from light-to-dark conditions. 534 eyes from 314 non-glaucomatous subjects were analysed. IT750, IT2000, IArea and PD in light conditions were significantly associated with light-to-dark changes in AOD500 (p<0.05). IT750, IT2000 and IArea in light conditions were significantly associated with light-to-dark changes in TISA500 (p<0.05). IT750 in dark conditions was significantly associated with light-to-dark changes in AOD500 and TISA500 (p<0.05). Light-to-dark changes in IT2000, IArea and PD were significantly associated with light-to-dark changes in AOD500 (p<0.05). Light-to-dark changes in IArea were significantly associated with light-to-dark changes in TISA500 (p<0.05). Evaluation of iris parameters in light, dark and changes from light-to-dark conditions demonstrated that IT750, IT2000, IArea and PD in light conditions are significant predictors of light-to-dark changes in angle width. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at TeV with ATLAS

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Almond, J.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C.-M.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J. A.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; GonCcalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Horii, Y.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Rozas, A. Juste; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; LanCcon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leone, S.; Leonhardt, K.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrella, S.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Struebig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.

    2014-09-01

    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb-1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) {-/2.9 + 3.2} (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations. [Figure not available: see fulltext.

  17. Morphological adjustments in a meandering reach of the middle Yangtze River caused by severe human activities

    NASA Astrophysics Data System (ADS)

    Zhou, Meirong; Xia, Junqiang; Lu, Jinyou; Deng, Shanshan; Lin, Fenfen

    2017-05-01

    In the past 50 years, the Shishou reach in the middle Yangtze River underwent significant channel evolution owing to the implementation of an artificial cutoff, the construction of bank revetment works and the operation of the Three Gorges Project (TGP). Based on the measured hydrological data and topographic data, the processes of channel evolution in this reach were investigated mainly from the adjustments in planform and cross-sectional geometries. The variation in planform geometry obtained in this study indicates that (i) the artificial cutoff at Zhongzhouzi caused the river regime to adjust drastically, with the mean rate of thalweg migration at reach scale of 42.0 m/a over the period 1966-1975; (ii) then the effect of this artificial cutoff reduced gradually, with the mean migration rate decreasing to < 30 m/a in 1975-1993, while it increased to > 40 m/a owing to the occurrence of high water levels in 1993-1998; and (iii) the average annual rate of thalweg migration decreased to 29.3 m/a because of the impacts of various bank protection engineering and the TGP operation during the period 2002-2015. However, remarkable thalweg migration processes still occurred in local regions after the TGP operation, which resulted in significant bankline migration in local reaches of Beimenkou, Shijiatai, and Tiaoxiankou. In addition, the adjustments of bankfull channel geometry were investigated at section and reach scales after the TGP operation. Calculated results show that lateral channel migration in this reach was restricted by various river regulation works and that channel evolution was mainly characterized by an increase in bankfull depth and cross-sectional area. Empirical relationships were developed between the reach-scale bankfull dimensions (depth and area), the bankfull widths at specified sections, and the previous 5-year average fluvial erosion intensity during flood seasons, with high correlation degrees between them being obtained.

  18. Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton-proton collisions at $$\\sqrt s$$ = 13 TeV

    DOE PAGES

    Sirunyan, A.M.; et al.

    2018-06-10

    A search is presented for single production of a vector-like quark (T) decaying to a Z boson and a top quark, with the Z boson decaying leptonically and the top quark decaying hadronically. The search uses data collected by the CMS experiment in proton–proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb−1 . The presence of forward jets is a particular characteristic of single production of vector-like quarks that is used in the analysis. For the first time, different T quark width hypotheses are studied, from negligibly small to 30%more » of the new particle mass. At the 95% confidence level, the product of cross section and branching fraction is excluded above values in the range 0.26–0.04 pb for T quark masses in the range 0.7–1.7 TeV, assuming a negligible width. A similar sensitivity is observed for widths of up to 30% of the T quark mass. The production of a heavy Z′ boson decaying to Tt, with T→tZ , is also searched for, and limits on the product of cross section and branching fractions for this process are set between 0.13 and 0.06 pb for Z′ boson masses in the range from 1.5 to 2.5 TeV.« less

  19. Effect of course length and corridor width on the 2-minute walk test performance in geriatric patients.

    PubMed

    Lindemann, Ulrich; Beck, Luisa; Becker, Clemens

    2017-02-01

    To evaluate the effect of course length and corridor width on 2-minute walk test results in older adults. Cross-sectional and experimental study with different test conditions. Geriatric rehabilitation clinic. A total of 21 patients (median age 81 years). Patients walked two minutes on a 20 m and 40 m course with a 2 m or 1 m corridor width and on a continuous course without any turning in a corridor of 2 m width, five walks in total. The distance traveled within the 2 minutes was recorded. Compared with the 20 m course length, median walking distances measured by the 2-minute walk test in a walk way 2 m broad were better on the continuous corridor without any turn (136.9 m vs. 129.3 m, p = 0.002) and on the 40 m course (131.8 m vs. 129.3 m, p = 0.003). Walking distance on a 20 m course length was longer in a corridor of 2 m width compared with the 1 m corridor width (129.3 m vs. 119.2 m, p = 0.005). The walking distance was not affected by corridor width on the 40 m course length. Performance of elderly patients on the 2-minute walk test is influenced by the width of the corridor and the length of the course used.

  20. Comparison of gimbal approaches to decrease drag force and radar cross sectional area in missile application

    NASA Astrophysics Data System (ADS)

    Sakarya, Doǧan Uǧur

    2017-05-01

    Drag force effect is an important aspect of range performance in missile applications especially for long flight time. However, old fashioned gimbal approaches force to increase missile diameter. This increase has negative aspect of rising in both drag force and radar cross sectional area. A new gimbal approach was proposed recently. It uses a beam steering optical arrangement. Therefore, it needs less volume envelope for same field of regard and same optomechanical assembly than the old fashioned gimbal approaches. In addition to longer range performance achieved with same fuel in the new gimbal approach, this method provides smaller cross sectional area which can be more invisible in enemies' radar. In this paper, the two gimbal approaches - the old fashioned one and the new one- are compared in order to decrease drag force and radar cross sectional area in missile application. In this study; missile parameters are assumed to generate gimbal and optical design parameters. Optical design is performed according to these missile criteria. Two gimbal configurations are designed with respect to modeled missile parameters. Also analyzes are performed to show decreased drag force and radar cross sectional area in the new approach for comparison.

  1. Turbine airfoil having outboard and inboard sections

    DOEpatents

    Mazzola, Stefan; Marra, John J

    2015-03-17

    A turbine airfoil usable in a turbine engine and formed from at least an outboard section and an inboard section such that an inner end of the outboard section is attached to an outer end of the inboard section. The outboard section may be configured to provide a tip having adequate thickness and may extend radially inward from the tip with a generally constant cross-sectional area. The inboard section may be configured with a tapered cross-sectional area to support the outboard section.

  2. Methodology for calculating the volume of condensate droplets on topographically modified, microgrooved surfaces.

    PubMed

    Sommers, A D

    2011-05-03

    Liquid droplets on micropatterned surfaces consisting of parallel grooves tens of micrometers in width and depth are considered, and a method for calculating the droplet volume on these surfaces is presented. This model, which utilizes the elongated and parallel-sided nature of droplets condensed on these microgrooved surfaces, requires inputs from two droplet images at ϕ = 0° and ϕ = 90°--namely, the droplet major axis, minor axis, height, and two contact angles. In this method, a circular cross-sectional area is extruded the length of the droplet where the chord of the extruded circle is fixed by the width of the droplet. The maximum apparent contact angle is assumed to occur along the side of the droplet because of the surface energy barrier to wetting imposed by the grooves--a behavior that was observed experimentally. When applied to water droplets condensed onto a microgrooved aluminum surface, this method was shown to calculate the actual droplet volume to within 10% for 88% of the droplets analyzed. This method is useful for estimating the volume of retained droplets on topographically modified, anisotropic surfaces where both heat and mass transfer occur and the surface microchannels are aligned parallel to gravity to assist in condensate drainage.

  3. Impact of Cubic Pin Finned Surface Structure Geometry upon Spray Cooling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Silk, Eric A.; Kim, Jungho; Kiger, Ken

    2005-01-01

    Experiments were conducted to study the effects of enhanced surface structures on heat flux using spray cooling. The surface enhancements consisted of cubic pin fins machined on the top surface of copper heater blocks. The structure height, pitch, and width were parametrically vaned. Each copper block had a projected cross-sectional area of 2.0 sq cm. Measurements were also obtained on a heater block with a flat surface for baseline comparison purposes. A 2 x 2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data were obtained under nominally degassed (chamber pressure of 41.4 kPa) and gassy conditions (chamber with N2 gas at 100.7 kPa) with a bulk fluid temperature of 20.5 C. Results for both the degassed and gassy cases show that structure width and separation distance have a dominant effect upon the heat transfer for the size ranges used. Cubic pin fin height had little impact upon heat flux. The maximum critical heat flux (CHF) attained for any of the surfaces was 121 W/sq cm, giving an enhancement of 51% relative to the flat surface case under nominally degassed conditions. The gassy case had a maximum CHF of 149 W/sq cm, giving an enhancement of 38% relative to the flat surface case.

  4. Shielding techniques tackle EMI excesses. V - EMI shielding

    NASA Astrophysics Data System (ADS)

    Grant, P.

    1982-10-01

    The utilization of shielding gaskets in EMI design is presented in terms of seam design, gasket design, groove design, and fastener spacing. The main function of seam design is to minimize the coupling efficiency of a seam, and for effective shielding, seam design should include mating surfaces which are as flat as possible, and a flange width at least five times the maximum anticipated separation between mating surfaces. Seam surface contact with a gasket should be firm, continuous, and uniform. Gasket height, closure pressure, and compression set as a function of the applied pressure parameters are determined using compression/deflection curves. Environmental seal requirements are given and the most common materials used are neoprene, silicone, butadiene-acrylonitrile, and natural rubber. Groove design is also discussed, considering gasket heights and cross-sectional areas. Finally, fastener spacing is considered, by examining deflection as a percentage of gasket height.

  5. The healing of disturbed hillslopes by gully gravure

    USGS Publications Warehouse

    Osterkamp, W.R.; Toy, T.J.

    1994-01-01

    Results of accelerated erosion on certain constructed surfaces in southeastern Arizona appear similar to those described by Bryan as gully gravure. Twenty cross-section excavations in eight rills inclised into silt-rich lacustrine and fluvial deposits reveal partial filling of the rills by debris derived from overyling fluvial sand, gravel, and cobbles. Interstices of the coarse material gradually fill with fine-grained erosion products, decreasing permeability of the fill and deflecting subsequent runoff to the margins of the fill. Rills and rill fillings thus increase in width with time, and complete veneering of the surface by coarse debris ultimately may occur. Through incision, filling, lateral planation, and armoring, channels of the dissected surface heal and the new hillslope approaches an equilibrium condition. Natural hillslopes in the area with similar geologic conditions have inclinations of 16??-22??, have generally unbroken veneers of coarse debris, and appear subject to the same erosional processes identified at constructed hillslopes. -from Authors

  6. Effects of heat induced by two-photon absorption and free-carrier absorption in silicon-on-insulator nanowaveguides operating as all-optical wavelength converters.

    PubMed

    Abdollahi, Siamak; Moravvej-Farshi, Mohammad Kazem

    2009-05-01

    We propose a new numerical model to analyze heat induced by two-photon absorption and free-carrier absorption, while high intensity optical pulses propagate along silicon-on-insulator (SOI) nanowaveguides (NWGs). Using this model, we demonstrate that such induced heat causes a shift in the amount of wavelength conversion and hence deteriorates the converter output characteristics for pulses in the picosecond regime. The wavelength shift induced by a pulse with maximum input intensity and full width at half-maximum of I(max)=1.5x10(10) W x cm(-2) and T(FWHM)=30 ps, propagating along a SOI NWG with an effective cross-sectional area of a(eff)=0.15 microm(2), is shown to be Delta lambda(s) approximately 8 pm. We also demonstrate that such a shift can be compensated by tuning the pump intensity down by approximately 6.33%.

  7. Topographic Controls on Hillslope-Riparian Water Table Continuity in a set of Nested Catchments, Northern Rocky Mountains, Montana

    NASA Astrophysics Data System (ADS)

    Jencso, K. G.; McGlynn, B. L.; Gooseff, M. N.; Wondzell, S. M.; Bencala, K. E.; Payn, R. A.

    2007-12-01

    Understanding how hillslope and riparian water table dynamics influence catchment scale hydrologic response remains a challenge. In steep headwater catchments with shallow soils, topographic convergence and divergence (upslope accumulated area-UAA) is a hypothesized first-order control on the distribution of soil water and groundwater. To test the relationship between UAA and the longevity of hillslope-riparian-stream shallow groundwater connectivity, we quantified water table continuity based on 80+ recording wells distributed across 24 hillslope-riparian-stream cross-sections. Cross-section upstream catchment areas ranged in size from 0.41 to 17.2 km2, within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana, USA. We quantified toe-slope UAA and the topographic index (TI = ln a/tanβ) with a Multiple-D- Infinity (area routing in multiple infinite downslope directions) flow accumulation algorithm analysis of 1, 3, 10, and 30m ALSM derived DEMs. Indices derived from the 10m DEM best characterized subsurface flow accumulation, highlighting the balance between the process of interest, topographic complexity, and optimal grid scale representation. Across the 24 transects, toe-slope UAA ranged from 600-40,000 m2, the TI ranged from 5-16, and riparian widths were between 0-60m. Patterns in shallow groundwater table fluctuations suggest hydrologic dynamics reflective of hillslope-riparian landscape setting. Specifically, correlations were observed between longevity of hillslope-riparian water table continuity and the size of the UAA (r2=0.84) and its topographic index (r2=.86). These observations highlight the temporal component of topographic-hydrologic relationships important for understanding threshold mediated hydrologic variables. We are working to quantify the characteristics and spatial distribution of hillslope-riparian sequences and their water table dynamics to temporally link runoff source areas to whole catchment hydrologic response.

  8. Absorption of {Lambda}(1520) hyperons in photon-nucleus collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paryev, E. Ya.

    2012-12-15

    In the framework of the nuclear spectral function approach for incoherent primary photon-nucleon and secondary pion-nucleon production processes we study the inclusive {Lambda}(1520)-hyperon production in the interaction of 2-GeV photons with nuclei. In particular, the A and momentum dependences of the absolute and relative {Lambda}(1520)-hyperon yields are investigated in two scenarios for its in-medium width. Our model calculations show that the pion-nucleon production channel contributes appreciably to the {Lambda}(1520) creation at intermediate momenta both in light and heavy nuclei in the chosen kinematics and, hence, has to be taken into consideration on close examination of the dependences of the {Lambda}(1520)-hyperonmore » yields on the target mass number with the aim to get information on its width in the medium. They also demonstrate that the A and momentum dependences of the absolute and relative {Lambda}(1520)-hyperon production cross sections at incident energy of interest are markedly sensitive to the {Lambda}(1520) in-medium width, which means that these observables may be an important tool to determine the above width.« less

  9. The Width Distribution of Loops and Strands in the Solar Corona—Are We Hitting Rock Bottom?

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Peter, Hardi

    2017-05-01

    In this study, we analyze Atmospheric Imaging Assembly (AIA) and Hi-C images in order to investigate absolute limits for the finest loop strands. We develop a model of the occurrence-size distribution function of coronal loop widths, characterized by the lower limit of widths w min, the peak (or most frequent) width w p , the peak occurrence number n p , and a power-law slope a. Our data analysis includes automated tracing of curvilinear features with the OCCULT-2 code, automated sampling of the cross-sectional widths of coronal loops, and fitting of the theoretical size distribution to the observed distribution. With Monte Carlo simulations and variable pixel sizes {{Δ }}x, we derive a first diagnostic criterion to discriminate whether the loop widths are unresolved ({w}p/{{Δ }}x≈ 2.5+/- 0.2) or fully resolved (if {w}p/{{Δ }}x≳ 2.7). For images with resolved loop widths, we can apply a second diagnostic criterion that predicts the lower limit of loop widths as a function of the spatial resolution. We find that the loop widths are marginally resolved in AIA images but are fully resolved in Hi-C images, where our model predicts a most frequent (peak) value at {w}p≈ 550 {km}, in agreement with recent results of Brooks et al. This result agrees with the statistics of photospheric granulation sizes and thus supports coronal heating mechanisms operating on the macroscopic scale of photospheric magneto-convection, rather than nanoflare braiding models on unresolved microscopic scales.

  10. Electric fluid pump

    DOEpatents

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  11. Discharge estimation for the Upper Brahmaputra River in the Tibetan Plateau using multi-source remote sensing data

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Long, D.; Du, M.; Hong, Y.

    2017-12-01

    River discharge is among the most important hydrological variables of hydrologists' concern, as it links drinking water supply, irrigation, and flood forecast together. Despite its importance, there are extremely limited gauging stations across most of alpine regions such as the Tibetan Plateau (TP) known as Asia's water towers. Use of remote sensing combined with partial in situ discharge measurements is a promising way of retrieving river discharge over ungauged or poorly gauged basins. Successful discharge estimation depends largely on accurate water width (area) and water level, but it is challenging to obtain these variables for alpine regions from a single satellite platform due to narrow river channels, complex terrain, and limited observations. Here, we used high-spatial-resolution images from Landsat series to derive water area, and satellite altimetry (Jason 2) to derive water level for the Upper Brahmaputra River (UBR) in the TP with narrow river width (less than 400 m in most occasions). We performed waveform retracking using a 50% Threshold and Ice-1 Combined algorithm (TIC) developed in this study to obtain accurate water level measurements. The discharge was estimated well using a range of derived formulas including the power function between water level and discharge, and that between water area and discharge suitable for the triangular cross-section around the Nuxia gauging station in the UBR. Results showed that the power function using Jason 2-derived water levels after performing waveform retracking performed best, showing an overall NSE value of 0.92. The proposed approach for remotely sensed river discharge is effective in the UBR and possibly other alpine rivers globally.

  12. Search for new phenomena with photon+jet events in proton-proton collisions at √s = 13 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-03-08

    A search is performed for the production of high-mass resonances decaying into a photon and a jet in 3.2 fb -1 of proton-proton collisions at a centre-of-mass energy of √s =13 TeV collected by the ATLAS detector at the Large Hadron Collider. Selected events have an isolated photon and a jet, each with transverse momentum above 150 GeV. No significant deviation of the γ+jet invariant mass distribution from the background-only hypothesis is found. Limits are set at 95% confidence level on the cross sections of generic Gaussian-shaped signals and of a few benchmark phenomena beyond the Standard Model: excited quarksmore » with vector-like couplings to the Standard Model particles, and non-thermal quantum black holes in two models of extra spatial dimensions. The minimum excluded visible cross sections for Gaussian-shaped resonances with width-to-mass ratios of 2% decrease from about 6 fb for a mass of 1.5 TeV to about 0.8 fb for a mass of 5 TeV. The minimum excluded visible cross sections for Gaussian-shaped resonances with width-to-mass ratios of 15% decrease from about 50 fb for a mass of 1.5 TeV to about 1.0 fb for a mass of 5 TeV. As a result, excited quarks are excluded below masses of 4.4 TeV, and non-thermal quantum black holes are excluded below masses of 3.8 (6.2) TeV for Randall-Sundrum (Arkani-Hamed-Dimopoulous-Dvali) models with one (six) extra dimensions.« less

  13. An Investigation of Fat Infiltration of the Multifidus Muscle in Patients With Severe Neck Symptoms Associated With Chronic Whiplash-Associated Disorder.

    PubMed

    Karlsson, Anette; Leinhard, Olof Dahlqvist; Åslund, Ulrika; West, Janne; Romu, Thobias; Smedby, Örjan; Zsigmond, Peter; Peolsson, Anneli

    2016-10-01

    Study Design Cross-sectional study. Background Findings of fat infiltration in cervical spine multifidus, as a sign of degenerative morphometric changes due to whiplash injury, need to be verified. Objectives To develop a method using water/fat magnetic resonance imaging (MRI) to investigate fat infiltration and cross-sectional area of multifidus muscle in individuals with whiplash-associated disorders (WADs) compared to healthy controls. Methods Fat infiltration and cross-sectional area in the multifidus muscles spanning the C4 to C7 segmental levels were investigated by manual segmentation using water/fat-separated MRI in 31 participants with WAD and 31 controls, matched for age and sex. Results Based on average values for data spanning C4 to C7, participants with severe disability related to WAD had 38% greater muscular fat infiltration compared to healthy controls (P = .03) and 45% greater fat infiltration compared to those with mild to moderate disability related to WAD (P = .02). There were no significant differences between those with mild to moderate disability and healthy controls. No significant differences between groups were found for multifidus cross-sectional area. Significant differences were observed for both cross-sectional area and fat infiltration between segmental levels. Conclusion Participants with severe disability after a whiplash injury had higher fat infiltration in the multifidus compared to controls and to those with mild/moderate disability secondary to WAD. Earlier reported findings using T1-weighted MRI were reproduced using refined imaging technology. The results of the study also indicate a risk when segmenting single cross-sectional slices, as both cross-sectional area and fat infiltration differ between cervical levels. J Orthop Sports Phys Ther 2016;46(10):886-893. Epub 2 Sep 2016. doi:10.2519/jospt.2016.6553.

  14. Characterization of Martian near-subsurface materials by determination of cohesion and angle of internal friction

    NASA Technical Reports Server (NTRS)

    Sullivan, R. J.

    1992-01-01

    Back-analysis (reconstruction) of the stability of thirty avalanche chutes was performed in the very limited areas where high resolution imaging overlapped with available 1:500 K topographic map coverage. A new technique was developed to incorporate the third dimension (width) of an avalanche chute in stability back-analysis in order to yield unambiguous values of cohesion and angle of internal friction. The procedure is based upon extending the ordinary method of slices to three dimensions, in order to construct avalanche chute cross-sections whose widths and depths vary as a function of gradient, gravity, density of material, and phi and c. Applying the technique to the well documented slide at Lodalen, Norway as a test produces excellent correspondence with reality. Generally, the technique reveals that the width:depth ratio of any avalanche chute decreases with increasing contrast between the average slope angle and the angle of internal friction. Applying this technique to the martian avalanche chute yields results consistent with indications from earlier work, but with greater certainty. Values of cohesion and angle of internal friction identify the materials at the time of failure as moderately cohesive debris. If Sharp's identification of these features as avalanche chutes is correct, then the results here imply that weathering processes have had a significant effect to depths of tens of meters (where failure has occured) below the martian surface. It is also implied that on relatively steep slopes within Valles Marineris, sizable, unaltered, unmantled bedrock exposures for high resolution spectral and spatial scanning by Mars Observer may be scarce.

  15. Geologic cross sections and preliminary geologic map of the Questa Area, Taos County, New Mexico

    USGS Publications Warehouse

    Bauer, Paul W.; Grauch, V.J.S.; Johnson, Peggy S.; Thompson, Ren A.; Drenth, Benjamin J.; Kelson, Keith I.

    2015-01-01

    In 2011, the senior authors were contacted by Ron Gardiner of Questa, and Village of Questa Mayor Esther Garcia, to discuss the existing and future groundwater supply for the Village of Questa. This meeting led to the development of a plan in 2013 to perform an integrated geologic, geophysical, and hydrogeologic investigation of the Questa area by the New Mexico Bureau of Geology & Mineral Resources (NMBG), the U.S. Geological Survey (USGS), and New Mexico Tech (NMT). The NMBG was responsible for the geologic map and geologic cross sections. The USGS was responsible for a detailed geophysical model to be incorporated into the NMBG products. NMT was responsible for providing a graduate student to develop a geochemical and groundwater flow model. This report represents the final products of the geologic and geophysical investigations conducted by the NMBG and USGS. The USGS final products have been incorporated directly into the geologic cross sections. The objective of the study was to characterize and interpret the shallow (to a depth of approximately 5,000 ft) three-dimensional geology and preliminary hydrogeology of the Questa area. The focus of this report is to compile existing geologic and geophysical data, integrate new geophysical data, and interpret these data to construct three, detailed geologic cross sections across the Questa area. These cross sections can be used by the Village of Questa to make decisions about municipal water-well development, and can be used in the future to help in the development of a conceptual model of groundwater flow for the Questa area. Attached to this report are a location map, a preliminary geologic map and unit descriptions, tables of water wells and springs used in the study, and three detailed hydrogeologic cross sections shown at two different vertical scales. The locations of the cross sections are shown on the index map of the cross section sheet.

  16. Morphological classification and comparison of suboccipital muscle fiber characteristics

    PubMed Central

    Yamamoto, Masahito; Kitamura, Kei; Morita, Sumiharu; Nagakura, Ryotaro; Matsunaga, Satoru; Abe, Shinichi

    2017-01-01

    In an attempt to clarify the function of the suboccipital muscles, we performed morphological observation of the suboccipital muscles for variations in the muscle belly and compared the morphology of their muscle fibers in terms of cross-sectional area by immunostaining with anti-myosin heavy chain antibodies. The cadavers of 25 Japanese individuals were used: 22 for morphological examinations and three for histological examinations. Among samples of the rectus capitis posterior major muscle (RCPma) and rectus capitis posterior minor muscle (RCPmi), 86.4% had a typical muscle appearance with a single belly, and 13.6% had an anomalous morphology. None of the samples of the obliquus capitis superior (OCS) or obliquus capitis inferior (OCI) muscles had an anomalous appearance. Measurement of cross-sectional area revealed that fast-twitch muscle fibers in the RCPma and OCI had a significantly greater cross-sectional area than those of the RCPmi and OCS. The cross-sectional area of intermediate muscle fibers was also significantly greater in the OCS than in the RCPma, RCPmi, and OCI. The cross-sectional area of slow-twitch muscle fibers was significantly greater in the OCS than in the RCPma, RCPmi, and OCI, and the RCPmi showed a significantly greater cross-sectional area for slow-twitch muscle fibers than did the RCPma, and OCI. Our findings indicate that the RCPmi and OCS exert a greater force than the RCPma and OCI, and act as anti-gravity agonist muscles of the head. Prolonged head extension in individuals with anomalous suboccipital muscle groups could result in dysfunction due to undue stress. PMID:29354295

  17. Morphological classification and comparison of suboccipital muscle fiber characteristics.

    PubMed

    Yamauchi, Masato; Yamamoto, Masahito; Kitamura, Kei; Morita, Sumiharu; Nagakura, Ryotaro; Matsunaga, Satoru; Abe, Shinichi

    2017-12-01

    In an attempt to clarify the function of the suboccipital muscles, we performed morphological observation of the suboccipital muscles for variations in the muscle belly and compared the morphology of their muscle fibers in terms of cross-sectional area by immunostaining with anti-myosin heavy chain antibodies. The cadavers of 25 Japanese individuals were used: 22 for morphological examinations and three for histological examinations. Among samples of the rectus capitis posterior major muscle (RCPma) and rectus capitis posterior minor muscle (RCPmi), 86.4% had a typical muscle appearance with a single belly, and 13.6% had an anomalous morphology. None of the samples of the obliquus capitis superior (OCS) or obliquus capitis inferior (OCI) muscles had an anomalous appearance. Measurement of cross-sectional area revealed that fast-twitch muscle fibers in the RCPma and OCI had a significantly greater cross-sectional area than those of the RCPmi and OCS. The cross-sectional area of intermediate muscle fibers was also significantly greater in the OCS than in the RCPma, RCPmi, and OCI. The cross-sectional area of slow-twitch muscle fibers was significantly greater in the OCS than in the RCPma, RCPmi, and OCI, and the RCPmi showed a significantly greater cross-sectional area for slow-twitch muscle fibers than did the RCPma, and OCI. Our findings indicate that the RCPmi and OCS exert a greater force than the RCPma and OCI, and act as anti-gravity agonist muscles of the head. Prolonged head extension in individuals with anomalous suboccipital muscle groups could result in dysfunction due to undue stress.

