CROSSFLOW FILTRATON: LITERATURE REVIEW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, M.
2011-01-01
As part of the Filtration task EM-31, WP-2.3.6, which is a joint effort between Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL), tests were planned to evaluate crossflow filtration in order to the improve the use of existing hardware in the waste treatment plants at both the Department of Energy (DOE) Savannah River Site (SRS) and Hanford Site. These tests included experiments to try different operating conditions and additives, such as filter aids, in order to create a more permeable filter cake and improve the permeate flux. To plan the SRNL tests a literature review wasmore » performed to provide information on previous experiments performed by DOE laboratories, and by academia. This report compliments PNNL report (Daniel, et al 2010), and is an attempt to try and capture crossflow filtration work performed in the past that provide a basis for future testing. However, not all sources on crossflow filtration could be reviewed due to the shear volume of information available. In this report various references were examined and a representative group was chosen to present the major factors that affect crossflow filtration. The information summarized in this review contains previous operating conditions studied and their influence on the rate of filtration. Besides operating conditions, other attempted improvements include the use of filter aids, a pre-filtration leaching process, the backpulse system, and various types of filter tubes and filter coatings. The results from past research can be used as a starting point for further experimentation that can result in the improvement in the performance of the crossflow filtration. The literature reviewed in this report indicates how complex the crossflow issues are with the results of some studies appearing to conflict results from other studies. This complexity implies that filtration of mobilized stored waste cannot be explained in a simple generic sense; meaning an empirical model develop from one waste-filter combination will more than likely not be applicable to another combination. It appears that filtration performance varies as wide as the range of the types of slurry wastes that exist. However, conclusions can be elicited from existing information so that filter performance can be better understood, and hopefully improved. Those conclusions and recommendations for the planned tests are listed.« less
PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, M.; Nash, C.; Poirier, M.
2011-01-12
In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has themore » advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.; Burket, P.
The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. SRR requested SRNL to conduct bench-scale filter tests to evaluate whether sodium oxalate, sodiummore » aluminosilicate, or aluminum solids (i.e., gibbsite and boehmite) could be the cause of excessive fouling of the crossflow or secondary filter at ARP. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate, 2.5 g MST/L slurry, and varying concentrations of sodium oxalate, sodium aluminosilicate, and aluminum solids, processing the slurry through a bench-scale filter unit that contains a crossflow primary filter and a dead-end secondary filter, and measuring filter flux and transmembrane pressure as a function of time. Among the conclusions drwn from this work are the following: (1) All of the tests showed some evidence of fouling the secondary filter. This fouling could be from fine particles passing through the crossflow filter. (2) The sodium oxalate-containing feeds behaved differently from the sodium aluminosilicate- and gibbsite/boehmite-containing feeds.« less
Method of producing monolithic ceramic cross-flow filter
Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III
1998-02-10
Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.
Method of producing monolithic ceramic cross-flow filter
Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.
1998-01-01
Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.
Impact of axial velocity and transmembrane pressure (TMP) on ARP filter performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.; Burket, P.
2016-02-29
The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. One potential method for increasing filter flux is to adjust the axial velocity andmore » transmembrane pressure (TMP). SRR requested SRNL to conduct bench-scale filter tests to evaluate the effects of axial velocity and transmembrane pressure on crossflow filter flux. The objective of the testing was to determine whether increasing the axial velocity at the ARP could produce a significant increase in filter flux. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate and 2.5 g MST/L, processing the slurry through a bench-scale crossflow filter unit at varying axial velocity and TMP, and measuring filter flux as a function of time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M. R.; Burket, P. R.; Duignan, M. R.
2015-03-12
The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRRmore » was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO 2, and NaNO 3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.« less
Liquid Fuel Emulsion Jet-in-Crossflow Penetration and Dispersion Under High Pressure Conditions
NASA Astrophysics Data System (ADS)
Gomez, Guillermo Andres
The current work focuses on the jet-in-crossflow penetration and dispersion behavior of water-in-oil emulsions in a high pressure environment. Both fuel injection strategies of using a water-in-oil emulsion and a jet-in-crossflow have demonstrated unique benefits in improving gas turbine performance from an emissions and efficiency standpoint. A jet-in-crossflow is very practical for use in gas turbine engines, rocket propulsion, and aircraft engines since it utilizes already available crossflow air to atomize fuel. Injecting water into a combustion chamber in the form of a water-in-oil emulsion allows for pollutant emissions reduction while reducing efficiency loses that may result from using a separate water or steam injection circuit. Dispersion effects on oil droplets are expected, therefore investigating the distribution of both oil and water droplets in the crossflow is an objective in this work. Understanding the synchronization and injection behavior of the two strategies is of key interest due to their combined benefits. A water-to-oil ratio and an ambient pressure parameter are developed for emulsion jet-in-crossflow trajectories. To this end, a total of 24 emulsion jet-in-crossflow tests were performed with varying ambient pressures of 2-8 atm and momentum flux ratios of 50, 85, and 120. Sobel edge filtering was applied to each averaged image obtained from a high speed video of each test case. Averaged and filtered images were used to resolve top and bottom edges of the trajectory in addition to the overall peak intensity up to 40 mm downstream of the injection point. An optimized correlation was established and found to differ from literature based correlations obtained under atmospheric pressure conditions. Overall it was found that additional parameters were not necessary for the top edge and peak intensity correlations, but a need for a unique emulsion bottom edge and width trajectory correlation was recognized. In addition to investigating emulsion jet-in-crossflow trajectory correlations, a unique Dual Planar Laser Induced Fluorescence (Dual-PLIF) method was applied for the first time on emulsions at elevated pressure conditions. From the Dual-PLIF results, qualitative observations provided insight into the unique dispersion of oil and water concentrations within a cross-sectional plane down stream of the jet-in-crossflow injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.R.
2001-04-04
The Filtration Research Engineering Demonstration (FRED) at the University of South Carolina ran a test campaign to confirm the utility of crossflow filtration for use with the MST sorption as a strontium-actinide removal technology that is expected to be coupled with the ion exchange and solvent extraction process alternatives. FRED has a Mott Metallurgical 7 tube filter with individual tubes 10 ft long and 3/4 inch o.d. having a nominal pore size of 0.5 microns. The blend sludge consisted of a 50/50 wt percent mixture of sludge simulants of SRS Tank 40H and Tank 8F simulated sludges previously manufactured atmore » FRED. Monosodium Titanate (MST) was blended with the 50/50 sludge mixture in a proportion of 0.9167 MST-to-Sludge ratio to provide the solids loadings analyzed in this test.« less
NASA Astrophysics Data System (ADS)
Yeh, Chia-Hsien; Hung, Chia-Wei; Wu, Chun-Han; Lin, Yu-Cheng
2014-09-01
This paper presents a cross-flow filtration chip for separating blood cells (white blood cells, red blood cells, and platelets) and obtaining blood plasma from human blood. Our strategy is to flow the sample solution in parallel to the membrane, which can generate a parallel shear stress to remove the clogging microparticles on the membrane, so the pure sample solution is obtained in the reservoir. The cross-flow filtration chip includes a cross-flow layer, a Ni-Pd alloy micro-porous membrane, and a reservoir layer. The three layers are packaged in a polymethylmethacrylate (PMMA) frame to create the cross-flow filtration chip. Various dilutions of the blood sample (original, 2 × , 3 × , 5 × , and 10×), pore sizes with different diameters (1 µm, 2 µm, 4 µm, 7 µm, and 10 µm), and different flow rates (1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, and 10 mL/min) are tested to determine their effects on filtration percentage. The best filtration percentage is 96.2% when the dilution of the blood sample is 10 × , the diameter of pore size of a Ni-Pd alloy micro-porous membrane is 2 µm, and the flow rate is 10 mL/min. Finally, for the clinical tests of the immunoglobulin E (IgE) concentration, the cross-flow filtration chip is used to filter the blood of the allergy patients to obtain the blood plasma. This filtered blood plasma is compared with that obtained using the conventional centrifugation based on the enzyme-linked immunosorbent assay. The results reveal that these two blood separation methods have similar detection trends. The proposed filtration chip has the advantages of low cost, short filtration time, and easy operation and thus can be applied to the separation of microparticles, cells, bacteria, and blood.
Baleen Hydrodynamics and Morphology of Cross-Flow Filtration in Balaenid Whale Suspension Feeding
Werth, Alexander J.; Potvin, Jean
2016-01-01
The traditional view of mysticete feeding involves static baleen directly sieving particles from seawater using a simple, dead-end flow-through filtration mechanism. Flow tank experiments on bowhead (Balaena mysticetus) baleen indicate the long-standing model of dead-end filtration, at least in balaenid (bowhead and right) whales, is not merely simplistic but wrong. To recreate continuous intraoral flow, sections of baleen were tested in a flume through which water and buoyant particles circulated with variable flow velocity. Kinematic sequences were analyzed to investigate movement and capture of particles by baleen plates and fringes. Results indicate that very few particles flow directly through the baleen rack; instead much water flows anteroposteriorly along the interior (lingual) side of the rack, allowing items to be carried posteriorly and accumulate at the posterior of the mouth where they might readily be swallowed. Since water flows mainly parallel to rather than directly through the filter, the cross-flow mechanism significantly reduces entrapment and tangling of minute items in baleen fringes, obviating the need to clean the filter. The absence of copepods or other prey found trapped in the baleen of necropsied right and bowhead whales supports this hypothesis. Reduced through-baleen flow was observed with and without boundaries modeling the tongue and lips, indicating that baleen itself is the main if not sole agent of crossflow. Preliminary investigation of baleen from balaenopterid whales that use intermittent filter feeding suggests that although the biomechanics and hydrodynamics of oral flow differ, cross-flow filtration may occur to some degree in all mysticetes. PMID:26918630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schonewill, Philip P.; Russell, Renee L.; Daniel, Richard C.
The Low Activity Waste Pretreatment System (LAWPS) is being designed to enable the direct feed of waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) facility to be immobilized. Prior to construction of the LAWPS, pilot-scale integrated testing of the key unit operations (crossflow filtration, ion exchange using spherical resorcinol-formaldehyde (sRF) resin) will be conducted by a team led by Washington River Protection Solutions (WRPS) to increase the technology maturation level of the facility’s critical technology elements. As a part of this effort, Pacific Northwest National Laboratory (PNNL) has conducted a series of bench-scalemore » (or engineering-scale) tests to perform two major objectives: (1) support pilot-scale integrated testing of the LAWPS by supplying information or performance data in advance of operating the pilot-scale facility; and (2) collect data needed to establish or confirm assumptions/approaches planned for implementation in the LAWPS safety basis. The first objective was focused in two technical areas: developing simulants that are representative of expected waste feed and can be produced at larger scales, and using these simulants in a bench-scale crossflow filter to establish expected solid-liquid separation performance. The crossflow filter was also used to observe the efficacy (with respect to filter production rate) of selected operational strategies. The second objective also included two technical areas: measuring the effect of sRF resin on hydrogen generation rate under irradiation, and demonstrating that the planned hydrogen management approach is effective and robust. The hydrogen management strategy involves fluidization of the sRF resin bed in the ion exchange columns and recirculating the liquid, a scenario that is planned for testing at full column height. The full height tests at PNNL also supported full-scale IX column testing conducted as part of the technology maturation plan. The experimental approaches used at PNNL in these four technical areas are summarized and selected key preliminary results are provided.« less
Laboratory-scale integrated ARP filter test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.; Burket, P.
2016-03-01
The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. There is a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. This task attempted to simulate the entire ARP process, including multiple batches (5), washing, chemical cleaning, andmore » blending the feed with heels and recycle streams. The objective of the tests was to determine whether one of these processes is causing excessive fouling of the crossflow or secondary filter. The authors conducted the tests with feed solutions containing 6.6 M sodium Salt Batch 6 simulant supernate with no MST.« less
Deashing of coal liquids with ceramic membrane microfiltration and diafiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, B.; Goldsmith, R.
1995-12-31
Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent deashing (Rose{sup {reg_sign}} process from Kerr-McGee) and filtration (U.S. Filter leaf filter as used by British Coal). These methods produce ash reject streams containing up to 15% of the liquid hydrocarbon product. Consequently, CeraMem proposed the use of low cost, ceramic crossflow membranes for the filtration of coal liquids bottoms to remove mineral matter and subsequent diafiltration (analogous to cake washing in dead-ended filtration) for the removal of coal liquid from the solids stream. The usemore » of these ceramic crossflow membranes overcomes the limitations of traditional polymeric crossflow membranes by having the ability to operate at elevated temperature and to withstand prolonged exposure to hydrocarbon and solvent media. In addition, CeraMem`s membrane filters are significantly less expensive than competitive ceramic membranes due to their unique construction. With these ceramic membrane filters, it may be possible to reduce the product losses associated with traditional deashing processes at an economically attractive cost. The performance of these ceramic membrane microfilters is discussed.« less
Fish mouths as engineering structures for vortical cross-step filtration
NASA Astrophysics Data System (ADS)
Sanderson, S. Laurie; Roberts, Erin; Lineburg, Jillian; Brooks, Hannah
2016-03-01
Suspension-feeding fishes such as goldfish and whale sharks retain prey without clogging their oral filters, whereas clogging is a major expense in industrial crossflow filtration of beer, dairy foods and biotechnology products. Fishes' abilities to retain particles that are smaller than the pore size of the gill-raker filter, including extraction of particles despite large holes in the filter, also remain unexplained. Here we show that unexplored combinations of engineering structures (backward-facing steps forming d-type ribs on the porous surface of a cone) cause fluid dynamic phenomena distinct from current biological and industrial filter operations. This vortical cross-step filtration model prevents clogging and explains the transport of tiny concentrated particles to the oesophagus using a hydrodynamic tongue. Mass transfer caused by vortices along d-type ribs in crossflow is applicable to filter-feeding duck beak lamellae and whale baleen plates, as well as the fluid mechanics of ventilation at fish gill filaments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.R.
2002-06-07
Personnel performed engineering-scale tests at the Filtration Research Engineering Demonstration (FRED) to determine crossflow filter performance with a 5.6 M sodium solution containing varying concentrations of sludge and sodium permanganate. The work represents another in a series of collaborative efforts between the University of South Carolina and the Savannah River Technology Center in support of the process development efforts for the Savannah River Site. The current tests investigated filter performance with slurry containing simulated Tank 40H Sludge and sodium permanganate at concentrations between 0.070 weight percent and 3.04 weight percent insoluble solids.
Boudin, Mathieu; Boeckx, Pascal; Vandenabeele, Peter; Van Strydonck, Mark
2013-09-30
Radiocarbon dating and stable isotope analyses of bone collagen, wool, hair and silk contaminated with extraneous carbon (e.g. humic substances) does not yield reliable results if these materials are pre-treated using conventional methods. A cross-flow nanofiltration method was developed that can be applied to various protein materials like collagen, hair, silk, wool and leather, and should be able to remove low-molecular and high-molecular weight contaminants. To avoid extraneous carbon contamination via the filter a ceramic filter (molecular weight cut-off of 200 Da) was used. The amino acids, released by hot acid hydrolysis of the protein material, were collected in the permeate and contaminants in the retentate (>200 Da). (14)C-dating results for various contaminated archaeological samples were compared for bulk material (pre-treated with the conventional methods) and for cross-flow nanofiltrated amino acids (permeate) originating from the same samples. Contamination and quality control of (14)C dates of bulk and permeate samples were obtained by measuring C:N ratios, fluorescence spectra, and δ(13)C and δ(15)N values of the samples. Cross-flow nanofiltration decreases the C:N ratio which means that contaminants have been removed. Cross-flow nanofiltration clearly improved sample quality and (14)C results. It is a quick and non-labor-intensive technique and can easily be implemented in any (14)C and stable isotope laboratory for routine sample pre-treatment analyses. Copyright © 2013 John Wiley & Sons, Ltd.
Filter type rotor for multistation photometer
Shumate, II, Starling E.
1977-07-12
A filter type rotor for a multistation photometer is provided. The rotor design combines the principle of cross-flow filtration with centrifugal sedimentation so that these occur simultaneously as a first stage of processing for suspension type fluids in an analytical type instrument. The rotor is particularly useful in whole-blood analysis.
Fish Gill Inspired Crossflow for Efficient and Continuous Collection of Spilled Oil.
Dou, Yuhai; Tian, Dongliang; Sun, Ziqi; Liu, Qiannan; Zhang, Na; Kim, Jung Ho; Jiang, Lei; Dou, Shi Xue
2017-03-28
Developing an effective system to clean up large-scale oil spills is of great significance due to their contribution to severe environmental pollution and destruction. Superwetting membranes have been widely studied for oil/water separation. The separation, however, adopts a gravity-driven approach that is inefficient and discontinuous due to quick fouling of the membrane by oil. Herein, inspired by the crossflow filtration behavior in fish gills, we propose a crossflow approach via a hydrophilic, tilted gradient membrane for spilled oil collection. In crossflow collection, as the oil/water flows parallel to the hydrophilic membrane surface, water is gradually filtered through the pores, while oil is repelled, transported, and finally collected for storage. Owing to the selective gating behavior of the water-sealed gradient membrane, the large pores at the bottom with high water flux favor fast water filtration, while the small pores at the top with strong oil repellency allow easy oil transportation. In addition, the gradient membrane exhibits excellent antifouling properties due to the protection of the water layer. Therefore, this bioinspired crossflow approach enables highly efficient and continuous spilled oil collection, which is very promising for the cleanup of large-scale oil spills.
Experimental study of separator effect and shift angle on crossflow wind turbine performance
NASA Astrophysics Data System (ADS)
Fahrudin, Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi
2018-02-01
This paper present experimental test results of separator and shift angle influence on Crossflow vertical axis wind turbine. Modification by using a separator and shift angle is expected to improve the thrust on the blade so as to improve the efficiency. The design of the wind turbine is tested at different wind speeds. There are 2 variations of crossflow turbine design which will be analyzed using an experimental test scheme that is, 3 stage crossflow and 2 stage crossflow with the shift angle. Maximum power coefficient obtained as Cpmax = 0.13 at wind speed 4.05 m/s for 1 separator and Cpmax = 0.12 for 12° shear angle of wind speed 4.05 m/s. In this study, power characteristics of the crossflow rotor with separator and shift angle have been tested. The experimental data was collected by variation of 2 separator and shift angle 0°, 6°, 12° and wind speed 3.01 - 4.85 m/s.
Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing
Chiu, Yun-Yen; Huang, Chen-Kang
2016-01-01
A microfluidic chip is proposed to separate microparticles using cross-flow filtration enhanced with hydrodynamic focusing. By exploiting a buffer flow from the side, the microparticles in the sample flow are pushed on one side of the microchannels, lining up to pass through the filters. Meanwhile a larger pressure gradient in the filters is obtained to enhance separation efficiency. Compared with the traditional cross-flow filtration, our proposed mechanism has the buffer flow to create a moving virtual boundary for the sample flow to actively push all the particles to reach the filters for separation. It further allows higher flow rates. The device only requires soft lithograph fabrication to create microchannels and a novel pressurized bonding technique to make high-aspect-ratio filtration structures. A mixture of polystyrene microparticles with 2.7 μm and 10.6 μm diameters are successfully separated. 96.2 ± 2.8% of the large particle are recovered with a purity of 97.9 ± 0.5%, while 97.5 ± 0.4% of the small particle are depleted with a purity of 99.2 ± 0.4% at a sample throughput of 10 μl/min. The experiment is also conducted to show the feasibility of this mechanism to separate biological cells with the sample solutions of spiked PC3 cells in whole blood. By virtue of its high separation efficiency, our device offers a label-free separation technique and potential integration with other components, thereby serving as a promising tool for continuous cell filtration and analysis applications. PMID:26858812
DOE Office of Scientific and Technical Information (OSTI.GOV)
James K. Neathery; Gary Jacobs; Burtron H. Davis
In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbonmore » particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.« less
Data Analysis for the NASA/Boeing Hybrid Laminar Flow Control Crossflow Experiment
NASA Technical Reports Server (NTRS)
Eppink, Jenna L.; Wlezien, Richard
2011-01-01
The Hybrid-Laminar Flow Control (HLFC) Crossflow Experiment, completed in 1995. generated a large database of boundary layer stability and transition data that was only partially analyzed before data analysis was abruptly ended in the late 1990's. Renewed interest in laminar flow technologies prompted additional data analysis, to integrate all data, including some post-test roughness and porosity measurements. The objective is to gain new insights into the effects of suction on boundary layer stability. A number of challenges were encountered during the data analysis, and their solutions are discussed in detail. They include the effect of the probe vibration, the effect of the time-varying surface temperature on traveling crossflow instabilities, and the effect of the stationary crossflow modes on the approximation of wall location. Despite the low turbulence intensity of the wind tunnel (0.01 to 0.02%), traveling crosflow disturbances were present in the data, in some cases at amplitudes up to 1% of the freestream velocity. However, the data suggests that transition was dominated by stationary crossflow. Traveling crossflow results and stationary data in the presence of suction are compared with linear parabolized stability equations results as a way of testing the quality of the results.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.
1977-01-01
Drag and heating rates on wavy surfaces typical of current corrugated plate designs for thermal protection systems were determined experimentally. Pressure-distribution, heating-rate, and oil-flow tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.4 and 4.5 with the corrugated surface exposed to both thick and thin turbulent boundary layers. Tests were conducted with the corrugations at cross-flow angles from 0 deg to 90 deg to the flow. Results show that for cross-flow angles of 30 deg or less, the pressure drag coefficients are less than the local flat-plate skin-friction coefficients and are not significantly affected by Mach number, Reynolds number, or boundary-layer thickness over the ranges investigated. For cross-flow angles greater than 30 deg, the drag coefficients increase significantly with cross-flow angle and moderately with Reynolds number. Increasing the Mach number causes a significant reduction in the pressure drag. The average and peak heating penalties due to the corrugated surface are small for cross-flow angles of 10 deg or less but are significantly higher for the larger cross-flow angles.
Two opposed lateral jets injected into swirling crossflow
NASA Technical Reports Server (NTRS)
Lilley, D. G.; Mcmurry, C. B.; Ong, L. H.
1987-01-01
Experiments have been conducted to obtain the time-mean and turbulent quantities of opposed lateral jets in a low speed, nonreacting flowfield. A jet-to-crossflow velocity ratio of R = 4 was used throughout the experiments, with swirl vane angles of 0 (swirler removed), 45 and 70 degrees used with the crossflow. Flow visualization techniques used were neutrally-buoyant helium-filled soap bubbles and multispark photography in order to obtain the gross flowfield characteristics. Measurements of time-mean and turbulent quantities were obtained utilizing a six-orientation single hot-wire technique. For the nonswirling case, the jets were found not to penetrate past the test-section centerline, in contrast to the single lateral jet with the same jet-to-crossflow velocity ratio. In the swirling cases, the crossflow remains in a narrow region near the wall of the test section. The opposed jets are swept from their vertical courses into spiral trajectories close to the confining walls. Extensive results are presented in r-x plane plots.
Experiments on opposed lateral jets injected into swirling crossflow. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Mcmurry, C. B.; Lilley, D. G.
1986-01-01
Experiments have been conducted to obtain the time-mean and turbulent quantities of opposed lateral jets in a low speed, nonreacting flowfield. A jet-to-crossflow velocity ratio of R = v sub J/u sub 0 = 4 was used throughout the experiments, with swirl vane angles of d = 0 (swirler removed), 45 and 70 deg used with the crossflow. Flow visualization techniques used were neutrally-buoyant helium-filled soap bubbles and multispark photography in order to obtain the gross flowfield characteristics. Measurements of time-mean and turbulent quantities were obtained utilizing a six-orientation single hot-wire technique. For the nonswirling case, the jets were found not to penetrate past the test-section centerline, in contrast to the single lateral jet with the same jet-to-crossflow velocity ratio. In the swirling cases, the crossflow remains in a narrow region near the wall of the test section. The opposed jets are swept from their vertical courses into spiral trajectories close to the confining walls. Extensive results are presented in r-x plane plots.
Effect of crossflow velocity on VTOL lift fan blade passing frequency noise generation
NASA Technical Reports Server (NTRS)
Stimpert, D. L.
1973-01-01
Analysis of noise measurements taken during tests of a remote lift fan wing installation, a V/STOL model transport with both lift and lift/cruise fans, and XV5B research aircraft flight tests has indicated a definite increase in pure tone sound pressure level due to crossflow over the face of the life fans. The fan-in-wing and V/STOL model transport tests were conducted in the NASA Ames 40 ft. by 80 ft. wing tunnel and the XV5B flight tests at Moffett Field. Increases up to 10 db were observed for the lift fan installation tested at crossflow to fan tip velocity ratios up to 0.25. Cruise fan noise levels were found to be unaffected by the external flow. The noise level increase was shown to be related to an increase in fan distortion levels.
Sheppard, John D.; Thomas, David G.
1976-01-01
This invention involves an improved process for softening hard water which comprises selectively precipitaing CaCO.sub.3 to form a thin layer thereof, increasing the pH of said water to precipitate magnesium as magnesium hydroxide and then filtering the resultant slurry through said layer. The CaCO.sub.3 layer serves as a thin permeable layer which has particularly useful application in cross-flow filtration applications.
Sim, Lee Nuang; Ye, Yun; Chen, Vicki; Fane, Anthony G
2011-02-01
Understanding the foulant deposition mechanism during crossflow filtration is critical in developing indices to predict fouling propensity of feed water for reverse osmosis (RO). Factors affecting the performance on different fouling indices such as MFI-UF constant pressure, MFI-UF constant flux and newly proposed fouling index, CFS-MFI(UF) were investigated. Crossflow Sampler-Modified Fouling Index Ultrafiltration (CFS-MFI(UF)) utilises a typical crossflow unit to simulate the hydrodynamic conditions in the actual RO units followed by a dead-end unit to measure the fouling propensity of foulants. CFS-MFI(UF) was found sensitive to crossflow velocity. The crossflow velocity in the crossflow sampler unit influences the particle concentration and the particle size distribution in its permeate. CFS-MFI(UF) was also found sensitive to the permeate flux of both CFS and the dead-end cell. To closely simulate the hydrodynamic conditions of a crossflow RO unit, the flux used for CFS-MFI(UF) measurement was critical. The best option is to operate both the CFS and dead-end permeate flux at flux which is normally operated at industry RO units (∼20 L/m(2)h), but this would prolong the test duration excessively. In this study, the dead-end flux was accelerated by reducing the dead-end membrane area while maintaining the CFS permeate flux at 20 L/m(2)h. By doing so, a flux correction factor was investigated and applied to correlate the CFS-MFI(UF) measured at dead-end flux of 120 L/m(2)h to CFS-MFI(UF) measured at dead-end flux of 20 L/m(2)h for RO fouling rate prediction. Using this flux correction factor, the test duration of CFS-MFI(UF) can be shortened from 15 h to 2h. © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.
2008-01-01
This paper reports on progress towards developing a spatial stability code for compressible shear flows with two inhomogeneous directions, such as crossflow dominated swept-wing boundary layers and attachment line flows. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined. Finally, extension of the spatial stability analysis to supersonic attachment line flows is also considered.
NASA Astrophysics Data System (ADS)
Fugger, Christopher A.
Staged combustion is one design approach in a gas turbine engine to reduce pollutant emission levels. In axially staged combustion, portions of the air and fuel are injected downstream of a lean premixed low NOx primary combustion zone. The gas residence time at elevated temperatures is decreased resulting in lower thermal NOx, and the reduced oxygen and high temperature vitiated primary zone flow further help to reduce pollutant emissions and quickly complete combustion. One implementation of axially staged combustion is transverse fuel jet injection. An important consideration for staged combustion systems, though, is how the primary and secondary combustion zones can couple through the acoustic resonances of the chamber. These couplings can lead to additional source terms that pump energy into the resonant acoustic field and help sustain the high-amplitude combustor pressure oscillations. An understanding of these couplings is important so that it may be possible to design a secondary combustion system that provides inherent damping to the combustor system. To systematically characterize the coupling of a reacting jet in unsteady crossflow in detail, the effects of an an unsteady pressure flowfield and an unsteady velocity flowfield are separately investigated. An optically accessible resonant combustion chamber was designed and built as part of this work to generate a standing wave unsteady vitiated crossflow at a chamber pressure of 0.9 MPa. The location of transverse jet injection corresponds to one of two locations, where one location is the pressure node and the other location the pressure anti-node of the resonant chamber acoustic mode. The injection location is optically accessible, and the dynamic interactions between the transverse jet flow and the 1st and 2nd axial combustor modes are measured using 10 kHz OH-PLIF and 2D PIV. This document analyzes five test cases: two non-reacting jets and three reacting jets. All cases correspond to jet injection near a pressure node of the 1st axial combustor mode, where the dominant flowfield fluctuations are a time-varying crossflow velocity. For the non-reacting jets, the nominal jet-to-crossflow momentum flux ratio is 19. For the reacting jets, the nominal jet-to-crossflow momentum flux ratio is 6. Two cross sectional planes parallel to the jet injection wall are investigated: 1 and 2.7 jet diameters from the jet injection wall. The combustor crossflow high frequency wall mounted pressure data is given for each test case. The velocity and OH-PLIF data is presented as instantaneous snapshots, time and phase averaged flowfields, modal decompositions using Proper Orthogonal Decomposition and Dynamic Mode Decomposition, and a jet cycle analysis relative to the crossflow acoustic cycle. Analysis of the five test cases shows that the jet cross sectional velocity and OH-PLIF dynamics display a multitude of dynamics. These are often organized into shear layer dynamics and wake dynamics, but are not mutually exclusive. For large unsteady crossflow velocity oscillations at the 1st axial combustor mode, both dynamics show strong organization at the unsteady crossflow frequency. Deciphering these dynamics is complicated by the fact that the ostensible jet response to the time-varying crossflow is a time-varying jet penetration. This drives the jet toward and away from the jet injection wall. These motions are perpendicular to the laser sheet and creates significant out-of-plane motions. The amplitude of crossflow unsteadiness appears to play a role in the sharpness of the wake dynamics. For the non-reacting cases, the wake dynamics are strong and dominant spectral features in the flowfield. For the reacting cases, the wake dynamics are spectrally distinct in the lower amplitude crossflow unsteadiness case, but a large unsteady amplitude crossflow appears to suppress the spectral bands in the frequency range corresponding to wake vortex dynamics.
NASA Astrophysics Data System (ADS)
Susanto, Sandi; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi
2018-02-01
Cross-flow wind turbine is one of the alternative energy harvester for low wind speeds area. Several factors that influence the power coefficient of cross-flow wind turbine are the diameter ratio of blades and the number of blades. The aim of this study is to find out the influence of the number of blades and the diameter ratio on the performance of cross-flow wind turbine and to find out the best configuration between number of blades and diameter ratio of the turbine. The experimental test were conducted under several variation including diameter ratio between outer and inner diameter of the turbine and number of blades. The variation of turbine diameter ratio between inner and outer diameter consisted of 0.58, 0.63, 0.68 and 0.73 while the variations of the number of blades used was 16, 20 and 24. The experimental test were conducted under certain wind speed which are 3m/s until 4 m/s. The result showed that the configurations between 0.68 diameter ratio and 20 blade numbers is the best configurations that has power coefficient of 0.049 and moment coefficient of 0.185.
Characterization of a Heated Liquid Jet in Crossflow
NASA Astrophysics Data System (ADS)
Wiest, Heather K.
The liquid jet in crossflow (LJICF) is a widely utilized fuel injection method for airbreathing propulsion devices such as low NO x gas turbine combustors, turbojet afterburners, scramjet/ramjet engines, and rotating detonation engines (RDE's). This flow field allows for efficient fuel-air mixing as aerodynamic forces from the crossflow augment atomization. Additionally, increases in the thermal demands of advanced aeroengines necessitates the use of fuel as a primary coolant. The resulting higher fuel temperatures can cause flash atomization of the liquid fuel as it is injected into a crossflow, potentially leading to a large reduction in the jet penetration. While many experimental works have characterized the overall atomization process of a room temperature liquid jet in an ambient temperature and pressure crossflow, the aggressive conditions associated with flash atomization especially in an air crossflow with elevated temperatures and pressures have been less studied in the community. A successful test campaign was conducted to study the effects of fuel temperature on a liquid jet injected transversely into a steady air crossflow at ambient as well as elevated temperature and pressure conditions. Modifications were made to an existing optically accessible rig, and a new fuel injector was designed for this study. Backlit imaging was utilized to record changes in the overall spray characteristics and jet trajectory as fuel temperature and crossflow conditioners were adjusted. Three primary analysis techniques were applied to the heated LJICF data: linear regression of detected edges to determine trajectory correlations, exploratory study of pixel intensity variations both temporally as well as spatially, and modal decomposition of the data. The overall objectives of this study was to assess the trajectory, breakup, and mixing of the LJICF undery varying jet and crossflow conditions, develop a trajectory correlation to predict changes in jet penetration due to fuel temperature increases, and characterize the changes in underlying physics in the LJICF flow field. Based on visual inspection, the increase in fuel temperature leads to a finer and denser fuel spray. With increasingly elevated liquid temperatures, the penetration of the jet typically decreases. At or near flashing conditions, the jet had a tendency to penetrate upstream before bending over in the crossflow as well as experiences a rapid expansion causing the jet column to increase in width. Two trajectory correlations were determined, one for each set of crossflow conditions, based on normalized axial distance, normalized liquid viscosity, and normalized jet diameter as liquid is vaporized. The pixel intensity analysis showed that the highest temperature jet in the ambient temperature and pressure crossflow exhibited periodic behavior that was also found using various modal techniques including proper orthogonal decomposition and dynamic mode decomposition. Dominant frequencies determined for most test cases were associated with the bulk or flapping motion of the jet. Most notably, the DMD analysis in this study was successful in identifying robust modes across different subgroupings of the data even though the modes identified were not the highest power modes in each DMD spectrum.
Cross-flow-assembled ultrathin and robust graphene oxide membranes for efficient molecule separation
NASA Astrophysics Data System (ADS)
Ying, Yulong; Ying, Wen; Guo, Yi; Peng, Xinsheng
2018-04-01
A graphene oxide (GO) membrane is promising for molecule separation. However, it is still a big challenge to achieve highly stable pristine GO membranes, especially in water. In this work, an ultrathin and robust GO membrane is assembled via the cross-flow method. The as-prepared 12 nm thick GO membrane (GOCF membrane) presents high stability with water permeance of 1505 ± 65 litres per hour per square meter per bar (LHM bar-1) and Evans Blue (EB) rejection of 98.7 ± 0.4%, 21-fold enhancement in water permeance compared with that of a pristine GO membrane (50-70 LHM bar-1) and 100 times higher than that of commercial ultrafiltration membranes (15 LHM.bar-1, GE2540F30, MWCO 1000, GE Co., Ltd) with similar rejection. Attributed to the surface cross-flow, the GO nanosheets will be refolded, crumpled, or wrinkled, resulting in a very strong inter-locking structure among the GO membrane, which significantly enhances the stability and facilitates their separation performance. This cross-flow assembling technique is also easily extended to assemble GO membranes onto other various backing filter supports. Based on the Donnan effect and size sieving mechanism, selective membrane separation of dyes with a similar molecular structure from their mixture (such as Rhodamine B (RhB) and Rose Bengal, and RhB and EB) are achieved with a selectivity of 133 ± 10 and 227 ± 15, respectively. Assembly of this ultrathin GO membrane with high stability and separation performance, via a simple cross-flow method, shows great potential for water purification.
NASA Technical Reports Server (NTRS)
Damerow, W. P.; Murtaugh, J. P.; Burggraf, F.
1972-01-01
The flow characteristics of turbine airfoil cooling system components were experimentally investigated. Flow models representative of leading edge impingement, impingement with crossflow (midchord cooling), pin fins, feeder supply tube, and a composite model of a complete airfoil flow system were tested. Test conditions were set by varying pressure level to cover the Mach number and Reynolds number range of interest in advanced turbine applications. Selected geometrical variations were studied on each component model to determine these effects. Results of these tests were correlated and compared with data available in the literature. Orifice flow was correlated in terms of discharge coefficients. For the leading edge model this was found to be a weak function of hole Mach number and orifice-to-impinged wall spacing. In the impingement with crossflow tests, the discharge coefficient was found to be constant and thus independent of orifice Mach number, Reynolds number, crossflow rate, and impingement geometry. Crossflow channel pressure drop showed reasonable agreement with a simple one-dimensional momentum balance. Feeder tube orifice discharge coefficients correlated as a function of orifice Mach number and the ratio of the orifice-to-approach velocity heads. Pin fin data was correlated in terms of equivalent friction factor, which was found to be a function of Reynolds number and pin spacing but independent of pin height in the range tested.