  18. Lower limb muscle volume estimation from maximum cross-sectional area and muscle length in cerebral palsy and typically developing individuals.

    PubMed

    Vanmechelen, Inti M; Shortland, Adam P; Noble, Jonathan J

    2018-01-01

    Deficits in muscle volume may be a significant contributor to physical disability in young people with cerebral palsy. However, 3D measurements of muscle volume using MRI or 3D ultrasound may be difficult to make routinely in the clinic. We wished to establish whether accurate estimates of muscle volume could be made from a combination of anatomical cross-sectional area and length measurements in samples of typically developing young people and young people with bilateral cerebral palsy. Lower limb MRI scans were obtained from the lower limbs of 21 individuals with cerebral palsy (14.7±3years, 17 male) and 23 typically developing individuals (16.8±3.3years, 16 male). The volume, length and anatomical cross-sectional area were estimated from six muscles of the left lower limb. Analysis of Covariance demonstrated that the relationship between the length*cross-sectional area and volume was not significantly different depending on the subject group. Linear regression analysis demonstrated that the product of anatomical cross-sectional area and length bore a strong and significant relationship to the measured muscle volume (R 2 values between 0.955 and 0.988) with low standard error of the estimates of 4.8 to 8.9%. This study demonstrates that muscle volume may be estimated accurately in typically developing individuals and individuals with cerebral palsy by a combination of anatomical cross-sectional area and muscle length. 2D ultrasound may be a convenient method of making these measurements routinely in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis.

    PubMed

    Paquin, M-Ê; El Mendili, M M; Gros, C; Dupont, S M; Cohen-Adad, J; Pradat, P-F

    2018-01-01

    There is an emerging need for biomarkers to better categorize clinical phenotypes and predict progression in amyotrophic lateral sclerosis. This study aimed to quantify cervical spinal gray matter atrophy in amyotrophic lateral sclerosis and investigate its association with clinical disability at baseline and after 1 year. Twenty-nine patients with amyotrophic lateral sclerosis and 22 healthy controls were scanned with 3T MR imaging. Standard functional scale was recorded at the time of MR imaging and after 1 year. MR imaging data were processed automatically to measure the spinal cord, gray matter, and white matter cross-sectional areas. A statistical analysis assessed the difference in cross-sectional areas between patients with amyotrophic lateral sclerosis and controls, correlations between spinal cord and gray matter atrophy to clinical disability at baseline and at 1 year, and prediction of clinical disability at 1 year. Gray matter atrophy was more sensitive to discriminate patients with amyotrophic lateral sclerosis from controls ( P = .004) compared with spinal cord atrophy ( P = .02). Gray matter and spinal cord cross-sectional areas showed good correlations with clinical scores at baseline ( R = 0.56 for gray matter and R = 0.55 for spinal cord; P < .01). Prediction at 1 year with clinical scores ( R 2 = 0.54) was improved when including a combination of gray matter and white matter cross-sectional areas ( R 2 = 0.74). Although improvements over spinal cord cross-sectional areas were modest, this study suggests the potential use of gray matter cross-sectional areas as an MR imaging structural biomarker to monitor the evolution of amyotrophic lateral sclerosis. © 2018 by American Journal of Neuroradiology.

  20. 49 CFR 230.25 - Maximum allowable stress on stays and braces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber stays shall be 7,500 psi. The maximum allowable stress per square inch of net cross sectional area on...

  1. 49 CFR 230.25 - Maximum allowable stress on stays and braces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber stays shall be 7,500 psi. The maximum allowable stress per square inch of net cross sectional area on...

  2. 49 CFR 230.25 - Maximum allowable stress on stays and braces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber stays shall be 7,500 psi. The maximum allowable stress per square inch of net cross sectional area on...

  3. 49 CFR 230.25 - Maximum allowable stress on stays and braces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber stays shall be 7,500 psi. The maximum allowable stress per square inch of net cross sectional area on...

  4. Hydraulic conditions of flood flows in a Polish Carpathian river subjected to variable human impacts

    NASA Astrophysics Data System (ADS)

    Radecki-Pawlik, Artur; Czech, Wiktoria; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Ruiz-Villanueva, Virginia

    2016-04-01

    Channel morphology of the Czarny Dunajec River, Polish Carpathians, has been considerably modified as a result of channelization and gravel-mining induced channel incision, and now it varies from a single-thread, incised or regulated channel to an unmanaged, multi-thread channel. We investigated effects of these distinct channel morphologies on the conditions for flood flows in a study of 25 cross-sections from the middle river course where the Czarny Dunajec receives no significant tributaries and flood discharges increase little in the downstream direction. Cross-sectional morphology, channel slope and roughness of particular cross-section parts were used as input data for the hydraulic modelling performed with the 1D steady-flow HEC-RAS model for discharges with recurrence interval from 1.5 to 50 years. The model for each cross-section was calibrated with the water level of a 20-year flood from May 2014, determined shortly after the flood on the basis of high-water marks. Results indicated that incised and channelized river reaches are typified by similar flow widths and cross-sectional flow areas, which are substantially smaller than those in the multi-thread reach. However, because of steeper channel slope in the incised reach than in the channelized reach, the three river reaches differ in unit stream power and bed shear stress, which attain the highest values in the incised reach, intermediate values in the channelized reach, and the lowest ones in the multi-thread reach. These patterns of flow power and hydraulic forces are reflected in significant differences in river competence between the three river reaches. Since the introduction of the channelization scheme 30 years ago, sedimentation has reduced its initial flow conveyance by more than half and elevated water stages at given flood discharges by about 0.5-0.7 m. This partly reflects a progressive growth of natural levees along artificially stabilized channel banks. By contrast, sediments of natural levees deposited along the multi-thread channel and subsequently eroded in the course of lateral channel migration and floodplain reworking; as a result, they do not reduce the conveyance of floodplain flows in this reach. This study was performed within the scope of the Research Project DEC-2013/09/B/ST10/00056 financed by the National Science Centre of Poland.

  5. Ecological condition of the East Fork of the Gila River and selected tributaries: Gila National Forest, New Mexico

    Treesearch

    Robert D. Ohmart

    1996-01-01

    Ecological condition of riparian habitats along the East Fork of the Gila River, Main Diamond Creek, lower South Diamond Creek, and Black Canyon Creek are all in very heavily degraded condition. Channel cross-sections show extensive entrenchment, high width-to-depth ratios, and numerous reaches where banks are sloughing into the stream, especially on the East Fork of...

  6. Application of Time-Frequency Representations To Non-Stationary Radar Cross Section

    DTIC Science & Technology

    2009-03-01

    The three- dimensional plot produced by a TFR allows one to determine which spectral components of a signal vary with time [25... a range bin ( of width cT 2 ) from the stepped frequency waveform. 2. Cancel the clutter (stationary components) by zeroing out points associated with ...generating an infinite number of bilinear Time Frequency distributions based on a generalized equation and a change- able

  7. Skin penetration of silicon dioxide microneedle arrays.

    PubMed

    Kim, Sangchae; Shetty, S; Price, D; Bhansali, S

    2006-01-01

    Out-of-plane hollow silicon dioxide microneedle arrays were fabricated and investigated to determine their efficacy for transdermal applications. The fabrication process of the SiO2 microneedles is described, and mechanical fracture forces were investigated on microneedles with different geometrical dimensions. Biomechanical characterization of the microneedles was performed to specifically test for reliable stratum corneum and skin insertion by changing the regulatory parameters such as needle width and cross-section.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mughabghab, S.

    The s- and p-wave neutron strength functions and average radiative widths of fission product nuclides are reviewed. The direct capture mechanism of Land and Lynn is quantitatively varified for the two reactions /sup 42/Ca(n,..gamma..) /sup 43/Ca and /sup 136/Xe(n,..gamma..) /sup 137/Xe. Thermal capture cross sections of /sup 132/Te and /sup 126/Sn are estimated with the aid of the Lane-Lynn theory. 7 figures, 1 table.

  9. The Wall Interference of a Wind Tunnel of Elliptic Cross Section

    NASA Technical Reports Server (NTRS)

    Tani, Itiro; Sanuki, Matao

    1944-01-01

    The wall interference is obtained for a wind tunnel of elliptic section for the two cases of closed and open working sections. The approximate and exact methods used gave results in practically good agreement. Corresponding to the result given by Glauert for the case of the closed rectangular section, the interference is found to be a minimum for a ratio of minor to major axis of 1:square root of 6 This, however, is true only for the case where the span of the airfoil is small in comparison with the width of the tunnel. For a longer airfoil the favorable ellipse is flatter. In the case of the open working section the circular shape gives the minimum interference.

  10. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask

    NASA Astrophysics Data System (ADS)

    Prakash, Shashi; Kumar, Subrata

    2017-09-01

    CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.

  11. Relative significance of microtopography and vegetation as controls on surface water flow on a low-gradient floodplain

    USGS Publications Warehouse

    Choi, Jungyill; Harvey, Judson W.

    2014-01-01

    Surface water flow controls water velocities, water depths, and residence times, and influences sediment and nutrient transport and other ecological processes in shallow aquatic systems. Flow through wetlands is substantially influenced by drag on vegetation stems but is also affected by microtopography. Our goal was to use microtopography data directly in a widely used wetland model while retaining the advantages of the model’s one-dimensional structure. The base simulation with no explicit treatment of microtopography only performed well for a period of high water when vegetation dominated flow resistance. Extended simulations using microtopography can improve the fit to low-water conditions substantially. The best fit simulation had a flow conductance parameter that decreased in value by 70 % during dry season such that mcrotopographic features blocked 40 % of the cross sectional width for flow. Modeled surface water became ponded and flow ceased when 85 % of the cross sectional width became blocked by microtopographic features. We conclude that vegetation drag dominates wetland flow resistance at higher water levels and microtopography dominates at low water levels with the threshold delineated by the top of microtopographic features. Our results support the practicality of predicting flow on floodplains using relatively easily measured physical and biological variables.

  12. Derivation and Application of Idealized Flow Conditions in River Network Simulation

    NASA Astrophysics Data System (ADS)

    Afshari Tork, S.; Fekete, B. M.

    2015-12-01

    Stream flow information is essential for many applications across broad range of scales, e.g. global water balances, engineering design, flood forecasting, environmental management, etc. Quantitative assessment of flow dynamics of natural streams, requires detailed knowledge of all the geometrical and geophysical variables (e.g. bed-slope, bed roughness, etc.) along river reaches. Simplifying the river bed geometries could reduce both the computational burden implementing flow simulations and challenges in assembling the required data, especially for large domains. Average flow conditions expressed as empirical "at-a-station" hydraulic geometry relationships between key channel components, (i.e. water depth, top-width, flow velocity, flow area against discharge) have been studied since 60's. Recent works demonstrated that power-function as idealized riverbed geometry whose parameters are correlated to those of exponential relationship between mean water depth and top-width, are consistent with empirical "at-a-station" relations.US Geological Surveys' National Water Information System web-interface provides huge amount of river discharge and corresponding stage height data from several thousands of streamflow monitoring stations over United States accompanied by river survey summaries providing additional flow informations (width, mean velocity, cross-sectional area). We conducted a series of analyses to indentify consistent data daily monitoring and corresponding survey records that are suitable to refine our current understanding of how the "at-a-station" properties of river channels relate to channel forming characteristics (e.g. riverbed slope, flow regime, geology, etc.). The resulting ~1,200 actively operating USGS stations with over ~225,000 corresponding survery records (almost 200 survey per gauge on average) is the largest river survey database ever studied in the past.Our presentation will show our process assembling our river monitoring and survey data base and we will present our first results translating "at-a-station" relations into he hydraulic geometry of river channels based on idealized power-law riverbed geometries. We also will also present a series of application (e.g. improved flow rounting, simplyfied river surveying).

  13. Reliability of engineering methods of assessment the critical buckling load of steel beams

    NASA Astrophysics Data System (ADS)

    Rzeszut, Katarzyna; Folta, Wiktor; Garstecki, Andrzej

    2018-01-01

    In this paper the reliability assessment of buckling resistance of steel beam is presented. A number of parameters such as: the boundary conditions, the section height to width ratio, the thickness and the span are considered. The examples are solved using FEM procedures and formulas proposed in the literature and standards. In the case of the numerical models the following parameters are investigated: support conditions, mesh size, load conditions, steel grade. The numerical results are compared with approximate solutions calculated according to the standard formulas. It was observed that for high slenderness section the deformation of the cross-section had to be described by the following modes: longitudinal and transverse displacement, warping, rotation and distortion of the cross section shape. In this case we face interactive buckling problem. Unfortunately, neither the EN Standards nor the subject literature give close-form formulas to solve these problems. For this reason the reliability of the critical bending moment calculations is discussed.

  14. 75 FR 68854 - JCA Corporation, Receipt of Petition for Decision of Inconsequential Noncompliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... the shoulder of the tire. If the maximum section width falls within that area, the markings shall appear between the bead and a point one-half the distance from the bead to the shoulder of the tire, on...

  15. Publications - RI 2011-3B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    structural cross sections for the Kavik River map area, Alaska Authors: Wallace, W.K., Wartes, M.A., Decker Kavik River map area, Alaska: Alaska Division of Geological & Geophysical Surveys Report of area, Alaska (144.0 M) Sheet 2 Interpretations of seismic reflection data and structural cross sections

  16. Evaluation of fiber’s misorientation effect on compliance and load carry capacity of shaped composite beams

    NASA Astrophysics Data System (ADS)

    Polilov, A. N.; Tatus’, N. A.

    2018-04-01

    The goal of this paper is analysis of design methods for composite beams and plates with curvilinear fiber trajectories. The novelty of this approach is determined by the fact that traditional composite materials are typically formed using prepregs with rectilinear fibers only. The results application area is associated with design process for shaped composite structure element by using of biomechanical principles. One of the related problems is the evaluation of fiber’s misorientation effect on stiffness and load carry capacity of shaped composite element with curvilinear fiber trajectories. Equistrong beam with constant cross-section area is considered as example, and it can be produced by unidirectional fiber bunch forming, impregnated with polymer matrix. Effective elastic modulus evaluation methods for structures with curvilinear fiber trajectories are validated. Misorientation angle range (up to 5o) when material with required accuracy can be considered as homogeneous, neglecting fiber misorientation, is determined. It is shown that for the beams with height-to-width ratio small enough it is possible to consider 2D misorientation only.

  17. An investigation into the mechanisms of drag reduction of a boat tailed base cavity on a blunt based body

    NASA Astrophysics Data System (ADS)

    Kehs, Joshua Paul

    It is well documented in the literature that boat-tailed base cavities reduce the drag on blunt based bodies. The majority of the previous work has been focused on the final result, namely reporting the resulting drag reduction or base pressure increase without examining the methods in which such a device changes the fluid flow to enact such end results. The current work investigates the underlying physical means in which these devices change the flow around the body so as to reduce the overall drag. A canonical model with square cross section was developed for the purpose of studying the flow field around a blunt based body. The boat-tailed base cavity tested consisted of 4 panels of length equal to half the width of the body extending from the edges of the base at an angle towards the models center axis of 12°. Drag and surface pressure measurements were made at Reynolds numbers based on width from 2.3x105 to 3.6x10 5 in the Clarkson University high-speed wind tunnel over a range of pitch and yaw angles. Cross-stream hotwire wake surveys were used to identify wake width and turbulence intensities aft of the body at Reynolds numbers of 2.3x105 to 3.0x105. Particle Image Velocimetry (PIV) was used to quantify the flow field in the wake of the body, including the mean flow, vorticity, and turbulence measurements. The results indicated that the boat-tailed aft cavity decreases the drag significantly due to increased pressure on the base. Hotwire measurements indicated a reduction in wake width as well as a reduction in turbulence in the wake. PIV measurements indicated a significant reduction in wake turbulence and revealed that there exists a co-flowing stream that exits the cavity parallel to the free stream, reducing the shear in the flow at the flow separation point. The reduction in shear at the separation point indicated the method by which the turbulence was reduced. The reduction in turbulence combined with the reduction in wake size provided the mechanism of drag reduction by limiting the rate of entrainment of fluid in the recirculating wake to the free stream and by limiting the area over which this entrainment occurs.

  18. Chiral dynamics of the p wave in K-p and coupled states

    NASA Astrophysics Data System (ADS)

    Jido, D.; Oset, E.; Ramos, A.

    2002-11-01

    We perform an evaluation of the p-wave amplitudes of meson-baryon scattering in the strangeness S=-1 sector starting from the lowest order chiral Lagrangians and introducing explicitly the Σ* field with couplings to the meson-baryon states obtained using SU(6) symmetry. The N/D method of unitarization is used, equivalent, in practice, to the use of the Bethe-Salpeter equation with a cutoff. The procedure leaves no freedom for the p-waves once the s-waves are fixed and thus one obtains genuine predictions for the p-wave scattering amplitudes, which are in good agreement with experimental results for differential cross sections, as well as for the width and partial decay widths of the Σ*(1385).

  19. Effect of H-wave polarization on laser radar detection of partially convex targets in random media.

    PubMed

    El-Ocla, Hosam

    2010-07-01

    A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.

  20. The use of cross-section warping functions in composite rotor blade analysis

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1992-01-01

    During the contracted period, our research was concentrated into three areas. The first was the development of an accurate and a computationally efficient method for predicting the cross-section warping functions in an arbitrary cross-section composed of isotropic and/or anisotropic materials. The second area of research was the development of a general higher-order one-dimensional theory for anisotropic beams. The third area of research was the development of an analytical model for assessing the extension-bend-twist coupling behavior of nonhomogeneous anisotropic beams with initial twist. In the remaining six chapters of this report, the three different research areas and associated sub-research areas are covered independently including separate introductions, theoretical developments, numerical results, and references.

  1. Measurements of cross sections for the 209Bi(n, 4n) reaction by using high energy neutrons with continuous energy spectra

    NASA Astrophysics Data System (ADS)

    Min, Kyung Joo; Bak, Sang-In; Ham, Cheolmin; In, Eun Jin; Kim, Do Yoon; Myung, Hyunjeong; Shim, Chungbo; Shin, Jae Won; Zhou, Yujie; Park, Tae-Sun; Hong, Seung-Woo; Bhoraskar, V. N.

    2017-09-01

    We measured 209Bi(n, 4n) cross sections at neutron energies En = 29.8 ± 1.8 MeV and En = 34.8 ± 1.8 MeV. Bismuth oxide samples were irradiated with the neutrons produced by impinging 30, 35 and 40 MeV proton beams on a 1.05 cm thick beryllium target, where the proton beams were from the MC-50 Cyclotron of Korea Institute of Radiological Medical Sciences (KIRAMS). The neutron flux for each proton beam energy Ep, ΦEp(En), has a broad spectrum with respect to En. By taking the difference in the neutron fluxes, the difference spectra, Φ40(En) -Φ35(En) and Φ35(En) -Φ30(En), are obatined and found to be peaked at En = 29.8 and 34.8 MeV, respectively, with a width of about 3.6 MeV. By making use of this observation and employing the TENDL-2009 library we could extract the 209Bi(n, 4n)206Bi cross sections at the aforementioned neutron energies.

  2. Microminiature optical waveguide structure and method for fabrication

    DOEpatents

    Strand, O.T.; Deri, R.J.; Pocha, M.D.

    1998-12-08

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat. 32 figs.

  3. Microminiature optical waveguide structure and method for fabrication

    DOEpatents

    Strand, Oliver T.; Deri, Robert J.; Pocha, Michael D.

    1998-01-01

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat.

  4. Birds and insects as radar targets - A review

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R.

    1985-01-01

    A review of radar cross-section measurements of birds and insects is presented. A brief discussion of some possible theoretical models is also given and comparisons made with the measurements. The comparisons suggest that most targets are, at present, better modeled by a prolate spheroid having a length-to-width ratio between 3 and 10 than by the often used equivalent weight water sphere. In addition, many targets observed with linear horizontal polarization have maximum cross sections much better estimated by a resonant half-wave dipole than by a water sphere. Also considered are birds and insects in the aggregate as a local radar 'clutter' source. Order-of-magnitude estimates are given for many reasonable target number densities. These estimates are then used to predict X-band volume reflectivities. Other topics that are of interest to the radar engineer are discussed, including the doppler bandwidth due to the internal motions of a single bird, the radar cross-section probability densities of single birds and insects, the variability of the functional form of the probability density functions, and the Fourier spectra of single birds and insects.

  5. Morphometric study of the neural ossification centers of the atlas and axis in the human fetus.

    PubMed

    Baumgart, Mariusz; Wiśniewski, Marcin; Grzonkowska, Magdalena; Małkowski, Bogdan; Badura, Mateusz; Szpinda, Michał

    2016-12-01

    The knowledge of the developing cervical spine and its individual vertebrae, including their neural processes may be useful in the diagnostics of congenital vertebral malformations. This study was performed to quantitatively examine the neural ossification centers of the atlas and axis with respect to their linear, planar and volumetric parameters. Using the methods of CT, digital-image analysis and statistics, the size of neural ossification centers in the atlas and axis in 55 spontaneously aborted human fetuses aged 17-30 weeks was studied. Without any male-female and right-left significant differences, the best fit growth dynamics for the neural ossification centers of the atlas and axis were, respectively, modelled by the following functions: for length: y = -13.461 + 6.140 × ln(age) ± 0.570 and y = -15.683 + 6.882 × ln(age) ± 0.503, for width: y = -4.006 + 1.930 × ln(age) ± 0.178 and y = -3.054 + 1.648 × ln(age) ± 0.178, for cross-sectional area: y = -7.362 + 0.780 × age ± 1.700 and y = -9.930 + 0.869 × age ± 1.911, and for volume: y = -6.417 + 0.836 × age ± 1.924 and y = -11.592 + 1.087 × age ± 2.509. The size of neural ossification centers of the atlas and axis shows neither sexual nor bilateral differences. The neural ossification centers of the atlas and axis grow logarithmically in both length and width and linearly in both cross-sectional area and volume. The numerical data relating to the size of neural ossification centers of the atlas and axis derived from the CT and digital-image analysis are considered specific-age reference values of potential relevance in both the ultrasound monitoring and the early detection of spinal abnormalities relating to the neural processes of the first two cervical vertebrae in the fetus.

  6. Small vertebral cross-sectional area and tall intervertebral disc in adolescent idiopathic scoliosis.

    PubMed

    Ponrartana, Skorn; Fisher, Carissa L; Aggabao, Patricia C; Chavez, Thomas A; Broom, Alexander M; Wren, Tishya A L; Skaggs, David L; Gilsanz, Vicente

    2016-09-01

    When compared to boys, girls have smaller vertebral cross-sectional area, which conveys a greater spinal flexibility, and a higher prevalence of adolescent idiopathic scoliosis. To test the hypothesis that small vertebral cross-sectional area and tall intervertebral disc height are structural characteristics of patients with adolescent idiopathic scoliosis. Using multiplanar imaging techniques, measures of vertebral cross-sectional area, vertebral height and intervertebral disc height in the lumbar spine were obtained in 35 pairs of girls and 11 pairs of boys with and without adolescent idiopathic scoliosis of the thoracic spine matched for age, height and weight. Compared to adolescents without spinal deformity, girls and boys with adolescent idiopathic scoliosis had, on average, 9.8% (6.68 ± 0.81 vs. 7.40 ± 0.99 cm(2); P = 0.0007) and 13.9% (8.22 ± 0.84 vs. 9.55 ± 1.61 cm(2); P = 0.009) smaller vertebral cross-sectional dimensions, respectively. Additionally, patients with adolescent idiopathic scoliosis had significantly greater values for intervertebral disc heights (9.06 ± 0.85 vs. 7.31 ± 0.62 mm and 9.09 ± 0.87 vs. 7.61 ± 1.00 mm for girls and boys respectively; both P ≤ 0.011). Multiple regression analysis indicated that the presence of scoliosis was negatively associated with vertebral cross-sectional area and positively with intervertebral disc height, independent of sex, age and body mass index. We provide new evidence that girls and boys with adolescent idiopathic scoliosis have significantly smaller vertebral cross-sectional area and taller intervertebral disc heights - two major structural determinants that influence trunk flexibility. With appropriate validation, these findings may have implications for the identification of children at the highest risk for developing scoliosis.

  7. Limits on the Higgs boson lifetime and width from its decay to four charged leptons

    DOE PAGES

    Khachatryan, Vardan

    2015-10-22

    Constraints on the lifetime and width of the Higgs boson are obtained from H → ZZ → 4ℓ events using data recorded by the CMS experiment during the LHC run 1 with an integrated luminosity of 5.1 and 19.7 fb -1 at a center-of-mass energy of 7 and 8 TeV, respectively. The measurement of the Higgs boson lifetime is derived from its flight distance in the CMS detector with an upper bound of τ H < 1.9 × 10 -13 s at the 95% confidence level (C.L.), corresponding to a lower bound on the width of Γ H > 3.5more » × 10 -9 MeV. The measurement of the width is obtained from an off-shell production technique, generalized to include anomalous couplings of the Higgs boson to two electroweak bosons. From our measurement, a joint constraint is set on the Higgs boson width and a parameter f ΛQ that expresses an anomalous coupling contribution as an on-shell cross-section fraction. Additionally, the limit on the Higgs boson width is Γ H<46 MeV with f ΛQ unconstrained and Γ H < 26 MeV for f ΛQ = 0 at the 95% C.L. The constraint f ΛQ < 3.8 × 10 -3 at the 95% C.L. is obtained for the expected standard model Higgs boson width.« less

  8. Saturated Widths of Magnetic Islands in Tokamak Discharges

    NASA Astrophysics Data System (ADS)

    Halpern, F.; Pankin, A. Y.

    2005-10-01

    The new ISLAND module described in reference [1] implements a quasi-linear model to compute the widths of multiple magnetic islands driven by saturated tearing modes in toroidal plasmas of arbitrary aspect ratio and cross sectional shape. The distortion of the island shape caused by the radial variation in the perturbation is computed in the new module. In transport simulations, the enhanced transport caused by the magnetic islands has the effect of flattening the pressure and current density profiles. This self consistent treatment of the magnetic islands alters the development of the plasma profiles. In addition, it is found that islands closer to the magnetic axis influence the evolution of islands further out in the plasma. In order to investigate such phenomena, the ISLAND module is used within the BALDUR predictive modeling code to compute the widths of multiple magnetic islands in tokamak discharges. The interaction between the islands and sawtooth crashes is examined in simulations of DIII-D and JET discharges. The module is used to compute saturated neoclassical tearing mode island widths for multiple modes in ITER. Preliminary results for island widths in ITER are consistent with those presented [2] by Hegna. [1] F.D. Halpern, G. Bateman, A.H. Kritz and A.Y. Pankin, ``The ISLAND Module for Computing Magnetic Island Widths in Tokamaks,'' submitted to J. Plasma Physics (2005). [2] C.C. Hegna, 2002 Fusion Snowmass Meeting.

  9. An Experimental Evaluation of Blockage Corrections for Current Turbines

    NASA Astrophysics Data System (ADS)

    Ross, Hannah; Polagye, Brian

    2017-11-01

    Flow confinement has been shown to significantly alter the performance of turbines that extract power from water currents. These performance effects are related to the degree of constraint, defined by the ratio of turbine projected area to channel cross-sectional area. This quantity is referred to as the blockage ratio. Because it is often desirable to adjust experimental observations in water channels to unconfined conditions, analytical corrections for both wind and current turbines have been derived. These are generally based on linear momentum actuator disk theory but have been applied to turbines without experimental validation. This work tests multiple blockage corrections on performance and thrust data from a cross-flow turbine and porous plates (experimental analogues to actuator disks) collected in laboratory flumes at blockage ratios ranging between 10 and 35%. To isolate the effects of blockage, the Reynolds number, Froude number, and submergence depth were held constant while the channel width was varied. Corrected performance data are compared to performance in a towing tank at a blockage ratio of less than 5%. In addition to examining the accuracy of each correction, underlying assumptions are assessed to determine why some corrections perform better than others. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1256082 and the Naval Facilities Engineering Command (NAVFAC).

  10. Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, Paul

    2001-01-01

    This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be incorporated in a complex numerical model of ground-water flow in the Death Valley region.

  11. Exploring unobserved heterogeneity in bicyclists' red-light running behaviors at different crossing facilities.

    PubMed

    Guo, Yanyong; Li, Zhibin; Wu, Yao; Xu, Chengcheng

    2018-06-01

    Bicyclists running the red light at crossing facilities increase the potential of colliding with motor vehicles. Exploring the contributing factors could improve the prediction of running red-light probability and develop countermeasures to reduce such behaviors. However, individuals could have unobserved heterogeneities in running a red light, which make the accurate prediction more challenging. Traditional models assume that factor parameters are fixed and cannot capture the varying impacts on red-light running behaviors. In this study, we employed the full Bayesian random parameters logistic regression approach to account for the unobserved heterogeneous effects. Two types of crossing facilities were considered which were the signalized intersection crosswalks and the road segment crosswalks. Electric and conventional bikes were distinguished in the modeling. Data were collected from 16 crosswalks in urban area of Nanjing, China. Factors such as individual characteristics, road geometric design, environmental features, and traffic variables were examined. Model comparison indicates that the full Bayesian random parameters logistic regression approach is statistically superior to the standard logistic regression model. More red-light runners are predicted at signalized intersection crosswalks than at road segment crosswalks. Factors affecting red-light running behaviors are gender, age, bike type, road width, presence of raised median, separation width, signal type, green ratio, bike and vehicle volume, and average vehicle speed. Factors associated with the unobserved heterogeneity are gender, bike type, signal type, separation width, and bike volume. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Evaluation of maxillary anterior teeth and their relation to the golden proportion in Malaysian population.

    PubMed

    Al-Marzok, Maan Ibrahim; Majeed, Kais Raad Abdul; Ibrahim, Ibrahim Khalil

    2013-01-24

    The maxillary anterior teeth are important in achieving pleasing dental aesthetics. Various methods are used to measure the size and form of them, including the golden proportion between their perceived widths, and the width-to-height ratio, referred to as the golden standard. The purpose of this study was conducted to evaluate whether consistent relationships exist between tooth width and height of the clinical crown dimensions; and to investigate the occurrence of the golden proportion of the maxillary anterior teeth. Dental casts of the maxillary arches were made in this cross-sectional study from MAHSA University College students who met the inclusion criteria. The 49 participants represented the Malaysian population main ethnics. The dimensions of the anterior teeth and the perceived width of anterior teeth viewed from front were measured using a digital caliper. Comparison of the perceived width ratio of lateral to central incisor and canine to lateral incisor with the golden proportion of 0.618 revealed there were a significant statistical difference (p < 0.05). The statistical difference was significant for the width-to-height ratio of central incisors to the golden standard of 80%. There was no significant difference in the comparison among ethnic groups for the golden proportion and the golden standard. The golden proportion was not found to exist between the perceived widths of maxillary anterior teeth. No golden standard were detected for the width-to-height proportions of maxillary incisors. Specific population characteristics and perception of beauty must be considered. However, ethnicity has no association with the proportions of maxillary anterior teeth.

  13. Examining empirical evidence of the effect of superfluidity on the fusion barrier

    NASA Astrophysics Data System (ADS)

    Scamps, Guillaume

    2018-04-01

    Background: Recent time-dependent Hartree-Fock-Bogoliubov (TDHFB) calculations predict that superfluidity enhances fluctuations of the fusion barrier. This effect is not fully understood and not yet experimentally revealed. Purpose: The goal of this study is to empirically investigate the effect of superfluidity on the distribution width of the fusion barrier. Method: Two new methods are proposed in the present study. First, the local regression method is introduced and used to determine the barrier distribution. The second method, which requires only the calculation of an integral of the cross section, is developed to determine accurately the fluctuations of the barrier. This integral method, showing the best performance, is systematically applied to 115 fusion reactions. Results: Fluctuations of the barrier for open-shell systems are, on average, larger than those for magic or semimagic nuclei. This is due to the deformation and the superfluidity. To disentangle these two effects, a comparison is made between the experimental width and the width estimated from a model that takes into account the tunneling, the deformation, and the vibration effect. This study reveals that superfluidity enhances the fusion barrier width. Conclusions: This analysis shows that the predicted effect of superfluidity on the width of the barrier is real and is of the order of 1 MeV.

  14. Comparison of Bruch's Membrane Opening Minimum Rim Width Among Those With Normal Ocular Health by Race.

    PubMed

    Rhodes, Lindsay A; Huisingh, Carrie E; Quinn, Adam E; McGwin, Gerald; LaRussa, Frank; Box, Daniel; Owsley, Cynthia; Girkin, Christopher A

    2017-02-01

    To examine if racial differences in Bruch's membrane opening minimum rim width (BMO-MRW) in spectral-domain optical coherence tomography (SDOCT) exist, specifically between people of African descent (AD) and European descent (ED) in normal ocular health. Cross-sectional study. Patients presenting for a comprehensive eye examination at retail-based primary eye clinics were enrolled based on ≥1 of the following at-risk criteria for glaucoma: AD aged ≥40 years, ED aged ≥50 years, diabetes, family history of glaucoma, and/or pre-existing diagnosis of glaucoma. Participants with normal optic nerves on examination received SDOCT of the optic nerve head (24 radial scans). Global and regional (temporal, superotemporal, inferotemporal, nasal, superonasal, and inferonasal) BMO-MRW were measured and compared by race using generalized estimating equations. Models were adjusted for age, sex, and BMO area. SDOCT scans from 269 eyes (148 participants) were included in the analysis. Mean global BMO-MRW declined as age increased. After adjusting for age, sex, and BMO area, there was not a statistically significant difference in mean global BMO-MRW by race (P = .60). Regionally, the mean BMO-MRW was lower in the crude model among AD eyes in the temporal, superotemporal, and nasal regions and higher in the inferotemporal, superonasal, and inferonasal regions. However, in the adjusted model, these differences were not statistically significant. BMO-MRW was not statistically different between those of AD and ED. Race-specific normative data may not be necessary for the deployment of BMO-MRW in AD patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Comparison of Bruch's Membrane Opening-Minimum Rim Width among Those with Normal Ocular Health by Race

    PubMed Central

    Rhodes, Lindsay A.; Huisingh, Carrie E.; Quinn, Adam E.; McGwin, Gerald; LaRussa, Frank; Box, Daniel; Owsley, Cynthia; Girkin, Christopher A.

    2016-01-01

    Purpose To examine if racial differences in Bruch's membrane opening-minimum rim width (BMO-MRW) in spectral domain optical coherence tomography (SDOCT) exist, specifically between people of African descent (AD) and European descent (ED) in normal ocular health. Design Cross-sectional study Methods Patients presenting for a comprehensive eye exam at retail-based primary eye clinics were enrolled based on ≥1 of the following at-risk criteria for glaucoma: AD aged ≥ 40 years, ED aged ≥50 years, diabetes, family history of glaucoma, and/or preexisting diagnosis of glaucoma. Participants with normal optic nerves on exam received SDOCT of the optic nerve head (24 radial scans). Global and regional (temporal, superotemporal, inferotemporal, nasal, superonasal, and inferonasal) BMO-MRW were measured and compared by race using generalized estimating equations. Models were adjusted for age, gender, and BMO area. Results SDOCT scans from 269 eyes (148 participants) were included in the analysis. Mean global BMO-MRW declined as age increased. After adjusting for age, gender, and BMO area, there was not a statistically significant difference in mean global BMO-MRW by race (P = 0.60). Regionally, the mean BMO-MRW was lower in the crude model among AD eyes in the temporal, superotemporal, and nasal regions and higher in the inferotemporal, superonasal, and inferonasal regions. However, in the adjusted model, these differences were not statistically significant. Conclusions BMO-MRW was not statistically different between those of AD and ED. Race-specific normative data may not be necessary for the deployment of BMO-MRW in AD patients. PMID:27825982

  16. Steeply dipping heaving bedrock, Colorado: Part 1 - Heave features and physical geological framework

    USGS Publications Warehouse

    Noe, D.C.; Higgins, J.D.; Olsen, H.W.

    2007-01-01

    Differentially heaving bedrock has caused severe damage near the Denver metropolitan area. This paper describes heave-feature morphologies, the underlying bedrock framework, and their inter-relationship. The heave features are linear to curvilinear and may attain heights of 0.7 m (2.4 ft), widths of 58 m (190 ft), and lengths of 1,067 m (3,500 ft). They are nearly symmetrical to highly asymmetrical in cross section, with width-to-height ratios of 45:1 to 400:1, and most are oriented parallel with the mountain front. The bedrock consists of Mesozoic sedimentary formations having dip angles of 30 degrees to vertical to overturned. Mixed claystone-siltstone bedding sequences up to 36-m (118-ft) thick are common in the heave-prone areas, and interbeds of bentonite, limestone, or sandstone may be present. Highly fractured zones of weathered to variably weathered claystone extend to depths of 19.5 to 22.3 m (64 to 73 ft). Fracture spacings are 0.1 to 0.2 m (0.3 to 0.7 ft) in the weathered and variably weathered bedrock and up to 0.75 m (2.5 ft) in the underlying, unweathered bedrock. Curvilinear shear planes in the weathered claystone show thrust or reverse offsets up to 1.2 m (3.9 ft). Three associations between heave-feature morphologies and the geological framework are recognized: (1) Linear, symmetrical to asymmetrical heaves are associated with primary bedding composition changes. (2) Linear, highly asymmetrical heaves are associated with shear planes along bedding. (3) Curvi-linear, highly asymmetrical heaves are associated with bedding-oblique shear planes.

  17. Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Keller, E. A.

    2003-12-01

    In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is produced by a boulder-bedrock constriction that rapidly decreases the channel width above the pool by roughly 25 percent. The width constriction creates highly turbulent flow capable of scouring bed material through the pool. The high velocity core that is produced through the pool center appears to be enhanced by the formation of a large eddy directly below the boulder. Values of unit stream power and shear stress indicate that the pool exit is an area of deposition of bed material due to a decrease in tractive force. The presence of a strong transverse velocity gradient suggests that only a portion of the flow is responsible for scouring bed material. After we eliminate the dead water zone, the lowest five percent of the velocity range, patterns of effective width between pools and riffles begin to emerge. The ratio of flow width between adjacent pools and riffles is one measure of flow convergence. At a discharge of 0.5 cms, the ratio of effective width between pools and riffles is roughly 1:1, implying that there is uniform flow with little flow convergence. At a discharge of 5.15 cms the width ratio between the pool and riffle is about 1:3, demonstrating the strong convergent flow patterns at the pool head. The observed effective width relationship suggests that when considering restoration designs, boulders should be placed in areas that replicate natural convergence and divergence patterns in order to maximize pool area and depth.

  18. Pattern of asymmetry of paraspinal muscle size in adolescent idiopathic scoliosis examined by real-time ultrasound imaging. A preliminary study.

    PubMed

    Kennelly, K P; Stokes, M J

    1993-06-01

    The symmetry of lumbar multifidus size was examined in 20 patients with adolescent idiopathic scoliosis, aged 12-19 years. With the subject prone, bilateral real-time ultrasound images were obtained at the level of the 4th lumbar vertebra. Cross-sectional area and linear (horizontal and vertical) measurements were made using on-screen calipers. A pattern of asymmetry of lumbar multifidus cross-sectional area was shown to exist for the different curve types. The cross-sectional area was smaller (P < 0.0001) on the opposite side to the convexity of a primary thoracic curve, and on the convex side of a lumbar or thoracolumbar curve. The combined linear measurements (multiplied) correlated with cross-sectional area (r = 0.95) and could therefore be used for rapid clinical assessment of multifidus size. These preliminary findings provide a basis for further investigation of the role of the musculature in the pathogenesis of adolescent idiopathic scoliosis.

  19. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.

    1976-08-10

    1. A diffuser separator apparatus which comprises a plurality of flow channels in a single stage, each of said channels having an inlet port and an outlet port and a constant cross sectional area between said ports, at least a portion of the defining surface of each of said channels being a diffusion separation membrane, and each of said channels having a different cross sectional area, means for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series, a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area.

  20. A prosthesis for banding the main pulmonary artery, capable of serial dilatation by balloon angioplasty.

    PubMed

    Vince, D J; Culham, J A

    1989-03-01

    A prosthesis constructed with a fatigued steel helix encased in a silicone rubber shield was used to band the main pulmonary artery in 10 dogs. After a mean duration of 138 days the banded site was dilated with a 20 mm diameter angioplasty catheter. This dilatation produced a mean increase of 44.3% in the cross-sectional area. A further mean increase of 2.2% in the cross-sectional area was measured 137 days after the dilatation. In five uncomplicated experiments a second dilatation was performed with a 23 mm diameter angioplasty catheter after a mean interval of 140 days. The second dilatation produced a further 21% increase in the cross-sectional area. In the five experiments in which two dilatations were performed, there was a total increase in the mean cross-sectional area of 94% produced 273 days after banding. This prosthesis maintains banding of the main pulmonary artery and can be serially dilated by balloon angioplasty.

  1. Parametric investigations on the saturation intensity of Coumarin 102 for stimulated emission depletion application.

    PubMed

    Qin, H-Y; Zhao, W-X; Zhao, W; Zhang, C; Feng, X-Q; Liu, S-P; Wang, K-G

    2018-04-23

    Stimulated emission depletion (STED) microscopy performed using continuous-wave (CW) lasers has been investigated and developed by Willig et al. (Nature Methods, 2007, 4(11):915) for nearly a decade. Kuang et al. (Review of Scientific Instruments, 2010, 81:053709) developed the CW STED microscopy technique with 405 nm excitation and 532 nm depletion beams. In their research, Coumarin 102 dye was adopted and was found to be depletable. In this study, a parametric investigation of the depletion of Coumarin 102 dye is carried out experimentally. The influence of the excitation and depletion beam intensities and dye concentrations on the depletion efficiency are studied in detail. The results indicate the following: (1) The highest depletion occurs for the 100 μM Coumarin 102 solution, with a 1.4 μW excitation beam and a 115.3 mW depletion beam. (2) The minimum saturation intensity (Is) of STED, that is 13 MW cm -2 , is observed when the Coumarin 102 solution concentration is 10 μM. (3) Is values calculated directly from the depletion power derived with the cross-sectional area due to the full-width-at-half-maximum (FWHM) of the depletion beam show poor accuracy, where Is may be overestimated. Thus, a correction factor for the cross-sectional area is proposed. We also find that Is is not exactly constant for a fixed excitation beam power and dye concentration. This trend indicates that the conventional suppression function η(x)=e- ln (2)ISTED(x)/Is derived from picosecond STED may cause errors in evaluating the depletion process in CW STED microscopy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  2. Use of plume mapping data to estimate chlorinated solvent mass loss

    USGS Publications Warehouse

    Barbaro, J.R.; Neupane, P.P.

    2006-01-01

    Results from a plume mapping study from November 2000 through February 2001 in the sand-and-gravel surficial aquifer at Dover Air Force Base, Delaware, were used to assess the occurrence and extent of chlorinated solvent mass loss by calculating mass fluxes across two transverse cross sections and by observing changes in concentration ratios and mole fractions along a longitudinal cross section through the core of the plume. The plume mapping investigation was conducted to determine the spatial distribution of chlorinated solvents migrating from former waste disposal sites. Vertical contaminant concentration profiles were obtained with a direct-push drill rig and multilevel piezometers. These samples were supplemented with additional ground water samples collected with a minipiezometer from the bed of a perennial stream downgradient of the source areas. Results from the field program show that the plume, consisting mainly of tetrachloroethylene (PCE), trichloroethene (TCE), and cis-1,2-dichloroethene (cis-1,2-DCE), was approximately 670 m in length and 120 m in width, extended across much of the 9- to 18-m thickness of the surficial aquifer, and discharged to the stream in some areas. The analyses of the plume mapping data show that losses of the parent compounds, PCE and TCE, were negligible downgradient of the source. In contrast, losses of cis-1,2-DCE, a daughter compound, were observed in this plume. These losses very likely resulted from biodegradation, but the specific reaction mechanism could not be identified. This study demonstrates that plume mapping data can be used to estimate the occurrence and extent of chlorinated solvent mass loss from biodegradation and assess the effectiveness of natural attenuation as a remedial measure.

  3. An atomic model for neutral and singly ionized uranium

    NASA Technical Reports Server (NTRS)

    Maceda, E. L.; Miley, G. H.

    1979-01-01

    A model for the atomic levels above ground state in neutral, U(0), and singly ionized, U(+), uranium is described based on identified atomic transitions. Some 168 states in U(0) and 95 in U(+) are found. A total of 1581 atomic transitions are used to complete this process. Also discussed are the atomic inverse lifetimes and line widths for the radiative transitions as well as the electron collisional cross sections.

  4. Tool Indicates Contact Angles In Bearing Raceways

    NASA Technical Reports Server (NTRS)

    Akian, Richard A.; Butner, Myles F.

    1995-01-01

    Tool devised for use in measuring contact angles between balls and races in previously operated ball bearings. Used on both inner and outer raceways of bearings having cross-sectional widths between approximately 0.5 and 2.0 in. Consists of integral protractor mounted in vertical plane on bracket equipped with leveling screws and circular level indicator. Protractor includes rotatable indicator needle and set of disks of various sizes to fit various raceway curvatures.

  5. Photoabsorption cross-section measurements of 32S, 33S, 34S, and 36S sulfur dioxide from 190 to 220 nm

    NASA Astrophysics Data System (ADS)

    Endo, Yoshiaki; Danielache, Sebastian O.; Ueno, Yuichiro; Hattori, Shohei; Johnson, Matthew S.; Yoshida, Naohiro; Kjaergaard, Henrik G.

    2015-03-01

    The ultraviolet absorption cross sections of the SO2 isotopologues are essential to understanding the photochemical fractionation of sulfur isotopes in planetary atmospheres. We present measurements of the absorption cross sections of 32SO2, 33SO2, 34SO2, and 36SO2, recorded from 190 to 220 nm at room temperature with a resolution of 0.1 nm (~25 cm-1) made using a dual-beam photospectrometer. The measured absorption cross sections show an apparent pressure dependence and a newly developed analytical model shows that this is caused by underresolved fine structure. The model made possible the calculation of absorption cross sections at the zero-pressure limit that can be used to calculate photolysis rates for atmospheric scenarios. The 32SO2, 33SO2, and 34SO2 cross sections improve upon previously published spectra including fine structure and peak widths. This is the first report of absolute absorption cross sections of the 36SO2 isotopologue for the C1B2-X1A2 band where the amplitude of the vibrational structure is smaller than the other isotopologues throughout the spectrum. Based on the new results, solar UV photodissociation of SO2 produces 34ɛ, 33Ε, and 36Ε isotopic fractionations of +4.6 ± 11.6‰, +8.8 ± 9.0‰, and -8.8 ± 19.6‰, respectively. From these spectra isotopic effects during photolysis in the Archean atmosphere can be calculated and compared to the Archean sedimentary record. Our results suggest that broadband solar UV photolysis is capable of producing the mass-independent fractionation observed in the Archean sedimentary record without involving shielding by specific gaseous compounds in the atmosphere including SO2 itself. The estimated magnitude of 33Ε, for example, is close to the maximum Δ33S observed in the geological record.

  6. The quantum efficiency of HgCdTe photodiodes in relation to the direction of illumination and to their geometry

    NASA Technical Reports Server (NTRS)

    Rosenfeld, D.; Bahir, G.

    1993-01-01

    A theoretical study of the effect of the direction of the incident light on the quantum efficiency of homogeneous HgCdTe photodiodes suitable for sensing infrared radiation in the 8-12 microns atmospheric window is presented. The probability of an excess minority carrier to reach the junction is derived as a function of its distance from the edge of the depletion region. Accordingly, the quantum efficiency of photodiodes is presented for two geometries. In the first, the light is introduced directly to the area in which it is absorbed (opaque region), while in the second, the light passes through a transparent region before it reaches the opaque region. Finally, the performance of the two types of diodes is analyzed with the objective of finding the optimal width of the absorption area. The quantum efficiency depends strongly on the way in which the light is introduced. The structure in which the radiation is absorbed following its crossing the transparent region is associated with both higher quantum efficiency and homogeneity. In addition, for absorption region widths higher than a certain minimum, the quantum efficiency in this case is insensitive to the width of the absorption region.

  7. No difference in long-term trunk muscle strength, cross-sectional area, and density in patients with chronic low back pain 7 to 11 years after lumbar fusion versus cognitive intervention and exercises.

    PubMed

    Froholdt, Anne; Holm, Inger; Keller, Anne; Gunderson, Ragnhild B; Reikeraas, Olav; Brox, Jens I

    2011-08-01

    Reduced muscle strength and density observed at 1 year after lumbar fusion may deteriorate more in the long term. To compare the long-term effect of lumbar fusion and cognitive intervention and exercises on muscle strength, cross-sectional area, density, and self-rated function in patients with chronic low back pain (CLBP) and disc degeneration. Randomized controlled study with a follow-up examination at 8.5 years (range, 7-11 years). Patients with CLBP and disc degeneration randomized to either instrumented posterolateral fusion of one or both of the two lower lumbar levels or a 3-week cognitive intervention and exercise program were included. Isokinetic muscle strength was measured by a Cybex 6000 (Cybex-Lumex, Inc., Ronkonkoma, NY, USA). All patients had previous experience with the test procedure. The back extension (E) flexion (F) muscles were tested, and the E/F ratios were calculated. Cross-sectional area and density of the back muscles were measured at the L3-L4 segment by computed tomography. Patients rated their function by the General Function Score. Trunk muscle strength, cross-sectional area, density, and self-rated function. Fifty-five patients (90%) were included at long-term follow-up. There were no significant differences in cross-sectional area, density, muscle strength, or self-rated function between the two groups. The cognitive intervention and exercise group increased trunk muscle extension significantly (p<.05), and both groups performed significantly better on trunk muscle flexion tests (p<.01) at long-term follow-up. On average, self-rated function improved by 56%, cross-sectional area was reduced by 8.5%, and muscle density was reduced by 27%. Although this study did not assess the morphology of muscles likely damaged by surgery, trunk muscle strength and cross-sectional area above the surgical levels are not different between those who had lumbar fusion or cognitive intervention and exercises at 7- to 11-year follow-up. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Vacuum ultraviolet molecular nitrogen photoabsorption cross sections for planetary atmospheric transmission models

    NASA Astrophysics Data System (ADS)

    Stark, G.; Smith, P. L.; Yoshino, K.; Rufus, J.; Huber, K. P.

    2001-11-01

    The analyses of VUV occultation measurements of the N2-rich atmospheres of Titan and Triton are hampered by the lack of fundamental spectroscopic data for N2. In particular, there is a need for reliable photoabsorption f-values and line widths for the ~ 100 electronic bands of N2 in the 80 to 100 nm wavelength region. As part of our continuing program of laboratory measurements and analyses of the N2 VUV absorption spectrum, we present the results of new measurements of individual line strengths and widths in selected bands. These results indicate that within a number of individual bands there are significant departures from the predicted line strength distributions based on isolated band models. New line width measurements in the 95 to 100 nm region are also presented and compared to other values found in the literature. We have continued to compile on-line molecular spectroscopic atlas based on our N2 laboratory data: http://cfa-www.harvard.edu/amdata/ampdata/N2ARCHIVE/n2home.html. The archive includes published and unpublished 14N2, 14N15N, and 15N2 line lists and spectroscopic identifications, excited state energy levels, band and line f-values, a summary of published band f-value and line width measurements, and a cross-referenced summary of the relevant N2 literature. The listings are searchable by wavelength interval or band identification and are suitable for down-loading in a convenient format. We gratefully acknowledge funding support from NASA grant NAG5-9059 and the Smithsonian Institution Atherton-Seidel grant program.

  9. Cross section calculations for subthreshold pion production in peripheral heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Cucinotta, F. A.; Deutchman, P. A.; Townsend, L. W.

    1986-01-01

    Total cross sections angular distributions, and spectral distributions for the exclusive production of charged and neutral subthreshold pions produced in peripheral nucleus-nucleus collisions are calculated by using a particle-hole formalism. The pions result from the formation and decay of an isobar giant resonance state formed in a C-12 nucleus. From considerations of angular momentum conservation and for the sake of providing a unique experimental signature, the other nucleus, chosen for this work to be C-12 also, is assumed to be excited to one of its isovector (1+) giant resonance states. The effects of nucleon recoil by the pion emission are included, and Pauli blocking and pion absorption effects are studied by varying the isobar width. Detailed comparisons with experimental subthreshold pion data for incident energies between 35 and 86 MeV/nucleon are made.

  10. Correlations of leaf area with length and width measurements of leaves of black oak, white oak, and sugar maple

    Treesearch

    Philip M. Wargo

    1978-01-01

    Correlations of leaf area with length, width, and length times width of leaves of black oak, white oak, and sugar maple were determined to see if length and/or width could be used as accurate estimators of leaf area. The correlation of length times width with leaf area was high (r > + .95) for all three species. The linear equation Y = a + bX, where X = length times...

  11. XSECT: A computer code for generating fuselage cross sections - user's manual

    NASA Technical Reports Server (NTRS)

    Ames, K. R.

    1982-01-01

    A computer code, XSECT, has been developed to generate fuselage cross sections from a given area distribution and wing definition. The cross sections are generated to match the wing definition while conforming to the area requirement. An iterative procedure is used to generate each cross section. Fuselage area balancing may be included in this procedure if desired. The code is intended as an aid for engineers who must first design a wing under certain aerodynamic constraints and then design a fuselage for the wing such that the contraints remain satisfied. This report contains the information necessary for accessing and executing the code, which is written in FORTRAN to execute on the Cyber 170 series computers (NOS operating system) and produces graphical output for a Tektronix 4014 CRT. The LRC graphics software is used in combination with the interface between this software and the PLOT 10 software.

  12. Location of Rotator Cuff Tear Initiation: A Magnetic Resonance Imaging Study of 191 Shoulders.

    PubMed

    Jeong, Jeung Yeol; Min, Seul Ki; Park, Keun Min; Park, Yong Bok; Han, Kwang Joon; Yoo, Jae Chul

    2018-03-01

    Degenerative rotator cuff tears (RCTs) are generally thought to originate at the anterior margin of the supraspinatus tendon. However, a recent ultrasonography study suggested that they might originate more posteriorly than originally thought, perhaps even from the isolated infraspinatus (ISP) tendon, and propagate toward the anterior supraspinatus. Hypothesis/Purpose: It was hypothesized that this finding could be reproduced with magnetic resonance imaging (MRI). The purpose was to determine the most common location of degenerative RCTs by using 3-dimensional multiplanar MRI reconstruction. It was assumed that the location of the partial-thickness tears would identify the area of the initiation of full-thickness tears. Cross-sectional study; Level of evidence, 3. A retrospective analysis was conducted including 245 patients who had RCTs (nearly full- or partial-thickness tears) at the outpatient department between January 2011 and December 2013. RCTs were measured on 3-dimensional multiplanar reconstruction MRI with OsiriX software. The width and distance from the biceps tendon to the anterior margin of the tear were measured on T2-weighted sagittal images. In a spreadsheet, columns of consecutive numbers represented the size of each tear (anteroposterior width) and their locations with respect to the biceps brachii tendon. Data were pooled to graphically represent the width and location of all tears. Frequency histograms of the columns were made to visualize the distribution of tears. The tears were divided into 2 groups based on width (group A, <10 mm; group B, <20 and ≥10 mm) and analyzed for any differences in location related to size. The mean width of all RCTs was 11.9 ± 4.1 mm, and the mean length was 11.1 ± 5.0 mm. Histograms showed the most common location of origin to be 9 to 10 mm posterior to the biceps tendon. The histograms of groups A and B showed similar tear location distributions, indicating that the region approximately 10 mm posterior to the biceps tendon is the most common site of tear initiation. These results demonstrate that degenerative RCTs most commonly originate from approximately 9 to 10 mm posterior to the biceps tendon.