Numerical Investigation of Crossflow Instability on the HIFiRE-5
NASA Astrophysics Data System (ADS)
Lakebrink, Matthew T.
Stability analysis was performed with the Langley Stability and Transition Analysis Code (LASTRAC) on a 38.1% scale model of the HIFiRE-5 elliptic-cone forebody to study crossflow-induced transition in hypersonic boundary layers. A resolution study consisting of three grids (30e6, 45e6, and 91e6 points) indicated that the fine grid was sufficiently resolved. Results were largely insensitive to grid resolution over the acreage and near the attachment line. The percent variation in second-mode properties along the semi-minor axis was less than 1% between the medium and fine grids. The variation in crossflow-wave properties was less than 0.04% between the medium and fine grids. Comparisons were made between crossflow-wave properties computed using quasi-parallel Linear Stability Theory (LST), the Linear Parabolized Stability Equations (LPSE), and surface marching or two-plane LPSE (2pLPSE). Sensitivity to marching path was also explored by performing analysis along Group-Velocity Lines (GVL) and Inviscid Streamlines (ISL). The wave properties were largely insensitive to analysis type and marching path, with the greatest variation near the attachment line. The LPSE-growth rates were as much as 20% greater than LST. Results from LPSE and 2pLPSE were similar except near the attachment line, where 2pLPSE growth rates were about 30% greater. Growth rates for crossflow and second-mode waves computed with 2pLPSE were compared to Spatial BiGlobal (SBG) analysis. Crossflow growth rates agreed well between 2pLPSE and SBG, indicating that the more expensive SBG approach is unnecessary for crossflow computation over the acreage. Second-mode growth rates along the attachment line had similar peak frequencies between the various methods, but 2pLPSE and LST growth rates were as much as 200% and 30% greater than SBG respectively. These results represent the first comparison between SBG and conventional techniques for crossflow waves, and help to define best practices for the use of each technique. Crossflow-wave computations were compared to measurements made by Dr. Matt Borg in the Boeing AFOSR Mach 6 Quiet Tunnel (BAM6QT). Linear analysis for wave angle, phase speed, peak frequency, and spanwise wavelength agreed well with the experiment for sufficiently low Reynolds numbers. The Reynolds number at which linear theory deviated from the test data was termed the 'linear limit'. A stationary-crossflow N-factor of 8.2 correlated well with the linear limit, as did a traveling-wave amplitude of about 1%. Experimental PSD data was used to identify the onset of turbulence at the downstream end of the model, and the associated stationary-crossflow N-factor based on LST was 9.4. Correlating to the linear limit provides a way to conservatively estimate crossflow-induced transition using LST. Evolution of the crossflow waves between the linear limit and the breakdown to turbulence was studied using Non-linear PSE (NPSE). By exciting a combination of stationary and traveling waves, naturally excited harmonics grew downstream of the linear limit to amplitudes of about 2% based on peak temperature. The wave angles of these harmonics agreed well with the test data. For reasons unknown, such agreement was not realized for phase speed. Initial-amplitude sweeps were performed for both stationary and traveling waves. Initial stationary-wave amplitude had a strong influence on the peak-harmonic amplitude and location of transition onset, while initial amplitude of the traveling-waves primarily influenced the location of transition onset. This is the first dataset from which detailed comparisons have been made between stability analysis and quiet tunnel data for crossflow waves in both the linear and non-linear stages of evolution. Several of these comparisons serve as validation of LASTRAC for crossflow-wave analysis. Finally, to aid the comparison of stability analysis to experimental data in general, the sensitivities of crossflow-wave evolution to small-yaw angles and changes in wall temperature were investigated. A yaw angle of 0.5 degrees resulted in a change in N-factor of about 1 between the same point on opposite halves of the geometry. A 15K increase in wall temperature led to a 0.1 increase in N-factor. These results, which are the first of their kind, highlight the sensitivity of crossflow waves to subtle changes in boundary conditions, and serve to emphasize the importance of high-quality test data for which flow conditions are recorded as precisely as possible.
Study of Injection of Helium into Supersonic Air Flow Using Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Seaholtz, Richard G.; Buggele, Alvin E.
1997-01-01
A study of the transverse injection of helium into a Mach 3 crossflow is presented. Filtered Rayleigh scattering is used to measure penetration and helium mole fraction in the mixing region. The method is based on planar molecular Rayleigh scattering using an injection-seeded, frequency-doubled ND:YAG pulsed laser and a cooled CCD camera. The scattered light is filtered with an iodine absorption cell to suppress stray laser light. Preliminary data are presented for helium mole fraction and penetration. Flow visualization images obtained with a shadowgraph and wall static pressure data in the vicinity of the injection are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wosnik, Martin; Bachant, Pete; Neary, Vincent Sinclair
CACTUS, developed by Sandia National Laboratories, is an open-source code for the design and analysis of wind and hydrokinetic turbines. While it has undergone extensive validation for both vertical axis and horizontal axis wind turbines, and it has been demonstrated to accurately predict the performance of horizontal (axial-flow) hydrokinetic turbines, its ability to predict the performance of crossflow hydrokinetic turbines has yet to be tested. The present study addresses this problem by comparing the predicted performance curves derived from CACTUS simulations of the U.S. Department of Energy’s 1:6 scale reference model crossflow turbine to those derived by experimental measurements inmore » a tow tank using the same model turbine at the University of New Hampshire. It shows that CACTUS cannot accurately predict the performance of this crossflow turbine, raising concerns on its application to crossflow hydrokinetic turbines generally. The lack of quality data on NACA 0021 foil aerodynamic (hydrodynamic) characteristics over the wide range of angles of attack (AoA) and Reynolds numbers is identified as the main cause for poor model prediction. A comparison of several different NACA 0021 foil data sources, derived using both physical and numerical modeling experiments, indicates significant discrepancies at the high AoA experienced by foils on crossflow turbines. Users of CACTUS for crossflow hydrokinetic turbines are, therefore, advised to limit its application to higher tip speed ratios (lower AoA), and to carefully verify the reliability and accuracy of their foil data. Accurate empirical data on the aerodynamic characteristics of the foil is the greatest limitation to predicting performance for crossflow turbines with semi-empirical models like CACTUS. Future improvements of CACTUS for crossflow turbine performance prediction will require the development of accurate foil aerodynamic characteristic data sets within the appropriate ranges of Reynolds numbers and AoA.« less
ERIC Educational Resources Information Center
Anastasio, Daniel; McCutcheon, Jeffrey
2012-01-01
A crossflow reverse osmosis (RO) system was built for a senior-level chemical engineering unit operations laboratory course. Intended to teach students mass transfer fundamentals related to membrane separations, students tested several commercial desalination membranes, measuring water flux and salt rejections at various pressures, flow rates, and…
Chen, Chih-Chung; Chen, Yu-An; Liu, Yi-Ju; Yao, Da-Jeng
2014-04-21
Microalgae species have great economic importance; they are a source of medicines, health foods, animal feeds, industrial pigments, cosmetic additives and biodiesel. Specific microalgae species collected from the environment must be isolated for examination and further application, but their varied size and culture conditions make their isolation using conventional methods, such as filtration, streaking plate and flow cytometric sorting, labour-intensive and costly. A separation device based on size is one of the most rapid, simple and inexpensive methods to separate microalgae, but this approach encounters major disadvantages of clogging and multiple filtration steps when the size of microalgae varies over a wide range. In this work, we propose a multilayer concentric filter device with varied pore size and is driven by a centrifugation force. The device, which includes multiple filter layers, was employed to separate a heterogeneous population of microparticles into several subpopulations by filtration in one step. A cross-flow to attenuate prospective clogging was generated by altering the rate of rotation instantly through the relative motion between the fluid and the filter according to the structural design of the device. Mixed microparticles of varied size were tested to demonstrate that clogging was significantly suppressed due to a highly efficient separation. Microalgae in a heterogeneous population collected from an environmental soil collection were separated and enriched into four subpopulations according to size in a one step filtration process. A microalgae sample contaminated with bacteria and insect eggs was also tested to prove the decontamination capability of the device.
Cross-flow electrofilter and method
Gidaspow, Dimitri; Lee, Chang H.; Wasan, Darsh T.
1980-01-01
A filter for clarifying carbonaceous liquids containing finely divided solid particles of, for instance, unreacted coal, ash and other solids discharged from a coal liquefaction process is presented. The filter includes two passageways separated by a porous filter medium. In one preferred embodiment the filter medium is of tubular shape to form the first passageway and is enclosed within an outer housing to form the second passageway within the annulus. An electrode disposed in the first passageway, for instance along the tube axis, is connected to a source of high voltage for establishing an electric field between the electrode and the filter medium. Slurry feed flows through the first passageway tangentially to the surfaces of the filter medium and the electrode. Particles from the feed slurry are attracted to the electrode within the first passageway to prevent plugging of the porous filter medium while carbonaceous liquid filters into the second passageway for withdrawal. Concentrated slurry is discharged from the first passageway at an end opposite to the feed slurry inlet. Means are also provided for the addition of diluent and a surfactant into the slurry to control relative permittivity and the electrophoretic mobility of the particles.
Effect of Surface Imperfections and Excrescences on the Crossflow Instability
NASA Astrophysics Data System (ADS)
Tufts, Matthew; Duncan, Glen, Jr.; Crawford, Brian; Reed, Helen; Saric, William
2012-11-01
Presented is analysis of the planned SWIFTER experiment to be flown on Texas A&M University's O-2A aircraft. Simultaneous control of the crossflow and streamwise boundary-layer instabilities is a challenge for laminar flow control on swept wings. Solving this problem is an active area of research, with a specific need to quantify the effect of surface imperfections and outer mold line excrescences on crossflow instabilities. The SWIFTER test article is a modification of a prior-tested flight model, with the additional capability of creating controlled excrescences in flight. Using a finite-element Navier-Stokes solution and a spectrally accurate boundary-layer solver, coupled with linear and nonlinear stability analyses, we show that the flow field over the test article is well suited to this study. Results are compared with flight data. The work is supported by the Air Force Research Laboratory through General Dynamics Information Technology, Inc. under sub Agreement No USAF-3446-11-50-SC-01 and the Texas A&M Supercomputing Facility.
Lateral jet injection into typical combustor flowfields
NASA Technical Reports Server (NTRS)
Lilley, D. G.
1986-01-01
The experimental problem of lateral jet injection into typical flow fields in the absence of combustion was studied. All flow fields being investigated have no expansion of the crossflow (the test section to swirler diameter ratio D/d = 1), after its passage through an optional swirler (with swirl vane angle phi = 0 (swirler removed), 45, and 70 degree). The lateral jet(s) is(are) located one test-section diameter downstream of the test-section inlet (x/D = 1). The lateral jets have round-sectioned nozzles, each of which has an area of 1/100th of the cross sectional area of the crossflow (A sub j/A sub c = 1/100). Jet-to-crossflow velocity ratios of R = v sub j/u sub o = 2, 4, and 6 were investigated. Helium-bubble low visualization, five-hole pitot probe time-mean velocity measurements, and single-wire time-mean velocity and normal and shear stress turbulence data were obtained in the research program.
NASA Technical Reports Server (NTRS)
Holmes, Bruce J. (Inventor); Carraway, Debra L. (Inventor); Holmes, Harlan K. (Inventor); Moore, Thomas C. (Inventor)
1988-01-01
A crossflow vorticity sensor for the detection of crossflow vorticity characteristics is described. The sensor is comprised of crossflow sensors which are noninvasively adhered to a swept wing laminar surface either singularly, in multi-element strips, in polar patterns, or in orthogonal patterns. These crossflow sensors are comprised of hot-film sensor elements which operate as a constant temperature anemometer circuit to detect heat transfer rate changes. Accordingly, crossflow vorticity characteristics are determined via cross-correlation. In addition, the crossflow sensors have a thickness which does not exceed a maximum value h in order to avoid contamination of downstream crossflow sensors.
Vijayan, S.; Wong, C.F.; Buckley, L.P.
1994-11-22
In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.
Vijayan, Sivaraman; Wong, Chi F.; Buckley, Leo P.
1994-01-01
In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.
Flight Tests of a Supersonic Natural Laminar Flow Airfoil
NASA Technical Reports Server (NTRS)
Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.
2014-01-01
A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The wing was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Carpenter, Mark H.; Malik, Mujeeb R.; Eppink, Jenna; Chang, Chau-Lyan; Streett, Craig L.
2010-01-01
A high fidelity transition prediction methodology has been applied to a swept airfoil design at a Mach number of 0.75 and chord Reynolds number of approximately 17 million, with the dual goal of an assessment of the design for the implementation and testing of roughness based crossflow transition control and continued maturation of such methodology in the context of realistic aerodynamic configurations. Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes in order to weaken the growth of naturally occurring, linearly more unstable instability modes via a nonlinear modification of the mean boundary layer profiles. Therefore, a synthesis of receptivity, linear and nonlinear growth of crossflow disturbances, and high-frequency secondary instabilities becomes desirable to model this form of control. Because experimental data is currently unavailable for passive crossflow transition control for such high Reynolds number configurations, a holistic computational approach is used to assess the feasibility of roughness based control methodology. Potential challenges inherent to this control application as well as associated difficulties in modeling this form of control in a computational setting are highlighted. At high Reynolds numbers, a broad spectrum of stationary crossflow disturbances amplify and, while it may be possible to control a specific target mode using Discrete Roughness Elements (DREs), nonlinear interaction between the control and target modes may yield strong amplification of the difference mode that could have an adverse impact on the transition delay using spanwise periodic roughness elements.
Wildfire simulation using a chemically-reacting plume in a crossflow
NASA Astrophysics Data System (ADS)
Breidenthal, Robert; Alvarado, Travis; Potter, Brian
2010-11-01
Water tunnel experiments reveal the flame length of a chemically-reacting plume in a crossflow. Salt water containing a pH indicator and a base is slowly injected from above into the test section of a water tunnel containing an acidic solution. The flame length is measured optically as a function of the buoyancy flux, crossflow speed, and volume equivalence ratio of the chemical reaction. Based on earlier work of Broadwell with the transverse jet, a simple dilution model predicts the flame length of the transverse plume. The plume observations are in accord with the model. As with the jet, there is a minimum in the flame length of the plume at a transition between two self-similar regimes, corresponding to the formation of a pair of counter-rotating vortices at a certain crossflow speed. At the transition, there is a maximum in the entrainment and mixing rates. In an actual wildfire with variable winds, this transition may correspond to a dangerous condition for firefighters.
300 GPM Solids Removal System A True Replacement for Back Flushable Powdered Filter Systems - 13607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ping, Mark R.; Lewis, Mark
2013-07-01
The EnergySolutions Solids Removal System (SRS) utilizes stainless steel cross-flow ultra-filtration (XUF) technology which allows it to reliably remove suspended solids greater than one (1) micron from liquid radwaste streams. The SRS is designed as a pre-treatment step for solids separation prior to processing through other technologies such as Ion Exchange Resin (IER) and/or Reverse Osmosis (RO), etc. Utilizing this pre-treatment approach ensures successful production of reactor grade water while 1) decreasing the amount of radioactive water being discharged to the environment; and 2) decreasing the amount of radioactive waste that must ultimately be disposed of due to the eliminationmore » of spent powdered filter media. (authors)« less
Flight Tests of a Supersonic Natural Laminar Flow Airfoil
NASA Technical Reports Server (NTRS)
Frederick, Michael A.; Banks, Daniel W.; Garzon, G. A.; Matisheck, J. R.
2015-01-01
A flight-test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane (McDonnell Douglas Corporation, now The Boeing Company, Chicago, Illinois). The test article was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.
Study on an undershot cross-flow water turbine
NASA Astrophysics Data System (ADS)
Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Omiya, Ryota; Fukutomi, Junichiro
2014-06-01
This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We performed tests by applying a cross-flow runner to an open channel as an undershot water turbine while attempting to simplify the structure and eliminate the casing. We experimentally investigated the flow fields and performance of water turbines in states where the flow rate was constant for the undershot cross-flow water turbine mentioned above. In addition, we compared existing undershot water turbines with our undershot cross-flow water turbine after attaching a bottom plate to the runner. From the results, we were able to clarify the following. Although the effective head for cross-flow runners with no bottom plate was lower than those found in existing runners equipped with a bottom plate, the power output is greater in the high rotational speed range because of the high turbine efficiency. Also, the runner with no bottom plate differed from runners that had a bottom plate in that no water was being wound up by the blades or retained between the blades, and the former received twice the flow due to the flow-through effect. As a result, the turbine efficiency was greater for runners with no bottom plate in the full rotational speed range compared with that found in runners that had a bottom plate.
Amplified crossflow disturbances in the laminar boundary layer on swept wings with suction
NASA Technical Reports Server (NTRS)
Dagenhart, J. R.
1981-01-01
Solution charts of the Orr-Sommerfeld equation for stationary crossflow disturbances are presented for 10 typical velocity profiles on a swept laminar flow control wing. The critical crossflow Reynolds number is shown to be a function of a boundary layer shape factor. Amplification rates for crossflow disturbances are shown to be proportional to the maximum crossflow velocity. A computer stability program called MARIA, employing the amplification rate data for the 10 crossflow velocity profiles, is constructed. This code is shown to adequately approximate more involved computer stability codes using less than two percent as much computer time while retaining the essential physical disturbance growth model.
Wash water solids removal system study
NASA Technical Reports Server (NTRS)
1974-01-01
During wash water purification, surfactants tend to precipitate and foul the RO membranes, causing water flux decline and loss of salt rejection. The use of 165 to 190 ppm ferric chloride and optionally 0.25 to 1.0 ppm polymeric flocculate precipitates 92 to 96 percent of the surfactant from an Olive Leaf Soap based wash water. Crossflow filtration and pressure filtration yield good soap rejection at high water flux rates. Post-treatment of the chemically pretreated and filtered wash water with activated charcoal removes the residual soap down to an undetectable level.
NASA Technical Reports Server (NTRS)
Yuska, J. A.; Diedrich, J. H.
1972-01-01
Test data are presented for a 38-cm (15-in.) diameter, 1.28 pressure ratio model VTOL lift fan installed in a two-dimensional wing and tested in a 2.74-by 4.58-meter (9-by 15-ft)V/STOL wind tunnel. Tests were run with and without exit louvers over a wide range of crossflow velocities and wing angle of attack. Tests were also performed with annular-inlet vanes, inlet bell-mouth surface disconuities, and fences to induce fan windmilling. Data are presented on the axial force of the fan assembly and overall wing forces and moments as measured on force balances for various static and crossflow test conditions. Midspan wing surface pressure coefficient data are also given.
Duncan, David B.
1992-01-01
A method and laser apparatus are disclosed which provide for a cross-flow of gas near one end of a laser discharge tube. The cross-flow of gas causes a concentration gradient which affects diffusion of contaminants in the discharge tube towards the cross-flow of the gas, which contaminants are then withdrawn from the discharge tube.
Deflected jet experiments in a turbulent combustor flowfield. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Ferrell, G. B.; Lilley, D. G.
1985-01-01
Experiments were conducted to characterize the time-mean and turbulent flow field of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the tracjectory and spread pattern of the jet. A six-position single hot-wire technique was used to measure the velocities and turbulent stresses in nonswirling crossflow cases. In these cases, measurements confirmed that the deflected jet is symmetrical about the vertical plan passing through the crossflow axis, and the jet penetration was found to be reduced from that of comparable velocity ratio infinite crossflow cases. In the swirling crossflow cases, the flow visualization techniques enabled gross flow field characterization to be obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow.
NASA Technical Reports Server (NTRS)
Florschuetz, L. W.; Metzger, D. E.; Su, C. C.; Isoda, Y.; Tseng, H. H.
1982-01-01
Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. The configurations considered are intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The effects of an initial crossflow which approaches the array through an upstream extension of the channel are considered. Flow distributions as well as heat transfer coefficients and adiabatic wall temperatures resolved to one streamwise hole spacing were measured as a function of the initial crossflow rate and temperature relative to the jet flow rate and temperature. Both Nusselt number profiles and dimensionless adiabatic wall temperature (effectiveness) profiles are presented and discussed. Special test results which show a significant reduction of jet orifice discharge coefficients owing to the effect of a confined crossflow are also presented, along with a flow distribution model which incorporates those effects. A nonuniform array flow distribution model is developed and validated.
Distributed-Roughness Effects on Stability and Transition In Swept-Wing Boundary Layers
NASA Technical Reports Server (NTRS)
Carrillo, Ruben B., Jr.; Reibert, Mark S.; Saric, William S.
1997-01-01
Boundary-layer stability experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45 deg swept airfoil. The pressure distribution and test conditions are designed to suppress Tollmien-Schlichting disturbances and provide crossflow-dominated transition. The surface of the airfoil is finely polished to a near mirror finish. Under these conditions, submicron surface irregularities cause the naturally occurring stationary crossflow waves to grow to nonuniform amplitudes. Spanwise-uniform stationary crossflow disturbances are generated through careful control of the initial conditions with full-span arrays of micron-high roughness elements near the attachment line. Detailed hot-wire measurements are taken to document the stationary crossflow structure and determine growth rates for the total and individual-mode disturbances. Naphthalene flow visualization provides transition location information. Roughness spacing and roughness height are varied to examine the effects on transition location and all amplified wavelengths. The measurements show that roughness spacings that do not contain harmonics equal to the most unstable wavelength as computed by linear stability theory effectively suppress the most unstable mode. Under certain conditions, subcritical roughness spacing delays transition past that of the corresponding smooth surface.
NASA Technical Reports Server (NTRS)
Eppink, Jenna L.
2017-01-01
Stereo particle image velocimetry measurements were performed downstream of a forward-facing step in a stationary-crossflow dominated flow. Three different step heights were studied with the same leading-edge roughness configuration to determine the effect of the step on the evolution of the stationary-crossflow. Above the critical step height, which is approximately 68% of the boundary-layer thickness at the step, the step caused a significant increase in the growth of the stationary crossflow. For the largest step height studied (68%), premature transition occurred shortly downstream of the step. The stationary crossflow amplitude only reached approximately 7% of U(sub e) in this case, which suggests that transition does not occur via the high-frequency secondary instabilities typically associated with stationary crossflow transition. The next largest step of 60% delta still caused a significant impact on the growth of the stationary crossflow downstream of the step, but the amplitude eventually returned to that of the baseline case, and the transition front remained the same. The smallest step height (56%) only caused a small increase in the stationary crossflow amplitude and no change in the transition front. A final case was studied in which the roughness on the leading edge of the model was enhanced for the lowest step height case to determine the impact of the stationary crossflow amplitude on transition. The stationary crossflow amplitude was increased by approximately four times, which resulted in premature transition for this step height. However, some notable differences were observed in the behavior of the stationary crossflow mode, which indicate that the interaction mechanism which results in the increased growth of the stationary crossflow downstream of the step may be different in this case compared to the larger step heights.
Duncan, D.B.
1992-11-24
A method and laser apparatus are disclosed which provide for a cross-flow of gas near one end of a laser discharge tube. The cross-flow of gas causes a concentration gradient which affects diffusion of contaminants in the discharge tube towards the cross-flow of the gas, which contaminants are then withdrawn from the discharge tube. 1 figure.
Navier-Stokes simulation of the crossflow instability in swept-wing flows
NASA Technical Reports Server (NTRS)
Reed, Helen L.
1989-01-01
The computational modeling of the transition process characteristic of flows over swept wings are described. Specifically, the crossflow instability and crossflow/T-S wave interactions are analyzed through the numerical solution of the full three-dimensional Navier-Stokes equations including unsteadiness, curvature, and sweep. This approach is chosen because of the complexity of the problem and because it appears that linear stability theory is insufficient to explain the discrepancies between different experiments and between theory and experiments. The leading edge region of a swept wing is considered in a three-dimensional spatial simulation with random disturbances as the initial conditions. The work has been closely coordinated with the experimental program of Professor William Saric, examining the same problem. Comparisons with NASA flight test data and the experiments at Arizona State University were a necessary and an important integral part of this work.
A Numerical Simulation of a Normal Sonic Jet into a Hypersonic Cross-Flow
NASA Technical Reports Server (NTRS)
Jeffries, Damon K.; Krishnamurthy, Ramesh; Chandra, Suresh
1997-01-01
This study involves numerical modeling of a normal sonic jet injection into a hypersonic cross-flow. The numerical code used for simulation is GASP (General Aerodynamic Simulation Program.) First the numerical predictions are compared with well established solutions for compressible laminar flow. Then comparisons are made with non-injection test case measurements of surface pressure distributions. Good agreement with the measurements is observed. Currently comparisons are underway with the injection case. All the experimental data were generated at the Southampton University Light Piston Isentropic Compression Tube.
NASA Technical Reports Server (NTRS)
Stockman, N. O.; Loeffler, I. J.; Lieblein, S.
1973-01-01
Results are presented for a wind tunnel investigation of three single VTOL lift fan stages designed for the same overall total pressure ratio at different rotor tip speeds. The stages were tested in a model lift fan installed in a wing pod. The three stages had essentially the same aerodynamic performance along the operating line. However, differences in stage thrust characteristics were obtained when a variation in back pressure was imposed on the stages by cross-flow effects and thrust-vectoring louvers.
NASA Astrophysics Data System (ADS)
Wicaksono, Yoga Arob; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul
2018-02-01
Vertical axis wind turbine like cross-flow rotor have some advantage there are, high self-starting torque, low noise, and high stability; so, it can be installed in the urban area to produce electricity. But, the urban area has poor wind condition, so the cross-flow rotor needs a guide vane to increase its performance. The aim of this study is to determine experimentally the effect of Omni-Directional Guide Vane (ODGV) on the performance of a cross-flow wind turbine. Wind tunnel experiment has been carried out for various configurations. The ODGV was placed around the cross-flow rotor in order to increase ambient wind environment of the wind turbine. The maximum power coefficient is obtained as Cpmax = 0.125 at 60° wind direction. It was 21.46% higher compared to cross-flow wind turbine without ODGV. This result showed that the ODGV able to increase the performance of the cross-flow wind turbine.
Secondary Instability of Stationary Crossflow Vortices in Mach 6 Boundary Layer Over a Circular Cone
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Paredes-Gonzalez, Pedro; Duan, Lian
2015-01-01
Hypersonic boundary layer flows over a circular cone at moderate incidence can support strong crossflow instability. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7-degree half-angle circular cone in a Mach 6 free stream. Depending on the local amplitude of the stationary crossflow mode, the most unstable secondary disturbances either originate from the second (i.e., Mack) mode instabilities of the unperturbed boundary layer or correspond to genuine secondary instabilities that reduce to stable disturbances at sufficiently small amplitudes of the stationary crossflow vortex. The predicted frequencies of dominant secondary disturbances are similar to those measured during wind tunnel experiments at Purdue University and the Technical University of Braunschweig, Germany.
NASA Technical Reports Server (NTRS)
Wang, Kon-Sheng Charles
1994-01-01
The design and development of an airborne flight-test experiment to study nonreacting gas jets injected transversely into transonic and supersonic crossflows is presented. Free-stream/crossflow Mach numbers range from 0.8 to 2.0. Planar laser-induced fluorescence (PLIF) of an iodine-seeded nitrogen jet is used to visualize the jet flow. Time-dependent images are obtained with a high-speed intensified video camera synchronized to the laser pulse rate. The entire experimental assembly is configured compactly inside a unique flight-test-fixture (FTF) mounted under the fuselage of the F-104G research aircraft, which serves as a 'flying wind tunnel' at NASA Dryden Flight Research Center. The aircraft is flown at predetermined speeds and altitudes to permit a perfectly expanded (or slightly underexpanded) gas jet to form just outside the FTF at each free-stream Mach number. Recorded gas jet images are then digitized to allow analysis of jet trajectory, spreading, and mixing characteristics. Comparisons will be made with analytical and numerical predictions. This study shows the viability of applying highly sophisticated groundbased flow diagnostic techniques to flight-test vehicle platforms that can achieve a wide range of thermo/fluid dynamic conditions. Realistic flow environments, high enthalpies, unconstrained flowfields, and moderate operating costs are also realized, in contrast to traditional wind-tunnel testing.
Misty Paig-Tran, E W; Summers, A P
2014-04-01
The four, evolutionarily independent, lineages of suspension feeding elasmobranchs have two types of branchial filters. The first is a robust, flattened filter pad akin to a colander (e.g., whale sharks, mantas and devil rays) while the second more closely resembles the comb-like gill raker structure found in bony fishes (e.g., basking and megamouth sharks). The structure and the presence of mucus on the filter elements will determine the mechanical function of the filter and subsequent particle transport. Using histology and scanning electron microscopy, we investigated the anatomy of the branchial filters in 12 of the 14 species of Chondrichthyian filter-feeding fishes. We hypothesized that mucus producing cells would be abundant along the filter epithelium and perform as a sticky mechanism to retain and transport particles; however, we found that only three species had mucus producing goblet cells. Two of these (Mobula kuhlii and Mobula tarapacana) also had branchial cilia, indicating sticky retention and transport. The remaining filter-feeding elasmobranchs did not have a sticky surface along the filter for particles to collect and instead must employ alternative mechanisms of filtration (e.g., direct sieving, inertial impaction or cross-flow). With the exception of basking sharks, the branchial filter is composed of a hyaline cartilage skeleton surrounded by a layer of highly organized connective tissue that may function as a support. Megamouth sharks and most of the mobulid rays have denticles along the surface of the filter, presumably to protect against damage from large particle impactions. Basking sharks have branchial filters that lack a cartilaginous core; instead they are composed entirely of smooth keratin. Copyright © 2014 Wiley Periodicals, Inc.
Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E
2015-07-01
This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions. Copyright © 2014 Elsevier B.V. All rights reserved.
Binary Oscillatory Crossflow Electrophoresis
NASA Technical Reports Server (NTRS)
Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.
1996-01-01
We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.
Numerical simulations of an impinging liquid spray in a cross-flow
NASA Astrophysics Data System (ADS)
Gomatam, Sreekar; Vengadesan, S.; Chakravarthy, S. R.
2017-11-01
The characteristics of a liquid spray in a uniform cross-flow field are numerically simulated in this study. A hollow cone liquid spray is injected perpendicular to the air stream flowing through a rectangular duct under room temperature and pressure. An Eulerian-Lagrangian framework is adopted to simulate the spray in cross-flow phenomenon. The cross-flow velocity is varied from 6-12 m/s while the liquid injection pressure is varied from 0.3-0.6 MPa. The liquid droplets from the injected spray undergo breakup and/or coalescence further in the cross-flow. Moreover, the spray injected into the cross-flow impinges on the opposite wall resulting in the formation of a liquid film. This liquid film disintegrates further into discrete droplets because of the impingement of the droplets from the spray and the shear from the cross-flow. The overall distribution of the droplets in the cross-flow for varying conditions is studied in detail. The evolution of the liquid film with space and time for varying conditions is also investigated. Suitable sub-models are used to numerically model the droplet break-up, coalescence, liquid film formation and disintegration, splashing of the droplets on the film and subsequent formation of daughter droplets. Department of Applied Mechanics, Indian Inst of Tech-Madras.
NASA Technical Reports Server (NTRS)
Camelier, I.; Karamcheti, K.
1976-01-01
The plane of symmetry of a high speed circular jet was surveyed to measure the mean and turbulent velocity fields by using constant temperature hot wire anemometry. The intensity of the noise radiated from the jet was determined in the tunnel test section by utilizing the cross-correlation at a particular time delay between the signals of two microphones suitably located along a given direction. Experimental results indicate that the turbulent intensity inside the crossflow jet increases by a factor of (1 + 1/2) as compared to the turbulent intensity of the same jet under free conditions, with r indicating the ratio of the jet velocity by the cross stream velocity. The peak observed in the turbulence spectra obtained inside the potential core of the jet has a frequency that increases by the same factor with respect to the corresponding frequency measured in the case of the free jet. The noise radiated by the jet becomes more intense as the crossflow velocity increases. The measured acoustic intensity of the crossflow jet is higher than the value which would be expected from the increase of the turbulent intensity only.
NASA Astrophysics Data System (ADS)
Wosnik, Martin; Bachant, Peter
2016-11-01
Cross-flow turbines show potential in marine hydrokinetic (MHK) applications. A research focus is on accurately predicting device performance and wake evolution to improve turbine array layouts for maximizing overall power output, i.e., minimizing wake interference, or taking advantage of constructive wake interaction. Experiments were carried with large laboratory-scale cross-flow turbines D O (1 m) using a turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. Several turbines of varying solidity were employed, including the UNH Reference Vertical Axis Turbine (RVAT) and a 1:6 scale model of the DOE-Sandia Reference Model 2 (RM2) turbine. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. Results are presented for the simulation of performance and wake dynamics of cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET Grant 1150797, Sandia National Laboratories.
Experimental investigation on performance of crossflow wind turbine as effect of blades number
NASA Astrophysics Data System (ADS)
Kurniawati, Diniar Mungil; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi
2018-02-01
Urban living is one of the areas with large electrical power consumption that requires a power supply that is more than rural areas. The number of multi-storey buildings such as offices, hotels and several other buildings that caused electricity power consumption in urban living is very high. Therefore, energy alternative is needed to replace the electricity power consumption from government. One of the utilization of renewable energy in accordance with these conditions is the installation of wind turbines. One type of wind turbine that is now widely studied is a crossflow wind turbines. Crossflow wind turbine is one of vertical axis wind turbine which has good self starting at low wind speed condition. Therefore, the turbine design parameter is necessary to know in order to improve turbine performance. One of wind turbine performance parameter is blades number. The main purpose of this research to investigate the effect of blades number on crossflow wind turbine performance. The design of turbine was 0.4 × 0.4 m2 tested by experimental method with configuration on three kinds of blades number were 8,16 and 20. The turbine investigated at low wind speed on 2 - 5 m/s. The result showed that best performance on 16 blade number.
Paenpong, Chaturong; Inthidech, Sudsakorn; Pattiya, Adisak
2013-07-01
Fast pyrolysis of cassava rhizome was performed in a bench-scale fluidised-bed reactor unit incorporated with a cross-flow moving-bed granular filter. The objective of this research was to examine several process parameters including the granular size (425-1160 μm) and mass flow rate (0-12 g/min) as well as the number of the filtration stages (1-2 stages) on yields and properties of bio-oil. The results showed that the bio-oil yield decreased from 57.7 wt.% to 42.0-49.2 wt.% when increasing the filter media size, the mass flow rate and the filtration stage number. The effect of the process parameters on various properties of bio-oil is thoroughly discussed. In general, the bio-oil quality in terms of the solids content, ash content, initial viscosity, viscosity change and ageing rate could be enhanced by the hot vapour granular filtration. Therefore, bio-oil of high stability could be produced by the pyrolysis reactor configuration designed in this work. Copyright © 2013 Elsevier Ltd. All rights reserved.
Trajectory and Breakup of Cryogenic Jets in Crossflow
NASA Astrophysics Data System (ADS)
Richards, William
This study investigated the breakup processes of subcritical cryogenic jets injected in to subsonic crossflows of heated air. The crossflow speed, temperature, and jet velocity were varied to demonstrate the effect of thermal differences on a jet in crossflow. High speed back-lit photography and Mie scattering were used to examine the primary breakup regimes, trajectory, and breakup points. The breakup regimes show little change from jets in crossflow near thermodynamic equilibrium. Penetration of the jet increased with an increase in crossflow temperature. The breakup points in the streamwise direction followed trends previously observed for conventional jets. While the height of column fracture did not increase with momentum flux ratio as much as would be expected, its dependence matched that of the trajectory correlation. It is hypothesized that the observed differences are due to the development of a sheath of evaporated fluid around the main liquid core of the jet.
Dereli, Recep Kaan; Grelot, Aurelie; Heffernan, Barry; van der Zee, Frank P; van Lier, Jules B
2014-08-01
Long-term experiments were conducted to assess the impact of changing the solids retention time (SRT) on sludge filterability in anaerobic membrane bioreactors (AnMBRs), treating corn-based bioethanol thin stillage. Well established parameters, such as capillary suction time (CST) and specific resistance to filtration (SRF), developed for sludge dewatering, were used to evaluate the SRT effect on sludge filterability. Our results clearly demonstrated that SRT is one of the most important factors influencing sludge filterability in AnMBRs. SRT effects the accumulation of fine particles and solutes, which were found to affect attainable flux and fouling, in reactor broth. A better filterability was observed at a SRT of 20 days compared to elevated SRTs, i.e. 50 days. A clear correlation between sludge filtration characteristics and membrane filtration resistance could not be established especially at short SRTs, whereas many parameters such as total suspended solids (TSS), CST, soluble microbial products (SMP) and supernatant filterability were found to be mutually correlated. Net membrane fluxes between 9 and 13 L m(-2) h(-1) were obtained at 0.5 m s(-1) cross-flow velocity and the long term fouling was controlled by using frequent filtration and backwash cycles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Crossflow in two-dimensional asymmetric nozzles
NASA Technical Reports Server (NTRS)
Sebacher, D. I.; Lee, L. P.