  13. Brown Adipose Tissue and Its Relationship to Bone Structure in Pediatric Patients

    PubMed Central

    Ponrartana, Skorn; Aggabao, Patricia C.; Hu, Houchun H.; Aldrovandi, Grace M.; Wren, Tishya A. L.

    2012-01-01

    Context: Emerging evidence suggests a possible link between brown adipose tissue (BAT) and bone metabolism. Objective: The objective of this study was to examine the relationships between BAT and bone cross-sectional dimensions in children and adolescents. Design: This was a cross-sectional study. Setting: The study was conducted at a pediatric referral center. Patients: Patients included 40 children and teenagers (21 males and 19 females) successfully treated for pediatric malignancies. Interventions: There were no interventions. Main Outcome Measures: The volume of BAT was determined by fluorodeoxyglucose-positron emission tomography/computed tomography. Measures of the cross-sectional area and cortical bone area and measures of thigh musculature and sc fat were determined at the midshaft of the femur. Results: Regardless of sex, there were significant correlations seen between BAT volume and the cross-sectional dimensions of the bone (r values between 0.68 and 0.77; all P ≤ 0 .001). Multiple regression analyses indicated that the volume of BAT predicted femoral cross-sectional area and cortical bone area, even after accounting for height, weight, and gender. The addition of muscle as an independent variable increased the predictive power of the model but significantly decreased the contribution of BAT. Conclusions: The volume of BAT is positively associated with the amount of bone and the cross-sectional size of the femur in children and adolescents. This relation between BAT and bone structure could, at least in part, be mediated by muscle. PMID:22593587

  14. Single cross-sectional area of pectoralis muscle by computed tomography - correlation with bioelectrical impedance based skeletal muscle mass in healthy subjects.

    PubMed

    Kim, Young Saing; Kim, Eun Young; Kang, Shin Myung; Ahn, Hee Kyung; Kim, Hyung Sik

    2017-09-01

    Skeletal muscle depletion is an important prognostic factor in patients with chronic obstructive pulmonary disease (COPD); a recent study demonstrated significant correlations between pectoralis muscle area on an axial CT image and COPD-related traits. The purpose of this study was to evaluate the relation between pectoralis muscle areas on CT scans and total body skeletal muscle mass (SMM) in healthy subjects. For 434 subjects that underwent a low-dose chest CT and bioelectrical impedance analysis (BIA) during health screening from January to June of 2014, cross-sectional area of pectoralis muscles were measured in CT scans. Pearson's correlation and multiple linear regression analysis were used to assess the relationship between cross-sectional CT areas of pectoralis muscles and BIA-assessed SMMs. Mean age was 50 ± 10 years (78·8% were male). The mean cross-sectional area of pectoralis muscles was 24·1 cm 2  ± 6·8. A moderate correlation was observed between pectoralis muscle area and BIA-based SMM (r = 0·665, P<0.001). Multivariable analysis showed CT determined pectoralis muscle area was significantly associated with BIA-assessed SMM after adjusting for gender, weight, height and age (β = 0·14 ± 0·02, P<0·001). Cross-sectional area of the pectoralis muscles on single axial CT images shows moderate correlation with total body SMM determined by BIA in healthy subjects. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  15. Neoplasms treatment by diode laser with and without real time temperature control on operation zone

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Sosenkova, Svetlana A.; Lazareva, Anastasia A.; Semyashkina, Yulia V.

    2016-04-01

    Results of nevus, papilloma, dermatofibroma, and basal cell skin cancer in vivo removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and automatic power control (APC) mode are presented. The collateral damage width and width of graze wound area around the collateral damage area were demonstrated. The total damage area width was calculated as sum of collateral damage width and graze wound area width. The mean width of total damage area reached 1.538+/-0.254 mm for patient group with nevus removing by 980 nm diode laser operating in CW mode, papilloma - 0.586+/-0.453 mm, dermatofibroma - 1.568+/-0.437 mm, and basal cell skin cancer - 1.603+/-0.613 mm. The mean width of total damage area reached 1.201+/-0.292 mm for patient group with nevus removing by 980 nm diode laser operating in APC mode, papilloma - 0.413+/-0.418 mm, dermatofibroma - 1.240+/-0.546 mm, and basal cell skin cancer - 1.204+/-0.517 mm. It was found that using APC mode decreases the total damage area width at removing of these nosological neoplasms of human skin, and decreases the width of graze wound area at removing of nevus and basal cell skin cancer. At the first time, the dynamic of output laser power and thermal signal during laser removal of nevus in CW and APC mode is presented. It was determined that output laser power during nevus removal for APC mode was 1.6+/-0.05 W and for CW mode - 14.0+/-0.1 W. This difference can explain the decrease of the total damage area width and width of graze wound area for APC mode in comparison with CW mode.

  16. 30 CFR 783.25 - Cross sections, maps, and plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...

  17. 30 CFR 783.25 - Cross sections, maps, and plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...

  18. 30 CFR 783.25 - Cross sections, maps, and plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...

  19. 30 CFR 783.25 - Cross sections, maps, and plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...

  20. 30 CFR 783.25 - Cross sections, maps, and plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...

  1. Analysis of internal structure changes in black human hair keratin fibers with aging using Raman spectroscopy.

    PubMed

    Kuzuhara, Akio; Fujiwara, Nobuki; Hori, Teruo

    To investigate the internal structure changes in virgin black human hair keratin fibers due to aging, the structure of cross-sections at various depths of virgin black human hair (sections of new growth hair: 2 mm from the scalp) from a group of eight Japanese females in their twenties and another group of eight Japanese females in their fifties were analyzed using Raman spectroscopy. For the first time, we have succeeded in recording the Raman spectra of virgin black human hair, which had been impossible due to high melanin granule content. The key points of this method are to cross-section hair samples to a thickness of 1.50-microm, to select points at various depths of the cortex with the fewest possible melanin granules, and to optimize laser power, cross slit width as well as total acquisition time. The reproducibility of the Raman bands, namely the alpha-helix (alpha) content, the beta-sheet and/or random coil (beta/R) content, the disulfide (--SS--) content, and random coil content of two adjoining cross-sections of a single hair keratin fiber was clearly good. The --SS-- content of virgin black human hair from the Japanese females in their fifties for the cortex region decreased compared with that of the Japanese females in their twenties. On the other hand, the beta/R and alpha contents of the cortex region did not change.

  2. A Measurement of PSI(2S) Resonance Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunwoodie, William

    2002-11-08

    Cross sections for e{sup +}e{sup -} {yields} hadrons, {pi}{sup +} {pi}{sup -} J/{psi}, and {mu}{sup +}{mu}{sup -} have been measured in the vicinity of the {psi}(2S) resonance using the BESII detector operated at the BEPC. The {psi}(2S) total width; partial widths to hadrons, {pi}{sup +} {pi}{sup -} J/{psi}, muons; and corresponding branching fractions have been determined to be {Lambda}{sub t} = 264 {+-} 27 keV; {Lambda}{sub h} = 258 {+-} 26 keV, {Lambda}{sub {mu}} = 2.44 {+-} 0.21 keV, and {Lambda}{sub {pi}+{pi} = J/{psi}} = 85.4 {+-} 8.7 keV; and B{sub h} = (97.79 {+-} 0.15)%, B{sub {pi}{sup +}{pi}{sup -}}more » = (32.3 {+-} 1.4)%, B{sub {mu}} = (0.93 {+-} 0.08)%, respectively.« less

  3. Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyoung Ryu, Yu; Garcia, Ricardo, E-mail: r.garcia@csic.es; Aitor Postigo, Pablo

    2014-06-02

    Silicon nanowires are key elements to fabricate very sensitive mechanical and electronic devices. We provide a method to fabricate sub-12 nm silicon nanowires in thickness by combining oxidation scanning probe lithography and anisotropic dry etching. Extremely thin oxide masks (0.3–1.1 nm) are transferred into nanowires of 2–12 nm in thickness. The width ratio between the mask and the silicon nanowire is close to one which implies that the nanowire width is controlled by the feature size of the nanolithography. This method enables the fabrication of very small single silicon nanowires with cross-sections below 100 nm{sup 2}. Those values are the smallest obtained withmore » a top-down lithography method.« less

  4. In situ oil shale retort with a generally T-shaped vertical cross section

    DOEpatents

    Ricketts, Thomas E.

    1981-01-01

    An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale and has a production level drift in communication with a lower portion of the fragmented mass for withdrawing liquid and gaseous products of retorting during retorting of oil shale in the fragmented mass. The principal portion of the fragmented mass is spaced vertically above a lower production level portion having a generally T-shaped vertical cross section. The lower portion of the fragmented mass has a horizontal cross sectional area smaller than the horizontal cross sectional area of the upper principal portion of the fragmented mass above the production level.

  5. How Is Topographic Simplicity Maintained in Ephemeral, Dryland Channels?

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Michaelides, K.

    2014-12-01

    Topography in river channels reflects the time integral of streamflow-driven sediment flux mass balance. In dryland basins, infrequent and spatially heterogeneous rainfall generates a nonuniform sediment supply to ephemeral channels from hillslopes, and this sediment is subsequently sorted by spatially and temporally discontinuous channel flow. Paradoxically, the time integral of these interactions tends to produce simple topography, manifest in straight longitudinal profiles and symmetrical cross sections, which are distinct from bed morphology in perennial channels, but the controlling processes are unclear. We present a set of numerical modeling experiments based on field measurements and scenarios of uniform/nonuniform streamflow to investigate ephemeral channel bed-material flux and net sediment accumulation behavior in response to variations in channel hydrology, width, and grain size distribution. Coupled with variations in valley and channel width and frequent, yet discontinuous hillslope supply of coarse sediment, bed material becomes weakly sorted into coarse and fine sections that then affect rates of channel Qs. We identify three sediment transport thresholds relevant to poorly armored, dryland channels: 1) a low critical value required to entrain any grain sizes from the bed; 2) a value of ~4.5τ*c needed to move all grain sizes within a cross section with equal mobility; and 3) a value of ~50τ*c required to entrain gravel at nearly equivalent rates at all sections along a reach. The latter represents the 'geomorphically effective' event, which resets channel topography. We show that spatially variable flow below ~50τ*c creates and subsequently destroys incipient topography along ephemeral reaches and that large flood events above this threshold apparently dampen fluctuations in longitudinal sediment flux and thus smooth incipient channel bar forms. Both processes contribute to the maintenance of topographic simplicity in ephemeral dryland channels.

  6. Extracting Prior Distributions from a Large Dataset of In-Situ Measurements to Support SWOT-based Estimation of River Discharge

    NASA Astrophysics Data System (ADS)

    Hagemann, M.; Gleason, C. J.

    2017-12-01

    The upcoming (2021) Surface Water and Ocean Topography (SWOT) NASA satellite mission aims, in part, to estimate discharge on major rivers worldwide using reach-scale measurements of stream width, slope, and height. Current formalizations of channel and floodplain hydraulics are insufficient to fully constrain this problem mathematically, resulting in an infinitely large solution set for any set of satellite observations. Recent work has reformulated this problem in a Bayesian statistical setting, in which the likelihood distributions derive directly from hydraulic flow-law equations. When coupled with prior distributions on unknown flow-law parameters, this formulation probabilistically constrains the parameter space, and results in a computationally tractable description of discharge. Using a curated dataset of over 200,000 in-situ acoustic Doppler current profiler (ADCP) discharge measurements from over 10,000 USGS gaging stations throughout the United States, we developed empirical prior distributions for flow-law parameters that are not observable by SWOT, but that are required in order to estimate discharge. This analysis quantified prior uncertainties on quantities including cross-sectional area, at-a-station hydraulic geometry width exponent, and discharge variability, that are dependent on SWOT-observable variables including reach-scale statistics of width and height. When compared against discharge estimation approaches that do not use this prior information, the Bayesian approach using ADCP-derived priors demonstrated consistently improved performance across a range of performance metrics. This Bayesian approach formally transfers information from in-situ gaging stations to remote-sensed estimation of discharge, in which the desired quantities are not directly observable. Further investigation using large in-situ datasets is therefore a promising way forward in improving satellite-based estimates of river discharge.

  7. Lumbar muscle structure and function in chronic versus recurrent low back pain: a cross-sectional study.

    PubMed

    Goubert, Dorien; De Pauw, Robby; Meeus, Mira; Willems, Tine; Cagnie, Barbara; Schouppe, Stijn; Van Oosterwijck, Jessica; Dhondt, Evy; Danneels, Lieven

    2017-09-01

    Heterogeneity exists within the low back pain (LBP) population. Some patients recover after every pain episode, whereas others suffer daily from LBP complaints. Until now, studies rarely make a distinction between recurrent low back pain (RLBP) and chronic low back pain (CLBP), although both are characterized by a different clinical picture. Clinical experiences also indicate that heterogeneity exists within the CLBP population. Muscle degeneration, like atrophy, fat infiltration, alterations in muscle fiber type, and altered muscle activity, compromises proper biomechanics and motion of the spinal units in LBP patients. The amount of alterations in muscle structure and muscle function of the paraspinal muscles might be related to the recurrence or chronicity of LBP. The aim of this experimental study is to evaluate differences in muscle structure (cross-sectional area and lean muscle fat index) and muscle activity of the multifidus (MF) and erector spinae (ES) during trunk extension, in patients with RLBP, non-continuous CLBP, and continuous CLBP. This cross-sectional study took place in the university hospital of Ghent, Belgium. Muscle structure characteristics and muscle activity were assessed by magnetic resonance imaging (MRI). Fifty-five adults with non-specific LBP (24 RLBP in remission, 15 non-continuous CLBP, 16 continuous CLBP) participated in this study. Total cross-sectional area, muscle cross-sectional area, fat cross-sectional area, lean muscle fat index, T2-rest and T2-shift were assessed. A T1-weighted Dixon MRI scan was used to evaluate spinal muscle cross-sectional area and fat infiltration in the lumbar MF and ES. Muscle functional MRI was used to evaluate the muscle activity of the lumbar MF and ES during a lumbar extension exercise. Before and after the exercise, a pain assessment was performed. This study was supported by grants from the Special Research Fund of Ghent University (DEF12/AOP/022) without potential conflict of interest-associated biases in the text of the paper. Fat cross-sectional area and lean muscle fat index were significantly higher in MF and ES in continuous CLBP compared with non-continuous CLBP and RLBP (p<.05). No differencesbetween groups were found for total cross-sectional area and muscle cross-sectional area in MF or ES (p>.05). Also, no significant differences between groups for T2-rest were established. T2-shift, however, was significantly lower in MF and ES in RLBP compared with, respectively, non-continuous CLBP and continuous CLBP (p<.05). These results indicate a higher amount of fat infiltration in the lumbar muscles, in the absence of clear atrophy, in continuous CLBP compared with RLBP. A lower metabolic activity of the lumbar muscles was seen in RLBP replicating a relative lower intensity in contractions performed by the lumbar muscles in RLBP compared with non-continuous and continuous CLBP. In conclusion, RLBP differs from continuous CLBP for both muscle structure and muscle function, whereas non-continuous CLBP seems comparable with RLBP for lumbar muscle structure and with continuous CLBP for lumbar muscle function. These results underline the differences in muscle structure and muscle function between different LBP populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Temporal Evaluation of Cardiac Myocyte Hypertrophy and Hyperplasia in Male Rats Secondary to Chronic Volume Overload

    PubMed Central

    Du, Yan; Plante, Eric; Janicki, Joseph S.; Brower, Gregory L.

    2010-01-01

    The temporal myocardial remodeling induced by chronic ventricular volume overload in male rats was examined. Specifically, left ventricular (LV) cardiomyocyte length and width, sarcomere length, and number of nuclei were measured in male rats (n = 8 to 17) at 1, 3, 5, 7, 21, 35, and 56 days after creation of an infrarenal aortocaval fistula. In contrast to previously published reports of progressive increases in cardiomyocyte length and cross-sectional area at 5 days post-fistula and beyond in female hearts, cardiomyocyte length and width did not increase significantly in males during the first 35 days of volume overload. Furthermore, a significant decrease in cardiomyocyte length relative to age-matched controls, together with a reduced number of sarcomeres per cell, was noted in male hearts at 5 days post-fistula. There was a concurrent increase in the percentage of mononucleated cardiomyocytes from 11.6% to 18% at 5 days post-fistula. These initial differences could not be attributed to cardiomyocyte proliferation, and treatment with a microtubule stabilizing agent prevented them from occurring. The subsequent significant increase in LV weight without corresponding increases in cardiomyocyte dimensions is indicative of hyperplasia. Thus, these findings indicate hyperplasia resulting from cytokinesis of cardiomyocytes is a key mechanism, independent of hypertrophy, that contributes to the significant increase in LV mass in male hearts subjected to chronic volume overload. PMID:20651227

  9. Relationship between red cell distribution width and early renal injury in patients with gestational diabetes mellitus.

    PubMed

    Cheng, Dong; Zhao, Jiangtao; Jian, Liguo; Ding, Tongbin; Liu, Shichao

    2016-09-01

    Previous studies found that red cell distribution width was related to adverse cardiovascular events. However, few studies reported the relationship between red cell distribution width and early-stage renal injury in pregnant women with gestational diabetes mellitus. Using a cross-sectional design, 334 pregnant women with gestational diabetes mellitus were enrolled according to the criterion of inclusion and exclusion. Demographic and clinical examination data were collected. Depended on the urine albumin, study population were divided into case group (n = 118) and control group (n = 216). Compared with control group, the case group tend to be higher red cell distribution width level (13.6 ± 0.9 vs.12.5 ± 0.6, p < 0.001). The red cell distribution width was positively associated with albuminuria creatinine ratio (r = 0.567, p < 0.001). Multiple logistic regressions showed that red cell distribution width was still associated with early-stage renal injury after adjusting for many other potential cofounders. Compared with the first quartile, the risk ratio of the second, the third and the fourth quartile were 1.38 (95%CI: 1.06-1.80), 1.57 (95%CI: 1.21-2.97), 2.71 (95%CI: 2.08-3.54), respectively. Besides, systolic blood pressure, estimated glomerular filtration rate, uric acid and blood urea nitrogen were also significantly associated with renal injury in gestational diabetes mellitus patients. The elevated red cell distribution width level might be a predictor of early-stage renal injury in pregnant women with gestational diabetes mellitus. As an easy and routine examination index, red cell distribution width may provide better clinical guidance when combined with other important indices.

  10. Maxillary arch width and buccal corridor changes with Damon and conventional brackets: A retrospective analysis.

    PubMed

    Shook, Corey; Kim, Sohyon Michelle; Burnheimer, John

    2016-07-01

    To evaluate the effect of Damon self-ligating and conventional bracket systems on buccal corridor widths and areas. A retrospective sample of consecutively treated patients using either conventional (CG, n  =  45) or Damon self-ligating (SL, n  =  39) brackets was analyzed to determine any differences in buccal corridor widths and areas both within and between groups. Pretreatment and posttreatment frontal photographs were transferred to Photoshop CC, standardized using intercanthal width, and linear and area measurements were performed with tools in Photoshop CC. Ratios were then calculated for statistical analysis. Relationships between arch widths and buccal corridors were also examined. There were no significant differences in the posttreatment intercanine or intermolar widths either within or between the CG and SL groups. There were no significant differences in any buccal corridor width or area measurement either within or between the CG and SL groups. There were strong correlations with the intercanine width and the corresponding buccal corridor smile width measurements. There was an inverse correlation with the buccal corridor area in relation to the canine and the total smile width. It is likely that posttreatment increases in arch width can be seen in patients treated with either a conventional bracket system or the Damon system. It is highly unlikely that there is any significant difference in buccal corridor width or area in patients treated with the Damon self-ligating system or a conventional bracket system.

  11. Finite element analysis of a composite crash box subjected to low velocity impact

    NASA Astrophysics Data System (ADS)

    Shaik Dawood, M. S. I.; Ghazilan, A. L. Ahmad; Shah, Q. H.

    2017-03-01

    In this work, finite element analyses using LS-DYNA had been carried out to investigate the energy absorption capability of a composite crash box. The analysed design incorporates grooves to the cross sectional shape and E-Glass/Epoxy as design material. The effects of groove depth, ridge lines, plane width, material properties, wall thickness and fibre orientation had been quantitatively analysed and found to significantly enhance the energy absorption capability of the crash box.

  12. Morphometric study of mandibular ramus related to sagittal ramus split osteotomy and osteosynthesis.

    PubMed

    Vinicius de Oliveira, Marcelo; de Moraes, Paulo Hemerson; Olate, Sergio; Alonso, Maria Beatriz C; Watanabe, Plauto Christopher Aranha; Haiter-Neto, Francisco; de Albergaria-Barbosa, José Ricardo

    2012-09-01

    The objective of this study was to quantify the cortical bone thickness of the mandibular ramus to determine conditions related to sagittal split ramus osteotomy and placement of screws. The patient sample comprised 44 subjects of ages ranging from 46 to 52 years (mean age, 49 years). The cone-beam computed tomography was performed and realized 3 cuts in the third molar area (section A), 5 mm posterior (section B), and 5 mm posterior to the latter (section C). Measurement in the cortical areas of the superior and inferior levels related to mandibular canal and measurement related to the total width of the mandible was executed. Intraclass correlation coefficient with P < 0.05 was used. The result showed that the buccal and lingual cortical zone did not present statistical differences, and the minor value was 1.5 mm for each one. There were no differences in the superior and inferior cortical bone, and the total width of the mandible was between 15.9 and 8.5 mm in the anterior area, between 17.4 and 12.8 mm in the middle area, and between 18 and 8.8 mm in the posterior area. The distance superiorly to the mandibular canal presented a minimal SD with a mean of 8.5 mm in the anterior region, 10.6 mm for the middle region, and 12.5 mm in the posterior region. In conclusion, the cortical thickness of the mandibular ramus in the adult population is particularly strong and offers a good anchorage for screw insertion in sagittal split ramus osteotomy.

  13. Road and Roadside Feature Extraction Using Imagery and LIDAR Data for Transportation Operation

    NASA Astrophysics Data System (ADS)

    Ural, S.; Shan, J.; Romero, M. A.; Tarko, A.

    2015-03-01

    Transportation agencies require up-to-date, reliable, and feasibly acquired information on road geometry and features within proximity to the roads as input for evaluating and prioritizing new or improvement road projects. The information needed for a robust evaluation of road projects includes road centerline, width, and extent together with the average grade, cross-sections, and obstructions near the travelled way. Remote sensing is equipped with a large collection of data and well-established tools for acquiring the information and extracting aforementioned various road features at various levels and scopes. Even with many remote sensing data and methods available for road extraction, transportation operation requires more than the centerlines. Acquiring information that is spatially coherent at the operational level for the entire road system is challenging and needs multiple data sources to be integrated. In the presented study, we established a framework that used data from multiple sources, including one-foot resolution color infrared orthophotos, airborne LiDAR point clouds, and existing spatially non-accurate ancillary road networks. We were able to extract 90.25% of a total of 23.6 miles of road networks together with estimated road width, average grade along the road, and cross sections at specified intervals. Also, we have extracted buildings and vegetation within a predetermined proximity to the extracted road extent. 90.6% of 107 existing buildings were correctly identified with 31% false detection rate.

  14. Ultrafast absorption of intense x rays by nitrogen molecules

    NASA Astrophysics Data System (ADS)

    Buth, Christian; Liu, Ji-Cai; Chen, Mau Hsiung; Cryan, James P.; Fang, Li; Glownia, James M.; Hoener, Matthias; Coffee, Ryan N.; Berrah, Nora

    2012-06-01

    We devise a theoretical description for the response of nitrogen molecules (N2) to ultrashort and intense x rays from the free electron laser Linac Coherent Light Source (LCLS). We set out from a rate-equation description for the x-ray absorption by a nitrogen atom. The equations are formulated using all one-x-ray-photon absorption cross sections and the Auger and radiative decay widths of multiply-ionized nitrogen atoms. Cross sections are obtained with a one-electron theory and decay widths are determined from ab initio computations using the Dirac-Hartree-Slater (DHS) method. We also calculate all binding and transition energies of nitrogen atoms in all charge states with the DHS method as the difference of two self-consistent field (SCF) calculations (ΔSCF method). To describe the interaction with N2, a detailed investigation of intense x-ray-induced ionization and molecular fragmentation are carried out. As a figure of merit, we calculate ion yields and the average charge state measured in recent experiments at the LCLS. We use a series of phenomenological models of increasing sophistication to unravel the mechanisms of the interaction of x rays with N2: a single atom, a symmetric-sharing model, and a fragmentation-matrix model are developed. The role of the formation and decay of single and double core holes, the metastable states of N_2^{2+}, and molecular fragmentation are explained.

  15. Resonance enhancement of dark matter interactions: the case for early kinetic decoupling and velocity dependent resonance width

    NASA Astrophysics Data System (ADS)

    Duch, M.; Grzadkowski, B.

    2017-09-01

    Motivated by the possibility of enhancing dark matter (DM) self-scattering cross-section σ self , we have revisited the issue of DM annihilation through a Breit-Wigner resonance. In this case thermally averaged annihilation cross-section has strong temper-ature dependence, whereas elastic scattering of DM on the thermal bath particles is sup-pressed. This leads to the early kinetic decoupling of DM and an interesting interplay in the evolution of DM density and temperature that can be described by a set of coupled Boltzmann equations. The standard Breit-Wigner parametrization of a resonance prop-agator is also corrected by including momentum dependence of the resonance width. It has been shown that this effects may change predictions of DM relic density by more than order of magnitude in some regions of the parameter space. Model independent discussion is illustrated within a theory of Abelian vector dark matter. The model assumes extra U(1) symmetry group factor and an additional complex Higgs field needed to generate a mass for the dark vector boson, which provides an extra neutral Higgs boson h 2. We discuss the resonant amplification of σ self . It turns out that if DM abundance is properly reproduced, the Fermi-LAT data favor heavy DM and constraint the enhancement of σ self to the range, which cannot provide a solution to the small-scale structure problems.

  16. An instrument for monitoring stump oedema and shrinkage in amputees.

    PubMed

    Fernie, G R; Holliday, P J; Lobb, R J

    1978-08-01

    A new system for measuring the cross-sectional area profiles of amputation stumps and whole limbs has been designed at the Amputee Research Centre. The instrument consists of a cylindrical tank supported on an elevator. The tank is raised to the height of the amputation stump and filled with water. A graph of the cross-sectional area profile of the amputation stump is generated by a mini-computer as the elevator descends. The cross-sectional area (A) is calculated from the expression: formula: (see text) where Hw = height of water in the tank He = height of the elevator Ac = a constant, related to the size of the measuring tank. This paper describes the instrument, which may find application in many other areas where there is a need to study shape.

  17. Tetramethylammonium for in vivo marking of the cross-sectional area of the scala media in the guinea pig cochlea.

    PubMed

    Salt, A N; DeMott, J

    1992-01-01

    A physiologic technique was developed to measure endolymphatic cross-sectional area in vivo using tetramethylammonium (TMA) as a volume marker. The technique was evaluated in guinea pigs as an animal model. In the method, the cochlea was exposed surgically and TMA was injected into endolymph of the second turn at a constant rate by iontophoresis. The concentration of TMA was monitored during and after the injection using ion-selective electrodes. Cross-section estimates derived from the TMA concentration measurements were compared in normal animals and animals in which endolymphatic hydrops had been induced by ablation of the endolymphatic duct and sac 8 weeks earlier. The method demonstrated a mean increase in cross-sectional area of 258% in the hydropic group. Individually measured area values were compared with action potential threshold shifts and the magnitude of the endocochlear potential (EP). Hydropic animals typically showed an increase in threshold to 2 kHz stimuli and a decrease in EP. However, the degree of threshold shift or EP decrease did not correlate well with the degree of hydrops present.