1975-01-01
An experimental investigation of the crossflow effects in three contoured, two-dimensional asymmetric nozzles is described. The data were compared with theoretical predictions of nozzle flow by using an inviscid method of characteristics solution and two-dimensional turbulent boundary-layer calculations. The effect of crossflow as a function of the nozzle maximum expansion angle was studied by use of oil-flow techniques, static wall-pressure measurements, and impact-pressure surveys at the nozzle exit. Reynolds number effects on crossflow were investigated.
Crossflow microfiltration in the dairy industry
USDA-ARS?s Scientific Manuscript database
The introduction of crossflow membrane technologies presented the dairy industry with tools that made possible the physical removal of microorganisms from milk that reduce its shelf life and manipulation of its composition to create new ingredients. This chapter focuses on crossflow microfiltration ...
NASA Astrophysics Data System (ADS)
Goh, Sien Fong
An experimental and numerical study of a turbulent smoke point diffusion flame in a quiescent and cross-flow condition was performed. The fuel mass flow rate of a turbulent smoke point flame was determined at a quiescent condition and in cross-flow with velocity ranging from 2 to 4 m/s. This fuel mass flow rate is defined as the Critical Fuel Mass Flow Rate (CFMFR). At a fuel mass flow rate below the CFMFR the flame produces smoke. In the dilution study, an amount of inert gas (nitrogen) was added to the fuel stream to achieve the smoke point condition for ten different fractions of CFMFR. From this dilution study, three regions were defined, the chemically-dominated region, transition region, and momentum-dominated region. The first objective of this study was to determine the factors behind the distinction of these three regions. The second objective was to understand the effect of cross-flow velocity on the smoke point flame structure. The flame temperature, radiation, geometrical dimension of flame, velocity, and global emissions and in-flame species concentration were measured. The third objective was to study a numerical model that can simulate the turbulent smoke point flame structure. The dilution study showed that the flames in quiescent condition and in the 3.5 and 4 m/s cross-flow condition had the chemically-dominated region at 5% to 20% CFMFR, the transition region at 20% to 40% CFMFR, and the momentum-dominated region at 40% to 100% CFMFR. On the other hand, the flame in cross-flow of 2 to 3 m/s showed the chemically-dominated region at 5% to 10% CFMFR, the transition region at 10% to 30% CFMFR, and the momentum-dominated region at 30% to 100% CFMFR. The chemically-dominated flame had a sharp dual-peak structure for the flame temperature, CO2 and NO concentration profiles at 25% and 50% flame length. However, the momentum-dominated region flame exhibited a dual peak structure only at 25% flame length. The decrease of flow rate from 30% to 10% CFMFR showed an increase of flame length. The LII study showed that the soot concentration increased with the decrease of the turbulence intensity in the momentum dominated region (tested on the 100% and 60% CFMFR). The cross-flow velocity had a non-monotonic effects on the flame. The evidences could be observed from the flame length and the soot concentration results. The flame length showed a decrease when the cross-flow velocity increased from 2 to 3 m/s. The numerical model was fairly adequate in qualitatively predicting a smoke point turbulent diffusion flame structure in a cross-flow and quiescent condition. The model failed in the prediction of a laminar flame. The model showed a good agreement between experimental and numerical results for O 2 concentration and flame temperature. (Abstract shortened by UMI.)
Suresh, P V; Jayanti, Sreenivas
2016-10-01
Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.
Cross-flow vortex structure and transition measurements using multi-element hot films
NASA Technical Reports Server (NTRS)
Agarwal, Naval K.; Mangalam, Siva M.; Maddalon, Dal V.; Collier, Fayette S., Jr.
1991-01-01
An experiment on a 45-degree swept wing was conducted to study three-dimensional boundary-layer characteristics using surface-mounted, micro-thin, multi-element hot-film sensors. Cross-flow vortex structure and boundary-layer transition were measured from the simultaneously acquired signals of the hot films. Spanwise variation of the root-mean-square (RMS) hot-film signal show a local minima and maxima. The distance between two minima corresponds to the stationary cross-flow vortex wavelength and agrees with naphthalene flow-visualization results. The chordwise and spanwise variation of amplified traveling (nonstationary) cross-flow disturbance characteristics were measured as Reynolds number was varied. The frequency of the most amplified cross-flow disturbances agrees with linear stability theory.
Flow visualization of lateral jet injection into swirling crossflow
NASA Technical Reports Server (NTRS)
Ferrell, G. B.; Aoki, K.; Lilley, D. G.
1985-01-01
Flow visualization experiments have been conducted to characterize the time-mean flowfield of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally-buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the trajectory and spread pattern of the jet. Gross flowfield characterization was obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow. The flow visualization results agree well with the measurements obtained elsewhere with the six-orientation single hot-wire method.
Liquid Jets in Crossflow at Elevated Temperatures and Pressures
NASA Astrophysics Data System (ADS)
Amighi, Amirreza
An experimental study on the characterization of liquid jets injected into subsonic air crossflows is conducted. The aim of the study is to relate the droplet size and other attributes of the spray, such as breakup length, position, plume width, and time to flow parameters, including jet and air velocities, pressure and temperature as well as non-dimensional variables. Furthermore, multiple expressions are defined that would summarize the general behavior of the spray. For this purpose, an experimental setup is developed, which could withstand high temperatures and pressures to simulate conditions close to those experienced inside gas turbine engines. Images are captured using a laser based shadowgraphy system similar to a 2D PIV system. Image processing is extensively used to measure droplet size and boundaries of the spray. In total 209 different conditions are tested and over 72,000 images are captured and processed. The crossflow air temperatures are 25°C, 200°C, and 300°C; absolute crossflow air pressures are 2.1, 3.8, and 5.2 bars. Various liquid and gas velocities are tested for each given temperature and pressure in order to study the breakup mechanisms and regimes. Effects of dimensional and non-dimensional variables on droplet size are presented in detail. Several correlations for the mean droplet size, which are generated in this process, are presented. In addition, the influence of non-dimensional variables on the breakup length, time, plume area, angle, width and mean jet surface thickness are discussed and individual correlations are provided for each parameter. The influence of each individual parameter on the droplet sizes is discussed for a better understanding of the fragmentation process. Finally, new correlations for the centerline, windward and leeward trajectories are presented and compared to the previously reported correlations.
Bennett, James S; Marlow, David A; Nourian, Fariba; Breay, James; Hammond, Duane
2016-01-01
Exposure control systems performance was investigated in an aircraft painting hangar. The ability of the ventilation system and respiratory protection program to limit worker exposures was examined through air sampling during painting of F/A-18C/D strike fighter aircraft, in four field surveys. Air velocities were measured across the supply filter, exhaust filter, and hangar midplane under crossflow ventilation. Air sampling conducted during painting process phases (wipe-down, primer spraying, and topcoat spraying) encompassed volatile organic compounds, total particulate matter, Cr[VI], metals, nitroethane, and hexamethylene diisocyanate, for two worker groups: sprayers and sprayer helpers ("hosemen"). One of six methyl ethyl ketone and two of six methyl isobutyl ketone samples exceeded the short term exposure limits of 300 and 75 ppm, with means 57 ppm and 63 ppm, respectively. All 12 Cr[VI] 8-hr time-weighted averages exceeded the recommended exposure limit of 1 µg/m3, 11 out of 12 exceeded the permissible exposure limit of 5 µg/m3, and 7 out of 12 exceeded the threshold limit value of 10 µg/m3, with means 38 µg/m3 for sprayers and 8.3 µg/m3 for hosemen. Hexamethylene diisocyanate means were 5.95 µg/m3 for sprayers and 0.645 µg/m3 for hosemen. Total reactive isocyanate group--the total of monomer and oligomer as NCO group mass--showed 6 of 15 personal samples exceeded the United Kingdom Health and Safety Executive workplace exposure limit of 20 µg/m3, with means 50.9 µg/m3 for sprayers and 7.29 µg/m3 for hosemen. Several exposure limits were exceeded, reinforcing continued use of personal protective equipment. The supply rate, 94.4 m3/s (200,000 cfm), produced a velocity of 8.58 m/s (157 fpm) at the supply filter, while the exhaust rate, 68.7 m3/s (146,000 cfm), drew 1.34 m/s (264 fpm) at the exhaust filter. Midway between supply and exhaust locations, the velocity was 0.528 m/s (104 fpm). Supply rate exceeding exhaust rate created re-circulations, turbulence, and fugitive emissions, while wasting energy. Smoke releases showing more effective ventilation here than in other aircraft painting facilities carries technical feasibility relevance.
Bennett, James S.; Marlow, David A.; Nourian, Fariba; Breay, James; Hammond, Duane
2016-01-01
Exposure control systems performance was investigated in an aircraft painting hangar. The ability of the ventilation system and respiratory protection program to limit worker exposures was examined through air sampling during painting of F/A-18C/D strike fighter aircraft, in four field surveys. Air velocities were measured across the supply filter, exhaust filter, and hangar midplane under crossflow ventilation. Air sampling conducted during painting process phases (wipe-down, primer spraying, and topcoat spraying) encompassed volatile organic compounds, total particulate matter, Cr[VI], metals, nitroethane, and hexamethylene diisocyanate, for two worker groups: sprayers and sprayer helpers (“hosemen”). One of six methyl ethyl ketone and two of six methyl isobutyl ketone samples exceeded the short term exposure limits of 300 and 75 ppm, with means 57 ppm and 63 ppm, respectively. All 12 Cr[VI] 8-hr time-weighted averages exceeded the recommended exposure limit of 1 µg/m3, 11 out of 12 exceeded the permissible exposure limit of 5 µg/m3, and 7 out of 12 exceeded the threshold limit value of 10 µg/m3, with means 38 µg/m3 for sprayers and 8.3 µg/m3 for hosemen. Hexamethylene diisocyanate means were 5.95 µg/m3 for sprayers and 0.645 µg/m3 for hosemen. Total reactive isocyanate group—the total of monomer and oligomer as NCO group mass—showed six of 15 personal samples exceeded the United Kingdom Health and Safety Executive workplace exposure limit of 20 µg/m3, with means 50.9 µg/m3 for sprayers and 7.29 µg/m3 for hosemen. Several exposure limits were exceeded, reinforcing continued use of personal protective equipment. The supply rate, 94.4 m3/s (200,000 cfm), produced a velocity of 8.58 m/s (157 fpm) at the supply filter, while the exhaust rate, 68.7 m3/s (146,000 cfm), drew 1.34 m/s (264 fpm) at the exhaust filter. Midway between supply and exhaust locations, the velocity was 0.528 m/s (104 fpm). Supply rate exceeding exhaust rate created re-circulations, turbulence, and fugitive emissions, while wasting energy. Smoke releases showing more effective ventilation here than in other aircraft painting facilities carries technical feasibility relevance. PMID:26698920
Nonlinear Evolution of Azimuthally Compact Crossflow-Vortex Packet over a Yawed Cone
NASA Astrophysics Data System (ADS)
Choudhari, Meelan; Li, Fei; Paredes, Pedro; Duan, Lian; NASA Langley Research Center Team; Missouri Univ of Sci; Tech Team
2017-11-01
Hypersonic boundary-layer flows over a circular cone at moderate incidence angle can support strong crossflow instability and, therefore, a likely scenario for laminar-turbulent transition in such flows corresponds to rapid amplification of high-frequency secondary instabilities sustained by finite amplitude stationary crossflow vortices. Direct numerical simulations (DNS) are used to investigate the nonlinear evolution of azimuthally compact crossflow vortex packets over a 7-degree half-angle, yawed circular cone in a Mach 6 free stream. Simulation results indicate that the azimuthal distribution of forcing has a strong influence on the stationary crossflow amplitudes; however, the vortex trajectories are nearly the same for both periodic and localized roughness height distributions. The frequency range, mode shapes, and amplification characteristics of strongly amplified secondary instabilities in the DNS are found to overlap with the predictions of secondary instability theory. The DNS computations also provide valuable insights toward the application of planar, partial-differential-equation based eigenvalue analysis to spanwise inhomogeneous, fully three-dimensional, crossflow-dominated flow configurations.
Roughness Based Crossflow Transition Control: A Computational Assessment
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; Streett, Craig L.; Carpenter, Mark H.
2009-01-01
A combination of parabolized stability equations and secondary instability theory has been applied to a low-speed swept airfoil model with a chord Reynolds number of 7.15 million, with the goals of (i) evaluating this methodology in the context of transition prediction for a known configuration for which roughness based crossflow transition control has been demonstrated under flight conditions and (ii) of analyzing the mechanism of transition delay via the introduction of discrete roughness elements (DRE). Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes, so as to weaken the growth of naturally occurring, linearly more unstable crossflow modes. Therefore, a synthesis of receptivity, linear and nonlinear growth of stationary crossflow disturbances, and the ensuing development of high frequency secondary instabilities is desirable to understand the experimentally observed transition behavior. With further validation, such higher fidelity prediction methodology could be utilized to assess the potential for crossflow transition control at even higher Reynolds numbers, where experimental data is currently unavailable.
Measurement Of Crossflow Vortex Structure
NASA Technical Reports Server (NTRS)
Maddalon, Dal V.; Agarwal, Navel K.
1994-01-01
Method developed for measuring wavelengths of crossflow vortices by using surface-mounted, microthin, multielement hot-film sensors. Provides direct and true value of wavelength of crossflow vortices at various spanwise locations without localized flow disturbances. Attainment of laminar airflow on aircraft wings has significant potential for reducing drag and increasing fuel efficiency.
Crossflow Stability and Transition Experiments in Swept-Wing Flow
NASA Technical Reports Server (NTRS)
Dagenhart, J. Ray; Saric, William S.
1999-01-01
An experimental examination of crossflow instability and transition on a 45deg swept wing was conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized by using both sublimating chemical and liquid-crystal coatings. Extensive hot-wire measurements were obtained at several measurement stations across a single vortex track. The mean and travelling wave disturbances were measured simultaneously. Stationary crossflow disturbance profiles were determined by subtracting either a reference or a span-averaged velocity profile from the mean velocity data. Mean, stationary crossflow, and traveling wave velocity data were presented as local boundary layer profiles and contour plots across a single stationary crossflow vortex track. Disturbance mode profiles and growth rates were determined. The experimental data are compared with predictions from linear stability theory.
Aeroelastic Response and Protection of Space Shuttle External Tank Cable Trays
NASA Technical Reports Server (NTRS)
Edwards, John W.; Keller, Donald F.; Schuster, David M.; Piatak, David J.; Rausch, Russ D.; Bartels, Robert E.; Ivanco, Thomas G.; Cole, Stanley R.; Spain, Charles V.
2005-01-01
Sections of the Space Shuttle External Tank Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) cable trays are shielded from potentially damaging airloads with foam Protuberance Aerodynamic Load (PAL) Ramps. Flight standard design LO2 and LH2 cable tray sections were tested with and without PAL Ramp models in the United States Air Force Arnold Engineering Development Center s (AEDC) 16T transonic wind tunnel to obtain experimental data on the aeroelastic stability and response characteristics of the trays and as part of the larger effort to determine whether the PAL ramps can be safely modified or removed. Computational Fluid Dynamic simulations of the full-stack shuttle launch configuration were used to investigate the flow characeristics around and under the cable trays without the protective PAL ramps and to define maximum crossflow Mach numbers and dynamic pressures experienced during launch. These crossflow conditions were used to establish wind tunnel test conditions which also included conservative margins. For all of the conditions and configurations tested, no aeroelastic instabilities or unacceptable dynamic response levels were encountered and no visible structural damage was experienced by any of the tested cable tray sections. Based upon this aeroelastic characterization test, three potentially acceptable alternatives are available for the LO2 cable tray PAL Ramps: Mini-Ramps, Tray Fences, or No Ramps. All configurations were tested to maximum conditions, except the LH2 trays at -15 deg. crossflow angle. This exception is the only caveat preventing the proposal of acceptable alternative configurations for the LH2 trays as well. Structural assessment of all tray loads and tray response measurements from launches following the Shuttle Return To Flight with the existing PAL Ramps will determine the acceptability of these PAL Ramp alternatives.
Winter, Joerg; Bérubé, Pierre
2017-01-01
Nanofiltration (NF) and tight ultrafiltration (tight UF) membranes are a viable treatment option for high quality drinking water production from sources with high concentrations of contaminants. To date, there is limited knowledge regarding the contribution of concentration polarization (CP) and fouling to the increase in resistance during filtration of natural organic matter (NOM) with NF and tight UF. Filtration tests were conducted with NF and tight UF membranes with molecular weight cut offs (MWCOs) of 300, 2000 and 8000 Da, and model raw waters containing different constituents of NOM. When filtering model raw waters containing high concentrations of polysaccharides (i.e., higher molecular weight NOM), the increase in resistance was dominated by fouling. When filtering model raw waters containing humic substances (i.e., lower molecular weight NOM), the increase in filtration resistance was dominated by CP. The results indicate that low MWCO membranes are better suited for NOM removal, because most of the NOM in surface waters consist mainly of humic substances, which were only effectively rejected by the lower MWCO membranes. However, when humic substances are effectively rejected, CP can become extensive, leading to a significant increase in filtration resistance by the formation of a cake/gel layer at the membrane surface. For this reason, cross-flow operation, which reduces CP, is recommended. PMID:28671604
The effect of crossflow on Taylor vortices: A model problem
NASA Technical Reports Server (NTRS)
Otto, S. R.; Bassom, Andrew P.
1993-01-01
A number of practically relevant problems involving the impulsive motion or the rapid rotation of bodies immersed in fluid are susceptible to vortex-like instability modes. Depending upon the configuration of any particular problem the stability properties of any high-wavenumber vortices can take on one of two distinct forms. One of these is akin to the structure of Gortler vortices in boundary layer flows while the other is similar to the situation for classical Taylor vortices. Both the Gortler and Taylor problems have been extensively studied when crossflow effects are excluded from the underlying base flows. Recently, studies were made concerning the influence of crossflow on Gortler modes and a linearized stability analysis is used to examine crossflow properties for the Taylor mode. This work allows us to identify the most unstable vortex as the crossflow component increases and it is shown how, like the Gortler case, only a very small crossflow component is required in order to completely stabilize the flow. Our investigation forms the basis for an extension to the nonlinear problem and is of potential applicability to a range of pertinent flows.
Cross-flow shearing effects on the trajectory of highly buoyant bent-over plumes
NASA Astrophysics Data System (ADS)
Tohidi, Ali; Kaye, Nigel Berkeley; Gollner, Michael J.
2017-11-01
The dynamics of highly buoyant plumes in cross-flow is ubiquitous throughout both industrial and environmental phenomena. The rise of smoke from a chimney, wastewater discharge into river currents, and dispersion of wildfire plumes are only a few instances. There have been many previous studies investigating the behavior of jets and highly buoyant plumes in cross-flow. So far, however, very little attention has been paid to the role of shearing effects in the boundary layer on the plume trajectory, particularly on the rise height. Numerical simulations and dimensional analysis are conducted to characterize the near- and far-field behavior of a highly buoyant plume in a boundary layer cross-flow. The results show that shear in the cross-flow leads to large differences in the rise height of the plume in relation to a uniform cross-flow, especially at far-field. This material is based upon work supported by the National Science Foundation under Grant No.1200560. Any opinions, findings, and conclusions or recommendations expressed in the material are of the authors and do not necessarily reflect the views of NSF.
Crossflow Stability and Transition Experiments in a Swept-Wing Flow. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Dagenhart, John Ray
1992-01-01
An experimental examination of crossflow instability and transition on a 45 degree swept wing is conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized using both sublimating-chemical and liquid-crystal coatings. Extensive hot-wire measurements are conducted at several measurement stations across a single vortex track. The mean and travelling-wave disturbances are measured simultaneously. Stationary-crossflow disturbance profiles are determined by subtracting either a reference or a span-averaged velocity profile from the mean-velocity data. Mean, stationary-crossflow, and travelling-wave velocity data are presented as local boundary-layer profiles and as contour plots across a single stationary-crossflow vortex track. Disturbance-mode profiles and growth rates are determined. The experimental data are compared to predictions from linear stability theory.
Optimization of Orifice Geometry for Cross-Flow Mixing in a Cylindrical Duct
NASA Technical Reports Server (NTRS)
Kroll, J. T.; Sowa, W. A.; Samuelsen, G. S.
1996-01-01
Mixing of gaseous jets in a cross-flow has significant applications in engineering, one example of which is the dilution zone of a gas turbine combustor. Despite years of study, the design of the jet injection in combustors is largely based on practical experience. The emergence of NO(x) regulations for stationary gas turbines and the anticipation of aero-engine regulations requires an improved understanding of jet mixing as new combustor concepts are introduced. For example, the success of the staged combustor to reduce the emission of NO(x) is almost entirely dependent upon the rapid and complete dilution of the rich zone products within the mixing section. It is these mixing challenges to which the present study is directed. A series of experiments was undertaken to delineate the optimal mixer orifice geometry. A cross-flow to core-flow momentum-flux ratio of 40 and a mass flow ratio of 2.5 were selected as representative of a conventional design. An experimental test matrix was designed around three variables: the number of orifices, the orifice length-to- width ratio, and the orifice angle. A regression analysis was performed on the data to arrive at an interpolating equation that predicted the mixing performance of orifice geometry combinations within the range of the test matrix parameters. Results indicate that the best mixing orifice geometry tested involves eight orifices with a long-to-short side aspect ratio of 3.5 at a twenty-three degree inclination from the center-line of the mixing section.
NASA Technical Reports Server (NTRS)
Rozendaal, R. A.
1986-01-01
The linear boundary layer stability analyses and their correlation with data of 18 cases from a natural laminar flow (NLF) flight test program using a Cessna Citation 3 business jet are described. The transition point varied from 5% to 35% chord for these conditions, and both upper and lower wing surfaces were included. Altitude varied from 10,000 to 43,000 ft and Mach number from 0.3 to 0.8. Four cases were at nonzero sideslip. Although there was much scatter in the results, the analyses of boundary layer stability at the 18 conditions led to the conclusion that crossflow instability was the primary cause of transition. However, the sideslip cases did show some interaction of crossflow and Tollmien-Schlichting disturbances. The lower surface showed much lower Tollmien-Schlichting amplification at transition than the upper surface, but similar crossflow amplifications. No relationship between Mach number and disturbance amplification at transition could be found. The quality of these results is open to question from questionable wing surface quality, inadequate density of transition sensors on the wing upper surface, and an unresolved pressure shift in the wing pressure data. The results of this study show the need for careful preparation for transition experiments. Preparation should include flow analyses of the test surface, boundary layer disturbance amplification analyses, and assurance of adequate surface quality in the test area. The placement of necessary instruments and usefulness of the resulting data could largely be determined during the pretest phase.
Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.
1994-01-01
This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.
An Experimental Study of Turbulent Nonpremixed Jet Flames in Crossflow Under Low-Gravity Conditions
NASA Astrophysics Data System (ADS)
Boxx, Isaac G.; Idicheria, Cherian A.; Clemens, Noel T.
2002-11-01
We will present results of a study of turbulent nonpremixed jet flames in crossflow under normal and low gravity conditions. This enables us to experimentally separate the competing influences of initial jet-to-crossflow momentum ratio and buoyancy effects on the flame structure. The low gravity conditions (10-30 milli-g) are achieved by dropping a self-contained jet flame rig in the University of Texas 1.25-second drop tower facility. This rig uses a small blow-through wind tunnel to create the crossflow. The jet flames issue from an orifice that is flush with the wall. High-speed CCD imaging of jet flame luminosity is the primary diagnostic. We present results for hydrocarbon jet flames with initial jet-to-crossflow momentum ratios of 10-20. Results such as flame trajectory, flame length, large scale structure and flame tip dynamics will be presented.
Crossflow effects on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer
NASA Technical Reports Server (NTRS)
Fu, Yibin; Hall, Philip
1992-01-01
The effects of crossflow on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer with pressure gradient are studied. Attention is focused on the inviscid mode trapped in the temperature adjustment layer; this mode has greater growth rate than any other mode. The eigenvalue problem which governs the relationship between the growth rate, the crossflow amplitude, and the wavenumber is solved numerically, and the results are then used to clarify the effects of crossflow on the growth rate of inviscid Goertler vortices. It is shown that crossflow effects on Goertler vortices are fundamentally different for incompressible and hypersonic flows. The neutral mode eigenvalue problem is found to have an exact solution, and as a by-product, we have also found the exact solution to a neutral mode eigenvalue problem which was formulated, but unsolved before, by Bassom and Hall (1991).
Predicting The Intrusion Layer From Deep Ocean Oil Spills
NASA Astrophysics Data System (ADS)
Wang, Dayang; Chow, Aaron; Adams, E. Eric
2015-11-01
Oil spills from deep ocean blowout events motivate our study of multiphase plumes in a water column. Key to understanding the long-term fate of these plumes is the ability to predict the depth and persistence of intrusion layers. While intrusion layers from multiphase plumes have been studied under stagnant conditions, their behavior in the presence of crossflow, especially in mild crossflow, remains poorly understood. The classical classification of plume behavior identifies two regimes: crossflow-dominant and stratification-dominant--but it does not account for the interplay between the two effects, leaving the transition region unexplored. We conduct laboratory tank experiments to investigate the behavior of intrusion layers under the simultaneous action of crossflow and stratification. Our experiments use an inverted frame of reference, using glass beads with a range of sizes to simulate oil droplets. We find that crossflow creates enhanced mixing, which in turn leads to a shallower intrusion layer of the released fluid (correspondingly, a deeper layer in the case of a deep ocean blowout). We develop a mathematical formulation that extends previous models to account for crossflow effects, and use field observations to validate the analytical and experimental findings.
Observations of Traveling Crossflow Resonant Triad Interactions on a Swept Wing
NASA Technical Reports Server (NTRS)
Eppink, Jenna L.; Wlezien, Richard
2012-01-01
Experimental evidence indicates the presence of a triad resonance interaction between traveling crossflow modes in a swept wing flow. Results indicate that this interaction occurs when the stationary and traveling crossflow modes have similar and relatively low amplitudes (approx.1% to 6% of the total freestream velocity). The resonant interaction occurs at instability amplitudes well below those typically known to cause transition, yet transition is observed to occur just downstream of the resonance. In each case, two primary linearly unstable traveling crossflow modes are nonlinearly coupled to a higher frequency linearly stable mode at the sum of their frequencies. The higher-frequency mode is linearly stable and presumed to exist as a consequence of the interaction of the two primary modes. Autoand cross-bicoherence are used to determine the extent of phase-matching between the modes, and wavenumber matching confirms the triad resonant nature of the interaction. The bicoherence results indicate a spectral broadening mechanism and the potential path to early transition. The implications for laminar flow control in swept wing flows are significant. Even if stationary crossflow modes remain subcritical, traveling crossflow interactions can lead to early transition.
Influence of Stationary Crossflow Modulation on Secondary Instability
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Paredes, Pedro
2016-01-01
A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow involves the breakdown of stationary crossflow vortices via high frequency secondary instability. A majority of the prior research on this secondary instability has focused on crossflow vortices with a single dominant spanwise wavelength. This paper investigates the effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength by a subharmonic stationary mode. Secondary instability of the modulated crossflow pattern is studied using planar, partial-differential-equation based eigenvalue analysis. Computations reveal that weak modulation by the first subharmonic of the input stationary mode leads to mode splitting that is particularly obvious for Y-type secondary modes that are driven by the wall-normal shear of the basic state. Thus, for each Y mode corresponding to the fundamental wavelength of results in unmodulated train of crossflow vortices, the modulated flow supports a pair of secondary modes with somewhat different amplification rates. The mode splitting phenomenon suggests that a more complex stationary modulation such as that induced by natural surface roughness would yield a considerably richer spectrum of secondary instability modes. Even modest levels of subharmonic modulation are shown to have a strong effect on the overall amplification of secondary disturbances, particularly the Z-modes driven by the spanwise shear of the basic state. Preliminary computations related to the nonlinear breakdown of these secondary disturbances provide interesting insights into the process of crossflow transition in the presence of the first subharmonic of the dominant stationary vortex.
NASA Astrophysics Data System (ADS)
McDonald, Brian A.
A method for developing an erosive burning model for use in solid propellant design-and-analysis interior ballistics codes is described and evaluated. Using Direct Numerical Simulation, the primary mechanisms controlling erosive burning (turbulent heat transfer, and finite rate reactions) have been studied independently through the development of models using finite rate chemistry, and infinite rate chemistry. Both approaches are calibrated to strand burn rate data by modeling the propellant burning in an environment with no cross-flow, and adjusting thermophysical properties until the predicted regression rate matches test data. Subsequent runs are conducted where the cross-flow is increased from M = 0.0 up to M = 0.8. The resulting relationship of burn rate increase versus Mach Number is used in an interior ballistics analysis to compute the chamber pressure of an existing solid rocket motor. The resulting predictions are compared to static test data. Both the infinite rate model and the finite rate model show good agreement when compared to test data. The propellant considered is an AP/HTPB with an average AP particle size of 37 microns. The finite rate model shows that as the cross-flow increases, near wall vorticity increases due to the lifting of the boundary caused by the side injection of gases from the burning propellant surface. The point of maximum vorticity corresponds to the outer edge of the APd-binder flame. As the cross-flow increases, the APd-binder flame thickness becomes thinner; however, the point of highest reaction rate moves only slightly closer to the propellant surface. As such, the net increase of heat transfer to the propellant surface due to finite rate chemistry affects is small. This leads to the conclusion that augmentation of thermal transport properties and the resulting heat transfer increase due to turbulence dominates over combustion chemistry in the erosive burning problem. This conclusion is advantageous in the development of future models that can be calibrated to heat transfer conditions without the necessity for finite rate chemistry. These results are considered applicable for propellants with small, evenly distributed AP particles where the assumption of premixed APd-binder gases is reasonable.
Viability of Cross-Flow Fan for Vertical Take-Off and Landing Aircraft
2012-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited VIABILITY OF CROSS...FLOW FAN FOR VERTICAL TAKE-OFF AND LANDING AIRCRAFT by Christopher T. Delagrange June 2012 Thesis Advisor: Garth V. Hobson Second...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Viability of Cross-Flow Fan for Vertical Take-Off and Landing Aircraft 5. FUNDING
Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air
NASA Technical Reports Server (NTRS)
Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott
2000-01-01
The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet trajectory analysis overpredicts the liquid mass penetration, and indicates a need for a more rigorous model to account for the three-dimensional mixing field induced by the jet-crossflow interaction. Nonetheless, the general procedures and criteria that are outlined can be used to efficiently assess and compare the quality of sprays formed under different conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsuddin Ilias
Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.« less
NASA Astrophysics Data System (ADS)
Nishi, Yasuyuki; Hatano, Kentaro; Inagaki, Terumi
2017-10-01
Recently, small hydroelectric generators have gained attention as a further development in water turbine technology for ultra low head drops in open channels. The authors have evaluated the application of cross-flow water turbines in open channels as an undershot type after removing the casings and guide vanes to substantially simplify these water turbines. However, because undershot cross-flow water turbines are designed on the basis of cross-flow water turbine runners used in typical pipelines, it remains unclear whether the number of blades has an effect on the performance or flow fields. Thus, in this research, experiments and numerical analyses are employed to study the performance and flow fields of undershot cross-flow water turbines with varying number of blades. The findings show that the turbine output and torque are lower, the fluctuation is significantly higher, and the turbine efficiency is higher for runners with 8 blades as opposed to those with 24 blades.
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; Streett, Craig L.; Carpenter, Mark H.
2011-01-01
A combination of parabolized stability equations and secondary instability theory has been applied to a low-speed swept airfoil model with a chord Reynolds number of 7.15 million, with the goals of (i) evaluating this methodology in the context of transition prediction for a known configuration for which roughness based crossflow transition control has been demonstrated under flight conditions and (ii) of analyzing the mechanism of transition delay via the introduction of discrete roughness elements (DRE). Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes, so as to weaken the growth of naturally occurring, linearly more unstable crossflow modes. Therefore, a synthesis of receptivity, linear and nonlinear growth of stationary crossflow disturbances, and the ensuing development of high frequency secondary instabilities is desirable to understand the experimentally observed transition behavior. With further validation, such higher fidelity prediction methodology could be utilized to assess the potential for crossflow transition control at even higher Reynolds numbers, where experimental data is currently unavailable.
Some Effects of Leading-Edge Sweep on Boundary-Layer Transition at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Chapman, Gray T.
1961-01-01
The effects of crossflow and shock strength on transition of the laminar boundary layer behind a swept leading edge have been investigated analytically and with the aid of available experimental data. An approximate method of determining the crossflow Reynolds number on a leading edge of circular cross section at supersonic speeds is presented. The applicability of the critical crossflow criterion described by Owen and Randall for transition on swept wings in subsonic flow was examined for the case of supersonic flow over swept circular cylinders. A wide range of applicability of the subsonic critical values is indicated. The corresponding magnitude of crossflow velocity necessary to cause instability on the surface of a swept wing at supersonic speeds was also calculated and found to be small. The effects of shock strength on transition caused by Tollmien-Schlichting type of instability are discussed briefly. Changes in local Reynolds number, due to shock strength, were found analytically to have considerably more effect on transition caused by Tollmien-Schlichting instability than on transition caused by crossflow instability. Changes in the mechanism controlling transition from Tollmien-Schlichting instability to crossflow instability were found to be possible as a wing is swept back and to result in large reductions in the length of laminar flow.
Summary of model VTOL lift fan tests conducted at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Diedrich, J. H.
1975-01-01
The purpose of the tests was to obtain overall performance and influencing factors as well as detailed measurements of the internal flow characteristics. The first experiment consisted of crossflow tests of a 15-inch diameter fan installed in a two-dimensional wing. Tests were run with and without exit louvers over a range of tunnel speeds, fan speeds, and wing angle of attack. The wing was used for a study of installation effects on lift fan performance. The model tested consisted of three 5.5-inch diameter tip-turbine driven model VTOL lift fans mounted chord-wise in the two-dimensional wing to simulate a pod-type array. Several inlet and exit cover door configurations and an adjacent fuselage panel were tested. For the third program, a pod was attached to the wing, and an investigation was conducted of the effect of design tip speed on the aerodynamic performance and noise of a 15-inch diameter lift fan-in-pod under static and crossflow conditions. Three single VTOL lift fan stages were designed for the same overall total pressure ratio but at three different rotor tip speeds.
Experimental study of a vertical jet in a vegetated crossflow.
Ben Meftah, Mouldi; De Serio, Francesca; Malcangio, Daniela; Mossa, Michele; Petrillo, Antonio Felice
2015-12-01
Aquatic ecosystems have long been used as receiving environments of wastewater discharges. Effluent discharge in a receiving water body via single jet or multiport diffuser, reflects a number of complex phenomena, affecting the ecosystem services. Discharge systems need to be designed to minimize environmental impacts. Therefore, a good knowledge of the interaction between effluents, discharge systems and receiving environments is required to promote best environmental management practice. This paper reports innovative 3D flow velocity measurements of a jet discharged into an obstructed crossflow, simulating natural vegetated channel flows for which correct environmental management still lacks in literature. In recent years, numerous experimental and numerical studies have been conducted on vegetated channels, on the one hand, and on turbulent jets discharged into unvegetated crossflows, on the other hand. Despite these studies, however, there is a lack of information regarding jets discharged into vegetated crossflow. The present study aims at obtaining a more thorough understanding of the interaction between a turbulent jet and an obstructed crossflow. In order to achieve such an objective, a series of laboratory experiments was carried out in the Department of Civil, Environmental, Building Engineering and Chemistry of the Technical University of Bari - Italy. The physical model consists of a vertical jet discharged into a crossflow, obstructed by an array of vertical, rigid, circular and threaded steel cylinders. Analysis of the measured flow velocities shows that the array of emergent rigid vegetation significantly affects the jet and the ambient flow structures. It reduces the mean channel velocity, allowing the jet to penetrate higher into the crossflow. It significantly increases the transversal flow motion, promoting a major lateral spreading of the jet within the crossflow. Due to the vegetation array effects, the jet undergoes notable variations in its vortical structure. The variation of the flow patterns affects the mixing process and consequently the dilution of pollutants discharged in receiving water bodies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ivancev-Tumbas, Ivana; Hobby, Ralph; Küchle, Benjamin; Panglisch, Stefan; Gimbel, Rolf
2008-09-01
Ultrafiltration is classified as a low-pressure membrane technology which effectively removes particulate matter and microorganisms and to a certain extent dissolved organic matter (15-25%) and colour. The technology has been optimized and is becoming competitive compared to conventional processes for larger scale plant capacities. In combination with activated carbon it is an effective barrier regarding the removal of synthetic organic chemicals. Growing interest in ultrafiltration raises the question of better usage of the adsorption capacity of powdered activated carbon (PAC) used in combination with this low-pressure membrane technique. This paper presents a pilot plant study of different PAC dosing procedures within a combined hybrid membrane IN/OUT process for removal of p-nitrophenol (PNP) from water (c(0)=1mg/L) under real case conditions (e.g. usage of the same module for the whole duration of the experiment, backwashing with permeate water, no separate saturation of the membrane with substance without presence of carbon). p-Nitrophenol was chosen as an appropriate test substance to assess the efficiency of different operation modes. Dead-end and cross-flow filtration were compared with respect to different PAC dosing procedures: continuous dosing into a continuously stirred tank reactor (CSTR) in front of the module and direct dosing into the pipe in front of the module (continuous, single-pulse and multi-pulse dosing). There was no advantage in cross-flow mode over dead-end referring to PNP concentration in the permeate. Relating to the carbon dosing procedure, the best results were obtained for continuous PAC addition. The option of dosing directly into the pipe has the advantage of no additional tank being necessary. In the case of single-pulse dosing, the formation of a carbon layer on the membrane surface was assumed and an LDF model applied for a simplified estimation of the "breakthrough behaviour" in the thus formed "PAC filter layer".
Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations
Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; ...
2016-05-31
Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.
Crossflow between subchannels in a 5 x 5 rod-bundle geometry
NASA Astrophysics Data System (ADS)
Lee, Jungjin; Park, Hyungmin
2017-11-01
In the present study, we experimentally investigate the single-phase (water as a working fluid) flow in a vertical 5 x 5 rod-bundle geometry using a particle image velociemtry, especially focusing on the crossflow phenomena between subchannels. This crossflow phenomena is very important in determining the performance and safety of nuclear power plant. To measure the flow behind the rod, it is made of FEP (Fluorinated Ethylene Propylene) to achieve the index matching. The ratio of pitch between rods and rod diameter is 1.4, and the considered Reynolds number based on a hydraulic diameter of a channel and an axial bulk velocity is 10000. Also, the typical grid spacer is installed periodically along the streamwise direction. Depending on the location of subchannel (e.g., distance to the side wall or grid spacer), the flow (turbulence) statistics show large variations that will be discussed in detail. Furthermore, we will suggest a modified crossflow model that can explain the varying crossflow phenomena more clearly. Supported by NRF Grant (NRF-2016M2B2A9A02945068) of the Korean government.
Oberholster, A; Carstens, L M; du Toit, W J
2013-06-01
The effect of fining and cross-flow microfiltration on the phenolic composition of red wine was investigated. Both gelatine (G) and egg albumin (EA) fining decreased the mean degree of polymerisation (mDP) of tannin significantly by 26.4% and 25.2%, respectively, compared to the control (C). Cross-flow microfiltration (CF) also decreased the mDP significantly by 25%. Thus, the fining agents and cross-flow microfiltration selectively removed the highly polymerised phenols. After 3.5 months of bottle ageing, differences between the different treatments and the control decreased. CF had the most significant effect on the flavan-3-ol and polymeric phenol (tannin) content of the wines compared to the control followed by G fining. CF and EA treatments significantly decreased the total pigment content compared to C. CF was also the only treatment that could be distinguished from the other treatments by sensory analysis. All treatments improved clarity of the wines with cross-flow microfiltration having the largest effect. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Furlong, K. L.; Fearn, R. L.
1983-01-01
A method is proposed to combine a numerical description of a jet in a crossflow with a lifting surface panel code to calculate the jet/aerodynamic-surface interference effects on a V/STOL aircraft. An iterative technique is suggested that starts with a model for the properties of a jet/flat plate configuration and modifies these properties based on the flow field calculated for the configuration of interest. The method would estimate the pressures, forces, and moments on an aircraft out of ground effect. A first-order approximation to the method suggested is developed and applied to two simple configurations. The first-order approximation is a noniterative precedure which does not allow for interactions between multiple jets in a crossflow and also does not account for the influence of lifting surfaces on the jet properties. The jet/flat plate model utilized in the examples presented is restricted to a uniform round jet injected perpendicularly into a uniform crossflow for a range of jet-to-crossflow velocity ratios from three to ten.
Crossflow Instability on a Wedge-Cone at Mach 3.5
NASA Technical Reports Server (NTRS)
Beeler, George B.; Wilkinson, Stephen P.; Balakumar, P.; McDaniel, Keith S.
2012-01-01
As a follow-on activity to the HyBoLT flight experiment, a six degree half angle wedge-cone model at zero angle of attack has been employed to experimentally and computationally study the boundary layer crossflow instability at Mach 3.5 under low disturbance freestream conditions. Computed meanflow and linear stability analysis results are presented along with corresponding experimental Pitot probe data. Using a model-mounted probe survey apparatus, data acquired to date show a well defined stationary crossflow vortex pattern on the flat wedge surface. This effort paves the way for additional detailed, calibrated flow field measurements of the crossflow instability, both stationary and traveling modes, and transition-to-turbulence under quiet flow conditions as a means of validating existing stability theory and providing a foundation for dynamic flight instrumentation development.
Traveling Crossow Instability for HIFiRE-5 in a Quiet Hypersonic Wind Tunnel (Postprint)
2013-06-01
scale model of the 2:1 elliptic cone HIFiRE-5 flight vehicle was used to investigate the traveling crossflow instability at Mach 6 in Purdue...Force Research Laboratory, Air Vehicles Directorate 2130 8th St., WPAFB, OH 45433-7542, USA Abstract A scale model of the 2:1 elliptic cone HIFiRE-5...flight vehicle was used to investigate the traveling crossflow instability at Mach 6 in Purdue University’s Mach-6 quiet wind tunnel. Traveling crossflow
A numerical study of the contrarotating vortex pair associated with a jet in a crossflow
NASA Technical Reports Server (NTRS)
Roth, Karlin R.; Fearn, Richard L.; Thakur, Siddharth S.
1989-01-01
An implicit two-factor partially flux split solver for the thin-layer Navier-Stokes equations is used to solve the aerodynamic/propulsive interaction between a subsonic jet exhausting perpendicularly through a flat plat plate into a crossflow. The algorithm is applied to flows with a range of jet to crossflow velocity ratios between 4 and 8. The computed velocity field is analyzed and comparisons are made with experimentally determined properties of the contrarotating vortex pair.
Cross-flow turbines: physical and numerical model studies towards improved array simulations
NASA Astrophysics Data System (ADS)
Wosnik, M.; Bachant, P.
2015-12-01
Cross-flow, or vertical-axis turbines, show potential in marine hydrokinetic (MHK) and wind energy applications. As turbine designs mature, the research focus is shifting from individual devices towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow turbines, or taking advantage of constructive wake interaction for cross-flow turbines. Numerical simulations are generally better suited to explore the turbine array design parameter space, as physical model studies of large arrays at large model scale would be expensive. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries, the turbines' interaction with the energy resource needs to be parameterized, or modeled. Most models in use today, e.g. actuator disk, are not able to predict the unique wake structure generated by cross-flow turbines. Experiments were carried out using a high-resolution turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier--Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An additional sub-model is considered for injecting turbulence model scalar quantities based on actuator line element loading. Results are presented for the simulation of performance and wake dynamics of axial- and cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET grant 1150797.
NASA Astrophysics Data System (ADS)
Wosnik, M.; Bachant, P.
2014-12-01
Cross-flow turbines, often referred to as vertical-axis turbines, show potential for success in marine hydrokinetic (MHK) and wind energy applications, ranging from small- to utility-scale installations in tidal/ocean currents and offshore wind. As turbine designs mature, the research focus is shifting from individual devices to the optimization of turbine arrays. It would be expensive and time-consuming to conduct physical model studies of large arrays at large model scales (to achieve sufficiently high Reynolds numbers), and hence numerical techniques are generally better suited to explore the array design parameter space. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries (e.g., grid resolution into the viscous sublayer on turbine blades), the turbines' interaction with the energy resource (water current or wind) needs to be parameterized, or modeled. Models used today--a common model is the actuator disk concept--are not able to predict the unique wake structure generated by cross-flow turbines. This wake structure has been shown to create "constructive" interference in some cases, improving turbine performance in array configurations, in contrast with axial-flow, or horizontal axis devices. Towards a more accurate parameterization of cross-flow turbines, an extensive experimental study was carried out using a high-resolution turbine test bed with wake measurement capability in a large cross-section tow tank. The experimental results were then "interpolated" using high-fidelity Navier--Stokes simulations, to gain insight into the turbine's near-wake. The study was designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. The end product of this work will be a cross-flow turbine actuator line model to be used as an extension to the OpenFOAM computational fluid dynamics (CFD) software framework, which will likely require modifications to commonly-used dynamic stall models, in consideration of the turbines' high angle of attack excursions during normal operation.
Investigation of Blade Angle of an Open Cross-Flow Runner
NASA Astrophysics Data System (ADS)
Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi
2015-04-01
The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.
NASA Technical Reports Server (NTRS)
Bain, D. B.; Smith, C. E.; Holdeman, J. D.
1992-01-01
A CFD study was performed to analyze the mixing potential of opposed rows of staggered jets injected into confined crossflow in a rectangular duct. Three jet configurations were numerically tested: (1) straight (0 deg) slots; (2) perpendicular slanted (45 deg) slots angled in opposite directions on top and bottom walls; and (3) parallel slanted (45 deg) slots angled in the same direction on top and bottom walls. All three configurations were tested at slot spacing-to-duct height ratios (S/H) of 0.5, 0.75, and 1.0; a jet-to-mainstream momentum flux ratio (J) of 100; and a jet-to-mainstream mass flow ratio of 0.383. Each configuration had its best mixing performance at S/H of 0.75. Asymmetric flow patterns were expected and predicted for all slanted slot configurations. The parallel slanted slot configuration was the best overall configuration at x/H of 1.0 for S/H of 0.75.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dearing, J F; Nelson, W R; Rose, S D
Computational thermal-hydraulic models of a 19-pin, electrically heated, wire-wrap liquid-metal fast breeder reactor test bundle were developed using two well-known subchannel analysis codes, COBRA III-C and SABRE-1 (wire-wrap version). These two codes use similar subchannel control volumes for the finite difference conservation equations but vary markedly in solution strategy and modeling capability. In particular, the empirical wire-wrap-forced diversion crossflow models are different. Surprisingly, however, crossflow velocity predictions of the two codes are very similar. Both codes show generally good agreement with experimental temperature data from a test in which a large radial temperature gradient was imposed. Differences between data andmore » code results are probably caused by experimental pin bowing, which is presently the limiting factor in validating coded empirical models.« less
Excitation of Crossflow Instabilities in a Swept Wing Boundary Layer
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Choudhari, Meelan; Li, Fei; Streett, Craig L.; Chang, Chau-Lyan
2010-01-01
The problem of crossflow receptivity is considered in the context of a canonical 3D boundary layer (viz., the swept Hiemenz boundary layer) and a swept airfoil used recently in the SWIFT flight experiment performed at Texas A&M University. First, Hiemenz flow is used to analyze localized receptivity due to a spanwise periodic array of small amplitude roughness elements, with the goal of quantifying the effects of array size and location. Excitation of crossflow modes via nonlocalized but deterministic distribution of surface nonuniformity is also considered and contrasted with roughness induced acoustic excitation of Tollmien-Schlichting waves. Finally, roughness measurements on the SWIFT model are used to model the effects of random, spatially distributed roughness of sufficiently small amplitude with the eventual goal of enabling predictions of initial crossflow disturbance amplitudes as functions of surface roughness parameters.
NASA Astrophysics Data System (ADS)
Audier, P.; Fénot, M.; Bénard, N.; Moreau, E.
2016-02-01
The case presented here deals with plasma flow control applied to a cross-flow configuration, more specifically to a film cooling system. The ability of a plasma dielectric barrier discharge actuator for film cooling effectiveness enhancement is investigated through an experimental set-up, including a film injection from an elongated slot into a thermally uniform cross-flow. Two-dimensional particle image velocimetry and infrared-thermography measurements are performed for three different blowing ratios of M = 0.4, 0.5, and 1. Results show that the effectiveness can be increased when the discharge is switched on, as predicted by the numerical results available in literature. Whatever the blowing ratio, the actuator induces a deflection of the jet flow towards the wall, increases its momentum, and delays its diffusion in the cross-flow.
Particle image and acoustic Doppler velocimetry analysis of a cross-flow turbine wake
NASA Astrophysics Data System (ADS)
Strom, Benjamin; Brunton, Steven; Polagye, Brian
2017-11-01
Cross-flow turbines have advantageous properties for converting kinetic energy in wind and water currents to rotational mechanical energy and subsequently electrical power. A thorough understanding of cross-flow turbine wakes aids understanding of rotor flow physics, assists geometric array design, and informs control strategies for individual turbines in arrays. In this work, the wake physics of a scale model cross-flow turbine are investigated experimentally. Three-component velocity measurements are taken downstream of a two-bladed turbine in a recirculating water channel. Time-resolved stereoscopic particle image and acoustic Doppler velocimetry are compared for planes normal to and distributed along the turbine rotational axis. Wake features are described using proper orthogonal decomposition, dynamic mode decomposition, and the finite-time Lyapunov exponent. Consequences for downstream turbine placement are discussed in conjunction with two-turbine array experiments.
Synthetic Jets in Cross-flow. Part 1; Round Jet
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Milanovic, Ivana M.
2003-01-01
Results of an experimental investigation on synthetic jets from round orifices with and without cross-flow are presented. Jet Reynolds number up to 46,000 with a fully turbulent approach boundary layer, and Stokes number up to 400. are covered. The threshold of stroke length for synthetic jet formation. in the absence of the cross-flow, is found to be Lo /D approximately 0.5. Above Lo /D is approximately 10, the profiles of normalized centerline mean velocity appear to become invariant. It is reasoned that the latter threshold may be related to the phenomenon of saturation of impulsively generated vortices. In the presence of the cross-flow, the penetration height of a synthetic jet is found to depend on the momentum- flux ratio . When this ratio is defined in terms of the maximum jet velocity and the cross-flow velocity. not only all data collapse but also the jet trajectory is predicted well by correlation equation available for steady jets-in-cross-flow. Distributions of mean velocity, streamwise vorticity as well as turbulence intensity for a synthetic jet in cross-flow are found to be similar to those of a steady jet-in-cross-flow. A pair of counter-rotating streamwise vortices, corresponding to the bound vortex pair of the steady case, is clearly observed. Mean velocity distribution exhibits a dome of low momentum fluid pulled up from the boundary layer, and the entire domain is characterized by high turbulence.
Multi-mode evaluation of power-maximizing cross-flow turbine controllers
Forbush, Dominic; Cavagnaro, Robert J.; Donegan, James; ...
2017-09-21
A general method for predicting and evaluating the performance of three candidate cross-flow turbine power-maximizing controllers is presented in this paper using low-order dynamic simulation, scaled laboratory experiments, and full-scale field testing. For each testing mode and candidate controller, performance metrics quantifying energy capture (ability of a controller to maximize power), variation in torque and rotation rate (related to drive train fatigue), and variation in thrust loads (related to structural fatigue) are quantified for two purposes. First, for metrics that could be evaluated across all testing modes, we considered the accuracy with which simulation or laboratory experiments could predict performancemore » at full scale. Second, we explored the utility of these metrics to contrast candidate controller performance. For these turbines and set of candidate controllers, energy capture was found to only differentiate controller performance in simulation, while the other explored metrics were able to predict performance of the full-scale turbine in the field with various degrees of success. Finally, effects of scale between laboratory and full-scale testing are considered, along with recommendations for future improvements to dynamic simulations and controller evaluation.« less
Multi-mode evaluation of power-maximizing cross-flow turbine controllers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbush, Dominic; Cavagnaro, Robert J.; Donegan, James
A general method for predicting and evaluating the performance of three candidate cross-flow turbine power-maximizing controllers is presented in this paper using low-order dynamic simulation, scaled laboratory experiments, and full-scale field testing. For each testing mode and candidate controller, performance metrics quantifying energy capture (ability of a controller to maximize power), variation in torque and rotation rate (related to drive train fatigue), and variation in thrust loads (related to structural fatigue) are quantified for two purposes. First, for metrics that could be evaluated across all testing modes, we considered the accuracy with which simulation or laboratory experiments could predict performancemore » at full scale. Second, we explored the utility of these metrics to contrast candidate controller performance. For these turbines and set of candidate controllers, energy capture was found to only differentiate controller performance in simulation, while the other explored metrics were able to predict performance of the full-scale turbine in the field with various degrees of success. Finally, effects of scale between laboratory and full-scale testing are considered, along with recommendations for future improvements to dynamic simulations and controller evaluation.« less
Wardrip, Nathaniel C; Arnusch, Christopher J
2016-02-13
Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes.
Wardrip, Nathaniel C.; Arnusch, Christopher J.
2016-01-01
Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes. PMID:26968008
Optimization of Orifice Geometry for Cross-Flow Mixing in a Cylindrical Duct
NASA Technical Reports Server (NTRS)
Sowa, W. A.; Kroll, J. T.; Samuelsen, G. S.; Holdeman, J. D.
1994-01-01
Mixing of gaseous jets in a cross-flow has significant applications in engineering, one example of which is the dilution zone of a gas turbine combustor. Despite years of study, the design of jet injection in combustors is largely based on practical experience. A series of experiments was undertaken to delineate the optimal mixer orifice geometry. A cross-flow to core-flow momentum-flux ratio of 40 and a mass flow ratio of 2.5 were selected as representative of an advanced design. An experimental test matrix was designed around three variables: the number of orifices, the orifice aspect ratio (long-to-short dimension), and the orifice angle. A regression analysis was performed on the data to arrive at an interpolating equation that predicted the mixing performance of orifice geometry combinations within the range of the test matrix parameters. Results indicate that mixture uniformity is a non-linear function of the number of orifices, the orifice aspect ratio, and the orifice angle. Optimum mixing occurs when the asymptotic mean jet trajectories are in the range of 0.35 less than r/R less than 0.5 (where r = 0 is at the mixer wall) at z/R = 1.0. At the optimum number of orifices, the difference between shallow-angled slots with large aspect ratios and round holes is minimal and either approach will lead to good mixing performance. At the optimum number of orifices, it appears possible to have two local optimums where one corresponds to an aspect ratio of 1.0 and the other to a high aspect ratio.
Fluid-flow of a row of jets in crossflow - A numerical study
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Benson, T. J.
1992-01-01
A detailed computer-visualized flow field of a row of jets in a confined crossflow is presented. The Reynolds averaged Navier-Stokes equations are solved using a finite volume method that incorporates a partial differential equation for incremental pressure to obtain a divergence-free flow field. The turbulence is described by a multiple-time-scale turbulence model. The computational domain includes the upstream region of the circular jet so that the interaction between the jet and the crossflow is simulated accurately. It is shown that the row of jets in the crossflow is characterized by a highly complex flow field that includes a horse-shoe vortex and two helical vortices whose secondary velocity components are co-rotating in space. It is also shown that the horse-shoe vortex is a ring of reversed flows located along the circumference of the jet exit.
Stability theory applications to laminar-flow control
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.
1987-01-01
In order to design Laminar Flow Control (LFC) configurations, reliable methods are needed for boundary-layer transition predictions. Among the available methods, there are correlations based upon R sub e, shape factors, Goertler number and crossflow Reynolds number. The most advanced transition prediction method is based upon linear stability theory in the form of the e sup N method which has proven to be successful in predicting transition in two- and three-dimensional boundary layers. When transition occurs in a low disturbance environment, the e sup N method provides a viable design tool for transition prediction and LFC in both 2-D and 3-D subsonic/supersonic flows. This is true for transition dominated by either TS, crossflow, or Goertler instability. If Goertler/TS or crossflow/TS interaction is present, the e sup N will fail to predict transition. However, there is no evidence of such interaction at low amplitudes of Goertler and crossflow vortices.
Pervaporation is a membrane technology using & dense, nonporous polymeric film to separate contaminated water from a vacuum source. The membrane preferentially partitions the volatile organic compounds (VOC) organic phase used In this test This process has proven to be an alterna...
A Spreadsheet for the Mixing of a Row of Jets with a Confined Crossflow
NASA Technical Reports Server (NTRS)
Holderman, J. D.; Smith, T. D.; Clisset, J. R.; Lear, W. E.
2005-01-01
An interactive computer code, written with a readily available software program, Microsoft Excel (Microsoft Corporation, Redmond, WA) is presented which displays 3 D oblique plots of a conserved scalar distribution downstream of jets mixing with a confined crossflow, for a single row, double rows, or opposed rows of jets with or without flow area convergence and/or a non-uniform crossflow scalar distribution. This project used a previously developed empirical model of jets mixing in a confined crossflow to create an Microsoft Excel spreadsheet that can output the profiles of a conserved scalar for jets injected into a confined crossflow given several input variables. The program uses multiple spreadsheets in a single Microsoft Excel notebook to carry out the modeling. The first sheet contains the main program, controls for the type of problem to be solved, and convergence criteria. The first sheet also provides for input of the specific geometry and flow conditions. The second sheet presents the results calculated with this routine to show the effects on the mixing of varying flow and geometric parameters. Comparisons are also made between results from the version of the empirical correlations implemented in the spreadsheet and the versions originally written in Applesoft BASIC (Apple Computer, Cupertino, CA) in the 1980's.
A Spreadsheet for the Mixing of a Row of Jets with a Confined Crossflow. Supplement
NASA Technical Reports Server (NTRS)
Holderman, J. D.; Smith, T. D.; Clisset, J. R.; Lear, W. E.
2005-01-01
An interactive computer code, written with a readily available software program, Microsoft Excel (Microsoft Corporation, Redmond, WA) is presented which displays 3 D oblique plots of a conserved scalar distribution downstream of jets mixing with a confined crossflow, for a single row, double rows, or opposed rows of jets with or without flow area convergence and/or a non-uniform crossflow scalar distribution. This project used a previously developed empirical model of jets mixing in a confined crossflow to create an Microsoft Excel spreadsheet that can output the profiles of a conserved scalar for jets injected into a confined crossflow given several input variables. The program uses multiple spreadsheets in a single Microsoft Excel notebook to carry out the modeling. The first sheet contains the main program, controls for the type of problem to be solved, and convergence criteria. The first sheet also provides for input of the specific geometry and flow conditions. The second sheet presents the results calculated with this routine to show the effects on the mixing of varying flow and geometric parameters. Comparisons are also made between results from the version of the empirical correlations implemented in the spreadsheet and the versions originally written in Applesoft BASIC (Apple Computer, Cupertino, CA) in the 1980's.
Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo
2014-03-01
Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution ofmore » single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.« less
Nonlinear Development and Secondary Instability of Traveling Crossflow Vortices
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Duan, Lian; Chang, Chau-Lyan
2014-01-01
Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper builds upon prior effort targeting the laminar breakdown mechanisms associated with stationary crossflow instability over a swept-wing configuration relevant to subsonic aircraft with laminar flow technology. Specifically, transition via secondary instability of traveling crossflow modes is investigated as an alternate scenario for transition. Results show that, for the parameter range investigated herein, secondary instability of traveling crossflow modes becomes insignificant in relation to the secondary instability of the stationary modes when the relative initial amplitudes of the traveling crossflow instability are lower than those of the stationary modes by approximately two orders of magnitudes or more. Linear growth predictions based on the secondary instability theory are found to agree well with those based on PSE and DNS, with the most significant discrepancies being limited to spatial regions of relatively weak secondary growth, i.e., regions where the primary disturbance amplitudes are smaller in comparison to its peak amplitude. Nonlinear effects on secondary instability evolution is also investigated and found to be initially stabilizing, prior to breakdown.
The regimes of twin-fluid jet-in-crossflow at atmospheric and jet-engine operating conditions
NASA Astrophysics Data System (ADS)
Tan, Zu Puayen; Bibik, Oleksandr; Shcherbik, Dmitriy; Zinn, Ben T.; Patel, Nayan
2018-02-01
The "Twin-Fluid Jet-in-Crossflow (TF-JICF)" is a nascent variation of the classical JICF, in which a liquid jet is co-injected with an annular sleeve of gas into a gaseous crossflow. Jet-engine designers are interested in using TF-JICF for liquid-fuel injection and atomization in the next-generation combustors because it is expected to minimize combustor-damaging auto-ignition and fuel-coking tendencies. However, experimental data of TF-JICF are sparse. Furthermore, a widely accepted TF-JICF model that correlates the spray's penetration to the combined liquid-gas momentum-flux ratio (Jeff) is increasingly showing discrepancy with emerging results, suggesting a gap in the current understanding of TF-JICF. This paper describes an investigation that addressed the gap by experimentally characterizing the TF-JICF produced by a single injector across wide ranges of operating conditions (i.e., jet-A injectant, crossflow of air, crossflow Weber number = 175-1050, crossflow pressure Pcf = 1.8-9.5 atm, momentum-flux ratio J = 5-40, and air-nozzle dP = 0%-150% of Pcf). These covered the conditions previously used to develop the Jeff model, recently reported conditions that produced Jeff discrepancies, and high-pressure conditions found in jet-engines. Dye-based shadowgraph was used to acquire high-resolution (13.52 μm/pixel) images of the TF-JICF, which revealed wide-ranging characteristics such as the disrupted Rayleigh-Taylor jet instabilities, air-induced jet corrugations, spray-bifurcations, and prompt-atomization. Analyses of the data showed that contrary to the literature, the TF-JICF's penetration is not monotonically related to Jeff. A new conceptual framework for TF-JICF is proposed, where the flow configuration is composed of four regimes, each having different penetration trends, spray structures, and underlying mechanisms.
2009-09-01
25 Figure 17. IGV Cut Out from Fluid Domain...Figure 22. Installed IGVS as Viewed from the CFF Inlet.................................................30 Figure 23. Schematic of Turbine Test Rig (TTR...44 Figure 28. Close In View of Velocity Vector Plot Near IGVS for 6IGV Model..............45 Figure 29
Pervaporation is a process for removing volatile organic compounds (VOC) from contaminated water. The performance of the cross-flow pervaporation system increases with temperature, with an equipment limitation of 35 degrees Celsius. Permeable membranes that preferentially adsor...
Coordinated Control of Cross-Flow Turbines
NASA Astrophysics Data System (ADS)
Strom, Benjamin; Brunton, Steven; Polagye, Brian
2016-11-01
Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.
Statistical Inference of a RANS closure for a Jet-in-Crossflow simulation
NASA Astrophysics Data System (ADS)
Heyse, Jan; Edeling, Wouter; Iaccarino, Gianluca
2016-11-01
The jet-in-crossflow is found in several engineering applications, such as discrete film cooling for turbine blades, where a coolant injected through hols in the blade's surface protects the component from the hot gases leaving the combustion chamber. Experimental measurements using MRI techniques have been completed for a single hole injection into a turbulent crossflow, providing full 3D averaged velocity field. For such flows of engineering interest, Reynolds-Averaged Navier-Stokes (RANS) turbulence closure models are often the only viable computational option. However, RANS models are known to provide poor predictions in the region close to the injection point. Since these models are calibrated on simple canonical flow problems, the obtained closure coefficient estimates are unlikely to extrapolate well to more complex flows. We will therefore calibrate the parameters of a RANS model using statistical inference techniques informed by the experimental jet-in-crossflow data. The obtained probabilistic parameter estimates can in turn be used to compute flow fields with quantified uncertainty. Stanford Graduate Fellowship in Science and Engineering.
Effects of Suction on Swept-Wing Transition
NASA Technical Reports Server (NTRS)
Saric, William S.
1998-01-01
Stability experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45 deg swept airfoil. The pressure gradient is designed to provide purely crossflow-dominated transition; that is, the boundary layer is subcritical to Tollmien-Schlichting disturbances. The airfoil surface is hand polished to a 0.25 microns rms finish. Under these conditions, stationary crossflow disturbances grow to nonuniform amplitude due to submicron surface irregularities near the leading edge. Uniform stationary crossflow waves are produced by controlling the initial conditions with spanwise arrays of micron-sized roughness elements near the attachment line. Hot-wire measurements provide detailed maps of the crossflow wave structure, and accurate spectral decompositions isolate individual-mode growth rates for the fundamental and harmonic disturbances. Roughness spacing, roughness height, and Reynolds number are varied to investigate the growth of all amplified wavelengths. The measurements show early nonlinear mode interaction causing amplitude saturation well before transition. Comparisons with nonlinear parabolized stability equations calculations show excellent agreement in both the disturbance amplitude and the mode-shape profiles.
Direct Numerical Simulation of Transition Due to Traveling Crossflow Vortices
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Duan, Lian
2016-01-01
Previous simulations of laminar breakdown mechanisms associated with stationary crossflow instability over a realistic swept-wing configuration are extended to investigate the alternate scenario of transition due to secondary instability of traveling crossflow modes. Earlier analyses based on secondary instability theory and parabolized stability equations have shown that this alternate scenario is viable when the initial amplitude of the most amplified mode of the traveling crossflow instability is greater than approximately 0.03 times the initial amplitude of the most amplified stationary mode. The linear growth predictions based on the secondary instability theory and parabolized stability equations agree well with the direct numerical simulation. Nonlinear effects are initially stabilizing but subsequently lead to a rapid growth followed by the onset of transition when the amplitude of the secondary disturbance exceeds a threshold value. Similar to the breakdown of stationary vortices, the transition zone is rather short and the boundary layer becomes completely turbulent across a distance of less than 15 times the boundary layer thickness at the completion of transition.
NASA Technical Reports Server (NTRS)
Miller, D. S.; Landrum, E. J.; Townsend, J. C.; Mason, W. H.
1981-01-01
A conical nonlinear flow computer code was used to design a warped (cambered) wing which would produce a supercritical expansion and shockless recompression of the crossflow at a lift coefficient of 0.457, an angle of attack of 10 deg, and a Mach number of 1.62. This cambered wing and a flat wing the same thickness distribution were tested over a range of Mach numbers from 1.6 to 2.0. For both models the forward 60 percent is purely conical geometry. Results obtained with the cambered wing demonstrated the design features of a supercritical expansion and a shockless recompression, whereas results obtained with the flat wing indicated the presence of crossflow shocks. Tables of experimental pressure, force, and moment data are included, as well as selected oil flow photographs.
Velocity field near the jet orifice of a round jet in a crossflow
NASA Technical Reports Server (NTRS)
Fearn, R. L.; Benson, J. P.
1979-01-01
Experimentally determined velocities at selected locations near the jet orifice are presented and analyzed for a round jet in crossflow. Jet-to-crossflow velocity ratios of four and eight were studied experimentally for a round subsonic jet of air exhausting perpendicularly through a flat plate into a subsonic crosswind of the same temperature. Velocity measurements were made in cross sections to the jet plume located from one to four jet diameters from the orifice. Jet centerline and vortex properties are presented and utilized to extend the results of a previous study into the region close to the jet orifice.
NASA Technical Reports Server (NTRS)
Florschuetz, L. W.; Metzger, D. E.; Truman, C. R.
1981-01-01
Correlations for heat transfer coefficients for jets of circular offices and impinging on a surface parallel to the jet orifice plate are presented. The air, following impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer (impingement) surface. The downstream jets are subjected to a crossflow originating from the upstream jets. Impingement surface heat transfer coefficients resolved to one streamwise jet orifice spacing, averaged across the channel span, are correlated with the associated individual spanwise orifice row jet and crossflow velocities, and with the geometric parameters.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.
1983-01-01
Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.
1983-09-01
Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.
Linear stability of three-dimensional boundary layers - Effects of curvature and non-parallelism
NASA Technical Reports Server (NTRS)
Malik, M. R.; Balakumar, P.
1993-01-01
In this paper we study the effect of in-plane (wavefront) curvature on the stability of three-dimensional boundary layers. It is found that this effect is stabilizing or destabilizing depending upon the sign of the crossflow velocity profile. We also investigate the effects of surface curvature and nonparallelism on crossflow instability. Computations performed for an infinite-swept cylinder show that while convex curvature stabilizes the three-dimensional boundary layer, nonparallelism is, in general, destabilizing and the net effect of the two depends upon meanflow and disturbance parameters. It is also found that concave surface curvature further destabilizes the crossflow instability.
A demonstration of the Zenon cross-flow pervaporation technology was conducted under the Superfund Innovative Technology Evaluation (SITE) program in February 1995 to determine the removal efficiency of trichloroethylene (TCE) from groundwaters at the Naval Air Station North Isla...
78 FR 49232 - Airworthiness Directives; Learjet Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-13
... tube is installed; and follow-on/corrective actions, as applicable. Since we issued that AD, we have... AD, and would require determining if a certain fuel crossflow tube is installed, performing repetitive measurements of the fuel crossflow tube and surrounding valves and cables, and doing corrective...
NASA Astrophysics Data System (ADS)
Gaunaa, Mac; Heinz, Joachim; Skrzypiński, Witold
2016-09-01
The crossflow principle is one of the key elements used in engineering models for prediction of the aerodynamic loads on wind turbine blades in standstill or blade installation situations, where the flow direction relative to the wind turbine blade has a component in the direction of the blade span direction. In the present work, the performance of the crossflow principle is assessed on the DTU 10MW reference blade using extensive 3D CFD calculations. Analysis of the computational results shows that there is only a relatively narrow region in which the crossflow principle describes the aerodynamic loading well. In some conditions the deviation of the predicted loadings can be quite significant, having a large influence on for instance the integral aerodynamic moments around the blade centre of mass; which is very important for single blade installation applications. The main features of these deviations, however, have a systematic behaviour on all force components, which in this paper is employed to formulate the first version of an engineering correction method to the crossflow principle applicable for wind turbine blades. The new correction model improves the agreement with CFD results for the key aerodynamic loads in crossflow situations. The general validity of this model for other blade shapes should be investigated in subsequent works.
Vortex instabilities in 3D boundary layers: The relationship between Goertler and crossflow vortices
NASA Technical Reports Server (NTRS)
Bassom, Andrew; Hall, Philip
1990-01-01
The inviscid and viscous stability problems are addressed for a boundary layer which can support both Goertler and crossflow vortices. The change in structure of Goertler vortices is found when the parameter representing the degree of three-dimensionality of the basic boundary layer flow under consideration is increased. It is shown that crossflow vortices emerge naturally as this parameter is increased and ultimately become the only possible vortex instability of the flow. It is shown conclusively that at sufficiently large values of the crossflow there are no unstable Goertler vortices present in a boundary layer which, in the zero crossflow case, is centrifugally unstable. The results suggest that in many practical applications Goertler vortices cannot be a cause of transition because they are destroyed by the 3-D nature of the basic state. In swept wing flows the Goertler mechanism is probably not present for typical angles of sweep of about 20 degrees. Some discussion of the receptivity problem for vortex instabilities in weakly 3-D boundary layers is given; it is shown that inviscid modes have a coupling coefficient marginally smaller than those of the fastest growing viscous modes discussed recently by Denier, Hall, and Seddougui (1990). However the fact that the growth rates of the inviscid modes are the largest in most situations means that they are probably the most likely source of transition.
Crossflow microfiltration of yeast suspensions in tubular filters.
Redkar, S G; Davis, R H
1993-01-01
Crossflow microfiltration experiments were performed on yeast suspensions through 0.2-microns pore size ceramic and polypropylene tubes at various operating conditions. The initial transient flux decline follows dead-end filtration theory, with the membrane resistance determined from the initial flux and the specific cake resistance determined from the rate of flux decline due to cake buildup. For long times, the observed fluxes reach steady or nearly steady values, presumably as a result of the cake growth being arrested by the shear exerted at its surface. The steady-state fluxes increase with increasing shear rate and decreasing feed concentration, and they are nearly independent of transmembrane pressure. The steady-state fluxes for unwashed yeast in deionized water or fermentation media are typically 2-4 times lower than those predicted by a model based on the properties of nonadhesive, rigid spheres undergoing shear-induced back-diffusion. In contrast, the steady-state fluxes observed for washed yeast cells in deionized water are only 10-30% below the predicted values. The washed yeast cells also exhibited specific cake resistances that are an order of magnitude lower than those for the unwashed yeast. The differences are due to the presence of extracellular proteins and other macromolecules in the unwashed yeast suspensions. These biopolymers cause higher cell adhesion and resistance in the cake layer, so that the cells at the top edge are not free to diffuse away. This is manifested as a concentration jump from the edge of the cake layer to the sheared suspension adjacent to it.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Technical Reports Server (NTRS)
Matyk, G.; Kobayashi, Y.