  18. Experimental investigations of aeration efficiency in high-head gated circular conduits.

    PubMed

    Cihat Tuna, M; Ozkan, Fahri; Baylar, Ahmet

    2014-01-01

    The primary purpose of water aeration is to increase the oxygen saturation of the water. This can be achieved by using hydraulic structures because of substantial air bubble entrainment at these structures. Closed conduit aeration is a particular instance of this. While there has been a great deal of research on air-demand ratio within closed conduit, very little research has specifically addressed aeration efficiency of closed conduit. In the present work an experimental study was conducted to investigate the aeration efficiency of high-head gated circular conduits. Results showed that high-head gated circular conduits were effective for oxygen transfer. The effects of Froude number and ratio of the water cross-sectional flow area to the conduit cross-sectional area on aeration efficiency were particularly significant, whereas the effect of conduit length was only moderate. Further, a design formula for the aeration efficiency was presented relating the aeration efficiency to ratio of water cross-sectional flow area to conduit cross-sectional area and Froude number. The obtained results will be useful in future modeling processes and aid the practicing engineer in predicting aeration efficiency for design purposes.

  19. A Study of the Zero-Lift Drag-Rise Characteristics of Wing-Body Combinations Near the Speed of Sound

    NASA Technical Reports Server (NTRS)

    Whitcomb, Richard T

    1956-01-01

    Comparisons have been made of the shock phenomena and drag-rise increments for representative wing and central-body combinations with those for bodies of revolution having the same axial developments of cross-sectional areas normal to the airstream. On the basis of these comparisons, it is concluded that near the speed of sound the zero-lift drag rise of a low-aspect-ratio thin-wing and body combination is primarily dependent on the axial development of the cross-sectional areas normal to the airstream. It follows that the drag rise for any such configuration is approximately the same as that for any other with the same development of cross-sectional areas. Investigations have also been made of representative wing-body combinations with the body so indented that the axial developments of cross-sectional areas for the combinations were the same as that for the original body alone. Such indentations greatly reduced or eliminated the zero-lift drag-rise increments associated with the wings near the speed of sound.

  20. No Bridge Too High: Infants Decide Whether to Cross Based on the Probability of Falling not the Severity of the Potential Fall

    ERIC Educational Resources Information Center

    Kretch, Kari S.; Adolph, Karen E.

    2013-01-01

    Do infants, like adults, consider both the probability of falling and the severity of a potential fall when deciding whether to cross a bridge? Crawling and walking infants were encouraged to cross bridges varying in width over a small drop-off, a large drop-off, or no drop-off. Bridge width affects the probability of falling, whereas drop-off…

  1. 2.5 MHz Line-Width High-energy, 2 Micrometer Coherent Wind Lidar Transmitter

    NASA Technical Reports Server (NTRS)

    Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.; Reithmaier, Karl

    2007-01-01

    2 micron solid-state lasers are the primary choice for coherent Doppler wind detection. As wind lidars, they are used for wake vortex and clear air turbulence detection providing air transport safety. In addition, 2 micron lasers are one of the candidates for CO2 detection lidars. The rich CO2 absorption line around 2 micron, combined with the long upper state life of time, has made Ho based 2 micron lasers a viable candidate for CO2 sensing DIAL instrument. The design and fabrication of a compact coherent laser radar transmitter for Troposphere wind sensing is under way. This system is hardened for ground as well as airborne applications. As a transmitter for a coherent wind lidar, this laser has stringent spectral line width and beam quality requirements. Although the absolute wavelength does not have to be fixed for wind detection, to maximize return signal, the output wavelength should avoid atmospheric CO2 and H2O absorption lines. The base line laser material is Ho:Tm:LuLF which is an isomorph of Ho:Tm:YLF. LuLF produces 20% more output power than Ho:Tm:YLF. In these materials the Tm absorption cross-section, the Ho emission cross-section, the Tm to Ho energy transfer parameters and the Ho (sup 5) I (sub 7) radiative life time are all identical. However, the improved performance of the LuLF is attributed to the lower thermal population in the (sup 5) I (sub 8) manifold. It also provides higher normal mode to Q-switch conversion than YLF at high pump energy indicating a lower up-conversion. The laser architecture is composed of a seed laser, a ring oscillator, and a double pass amplifier. The seed laser is a single longitudinal mode with a line width of 13 KHz. The 100mJ class oscillator is stretched to 3 meters to accommodate the line-width requirement without compromising the range resolution of the instrument. The amplifier is double passed to produce greater than 300mJ energy.

  2. Recent results of measurements of evaporation residue excitation functions for 19F+194,196,198Pt and 16,18O+198Pt systems with HYRA spectrometer at IUAC

    NASA Astrophysics Data System (ADS)

    Behera, B. R.

    2015-01-01

    In this talk results of the evaporation residue (ER) cross sections for the 19F+194,196,198Pt (forming compound nuclei 213,215,217Fr) and 16,18O+198Pt (forming compound nuclei 214,216Rn) systems measured at Hybrid Recoil mass Analyzer (HYRA) spectrometer installed at the Pelletron+LINAC accelerator facility of the Inter University Accelerator Center (IUAC), New Delhi are reported. The survival probabilities of 215Fr and 217Fr with neutron numbers N = 126 are found to be lower than the survival probabilities of 215Fr and 217Fr with neutron numbers N = 128 and 130 respectively. Statistical model analysis of the ER cross sections show that an excitation energy dependent scaling factor of the finite-range rotating liquid drop model fission barrier is necessary to fit the experimental data. For the case of 214,216Rn, the experimental ER cross sections are compared with the predictions from the statistical model calculations of compound nuclear decay where Kramer's fission width is used. The strength of nuclear dissipation is treated as a free parameter in the calculations to fit the experimental data.

  3. Cone-Beam Computed Tomography Analysis of the Nasopharyngeal Airway in Nonsyndromic Cleft Lip and Palate Subjects.

    PubMed

    Al-Fahdawi, Mahmood Abd; Farid, Mary Medhat; El-Fotouh, Mona Abou; El-Kassaby, Marwa Abdelwahab

    2017-03-01

      To assess the nasopharyngeal airway volume, cross-sectional area, and depth in previously repaired nonsyndromic unilateral cleft lip and palate versus bilateral cleft lip and palate patients compared with noncleft controls using cone-beam computed tomography with the ultimate goal of finding whether cleft lip and palate patients are more liable to nasopharyngeal airway obstruction.   A retrospective analysis comparing bilateral cleft lip and palate, unilateral cleft lip and palate, and control subjects. Significance at P ≤ .05.   Cleft Care Center and the outpatient clinic that are both affiliated with our faculty.   Cone-beam computed tomography data were selected of 58 individuals aged 9 to 12 years: 14 with bilateral cleft lip and palate and 20 with unilateral cleft lip and palate as well as 24 age- and gender-matched noncleft controls.   Volume, depth, and cross-sectional area of nasopharyngeal airway were measured.   Patients with bilateral cleft lip and palate showed significantly larger nasopharyngeal airway volume than controls and patients with unilateral cleft lip and palate (P < .001). Patients with bilateral cleft lip and palate showed significantly larger cross-sectional area than those with unilateral cleft lip and palate (P < .001) and insignificant cross-sectional area compared with controls (P > .05). Patients with bilateral cleft lip and palate showed significantly larger depth than controls and those with unilateral cleft lip and palate (P < .001). Patients with unilateral cleft lip and palate showed insignificant nasopharyngeal airway volume, cross-sectional area, and depth compared with controls (P > .05).   Unilateral and bilateral cleft lip and palate patients did not show significantly less volume, cross-sectional area, or depth of nasopharyngeal airway than controls. From the results of this study we conclude that unilateral and bilateral cleft lip and palate patients at the studied age and stage of repaired clefts are not more prone to nasopharyngeal airway obstruction than controls.

  4. Impact of endobronchial coiling on segmental bronchial lumen in treated and untreated lung lobes: Correlation with changes in lung volume, clinical and pulmonary function tests.

    PubMed

    Kloth, C; Thaiss, W M; Hetzel, J; Ditt, H; Grosse, U; Nikolaou, K; Horger, M

    2016-07-01

    To assess the impact of endobronchial coiling on the segment bronchus cross-sectional area and volumes in patients with lung emphysema using quantitative chest-CT measurements. Thirty patients (female = 15; median age = 65.36 years) received chest-CT before and after endobronchial coiling for lung volume reduction (LVR) between January 2010 and December 2014. Thin-slice (0.6 mm) non-enhanced image data sets were acquired both at end-inspiration and end-expiration using helical technique and 120 kV/100-150 mAs. Clinical response was defined as an increase in the walking distance (Six-minute walk test; 6MWT) after LVR-therapy. Additionally, pulmonary function test (PFT) measurements were used for clinical correlation. In the treated segmental bronchia, the cross-sectional lumen area showed significant reduction (p < 0.05) in inspiration and tendency towards enlargement in expiration (p > 0.05). In the ipsilateral lobes, the lumina showed no significant changes. In the contralateral lung, we found tendency towards increased cross-sectional area in inspiration (p = 0.06). Volumes of the treated segments correlated with the treated segmental bronchial lumina in expiration (r = 0.80, p < 0.001). Clinical correlation with changes in 6MWT/PFT showed a significant decrease of the inspiratory volume of the treated lobe in responders only. Endobronchial coiling causes significant decrease in the cross-sectional area of treated segment bronchi in inspiration and a slight increase in expiration accompanied by a volume reduction. • Endobronchial coiling has indirect impact on cross-sectional area of treated segment bronchi • Volume changes of treated lobes correlate with changes in bronchial cross-sectional area • Coil-induced effects reflect their stabilizing and stiffening impact on lung parenchyma • Endobronchial coiling reduces bronchial collapsing compensating the loss of elasticity.

  5. Dentofacial transverse development in Koreans according to skeletal maturation: A cross-sectional study.

    PubMed

    Hwang, Soonshin; Noh, Yoonjeong; Choi, Yoon Jeong; Chung, Chooryung; Lee, Hye Sun; Kim, Kyung-Ho

    2018-01-01

    The aim of this study was to establish the normative data of dentofacial transverse dimensions according to the skeletal maturation stage in Korean adolescents with good occlusion, assess gender differences and determine correlations between transverse variables. A total of 577 Korean subjects between ages 7 to 19 years and exhibiting skeletal Class I occlusion were categorized by skeletal maturation index (SMI) of Fishman using hand-wrist radiographs. Dentofacial transverse dimensions were assessed using posteroanterior cephalograms. Independent two-sample t -tests were used to analyze differences between genders. Pearson correlation coefficient was used to determine the correlation between transverse measurements. Dentofacial transverse norms relevant to skeletal maturation stages were established. The average maxillomandibular width difference and ratio at growth completion was 22.16 mm and 77.01% for males; 23.70 mm and 74.06% for females, respectively. Males had greater facial, maxillary and mandibular widths compared to females at every SMI stage. The maxillary and mandibular intermolar widths showed the strongest correlation for both sexes (r = 0.826 for males, r = 0.725 for females). Dentofacial transverse norms of Korean adolescents were established according to developmental stage. All dentofacial widths were greater in males at growth completion. Maxillary and mandibular intermolar widths were strongly correlated. This study may serve as a guideline for the assessment of dentofacial transverse growth according to skeletal maturation stage in Korean adolescents with good occlusion.

  6. Efficient biosensing through 1D silver nanostructured devices using plasmonic effect.

    PubMed

    Afsheen, Sumera; Munir, Musarat; Isa Khan, Muhammad; Iqbal, Tahir; Abrar, M; Tahir, Muhammad Bilal; Rehman, Jalil Ur; Nadeem, Khalid; Ijaz, Mohsin; Nabi, Ghulam

    2018-06-22

    The current work explores the excitation of surface plasmon polarities on one dimensional (1D) silver nano grating device simulated on glass substrate, which can sense a very small change in refractive index of an analyte adjacent to it. The most recent modeling technique finite element analysis (FEA) is applied in this work by using COMSOL RF module. The models of 1D grating device of different slit widths with fixed periodicity and film thickness are simulated. The data is collected and then used to study higher refractive index unit per nanometer (RIU/nm) as well as effect of slits width on RIU. Numbers of investigations are done by the simulated data, like a dip in the transmission spectra of p-polarized light. This dip is due to SPP resonance with the variation of slit width. Furthermore, the most fascinating part of the research is COMSOL modeling that provides an opportunity to look into factors affecting higher RIU/nm while visualizing the cross-sectional view of the grating device and strong electric field enhancement at the surface of the metallic device. When the slit width is almost equal to half of the periodicity of the grating device, SPP resonance increases and it is maximum for the slit width equal to 2/3rd of the periodicity because the coupling efficiency is maximum. © 2018 IOP Publishing Ltd.

  7. Phylogenetic patterns and correlation of key structures for jumping: bone crests and cross-sectional areas of muscles in Leptodactylus (Anura, Leptodactylidae).

    PubMed

    Ponssa, María Laura; Fratani, Jéssica; Abdala, Virginia

    2018-05-01

    Anurans are characterized by their saltatory mode of locomotion, which is associated with a specific morphology. The coordinated action of the muscles and bones of the pelvic girdle is key to the transmission of the force of the hindlimbs to the axial skeleton during jumping. Two features are critical for optimal locomotory performance: the cross-sectional area of muscle and the bone crest attachment sites. The first character is a proxy of the force exerted by the muscle, whereas the crests are muscle attachments sites related to muscle force. The provisory relationship between these features has previously been identified and bone crest size can be used to infer the magnitude and, therefore, muscle force in fossils records. In this work, we explore the correlation between the cross-sectional area of essential muscles to the jumping mechanism (longissimus dorsi, extensor iliotibialis B, tenuissimus, puboischiofemoralis internus B, coccygeo-sacralis and coccygeo-iliacus) and the bone crests where these muscles are inserted (dorsal tubercle, dorsal crest and urostylar crest) in species of the genus Leptodactylus. This genus, along with other leptodactylids, exhibits a diversity of locomotor modes, including jumping, hopping, swimming and burrowing. We therefore analyzed the morphometric variation in the two features, cross-sectional area and bone crest area, expecting a correlation with different locomotor types. Our results showed: (i) a correlation between the urostylar crest and the cross-sectional area of the related muscles; (ii) that the bone crest surface area of urostyle and ilium and the cross-sectional area of the corresponding muscles can be utilized to infer locomotor faculties in leptodactylid frogs; and (iii) that the evolution of both characters demonstrates a general tendency from lower values in leptodactylid ancestors to higher values in the Leptodactylus genus. The results attest to the importance of the comparison of current ecological and phylogenetic analogues as they allow us to infer functionality and behavior in fossil and extant groups based on skeletal evidence. Phylogenetic patterns in character evolution and their correlation with locomotory types could imply that functional restrictions are also inherited in leptodactylid. © 2018 Anatomical Society.

  8. Associated production of a Higgs boson decaying into bottom quarks at the LHC in full NNLO QCD

    NASA Astrophysics Data System (ADS)

    Ferrera, Giancarlo; Somogyi, Gábor; Tramontano, Francesco

    2018-05-01

    We consider the production of a Standard Model Higgs boson decaying to bottom quarks in association with a vector boson W± / Z in hadron collisions. We present a fully exclusive calculation of QCD radiative corrections both for the production cross section and for the Higgs boson decay rate up to next-to-next-to-leading order (NNLO) accuracy. Our calculation also includes the leptonic decay of the vector boson with finite-width effects and spin correlations. We consider typical kinematical cuts applied in the experimental analyses at the Large Hadron Collider (LHC) and we find that the full NNLO QCD corrections significantly decrease the accepted cross section and have a substantial impact on the shape of distributions. We point out that these additional effects are essential to obtain precise theoretical predictions to be compared with the LHC data.

  9. Vector Mesons in Cold Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Rodrigues, Tulio E.; Dias de Toledo Arruda-Neto, Joāo

    2013-03-01

    The attenuation of vector mesons in cold nuclear matter is studied through the mechanism of incoherent photoproduction off complex nuclei. The latter is described via the time-dependent multi-collisional Monte Carlo (MCMC) intranuclear cascade model. The results for the transparency ratios of ω mesons reproduce previous measurements of CB-ELSA/TAPS with an inelastic ωN cross section around 40 mb for ρω ~ 1.1 GeV/c. The corresponding in-medium width (nuclear rest frame) is extracted dinamically from the algorithm and depends on the average nuclear density pN and target nucleus: ~ 49.2 MeV/c2 for carbon (pN 0.114 far-3) and ~ 77.3 MeV/c2 for lead (pN 0.137 far--3). The calculations fail to reproduce the huge absorption observed at JLab assuming the same inelastic cross section and the discrepancy between the two experiments remains a challenge.

  10. Differential cross sections for γ+p→K++Y for Λ and Σ0 hyperons

    NASA Astrophysics Data System (ADS)

    Bradford, R.; Schumacher, R. A.; McNabb, J. W. C.; Todor, L.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coleman, A.; Coltharp, P.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Devita, R.; Sanctis, E. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gonenc, A.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lima, A. C. S.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McKinnon, B.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Popa, I.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Quinn, B. P.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.; Zhao, B.

    2006-03-01

    High-statistics cross sections for the reactions γ+p→K++Λ and γ+p→K++Σ0 have been measured using CLAS at Jefferson Lab for center-of-mass energies W between 1.6 and 2.53 GeV, and for -0.85

  11. Field Measurements of the 1983 Royal Gardens Lava Flows, Kilauea Volcano, and 1984 Mauna Loa Lava Flow, Hawaii

    NASA Technical Reports Server (NTRS)

    Fink, J.; Zimbelman, J.

    1985-01-01

    Theoretical models used in the remote determination of lava flow rheology and compositions rely on estimates of such geometric and flow parameters as volume flow rates, levee heights, and channel dimensions, as well as morphologic and structural patterns on the flow surfaces. Quantitative measures of these variables are difficult to obtain, even under optimum conditions. Detailed topographic profiles across several Hawaiian lava flows that were carefully monitored by the U.S. Geological Survey during their emplacement in 1983 were surveyed in order to test various flow emplacement models. Twenty two accurate channel cross sections were constructed by combining these profiles with digitized pre-flow topographic measurements. Levee heights, shear zone widths, and flow depths could then be read directly from the cross sections and input into the models. The profiles were also compared with ones constructed for some Martian lava flows.

  12. A study of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1993-01-01

    This study was a theoretical and experimental investigation of thin liquid sheet flows in vacuum. A sheet flow created by a narrow slit of width, W, coalesces to a point at a distance, L, as a result of surface tension forces acting at the sheet edges. As the flow coalesces, the fluid accumulates in the sheet edges. The observed triangular shape of the sheet agrees with the calculated triangular result. Experimental results for L/W as a function of Weber number, We, agree with the calculated result, L/W = the sq. root of 8We. The edge cross sectional shape is found to oscillate from elliptic to 'cigar' like to 'peanut' like and then back to elliptic in the flow direction. A theoretical one-dimensional model was developed that yielded only elliptic solutions for the edge cross section. At the points where the elliptic shapes occur, there is agreement between theory and experiment.

  13. Spectral properties of Er3+/Yb3+ codoped tungsten-tellurite glasses.

    PubMed

    Shen, Xiang; Nie, QiuHua; Xu, TieFeng; Gao, Yuan

    2005-07-01

    The spectral properties of Er3+/Yb3+ codoped tungsten-tellurite (WT) glasses have been investigated. The measured absorption spectra are analyzed by Judd-Ofelt theory. The compositional change of intensity parameter omega2 is attributed to the change in the covalency between the Er3+ and oxygen ions, the asymmetry in the local structures around the Er3+ ions can be neglected. The lifetimes of 4I(13/2) level of Er3+ in WT glasses are measured and comparable with other TeO2-based glasses. The stimulated emission cross-section is calculated based on McCumber theory. The fluorescence full width at half maximum (FWHM) and the emission cross-section (sigma(peak)) of the 4I(13/2) --> 4I(15/2) transition of Er3+ in different glass hosts have been compared. The suitability of such WT glasses as host materials for 1.5 microm broadband amplification is discussed.

  14. Optical transitions of Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 glass.

    PubMed

    Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Gao, Yuan

    2005-10-01

    Optical absorption and emission properties of the Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 (TWB) glass has been investigated. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. The broad 1.5 microm fluorescence was observed under 970 nm excitation, and its full width at half maximum (FWHM) is 77 nm. The emission cross-section is calculated using the McCumber theory, and the peak emission cross-section is 1.03 x 10(-21) cm2 at 1.531 microm. This value is much larger than those of the silicate and phosphate glasses. Efficient green and weak red upconversion luminescence from Er3+ centers in the glass sample was observed at room temperature, and the upconversion excitation processes have been analyzed.

  15. Exercise-Induced Changes in the Cortical Bone of Growing Mice Are Bone and Gender Specific

    PubMed Central

    Wallace, Joseph M.; Rajachar, Rupak M.; Allen, Matthew R.; Bloomfield, Susan A.; Robey, Pamela G.; Young, Marian F.; Kohn, David H.

    2009-01-01

    Fracture risk and mechanical competence of bone are functions of bone mass and tissue quality, which in turn are dependent on the bone’s mechanical environment. Male mice have a greater response to non weight-bearing exercise than females, resulting in larger, stronger bones compared with control animals. The aim of this study was to test the hypothesis that short-term weight-bearing running during growth (21 days starting at 8 weeks of age; 30 minutes/day; 12 meters/minute; 5° incline; 7 days/week) would similarly have a greater impact on cross sectional geometry and mechanical competence in the femora and tibiae of male mice versus females. Based on the orientation of the legs during running and the proximity of the tibia to the point of impact, this response was hypothesized to be greatest in the tibia. Exercise-related changes relative to controls were assayed by four-point bending tests, while volumetric bone mineral density and cross-sectional geometry were also assessed. The response to running was bone and gender-specific, with male tibiae demonstrating the greatest effects. In male tibiae, periosteal perimeter, endocortical perimeter, cortical area, medial-lateral width and bending moment of inertia increased versus control mice suggesting that while growth is occurring in these mice between 8 and 11 weeks of age, exercise accelerated this growth resulting in a greater increase in bone tissue over the 3 weeks of the study. Exercise increased tissue-level strain-to-failure and structural post-yield deformation in the male tibiae, but these post-yield benefits came at the expense of decreased yield deformation, structural and tissue-level yield strength and tissue-level ultimate strength. These results suggest that exercise superimposed upon growth accelerated growth-related increases in tibial cross-sectional dimensions. Exercise also influenced the quality of this forming bone, significantly impacting structural and tissue-level mechanical properties. PMID:17240210

  16. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurugol, Sila, E-mail: sila.kurugol@childrens.harvard.edu; Come, Carolyn E.; Diaz, Alejandro A.

    Purpose: The purpose of this work is to develop a fully automated pipeline to compute aorta morphology and calcification measures in large cohorts of CT scans that can be used to investigate the potential of these measures as imaging biomarkers of cardiovascular disease. Methods: The first step of the automated pipeline is aorta segmentation. The algorithm the authors propose first detects an initial aorta boundary by exploiting cross-sectional circularity of aorta in axial slices and aortic arch in reformatted oblique slices. This boundary is then refined by a 3D level-set segmentation that evolves the boundary to the location of nearbymore » edges. The authors then detect the aortic calcifications with thresholding and filter out the false positive regions due to nearby high intensity structures based on their anatomical location. The authors extract the centerline and oblique cross sections of the segmented aortas and compute the aorta morphology and calcification measures of the first 2500 subjects from COPDGene study. These measures include volume and number of calcified plaques and measures of vessel morphology such as average cross-sectional area, tortuosity, and arch width. Results: The authors computed the agreement between the algorithm and expert segmentations on 45 CT scans and obtained a closest point mean error of 0.62 ± 0.09 mm and a Dice coefficient of 0.92 ± 0.01. The calcification detection algorithm resulted in an improved true positive detection rate of 0.96 compared to previous work. The measurements of aorta size agreed with the measurements reported in previous work. The initial results showed associations of aorta morphology with calcification and with aging. These results may indicate aorta stiffening and unwrapping with calcification and aging. Conclusions: The authors have developed an objective tool to assess aorta morphology and aortic calcium plaques on CT scans that may be used to provide information about the presence of cardiovascular disease and its clinical impact in smokers.« less

  17. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions.

    PubMed

    Kurugol, Sila; Come, Carolyn E; Diaz, Alejandro A; Ross, James C; Kinney, Greg L; Black-Shinn, Jennifer L; Hokanson, John E; Budoff, Matthew J; Washko, George R; San Jose Estepar, Raul

    2015-09-01

    The purpose of this work is to develop a fully automated pipeline to compute aorta morphology and calcification measures in large cohorts of CT scans that can be used to investigate the potential of these measures as imaging biomarkers of cardiovascular disease. The first step of the automated pipeline is aorta segmentation. The algorithm the authors propose first detects an initial aorta boundary by exploiting cross-sectional circularity of aorta in axial slices and aortic arch in reformatted oblique slices. This boundary is then refined by a 3D level-set segmentation that evolves the boundary to the location of nearby edges. The authors then detect the aortic calcifications with thresholding and filter out the false positive regions due to nearby high intensity structures based on their anatomical location. The authors extract the centerline and oblique cross sections of the segmented aortas and compute the aorta morphology and calcification measures of the first 2500 subjects from COPDGene study. These measures include volume and number of calcified plaques and measures of vessel morphology such as average cross-sectional area, tortuosity, and arch width. The authors computed the agreement between the algorithm and expert segmentations on 45 CT scans and obtained a closest point mean error of 0.62 ± 0.09 mm and a Dice coefficient of 0.92 ± 0.01. The calcification detection algorithm resulted in an improved true positive detection rate of 0.96 compared to previous work. The measurements of aorta size agreed with the measurements reported in previous work. The initial results showed associations of aorta morphology with calcification and with aging. These results may indicate aorta stiffening and unwrapping with calcification and aging. The authors have developed an objective tool to assess aorta morphology and aortic calcium plaques on CT scans that may be used to provide information about the presence of cardiovascular disease and its clinical impact in smokers.

  18. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions

    PubMed Central

    Kurugol, Sila; Come, Carolyn E.; Diaz, Alejandro A.; Ross, James C.; Kinney, Greg L.; Black-Shinn, Jennifer L.; Hokanson, John E.; Budoff, Matthew J.; Washko, George R.; San Jose Estepar, Raul

    2015-01-01

    Purpose: The purpose of this work is to develop a fully automated pipeline to compute aorta morphology and calcification measures in large cohorts of CT scans that can be used to investigate the potential of these measures as imaging biomarkers of cardiovascular disease. Methods: The first step of the automated pipeline is aorta segmentation. The algorithm the authors propose first detects an initial aorta boundary by exploiting cross-sectional circularity of aorta in axial slices and aortic arch in reformatted oblique slices. This boundary is then refined by a 3D level-set segmentation that evolves the boundary to the location of nearby edges. The authors then detect the aortic calcifications with thresholding and filter out the false positive regions due to nearby high intensity structures based on their anatomical location. The authors extract the centerline and oblique cross sections of the segmented aortas and compute the aorta morphology and calcification measures of the first 2500 subjects from COPDGene study. These measures include volume and number of calcified plaques and measures of vessel morphology such as average cross-sectional area, tortuosity, and arch width. Results: The authors computed the agreement between the algorithm and expert segmentations on 45 CT scans and obtained a closest point mean error of 0.62 ± 0.09 mm and a Dice coefficient of 0.92 ± 0.01. The calcification detection algorithm resulted in an improved true positive detection rate of 0.96 compared to previous work. The measurements of aorta size agreed with the measurements reported in previous work. The initial results showed associations of aorta morphology with calcification and with aging. These results may indicate aorta stiffening and unwrapping with calcification and aging. Conclusions: The authors have developed an objective tool to assess aorta morphology and aortic calcium plaques on CT scans that may be used to provide information about the presence of cardiovascular disease and its clinical impact in smokers. PMID:26328995

  19. Broadening of Analyte Streams due to a Transverse Pressure Gradient in Free-Flow Isoelectric Focusing

    PubMed Central

    Dutta, Debashis

    2017-01-01

    Pressure-driven cross-flows can arise in free-flow isoelectric focusing systems (FFIEF) due to a non-uniform electroosmotic flow velocity along the channel width induced by the pH gradient in this direction. In addition, variations in the channel cross-section as well as unwanted differences in hydrostatic heads at the buffer/sample inlet ports can also lead to such pressure-gradients which besides altering the equilibrium position of the sample zones have a tendency to substantially broaden their widths deteriorating the separations. In this situation, a thorough assessment of stream broadening due to transverse pressure-gradients in FFIEF devices is necessary in order to establish accurate design rules for the assay. The present article describes a mathematical framework to estimate the noted zone dispersion in FFIEF separations based on the method-of-moments approach under laminar flow conditions. A closed-form expression has been derived for the spatial variance of the analyte streams at their equilibrium positions as a function of the various operating parameters governing the assay performance. This expression predicts the normalized stream variance under the chosen conditions to be determined by two dimensionless Péclet numbers evaluated based on the transverse pressure-driven and electrophoretic solute velocities in the separation chamber, respectively. Moreover, the analysis shows that while the stream width can be expected to increase with an increase in the value of the first Péclet number, the opposite trend will be followed with respect to the latter. The noted results have been validated using Monte Carlo simulations that also establish a time/length scale over which the predicted equilibrium stream width is attained in the system. PMID:28081900

  20. Measuring the Erosion of River Channel Widths Impacted by Watershed Urbanization Using Historic Aerial Photographs and Modern Surveys

    NASA Astrophysics Data System (ADS)

    Galster, J. C.; Pazzaglia, F. J.; Germanoski, D.

    2007-12-01

    Land use in a watershed exerts a strong influence on trunk channel form and process. Land use changes act over human time scales which is short enough to measure their effects directly using historic aerial photographs. We show that high-resolution topographic surveys comparing channel form for paired watersheds in the Lehigh Valley, PA are indistinguishable, but have channel widths that have changed dramatically in the past five decades. The two watersheds, Little Lehigh Creek and Sacony Creek, are similar in all respects except they have different amount of urban land use. Aerial photographs of the urbanized Little Lehigh Creek show that a majority of the measured widths (67 of 85) were statistically wider in 1999 than in 1947. In contrast, the measured widths from the agricultural Sacony Creek are more evenly distributed among those that widened (18), narrowed (28), and those that were statistically unchanged (6) from 1946 to 1999. From 1946 to 1999 the only section of Sacony creek that widened was that reach downstream of the only sizable urban area in the watershed. The current land use in Sacony Creek watershed resembles that of 1946, while the Little Lehigh Creek watershed has more than tripled its urban area. These data suggest that the increase in urban areas that subsequently increases peak discharges is the mechanism behind the widening that occurred in the Little Lehigh Creek. These wider channels can affect water quality, aquatic habitat, suspended sediment loads, and river aesthetics.

  1. 29 CFR 1915.72 - Ladders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sectional area of the side rail. The dimensions of side rails for their total length shall be those...). (b) Construction of portable wood cleated ladders up to 30 feet in length. (1) Wood side rails shall... than one such pocket appears in each 4 feet of length. (5) The width between side rails at the base...

  2. Analysis of micro computed tomography images; a look inside historic enamelled metal objects

    NASA Astrophysics Data System (ADS)

    van der Linden, Veerle; van de Casteele, Elke; Thomas, Mienke Simon; de Vos, Annemie; Janssen, Elsje; Janssens, Koen

    2010-02-01

    In this study the usefulness of micro-Computed Tomography (µ-CT) for the in-depth analysis of enamelled metal objects was tested. Usually investigations of enamelled metal artefacts are restricted to non-destructive surface analysis or analysis of cross sections after destructive sampling. Radiography, a commonly used technique in the field of cultural heritage studies, is limited to providing two-dimensional information about a three-dimensional object (Lang and Middleton, Radiography of Cultural Material, pp. 60-61, Elsevier-Butterworth-Heinemann, Amsterdam-Stoneham-London, 2005). Obtaining virtual slices and information about the internal structure of these objects was made possible by CT analysis. With this technique the underlying metal work was studied without removing the decorative enamel layer. Moreover visible defects such as cracks were measured in both width and depth and as of yet invisible defects and weaker areas are visualised. All these features are of great interest to restorers and conservators as they allow a view inside these objects without so much as touching them.

  3. Epitaxial growth of mosaic diamond: Mapping of stress and defects in crystal junction with a confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shu, Guoyang; Dai, Bing; Ralchenko, V. G.; Khomich, A. A.; Ashkinazi, E. E.; Bolshakov, A. P.; Bokova-Sirosh, S. N.; Liu, Kang; Zhao, Jiwen; Han, Jiecai; Zhu, Jiaqi

    2017-04-01

    We studied defects and stress distributions in mosaic epitaxial diamond film using a confocal Raman spectroscopy, with a special attention to the junction area between the crystals. The mosaics was grown by microwave plasma CVD on closely arranged (1 0 0)-oriented HPHT type Ib substrates. The width of stress affected and defect enriched region around the junction show a tendency of extending with the film thickness, from ≈40 μm on the film-substrate interface to ≈250 μm in the layer 500 μm above the substrate, as found from the mosaics analysis in cross-section. The stress field around the junction demonstrates a complex pattern, with mixed domains of tensile and compressive stress, with maximum value of σ ≈ 0.6 GPa. A similar non-uniform pattern was observed for defect distribution as well. No sign of amorphous sp2 carbon in the junction zone was revealed.

  4. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  5. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  6. Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.

    2017-07-01

    In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.

  7. Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses.

    PubMed

    Lublinsky, S; Friedman, A; Kesler, A; Zur, D; Anconina, R; Shelef, I

    2016-03-01

    MRV is an important blood vessel imaging and diagnostic tool for the evaluation of stenosis, occlusions, or aneurysms. However, an accurate image-processing tool for vessel comparison is unavailable. The purpose of this study was to develop and test an automated technique for vessel cross-sectional analysis. An algorithm for vessel cross-sectional analysis was developed that included 7 main steps: 1) image registration, 2) masking, 3) segmentation, 4) skeletonization, 5) cross-sectional planes, 6) clustering, and 7) cross-sectional analysis. Phantom models were used to validate the technique. The method was also tested on a control subject and a patient with idiopathic intracranial hypertension (4 large sinuses tested: right and left transverse sinuses, superior sagittal sinus, and straight sinus). The cross-sectional area and shape measurements were evaluated before and after lumbar puncture in patients with idiopathic intracranial hypertension. The vessel-analysis algorithm had a high degree of stability with <3% of cross-sections manually corrected. All investigated principal cranial blood sinuses had a significant cross-sectional area increase after lumbar puncture (P ≤ .05). The average triangularity of the transverse sinuses was increased, and the mean circularity of the sinuses was decreased by 6% ± 12% after lumbar puncture. Comparison of phantom and real data showed that all computed errors were <1 voxel unit, which confirmed that the method provided a very accurate solution. In this article, we present a novel automated imaging method for cross-sectional vessels analysis. The method can provide an efficient quantitative detection of abnormalities in the dural sinuses. © 2016 by American Journal of Neuroradiology.

  8. Modeling the evolution of channel shape: Balancing computational efficiency with hydraulic fidelity

    USGS Publications Warehouse

    Wobus, C.W.; Kean, J.W.; Tucker, G.E.; Anderson, R. Scott

    2008-01-01

    The cross-sectional shape of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate evolution of channel cross-sectional geometry. However, fully two-dimensional (2-D) flow models are too computationally expensive to implement in large-scale landscape evolution models, while available simple empirical relationships between width and discharge do not adequately capture the dynamics of channel adjustment. We have developed a simplified 2-D numerical model of channel evolution in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Erosion is assumed to be proportional to boundary shear stress, which is calculated using an approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local channel bed. Model predictions of the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ???3%, and the predicted peak shear stress is consistent to within ???7%. Furthermore, the shear stress distributions predicted by our model compare favorably with available laboratory measurements for prescribed channel shapes. A modification to our simplified code in which the flow includes a high-velocity core allows the model to be extended to estimate shear stress distributions in channels with large width-to-depth ratios. Our model is efficient enough to incorporate into large-scale landscape evolution codes and can be used to examine how channels adjust both cross-sectional shape and slope in response to tectonic and climatic forcing. Copyright 2008 by the American Geophysical Union.

  9. A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study.

    PubMed

    Kitaoka, Yasushi; Tanito, Masaki; Yokoyama, Yu; Nitta, Koji; Katai, Maki; Omodaka, Kazuko; Nakazawa, Toru

    2018-01-01

    The Glaucoma Stereo Analysis Study, a cross-sectional multicenter collaborative study, used a stereo fundus camera (nonmyd WX) to assess various morphological parameters of the optic nerve head (ONH) in glaucoma patients. We compared the associations of each parameter between the visual field loss progression group and no-progression group. The study included 187 eyes of 187 patients with primary open-angle glaucoma or normal-tension glaucoma. We divided the mean deviation (MD) slope values of all patients into the progression group (<-0.3 dB/year) and no-progression group (≧-0.3 dB/year). ONH morphological parameters were calculated with prototype analysis software. The correlations between glaucomatous visual field progression and patient characteristics or each ONH parameter were analyzed with Spearman's rank correlation coefficient. The MD slope averages in the progression group and no-progression group were -0.58 ± 0.28 dB/year and 0.05 ± 0.26 dB/year, respectively. Among disc parameters, vertical disc width (diameter), disc area, cup area, and cup volume in the progression group were significantly less than those in the no-progression group. Logistic regression analysis revealed a significant association between the visual field progression and disc area (odds ratio 0.49/mm 2 disc area). A smaller disc area may be associated with more rapid glaucomatous visual field progression.

  10. Quantitative optical frequency domain imaging assessment of in-stent structures in patients with ST-segment elevation myocardial infarction: impact of imaging sampling rate.

    PubMed

    Muramatsu, Takashi; García-García, Hector M; Lee, Il Soo; Bruining, Nico; Onuma, Yoshinobu; Serruys, Patrick W

    2012-01-01

    The impact of the sampling rate (SR) of optical frequency domain imaging (OFDI) on quantitative assessment of in-stent structures (ISS) such as plaque prolapse and thrombus remains unexplored. OFDI after stenting was performed in ST-segment elevation myocardial infarction (STEMI) patients using a TERUMO OFDI system (Terumo Europe, Leuven, Belgium) with 160 frames/s and pullback speed of 20 mm/s. A total of 126 stented segments were analyzed. ISS were classified as either attached or non-attached to stent area boundaries. The volume, mean area and largest area of ISS were assessed according to 4 frequencies of SR, corresponding to distances between the analyzed frames of 0.125, 0.25, 0.50 and 1.0 mm. ISS volume was calculated by integrating cross-sectional ISS areas multiplied by each sampling distance using the disk summation method. The volume and mean area of ISS became significantly larger, while the largest area became significantly smaller as sampling distance became larger (1.11 mm(2) for 0.125 mm vs. 1.00 mm(2) for 1.0 mm, P for trend=0.036). In addition, variance of difference was positively associated with increasing width of sampling distance. Quantification of ISS is significantly influenced by the applied frequency of SR. This should be taken into account when designing future OFDI studies in which quantitative assessment of ISS is critical for the evaluation of STEMI patients.

  11. The importance of costoclavicular space on possible compression of the subclavian artery in the thoracic outlet region: a radio-anatomical study.

    PubMed

    Kaplan, Tevfik; Comert, Ayhan; Esmer, Ali Firat; Ataç, Gökçe Kaan; Acar, Halil Ibrahim; Ozkurt, Bulent; Tekdemir, Ibrahim; Han, Serdar

    2018-04-16

    The purposes of this study were to identify possible compression points along the transit route of the subclavian artery and to provide a detailed anatomical analysis of areas that are involved in the surgical management of the thoracic outlet syndrome (TOS). The results of the current study are based on measurements from cadavers, computed tomography (CT) scans and dry adult first ribs. The width and length of the interscalene space and the width of the costoclavicular passage were measured on 18 cervical dissections in 9 cadavers, on 50 dry first ribs and on CT angiography sections from 15 patients whose conditions were not related to TOS. The average width and length of the interscalene space in cadavers were 15.28 ± 1.94 mm and 15.98 ± 2.13 mm, respectively. The widths of the costoclavicular passage (12.42 ± 1.43 mm) were significantly narrower than the widths and lengths of the interscalene space in cadavers (P < 0.05). The average width and length of the interscalene space (groove for the subclavian artery) in 50 dry ribs were 15.53 ± 2.12 mm and 16.12 ± 1.95 mm, respectively. In CT images, the widths of the costoclavicular passage were also significantly narrower than those of the interscalene space (P < 0.05). The measurements from cadavers, dry first ribs and CT images were not significantly different (P > 0.05). Our results showed that the costoclavicular width was the narrowest space along the passage route of the subclavian artery. When considering the surgical decompression of the subclavian artery for TOS, this narrowest area should always be kept in mind. Since measurements from CT images and cadavers were significantly similar, CT measurements may be used to evaluate the thoracic outlet region in patients with TOS.

  12. ABC effect and resonance d*(2380)

    NASA Astrophysics Data System (ADS)

    Bashkanov, M.; Clement, H.; Doroshkevich, E.; Skorodko, T.

    2017-11-01

    A new state in the two-baryon system with mass 2380 MeV and width 80 MeV has been detected in the experiments at the Juelich Cooler Synchrotron (COSY). The new particle denoted now d*(2380) has quantum numbers I( J p ) = 0(3+). The total cross sections for the d and 4He fusion reactions show similar to each other resonance-like energy dependence. The resonance-like structure is sensed in the double-pionic fusion channels and polarized np scattering.

  13. The effect of shape on the fracture of a soft elastic gel subjected to shear load.

    PubMed

    Kundan, Krishna Kant; Ghatak, Animangsu

    2018-02-21

    For brittle solids, the fracture energy is the energy required to create a unit area of new surface through the process of division. For crosslinked materials, it is a function of the intrinsic properties like crosslinking density and bond strength of the crosslinks. Here we show that the energy released due to fracture can depend also on the shape of a joint made of this material. Our experiment involves two gel blocks connected via a thin gel disk. The disk is formed into different regular and exotic shapes, but with identical areas of cross-section. When one of the blocks is sheared with respect to the other, the shear load increases with vertical displacement, eventually causing a fracture at a threshold load. The maximum fracture load is different for different disks and among different regularly shaped disks, it is at a maximum for pentagon and hexagon shapes. The fracture energy release rate of the joint depends also on the aspect ratio (height/width) of the shapes. Our experiments also throw light on possible reasons for such a dependence on the shape of the joints.

  14. Impacts of Different Hiking-trail Use Frequency on Soil Erosion: a Case of Mt. Mudeng National Park, Korea

    NASA Astrophysics Data System (ADS)

    Kim, J.; Kim, J. K.

    2017-12-01

    Mountain National Parks have been suffered serious soil erosion by hiking in Korea. To identify the impacts of different human's trampling intensities, a comparative study was conducted in Mt. Mudeungsan National Park where has been very intensive recreational activities. For this study, trail-conditions and soil properties were discovered on the 1.9km trail of high traffic (A) and 3.8km trail of low traffic (B) in the study area. Width was significantly wider on the A than B, but there was no significant difference in the values of other factors. With compaction and erosion of topsoil on the trail, penetration resistance and bulk density were significantly higher, but water content and the ratio of silt and clay were significantly lower than those of undisturbed areas around the trails. These were not statistically significant spatial difference from the use frequency of the trails. This result implies that the characteristics of surface soil on trails were not largely affected by use frequency, and the evolution of cross-section form of trails would be dominated by widening. This study will help in managing trail system and establishing conservation policy sustainably.

  15. Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure.

    PubMed

    Thalman, Ryan; Volkamer, Rainer

    2013-10-07

    The collisions between two oxygen molecules give rise to O4 absorption in the Earth atmosphere. O4 absorption is relevant to atmospheric transmission and Earth's radiation budget. O4 is further used as a reference gas in Differential Optical Absorption Spectroscopy (DOAS) applications to infer properties of clouds and aerosols. The O4 absorption cross section spectrum of bands centered at 343, 360, 380, 446, 477, 532, 577 and 630 nm is investigated in dry air and oxygen as a function of temperature (203-295 K), and at 820 mbar pressure. We characterize the temperature dependent O4 line shape and provide high precision O4 absorption cross section reference spectra that are suitable for atmospheric O4 measurements. The peak absorption cross-section is found to increase at lower temperatures due to a corresponding narrowing of the spectral band width, while the integrated cross-section remains constant (within <3%, the uncertainty of our measurements). The enthalpy of formation is determined to be ΔH(250) = -0.12 ± 0.12 kJ mol(-1), which is essentially zero, and supports previous assignments of O4 as collision induced absorption (CIA). At 203 K, van der Waals complexes (O(2-dimer)) contribute less than 0.14% to the O4 absorption in air. We conclude that O(2-dimer) is not observable in the Earth atmosphere, and as a consequence the atmospheric O4 distribution is for all practical means and purposes independent of temperature, and can be predicted with an accuracy of better than 10(-3) from knowledge of the oxygen concentration profile.

  16. Compton Scattering Cross Sections in Strong Magnetic Fields: Advances for Neutron Star Applications

    NASA Astrophysics Data System (ADS)

    Eiles, Matthew; Gonthier, P. L.; Baring, M. G.; Wadiasingh, Z.

    2013-04-01

    Various telescopes including RXTE, INTEGRAL and Suzaku have detected non-thermal X-ray emission in the 10 - 200 keV band from strongly magnetic neutron stars. Inverse Compton scattering, a quantum-electrodynamical process, is believed to be a leading candidate for the production of this intense X-ray radiation. Magnetospheric conditions are such that electrons may well possess ultra-relativistic energies, which lead to attractive simplifications of the cross section. We have recently addressed such a case by developing compact analytic expressions using correct spin-dependent widths and Sokolov & Ternov (ST) basis states, focusing specifically on ground state-to-ground state scattering. However, inverse Compton scattering can cool electrons down to mildly-relativistic energies, necessitating the development of a more general case where the incoming photons acquire nonzero incident angles relative to the field in the rest frame of the electron, and the intermediate state can be excited to arbitrary Landau levels. In this paper, we develop results pertaining to this general case using ST formalism, and treating the plethora of harmonic resonances associated with various cyclotron transitions between Landau states. Four possible scattering modes (parallel-parallel, perpendicular-perpendicular, parallel-perpendicular, and perpendicular-parallel) encapsulate the polarization dependence of the cross section. We present preliminary analytic and numerical investigations of the magnitude of the extra Landau state contributions to obtain the full cross section, and compare these new analytic developments with the spin-averaged cross sections, which we develop in parallel. Results will find application to various neutron star problems, including computation of Eddington luminosities in the magnetospheres of magnetars. We express our gratitude for the generous support of the Michigan Space Grant Consortium, of the National Science Foundation (REU and RUI), and the NASA Astrophysics Theory and Fundamental Program.

  17. Response and Recovery of Streams From an Extreme Flood

    NASA Astrophysics Data System (ADS)

    Kantack, K. M.; Renshaw, C. E.; Magilligan, F. J.; Dethier, E.

    2015-12-01

    In temperate regions, channels are expected to recover from intense floods in a matter of months to years, but quantitative empirical support for this idea remains limited. Moreover, existing literature fails to address the spatial variability of the recovery process. Using an emerging technology, we investigate the immediate response to and progressive recovery of channels in the Northeastern United States from an extreme flood. We seek to determine what factors, including the nature and extent of the immediate response of the channel to the flood and post-flood availability of sediment, contribute to the spatial variability of the rate of recovery. Taking advantage of the 2011 flooding from Tropical Storm Irene, for which pre- and post-flood aerial lidar exist, along with a third set of terrestrial lidar collected in 2015, we assess channel response and recovery with multi-temporal lidar comparison. This method, with kilometers of continuous data, allows for analysis beyond traditional cross-section and reach-scale studies. Results indicate that landscape-scale factors, such as valley morphology and gradients in unit stream power, are controls on channel response to the flood, producing spatially variable impacts. Along a 16.4-km section (drainage area = 82 km2) of the Deerfield River in Vermont, over 148,000 m3 or erosion occurred during the flood. The spatial variation of impacts was correlated (R2= 0.476) with the ratio of channel width to valley width. We expect the recovery process will similarly exhibit spatial variation in rate and magnitude, possibly being governed by gradients in unit stream power and sediment availability. We test the idea that channel widening during the flood reduces post-flood unit stream power, creating a pathway for deposition and recovery to pre-flood width. Flood-widened reaches downstream of point-sources of sediment, such as landslides, will recover more quickly than those without consistent sediment supply. Results of this study will improve our ability to predict the nature and location of flood impacts and determine what factors contribute to the spatial variability of channel recovery.

  18. Pre-Restoration Geomorphic Characteristics of Minebank Run, Baltimore County, Maryland, 2002-04

    USGS Publications Warehouse

    Doheny, Edward J.; Starsoneck, Roger J.; Mayer, Paul M.; Striz, Elise A.

    2007-01-01

    Data collected from 2002 through 2004 were used to assess geomorphic characteristics and geomorphic changes over time in a selected reach of Minebank Run, a small urban watershed near Towson, Maryland, prior to its physical restoration in 2004 and 2005. Longitudinal profiles of the channel bed, water surface, and bank features were developed from field surveys. Changes in cross-section geometry between field surveys were documented. Grain-size distributions for the channel bed and banks were developed from pebble counts and laboratory analyses. Net changes in the elevation of the channel bed over time were documented at selected locations. Rosgen Stream Classification was used to classify the stream channel according to morphological measurements of slope, entrenchment ratio, width-to-depth ratio, sinuosity, and median-particle diameter of the channel materials. An analysis of boundary shear stress in the vicinity of the streamflow-gaging station was conducted by use of hydraulic variables computed from cross-section surveys and slope measurements derived from crest-stage gages in the study reach. Analysis of the longitudinal profiles indicated noticeable changes in the percentage and distribution of riffles, pools, and runs through the study reach between 2002 and 2004. Despite major changes to the channel profile as a result of storm runoff events, the overall slope of the channel bed, water surface, and bank features remained constant at about 1 percent. The cross-sectional surveys showed net increases in cross-sectional area, mean depth, and channel width at several locations between 2002 and 2004, which indicate channel degradation and widening. Two locations were identified where significant amounts of sediment were being stored in the study reach. Data from scour chains identified several locations where maximum scour ranged from 1.0-1.4 feet during storm events. Bank retreat varied widely throughout the study reach and ranged from 0.2 feet to as much as 7.9 feet. Sequential measurements of bed elevation in selected locations indicated as much as 2 feet of channel degradation in one location during a storm event in May 2004 and identified pulses of sediment that were gradually transported through the study reach during the monitoring period. Particle-size analyses of channel bed materials indicated a median particle diameter of 20.5 millimeters (coarse gravel) for the study reach, with more than 24 percent being sand particles (greater than 0.062 millimeters). Analyses of bank samples showed finer-grained material composing the channel banks, predominantly silt/clay or a mixture of silt/clay (less than 0.062 millimeters) and very fine to coarse sand. The Minebank Run stream channel was classified as a B4c channel, based on morphological descriptions from the Rosgen Stream Classification System. The B4c classification describes a single-thread stream channel with a moderate entrenchment ratio of 1.4 to 2.2; a width-to-depth ratio greater than 12; moderate sinuosity of 1.2 or greater; a water-surface slope of less than 2 percent; and a median-particle diameter in the gravel range of 2 to 64 millimeters. Analysis of boundary shear stress indicated larger mean velocities and boundary shear stress values for Minebank Run when compared to relations for non-urban B channel types developed by Rosgen. The slope of the regression line for mean velocity versus boundary shear stress at Minebank Run was considerably less than slopes developed by Rosgen for non-urban channel types. This indicates that relatively small increases in mean velocity can result in large increases in boundary shear stress in stream channels with highly developed watersheds, such as Minebank Run.

  19. Peripubertal female athletes in high-impact sports show improved bone mass acquisition and bone geometry.

    PubMed

    Maïmoun, Laurent; Coste, Olivier; Philibert, Pascal; Briot, Karine; Mura, Thibault; Galtier, Florence; Mariano-Goulart, Denis; Paris, Françoise; Sultan, Charles

    2013-08-01

    Intensive physical training may have a sport-dependent effect on bone mass acquisition. This cross-sectional study evaluated bone mass acquisition in girls practicing sports that put different mechanical loads on bone. Eighty girls from 10.7 to 18.0 years old (mean 13.83 ± 1.97) were recruited: 20 artistic gymnasts (AG; high-impact activity), 20 rhythmic gymnasts (RG; medium-impact activity), 20 swimmers (SW, no-impact activity), and 20 age-matched controls (CON; leisure physical activity <3h/wk). Areal bone mineral density (aBMD) was determined using DEXA. Hip structural analysis applied at the femur evaluated cross-sectional area (CSA, cm(2)), section modulus (Z, cm(3)), and buckling ratio. Bone turnover markers and OPG/RANKL levels were analyzed. AG had higher aBMD than SW and CON at all bone sites and higher values than RG in the lumbar spine and radius. RG had higher aBMD than SW and CON only in the femoral region. CSA and mean cortical thickness were significantly higher and the buckling ratio was significantly lower in both gymnast groups compared with SW and CON. In RG only, endocortical diameter and width were reduced, while Z was only increased in AG compared with SW and CON. Reduced bone remodeling was observed in RG compared with AG only when groups were subdivided according to menarcheal status. All groups showed similar OPG concentrations, while RANKL concentrations increased with age and were decreased in SW. High-impact activity clearly had a favorable effect on aBMD and bone geometry during the growth period, although the bone health benefits seem to be more marked after menarche. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory.

    PubMed

    Datta, Subhra; Ghosal, Sandip; Patankar, Neelesh A

    2006-02-01

    Electroosmotic flow in a straight micro-channel of rectangular cross-section is computed numerically for several situations where the wall zeta-potential is not constant but has a specified spatial variation. The results of the computation are compared with an earlier published asymptotic theory based on the lubrication approximation: the assumption that any axial variations take place on a long length scale compared to a characteristic channel width. The computational results are found to be in excellent agreement with the theory even when the scale of axial variations is comparable to the channel width. In the opposite limit when the wavelength of fluctuations is much shorter than the channel width, the lubrication theory fails to describe the solution either qualitatively or quantitatively. In this short wave limit the solution is well described by Ajdari's theory for electroosmotic flow between infinite parallel plates (Ajdari, A., Phys. Rev. E 1996, 53, 4996-5005.) The infinitely thin electric double layer limit is assumed in the theory as well as in the simulation.

  1. Jamming of Monodisperse Cylindrical Grains in Featureless Vertical Channels

    NASA Astrophysics Data System (ADS)

    Friedl, Nicholas; Baxter, G. William

    2014-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel under the influence of gravity. These grains have an aspect-ratio less than two (H/D < 2) and resemble aspirin tablets, 35mm film canisters, poker chips, or coins. Monodisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. No combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  2. Influence of anthropometric parameters on ultrasound measurements of Os calcis.