1977-01-01
The boundary layer and crossflow characteristics of 2- by 2-foot and 11- by 11-foot transonic wind-tunnel wall configurations have been studied for Mach numbers ranging from 0.5 to 1.2 and for various crossflow to free stream unit mass flow ratios. For the 2- by 2-ft and 11- by 11-ft wall configurations, these ratios ranged from 0 to 0.12 and from 0 to 0.07, respectively. Most notably, for both wall configurations, the pressure-drop coefficient across the wall was nonlinear with mass flow and invariant with Mach number.
An Analysis of Wave Interactions in Swept-Wing Flows
NASA Technical Reports Server (NTRS)
Reed, H. L.
1984-01-01
Crossflow instabilities dominate disturbance growth in the leading-edge region of swept wings. Streamwise vortices in a boundary layer strongly influence the behavior of other disturbances. Amplification of crossflow vortices near the leading edge produces a residual spanwise nonuniformity in the mid-chord regions where Tollmien-Schlichting (T-S) waves are strongly amplified. Should the T-S wave undergo double-exponential growth because of this effect, the usual transition prediction methods would fail. The crossflow/Tollmien-Schlichting wave interaction was modeled as a secondary instability. The effects of suction are included, and different stability criteria are examined. The results are applied to laminar flow control wings characteristic of energy-efficient aircraft designs.
High-temperature sapphire optical sensor fiber coatings
NASA Astrophysics Data System (ADS)
Desu, Seshu B.; Claus, Richard O.; Raheem, Ruby; Murphy, Kent A.
1990-10-01
Advanced coal-fired power generation systems, such as pressurized fluidized-bed combustors and integrated gasifier-combined cycles, may provide cost effective future alternatives for power generation, improve our utilization of coal resources, and decrease our dependence upon oil and gas. When coal is burned or converted to combustible gas to produce energy, mineral matter and chemical compounds are released as solid and gaseous contaminants. The control of contaminants is mandatory to prevent pollution as well as degradation of equipment in advanced power generation. To eliminate the need for expensive heat recovery equipment and to avoid efficiency losses it is desirable to develop a technology capable of cleaning the hot gas. For this technology the removal of particle contaminants is of major concern. Several prototype high temperature particle filters have been developed, including ceramic candle filters, ceramic bag filters, and ceramic cross-flow (CXF) filters. Ceramic candle filters are rigid, tubular filters typically made by bonding silicon carbide or alumina-silica grains with clay bonding materials and perhaps including alumina-silica fibers. Ceramic bag filters are flexible and are made from long ceramic fibers such as alumina-silica. CXF filters are rigid filters made of stacks of individual lamina through which the dirty and clean gases flow in cross-wise directions. CXF filters are advantageous for hot gas cleanup applications since they offer a large effective filter surface per unit volume. The relatively small size of the filters allows the pressurized vessel containing them to be small, thus reducing potential equipment costs. CXF filters have shown promise but have experienced degradation at normal operational high temperatures (close to 1173K) and high pressures (up to 24 bars). Observed degradation modes include delamination of the individual tile layers, cracking at either the tile-torid interface or at the mounting flange, or plugging of the filter. These modes may be attributed to a number of material degradation mechanisms, such as thermal shock, oxidation corrosion of the material, mechanical loads, or phase changes in the filter material. Development of high temperature optical fiber (sapphire) sensors embedded in the CXF filters would be very valuable for both monitoring the integrity of the filter during its use and understanding the mechanisms of degradation such that durable filter development will be facilitated. Since the filter operating environment is very harsh, the high temperature sapphire optical fibers need to be protected and for some sensing techniques the fiber must also be coated with low refractive index film (cladding). The objective of the present study is to identify materials and develop process technologies for the application of claddings and protective coatings that are stable and compatible with sapphire fibers at both high temperatures and pressures.
Transition on Hypersonic Vehicles with Crossflow
2017-11-01
for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing...modes, attachment-line and centerline traveling instabilities were identified. These transition mechanisms were identified by their peculiar transition...58 5.2.2. Effect of Stationary Crossflow on Traveling Vortices ........................................... 64 5.3. Angle of Attack
USDA-ARS?s Scientific Manuscript database
HTST pasteurization of milk is generally ineffective against spore-forming bacteria such as Bacillus anthracis (BA) but is lethal to its vegetative cells. Crossflow microfiltration (MF), using ceramic membranes with a pore diameter of 1.4 um, has been shown to physically remove somatic cells, vegeta...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velaga, A.
1986-01-01
Packed cross-flow internals consisting of four and ten stages including the samplers for liquid and vapor were fabricated to fit into the existing distillation column. Experiments were conducted using methanol-water, ethanol-water and hexane-heptane binary mixtures. The experimental data were collected for compositions of inlet and exist streams of cross-flow stages. The overall gas phase height transfer units (H/sub og/) were estimated using the experimental data. H/sub og/ values were compared to those of counter current conditions. The individual mass transfer coefficients in the liquid and vapor phases were estimated using the collected experimental data for degree of separation, flow ratesmore » and physical properties of the binary system used. The physical properties were estimated at an average temperature of the specific cross-flow stage. The mass transfer coefficients were evaluated using three different correlations proposed by Shulman. Onda and Hayashi respectively. The interfacial areas were estimated using the evaluated mass transfer coefficients and the experimental data at each stage of the column for different runs and compared.« less
Method of measuring cross-flow vortices by use of an array of hot-film sensors
NASA Technical Reports Server (NTRS)
Agarwal, Aval K. (Inventor); Maddalon, Dal V. (Inventor); Mangalam, Siva M. (Inventor)
1993-01-01
The invention is a method for measuring the wavelength of cross-flow vortices of air flow having streamlines of flow traveling across a swept airfoil. The method comprises providing a plurality of hot-film sensors. Each hot-film sensor provides a signal which can be processed, and each hot-film sensor is spaced in a straight-line array such that the distance between successive hot-film sensors is less than the wavelength of the cross-flow vortices being measured. The method further comprises determining the direction of travel of the streamlines across the airfoil and positioning the straight-line array of hot film sensors perpendicular to the direction of travel of the streamlines, such that each sensor has a spanwise location. The method further comprises processing the signals provided by the sensors to provide root-mean-square values for each signal, plotting each root-mean-square value as a function of its spanwise location, and determining the wavelength of the cross-flow vortices by noting the distance between two maxima or two minima of root-mean-square values.
High-Speed Boundary-Layer Transition: Study of Stationary Crossflow Using Spectral Analysis
NASA Astrophysics Data System (ADS)
McGuire, Patrick Joseph
Crossflow instability is primary cause of boundary-layer transition on swept wings used in high-speed applications. Delaying the downstream location of transition would drastically reduce the viscous drag over the wing surface, and subsequently improves the overall aircraft efficiency. By studying the development of instability growth rates and how they interact with the surroundings, researchers can control the crossflow transition location. Experiments on the 35° swept-wing model were performed in the NASA Langley 20-Inch Supersonic Wind Tunnel with Mach 2.0 flow conditions and 20 μm tall discrete roughness elements (DRE) with varying spacing placed along the leading edge. Fluorene was used as the sublimating chemical in the surface flow visualization technique to observe the transition front and stationary crossflow vortex patterns in the laminar flow region. Spatial spectral decomposition was completed on high-resolution images of sublimating chemical runs using a newly developed image processing technique. Streamwise evolution of the vortex track wavelengths within the laminar boundary-layer region was observed. The spectral information was averaged to produce dominant modes present throughout the laminar region.
On predicting receptivity to surface roughness in a compressible infinite swept wing boundary layer
NASA Astrophysics Data System (ADS)
Thomas, Christian; Mughal, Shahid; Ashworth, Richard
2017-03-01
The receptivity of crossflow disturbances on an infinite swept wing is investigated using solutions of the adjoint linearised Navier-Stokes equations. The adjoint based method for predicting the magnitude of stationary disturbances generated by randomly distributed surface roughness is described, with the analysis extended to include both surface curvature and compressible flow effects. Receptivity is predicted for a broad spectrum of spanwise wavenumbers, variable freestream Reynolds numbers, and subsonic Mach numbers. Curvature is found to play a significant role in the receptivity calculations, while compressible flow effects are only found to marginally affect the initial size of the crossflow instability. A Monte Carlo type analysis is undertaken to establish the mean amplitude and variance of crossflow disturbances generated by the randomly distributed surface roughness. Mean amplitudes are determined for a range of flow parameters that are maximised for roughness distributions containing a broad spectrum of roughness wavelengths, including those that are most effective in generating stationary crossflow disturbances. A control mechanism is then developed where the short scale roughness wavelengths are damped, leading to significant reductions in the receptivity amplitude.
Performance and analysis of a three-dimensional nonorthogonal laser Doppler anemometer
NASA Technical Reports Server (NTRS)
Snyder, P. K.; Orloff, K. L.; Aoyagi, K.
1981-01-01
A three dimensional laser Doppler anemometer with a nonorthogonal third axis coupled by 14 deg was designed and tested. A highly three dimensional flow field of a jet in a crossflow was surveyed to test the three dimensional capability of the instrument. Sample data are presented demonstrating the ability of the 3D LDA to resolve three orthogonal velocity components. Modifications to the optics, signal processing electronics, and data reduction methods are suggested.
NASA Astrophysics Data System (ADS)
Villeneuve, Thierry; Boudreau, Matthieu; Dumas, Guy; CFD Laboratory LMFN Team
2017-11-01
Previous studies on H-Darrieus cross-flow turbines have highlighted the fact that their performances are highly sensitive to the detrimental effects associated with the blades tips. Wingtip devices could be designed in order to attenuate these effects, but the benefits of such devices are always impaired by their added viscous drag since they are moving with the turbine's blades. In this context, the development of fixed and detached end plates, i.e., which are not in contact with the turbine's blades, could reduce the tip losses without the undesirable added drag of typical wingtip devices moving with the blades. The case of a single stationary blade with detached end plates has first been investigated with RANS simulations in order to understand the mechanisms responsible for the increase of the blade's lift. An analysis of the vorticity lines' dynamics provides crucial insights into the effects of the gap width between the blade and the detached end plate on the blade's loading and on the intensity of the tip vortices. Based on these observations, various configurations of detached end plates are tested on cross-flow turbines via RANS and DDES simulations. Preliminary results show that appropriate detached end plates can significantly increase the turbines' efficiency. The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support as well as Compute Canada and Calcul Québec for their supercomputer allocations.
NASA Astrophysics Data System (ADS)
Florio, L. A.; Harnoy, A.
2011-06-01
In this study, a unique combination of a vibrating plate and a cross-flow passage is proposed as a means of enhancing natural convection cooling. The enhancement potential was estimated based on numerical studies involving a representative model which includes a short, transversely oscillating plate, placed over a transverse cross-flow opening in a uniformly heated vertical channel wall dividing two adjacent vertical channels. The resulting velocity and temperature fields are analyzed, with the focus on the local thermal effects near the opening. The simulation indicates up to a 50% enhancement in the local heat transfer coefficient for vibrating plate amplitudes of at least 30% of the mean clearance space and frequencies of over 82 rad/s.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
1981-01-01
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
1981-03-01
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
1981-01-01
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.
NASA Technical Reports Server (NTRS)
Foley, J. E.
1971-01-01
An analysis was made to determine the effects of Mach number and Reynolds number on the local and total crossflow drag characteristics of ogive-cylinders and ogive-cylinder-frustum-cylinders at angles of the MSFC 14 in TWT and the LTV 4 ft HSWT, and pressure data obtained in the TWT, at Mach numbers 0.14, 0.8, 1.2, and 2.0, and a wide range of Reynolds numbers. Results indicate that the streamwise Reynolds number, VD/nusin alpha, is an important correlation parameter in the subcritical Reynolds number range at imcompressible speeds and that the crossflow Mach number correlates compressibility effects.
Simulation of crossflow instability on a supersonic highly swept wing
NASA Technical Reports Server (NTRS)
Pruett, C. David
1995-01-01
A direct numerical simulation (DNS) algorithm has been developed and validated for use in the investigation of crossflow instability on supersonic swept wings, an application of potential relevance to the design of the High-Speed Civil Transport (HSCT). The algorithm is applied to the investigation of stationary crossflow instability on an infinitely long 77-degree swept wing in Mach 3.5 flow. The results of the DNS are compared with the predictions of linear parabolized stability equation (PSE) methodology. In-general, the DNS and PSE results agree closely in terms of modal growth rate, structure, and orientation angle. Although further validation is needed for large-amplitude (nonlinear) disturbances, the close agreement between independently derived methods offers preliminary validation of both DNS and PSE approaches.
Microfluidic point-of-care blood panel based on a novel technique: Reversible electroosmotic flow
Mohammadi, Mahdi; Madadi, Hojjat; Casals-Terré, Jasmina
2015-01-01
A wide range of diseases and conditions are monitored or diagnosed from blood plasma, but the ability to analyze a whole blood sample with the requirements for a point-of-care device, such as robustness, user-friendliness, and simple handling, remains unmet. Microfluidics technology offers the possibility not only to work fresh thumb-pricked whole blood but also to maximize the amount of the obtained plasma from the initial sample and therefore the possibility to implement multiple tests in a single cartridge. The microfluidic design presented in this paper is a combination of cross-flow filtration with a reversible electroosmotic flow that prevents clogging at the filter entrance and maximizes the amount of separated plasma. The main advantage of this design is its efficiency, since from a small amount of sample (a single droplet ∼10 μl) almost 10% of this (approx 1 μl) is extracted and collected with high purity (more than 99%) in a reasonable time (5–8 min). To validate the quality and quantity of the separated plasma and to show its potential as a clinical tool, the microfluidic chip has been combined with lateral flow immunochromatography technology to perform a qualitative detection of the thyroid-stimulating hormone and a blood panel for measuring cardiac Troponin and Creatine Kinase MB. The results from the microfluidic system are comparable to previous commercial lateral flow assays that required more sample for implementing fewer tests. PMID:26396660
A transonic interactive boundary-layer theory for laminar and turbulent flow over swept wings
NASA Technical Reports Server (NTRS)
Woodson, Shawn H.; Dejarnette, Fred R.
1988-01-01
A 3-D laminar and turbulent boundary-layer method is developed for compressible flow over swept wings. The governing equations and curvature terms are derived in detail for a nonorthogonal, curvilinear coordinate system. Reynolds shear-stress terms are modeled by the Cebeci-Smith eddy-viscosity formulation. The governing equations are descretized using the second-order accurate, predictor-corrector finite-difference technique of Matsuno, which has the advantage that the crossflow difference formulas are formed independent of the sign of the crossflow velocity component. The method is coupled with a full potential wing/body inviscid code (FLO-30) and the inviscid-viscous interaction is performed by updating the original wing surface with the viscous displacement surface calculated by the boundary-layer code. The number of these global iterations ranged from five to twelve depending on Mach number, sweep angle, and angle of attack. Several test cases are computed by this method and the results are compared with another inviscid-viscous interaction method (TAWFIVE) and with experimental data.
Fast-response underwater TSP investigation of subcritical instabilities of a cylinder in crossflow
NASA Astrophysics Data System (ADS)
Capone, Alessandro; Klein, Christian; Di Felice, Fabio; Beifuss, Uwe; Miozzi, Massimo
2015-10-01
We investigate the classic cylinder in crossflow case to test the effectiveness of a fast-response underwater temperature-sensitive paint coating (TSP) in providing highly resolved spatial and time observations of the action of a flow over a bluff body surface. The flow is investigated at Reynolds number <190 k, before the onset of the drag-crisis state. The obtained TSP image sequences convey an accurate description of the evolution of the main features in the fluid-cylinder interaction, like the separation line position, the pattern of the large coherent structures acting on the cylinder's surface and the small-scale intermittent streamwise arrays of vortices. Ad hoc data management and features extraction techniques are proposed which allow extraction of quantitative data, such as separation line position and vortex-shedding frequency, and results are compared to the literature. Use of TSP for water applications introduces an interesting point of view about the fluid-body interactions by focusing directly on the effect of the flow on the model surface.
CR Boardman; Samuel V. Glass
2015-01-01
The moisture transfer effectiveness (or latent effectiveness) of a cross-flow, membrane based energy recovery ventilator is measured and modeled. Analysis of in situ measurements for a full year shows that energy recovery ventilator latent effectiveness increases with increasing average relative humidity and surprisingly increases with decreasing average temperature. A...
NASA Technical Reports Server (NTRS)
Liew, K. H.; Urip, E.; Yang, S. L.; Marek, C. J.
2004-01-01
Droplet interaction with a high temperature gaseous crossflow is important because of its wide application in systems involving two phase mixing such as in combustion requiring quick mixing of fuel and air with the reduction of pollutants and for jet mixing in the dilution zone of combustors. Therefore, the focus of this work is to investigate dispersion of a two-dimensional atomized and evaporating spray jet into a two-dimensional crossflow. An interactive Microsoft Excel program for tracking a single droplet in crossflow that has previously been developed will be modified to include droplet evaporation computation. In addition to the high velocity airflow, the injected droplets are also subjected to combustor temperature and pressure that affect their motion in the flow field. Six ordinary differential equations are then solved by 4th-order Runge-Kutta method using Microsoft Excel software. Microsoft Visual Basic programming and Microsoft Excel macrocode are used to produce the data and plot graphs describing the droplet's motion in the flow field. This program computes and plots the data sequentially without forcing the user to open other types of plotting programs. A user's manual on how to use the program is included.
Measurement of crossflow vortices, attachment-line flow, and transition using microthin hot films
NASA Technical Reports Server (NTRS)
Mangalam, S. M.; Agarwal, N. K.; Maddalon, D. V.; Saric, W. S.
1990-01-01
A flow diagnostic experiment was conducted on a 45-deg swept-wing model using surface-mounted, multielement, microthin, hot-film sensors. The cross-flow vortex spacing, the attachment-line flow characteristics, and the transition region were all determined using an advanced data acquisition and instrumentation system. In addition to the frequencies of traveling waves predicted by linear stability theory, amplified disturbances at much higher frequencies were observed. Simultaneous measurements from sensors located at a number of chord and span locations highlighted the strong three-dimensionality of the boundary-layer flow in the presence of cross-flow vortices. The state of the attachment-line boundary layer was determined using a multielement sensor wrapped around the wing leading edge. The transition region flow characteristics were also identified.
PSE Aysis of Crossflow Instability on HifIre-5B Flight Test
2017-06-05
AIR FORCE RESEARCH LABORATORY AEROSPACE SYSTEMS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542 AIR FORCE MATERIEL COMMAND UNITED...Air Force Research Laboratory, Aerospace Systems Directorate Wright-Patterson Air Force Base, OH 45433-7542 Air Force Materiel Command, United...States Air Force 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING Air Force Research Laboratory Aerospace Systems
Unsteady Computations of a Jet in a Crossflow with Ground Effect
NASA Technical Reports Server (NTRS)
Pandya, Shishir; Murman, Scott; Venkateswaran, Sankaran; Kwak, Dochan (Technical Monitor)
2002-01-01
A numerical study of a jet in crossflow with ground effect is conducted using OVERFLOW with dual time-stepping and low Mach number preconditioning. The results of the numerical study are compared to an experiment to show that the numerical methods are capable of capturing the dominant features of the flow field as well as the unsteadiness associated with the ground vortex.
Electrohydrodynamics and other hydrodynamic phenomena in continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.
1982-01-01
The process known as continuous flow electrophoresis employs an electric field to separate the constituents of particulate samples suspended in a liquid. Complications arise because the electric field generates temperature gradients due to Joule heating and derives an electrohydrodynamic crossflow. Several aspects of the flow are discussed including entrance effects, hydrodynamic stability and a flow restructuring due to the combined effects of buoyancy and the crossflow.
NASA Astrophysics Data System (ADS)
Mao, Xumei; Wang, Hua; Feng, Liang
2018-05-01
In a groundwater flow system, the age of groundwater should gradually increase from the recharge zone to the discharge zone within the same streamline. However, it is occasionally observed that the groundwater age becomes younger in the discharge zone in the piedmont alluvial plain, and the oldest age often appears in the middle of the plain. A new set of groundwater chemistry and isotopes was employed to reassess the groundwater 14C ages from the discharge zone in the North China Plain (NCP). Carbonate precipitation, organic matter oxidation and cross-flow mixing in the groundwater from the recharge zone to the discharge zone are recognized according to the corresponding changes of HCO3- (or DIC) and δ13C in the same streamline of the third aquifer of the NCP. The effects of carbonate precipitation and organic matter oxidation are calibrated with a 13C mixing model and DIC correction, but these corrected 14C ages seem unreasonable because they grow younger from the middle plain to the discharge zone in the NCP. The relationship of Cl- content and the recharge distance is used to estimate the expected Cl- content in the discharge zone, and ln(a14C)/Cl is proposed to correct the a14C in groundwater for the effect of cross-flow mixing. The 14C ages were reassessed with the corrected a14C due to the cross-flow mixing varying from 1.25 to 30.58 ka, and the groundwater becomes older gradually from the recharge zone to the discharge zone. The results suggest that the reassessed 14C ages are more reasonable for the groundwater from the discharge zone due to cross-flow mixing.
Microchannel crossflow fluid heat exchanger and method for its fabrication
Swift, G.W.; Migliori, A.; Wheatley, J.C.
1982-08-31
A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.
Microchannel crossflow fluid heat exchanger and method for its fabrication
Swift, Gregory W.; Migliori, Albert; Wheatley, John C.
1985-01-01
A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.
Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan
2015-01-01
Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.
DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan
2013-01-01
Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.
Intracycle angular velocity control of cross-flow turbines
NASA Astrophysics Data System (ADS)
Strom, Benjamin; Brunton, Steven L.; Polagye, Brian
2017-08-01
Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.
NASA Technical Reports Server (NTRS)
Kuhn, Richard E.
1998-01-01
When a jet STOVL aircraft is hovering, or in a crossflow, while close to the ground wall jets flowing radially outward from the impingement points of the jets are generated. An upflow, or fountain, is generated where the wall jets from adjacent jets meet on the ground surface. The induced lift and suckdown generated by the impingement of the fountain on the lower surface of the configuration has been the subject of previous studies. This study analyzes the limited available pressure and force data on the effect of crossflow on the fountain induced lift and suckdown. The analysis includes the effects of jet spacing, height and operating conditions. However, it is limited to twin jet configurations of circular, vertical jets operating at subcritical nozzle pressure ratios over a fixed ground surface.
Transient interaction between a reaction control jet and a hypersonic crossflow
NASA Astrophysics Data System (ADS)
Miller, Warrick A.; Medwell, Paul R.; Doolan, Con J.; Kim, Minkwan
2018-04-01
This paper presents a numerical study that focuses on the transient interaction between a reaction control jet and a hypersonic crossflow with a laminar boundary layer. The aim is to better understand the underlying physical mechanisms affecting the resulting surface pressure and control force. Implicit large-eddy simulations were performed with a round, sonic, perfect air jet issuing normal to a Mach 5 crossflow over a flat plate with a laminar boundary layer, at a jet-to-crossflow momentum ratio of 5.3 and a pressure ratio of 251. The pressure distribution induced on the flat plate is unsteady and is influenced by vortex structures that form around the jet. A horseshoe vortex structure forms upstream and consists of six vortices: two quasi-steady vortices and two co-rotating vortex pairs that periodically coalesce. Shear-layer vortices shed periodically and cause localised high pressure regions that convect downstream with constant velocity. A longitudinal counter-rotating vortex pair is present downstream of the jet and is formed from a series of trailing vortices which rotate about a common axis. Shear-layer vortex shedding causes periodic deformation of barrel and bow shocks. This changes the location of boundary layer separation which also affects the normal force on the plate.
Characteristics of Plasma Synthetic Jet Actuators in Crossflow
NASA Astrophysics Data System (ADS)
Santhanakrishnan, Arvind; Jacob, Jamey
2006-11-01
The plasma synthetic jet actuator (PSJA) consists of two annular electrodes separated by dielectric material that results in a circular region of dielectric barrier discharge plasma. In quiescent conditions, this plasma ring produces a synthetic jet which can be used for active flow control applications. Unsteady pulsing of the actuator results in the formation of multiple primary and secondary vortex rings, the latter remaining fixed or trapped in space. The jet is observed to be formed by the advection and interaction of the primary vortices, resembling a conventional synthetic jet. This presentation examines the operation of the PSJA in a crossflow at three different jet to freestream velocity ratios. PIV measurements in the streamwise and cross-stream planes are used to illustrate the three dimensionality of the jet and associated vortical structures. The strength of the vortex ring is found to vary along its circumference due to interaction with the freestream. The boundary layer characteristics obtained from these experiments suggest that the mechanism of the PSJA in crossflow is similar to an active boundary layer trip. Both the penetration of the jet and effectiveness of the trip action are found to decrease with increase in freestream velocity. The effects of unsteady pulsing and increasing input power on actuator created crossflow vortices will also be presented.
Numerical determination of lateral loss coefficients for subchannel analysis in nuclear fuel bundles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sin Kim; Goon-Cherl Park
1995-09-01
An accurate prediction of cross-flow based on detailed knowledge of the velocity field in subchannels of a nuclear fuel assembly is of importance in nuclear fuel performance analysis. In this study, the low-Reynolds number {kappa}-{epsilon} turbulence model has been adopted in two adjacent subchannels with cross-flow. The secondary flow is estimated accurately by the anisotropic algebraic Reynolds stress model. This model was numerically calculated by the finite element method and has been verified successfully through comparison with existing experimental data. Finally, with the numerical analysis of the velocity field in such subchannel domain, an analytical correlation of the lateral lossmore » coefficient is obtained to predict the cross-flow rate in subchannel analysis codes. The correlation is expressed as a function of the ratio of the lateral flow velocity to the donor subchannel axial velocity, recipient channel Reynolds number and pitch-to-diameter.« less
Microchannel crossflow fluid heat exchanger and method for its fabrication
Swift, G.W.; Migliori, A.; Wheatley, J.C.
1985-05-14
A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance. 9 figs.
Direct Numerical Simulation of a Coolant Jet in a Periodic Crossflow
NASA Technical Reports Server (NTRS)
Sharma, Chirdeep; Acharya, Sumanta
1998-01-01
A Direct Numerical Simulation of a coolant jet injected normally into a periodic crossflow is presented. The physical situation simulated represents a periodic module in a coolant hole array with a heated crossflow. A collocated finite difference scheme is used which is fifth-order accurate spatially and second-order accurate temporally. The scheme is based on a fractional step approach and requires the solution of a pressure-Poisson equation. The simulations are obtained for a blowing ratio of 0.25 and a channel Reynolds number of 5600. The simulations reveal the dynamics of several large scale structures including the Counter-rotating Vortex Pair (CVP), the horse-shoe vortex, the shear layer vortex, the wall vortex and the wake vortex. The origins and the interactions of these vortical structures are identified and explored. Also presented are the turbulence statistics and how they relate to the flow structures.
Buoyancy Effects in Turbulent Jet Flames in Crossflow
NASA Astrophysics Data System (ADS)
Boxx, Isaac; Idicheria, Cherian; Clemens, Noel
2003-11-01
The aim of this study is to investigate the effects of buoyancy on the structure of turbulent, non-premixed hydrocarbon jet-flames in crossflow (JFICF). This was accomplished using a small jet-in-crossflow facility which can be oriented at a variety of angles with respect to the gravity vector. This facility enables us to alter the relative influence of buoyancy on the JFICF without altering the jet-exit Reynolds number, momentum flux ratio or the geometry of the system. Results are compared to similar, but non-buoyant, JFICF studied in microgravity. Departures of jet-centerline trajectory from the well-known power-law scaling of turbulent JFICF were used to explore the transition from a buoyancy-influenced regime to a momentum dominated one. The primary diagnostic was CCD imaging of soot-luminosity. We present results on ethylene jet flames with jet-exit Reynolds numbers of 1770 to 8000 and momentum flux ratios of 5 to 13.
Regeneratively cooled transition duct with transversely buffered impingement nozzles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Jay A; Lee, Ching-Pang; Crawford, Michael E
2015-04-21
A cooling arrangement (56) having: a duct (30) configured to receive hot gases (16) from a combustor; and a flow sleeve (50) surrounding the duct and defining a cooling plenum (52) there between, wherein the flow sleeve is configured to form impingement cooling jets (70) emanating from dimples (82) in the flow sleeve effective to predominately cool the duct in an impingement cooling zone (60), and wherein the flow sleeve defines a convection cooling zone (64) effective to cool the duct solely via a cross-flow (76), the cross-flow comprising cooling fluid (72) exhausting from the impingement cooling zone. In themore » impingement cooling zone an undimpled portion (84) of the flow sleeve tapers away from the duct as the undimpled portion nears the convection cooling zone. The flow sleeve is configured to effect a greater velocity of the cross-flow in the convection cooling zone than in the impingement cooling zone.« less
Mixing of Pure Air Jets with a Reacting Fuel-Rich Crossflow
NASA Technical Reports Server (NTRS)
Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.
1997-01-01
Jets in a crossflow play an integral role in practical combustion systems such as can and annular gas turbine combustors in conventional systems, and the Rich-burn/Quick-mix/Lean-burn (RQL) combustor utilized in stationary applications and proposed for advanced subsonic and supersonic transports. The success of the RQL combustor rests with the performance of the quick-mixing section that bridges the rich and lean zones. The mixing of jet air with a rich crossflow to bring the reaction to completion in the lean zone must be performed rapidly and thoroughly in order to decrease the extent of near-stoichiometric fluid pocket formation. Fluid pockets at near-stoichiometric equivalence ratios are undesirable because the high temperatures attained accelerate pollutant formation kinetics associated with nitric oxide (NO). The present study develops a model experiment designed to reveal the processes that occur when jet air is introduced into hot effluent emanating from a fuel-rich reaction zone.
Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers
NASA Technical Reports Server (NTRS)
Gajjar, J. S. B.
1995-01-01
The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.
NASA Astrophysics Data System (ADS)
Cárdenas, Camilo; Denev, Jordan A.; Suntz, Rainer; Bockhorn, Henning
2012-10-01
Investigation of the mixing process is one of the main issues in chemical engineering and combustion and the configuration of a jet into a cross-flow (JCF) is often employed for this purpose. Experimental data are gained for the symmetry plane in a JCF-arrangement of an air flow using a combination of particle image velocimetry (PIV) with laser-induced fluorescence (LIF). The experimental data with thoroughly measured boundary conditions are complemented with direct numerical simulations, which are based on idealized boundary conditions. Two similar cases are studied with a fixed jet-to-cross-flow velocity ratio of 3.5 and variable cross-flow Reynolds numbers equal to 4,120 and 8,240; in both cases the jet issues from the pipe at laminar conditions. This leads to a laminar-to-turbulent transition, which depends on the Reynolds number and occurs quicker for the case with higher Reynolds number in both experiments and simulations as well. It was found that the Reynolds number only slightly affects the jet trajectory, which in the case with the higher Reynolds number is slightly deeper. It is attributed to the changed boundary layer shape of the cross-flow. Leeward streamlines bend toward the jet and are responsible for the strong entrainment of cross-flow fluid into the jet. Velocity components are compared for the two Reynolds numbers at the leeward side at positions where strongest entrainment is present and a pressure minimum near the jet trajectory is found. The numerical simulations showed that entrainment is higher for the case with the higher Reynolds number. The latter is attributed to the earlier transition in this case. Fluid entrainment of the jet in cross-flow is more than twice stronger than for a similar flow of a jet issuing into a co-flowing stream. This comparison is made along the trajectory of the two jets at a distance of 5.5 jet diameters downstream and is based on the results from the direct numerical simulations and recently published experiments of a straight jet into a co-flow. Mixing is further studied by means of second-order statistics of the passive scalar variance and the Reynolds fluxes. Windward and leeward sides of the jet exhibit different signs for the time-averaged streamwise Reynolds flux < v x ' c'>. The large coherent structures which contribute to this effect are investigated by means of timely correlated instantaneous PIV-LIF camera snapshots and their contribution to the average statistics of < v x ' c'> are discussed. The discussion on mixing capabilities of the jet in cross-flow is supported by simulation results showing the instantaneous three-dimensional coherent structures defined in terms of the pressure fluctuations.
NASA Astrophysics Data System (ADS)
Cortus, Erin L.; Jacobson, Larry D.; Hetchler, Brian P.; Heber, Albert J.; Bogan, Bill W.
2015-01-01
Continuous methane (CH4) and nitrous oxide (N2O) emission measurements were conducted at two crossflow-ventilated dairy freestall barns located in the state of Wisconsin, USA during a 19-month period from 2008 to 2010. The two cross-flow mechanically ventilated buildings (275 and 375 cow capacities) were evaluated in the National Air Emissions Monitoring Study. In September of 2008, the barns' manure collection systems were changed from flushing open gutter using manure basin effluent to a tractor scrape. A photoacoustic multi-gas analyzer (PAMGA) and a direct methane/non-methane hydrocarbon analyzer (GC-FID) provided side-by-side measurements of methane (CH4) for 13 months. The PAMGA also measured nitrous oxide (N2O), and a side-by-side comparison was performed with a gas-filter correlation analyzer (GFC) for six months. Barn ventilation rates were measured by recording run times of the 127-cm diameter exhaust fans. All 125 belt-driven exhaust fans were identical, and in situ airflow measurements using the Fan Assessment Numeration System (FANS) were conducted once at the beginning and twice during the test. Daily CH4 and N2O emission rates were calculated over approximately 19 and 6 month periods respectively, on per barn, head, animal unit, floor area space and barn capacity bases. The differences between the analyzers' concentration measurements were compared in conjunction with water vapor and other gases. The analyzer type had a significant impact on the average CH4 emission rate (p < 0.001) and the average N2O emission rate (p < 0.05). Based on the CH4 measurements with the GC-FID, average daily mean CH4 emissions were approximately 290 g AU-1 d-1 (390 g cow-1 d-1) with very limited seasonal effects. Little variation was observed in CH4 emission rates before and after the change in manure collection method, suggesting that most of the CH4 emissions were enteric losses directly from the cows. The average daily mean N2O emission rates based on the GFC were very low, with an approximate rate of only 690 mg AU-1 d-1 (970 mg cow-1 d-1). The change in manure collection had no apparent effect on N2O emission.
Performance Characteristics of a Cross-Flow Hydrokinetic Turbine under Unsteady Conditions
NASA Astrophysics Data System (ADS)
Flack, Karen; Lust, Ethan; Bailin, Ben
2017-11-01
Performance characteristics are presented for a cross-flow hydrokinetic turbine designed for use in a riverine environment. The test turbine is a 1:6 scale model of a three-bladed device (9.5 m span, 6.5 m diameter) that has been proposed by the Department of Energy. Experiments are conducted in the large towing tank (116 m long, 7.9 m wide, 5 m deep) at the United States Naval Academy. The turbine is towed beneath a moving carriage at a constant speed in combination with a shaft motor to achieve the desired tip speed ratio (TSR) range. The measured quantities of turbine thrust, torque and RPM result in power and thrust coefficients for a range of TSR. Results will be presented for cases with quiescent flow at a range of Reynolds numbers and flow with mild surface waves, representative of riverine environments. The impact of unsteady flow conditions on the average turbine performance was not significant. Unsteady flow conditions did have an impact on instantaneous turbine performance which operationally would result in unsteady blade loading and instantaneous power quality.
NASA Astrophysics Data System (ADS)
Wang, Zhefu; Wang, Liang; Fu, Song
2017-09-01
Sensitivity analyses and non-linear parabolized stability equations are solved to provide a computational assessment of the potential use of a Dielectric Barrier Discharge (DBD) plasma actuator for a prolonging laminar region in swept Hiemenz flow. The derivative of the kinetic energy with respect to the body force is deduced, and its components in different directions are defined as sensitivity functions. The results of sensitivity analyses and non-linear parabolized stability equations both indicate that the introduction of a body force as the plasma actuator at the bottom of a crossflow vortex can mitigate instability to delay flow transition. In addition, the actuator is more effective when placed more upstream until the neutral point. In fact, if the actuator is sufficiently close to the neutral point, it is likely to act as a strong disturbance over-riding the natural disturbance and dominating transition. Different operating voltages of the DBD actuators are tested, resulting in an optimal practice for transition delay. The results demonstrate that plasma actuators offer great potential for transition control.