    PubMed

    Hans, D; Schott, A M; Arlot, M E; Sornay, E; Delmas, P D; Meunier, P J

    1995-01-01

    Few data have been published concerning the influence of height, weight and body mass index (BMI) on broadband ultrasound attenuation (BUA), speed of sound (SOS) and Lunar "stiffness" index, and always in small population samples. The first ain of the present cross-sectional study was to determine whether anthropometric factors have a significant influence on ultrasound measurements. The second objective was to establish whether these parameters have real effect on whether their influence is due only to measurement errors. We measured, in 271 healthy French women (mean age 77 +/- 11 years; range 31-97 years), the following parameters: age, height, weight, lean and fat body mass, heel width, foot length, knee height and external malleolus (HEM). Simple linear regression analyses between ultrasound and anthropometric parameters were performed. Age, height, and heel width were significant predictors of SOS; age, height, weight, foot length, heel width, HEM, fat mass and lean mass were significant predictors of BUA; age, height, weight, heel width, HEM, fat mass and lean mass were significant predictors of stiffness. In the multiple regression analysis, once the analysis had been adjusted for age, only heel width was a significant predictor for SOS (p = 0.0007), weight for BUA (p = 0.0001), and weight (p = 0.0001) and heel width (p = 0.004) for the stiffness index. Besides their statistical meaning, the regression coefficients have a more clinically relevant interpretation which is developed in the text. These results confirm the influence of anthropometric factors on the ultrasonic parameter values, because BUA and SOS were in part dependent on heel width and weight. The influence of the position of the transducer on the calcaneus should be taken into account to optimize the methods of measurement using ultrasound.

  3. Determination of channel-morphology characteristics, bankfull discharge, and various design-peak discharges in western Montana

    USGS Publications Warehouse

    Lawlor, Sean M.

    2004-01-01

    Stream-restoration projects using natural stream designs typically are based on channel configurations that can accommodate a wide range of streamflow and sediment-transport conditions without excessive erosion or deposition. Bankfull discharge is an index of streamflow considered to be closely related to channel shape, size, and slope (channel morphology). Because of the need for more information about the relation between channel morphology and bankfull discharge, the U.S. Geological Survey (USGS), in cooperation with the Montana Department of Transportation and the U.S. Department of Agriculture-Lolo National Forest, conducted a study to collect channel-morphology and bankfull-discharge data at gaged sites and use these data to improve current (2004) methods of estimation of bankfull discharge and various design-peak discharges at ungaged sites. This report presents channel-morphology characteristics, bankfull discharge, and various design-peak discharges for 41 sites in western Montana. Channel shape, size, and slope and bankfull discharge were determined at 41 active or discontinued USGS streamflow-gaging sites in western Montana. The recurrence interval for the bankfull discharge for this study ranged from 1.0 to 4.4 years with a median value of 1.5 years. The relations between channel-morphology characteristics and various design-peak discharges were examined using regression analysis. The analyses showed that the only characteristics that were significant for all peak discharges were either bankfull width or bankfull cross-sectional area. Bankfull discharge at ungaged sites in most of the study area can be estimated by application of a multiplier after determining the 2-year peak discharge at the ungaged site. The multiplier, which is the ratio of bankfull discharge to the 2-year peak discharge determined at the 41 sites, ranged from 0.21 to 3.7 with a median value of 0.84. Regression relations between bankfull discharge and drainage area and between bankfull width and drainage area were examined for three ranges of mean annual precipitation. The results of the regression analyses indicated that both drainage area and mean annual precipitation were significantly related (p values less than 0.05) to bankfull discharge.

  4. Undergraduate students introduction to manual and rotary root canal instrumentation.

    PubMed

    Leonardi, Denise Piotto; Haragushiku, Gisele Aihara; Tomazinho, Flavia Sens Fagundes; Furuse, Adilson Yoshio; Volpato, Lusiane; Baratto-Filho, Flares

    2012-01-01

    The aim of this study was to evaluate the performance of undergraduates in their first contact with manual and rotary root canal instrumentation. Forty-two students who had never worked on a root canal before instrumented 42 extracted lower-incisors. Participants were assigned to one of two groups: Rotary instrumentation or manual instrumentation. Pre- and post-operative computed tomography scans were obtained with a 3-dimensional dental imaging system. Starting and finishing times of preparation were recorded. The cross-sectional area of the root canal was analyzed with 2-mm-below-the-apex initial and final transverse images recorded through a digital imaging system and analyzed with software to measure the initial and final area of the root canal in mm(2). Data from the cross-sectional area of the root canal and time spent were subjected to the Mann-Whitney's U-test (p<0.05). The rotary instrumentation group showed smaller time for preparation (p=0.0204). No differences between rotary and manual instrumentation regarding the cross-sectional area of the root canal were observed (p=0.25). No accidents occurred. Undergraduate students showed good performance in their first contact with the manual and rotary instrumentation with regard to time spent and cross-sectional area of the root canal, with no operative accidents.

  5. Neighbourhood Deprivation, Health Inequalities and Service Access by Adults with Intellectual Disabilities: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Cooper, S. A.; McConnachie, A.; Allan, L. M.; Melville, C.; Smiley, E.; Morrison, J.

    2011-01-01

    Background: Adults with intellectual disabilities (IDs) experience health inequalities and are more likely to live in deprived areas. The aim of this study was to determine whether the extent of deprivation of the area a person lives in affects their access to services, hence contributing to health inequalities. Method: A cross-sectional study…

  6. Analyses of Disruption of Cerebral White Matter Integrity in Schizophrenia with MR Diffusion Tensor Fiber Tracking Method

    NASA Astrophysics Data System (ADS)

    Yamamoto, Utako; Kobayashi, Tetsuo; Kito, Shinsuke; Koga, Yoshihiko

    We have analyzed cerebral white matter using magnetic resonance diffusion tensor imaging (MR-DTI) to measure the diffusion anisotropy of water molecules. The goal of this study is the quantitative evaluation of schizophrenia. Diffusion tensor images are acquired for patients with schizophrenia and healthy comparison subjects, group-matched for age, sex, and handedness. Fiber tracking is performed on the superior longitudinal fasciculus for the comparison between the patient and comparison groups. We have analysed and compared the cross-sectional area on the starting coronal plane and the mean and standard deviation of the fractional anisotropy and the apparent diffusion coefficient along fibers in the right and left hemispheres. In the right hemisphere, the cross-sectional areas in patient group are significantly smaller than those in the comparison group. Furthermore, in the comparison group, the cross-sectional areas in the right hemisphere are significantly larger than those in the left hemisphere, whereas there is no significant difference in the patient group. These results suggest that we may evaluate the disruption in white matter integrity in schizophrenic patients quantitatively by comparing the cross-sectional area of the superior longitudinal fasciculus in the right and left hemispheres.

  7. Effects of 14 days of spaceflight and nine days of recovery on cell body size and succinate dehydrogenase activity of rat dorsal root ganglion neurons

    NASA Technical Reports Server (NTRS)

    Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.

    1997-01-01

    The cross-sectional areas and succinate dehydrogenase activities of L5 dorsal root ganglion neurons in rats were determined after 14 days of spaceflight and after nine days of recovery. The mean and distribution of the cross-sectional areas were similar to age-matched, ground-based controls for both the spaceflight and for the spaceflight plus recovery groups. The mean succinate dehydrogenase activity was significantly lower in spaceflight compared to aged-matched control rats, whereas the mean succinate dehydrogenase activity was similar in age-matched control and spaceflight plus recovery rats. The mean succinate dehydrogenase activity of neurons with cross-sectional areas between 1000 and 2000 microns2 was lower (between 7 and 10%) in both the spaceflight and the spaceflight plus recovery groups compared to the appropriate control groups. The reduction in the oxidative capacity of a subpopulation of sensory neurons having relatively large cross-sectional areas immediately following spaceflight and the sustained depression for nine days after returning to 1 g suggest that the 0 g environment induced significant alterations in proprioceptive function.

  8. Creating normograms of dural sinuses in healthy persons using computer-assisted detection for analysis and comparison of cross-section dural sinuses in the brain.

    PubMed

    Anconina, Reut; Zur, Dinah; Kesler, Anat; Lublinsky, Svetlana; Toledano, Ronen; Novack, Victor; Benkobich, Elya; Novoa, Rosa; Novic, Evelyne Farkash; Shelef, Ilan

    2017-06-01

    Dural sinuses vary in size and shape in many pathological conditions with abnormal intracranial pressure. Size and shape normograms of dural brain sinuses are not available. The creation of such normograms may enable computer-assisted comparison to pathologic exams and facilitate diagnoses. The purpose of this study was to quantitatively evaluate normal magnetic resonance venography (MRV) studies in order to create normograms of dural sinuses using a computerized algorithm for vessel cross-sectional analysis. This was a retrospective analysis of MRV studies of 30 healthy persons. Data were analyzed using a specially developed Matlab algorithm for vessel cross-sectional analysis. The cross-sectional area and shape measurements were evaluated to create normograms. Mean cross-sectional size was 53.27±13.31 for the right transverse sinus (TS), 46.87+12.57 for the left TS (p=0.089) and 36.65+12.38 for the superior sagittal sinus. Normograms were created. The distribution of cross-sectional areas along the vessels showed distinct patterns and a parallel course for the median, 25th, 50th and 75th percentiles. In conclusion, using a novel computerized method for vessel cross-sectional analysis we were able to quantitatively characterize dural sinuses of healthy persons and create normograms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sex differences in knee joint loading: Cross-sectional study in geriatric population.

    PubMed

    Ro, Du Hyun; Lee, Dong Yeon; Moon, Giho; Lee, Sahnghoon; Seo, Sang Gyo; Kim, Seong Hwan; Park, In Woong; Lee, Myung Chul

    2017-06-01

    This study investigated sex differences in knee biomechanics and investigated determinants for difference in a geriatric population. Age-matched healthy volunteers (42 males and 42 females, average age 65 years) without knee OA were included in the study. Subjects underwent physical examination on their knee and standing full-limb radiography for anthropometric measurements. Linear, kinetic, and kinematic parameters were compared using a three-dimensional, 12-camera motion capture system. Gait parameters were evaluated and determinants for sex difference were evaluated with multiple regression analysis. Females had a higher peak knee adduction moment (KAM) during gait (p = 0.004). Females had relatively wider pelvis and narrower step width (both p < 0.001). However, coronal knee alignment was not significantly different between the sexes. Multiple regression analysis revealed that coronal alignment (b = 0.014, p < 0.001), step width (b = -0.010, p = 0.011), and pelvic width/height ratio (b = 1.703, p = 0.046) were significant determinants of peak KAM. Because coronal alignment was not different between the sexes, narrow step width and high pelvic width/height ratio of female were the main contributors to higher peak KAM in females. Sex differences in knee biomechanics were present in the geriatric population. Increased mechanical loading on the female knee, which was associated with narrow step width and wide pelvis, may play an important role in future development and progression of OA. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1283-1289, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. The influence of the macro-sediment from the mountainous area to the river morphology in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, S. C.; Wu, C.; Shih, P.

    2012-12-01

    Chen, Su-Chin scchen@nchu.edu.tw Wu, Chun-Hung* chwu@mail.nchu.edu.tw Dept. Soil & Water Conservation, National Chung Hsing University, Taichung, Taiwan. The Chenyulan River was varied changed with the marco-sediment yielded source area, Shenmu watershed, with 10 debris flow events in the last decade, in Central Taiwan. Multi-term DEMs, the measurement data of the river topographic profile and aerial photos are adopted to analyze the decade influences of the marco-sediment to the river morphology in Chenyulan River. The changes of river morphology by observing the river pattern, calculating the multi-term braided index, and estimating the distribution of sediment deposition and main channel in the river. The response for the macro-sediment from the mountainous areas into the river in the primary stage is the increase in river width, the depth of sediment deposition and volume of sediment transport. The distribution of sediment deposition from upstream landslide and river bank erosion along the river dominates the change of river morphology in the primary stage. The river morphology achieves stable gradually as the river discharge gradually decreases in the later stage. Both of the braided index and the volume of sediment transport decrease, and the river flow maintains in a main channel instead of the braided pattern in this stage. The decade sediment deposition depth is estimated as > 0.5 m, especially > 3.5 m in the sections closed to the sediment-yield source areas, the mean river width increases 15%, and the sediment with a total volume of 8×107 tons has been transported in last decade in Chenyulan River. The river morphology in Chenyulan River maintains a short-term stable, i.e. 2 or 3 years, and changes again because of the flooding events with a large amount of sediment caused by frequently heavy rainfall events in Taiwan. Furthermore, the response of river morphology in Chenyulan River due to the heavy rainfall with a total precipitation of around 860 mm in 3 days in 2009 Typhoon Morakot is also discussed in the study. A extreme river discharge with the return period of 100 year transported the macro sediment with the total volume of around 3.2×107 m3 in 8 days during 2009 Typhoon Morakot, and it also resulted in 18.1% increase of the mean river width and 4 m increase of the mean scouring depth in Chenyulan River, especially the mean increase of 50 m in river width resulted from the total sediment volume of 1.9×107 m3 deposited within 8 km from the sediment-yielded area, i.e. Shenmu watershed. Furthermore, the distribution of sediment deposition in a narrow pass is also discussed in the research. Sediment deposited apparently in the upstream of a narrow pass and also results in the disordered river patterns. The high velocity flow due to the contraction of the river width in the narrow pass section also leads to the headwater erosion in the upstream of the narrow pass section. Contrarily, the unapparent sediment deposition in the downstream of the narrow pass section brings about the stable main channel and swinging flow patterns from our decade observation.

  11. Neutron Physics Division progress report for period ending February 28, 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, F.C.

    1977-05-01

    Summaries are given of research progress in the following areas: (1) measurements of cross sections and related quantities, (2) cross section evaluations and theory, (3) cross section processing, testing, and sensitivity analysis, (4) integral experiments and their analyses, (5) development of methods for shield and reactor analyses, (6) analyses for specific systems or applications, and (7) information analysis and distribution. (SDF)

  12. Evaluation of age-related changes with cross-sectional CT imaging of teeth

    NASA Astrophysics Data System (ADS)

    Fukui, Tatsumasa; Kita, Kanade; Kamemoto, Hiromasa; Nishiyama, Wataru; Yoshida, Hiroyasu; Iida, Yukihiro; Katsumata, Akitoshi; Muramatsu, Chisako; Fujita, Hiroshi

    2017-03-01

    Tooth pulp atrophy occurs with increasing age. An age estimation procedure using dental cone beam computed tomography (CBCT) imaging was developed. Clinical dental CBCT images of 60 patients (aged from 20 to 80 years) were evaluated. The ratio of the cross-sectional area of the pulp cavity to the cross-sectional area of the tooth (pulp cavity ratio) was calculated. The pulp cavity ratio in the labio-lingual plane of the mandibular anterior teeth and the mesio-distal plane of the maxillary anterior teeth was strongly correlated with the patients' age. The pulp cavity ratio of anterior teeth may be a useful parameter for estimating age.

  13. Properties of individual contrails: a compilation of observations and some comparisons

    NASA Astrophysics Data System (ADS)

    Schumann, Ulrich; Baumann, Robert; Baumgardner, Darrel; Bedka, Sarah T.; Duda, David P.; Freudenthaler, Volker; Gayet, Jean-Francois; Heymsfield, Andrew J.; Minnis, Patrick; Quante, Markus; Raschke, Ehrhard; Schlager, Hans; Vázquez-Navarro, Margarita; Voigt, Christiane; Wang, Zhien

    2017-01-01

    Mean properties of individual contrails are characterized for a wide range of jet aircraft as a function of age during their life cycle from seconds to 11.5 h (7.4-18.7 km altitude, -88 to -31 °C ambient temperature), based on a compilation of about 230 previous in situ and remote sensing measurements. The airborne, satellite, and ground-based observations encompass exhaust contrails from jet aircraft from 1972 onwards, as well as a few older data for propeller aircraft. The contrails are characterized by mean ice particle sizes and concentrations, extinction, ice water content, optical depth, geometrical depth, and contrail width. Integral contrail properties include the cross-section area and total number of ice particles, total ice water content, and total extinction (area integral of extinction) per contrail length. When known, the contrail-causing aircraft and ambient conditions are characterized. The individual datasets are briefly described, including a few new analyses performed for this study, and compiled together to form a contrail library (COLI). The data are compared with results of the Contrail Cirrus Prediction (CoCiP) model. The observations confirm that the number of ice particles in contrails is controlled by the engine exhaust and the formation process in the jet phase, with some particle losses in the wake vortex phase, followed later by weak decreases with time. Contrail cross sections grow more quickly than expected from exhaust dilution. The cross-section-integrated extinction follows an algebraic approximation. The ratio of volume to effective mean radius decreases with time. The ice water content increases with increasing temperature, similar to non-contrail cirrus, while the equivalent relative humidity over ice saturation of the contrail ice mass increases at lower temperatures in the data. Several contrails were observed in warm air above the Schmidt-Appleman threshold temperature. The emission index of ice particles, i.e., the number of ice particles formed in the young contrail per burnt fuel mass, is estimated from the measured concentrations for estimated dilution; maximum values exceed 1015 kg-1. The dependence of the data on the observation methods is discussed. We find no obvious indication for significant contributions from spurious particles resulting from shattering of ice crystals on the microphysical probes.

  14. A study on Improvisation in a Musical performance using Multifractal Detrended Cross Correlation Analysis

    NASA Astrophysics Data System (ADS)

    Sanyal, Shankha; Banerjee, Archi; Patranabis, Anirban; Banerjee, Kaushik; Sengupta, Ranjan; Ghosh, Dipak

    2016-11-01

    MFDFA (the most rigorous technique to assess multifractality) was performed on four Hindustani music samples played on same 'raga' sung by the same performer. Each music sample was divided into six parts and 'multifractal spectral width' was determined for each part corresponding to the four samples. The results obtained reveal that different parts of all the four sound signals possess spectral width of widely varying values. This gives a cue of the so called 'musical improvisation' in all music samples, keeping in mind they belong to the bandish part of the same raga. Formal compositions in Hindustani raga are juxtaposed with the improvised portions, where an artist manoeuvers his/her own creativity to bring out a mood that is specific for that particular performance, which is known as 'improvisation'. Further, this observation hints at the association of different emotions even in the same bandish of the same raga performed by the same artist, this interesting observation cannot be revealed unless rigorous non-linear technique explores the nature of musical structure. In the second part, we applied MFDXA technique to explore more in-depth about 'improvisation' and association with emotion. This technique is applied to find the degree of cross-correlation (γx) between the different parts of the samples. Pronounced correlation has been observed in the middle parts of the all the four samples evident from higher values of γx ​whereas the other parts show weak correlation. This gets further support from the values of spectral width from different parts of the sample - width of those parts is significantly different from other parts. This observation is extremely new both in respect of musical structure of so called improvisation and associated emotion. The importance of this study in application area of cognitive music therapy is immense.

  15. Psoas muscle area is not representative of total skeletal muscle area in the assessment of sarcopenia in ovarian cancer.

    PubMed

    Rutten, Iris J G; Ubachs, Jorne; Kruitwagen, Roy F P M; Beets-Tan, Regina G H; Olde Damink, Steven W M; Van Gorp, Toon

    2017-08-01

    Computed tomography measurements of total skeletal muscle area can detect changes and predict overall survival (OS) in patients with advanced ovarian cancer. This study investigates whether assessment of psoas muscle area reflects total muscle area and can be used to assess sarcopenia in ovarian cancer patients. Ovarian cancer patients (n = 150) treated with induction chemotherapy and interval debulking were enrolled retrospectively in this longitudinal study. Muscle was measured cross sectionally with computed tomography in three ways: (i) software quantification of total skeletal muscle area (SMA); (ii) software quantification of psoas muscle area (PA); and (iii) manual measurement of length and width of the psoas muscle to derive the psoas surface area (PLW). Pearson correlation between the different methods was studied. Patients were divided into two groups based on the extent of change in muscle area, and agreement was measured with kappa coefficients. Cox-regression was used to test predictors for OS. Correlation between SMA and both psoas muscle area measurements was poor (r = 0.52 and 0.39 for PA and PLW, respectively). After categorizing patients into muscle loss or gain, kappa agreement was also poor for all comparisons (all κ < 0.40). In regression analysis, SMA loss was predictive of poor OS (hazard ratio 1.698 (95%CI 1.038-2.778), P = 0.035). No relationship with OS was seen for PA or PLW loss. Change in psoas muscle area is not representative of total muscle area change and should not be used to substitute total skeletal muscle to predict survival in patients with ovarian cancer. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  16. Reconsidering the relation between serum homocysteine and red blood cell distribution width: a cross-sectional study of a large cohort.

    PubMed

    Margalit, Ili; Cohen, Eytan; Goldberg, Elad; Krause, Ilan

    2018-07-01

    In a recent small sample study, red blood cell distribution width (RDW) was suggested as a predictor of homocysteine levels. The current study was aimed to reexamine this association in a large scale sample. A retrospective cross-sectional study of healthy adults, conducted at Rabin Medical Center, during 2000-2014. Data were retrieved from the medical charts and a logistic regression controlling for interfering factors was carried out. Sensitivity analysis was implemented by exclusion of individuals with anaemia. Five thousand, five hundred fifty-four healthy individuals were included. Mean serum homocysteine level was 10.10 (SD 2.72) μmol/L. 34.4% of the study population had a homocysteine level higher than the upper limit of normal (10.8 μmol/L). Homocysteine showed no association with RDW (OR 1.00; 95% CI 0.97-1.03), but increased with age (OR 1.05; 95% CI 1.04-1.06) and decreased with a rise in haemoglobin (OR 0.77; 95% CI 0.71-0.83), and in the mean corpuscular volume (OR 0.86; 95% CI 0.85-0.88). Exclusion of individuals with anaemia did not reveal an association between homocysteine and RDW but found a somewhat smaller association between haemoglobin and RDW [OR 0.82; 95% CI 0.73-0.91]. In our large scale sample we did not find an association between RDW and serum homocysteine.

  17. Iceberg and ice-keel ploughmarks on the Gdansk-Gotland Sill (south-eastern Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Dorokhov, D. V.; Dorokhova, E. V.; Sivkov, V. V.

    2018-02-01

    New interpretation of the undulating moraine relief of the Gdansk-Gotland Sill, Baltic Sea is proposed. Relict iceberg and ice-keel ploughmarks were observed based on the integration of recently acquired side-scan sonar, multi-beam, single-beam and lithological data. The most likely time of their formation is the period of fast Scandinavian sheet retreat occurring from approximately 13.2 to 11.7 ka. Weak erosional-accumulative processes on the sill from 11.7 ka until the present favoured preservation of the iceberg ploughmarks. The predominant directions of the ploughmarks (north-south and northwest-southeast) coincide with the major iceberg (ice) drift direction from the Scandinavian ice sheet. Furrow width varies from 1 to 300 m with a main width of 20-60 m in a depth range of 1 to 10 m (mostly 2-4 m depth). The ploughmarks are flanked by side ridges 0.5-2 m high, and there is a push mound at the end of some furrows. Three types of cross-sectional furrow profiles have been distinguished: V-shaped cross-section profiles would have been formed by a peaked iceberg keel, U-shaped profiles by a flat keel, and W-shaped profiles by double-keel icebergs (ice ridges). The wide local depressions at the end of ploughmarks could have been formed during periods of fast falling of the Baltic Ice Lake water level, when the ice ridges (stamukhi) or icebergs could ground into the seafloor.

  18. Computed tomographic imaging characteristics of the normal canine lacrimal glands

    PubMed Central

    2014-01-01

    Background The canine lacrimal gland (LG) and accessory lacrimal gland of the third eyelid (TEG) are responsible for production of the aqueous portion of the precorneal tear film. Immune-mediated, toxic, neoplastic, or infectious processes can affect the glands directly or can involve adjacent tissues, with secondary gland involvement. Disease affecting these glands can cause keratoconjunctivitis sicca, corneal ulcers, and loss of vision. Due to their location in the orbit, these small structures are difficult to evaluate and measure, making cross-sectional imaging an important diagnostic tool. The detailed cross-sectional imaging appearance of the LG and TEG in dogs using computed tomography (CT) has not been reported to date. Results Forty-two dogs were imaged, and the length, width, and height were measured and the volume calculated for the LGs & TEGs. The glands were best visualized in contrast-enhanced CT images. The mean volume of the LG was 0.14 cm3 and the TEG was 0.1 cm3. The mean height, width, and length of the LG were, 9.36 mm, 4.29 mm, and 9.35 mm, respectively; the corresponding values for the TEG was 2.02 mm, 9.34 mm, and 7.90 mm. LG and TEG volume were positively correlated with body weight (p < 0.05). Conclusions Contrast-enhanced CT is a valuable tool for noninvasive assessment of canine lacrimal glands. PMID:24886364

  19. Prelaunch testing of the laser geodynamic satellite (LAGEOS)

    NASA Technical Reports Server (NTRS)

    Fitzmaurice, M. W.; Minott, P. O.; Abshire, J. B.; Rowe, H. E.

    1977-01-01

    The LAGEOS was extensively tested optically prior to launch. The measurement techniques used are described and resulting data is presented. Principal emphasis was placed on pulse spreading characteristics, range correction for center of mass tracking, and pulse distortion due to coherent effects. A mode-locked freqeuncy doubled Nd:YAG laser with a pulse width of about 60 ps was used as the ranging transmitter and a crossfield photo-multiplier was used in the receiver. High speed sampling electronics were employed to increase receiver bandwidth. LAGEOS reflected pulses typically had a width of 250 ps with a variability in the range correction of less than 2 mm rms. Pulse distortion due to coherent effects was inferred from average waveforms and appears to introduce less than + or - 50 ps jitter in the location of the pulse peak. Analytic results on this effect based on computer simulations are also presented. Theoretical and experimental data on the lidar cross section were developed in order to predict the strength of lidar echoes from the satellite. Cross section was measured using a large aperture laser collimating system to illuminate the LAGEOS. Reflected radiation far-field patterns were measured using the collimator in an autocollimating mode. Data were collected with an optical data digitzer and displayed as a three-dimensional plot of intensity versus the two far-field coordinates. Measurements were made at several wavelengths, for several types of polarizations, and as a function of satellite orientation.

  20. Uncertainty Analysis of Air Radiation for Lunar Return Shock Layers

    NASA Technical Reports Server (NTRS)

    Kleb, Bil; Johnston, Christopher O.

    2008-01-01

    By leveraging a new uncertainty markup technique, two risk analysis methods are used to compute the uncertainty of lunar-return shock layer radiation predicted by the High temperature Aerothermodynamic Radiation Algorithm (HARA). The effects of epistemic uncertainty, or uncertainty due to a lack of knowledge, is considered for the following modeling parameters: atomic line oscillator strengths, atomic line Stark broadening widths, atomic photoionization cross sections, negative ion photodetachment cross sections, molecular bands oscillator strengths, and electron impact excitation rates. First, a simplified shock layer problem consisting of two constant-property equilibrium layers is considered. The results of this simplified problem show that the atomic nitrogen oscillator strengths and Stark broadening widths in both the vacuum ultraviolet and infrared spectral regions, along with the negative ion continuum, are the dominant uncertainty contributors. Next, three variable property stagnation-line shock layer cases are analyzed: a typical lunar return case and two Fire II cases. For the near-equilibrium lunar return and Fire 1643-second cases, the resulting uncertainties are very similar to the simplified case. Conversely, the relatively nonequilibrium 1636-second case shows significantly larger influence from electron impact excitation rates of both atoms and molecules. For all cases, the total uncertainty in radiative heat flux to the wall due to epistemic uncertainty in modeling parameters is 30% as opposed to the erroneously-small uncertainty levels (plus or minus 6%) found when treating model parameter uncertainties as aleatory (due to chance) instead of epistemic (due to lack of knowledge).

  1. Semi-inclusive charged-pion electroproduction off protons and deuterons: Cross sections, ratios, and access to the quark-parton model at low energies

    DOE PAGES

    Asaturyan, R.; Ent, R.; Mkrtchyan, H.; ...

    2012-01-01

    A large set of cross sections for semi-inclusive electroproduction of charged pions (π ±) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W 2 > 4 GeV 2 and range in four-momentum transfer squared 2 < Q 2 < 4 (GeV/c) 2, and cover a range in the Bjorken scaling variable 0.2 < x < 0.6. The fractional energy of the pions spans a range 0.3 < z < 1, with small transverse momenta with respect to the virtual-photon direction, P t 2 < 0.2 (GeV/c) 2. Themore » invariant mass that goes undetected, M x or W', is in the nucleon resonance region, W' < 2 GeV. The new data conclusively show the onset of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark → pion production mechanisms. The x, z and P t 2 dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for π + and π -) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.« less

  2. Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes.

    PubMed

    Franklyn, Melanie; Oakes, Barry; Field, Bruce; Wells, Peter; Morgan, David

    2008-06-01

    Various tibial dimensions and geometric parameters have been linked to stress fractures in athletes and military recruits, but many mechanical parameters have still not been investigated. Sedentary people, athletes with medial tibial stress syndrome, and athletes with stress fractures have smaller tibial geometric dimensions and parameters than do uninjured athletes. Cohort study; Level of evidence, 3. Using a total of 88 subjects, male and female patients with either a tibial stress fracture or medial tibial stress syndrome were compared with both uninjured aerobically active controls and uninjured sedentary controls. Tibial scout radiographs and cross-sectional computed tomography images of all subjects were scanned at the junction of the midthird and distal third of the tibia. Tibial dimensions were measured directly from the films; other parameters were calculated numerically. Uninjured exercising men have a greater tibial cortical cross-sectional area than do their sedentary and injured counterparts, resulting in a greater value of some other cross-sectional geometric parameters, particularly the section modulus. However, for women, the cross-sectional areas are either not different or only marginally different, and there are few tibial dimensions or geometric parameters that distinguish the uninjured exercisers from the sedentary and injured subjects. In women, the main difference between the groups was the distribution of cortical bone about the centroid as a result of the different values of section modulus. Last, medial tibial stress syndrome subjects had smaller tibial cross-sectional dimensions than did their uninjured exercising counterparts, suggesting that medial tibial stress syndrome is not just a soft-tissue injury but also a bony injury. The results show that in men, the cross-sectional area and the section modulus are the key parameters in the tibia to distinguish exercise and injury status, whereas for women, it is the section modulus only.

  3. Long-term growth trends of red spruce and fraser fir at Mt. Rogers, Virginia and Mt. Mitchell, North Carolina

    Treesearch

    J.C.G. Goelz; Thomas E. Burk; Shepard M. Zedaker

    1999-01-01

    Cross-sectional area growth and height growth of Fraser fir and red spruce trees growing in Virginia and North Carolina were analyzed to identify possible long-term growth trends. Cross-sectional area growth provided no evidence of growth decline. The individual discs were classified according to parameter estimates of the growth trend equation. The predominant pattern...

  4. Dentofacial transverse development in Koreans according to skeletal maturation: A cross-sectional study

    PubMed Central

    Hwang, Soonshin; Noh, Yoonjeong; Choi, Yoon Jeong; Chung, Chooryung; Lee, Hye Sun

    2018-01-01

    Objective The aim of this study was to establish the normative data of dentofacial transverse dimensions according to the skeletal maturation stage in Korean adolescents with good occlusion, assess gender differences and determine correlations between transverse variables. Methods A total of 577 Korean subjects between ages 7 to 19 years and exhibiting skeletal Class I occlusion were categorized by skeletal maturation index (SMI) of Fishman using hand-wrist radiographs. Dentofacial transverse dimensions were assessed using posteroanterior cephalograms. Independent two-sample t-tests were used to analyze differences between genders. Pearson correlation coefficient was used to determine the correlation between transverse measurements. Results Dentofacial transverse norms relevant to skeletal maturation stages were established. The average maxillomandibular width difference and ratio at growth completion was 22.16 mm and 77.01% for males; 23.70 mm and 74.06% for females, respectively. Males had greater facial, maxillary and mandibular widths compared to females at every SMI stage. The maxillary and mandibular intermolar widths showed the strongest correlation for both sexes (r = 0.826 for males, r = 0.725 for females). Conclusions Dentofacial transverse norms of Korean adolescents were established according to developmental stage. All dentofacial widths were greater in males at growth completion. Maxillary and mandibular intermolar widths were strongly correlated. This study may serve as a guideline for the assessment of dentofacial transverse growth according to skeletal maturation stage in Korean adolescents with good occlusion. PMID:29291187

  5. Vehicle underbody fairing

    DOEpatents

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  6. High-resolution image of Calaveras fault seismicity

    USGS Publications Warehouse

    Schaff, D.P.; Bokelmann, G.H.R.; Beroza, G.C.; Waldhauser, F.; Ellsworth, W.L.

    2002-01-01

    By measuring relative earthquake arrival times using waveform cross correlation and locating earthquakes using the double difference technique, we are able to reduce hypocentral errors by 1 to 2 orders of magnitude over routine locations for nearly 8000 events along a 35-km section of the Calaveras Fault. This represents ~92% of all seismicity since 1984 and includes the rupture zone of the M 6.2 1984 Morgan Hill, California, earthquake. The relocated seismicity forms highly organized structures that were previously obscured by location errors. There are abundant repeating earthquake sequences as well as linear clusters of earthquakes. Large voids in seismicity appear with dimensions of kilometers that have been aseismic over the 30-year time interval, suggesting that these portions of the fault are either locked or creeping. The area of greatest slip in the Morgan Hill main shock coincides with the most prominent of these voids, suggesting that this part of the fault may be locked between large earthquakes. We find that the Calaveras Fault at depth is extremely thin, with an average upper bound on fault zone width of 75 m. Given the location error, however, this width is not resolvably different from zero. The relocations reveal active secondary faults, which we use to solve for the stress field in the immediate vicinity of the Calaveras Fault. We find that the maximum compressive stress is at a high angle, only 13 from the fault normal, supporting previous interpretations that this fault is weak.

  7. Temporal Differences in Flow Depth and Velocity Distributions and Hydraulic Microhabitats Near Bridges of the Lower Platte River, Nebraska, 1934-2006

    USGS Publications Warehouse

    Ginting, Daniel; Zelt, Ronald B.

    2008-01-01

    As part of a collaborative study of the cumulative impacts on stream and riparian ecology of water and channel management practices in the lower Platte River, Nebraska, this report describes a study by the U.S. Geological Survey in cooperation with the Lower Platte South Natural Resources District that summarizes: (1) temporal differences in distribution of streamflow depth, velocity, and microhabitats among five discrete 11-water-year periods 1934-44, 1951-61, 1966-76, 1985-95, and 1996-2006, and (2) the effects of bridge proximity on distribution of streamflow depth, velocity, and microhabitat of the Platte River when cross sections were measured at a similar discharge. The scope of the study included the four presently (2008) active streamflow-gaging stations located near bridges over the lower Platte River at North Bend, near Leshara, near Ashland, and at Louisville, Nebraska, and the most downstream streamflow-gaging station within the central Platte River segment near Duncan, Nebraska. Generally, in cases where temporal differences in streamflow depth and velocity were evident, at least one of the water-year periods from 1934 through 1995 had deeper streamflow than the recent water-year period (1996-2006). Temporal differences in distributions of streamflow depth were not strongly associated with differences in either climatic conditions or the maximum peak flow that occurred prior to the latest discharge measurement during each period. The relative cross-sectional area of most hydraulic niches did not differ among the water-year periods. Part of this apparent uniformity likely was an artifact of the broad microhabitat classification used for this study. In cases where temporal differences in relative cross-sectional area of hydraulic niches were evidenced, the differences occurred during high- and low-flow conditions, not during median flow conditions. The temporal differences in relative cross-sectional area were found more frequently for hydraulic niches defined by moderate and fast velocities than for hydraulic niches defined by slow velocities. Generally, any significant increase or decrease in the relative cross-sectional areas of hydraulic niches during the water-year periods from 1934 through 1995 had disappeared during the most recent water-year period, 1996-2006. Deep-Swift niche was the predominant hydraulic niche for all near-bridge sites on the lower Platte River for high- and median-flow conditions. The Deep-Swift niche also was the predominant niche for the near-bridge sites near Ashland and at Louisville for low-flow conditions; for the near-bridge sites at North Bend and near Leshara, streamflow cross-sectional areas during low-flow conditions were shared among the Shallow-Moderate, Intermediate-Moderate, Intermediate-Swift, and Deep-Swift hydraulic niches. For the near-bridge site near Duncan, the site farthest downstream in the central Platte River system, the Deep-Swift hydraulic niche was predominant only during high-flow conditions; during median- and low-flow conditions the relative cross-sectional area was shared among the Shallow-Slow, Shallow-Moderate, Intermediate-Moderate, and Intermediate-Swift hydraulic niches. Significant temporal differences in the relative cross-sectional area of the Deep-Swift hydraulic niche were found for sites near the two farthest downstream bridges near Ashland and at Louisville, but only for low-flow conditions. The Deep-Swift microhabitat was of special interest because it is the preferred hydraulic habitat during the adult life of the endangered pallid sturgeon (Scaphirhynchus albus). Temporal differences in relative cross-sectional areas of the Glide low-flow geomorphic microhabitat that contained the Deep-Swift hydraulic niche also indicated that relative cross-sectional areas of the Glide during the 1951-61 and 1996-2006 water-year periods were lower than during the 1966-76 period. The temporal differences indicated that any significant temporal chang

  8. CMOS Imager Has Better Cross-Talk and Full-Well Performance

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas J.

    2011-01-01

    A complementary metal oxide/semiconductor (CMOS) image detector now undergoing development is designed to exhibit less cross-talk and greater full-well capacity than do prior CMOS image detectors of the same type. Imagers of the type in question are designed to operate from low-voltage power supplies and are fabricated by processes that yield device features having dimensions in the deep submicron range. Because of the use of low supply potentials, maximum internal electric fields and depletion widths are correspondingly limited. In turn, these limitations are responsible for increases in cross-talk and decreases in charge-handling capacities. Moreover, for small pixels, lateral depletion cannot be extended. These adverse effects are even more accentuated in a back-illuminated CMOS imager, in which photogenerated charge carriers must travel across the entire thickness of the device. The figure shows a partial cross section of the structure in the device layer of the present developmental CMOS imager. (In a practical imager, the device layer would sit atop either a heavily doped silicon substrate or a thin silicon oxide layer on a silicon substrate, not shown here.) The imager chip is divided into two areas: area C, which contains readout circuits and other electronic circuits; and area I, which contains the imaging (photodetector and photogenerated-charge-collecting) pixel structures. Areas C and I are electrically isolated from each other by means of a trench filled with silicon oxide. The electrical isolation between areas C and I makes it possible to apply different supply potentials to these areas, thereby enabling optimization of the supply potential and associated design features for each area. More specifically, metal oxide semiconductor field-effect transistors (MOSFETs) that are typically included in CMOS imagers now reside in area C and can remain unchanged from established designs and operated at supply potentials prescribed for those designs, while the dopings and the lower supply potentials in area I can be tailored to optimize imager performance. In area I, the device layer includes an n+ -doped silicon layer on which is grown an n-doped silicon layer. A p-doped silicon layer is grown on top of the n -doped layer. The total imaging device thickness is the sum of the thickness of the n+, n, and p layers. A pixel photodiode is formed between a surface n+ implant, a p implant underneath it, the aforementioned p layer, and the n and n+ layers. Adjacent to the diode is a gate for transferring photogenerated charges out of the photodiode and into a floating diffusion formed by an implanted p+ layer on an implanted n-doped region. Metal contact pads are added to the back-side for providing back-side bias.

  9. Sensory substitution information informs locomotor adjustments when walking through apertures.

    PubMed

    Kolarik, Andrew J; Timmis, Matthew A; Cirstea, Silvia; Pardhan, Shahina

    2014-03-01

    The study assessed the ability of the central nervous system (CNS) to use echoic information from sensory substitution devices (SSDs) to rotate the shoulders and safely pass through apertures of different width. Ten visually normal participants performed this task with full vision, or blindfolded using an SSD to obtain information regarding the width of an aperture created by two parallel panels. Two SSDs were tested. Participants passed through apertures of +0, +18, +35 and +70 % of measured body width. Kinematic indices recorded movement time, shoulder rotation, average walking velocity across the trial, peak walking velocities before crossing, after crossing and throughout a whole trial. Analyses showed participants used SSD information to regulate shoulder rotation, with greater rotation associated with narrower apertures. Rotations made using an SSD were greater compared to vision, movement times were longer, average walking velocity lower and peak velocities before crossing, after crossing and throughout the whole trial were smaller, suggesting greater caution. Collisions sometimes occurred using an SSD but not using vision, indicating that substituted information did not always result in accurate shoulder rotation judgements. No differences were found between the two SSDs. The data suggest that spatial information, provided by sensory substitution, allows the relative position of aperture panels to be internally represented, enabling the CNS to modify shoulder rotation according to aperture width. Increased buffer space indicated by greater rotations (up to approximately 35 % for apertures of +18 % of body width) suggests that spatial representations are not as accurate as offered by full vision.

  10. The impact of parent-child interaction on brain structures: cross-sectional and longitudinal analyses.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Hashizume, Hiroshi; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Yokota, Susumu; Kotozaki, Yuka; Nouchi, Rui; Kawashima, Ryuta

    2015-02-04

    There is a vast amount of evidence from psychological studies that the amount of parent-child interaction affects the development of children's verbal skills and knowledge. However, despite the vast amount of literature, brain structural development associated with the amount of parent-child interaction has never been investigated. In the present human study, we used voxel-based morphometry to measure regional gray matter density (rGMD) and examined cross-sectional correlations between the amount of time spent with parents and rGMD among 127 boys and 135 girls. We also assessed correlations between the amount of time spent with parents and longitudinal changes that occurred a few years later among 106 boys and 102 girls. After correcting for confounding factors, we found negative effects of spending time with parents on rGMD in areas in the bilateral superior temporal gyrus (STG) via cross-sectional analyses as well as in the contingent areas of the right STG. We also confirmed positive effects of spending time with parents on the Verbal Comprehension score in cross-sectional and longitudinal analyses. rGMD in partly overlapping or contingent areas of the right STG was negatively correlated with age and the Verbal Comprehension score in cross-sectional analyses. Subsequent analyses revealed verbal parent-child interactions have similar effects on Verbal Comprehension scores and rGMD in the right STG in both cross-sectional and longitudinal analyses. These findings indicate that parent-child interactions affect the right STG, which may be associated with verbal skills. Copyright © 2015 the authors 0270-6474/15/352233-13$15.00/0.

  11. Respiratory-Induced Haemodynamic Changes: A Contributing Factor to IVC Filter Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laborda, Alicia, E-mail: alaborda@unizar.es; Kuo, William T., E-mail: wkuo@stanford.edu; Ioakeim, Ignatios, E-mail: ignacio.ioakim@hotmail.es

    2015-10-15

    PurposeThe purpose of the study is to evaluate the influence of respiratory-induced vena caval hemodynamic changes on filter migration/penetration.Materials and MethodsAfter placement of either a Gunther Tulip or Celect IVC filter, 101 consecutive patients scheduled for filter retrieval were prospectively enrolled in this study. Pre-retrieval CT scans were used to assess filter complications and to calculate cross-sectional area in three locations: at level of filter strut fixation, 3 cm above and 3 cm below. A 3D finite element simulation was constructed on these data and direct IVC pressure was recorded during filter retrieval. Cross-sectional areas and pressures of the vena cava weremore » measured during neutral breathing and in Valsalva maneuver and identified filter complications were recorded. A statistical analysis of these variables was then performed.ResultsDuring Valsalva maneuvers, a 60 % decrease of the IVC cross-sectional area and a fivefold increase in the IVC pressure were identified (p < 0.001). There was a statistically significant difference in the reduction of the cross-sectional area at the filter strut level (p < 0.001) in patient with filter penetration. Difficulty in filter retrieval was higher in penetrated or tilted filters (p < 0.001; p = 0.005). 3D computational models showed significant IVC deformation around the filter during Valsalva maneuver.ConclusionCaval morphology and hemodynamics are clearly affected by Valsalva maneuvers. A physiological reduction of IVC cross-sectional area is associated with higher risk of filter penetration, despite short dwell times. Physiologic data should be used to improve future filter designs to remain safely implanted over longer dwell times.« less

  12. High resolution ultrasonography of the tibial nerve in diabetic peripheral neuropathy.

    PubMed

    Singh, Kunwarpal; Gupta, Kamlesh; Kaur, Sukhdeep

    2017-12-01

    High-resolution ultrasonography of the tibial nerve is a fast and non invasive tool for diagnosis of diabetic peripheral neuropathy. Our study was aimed at finding out the correlation of the cross sectional area and maximum thickness of nerve fascicles of the tibial nerve with the presence and severity of diabetic peripheral neuropathy. 75 patients with type 2 diabetes mellitus clinically diagnosed with diabetic peripheral neuropathy were analysed, and the severity of neuropathy was determined using the Toronto Clinical Neuropathy Score. 58 diabetic patients with no clinical suspicion of diabetic peripheral neuropathy and 75 healthy non-diabetic subjects were taken as controls. The cross sectional area and maximum thickness of nerve fascicles of the tibial nerves were calculated 3 cm cranial to the medial malleolus in both lower limbs. The mean cross sectional area (22.63 +/- 2.66 mm 2 ) and maximum thickness of nerve fascicles (0.70 mm) of the tibial nerves in patients with diabetic peripheral neuropathy compared with both control groups was significantly larger, and statistically significant correlation was found with the Toronto Clinical Neuropathy Score ( p < 0.001). The diabetic patients with no signs of peripheral neuropathy had a larger mean cross sectional area (14.40 +/- 1.72 mm 2 ) and maximum thickness of nerve fascicles of the tibial nerve (0.40 mm) than healthy non-diabetic subjects (12.42 +/- 1.01 mm 2 and 0.30 mm respectively). The cross sectional area and maximum thickness of nerve fascicles of the tibial nerve is larger in diabetic patients with or without peripheral neuropathy than in healthy control subjects, and ultrasonography can be used as a good screening tool in these patients.

  13. Structure determination of a multilayer with an island-like overlayer using hard x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isomura, N., E-mail: isomura@mosk.tytlabs.co.jp; Kataoka, K.; Horibuchi, K.

    We use hard X-ray photoelectron spectroscopy (HAXPES) to obtain the surface structure of a multilayer Au/SiO{sub 2}/Si substrate sample with an island-like overlayer. Photoelectron intensities are measured as a function of incident photon energy (PE) and take-off angle (TOA, measured from the sample surface). The Au layer coverage and Au and SiO{sub 2} layer thicknesses are obtained by the PE dependence, and are used for the following TOA analysis. The Au island lateral width in the cross section is obtained by the TOA dependence, including information about surface roughness, in consideration of the island shadowing at small TOAs. In bothmore » cases, curve-fitting analysis is conducted. The surface structure, which consists of layer thicknesses, overlayer coverage and island width, is determined nondestructively by a combination of PE and TOA dependent HAXPES measurements.« less

  14. LEP precision electroweak measurements from the Z{sup 0} resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, D.

    1997-01-01

    Preliminary electroweak measurements from the LEP Collaboration from data taken at the Z{sup 0} resonance are presented. Most of the results presented are based on a total data sample of 12 x 10{sup 6} recorded Z{sup 0} events which included data from the 1993 and 1994 LEP runs. The Z{sup 0} resonance parameters, including hadronic and leptonic cross sections and asymmetries, {tau} polarization and its asymmetry, and heavy-quark asymmetries and partial widths, are evaluated and confronted with the predictions of the Standard Model. This comparison incorporates the constraints provided by the recent determination of the top-quark mass at the Tevatron.more » The Z{sup 0} resonance parameters are found to be in good agreement with the Standard Model prediction using the Tevatron top-quark mass, with the exception of the partial widths for Z{sup 0} decays to pairs of b and c quarks.« less

  15. Skin Diseases: Cross-section of human skin

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  16. Photoionization of Ne Atoms and Ne + Ions Near the K Edge: PrecisionSpectroscopy and Absolute Cross-sections

    DOE PAGES

    Müller, Alfred; Bernhardt, Dietrich; Borovik, Alexander; ...

    2017-02-17

    Single, double, and triple photoionization of Ne + ions by single photons have been investigated at the synchrotron radiation source PETRA III in Hamburg, Germany. Absolute cross-sections were measured by employing the photon-ion merged-beams technique. Photon energies were between about 840 and 930 eV, covering the range from the lowest-energy resonances associated with the excitation of one single K-shell electron up to double excitations involving one K- and one L-shell electron, well beyond the K-shell ionization threshold. Also, photoionization of neutral Ne was investigated just below the K edge. The chosen photon energy bandwidths were between 32 and 500 meV,more » facilitating the determination of natural line widths. The uncertainty of the energy scale is estimated to be 0.2 eV. For comparison with existing theoretical calculations, astrophysically relevant photoabsorption cross-sections were inferred by summing the measured partial ionization channels. Discussion of the observed resonances in the different final ionization channels reveals the presence of complex Auger-decay mechanisms. The ejection of three electrons from the lowest K-shell-excited Ne + (1s2s 2p 6 2S 1/2) level, for example, requires cooperative interaction of at least four electrons.« less

  17. Surface Properties of the Moon, Venus and Small Bodies from Radar Observations

    NASA Technical Reports Server (NTRS)

    Campbell, Donald B.

    1997-01-01

    Studies of the moon during the period of the grant revolved around the issues of the possible presence of ice at the lunar poles and the determination of the electrical properties of the maria regoliths. The search for ice at the poles was conducted using measurements of the radar backscatter cross sections and circular polarization ratios measured from 125 m resolution Arecibo radar imagery at 13 cm wavelength obtained by Nicholas Stacy. No clear indication of the presence of ice was found in areas thought to be in permanent shadow from solar radiation. Then Cornell graduate student Greg Black modeled the radar backscattering behavior of the icy Galilean satellites using three wavelength measurements of their radar backscattering properties obtained with the Arecibo and Goldstone radars. The radar scattering properties of Europa, Ganymede, and Callisto are unlike those of any other object observed with planetary radars. They are strongly backscattering with specific radar cross sections that can exceed unity. Polarization ratios are also high, approx. 1.5, indicative of multiple scattering, and the echos follow a diffuse scattering law at all incident angles with no indication of quasi-specular reflections. 3) Most of our effort on small bodies went into developing and investigating methods for long baseline radar synthesis imaging of near-earth asteroids and comets. At X-band, the width of the synthesized beam of the Very Long Baseline Array (VLBA) is approximately 15 m at 0.03AU, a typical close approach distance for near-earth asteroids. A small amount of work was done analyzing Venus data from Arecibo and the Magellan mission.

  18. Pixel-Level Deep Segmentation: Artificial Intelligence Quantifies Muscle on Computed Tomography for Body Morphometric Analysis.

    PubMed

    Lee, Hyunkwang; Troschel, Fabian M; Tajmir, Shahein; Fuchs, Georg; Mario, Julia; Fintelmann, Florian J; Do, Synho

    2017-08-01

    Pretreatment risk stratification is key for personalized medicine. While many physicians rely on an "eyeball test" to assess whether patients will tolerate major surgery or chemotherapy, "eyeballing" is inherently subjective and difficult to quantify. The concept of morphometric age derived from cross-sectional imaging has been found to correlate well with outcomes such as length of stay, morbidity, and mortality. However, the determination of the morphometric age is time intensive and requires highly trained experts. In this study, we propose a fully automated deep learning system for the segmentation of skeletal muscle cross-sectional area (CSA) on an axial computed tomography image taken at the third lumbar vertebra. We utilized a fully automated deep segmentation model derived from an extended implementation of a fully convolutional network with weight initialization of an ImageNet pre-trained model, followed by post processing to eliminate intramuscular fat for a more accurate analysis. This experiment was conducted by varying window level (WL), window width (WW), and bit resolutions in order to better understand the effects of the parameters on the model performance. Our best model, fine-tuned on 250 training images and ground truth labels, achieves 0.93 ± 0.02 Dice similarity coefficient (DSC) and 3.68 ± 2.29% difference between predicted and ground truth muscle CSA on 150 held-out test cases. Ultimately, the fully automated segmentation system can be embedded into the clinical environment to accelerate the quantification of muscle and expanded to volume analysis of 3D datasets.

  19. A comparative study of accuracy of linear measurements using cone beam and multi-slice computed tomographies for evaluation of mandibular canal location in dry mandibles.

    PubMed

    Naser, Asieh Zamani; Mehr, Bahar Behdad

    2013-01-01

    Cross- sectional tomograms have been used for optimal pre-operative planning of dental implant placement. The aim of the present study was to assess the accuracy of Cone Beam Computed Tomography (CBCT) measurements of specific distances around the mandibular canal by comparing them to those obtained from Multi-Slice Computed Tomography (MSCT) images. Ten hemi-mandible specimens were examined using CBCT and MSCT. Before imaging, wires were placed at 7 locations between the anterior margin of the third molar and the anterior margin of the second premolar as reference points. Following distances were measured by two observers on each cross-sectional CBCT and MSCT image: Mandibular Width (W), Length (L), Upper Distance (UD), Lower Distance (LD), Buccal Distance (BD), and Lingual Distance (LID). The obtained data were evaluated using SPSS software, applying paired t-test and intra-class correlation coefficient (ICC). There was a significant difference between the values obtained by MSCT and CBCT measurement for all areas such as H, W, UD, LD, BD, and LID, (P < 0.001), with a difference less than 1 mm. The ICC for all distances by both techniques, measured by a single observer with a one week interval and between 2 observers was 99% and 98%, respectively. Comparing the obtained data of both techniques indicates that the difference between two techniques is 2.17% relative to MSCT. The results of this study showed that there is significant difference between measurements obtained by CBCT and MSCT. However, the difference is not clinically significant.

  20. Risk assessment on an Argentinean road with a dynamic traffic simulator

    NASA Astrophysics Data System (ADS)

    Voumard, Jérémie; Baumann, Valérie; Jaboyedoff, Michel; Derron, Marc-Henri; Penna, Ivanna

    2014-05-01

    The National Route 7 in Argentina is one of the most important corridors crossing the Andean Cordillera. It concentrates most of the traffic related to the Southern Common Market (MERCOSUR), it also connects Mendoza city (the fourth most populated in Argentina) with Santiago de Chile (the Chile capital city), and is used by tourists to access to the Aconcagua National park, Puente del Inca natural monument, skiing resorts, and to local displacements for the villages along the Mendoza valley. The road crosses the Andes through the Mendoza river valley at an elevation between 2'000 and 3'000 m. The traffic (2500 vehicles/day) is composed of motorcycles, cars and pickup trucks, trucks without trailer, buses, and semi-trailer trucks. Debris flows developed along tributaries of the Mendoza River, and due to remobilization of talus materials, impact frequently the road, causing traffic disruptions, bridges damages, etc. Rock falls detached from highly fractured outcrops also impact frequently the road, causing sometimes casualties. The aim of this study is to evaluate risk along sections of the National Road 7 develop along the Mendoza river, using a dynamic traffic simulator based on MATLAB© routine. The dynamic traffic simulator developed for natural hazards events on roads consider different scenarios based on traffic speeds, vehicle types, interactions types, road properties and natural processes. Here we show that vehicle types and traffic variations may influence the risk estimation. The analyzed risk on several critical sections of the National Route 7 demonstrates that risk may significantly increase: 1) on sinuous sections, steep sections and because of road conditions changes (exit of tunnel, bridges, road width, etc.) because of decreasing vehicle speed, particularly with semi-trailer trucks; 2) when an event, such a debris flow, occurs and generates a vehicle tailback increasing their duration presence in the risk area.

Top