Experimental investigation of the breakup of a round liquid jet in a shock-induced crossflow
NASA Astrophysics Data System (ADS)
Olles, Joseph; Guildenbecher, Daniel; Wagner, Justin; Demauro, Edward; Farias, Paul; Grasser, Thomas; Sojka, Paul
2015-11-01
The breakup of a round water jet due to a step change in the convective air velocity following a 1D air-shock was experimentally investigated. Variations of this experiment have been conducted in the past, however here quantitative results on the breakup sizes and trajectories are shown. A shock tube was utilized to create the jet breakup, and the primary shape of the liquid and secondary droplet sizes were recorded optically. Through the use of digital in-line holography (DIH), the sizes, 3D position, and 3C velocities of secondary droplets were measured at kHz rates. Care was taken to ensure that the jet was kept round throughout the shock tube test section (absent of Plateau-Rayleigh instability). While the liquid jet geometry and velocity was kept constant, various gas-phase velocities allowed for the investigation of multiple breakup morphologies, as a function of the crossflow Weber number. The typical breakup regimes are seen; bag, multimode, and sheet-thinning. With high temporal and spatial resolution, interfacial and liquid column instabilities are seen in the jet breakup.
Adams, Michael C; Barbano, David M
2016-01-01
Our objective was to determine the effect of retentate flow channel diameter (4 or 6mm) of nongraded permeability 100-nm pore size ceramic membranes operated in nonuniform transmembrane pressure mode on the limiting retentate protein concentration (LRPC) while microfiltering (MF) skim milk at a temperature of 50°C, a flux of 55 kg · m(-2) · h(-1), and an average cross-flow velocity of 7 m · s(-1). At the above conditions, the retentate true protein concentration was incrementally increased from 7 to 11.5%. When temperature, flux, and average cross-flow velocity were controlled, ceramic membrane retentate flow channel diameter did not affect the LRPC. This indicates that LRPC is not a function of the Reynolds number. Computational fluid dynamics data, which indicated that both membranes had similar radial velocity profiles within their retentate flow channels, supported this finding. Membranes with 6-mm flow channels can be operated at a lower pressure decrease from membrane inlet to membrane outlet (ΔP) or at a higher cross-flow velocity, depending on which is controlled, than membranes with 4-mm flow channels. This implies that 6-mm membranes could achieve a higher LRPC than 4-mm membranes at the same ΔP due to an increase in cross-flow velocity. In theory, the higher LRPC of the 6-mm membranes could facilitate 95% serum protein removal in 2 MF stages with diafiltration between stages if no serum protein were rejected by the membrane. At the same flux, retentate protein concentration, and average cross-flow velocity, 4-mm membranes require 21% more energy to remove a given amount of permeate than 6-mm membranes, despite the lower surface area of the 6-mm membranes. Equations to predict skim milk MF retentate viscosity as a function of protein concentration and temperature are provided. Retentate viscosity, retentate recirculation pump frequency required to maintain a given cross-flow velocity at a given retentate viscosity, and retentate protein determination by mid-infrared spectrophotometry were all useful tools for monitoring the retentate protein concentration to ensure a sustainable MF process. Using 6-mm membranes instead of 4-mm membranes would be advantageous for processors who wish to reduce energy costs or maximize the protein concentration of a MF retentate. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Shi, Hang; Xagoraraki, Irene; Bruening, Merlin L.
2016-01-01
ABSTRACT This paper examines the recovery of the enteric adenovirus human adenovirus 40 (HAdV 40) by cross-flow ultrafiltration and interprets recovery values in terms of physicochemical interactions of virions during sample concentration. Prior to ultrafiltration, membranes were either blocked by exposure to calf serum (CS) or coated with a polyelectrolyte multilayer (PEM). HAdV 40 is a hydrophobic virus with a point of zero charge between pH 4.0 and pH 4.3. In accordance with predictions from the extended Derjaguin-Landau-Verwey-Overbeek theory, the preelution recovery of HAdV (rpre) from deionized water was higher with PEM-coated membranes (rprePEM = 74.8% ± 9.7%) than with CS-blocked membranes (rpreCS = 54.1% ± 6.2%). With either membrane type, the total virion recovery after elution (rpost) was high for both deionized water (rpostPEM = 99.5% ± 6.6% and rpostCS = 98.8% ± 7.7%) and tap water (rpostPEM = 89% ± 15% and rpostCS = 93.7% ± 6.9%). The nearly 100% recoveries suggest that the polyanion (sodium polyphosphate) and surfactant (Tween 80) in the eluent disrupt electrostatic and hydrophobic interactions between the virion and the membrane. Addition of EDTA to the eluent greatly improved the elution efficacy (rpostCS = 88.6% ± 4.3% and rpostPEM = 87.0% ± 6.9%) with surface water, even when the organic carbon concentration in the water was high (9.4 ± 0.1 mg/liter). EDTA likely disrupts cation bridging between virions and particles in the feed water matrix or the fouling layer on the membrane surface. For complex water matrices, the eluent composition is the most important factor for achieving high virion recovery. IMPORTANCE Herein we present the results of a comprehensive physicochemical characterization of HAdV 40, an important human pathogen. The data on HAdV 40 surface properties enabled rigorous modeling to gain an understanding of the energetics of virion-virion and virion-filter interactions. Cross-flow filtration for concentration and recovery of HAdV 40 was evaluated, with postelution recoveries from ultrapure water (99%), tap water (∼91%), and high-carbon-content surface water (∼84%) being demonstrated. These results are significant because of the very low adenovirus recoveries that have been reported, to date, for other methods. The recovery data were interpreted in terms of specific interactions, and the eluent composition was designed accordingly to maximize HAdV 40 recovery. PMID:27287319
Predictions of a Supersonic Jet-in-Crossflow: Comparisons Among CFD Solvers and with Experiment
2014-09-01
The transverse supersonic jet was produced using a converging-diverging nozzle with a design Mach number of 3.73, a conical expansion section half...J. F., and Erven, R. J., “Flow Separation Inside a Supersonic Nozzle Exhausting into a Subsonic Compressible Crossflw, “Journal of Propulsion and...Predictions of a Supersonic Jet-in-Crossflow: Comparisons Among CFD Solvers and with Experiment by James DeSpirito, Kevin D Kennedy, Clark
Trapping of Embolic Particles in a Vessel Phantom by Cavitation-Enhanced Acoustic Streaming
Maxwell, Adam D.; Park, Simone; Vaughan, Benjamin L.; Cain, Charles A.; Grotberg, James B.; Xu, Zhen
2014-01-01
Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, uf, was as high as 120 cm/s, while mean crossflow velocities, uc, were imposed up to 14 cm/s. When a solid particle 3-4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing uf promoted particle trapping while increasing uc promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Rec, was approximately linear with focal streaming number, Ref, i.e. Rec = 0.25Ref + 67.44 (R2=0.76) corresponding to dimensional velocities uc=0.084uf + 3.122 for 20 < uf < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location. PMID:25109407
Impact of spacer thickness on biofouling in forward osmosis.
Valladares Linares, R; Bucs, Sz S; Li, Z; AbuGhdeeb, M; Amy, G; Vrouwenvelder, J S
2014-06-15
Forward osmosis (FO) indirect desalination systems integrate wastewater recovery with seawater desalination. Niche applications for FO systems have been reported recently, due to the demonstrated advantages compared to conventional high-pressure membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Among them, wastewater recovery has been identified to be particularly suitable for practical applications. However, biofouling in FO membranes has rarely been studied in applications involving wastewater effluents. Feed spacers separating the membrane sheets in cross-flow systems play an important role in biofilm formation. The objective of this study was to determine the influence of feed spacer thickness (28, 31 and 46 mil) on biofouling development and membrane performance in a FO system, using identical cross-flow cells in parallel studies. Flux development, biomass accumulation, fouling localization and composition were determined and analyzed. For all spacer thicknesses, operated at the same feed flow and the same run time, the same amount of biomass was found, while the flux reduction decreased with thicker spacers. These observations are in good agreement with biofouling studies for RO systems, considering the key differences between FO and RO. Our findings contradict previous cross-flow studies on particulate/colloidal fouling, where higher cross-flow velocities improved system performance. Thicker spacers reduced the impact of biofouling on FO membrane flux. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of Crossflow Transition Flight Experiment aboard the Pegasus Launch Vehicle
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.; Li, Fei; Choudhan, Meelan
2007-01-01
The Pegasus wing-glove flight experiment was designed to provide crossflow transition data at high Mach numbers, specifically to help validate stability based predictions for transition onset in a flight environment. This paper provides an analysis of the flight experiment, with emphasis on computational results for crossflow disturbances and the correlation of disturbance growth factors with in-flight transition locations via the e(sup N) method. Implications of the flight data for attachment line stability are also examined. Analysis of the thermocouple data reveals that transition (from turbulent to laminar flow) was first detected during the ascending flight of the rocket when the free stream Mach number exceeded about 4. Therefore, computations have been performed for flight Mach numbers of 4.13, 4.35, 4.56 and 4.99. Due to continually decreasing unit Reynolds number at higher altitudes, the entire wing-glove boundary layer became laminar at the highest flight Mach number computed above. In contrast, the boundary layer flow over the inboard tile region remained transitional up to and somewhat beyond the time of laminarization over the instrumented glove region. Linear stability predictions confirmed that the tile boundary layer is indeed more unstable to crossflow disturbances than the much colder stainless steel glove boundary layer. The transition locations based on thermocouple data from both the glove and the tile regions are found to correlate with stationary-crossflow N-factors within the range of 7 to 12.4 and with traveling mode N-factors between 7.6 and 14.1. Data from the thermocouples and hot film sensors indicates that transition from turbulent to laminar flow (i.e., laminarization) at a fixed point over the glove is generally completed within a flight time interval of 3 seconds. However, the times at which transition begins and ends as inferred from the hot film sensors are found to differ by about 2 seconds from the corresponding estimates based on the thermocouple data.
Boundary-layer transition on cones at angle of attack in a Mach-6 Quiet Tunnel
NASA Astrophysics Data System (ADS)
Swanson, Erick O.
It is desirable for the boundary layer on a re-entry vehicle (RV) to be laminar during as much of its flight as possible, since a turbulent boundary layer causes several problems, such as high heat flux to the vehicle and larger drag forces. Nosetip roughness can cause the boundary layer to transition downstream on the cone. Surface roughness and nosetip bluntness may cause windside-forward transition on maneuvering RVs. The crossflow instability may also influence transition on yawed RVs. The mechanisms through which these phenomena induce transition are poorly understood. Several experiments have been conducted to study these phenomena. The temperature-sensitive-paint (TSP) and oil-flow techniques were used to observe transition and crossflow vortices on cones at angle of attack in the Purdue Boeing/AFOSR Mach-6 Quiet Tunnel. The high-Reynolds number capability of the tunnel was developed to facilitate these experiments. Improvements were made in the use of the temperature-sensitive-paint technique in the Purdue Mach-6 Quiet Tunnel. The measured heat transfer to cones with sharp and spherically-blunt nosetips at 0° angle-of-attack was within 60% of the values from Navier-Stokes computations. Transition was observed on sharp and spherically-blunt cones at 6° angle-of-attack in noisy flow. Crossflow vortices were observed with both TSP and oil flow under noisy conditions in the turbulent boundary layer on a sharp cone. The vortex angles were about 50% of the surface-streamline angles observed using oil dots. TSP was also used to observe crossflow vortices in quiet flow. The vortices were similar to those seen in noisy flow. An array of roughness elements at x = 2 inches (axially) with a spacing of 9° on a yawed sharp cone in noisy flow influenced transition that was apparently induced by the crossflow instability. No influence of the roughness array was observed in quiet flow.
Effect of aspect ratio on sidewall boundary-layer influence in two-dimensional airfoil testing
NASA Technical Reports Server (NTRS)
Murthy, A. V.
1986-01-01
The effect of sidewall boundary layers in airfoil testing in two-dimensional wind tunnels is investigated. The non-linear crossflow velocity variation induced because of the changes in the sidewall boundary-layer thickness is represented by the flow between a wavy wall and a straight wall. Using this flow model, a correction for the sidewall boundary-layer effects is derived in terms of the undisturbed sidewall boundary-layer properties, the test Mach number and the airfoil aspect ratio. Application of the proposed correction to available experimental data showed good correlation for the shock location and pressure distribution on airfoils.
Development of Improved Design and 3D Printing Manufacture of Cross-Flow Fan Rotor
2016-06-01
the design study, each solver run was monitored. Plotting the value of the mass flows, as well as the torque on the rotor blades , allowed a simple...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) This study determined the optimum blade stagger angle for a cross-flow fan rotor and evaluated the...parametric study determined optimum blade stagger angle using thrust, power, and thrust-to-power ratio as desired output variables. A MarkForged Mark One 3D
Microprocessor Control Design for a Low-Head Crossflow Turbine.
1985-03-01
Controllers For a Typical 10 KW Hydroturbine ............ 1-5 I-1 Ely’s Crossflow Turbine . ........ 11-2 11-2 Basic Turbine * * 0 * 0 11-5 11-3 Turbine...the systems. For example, a 25 kilowatt hydroturbine built and installed by Bell Hydroelectric would cost approximately $20,000 in 1978 (6:49). The...O Manual Controller S2 E- Microprocessor Controller 1 2 3 4 5 6 7 8 YEARS Fig. 1-2 Comparative Costs of Controllers For a Typical 10 KW Hydroturbine
Measurements of Crossflow Instability Modes for HIFiRE 5 at Angle of Attack
2017-11-15
temperature sensitive paint (TSP) did not show any vortices in noisy flow, and only revealed vortices in quiet flow for a subset of the Reynolds numbers for...evidence of traveling crossflow waves with a noisy freestream, even though the spectra of the surface pressure signals showed an expected progression...cone ray describing the minor axis, and retains a 2:1 elliptical cross-section to the tip. Figure 1: Photograph of model The model is made of solid 15
Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.
1998-01-01
An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.
Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.
2005-09-20
An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.
Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.
2000-01-01
An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.
Linker, K.L.; Conrad, F.J.; Custer, C.A.; Rhykerd, C.L. Jr.
1998-12-29
An apparatus and method are disclosed for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
RT Hallen; SA Bryan; FV Hoopes
A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRUmore » removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrana, D.L.; Meagher, M.M.; Hutkins, R.W.
1993-10-01
A pervaporation apparatus was designed and tested in an effort to develop an integrated fermentation and product recovery process for acetone-butanol-ethanol(ABE) fermentation. A crossflow membrane module able to accommodate flat sheet hydrophobic membranes was used for the experiments. Permeate vapors were collected under vacuum and condensed in a dry ice/ethanol cold trap. The apparatus containing polytetrafluoroethylene membranes was tested using butanol-water and model solutions of ABE products. Parameters such as product concentration, component effect, temperature, and permeate side pressure were examined. 25 refs., 3 figs., 5 tabs.
NASA Technical Reports Server (NTRS)
Ziegler, H.; Woller, P. T.
1973-01-01
Procedures have been developed for determining the flow field about jets with velocity stratification exhausting into a crossflow. Jets with three different types of exit velocity stratification have been considered: (1) jets with a relatively high velocity core; (2) jets with a relatively low velocity core; and (3) jets originating from a vaned nozzle. The procedure developed for a jet originating from a high velocity core nozzle is to construct an equivalent nozzle having the same mass flow and thrust but having a uniform exit velocity profile. Calculations of the jet centerline and induced surface static pressures have been shown to be in good agreement with test data for a high velocity core nozzle. The equivalent ideal nozzle has also been shown to be a good representation for jets with a relatively low velocity core and for jets originating from a vaned nozzle in evaluating jet-induced flow fields. For the singular case of a low velocity core nozzle, namely a nozzle with a dead air core, and for the vaned nozzle, an alternative procedure has been developed. The internal mixing which takes place in the jet core has been properly accounted for in the equations of motion governing the jet development. Calculations of jet centerlines and induced surface static pressures show good agreement with test data these nozzles.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R.; Torczynski, John R.; Brady, Patrick V.; Gallis, Michail; Brooks, Carlton F.
2014-06-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
On the Surface Breakup of a Non-turbulent Round Liquid Jet in Cross-flow
NASA Astrophysics Data System (ADS)
Behzad, Mohsen; Ashgriz, Nasser
2011-11-01
The atomization of a non-turbulent liquid jet injected into a subsonic cross-flow consists of two parts: (1) primary breakup and (2) secondary breakup. Two distinct regimes for the liquid jet primary breakup have been recognized; the so called column breakup and surface breakup. In the column breakup mode, the entire liquid jet undergoes disintegration into large liquid lumps. Quiet differently in the surface breakup regime, liquid fragments with various sizes and shapes are separated from the surface of the jet. Despite many experimental studies the mechanisms of jet surface breakup is not fully understood. Thus this study aims at providing useful observations regarding the underlying physics involving the surface breakup mechanism of a liquid jet in cross-flow, using detailed numerical simulations. The results show that a two-stage mechanism can be responsible for surface breakup. In the first stage, a sheet-like structure extrudes towards the downstream, and in the second stage it disintegrates into ligaments and droplets due to aerodynamic instability.
The COREL and W12SC3 computer programs for supersonic wing design and analysis
NASA Technical Reports Server (NTRS)
Mason, W. H.; Rosen, B. S.
1983-01-01
Two computer codes useful in the supersonic aerodynamic design of wings, including the supersonic maneuver case are described. The nonlinear full potential equation COREL code performs an analysis of a spanwise section of the wing in the crossflow plane by assuming conical flow over the section. A subsequent approximate correction to the solution can be made in order to account for nonconical effects. In COREL, the flow-field is assumed to be irrotional (Mach numbers normal to shock waves less than about 1.3) and the full potential equation is solved to obtain detailed results for the leading edge expansion, supercritical crossflow, and any crossflow shockwaves. W12SC3 is a linear theory panel method which combines and extends elements of several of Woodward's codes, with emphasis on fighter applications. After a brief review of the aerodynamic theory used by each method, the use of the codes is illustrated with several examples, detailed input instructions and a sample case.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-09-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-11-19
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Dense Array Optimization of Cross-Flow Turbines
NASA Astrophysics Data System (ADS)
Scherl, Isabel; Strom, Benjamin; Brunton, Steven; Polagye, Brian
2017-11-01
Cross-flow turbines, where the axis of rotation is perpendicular to the freestream flow, can be used to convert the kinetic energy in wind or water currents to electrical power. By taking advantage of mean and time-resolved wake structures, the optimal density of an array of cross-flow turbines has the potential for higher power output per unit area of land or sea-floor than an equivalent array of axial-flow turbines. In addition, dense arrays in tidal or river channels may be able to further elevate efficiency by exploiting flow confinement and surface proximity. In this work, a two-turbine array is optimized experimentally in a recirculating water channel. The spacing between turbines, as well as individual and coordinated turbine control strategies are optimized. Array efficiency is found to exceed the maximum efficiency for a sparse array (i.e., no interaction between turbines) for stream-wise rotor spacing of less than two diameters. Results are discussed in the context of wake measurements made behind a single rotor.
Elcik, Harun; Cakmakci, Mehmet
2017-06-01
The purpose of this study was to investigate the efficient harvesting of microalgal biomass through crossflow membrane filtration. The microalgal biomass harvesting experiments were performed using one microfiltration membrane (pore size: 0.2 µm, made from polyvinylidene fluoride) and three ultrafiltration membranes (molecular weight cut-off: 150, 50, and 30 kDa, made from polyethersulfone, hydrophilic polyethersulfone, and regenerated cellulose, respectively). Initially, to minimize membrane fouling caused by microalgal cells, experiments with the objective of determining the critical flux were performed. Based on the critical flux calculations, the best performing membrane was confirmed to be the UH050 membrane, produced from hydrophilic polyethersulfone material. Furthermore, we also evaluated the effect of transmembrane pressure (TMP) and crossflow velocity (CFV) on filtration flux. It was observed that membrane fouling was affected not only by the membrane characteristics, but also by the TMP and CFV. In all the membranes, it was observed that increasing CFV was associated with increasing filtration flux, independent of the TMP.
A Model for Temperature Fluctuations in a Buoyant Plume
NASA Astrophysics Data System (ADS)
Bisignano, A.; Devenish, B. J.
2015-11-01
We present a hybrid Lagrangian stochastic model for buoyant plume rise from an isolated source that includes the effects of temperature fluctuations. The model is based on that of Webster and Thomson (Atmos Environ 36:5031-5042, 2002) in that it is a coupling of a classical plume model in a crossflow with stochastic differential equations for the vertical velocity and temperature (which are themselves coupled). The novelty lies in the addition of the latter stochastic differential equation. Parametrizations of the plume turbulence are presented that are used as inputs to the model. The root-mean-square temperature is assumed to be proportional to the difference between the centreline temperature of the plume and the ambient temperature. The constant of proportionality is tuned by comparison with equivalent statistics from large-eddy simulations (LES) of buoyant plumes in a uniform crossflow and linear stratification. We compare plume trajectories for a wide range of crossflow velocities and find that the model generally compares well with the equivalent LES results particularly when added mass is included in the model. The exception occurs when the crossflow velocity component becomes very small. Comparison of the scalar concentration, both in terms of the height of the maximum concentration and its vertical spread, shows similar behaviour. The model is extended to allow for realistic profiles of ambient wind and temperature and the results are compared with LES of the plume that emanated from the explosion and fire at the Buncefield oil depot in 2005.
Phuntsho, Sherub; Lotfi, Fezeh; Hong, Seungkwan; Shaffer, Devin L; Elimelech, Menachem; Shon, Ho Kyong
2014-06-15
Fertiliser-drawn forward osmosis (FDFO) desalination has been recently studied as one feasible application of forward osmosis (FO) for irrigation. In this study, the potential of membrane scaling in the FDFO process has been investigated during the desalination of brackish groundwater (BGW). While most fertilisers containing monovalent ions did not result in any scaling when used as an FO draw solution (DS), diammonium phosphate (DAP or (NH4)2HPO4) resulted in significant scaling, which contributed to severe flux decline. Membrane autopsy using scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) analysis indicated that the reverse diffusion of DAP from the DS to the feed solution was primarily responsible for scale formation during the FDFO process. Physical cleaning of the membrane with deionised water at varying crossflow velocities was employed to evaluate the reversibility of membrane scaling and the extent of flux recovery. For the membrane scaled using DAP as DS, 80-90% of the original flux was recovered when the crossflow velocity for physical cleaning was the same as the crossflow velocity during FDFO desalination. However, when a higher crossflow velocity or Reynolds number was used, the flux was recovered almost completely, irrespective of the DS concentration used. This study underscores the importance of selecting a suitable fertiliser for FDFO desalination of brackish groundwater to avoid membrane scaling and severe flux decline. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Otto, S. R.; Bassom, Andrew P.
1992-01-01
The nonlinear development is studied of the most unstable Gortler mode within a general 3-D boundary layer upon a suitably concave surface. The structure of this mode was first identified by Denier, Hall and Seddougui (1991) who demonstrated that the growth rate of this instability is O(G sup 3/5) where G is the Gortler number (taken to be large here), which is effectively a measure of the curvature of the surface. Previous researchers have described the fate of the most unstable mode within a 2-D boundary layer. Denier and Hall (1992) discussed the fully nonlinear development of the vortex in this case and showed that the nonlinearity causes a breakdown of the flow structure. The effect of crossflow and unsteadiness upon an infinitesimal unstable mode was elucidated by Bassom and Hall (1991). They demonstrated that crossflow tends to stabilize the most unstable Gortler mode, and for certain crossflow/frequency combinations the Gortler mode may be made neutrally stable. These vortex configurations naturally lend themselves to a weakly nonlinear stability analysis; work which is described in a previous article by the present author. Here we extend the ideas of Denier and Hall (1992) to the three-dimensional boundary layer problem. It is found that the numerical solution of the fully nonlinear equations is best conducted using a method which is essentially an adaption of that utilized by Denier and Hall (1992). The influence of crossflow and unsteadiness upon the breakdown of the flow is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Liyin; Wang, Zhen-guo, E-mail: wangzhenguo-wzg@163.com; Li, Qinglian
2015-09-07
Phase Doppler anemometry was applied to investigate the atomization processes of a kerosene jet injected into Ma = 1.86 crossflow. Physical behaviors, such as breakup and coalescence, are reproduced through the analysis of the spatial distribution of kerosene droplets' size. It is concluded that Sauter mean diameter distribution shape transforms into “I” type from “C” type as the atomization development. Simultaneously, the breakup of large droplets and the coalescence of small droplets can be observed throughout the whole atomization process.
Time-Accurate Computations of Isolated Circular Synthetic Jets in Crossflow
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Schaeffler, N. W.; Milanovic, I. M.; Zaman, K. B. M. Q.
2007-01-01
Results from unsteady Reynolds-averaged Navier-Stokes computations are described for two different synthetic jet flows issuing into a turbulent boundary layer crossflow through a circular orifice. In one case the jet effect is mostly contained within the boundary layer, while in the other case the jet effect extends beyond the boundary layer edge. Both cases have momentum flux ratios less than 2. Several numerical parameters are investigated, and some lessons learned regarding the CFD methods for computing these types of flow fields are summarized. Results in both cases are compared to experiment.
Study of transient behavior of finned coil heat exchangers
NASA Technical Reports Server (NTRS)
Rooke, S. P.; Elissa, M. G.
1993-01-01
The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.
Induced velocity field of a jet in a crossflow
NASA Technical Reports Server (NTRS)
Fearn, R. L.; Weston, R. P.
1978-01-01
An experimental investigation of a subsonic round jet exhausting perpendicularly from a flat plate into a subsonic crosswind of the same temperature was conducted. Velocity and pressure measurements were made in planes perpendicular to the path of the jet for ratios of jet velocity to crossflow velocity ranging from 3 to 10. The results of these measurements are presented in tabular and graphical forms. A pair of diffuse contrarotating vortices is identified as a significant feature of the flow, and the characteristics of the vortices are discussed.
Polishing Step Purification of High-Strength Wastewaters by Nanofiltration and Reverse Osmosis
Zhou, Jinxiang; Baker, Brian O.; Grimsley, Charles T.; Husson, Scott M.
2016-01-01
This article reports findings on the use of nanofiltration (NF) and reverse osmosis (RO) for secondary treatment of high-strength rendering facility wastewaters following an ultrafiltration step. These wastewaters present significant challenges to classical treatment technologies. Constant-pressure, direct-flow membrane filtration experiments were done to screen for flux and effluent water permeate quality of ten commercial NF and RO membranes. All membranes tested were effective in reducing total dissolved salts (TDS) and chemical oxygen demand (COD); however, only two membranes (Koch MPF-34 and Toray 70UB) gave sufficiently stable flux values to warrant longer term cross-flow filtration studies. Cross-flow flux measurements, scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDS), and attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) indicated that both membranes were eventually fouled by organic and inorganic foulants; however, the Toray 70UB RO membrane yielded a capacity of 1600 L/m2 prior to cleaning. A preliminary economic analysis compared the estimated costs of energy and consumables for a dual-stage UF/RO membrane process and dissolved air floatation (DAF) and found membrane process costs could be less than about 40% of the current DAF process. PMID:26978407
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huan, Xun; Safta, Cosmin; Sargsyan, Khachik
The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertain parameters involved and the high computational cost of flow simulations. These difficulties are addressed in this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying them in the current study to large-eddy simulations of a jet in crossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis ismore » conducted to identify influential uncertain input parameters, which can help reduce the system’s stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. In conclusion, these methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huan, Xun; Safta, Cosmin; Sargsyan, Khachik
The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertain parameters involved and the high computational cost of flow simulations. These difficulties are addressed in this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying them in the current study to large-eddy simulations of a jet in crossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis ismore » conducted to identify influential uncertain input parameters, which can help reduce the system’s stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. Finally, these methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.« less
NASA Technical Reports Server (NTRS)
Bain, D. B.; Smith, C. E.; Holdeman, J. D.
1995-01-01
Three dimensional turbulent reacting CFD analyses were performed on transverse jets injected into annular and cylindrical (can) confined crossflows. The goal was to identify and assess mixing differences between annular and can geometries. The approach taken was to optimize both annular and can configurations by systematically varying orifice spacing until lowest emissions were achieved, and then compare the results. Numerical test conditions consisted of a jet-to-mainstream mass-flow ratio of 3.2 and a jet-to-mainstream momentum-flux ratio (J) of 30. The computational results showed that the optimized geometries had similar emission levels at the exit of the mixing section although the annular configuration did mix-out faster. For lowest emissions, the density correlation parameter (C = (S/H) square root of J) was 2.35 for the annular geometry and 3.5 for the can geometry. For the annular geometry, the constant was about twice the value seen for jet mixing at low mass-flow ratios (i.e., MR less than 0.5). For the can geometry, the constant was about 1 1/2 times the value seen for low mass-flow ratios.
NASA Astrophysics Data System (ADS)
Huan, Xun; Safta, Cosmin; Sargsyan, Khachik; Geraci, Gianluca; Eldred, Michael S.; Vane, Zachary P.; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, Habib N.
2018-03-01
The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertain parameters involved and the high computational cost of flow simulations. These difficulties are addressed in this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying them in the current study to large-eddy simulations of a jet in crossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the systems stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. These methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.
Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow
NASA Astrophysics Data System (ADS)
Mitra, D.; Dhir, V. K.; Catton, I.
2009-10-01
Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability.
Huan, Xun; Safta, Cosmin; Sargsyan, Khachik; ...
2018-02-09
The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertain parameters involved and the high computational cost of flow simulations. These difficulties are addressed in this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying them in the current study to large-eddy simulations of a jet in crossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis ismore » conducted to identify influential uncertain input parameters, which can help reduce the system’s stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. In conclusion, these methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.« less
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).
NASA Technical Reports Server (NTRS)
Boltz, Frederick W.; Kenyon, George C.; Allen, Clyde Q.
1960-01-01
An investigation was conducted in the Ames 12-Foot Low-Turbulence Pressure Tunnel to determine the effects of sweep on the boundary-layer stability characteristics of an untapered variable-sweep wing having an NACA 64(2)A015 section normal to the leading edge. Pressure distribution and transition were measured on the wing at low speeds at sweep angles of 0, 10, 20, 30, 40, and 50 deg. and at angles of attack from -3 to 3 deg. The investigation also included flow-visualization studies on the surface at sweep angles from 0 to 50 deg. and total pressure surveys in the boundary layer at a sweep angle of 30 deg. for angles of attack from -12 to 0 deg. It was found that sweep caused premature transition on the wing under certain conditions. This effect resulted from the formation of vortices in the boundary layer when a critical combination of sweep angle, pressure gradient, and stream Reynolds number was attained. A useful parameter in indicating the combined effect of these flow variables on vortex formation and on beginning transition is the crossflow Reynolds number. The critical values of crossflow Reynolds number for vortex formation found in this investigation range from about 135 to 190 and are in good agreement with those reported in previous investigations. The values of crossflow Reynolds number for beginning transitions were found to be between 190 and 260. For each condition (i.e., development of vortices and initiation of transition at a given location) the lower values in the specified ranges were obtained with a light coating of flow-visualization material on the surface. A method is presented for the rapid computation of crossflow Reynolds number on any swept surface for which the pressure distribution is known. From calculations based on this method, it was found that the maximum values of crossflow Reynolds number are attained under conditions of a strong pressure gradient and at a sweep angle of about 50 deg. Due to the primary dependence on pressure gradient, effects of sweep in causing premature transition are generally first encountered on the lower surfaces of wings operating at positive angles of attack.
Transverse jet shear layer instabilities and their control
NASA Astrophysics Data System (ADS)
Karagozian, Ann
2013-11-01
The jet in crossflow, or transverse jet, is a canonical flowfield that has relevance to engineering systems ranging from dilution jets and film cooling for gas turbine engines to thrust vector control and fuel injection in high speed aerospace vehicles to environmental control of effluent from chimney and smokestack plumes. Over the years, our UCLA Energy and Propulsion Research Lab's studies on this flowfield have focused on the dynamics of the vorticity associated with equidensity and variable density jets in crossflow, including the stability characteristics of the jet's upstream shear layer. A range of different experimental diagnostics have been used to study the jet's upstream shear layer, whereby a transition from convectively unstable behavior at high jet-to-crossflow momentum flux ratios to absolutely unstable flow at low momentum flux and/or density ratios is identified. These differences in shear layer stability characteristics have a profound effect on how one employs external excitation to control jet penetration, spread, and mixing, depending on the flow regime and specific engineering application. These control strategies, and challenges for future research directions, will be identified in this presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanguas-Gil, Angel; Elam, Jeffrey W.
2014-05-01
In this work, the authors present analytic models for atomic layer deposition (ALD) in three common experimental configurations: cross-flow, particle coating, and spatial ALD. These models, based on the plug-flow and well-mixed approximations, allow us to determine the minimum dose times and materials utilization for all three configurations. A comparison between the three models shows that throughput and precursor utilization can each be expressed by universal equations, in which the particularity of the experimental system is contained in a single parameter related to the residence time of the precursor in the reactor. For the case of cross-flow reactors, the authorsmore » show how simple analytic expressions for the reactor saturation profiles agree well with experimental results. Consequently, the analytic model can be used to extract information about the ALD surface chemistry (e. g., the reaction probability) by comparing the analytic and experimental saturation profiles, providing a useful tool for characterizing new and existing ALD processes. (C) 2014 American Vacuum Society« less
NASA Technical Reports Server (NTRS)
Florschuetz, L. W.; Su, C. C.
1985-01-01
Spanwise average heat fluxes, resolved in the streamwise direction to one stream-wise hole spacing were measured for two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate. The jet flow, after impingement, was constrained to exit in a single direction along the channel formed by the jet orifice plate and heat transfer surface. The crossflow originated from the jets following impingement and an initial crossflow was present that approached the array through an upstream extension of the channel. The regional average heat fluxes are considered as a function of parameters associated with corresponding individual spanwise rows within the array. A linear superposition model was employed to formulate appropriate governing parameters for the individual row domain. The effects of flow history upstream of an individual row domain are also considered. The results are formulated in terms of individual spanwise row parameters. A corresponding set of streamwise resolved heat transfer characteristics formulated in terms of flow and geometric parameters characterizing the overall arrays is described.
NASA Technical Reports Server (NTRS)
Obrien, J. E.; Vanfossen, G. J., Jr.
1985-01-01
The effect of high-intensity turbulence on heat transfer from the stagnation region of a circular cylinder in crossflow was studied. The work was motivated by the desire to be able to more fully understand and predict the heat transfer to the leading edge of a turbine airfoil. In order to achieve high levels of turbulence with a reasonable degree of isotropy and homogeneity, a jet-injection turbulence grid was used. The jet grid provided turbulence intensities of 10 to 12 percent, measured at the test cylinder location, for downstream blowing with the blowing rate adjusted to an optimal value for flow uniformity. Heat transfer augmentation above the zeroturbulence case ranged from 37 to 53 percent for the test cylinder behind the jet grid for a cylinder Reynolds number range of 48,000 to 180,000, respectively. The level of heat transfer augmentation was found to be fairly uniform with respect to circumferential distance from the stagnation line. Stagnation point heat transfer results (expressed in terms of the Frossling number) were found to be somewhat low with respect to previous studies, when compared on the basis of equal values of the parameter Tu Re(1/2), indicating an additional Reynolds number effect as observed by previous investigators. Consequently, for a specified value of Tu Re(1/2), data obtained with a relatively high turbulence intensity will have a lower value of the Frossling number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsuddin Ilias
Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.« less
The Entrainment Rate for Buoyant Plumes in a Crossflow
NASA Astrophysics Data System (ADS)
Devenish, B. J.; Rooney, G. G.; Webster, H. N.; Thomson, D. J.
2010-03-01
We consider large-eddy simulations (LES) of buoyant plumes from a circular source with initial buoyancy flux F 0 released into a stratified environment with constant buoyancy frequency N and a uniform crossflow with velocity U. We make a systematic comparison of the LES results with the mathematical theory of plumes in a crossflow. We pay particular attention to the limits {tilde{U}≪1} and {tilde{U}≫ 1}, where {tilde{U}=U/(F_0 N)^{1/4}}, for which analytical results are possible. For {tilde{U}≫ 1}, the LES results show good agreement with the well-known two-thirds law for the rise in height of the plume. Sufficiently far above the source, the centreline vertical velocity of the LES plumes is consistent with the analytical z -1/3 and z -1/2 scalings for respectively {tilde{U}≪ 1} and {tilde{U}≫ 1}. In the general case, where the entrainment is assumed to be the sum of the contributions from the horizontal and vertical velocity components, we find that the discrepancy between the LES data and numerical solutions of the plume equations is largest for {tilde{U}=O(1)}. We propose a modified additive entrainment assumption in which the contributions from the horizontal and vertical velocity components are not equally weighted. We test this against observations of the plume generated by the Buncefield fire in the U.K. in December 2005 and find that the results compare favourably. We also show that the oscillations of the plume as it settles down to its final rise height may be attenuated by the radiation of gravity waves. For {tilde{U}≪ 1} the oscillations decay rapidly due to the transport of energy away from the plume by gravity waves. For {tilde{U}>rsim 1} the gravity waves travel in the same direction and at the same speed as the flow. In this case, the oscillations of the plume do not decay greatly by radiation of gravity waves.
Combination film/splash fill for overcoming film fouling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, P.M.; Minett, T.O.
1995-02-01
In summary, this large cooling tower user has found the Phelps film/splash Stack-Pack fill design to attain a substantial improvement in capability of their existing crossflow cooling towers, without increasing fan power or tower size. The lack of fouling in the film fill component of this fill design is due to the use of film fill with large (1 inch) spacing between sheets, coupled with effective water treatment as provided by Nalco. This combination of factors provides a proven method for significantly increasing crossflow or counterflow cooling tower capability while minimizing chances of serious fill fouling.
Numerical simulation of swept-wing flows
NASA Technical Reports Server (NTRS)
Reed, Helen L.
1991-01-01
Efforts of the last six months to computationally model the transition process characteristics of flow over swept wings are described. Specifically, the crossflow instability and crossflow/Tollmien-Schlichting wave interactions are analyzed through the numerical solution of the full 3D Navier-Stokes equations including unsteadiness, curvature, and sweep. This approach is chosen because of the complexity of the problem and because it appears that linear stability theory is insufficient to explain the discrepancies between different experiments and between theory and experiment. The leading edge region of a swept wing is considered in a 3D spatial simulation with random disturbances as the initial conditions.
Performance Evaluation, Emulation, and Control of Cross-Flow Hydrokinetic Turbines
NASA Astrophysics Data System (ADS)
Cavagnaro, Robert J.
Cross-flow hydrokinetic turbines are a promising option for effectively harvesting energy from fast-flowing streams or currents. This work describes the dynamics of such turbines, analyzes techniques used to scale turbine properties for prototyping, determines and demonstrates the limits of stability for cross-flow rotors, and discusses means and objectives of turbine control. Novel control strategies are under development to utilize low-speed operation (slower than at maximum power point) as a means of shedding power under rated conditions. However, operation in this regime may be unstable. An experiment designed to characterize the stability of a laboratory-scale cross-flow turbine operating near a critically low speed yields evidence that system stall (complete loss of ability to rotate) occurs due, in part, to interactions with turbulent decreases in flow speed. The turbine is capable of maintaining 'stable' operation at critical speed for short duration (typically less than 10 s), as described by exponential decay. The presence of accelerated 'bypass' flow around the rotor and decelerated 'induction' region directly upstream of the rotor, both predicted by linear momentum theory, are observed and quantified with particle image velocimetry (PIV) measurements conducted upstream of the turbine. Additionally, general agreement is seen between PIV inflow measurements and those obtained by an advection-corrected acoustic Doppler velocimeter (ADV) further upstream. Performance of a turbine at small (prototype) geometric scale may be prone to undesirable effects due to operation at low Reynolds number and in the presence of high channel blockage. Therefore, testing at larger scale, in open water is desirable. A cross-flow hydrokinetic turbine with a projected area (product of blade span and rotor diameter) of 0.7 m2 is evaluated in open-water tow trials at three inflow speeds ranging from 1.0 m/s to 2.1 m/s. Measurements of the inflow velocity, the rotor mechanical power, and electrical power output of a complete power take-off (PTO) system are utilized to determine the rotor hydrodynamic efficiency (maximum of 17%) and total system efficiency (maximum of 9%). A lab-based dynamometry method yields individual component and total PTO efficiencies, shown to have high variability and strong influence on total system efficiency. Dynamic efficiencies of PTO components can effect the overall efficiency of a turbine system, a result from field characterization. Thus, the ability to evaluate such components and their potential effects on turbine performance prior to field deployment is desirable. Before attempting control experiments with actual turbines, hardware-in-the-loop testing on controllable motor-generator sets or electromechanical emulation machines (EEMs) are explored to better understand power take-off response. The emulator control dynamic equations are presented, methods for scaling turbine parameters are developed and evaluated, and experimental results are presented from three EEMs programmed to emulate the same cross-flow turbine. Although hardware platforms and control implementations varied, results show that each EEM is successful in emulating the turbine model at different power levels, thus demonstrating the general feasibility of the approach. However, performance of motor control under torque command, current command, or speed command differed; torque methods required accurate characterization of the motors while speed methods utilized encoder feedback and more accurately tracked turbine dynamics. In a demonstration of an EEM for evaluating a hydrokinetic turbine implementation, a controller is used to track the maximum power-point of the turbine in response to turbulence. Utilizing realistic inflow conditions and control laws, the emulator dynamic speed response is shown to agree well at low frequencies with simulation but to deviate at high frequencies. The efficacy of an electromechanical emulator as an accurate representation of a fielded turbine is evaluated. A commercial horizontally-oriented cross-flow turbine is dynamically emulated on hardware to investigate control strategies and grid integration. A representative inflow time-series with a mean of 2 m/s is generated from high-resolution flow measurements of a riverine site and is used to drive emulation. Power output during emulation under similar input and loading conditions yields agreement with field measurements to within 3% at high power, near-optimal levels. Constant tip-speed ratio and constant speed proportional plus integral control schemes are compared to optimal nonlinear control and constant resistance regulation. All controllers yield similar results in terms of overall system efficiency. The emulated turbine is more responsive to turbulent inflow than the field turbine, as the model utilized to drive emulation does not account for a smoothing effect of turbulent fluctuations over the span of the fielded turbine's rotors. The turbine has a lower inertia than the demand of an isolated grid, indicating a secondary source of power with a similar frequency response is necessary if a single turbine cannot meet the entire demand. (Abstract shortened by UMI.).
Large Eddy Simulation of a cooling impinging jet to a turbulent crossflow
NASA Astrophysics Data System (ADS)
Georgiou, Michail; Papalexandris, Miltiadis
2015-11-01
In this talk we report on Large Eddy Simulations of a cooling impinging jet to a turbulent channel flow. The impinging jet enters the turbulent stream in an oblique direction. This type of flow is relevant to the so-called ``Pressurized Thermal Shock'' phenomenon that can occur in pressurized water reactors. First we elaborate on issues related to the set-up of the simulations of the flow of interest such as, imposition of turbulent inflows, choice of subgrid-scale model and others. Also, the issue of the commutator error due to the anisotropy of the spatial cut-off filter induced by non-uniform grids is being discussed. In the second part of the talk we present results of our simulations. In particular, we focus on the high-shear and recirculation zones that are developed and on the characteristics of the temperature field. The budget for the mean kinetic energy of the resolved-scale turbulent velocity fluctuations is also discussed and analyzed. Financial support has been provided by Bel V, a subsidiary of the Federal Agency for Nuclear Control of Belgium.
Summary of an experimental investigation on the ground vortex
NASA Technical Reports Server (NTRS)
Billet, Michael L.; Cimbala, John M.
1988-01-01
The results of an experimental investigation into the position and characteristics of the ground vortex are summarized. A 48-inch wind tunnel was modified to create a testing environment suitable for the ground vortex study. Flow visualization was used to document the jet-crossflow interaction and a two-component Laser Doppler Velocimeter (LDV) was used to survey the flowfield in detail. Measurements of the ground vortex characteristics and location as a function of freestream-to-jet velocity ratio, jet height, pressure gradient and upstream boundary layer thickness were obtained.
Blockage effects on the hydrodynamic performance of a marine cross-flow turbine.
Consul, Claudio A; Willden, Richard H J; McIntosh, Simon C
2013-02-28
This paper explores the influence of blockage and free-surface deformation on the hydrodynamic performance of a generic marine cross-flow turbine. Flows through a three-bladed turbine with solidity 0.125 are simulated at field-test blade Reynolds numbers, O(10(5)-10(6)), for three different cross-stream blockages: 12.5, 25 and 50 per cent. Two representations of the free-surface boundary are considered: rigid lid and deformable free surface. Increasing the blockage is observed to lead to substantial increases in the power coefficient; the highest power coefficient computed is 1.23. Only small differences are observed between the two free-surface representations, with the deforming free-surface turbine out-performing the rigid lid turbine by 6.7 per cent in power at the highest blockage considered. This difference is attributed to the increase in effective blockage owing to the deformation of the free surface. Hydrodynamic efficiency, the ratio of useful power generated to overall power removed from the flow, is found to increase with blockage, which is consistent with the presence of a higher flow velocity through the core of the turbine at higher blockage ratios. Froude number is found to have little effect on thrust and power coefficients, but significant influence on surface elevation drop across the turbine.
The effect of blade pitch in the rotor hydrodynamics of a cross-flow turbine
NASA Astrophysics Data System (ADS)
Somoano, Miguel; Huera-Huarte, Francisco
2016-11-01
In this work we will show how the hydrodynamics of the rotor of a straight-bladed Cross-Flow Turbine (CFT) are affected by the Tip Speed Ratio (TSR), and the blade pitch angle imposed to the rotor. The CFT model used in experiments consists of a three-bladed (NACA-0015) vertical axis turbine with a chord (c) to rotor diameter (D) ratio of 0.16. Planar Digital Particle Image Velocimetry (DPIV) was used, with the laser sheet aiming at the mid-span of the blades, illuminating the inner part of the rotor and the near wake of the turbine. Tests were made by forcing the rotation of the turbine with a DC motor, which provided precise control of the TSR, while being towed in a still-water tank at a constant Reynolds number of 61000. A range of TSRs from 0.7 to 2.3 were covered for different blade pitches, ranging from 8° toe-in to 16° toe-out. The interaction between the blades in the rotor will be discussed by examining dimensionless phase-averaged vorticity fields in the inner part of the rotor and mean velocity fields in the near wake of the turbine. Supported by the Spanish Ministry of Economy and Competitiveness, Grant BES-2013-065366 and project DPI2015-71645-P.
Catalytic cartridge SO.sub.3 decomposer
Galloway, Terry R.
1982-01-01
A catalytic cartridge internally heated is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube being internally heated. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and being internally heated. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.
Transition Studies on a Swept-Wing Model
NASA Technical Reports Server (NTRS)
Saric, William S.
1996-01-01
The present investigation contributes to the understanding of boundary-layer stability and transition by providing detailed measurements of carefully-produced stationary crossflow vortices. It is clear that a successful prediction of transition in swept-wing flows must include an understanding of the detailed physics involved. Receptivity and nonlinear effects must not be ignored. Linear stability theory correctly predicts the expected wavelengths and mode shapes for stationary crossflow, but fails to predict the growth rates, even for low amplitudes. As new computational and analytical methods are developed to deal with three-dimensional boundary layers, the data provided by this experiment will serve as a useful benchmark for comparison.
Performance characterization of a cross-flow hydrokinetic turbine in sheared inflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbush, Dominic; Polagye, Brian; Thomson, Jim
2016-12-01
A method for constructing a non-dimensional performance curve for a cross-flow hydrokinetic turbine in sheared flow is developed for a natural river site. The river flow characteristics are quasi-steady, with negligible vertical shear, persistent lateral shear, and synoptic changes dominated by long time scales (days to weeks). Performance curves developed from inflow velocities measured at individual points (randomly sampled) yield inconclusive turbine performance characteristics because of the spatial variation in mean flow. Performance curves using temporally- and spatially-averaged inflow velocities are more conclusive. The implications of sheared inflow are considered in terms of resource assessment and turbine control.
1980-06-01
number, M-U/a • xi Symbol Meani_ n P Pressure of gas mixture. p Property of the gas mixture. Prt Turbulent Prandtl Number, Prt=0.9 Q Jet to freestream...empirical equations defining the jet trajectory can be written in the following general form, x ym n d ’d \\P 0 O2 where K is some prescribed constant...and, m’ 3 and 1 . n < 1.5 For completeness, Lee (Ref 19) and Garner (Ref 20) authored survey reports detailing the. state-of-the-art of Jet-crossflow
Analysis of an entrainment model of the jet in a crossflow
NASA Technical Reports Server (NTRS)
Chang, H. S.; Werner, J. E.
1972-01-01
A theoretical model has been proposed for the problem of a round jet in an incompressible cross-flow. The method of matched asymptotic expansions has been applied to this problem. For the solution to the flow problem in the inner region, the re-entrant wake flow model was used with the re-entrant flow representing the fluid entrained by the jet. Higher order corrections are obtained in terms of this basic solution. The perturbation terms in the outer region was found to be a line distribution of doublets and sources. The line distribution of sources represents the combined effect of the entrainment and the displacement.
20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow
NASA Astrophysics Data System (ADS)
Miller, V. A.; Troutman, V. A.; Mungal, M. G.; Hanson, R. K.
2014-10-01
This manuscript describes continuous, high-repetition-rate (20 kHz) toluene planar laser-induced fluorescence (PLIF) imaging in an expansion tube impulse flow facility. Cinematographic image sequences are acquired that visualize an underexpanded jet of hydrogen in Mach 0.9 crossflow, a practical flow configuration relevant to aerospace propulsion systems. The freestream gas is nitrogen seeded with toluene; toluene broadly absorbs and fluoresces in the ultraviolet, and the relatively high quantum yield of toluene produces large signals and high signal-to-noise ratios. Toluene is excited using a commercially available, frequency-quadrupled (266 nm), high-repetition-rate (20 kHz), pulsed (0.8-0.9 mJ per pulse), diode-pumped solid-state Nd:YAG laser, and fluorescence is imaged with a high-repetition-rate intensifier and CMOS camera. The resulting PLIF movie and image sequences are presented, visualizing the jet start-up process and the dynamics of the jet in crossflow; the freestream duration and a measure of freestream momentum flux steadiness are also inferred. This work demonstrates progress toward continuous PLIF imaging of practical flow systems in impulse facilities at kHz acquisition rates using practical, turn-key, high-speed laser and imaging systems.
NASA Astrophysics Data System (ADS)
Petit, H. A.; Irassar, E. F.; Barbosa, M. R.
2018-01-01
Manufactured sands are particulate materials obtained as by product of rock crushing. Particle sizes in the sand can be as high as 6 mm and as low as a few microns. The concrete industry has been increasingly using these sands as fine aggregates to replace natural sands. The main shortcoming is the excess of particles smaller than <0.075 mm (Dust). This problem has been traditionally solved by a washing process. Air classification is being studied to replace the washing process and avoid the use of water. The complex classification process can only been understood with the aid of CFD-DEM simulations. This paper evaluates the applicability of a cross-flow air classifier to reduce the amount of dust in manufactured sands. Computational fluid dynamics (CFD) and discrete element modelling (DEM) were used for the assessment. Results show that the correct classification set up improves the size distribution of the raw materials. The cross-flow air classification is found to be influenced by the particle size distribution and the turbulence inside the chamber. The classifier can be re-designed to work at low inlet velocities to produce manufactured sand for the concrete industry.
Rapid Sample Processing for Detection of Food-Borne Pathogens via Cross-Flow Microfiltration
Li, Xuan; Ximenes, Eduardo; Amalaradjou, Mary Anne Roshni; Vibbert, Hunter B.; Foster, Kirk; Jones, Jim; Liu, Xingya; Bhunia, Arun K.
2013-01-01
This paper reports an approach to enable rapid concentration and recovery of bacterial cells from aqueous chicken homogenates as a preanalytical step of detection. This approach includes biochemical pretreatment and prefiltration of food samples and development of an automated cell concentration instrument based on cross-flow microfiltration. A polysulfone hollow-fiber membrane module having a nominal pore size of 0.2 μm constitutes the core of the cell concentration instrument. The aqueous chicken homogenate samples were circulated within the cross-flow system achieving 500- to 1,000-fold concentration of inoculated Salmonella enterica serovar Enteritidis and naturally occurring microbiota with 70% recovery of viable cells as determined by plate counting and quantitative PCR (qPCR) within 35 to 45 min. These steps enabled 10 CFU/ml microorganisms in chicken homogenates or 102 CFU/g chicken to be quantified. Cleaning and sterilizing the instrument and membrane module by stepwise hydraulic and chemical cleaning (sodium hydroxide and ethanol) enabled reuse of the membrane 15 times before replacement. This approach begins to address the critical need for the food industry for detecting food pathogens within 6 h or less. PMID:24014538
Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow
NASA Astrophysics Data System (ADS)
Wang, Zhen-guo; Wu, Liyin; Li, Qinglian; Li, Chun
2014-09-01
Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. The injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674-2686 (2008)] and Wang et al. [AIAA J. 50, 1360-1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.
Aerosol Filter Loading Data for a Simulated Jet Engine Test Cell Aerosol.
1979-08-01
media. M SECTION II TEST PROGRAM I. TESTING PROCEDURE Sheets of the filter media were obtained from Owens - Corning Fiberglas Corporation. Ten centimeter...loading cycle. 2. TEST FILTERS The four following glass fiber filter medias were obtained from Owens - Corning Fiberglas Corporation (OCF) and tested both...shown in Table 22. Filters were washed from the back side. 5. ONCLUSIONS Four glass fiber filters, specified in the contract, were obtained from Owens
Nonlinear Excitation of Inviscid Stationary Vortex in a Boundary-Layer Flow
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Duck, Peter W.
1996-01-01
We examine the excitation of inviscid stationary crossflow instabilities near an isolated surface hump (or indentation) underneath a three-dimensional boundary layer. As the hump height (or indentation depth) is increased from zero, the receptivity process becomes nonlinear even before the stability characteristics of the boundary layer are modified to a significant extent. This behavior contrasts sharply with earlier findings on the excitation of the lower branch Tollmien-Schlichting modes and is attributed to the inviscid nature of the crossflow modes, which leads to a decoupling between the regions of receptivity and stability. As a result of this decoupling, similarity transformations exist that allow the nonlinear receptivity of a general three-dimensional boundary layer to be studied with a set of canonical solutions to the viscous sublayer equations. The parametric study suggests that the receptivity is likely to become nonlinear even before the hump height becomes large enough for flow reversal to occur in the canonical solution. We also find that the receptivity to surface humps increases more rapidly as the hump height increases than is predicted by linear theory. On the other hand, receptivity near surface indentations is generally smaller in comparison with the linear approximation. Extension of the work to crossflow receptivity in compressible boundary layers and to Gortler vortex excitation is also discussed.
An Interactive Excel Program for Tracking a Single Droplet in Crossflow Computation
NASA Technical Reports Server (NTRS)
Urip, E.; Yang, S. L.; Marek, C. J.
2002-01-01
Spray jet in crossflow has been a subject of research because of its wide application in systems involving pollutant dispersion, jet mixing in the dilution zone of combustors, and fuel injection strategies. The focus of this work is to investigate dispersion of a 2-dimensional atomized spray jet into a 2-dimensional crossflow. A quick computational method is developed using available software. The spreadsheet can be used for any 2D droplet trajectory problem where the drop is injected into the free stream eventually coming to the free stream conditions. During the transverse injection of a spray into high velocity airflow, the droplets (carried along and deflected by a gaseous stream of co-flowing air) are subjected to forces that affect their motion in the flow field. Based on the Newton's Second Law of motion, four ordinary differential equations were used. These equations were then solved by a fourth-order Runge-Kutta method using Excel software. Visual basic programming and Excel macrocode to produce the data facilitate Excel software to plot graphs describing the droplet's motion in the flow field. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user's manual on how to use the program is also included in this report.
NASA Astrophysics Data System (ADS)
Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O. M.
2016-02-01
Pulse-burst Particle Image Velocimetry (PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulent eddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulent eddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Super-sampled velocity spectra to 150 kHz reveal a power-law dependency of -5/3 in the inertial subrange as well as a -1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.
Stationary Crossflow Breakdown due to Mixed Mode Spectra of Secondary Instabilities
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Duan, Lian
2016-01-01
Numerical simulations are used to study laminar breakdown characteristics associated with stationary crossflow instability in the boundary-layer flow over a subsonic swept-wing configuration. Previous work involving the linear and nonlinear development of individual, fundamental modes of secondary instability waves is extended by considering the role of more complex, yet controlled, spectra of the secondary instability modes. Direct numerical simulations target a mixed mode transition scenario involving the simultaneous presence of Y and Z modes of secondary instability. For the initial amplitudes investigated in this paper, the Y modes are found to play an insignificant role during the onset of transition, in spite of achieving rather large, O(5%), amplitudes of RMS velocity fluctuation prior to transition. Analysis of the numerical simulations shows that this rather surprising finding can be attributed to the fact that the Y modes are concentrated near the top of the crossflow vortex and exert relatively small influence on the Z modes that reside closer to the surface and can lead to transition via nonlinear spreading that does not involve interactions with the Y mode. Finally, secondary instability calculations reveal that subharmonic modes of secondary instability have substantially lower growth rates than those of the fundamental modes, and hence, are less likely to play an important role during the breakdown process involving complex initial spectra.
NASA Technical Reports Server (NTRS)
St.John, D.; Samuelsen, G. S.
2000-01-01
The mixing of air jets into hot, fuel-rich products of a gas turbine primary zone is an important step in staged combustion. Often referred to as "quick quench," the mixing occurs with chemical conversion and substantial heat release. An experiment has been designed to simulate and study this process, and the effect of varying the entry angle (0 deg, 22.5 deg and 45 deg from normal) and number of the air jets (7, 9, and 11) into the main flow, while holding the jet-to-crossflow mass-low ratio, MR, and momentum-flux ratio, J, constant (MR = 2.5;J = 25). The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from orifices equally spaced around the perimeter. A specially designed reactor, operating on propane, presents a uniform mixture to a module containing air jet injection tubes that can be changed to vary orifice geometry. Species concentrations of O2, CO, CO2, NO(x) and HC were obtained one duct diameter upstream (in the rich zone), and primarily one duct radius downstream. From this information, penetration of the jet, the spatial extent of chemical reaction, mixing, and the optimum jet injection angle and number of jets can be deduced.
Nakamura, Kazuho; Matsumoto, Kanji
2013-01-01
Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model. PMID:24958621
Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhen-guo, E-mail: wangzhenguo-wzg@163.com; Wu, Liyin; Li, Qinglian
Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. Themore » injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674–2686 (2008)] and Wang et al. [AIAA J. 50, 1360–1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.« less
LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, D.; Crawford, C.; Duignan, M.
The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so itsmore » disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.« less
Estimation of k-ε parameters using surrogate models and jet-in-crossflow data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefantzi, Sophia; Ray, Jaideep; Arunajatesan, Srinivasan
2014-11-01
We demonstrate a Bayesian method that can be used to calibrate computationally expensive 3D RANS (Reynolds Av- eraged Navier Stokes) models with complex response surfaces. Such calibrations, conditioned on experimental data, can yield turbulence model parameters as probability density functions (PDF), concisely capturing the uncertainty in the parameter estimates. Methods such as Markov chain Monte Carlo (MCMC) estimate the PDF by sampling, with each sample requiring a run of the RANS model. Consequently a quick-running surrogate is used instead to the RANS simulator. The surrogate can be very difficult to design if the model's response i.e., the dependence of themore » calibration variable (the observable) on the parameter being estimated is complex. We show how the training data used to construct the surrogate can be employed to isolate a promising and physically realistic part of the parameter space, within which the response is well-behaved and easily modeled. We design a classifier, based on treed linear models, to model the "well-behaved region". This classifier serves as a prior in a Bayesian calibration study aimed at estimating 3 k - ε parameters ( C μ, C ε2 , C ε1 ) from experimental data of a transonic jet-in-crossflow interaction. The robustness of the calibration is investigated by checking its predictions of variables not included in the cal- ibration data. We also check the limit of applicability of the calibration by testing at off-calibration flow regimes. We find that calibration yield turbulence model parameters which predict the flowfield far better than when the nomi- nal values of the parameters are used. Substantial improvements are still obtained when we use the calibrated RANS model to predict jet-in-crossflow at Mach numbers and jet strengths quite different from those used to generate the ex- perimental (calibration) data. Thus the primary reason for poor predictive skill of RANS, when using nominal values of the turbulence model parameters, was parametric uncertainty, which was rectified by calibration. Post-calibration, the dominant contribution to model inaccuraries are due to the structural errors in RANS.« less
Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture
NASA Astrophysics Data System (ADS)
Hassan, Ezeldin A.
Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation and rupture study, numerical simulations are conducted using an Eulerian-Lagrangian approach with a continuous-interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information of the interface mesh. Rupture time is shown to be delayed as the initial precursor film thickness increases. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage.
Transient pressure analysis of a volume fracturing well in fractured tight oil reservoirs
NASA Astrophysics Data System (ADS)
Lu, Cheng; Wang, Jiahang; Zhang, Cong; Cheng, Minhua; Wang, Xiaodong; Dong, Wenxiu; Zhou, Yingfang
2017-12-01
This paper presents a semi-analytical model to simulate transient pressure curves for a vertical well with a reconstructed fracture network in fractured tight oil reservoirs. In the proposed model, the reservoir is a composite system and contains two regions. The inner region is described as a formation with a finite conductivity hydraulic fracture network and the flow in the fracture is assumed to be linear, while the outer region is modeled using the classical Warren-Root model where radial flow is applied. The transient pressure curves of a vertical well in the proposed reservoir model are calculated semi-analytically using the Laplace transform and Stehfest numerical inversion. As shown in the type curves, the flow is divided into several regimes: (a) linear flow in artificial main fractures; (b) coupled boundary flow; (c) early linear flow in a fractured formation; (d) mid radial flow in the semi-fractures of the formation; (e) mid radial flow or pseudo steady flow; (f) mid cross-flow; (g) closed boundary flow. Based on our newly proposed model, the effects of some sensitive parameters, such as elastic storativity ratio, cross-flow coefficient, fracture conductivity and skin factor, on the type curves were also analyzed extensively. The simulated type curves show that for a vertical fractured well in a tight reservoir, the elastic storativity ratios and crossflow coefficients affect the time and the degree of crossflow respectively. The pressure loss increases with an increase in the fracture conductivity. To a certain extent, the effect of the fracture conductivity is more obvious than that of the half length of the fracture on improving the production effect. With an increase in the wellbore storage coefficient, the fluid compressibility is so large that it might cover the early stage fracturing characteristics. Linear or bilinear flow may not be recognized, and the pressure and pressure derivative gradually shift to the right. With an increase in the skin effect, the pressure loss increases gradually.
Quiet Supersonic Wind Tunnel Development
NASA Technical Reports Server (NTRS)
King, Lyndell S.; Kutler, Paul (Technical Monitor)
1994-01-01
The ability to control the extent of laminar flow on swept wings at supersonic speeds may be a critical element in developing the enabling technology for a High Speed Civil Transport (HSCT). Laminar boundary layers are less resistive to forward flight than their turbulent counterparts, thus the farther downstream that transition from laminar to turbulent flow in the wing boundary layer is extended can be of significant economic impact. Due to the complex processes involved experimental studies of boundary layer stability and transition are needed, and these are performed in "quiet" wind tunnels capable of simulating the low-disturbance environment of free flight. At Ames, a wind tunnel has been built to operate at flow conditions which match those of the HSCT laminar flow flight demonstration 'aircraft, the F-16XL, i.e. at a Mach number of 1.6 and a Reynolds number range of 1 to 3 million per foot. This will allow detailed studies of the attachment line and crossflow on the leading edge area of the highly swept wing. Also, use of suction as a means of control of transition due to crossflow and attachment line instabilities can be studied. Topics covered include: test operating conditions required; design requirements to efficiently make use of the existing infrastructure; development of an injector drive system using a small pilot facility; plenum chamber design; use of computational tools for tunnel and model design; and early operational results.
Designing a Hybrid Laminar-Flow Control Experiment: The CFD-Experiment Connection
NASA Technical Reports Server (NTRS)
Streett, C. L.
2003-01-01
The NASA/Boeing hybrid laminar flow control (HLFC) experiment, designed during 1993-1994 and conducted in the NASA LaRC 8-foot Transonic Pressure Tunnel in 1995, utilized computational fluid dynamics and numerical simulation of complex fluid mechanics to an unprecedented extent for the design of the test article and measurement equipment. CFD was used in: the design of the test wing, which was carried from definition of desired disturbance growth characteristics, through to the final airfoil shape that would produce those growth characteristics; the design of the suction-surface perforation pattern that produced enhanced crossflow-disturbance growth: and in the design of the hot-wire traverse system that produced minimal influence on measured disturbance growth. These and other aspects of the design of the test are discussed, after the historical and technical context of the experiment is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacks, Robert; Stormo, Julie; Rose, Coralie
Data have demonstrated that filter media lose tensile strength and the ability to resist the effects of moisture as a function of age. Testing of new and aged filters needs to be conducted to correlate reduction of physical strength of HEPA media to the ability of filters to withstand upset conditions. Appendix C of the Nuclear Air Cleaning Handbook provides the basis for DOE’s HEPA filter service life guidance. However, this appendix also points out the variability of data, and it does not correlate performance of aged filters to degradation of media due to age. Funding awarded by NSR&D tomore » initiate full-scale testing of aged HEPA filters addresses the issue of correlating media degradation due to age with testing of new and aged HEPA filters under a generic design basis event set of conditions. This funding has accelerated the process of describing this study via: (1) establishment of a Technical Working Group of all stakeholders, (2) development and approval of a test plan, (3) development of testing and autopsy procedures, (4) acquiring an initial set of aged filters, (5) testing the initial set of aged filters, and (6) developing the filter test report content for each filter tested. This funding was very timely and has moved the project forward by at least three years. Activities have been correlated with testing conducted under DOE-EM funding for evaluating performance envelopes for AG-1 Section FC Separator and Separatorless filters. This coordination allows correlation of results from the NSR&D Aged Filter Study with results from testing new filters of the Separator and Separatorless Filter Study. DOE-EM efforts have identified approximately 100 more filters of various ages that have been stored under Level B conditions. NSR&D funded work allows a time for rigorous review among subject matter experts before moving forward with development of the testing matrix that will be used for additional filters. The NSR&D data sets are extremely valuable in as much as establishing a selfimproving, NQA-1 program capable of advancing the service lifetime study of HEPA filters. The data and reports are available for careful and critical review by subject matter experts before the next set of filters is tested and can be found in the appendices of this final report. NSR&D funds have not only initiated the Aged HEPA Filter Study alluded to in Appendix C of the NACH, but have also enhanced the technical integrity and effectiveness of all of the follow-on testing for this long-term study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranganayakulu, C.; Seetharamu, K.N.
An analysis of a crossflow plate-fin compact heat exchanger, accounting for the combined effects of two-dimensional longitudinal heat conduction through the exchanger wall and nonuniform inlet fluid flow and temperature distribution is carried out using a finite element method. A mathematical equation is developed to generate different types of fluid flow/temperature maldistribution models considering the possible deviations in fluid flow. Using these models, the exchanger effectiveness and its deterioration due to the combined effects of longitudinal heat conduction, flow nonuniformity and temperature nonuniformity are calculated for various design and operating conditions of the exchanger. It was found that the performancemore » variations are quite significant in some typical applications.« less
Catalytic cartridge SO.sub.3 decomposer
Galloway, Terry R.
1982-01-01
A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.
NASA Astrophysics Data System (ADS)
Zhao, Yanhui; Liang, Jianhan; Zhao, Yuxin
2016-11-01
Employing nano-particle planar laser scattering and particle image velocimetry technology, underexpanded jet in supersonic crossflow with laminar boundary layer is experimental investigated in a low noise wind tunnel. Instantaneous flow structures and average velocity distribution of jet plume are captured in experimental images. Horseshoe vortex system is dominated by oscillating and coalescing regime, contributing to vortex generation of jet shear layer. The "tilting-stretching-tearing" mechanism dominating in near field raises average fractal dimension. But vortex structures generated on the windward side of jet plume scatter in jet plume and dissipate gradually, which makes the vortexes break up from outside in near field and break down into small turbulence completely in far field.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1975-01-01
An experimental investigation was conducted to measure the static aerodynamic characteristics for two bodies of elliptic cross section and for their equivalent body of revolution. The equivalent body of revolution had the same length and axial distribution of cross-sectional area as the elliptic bodies. It consisted of a tangent ogive nose of fineness ratio 3 followed by a cylinder with a fineness ratio of 7. All bodies were tested at Mach numbers of 0.6, 0.9, 1.2, 1.5, and 2.0 at angles of attack from 0 deg to 58 deg. The data demonstrate that the aerodynamic characteristics can be significantly altered by changing the body cross section from circular to elliptic and by rolling the body from 0 deg to 90 deg. For example, the first elliptic body (with a constant cross-sectional axis ratio of 2) developed at zero roll about twice the normal force developed by the equivalent body of revolution. At some angles of attack greater than about 25 deg, side forces and yawing moments were measured in spite of the fact that the bodies were tested at zero angle of sideslip. The side-force and yawing-moment coefficients decreased with an increase in Mach number and essentially disappeared for all the bodies at Mach numbers greater than 1.2. From the standpoint of reducing undesirable side forces at high angles of attack, it is best to have the flattest side of the nose of the elliptic bodies pitching against the stream crossflow. The effect of Reynolds number was also the least significant for both elliptic bodies when the flattest side of the nose was pitched against the stream crossflow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, J.H.; Davie, R.L.
1961-05-01
Filter tests were conducted to determine the most suitable filter for removing large quantities of aluminum corrosion product (boehmite) from reactor water. Filters tested included the following: wire-wound, sintered filter elements, sintered ceramic fllter elements, cotton stringwound filter elements, felted-cotton filter elements, cation resin, adsorption resin, diatomaceous earth precoat filter, and a wood-cellulose precoat filter. Parameters measured were flow rate, filter-influent and -effluent boehmite concentration, pressure drop, and final filter load. The pressure drop and efficiency of the filters was correlated with boehmite load. Boehmite deposits on filters as a nonporous gelatinous cake, and causes a rapidly increasing pressure drop.more » Tests indicate that the optimum load with filter elements and precoat filters is achieved at a pressure drop of 25 psi. Very little additional load can be obtained by operating to a higher pressure drop. Of the filters tested, the precoat filter snd 40 to 60 mesh cation resin were the more effective in removing boehmite. The efficiency of the precoat filter was in excess of 99%, and the efficiency of the cation resin was for the most part in excess of 95%. For various reasons, the other filters were eliminated from final consideration. The test program and available literature indicated that an element type precoat filter using wood cellulose as the precoat media would be most suitable for the proposed application. (auth)« less
Folmsbee, Martha; Lentine, Kerry Roche; Wright, Christine; Haake, Gerhard; Mcburnie, Leesa; Ashtekar, Dilip; Beck, Brian; Hutchison, Nick; Okhio-Seaman, Laura; Potts, Barbara; Pawar, Vinayak; Windsor, Helena
2014-01-01
Mycoplasma are bacteria that can penetrate 0.2 and 0.22 μm rated sterilizing-grade filters and even some 0.1 μm rated filters. Primary applications for mycoplasma filtration include large scale mammalian and bacterial cell culture media and serum filtration. The Parenteral Drug Association recognized the absence of standard industry test parameters for testing and classifying 0.1 μm rated filters for mycoplasma clearance and formed a task force to formulate consensus test parameters. The task force established some test parameters by common agreement, based upon general industry practices, without the need for additional testing. However, the culture medium and incubation conditions, for generating test mycoplasma cells, varied from filter company to filter company and was recognized as a serious gap by the task force. Standardization of the culture medium and incubation conditions required collaborative testing in both commercial filter company laboratories and in an Independent laboratory (Table I). The use of consensus test parameters will facilitate the ultimate cross-industry goal of standardization of 0.1 μm filter claims for mycoplasma clearance. However, it is still important to recognize filter performance will depend on the actual conditions of use. Therefore end users should consider, using a risk-based approach, whether process-specific evaluation of filter performance may be warranted for their application. Mycoplasma are small bacteria that have the ability to penetrate sterilizing-grade filters. Filtration of large-scale mammalian and bacterial cell culture media is an example of an industry process where effective filtration of mycoplasma is required. The Parenteral Drug Association recognized the absence of industry standard test parameters for evaluating mycoplasma clearance filters by filter manufacturers and formed a task force to formulate such a consensus among manufacturers. The use of standardized test parameters by filter manufacturers, including the preparation of the culture broth, will facilitate the end user's evaluation of the mycoplasma clearance claims provided by filter vendors. However, it is still important to recognize filter performance will depend on the actual conditions of use; therefore end users should consider, using a risk-based approach, whether process-specific evaluation of filter performance may be warranted for their application. © PDA, Inc. 2014.
Method of and apparatus for testing the integrity of filters
Herman, R.L.
1985-05-07
A method of and apparatus are disclosed for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstream upstream and downstream of such filter stage. Samples of the particle concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage. 5 figs.
Method of and apparatus for testing the integrity of filters
Herman, Raymond L [Richland, WA
1985-01-01
A method of and apparatus for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstream upstream and downstream of such filter stage. Samples of the particle concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage.
Methods of and apparatus for testing the integrity of filters
Herman, R.L.
1984-01-01
A method of and apparatus for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstram upstream and downstream of such filter stage. Samples of the particel concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage.
Lessons learned in preparing method 29 filters for compliance testing audits.
Martz, R F; McCartney, J E; Bursey, J T; Riley, C E
2000-01-01
Companies conducting compliance testing are required to analyze audit samples at the time they collect and analyze the stack samples if audit samples are available. Eastern Research Group (ERG) provides technical support to the EPA's Emission Measurements Center's Stationary Source Audit Program (SSAP) for developing, preparing, and distributing performance evaluation samples and audit materials. These audit samples are requested via the regulatory Agency and include spiked audit materials for EPA Method 29-Metals Emissions from Stationary Sources, as well as other methods. To provide appropriate audit materials to federal, state, tribal, and local governments, as well as agencies performing environmental activities and conducting emission compliance tests, ERG has recently performed testing of blank filter materials and preparation of spiked filters for EPA Method 29. For sampling stationary sources using an EPA Method 29 sampling train, the use of filters without organic binders containing less than 1.3 microg/in.2 of each of the metals to be measured is required. Risk Assessment testing imposes even stricter requirements for clean filter background levels. Three vendor sources of quartz fiber filters were evaluated for background contamination to ensure that audit samples would be prepared using filters with the lowest metal background levels. A procedure was developed to test new filters, and a cleaning procedure was evaluated to see if a greater level of cleanliness could be achieved using an acid rinse with new filters. Background levels for filters supplied by different vendors and within lots of filters from the same vendor showed a wide variation, confirmed through contact with several analytical laboratories that frequently perform EPA Method 29 analyses. It has been necessary to repeat more than one compliance test because of suspect metals background contamination levels. An acid cleaning step produced improvement in contamination level, but the difference was not significant for most of the Method 29 target metals. As a result of our studies, we conclude: Filters for Method 29 testing should be purchased in lots as large as possible. Testing firms should pre-screen new boxes and/or new lots of filters used for Method 29 testing. Random analysis of three filters (top, middle, bottom of the box) from a new box of vendor filters before allowing them to be used in field tests is a prudent approach. A box of filters from a given vendor should be screened, and filters from this screened box should be used both for testing and as field blanks in each test scenario to provide the level of quality assurance required for stationary source testing.
Grayscale Optical Correlator Workbench
NASA Technical Reports Server (NTRS)
Hanan, Jay; Zhou, Hanying; Chao, Tien-Hsin
2006-01-01
Grayscale Optical Correlator Workbench (GOCWB) is a computer program for use in automatic target recognition (ATR). GOCWB performs ATR with an accurate simulation of a hardware grayscale optical correlator (GOC). This simulation is performed to test filters that are created in GOCWB. Thus, GOCWB can be used as a stand-alone ATR software tool or in combination with GOC hardware for building (target training), testing, and optimization of filters. The software is divided into three main parts, denoted filter, testing, and training. The training part is used for assembling training images as input to a filter. The filter part is used for combining training images into a filter and optimizing that filter. The testing part is used for testing new filters and for general simulation of GOC output. The current version of GOCWB relies on the mathematical software tools from MATLAB binaries for performing matrix operations and fast Fourier transforms. Optimization of filters is based on an algorithm, known as OT-MACH, in which variables specified by the user are parameterized and the best filter is selected on the basis of an average result for correct identification of targets in multiple test images.
Continuous-flow stirred-tank reactor 20-L demonstration test: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, D.D.; Collins, J.L.
One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test usingmore » the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.« less
Moving Bed Granular Bed Filter Development Program. Topical report, September 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, J.C.; Prudhomme, J.W.; Wilson, K.W.
1994-09-01
Five test arrangements have been designed to support the Granular Bed Filter Development Program as defined in the Test Plan. The first arrangement is a 3.6 ft. diameter half filter, with a glass covering along the cross section to allow visual examination of the granular alumina material passing through the filter. The second test arrangement is a 3.6 ft diameter full size filter having refractory lining to simulate actual surface roughness conditions. The third test arrangement will examine filter geometry scale up by testing a 6.0 ft. diameter full size filter. The fourth Test Arrangement consists of a small 12more » inch diameter fluidizer to measure the minimum fluidization velocity of the 7 m (approx. size) alumina material to be used in the filter assemblies. The last Test Unit is used to evaluation relative abrasion characteristics of potential refractory and ceramic materials to be installed in high abrasion areas in the pneumatic transport piping.« less
NASA Astrophysics Data System (ADS)
Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.
2012-05-01
The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.
Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; ...
2016-01-01
Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less
NASA Astrophysics Data System (ADS)
Yan, Li; Huang, Wei; Zhang, Tian-tian; Li, Hao; Yan, Xiao-ting
2014-12-01
The mixing and combustion process has an important impact on the engineering realization of the scramjet engine. The nonreacting and reacting flow fields in a transverse injection channel have been investigated numerically, and the predicted results have been compared with the available experimental data in the open literature, the wall pressure distributions, the separation length, as well as the penetration height. Further, the influences of the molecular weight of the fuel and the jet-to-crossflow pressure ratio on the wall pressure distribution have been studied. The obtained results show that the predicted results show reasonable agreement with the experimental data, and the variable trends of the penetration height and the separation distance are almost the same as those obtained in the experiment. The vapor pressure model is suitable to fit the relationship between the penetration height, the separation distance and the jet-to-crossflow pressure ratio. The combustion process mainly occurs upstream of the injection port, and it makes a great difference to the wall pressure distribution upstream of the injection port, especially when the jet-to-crossflow pressure ratio is large enough, namely 17.72 and 25.15 in the range considered in the current study. For hydrogen, the combustion downstream of the injection port occurs more intensively, and this may be induced by its smaller molecular weight.
Engineering criteria for fracture flowback procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barree, R.D.; Mukherjee, H.
1995-12-31
Post treatment fracture flowback procedures during closure are often critical to the retention of fracture conductivity near the wellbore. Postfrac production performance largely depends on this conductivity. The importance of proper flowback procedure has been documented in the fracture industry, but definitive guidelines for flowback design have never been established. As a result, many misconceptions exist regarding the physics of proppant flowback and its effects on the final proppant distribution in the fracture. This paper presents a rigorous study of fracture flowback and proppant migration during closure using a fully three-dimensional fracture geometry simulator (GOHFER). The effects of rate ofmore » flowback, location of the perforation interval, final proppant concentration, and the fracture geometry prior to flowback on the retained post closure proppant concentration are discussed. Consideration is given to the fluid velocity field in the created fracture resulting from the flowback, and its effects on proppant movement and localized fracture closure. These studies illustrate the difference between ``forced closure`` and ``reverse screenout`` concepts in flowback design. Other effects such as crossflow between multiple perforated layers are also studied. Simulation studies indicate that selection of a desirable flowback rate is very sensitive to crossflow effects resulting from induced fractures in multiple stress layers. This crossflow can result in significant overflushing of proppant in the lower stress zones, if not countered by properly applied flowback procedures.« less
NASA Astrophysics Data System (ADS)
Anazadehsayed, A.; Barzegar Gerdroodbary, M.; Amini, Y.; Moradi, R.
2017-08-01
In this study, the influences of the micro air jet on the mixing of the sonic transverse hydrogen through micro-jets subjected to a supersonic crossflow are investigated. A three-dimensional numerical study has been performed to reveal the affects of micro air jet on mixing of the hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Parametric studies were conducted on the various air jet conditions by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of micro air jet. These flow features were found to have subtle effects on the mixing of hydrogen jets. Results indicate a different flow structure as air jet is presented in the downstream of the fuel jet. According to the results, without air, mixing occurs at a low rate. When the air jet is presented in the downstream of fuel jet, significant increase (up to 300%) occurs in the mixing performance of the hydrogen jet at downstream. In multi fuel jets, the mixing performance of the fuel jet is increased more than 200% when the micro air jet is injected. Consequently, an enhanced mixing zone occurs downstream of the injection slots which leads to flame-holding.
Bubble Formation from Wall Orifice in Liquid Cross-Flow Under Low Gravity
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Kamotani, Y.
2000-01-01
Two-phase flows present a wide variety of applications for spacecraft thermal control systems design. Bubble formation and detachment is an integral part of the two phase flow science. The objective of the present work is to experimentally investigate the effects of liquid cross-flow velocity, gas flow rate, and orifice diameter on bubble formation in a wall-bubble injection configuration. Data were taken mainly under reduced gravity conditions but some data were taken in normal gravity for comparison. The reduced gravity experiment was conducted aboard the NASA DC-9 Reduced Gravity Aircraft. The results show that the process of bubble formation and detachment depends on gravity, the orifice diameter, the gas flow rate, and the liquid cross-flow velocity. The data are analyzed based on a force balance, and two different detachment mechanisms are identified. When the gas momentum is large, the bubble detaches from the injection orifice as the gas momentum overcomes the attaching effects of liquid drag and inertia. The surface tension force is much reduced because a large part of the bubble pinning edge at the orifice is lost as the bubble axis is tilted by the liquid flow. When the gas momentum is small, the force balance in the liquid flow direction is important, and the bubble detaches when the bubble axis inclination exceeds a certain angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.
Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less
Harris, Carl M.; Litteral, Charles J.; Damrau, Donna L.
1997-01-01
The U.S. Geological Survey National Water Quality Laboratory has developed a method for the determination of dissolved calcium, iron, magnesium, manganese, silica, and sodium using a modified ultrasonic nebulizer sample-introduction system to an inductively coupled plasma-optical emission spectrometer. The nebulizer's spray chamber has been modified to avoid carryover and memory effects common in some conventional ultrasonic designs. The modified ultrasonic nebulizer is equipped with a high-speed rinse cycle to remove previously analyzed samples from the spray chamber without excessive flush times. This new rinse cycle decreases sample washout times by reducing carryover and memory effects from salt or analytes in previously analyzed samples by as much as 45 percent. Plasma instability has been reduced by repositioning the argon carrier gas inlet on the spray chamber and by directly pumping waste from the chamber, instead of from open drain traps, thereby maintaining constant pressure to the plasma. The ultrasonic nebulizer improves signal intensities, which are 8 to 16 times greater than for a conventional cross-flow pneumatic nebulizer, without being sensitive to clogging from salt buildup as in cross-flow nebulizers. Detection limits for the ultrasonic nebulizer are 4 to 18 times less than detection limits achievable using a cross-flow pneumatic nebulizer, with equivalent sample analysis time.
Organized motions in a jet in crossflow
NASA Astrophysics Data System (ADS)
Rivero, A.; Ferré, J. A.; Giralt, Francesc
2001-10-01
An experimental study to identify the structures present in a jet in crossflow has been carried out at a jet-to-crossflow velocity ratio U/Ucf = 3.8 and Reynolds number Re = UcfD/v = 6600. The hot-wire velocity data measured with a rake of eight X-wires at x/D = 5 and 15 and flow visualizations using planar laser-induced fluorescence (PLIF) confirm that the well-established pair of counter-rotating vortices is a feature of the mean field and that the upright, tornado-like or Fric's vortices that are shed to the leeward side of the jet are connected to the jet flow at the core. The counter-rotating vortex pair is strongly modulated by a coherent velocity field that, in fact, is as important as the mean velocity field. Three different structures folded vortex rings, horseshoe vortices and handle-type structures contribute to this coherent field. The new handle-like structures identified in the current study link the boundary layer vorticity with the counter-rotating vortex pair through the upright tornado-like vortices. They are responsible for the modulation and meandering of the counter-rotating vortex pair observed both in video recordings of visualizations and in the instantaneous velocity field. These results corroborate that the genesis of the dominant counter-rotating vortex pair strongly depends on the high pressure gradients that develop in the region near the jet exit, both inside and outside the nozzle.
40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...
40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM 2.5 or PM 10-2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...
40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...
40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...
40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM 2.5 or PM 10-2,5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...
Computer programs to predict induced effects of jets exhausting into a crossflow
NASA Technical Reports Server (NTRS)
Perkins, S. C., Jr.; Mendenhall, M. R.
1984-01-01
A user's manual for two computer programs was developed to predict the induced effects of jets exhausting into a crossflow. Program JETPLT predicts pressures induced on an infinite flat plate by a jet exhausting at angles to the plate and Program JETBOD, in conjunction with a panel code, predicts pressures induced on a body of revolution by a jet exhausting normal to the surface. Both codes use a potential model of the jet and adjacent surface with empirical corrections for the viscous or nonpotential effects. This program manual contains a description of the use of both programs, instructions for preparation of input, descriptions of the output, limitations of the codes, and sample cases. In addition, procedures to extend both codes to include additional empirical correlations are described.
Barredo-Damas, S; Alcaina-Miranda, M I; Gemma, M; Iborra-Clar, M I; Mendoza-Roca, J A
2011-01-01
This work studies the performance of three commercial ceramic ultrafiltration membranes (ZrO(2)-TiO(2)) treating raw effluent from a textile industry. The effect of crossflow velocity at 3, 4 and 5 m s(-1) as well as membrane characteristics, such as molecular weight cut-off (30, 50 and 150 kDa), on process performance were studied. Experiments were carried out in concentration mode in order to observe the effect of volume reduction factor simultaneously. Results showed a combined influence of both crossflow velocity and molecular weight cut-off on flux performance. TOC and COD removals up to 70% and 84% respectively were reached. On the other hand, almost complete color (>97%) and turbidity (>99%) removals were achieved for all the membranes and operating conditions.
A CFD study of gas-solid jet in a CFB riser flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Guenther, Chris
2012-03-01
Three-dimensional high-resolution numerical simulations of a gas–solid jet in a high-density riser flow were conducted. The impact of gas–solid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gas–solid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics ofmore » riser flow and the characteristics of gas–solid jet were reasonably predicted compared with the experimental measurements made at NETL.« less
Swept-Wing Receptivity Studies Using Distributed Roughness
NASA Technical Reports Server (NTRS)
Saric, William S.
1998-01-01
This paper reviews the important recent progress in three-dimensional boundary-layer transition research. The review focuses on the crossflow instability that leads to transition on swept wings with a favorable pressure gradient. Following a brief overview of swept-wing instability mechanisms and the crossflow problem, a summary of the important findings of the 1990s is given. The discussion is presented from the experimental viewpoint, highlighting the ITAM work of Kachanov and co-workers, the DLR experiments of Bippes and co-workers, and the Arizona State University (ASU) investigations of Saric and co-workers. Where appropriate, relevant comparisons with CFD are drawn. The recent (last 18 months) research conducted by the ASU team is described in more detail in order to underscore the latest developments concerning nonlinear effects and transition control.
Catalytic cartridge SO/sub 3/ decomposer
Galloway, T.R.
1980-11-18
A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.
Leading edge embedded fan airfoil concept -- A new powered high lift technology
NASA Astrophysics Data System (ADS)
Phan, Nhan Huu
A new powered-lift airfoil concept called Leading Edge Embedded Fan (LEEF) is proposed for Extremely Short Take-Off and Landing (ESTOL) and Vertical Take-Off and Landing (VTOL) applications. The LEEF airfoil concept is a powered-lift airfoil concept capable of generating thrust and very high lift-coefficient at extreme angles-of attack (AoA). It is designed to activate only at the take-off and landing phases, similar to conventional flaps or slats, allowing the aircraft to operate efficiently at cruise in its conventional configuration. The LEEF concept consists of placing a crossflow fan (CFF) along the leading-edge (LE) of the wing, and the housing is designed to alter the airfoil shape between take-off/landing and cruise configurations with ease. The unique rectangular cross section of the crossflow fan allows for its ease of integration into a conventional subsonic wing. This technology is developed for ESTOL aircraft applications and is most effectively applied to General Aviation (GA) aircraft. Another potential area of application for LEEF is tiltrotor aircraft. Unlike existing powered high-lift systems, the LEEF airfoil uses a local high-pressure air source from cross-flow fans, does not require ducting, and is able to be deployed using distributed electric power systems throughout the wing. In addition to distributed lift augmentation, the LEEF system can provide additional thrust during takeoff and landing operation to supplement the primary cruise propulsion system. Two-dimensional (2D) and three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations of a conventional airfoil/wing using the NACA 63-3-418 section, commonly used in GA, and a LEEF airfoil/wing embedded into the same airfoil section were carried out to evaluate the advantages of and the costs associated with implementing the LEEF concept. Computational results show that significant lift and augmented thrust are available during LEEF operation while requiring only moderate fan power input. The CFD results show that airfoil circulation control is achieved by the varying the CFF intake flow rate and the momentum of the CFF exhaust jet (e.g. through airfoil AoA or fan rotational speed). The presence of the CFF has the effect of moving the stagnation point on the airfoil pressure surface from the CFF airfoil LE region near the CFF to as far back as the airfoil trailing edge. At high AoA operation, LE flow separation on the airfoil suction surface is delayed by flow entrainment of the high-energy jet leaving the CFF. Detailed analysis of the flow field through the crossflow fan and its housing were carried out to understand its fluid-dynamics behavior, and it is found that the airfoil geometry acts as inlet guide vanes to the crossflow fan as the angle-of-attack is varied, thus introducing pre-swirl or co-swirl into the first stage of the crossflow fan. An experimental study of the LEEF concept confirmed that the concept works and it is robust. Finally, as application examples, the LEEF technology is applied to a Remote Control model and to a generic tiltrotor aircraft similar in characteristics to DARPA's Aerial Reconfigurable Embedded System. These aircraft configurations were analyzed using 2D and 3D CFD.
NASA Astrophysics Data System (ADS)
Japuntich, Daniel A.; Franklin, Luke M.; Pui, David Y.; Kuehn, Thomas H.; Kim, Seong Chan; Viner, Andrew S.
2007-01-01
Two different air filter test methodologies are discussed and compared for challenges in the nano-sized particle range of 10-400 nm. Included in the discussion are test procedure development, factors affecting variability and comparisons between results from the tests. One test system which gives a discrete penetration for a given particle size is the TSI 8160 Automated Filter tester (updated and commercially available now as the TSI 3160) manufactured by the TSI, Inc., Shoreview, MN. Another filter test system was developed utilizing a Scanning Mobility Particle Sizer (SMPS) to sample the particle size distributions downstream and upstream of an air filter to obtain a continuous percent filter penetration versus particle size curve. Filtration test results are shown for fiberglass filter paper of intermediate filtration efficiency. Test variables affecting the results of the TSI 8160 for NaCl and dioctyl phthalate (DOP) particles are discussed, including condensation particle counter stability and the sizing of the selected particle challenges. Filter testing using a TSI 3936 SMPS sampling upstream and downstream of a filter is also shown with a discussion of test variables and the need for proper SMPS volume purging and filter penetration correction procedure. For both tests, the penetration versus particle size curves for the filter media studied follow the theoretical Brownian capture model of decreasing penetration with decreasing particle diameter down to 10 nm with no deviation. From these findings, the authors can say with reasonable confidence that there is no evidence of particle thermal rebound in the size range.
Calibration and use of filter test facility orifice plates
NASA Astrophysics Data System (ADS)
Fain, D. E.; Selby, T. W.
1984-07-01
There are three official DOE filter test facilities. These test facilities are used by the DOE, and others, to test nuclear grade HEPA filters to provide Quality Assurance that the filters meet the required specifications. The filters are tested for both filter efficiency and pressure drop. In the test equipment, standard orifice plates are used to set the specified flow rates for the tests. There has existed a need to calibrate the orifice plates from the three facilities with a common calibration source to assure that the facilities have comparable tests. A project has been undertaken to calibrate these orifice plates. In addition to reporting the results of the calibrations of the orifice plates, the means for using the calibration results will be discussed. A comparison of the orifice discharge coefficients for the orifice plates used at the seven facilities will be given. The pros and cons for the use of mass flow or volume flow rates for testing will be discussed. It is recommended that volume flow rates be used as a more practical and comparable means of testing filters. The rationale for this recommendation will be discussed.
42 CFR 84.206 - Particulate tests; respirators with filters; minimum requirements; general.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Particulate tests; respirators with filters... filters; minimum requirements; general. (a) Three respirators with cartridges containing, or having attached to them, filters for protection against particulates will be tested in accordance with the...
42 CFR 84.206 - Particulate tests; respirators with filters; minimum requirements; general.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Particulate tests; respirators with filters... filters; minimum requirements; general. (a) Three respirators with cartridges containing, or having attached to them, filters for protection against particulates will be tested in accordance with the...
42 CFR 84.206 - Particulate tests; respirators with filters; minimum requirements; general.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Particulate tests; respirators with filters... filters; minimum requirements; general. (a) Three respirators with cartridges containing, or having attached to them, filters for protection against particulates will be tested in accordance with the...
42 CFR 84.206 - Particulate tests; respirators with filters; minimum requirements; general.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Particulate tests; respirators with filters... filters; minimum requirements; general. (a) Three respirators with cartridges containing, or having attached to them, filters for protection against particulates will be tested in accordance with the...
42 CFR 84.206 - Particulate tests; respirators with filters; minimum requirements; general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Particulate tests; respirators with filters... filters; minimum requirements; general. (a) Three respirators with cartridges containing, or having attached to them, filters for protection against particulates will be tested in accordance with the...
Influence of size, shape, and flexibility on bacterial passage through micropore membrane filters.
Wang, Yingying; Hammes, Frederik; Düggelin, Marcel; Egli, Thomas
2008-09-01
Sterilization of fluids by means of microfiltration is commonly applied in research laboratories as well as in pharmaceutical and industrial processes. Sterile micropore filters are subject to microbiological validation, where Brevundimonas diminuta is used as a standard test organism. However, several recent reports on the ubiquitous presence of filterable bacteria in aquatic environments have cast doubt on the accuracy and validity of the standard filter-testing method. Six different bacterial species of various sizes and shapes (Hylemonella gracilis, Escherichia coli, Sphingopyxis alaskensis, Vibrio cholerae, Legionella pneumophila, and B. diminuta) were tested for their filterability through sterile micropore filters. In all cases, the slender spirillum-shaped Hylemonella gracilis cells showed a superior ability to pass through sterile membrane filters. Our results provide solid evidence that the overall shape (including flexibility), instead of biovolume, is the determining factor for the filterability of bacteria, whereas cultivation conditions also play a crucial role. Furthermore, the filtration volume has a more important effect on the passage percentage in comparison with other technical variables tested (including flux and filter material). Based on our findings, we recommend a re-evaluation of the grading system for sterile filters, and suggest that the species Hylemonella should be considered as an alternative filter-testing organism for the quality assessment of micropore filters.
NASA Astrophysics Data System (ADS)
Bandaru, Ramarao Venkat
2000-10-01
Flow structure plays an important role in the mixing and chemical reaction processes in turbulent jet diffusion flames, which in turn influence the formation of pollutants. Fundamental studies on pollutant formation have mainly focussed on vertical, straight jet, turbulent flames. However, in many practical combustion systems such as boilers and furnaces, flames of various configurations are used. In the present study, along with vertical straight jet flames, pollutant emissions characteristics of crossflow flames and precessing jet flames are studied. In vertical, straight jet flames, in-flame temperature and NO concentration measurements were made to ascertain the influence of flame radiation on NO x emissions observed in earlier studies. Radiation affects flame temperatures and this is seen in the measured temperature fields in, undiluted and diluted, methane and ethylene flames. Measured NO distribution fields in undiluted methane and ethylene flames inversely correlated with the temperature, and thereby explaining the observed relationship between flame radiation and NO x emissions. Flames in most practical combustion devices have complex mixing characteristics. One such configuration is the crossflow flame, where the flame is subjected to a crossflow stream. The presence of twin counter-rotating vortices in the flames leading to increased entrainment rates and shorter residence times (i.e. shorter flame lengths). The variation of NOx emissions characteristics of crossflow flames from those of straight jet flames depends on the sooting propensity of the fuel used. Additionally, the nearfield region of the flame (i.e., region near the burner exit) has a strong influence on the CO and unburned hydrocarbon emissions, and on the NO2-to-NO x ratios. Another flame configuration used in the present study is the precessing jet flame. In the practical implementation of this unique flame configuration, the fuel jet precesses about the burner axis due to natural fluid mechanical instability occurring inside the burner at a sudden expansion. Studies have shown that these flames emit up to 70% less NOx than straight jet flames. In precessing jet flames, the turbulent mixing scales are several times larger than those of straight jet flames.
Dynamic Membrane Technology for Printing Wastewater Reuse
NASA Astrophysics Data System (ADS)
Liu, Lin; Lu, Xujie; Chen, Jihua
As environmental regulations become rigid and the cost of freshwater increases, wastewater is considered as a major resource in China. The paper presented a study on the implementation of the advanced treatment process using dynamic membrane (DM) in reusing of printing wastewater. The DM was well formed by circulating 1.5g/L of PAC in 20 minutes, the trans-membrane pressure of 200 kPa and the cross-flow velocity of 0.75m/s. The printing effluents were treated in effluent treatment plants comprising a physicochemical option followed by biological process. The treated effluent contained chemical oxygen demand (COD), color and turbidity in the range of 45-60 mg/L, 0.030-0.045 (absorbance at 420 nm) and 3-5 NTU. The results showed that the COD, color and turbidity removal efficiencies of the DM permeate were 84%, 85% and 80%, respectively. The wastewater treated by DM was reused as process water and the final concentrated retentate could be discharged directly into sewage treatment works with no additional treatments. Cleaning and regeneration of DM were very convenient if necessary. The proper process was that the polluted DM was cleaned with tap water at high cross-flow velocity. When irreversible pollutants accumulate, it would be rinsed with chemicals tested and the membrane flux would be restored up to 95%. The result showed that DM was considered as a promising method for purification aimed at reuse of printing wastewater, resulting in direct environmental and economic benefits.
Secondary instabilities of hypersonic stationary crossflow waves
NASA Astrophysics Data System (ADS)
Edelman, Joshua B.
A sharp, circular 7° half-angle cone was tested in the Boeing/AFOSR Mach-6 Quiet Tunnel at 6° angle of attack. Using a variety of roughness configurations, measurements were made using temperature-sensitive paint (TSP) and fast pressure sensors. High-frequency secondary instabilities of the stationary crossflow waves were detected near the aft end of the cone, from 110° to 163° from the windward ray. At least two frequency bands of the secondary instabilities were measured. The secondary instabilities have high coherence between upstream and downstream sensor pairs. In addition, the amplitudes of the instabilities increase with the addition of roughness elements near the nose of the cone. Two of the measured instabilities were captured over a range of axial Reynolds numbers of about 1 - 2 million, with amplitudes ranging from low to turbulent breakdown. For these instabilities, the wave speed and amplitude growth can be calculated. The wave speeds were all near the edge velocity. Measured growth before breakdown for the two instabilities are between e3 and e4 from background noise levels. The initial linear growth rates for the instabilities are near 50 /m. Simultaneous measurement of two frequency bands of the secondary instabilities was made during a single run. It was found that each mode was spatially confined within a small azimuthal region, and that the regions of peak amplitude for one mode correspond to regions of minimal amplitude for the other.
Characterization Tests of WFC3 Filters
NASA Technical Reports Server (NTRS)
Baggett, S.; Boucarut, R.; Telfer, R.; Quijano, J. Kim; Quijada, M.; Arsenovic, P.; Brown, T.; Dailey, M.; Figer, D.; Hilbert, B.
2006-01-01
The WFC3 instrument to be installed on HST during the next servicing mission consists of a UVIS and an IR channel. Each channel is allocated its own complement of filters: 48 elements for the UVIS (42 filters, 5 quads, and 1 UV grism) and 17 slots for the IR (15 filters and 2 grisms). While a majority of the UVIS filters exhibit excellent performance consistent with or exceeding expectations, a subset show significant filter ghosts. Procurement of improved replacement filters is in progress and a summary of the characterization tests being performed on the new filters is presented. In the IR channel, while no filter ghosting was detected in any of the filters during thermal vacuum testing, the grisms were found to be installed incorrectly; they have been removed and will be reinstalled. In addition, due to the significantly improved response blueward of 800nm expected in the new substrate-removed IR detector (see Invited talk by R.A.Kimble, this volume), two IR filters originally constructed on a fused silica substrate are being remade using an IR transmitting color glass to block any visible light transmission. Tests of the new IR filters and preparations for the grism reinstallation are summarized
Flight prototype regenerative particulate filter system development
NASA Technical Reports Server (NTRS)
Green, D. C.; Garber, P. J.
1974-01-01
The effort to design, fabricate, and test a flight prototype Filter Regeneration Unit used to regenerate (clean) fluid particulate filter elements is reported. The design of the filter regeneration unit and the results of tests performed in both one-gravity and zero-gravity are discussed. The filter regeneration unit uses a backflush/jet impingement method of regenerating fluid filter elements that is highly efficient. A vortex particle separator and particle trap were designed for zero-gravity use, and the zero-gravity test results are discussed. The filter regeneration unit was designed for both inflight maintenance and ground refurbishment use on space shuttle and future space missions.
NASA Technical Reports Server (NTRS)
Agarwal, R.; Rakich, J. V.
1978-01-01
Computational results obtained with a parabolic Navier-Stokes marching code are presented for supersonic viscous flow past a pointed cone at angle of attack undergoing a combined spinning and coning motion. The code takes into account the asymmetries in the flow field resulting from the motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation and vortex structure. The side force and moment are also computed. Reasonably good agreement is obtained with the side force measurements of Schiff and Tobak. Comparison is also made with the only available numerical inviscid analysis. It is found that the asymmetric pressure loads due to coning motion are much larger than all other viscous forces due to spin and coning, making viscous forces negligible in the combined motion.
NASA Technical Reports Server (NTRS)
Holdeman, James D.
1991-01-01
Experimental and computational results on the mixing of single, double, and opposed rows of jets with an isothermal or variable temperature mainstream in a confined subsonic crossflow are summarized. The studies were performed to investigate flow and geometric variations typical of the complex 3D flowfield in the dilution zone of combustion chambers in gas turbine engines. The principal observations from the experiments were that the momentum-flux ratio was the most significant flow variable, and that temperature distributions were similar (independent of orifice diameter) when the orifice spacing and the square-root of the momentum-flux ratio were inversely proportional. The experiments and empirical model for the mixing of a single row of jets from round holes were extended to include several variations typical of gas turbine combustors.
NASA Astrophysics Data System (ADS)
Zhu, J. Y.; Chin, J. S.
1986-06-01
A numerical calculation method is used to predict the variation of the characteristics of fuel spray moving in a high temperature air crossflow, mainly, Sauter mean diameter SMD, droplet size distribution index N of Rosin-Rammler distribution and evaporation percentage changing with downstream distance X from the nozzle. The effect of droplet heat-up period evaporation process and forced convection are taken into full account; thus, the calculation model is a very good approximation to the process of spray evaporation in a practical combustor, such as ramjet, aero-gas turbine, liquid propellant rocket, diesel and other liquid fuel-powered combustion devices. The changes of spray characteristics N, SMD and spray evaporation percentage with air velocity, pressure, temperature, fuel injection velocity, and the initial spray parameters are presented.
Effect of curvature on stationary crossflow instability of a three-dimensional boundary layer
NASA Technical Reports Server (NTRS)
Lin, Ray-Sing; Reed, Helen L.
1993-01-01
An incompressible three-dimensional laminar boundary-layer flow over a swept wing is used as a model to study both the wall-curvature and streamline-curvature effects on the stationary crossflow instability. The basic state is obtained by solving the full Navier-Stokes (N-S) equations numerically. The linear disturbance equations are cast on a fixed, body-intrinsic, curvilinear coordinate system. Those nonparallel terms which contribute mainly to the streamline-curvature effect are retained in the formulation of the disturbance equations and approximated by their local finite difference values. The resulting eigenvalue problem is solved by a Chebyshev collocation method. The present results indicate that the convex wall curvature has a stabilizing effect, whereas the streamline curvature has a destabilizing effect. A validation of these effects with an N-S solution for the linear disturbance flow is provided.
Optimum Suction Distribution for Transition Control
NASA Technical Reports Server (NTRS)
Balakumar, P.; Hall, P.
1996-01-01
The optimum suction distribution which gives the longest laminar region for a given total suction is computed. The goal here is to provide the designer with a method to find the best suction distribution subject to some overall constraint applied to the suction. We formulate the problem using the Lagrangian multiplier method with constraints. The resulting non-linear system of equations is solved using the Newton-Raphson technique. The computations are performed for a Blasius boundary layer on a flat-plate and crossflow cases. For the Blasius boundary layer, the optimum suction distribution peaks upstream of the maximum growth rate region and remains flat in the middle before it decreases to zero at the end of the transition point. For the stationary and travelling crossflow instability, the optimum suction peaks upstream of the maximum growth rate region and decreases gradually to zero.
NASA Astrophysics Data System (ADS)
Stratton, Zachary T.
The film-cooling holes in turbine blades are fed from an internal cooling channel. This channel imposes a crossflow at the entrance of the holes that can significantly affect the performance of the cooling jets that emanate from those holes. In this study, CFD simulations based on steady RANS with the shear-stress transport (SST) and the realizable k-epsilon turbulence models were performed to study film cooling of a flat plate with cooling jets issuing from eight round holes with a compound angle of 45 degrees, where the coolant channel that fed the cooling jets was oriented perpendicular to the direction of the hot-gas flow. One case was also performed by using large-eddy simulation (LES) to get a sense of the unsteady nature of the flow. Operating conditions were chosen to match the laboratory conditions, which maintained a density ratio of 1.5 between the coolant and the hot gas. Parameters studied include internal crossflow direction and blowing ratios of 0.5, 1.0, and 1.5. Results obtained showed an unsteady vortex forms inside the hole, causing a side-to-side shedding of the coolant jet. Values of adiabatic effectiveness predicted by the CFD simulations were compared with experimentally measured values. Steady RANS was found to be inconsistent in its ability to predict adiabatic effectiveness with relative error ranging from 10% to over 100%. LES was able to predict adiabatic effectiveness with reasonable accuracy.
Direct Numerical Simulation of Transition in a Swept-Wing Boundary Layer
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.; Li, Fei
2013-01-01
Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing derived from a two-dimensional, partial-differential-equation based eigenvalue computation; and the mode selected for forcing corresponds to the most amplified secondary instability mode which, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. Both the growth of the secondary instability wave and the resulting onset of laminar-turbulent transition are captured within the DNS computations. The growth of the secondary instability wave in the DNS solution compares well with linear secondary instability theory when the amplitude is small; the linear growth is followed by a region of reduced growth resulting from nonlinear effects before an explosive onset of laminar breakdown to turbulence. The peak fluctuations are concentrated near the boundary layer edge during the initial stage of transition, but rapidly propagates towards the surface during the process of laminar breakdown. Both time-averaged statistics and flow visualization based on the DNS reveal a sawtooth transition pattern that is analogous to previously documented surface flow visualizations of transition due to stationary crossflow instability. The memory of the stationary crossflow vortex is found to persist through the transition zone and well beyond the location of the maximum skin friction.
Real jet effects on dual jets in a crossflow
NASA Technical Reports Server (NTRS)
Schetz, J. A.
1984-01-01
A 6-ft by 6-ft wind tunnel section was modification to accommodate the 7-ft wide NASA dual-jet flate model in an effort to determine the effects of nonuniform and/or noncircular jet exhaust profiles on the pressure field induced on a nearby surface. Tests completed yield surface pressure measurements for a 90 deg circular injector producing exit profiles representative of turbofan nozzles (such as the TF-34 nozzle). The measurements were obtained for both tandem and side-by-side jet configurations, jet spacing of S/D =2, and velocity ratios of R=2.2 and 4.0. Control tests at the same mass flow rate but with uniform exit velocity profiles were also conducted, for comparison purposes. Plots for 90 deg injection and R=2.2 show that the effects of exit velocity profile nonuniformity are quite significant.
Qualification Lab Testing on M1 Abrams Engine Oil Filters
2016-11-01
UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K. Rutta U.S...the originator. UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K...TITLE AND SUBTITLE Qualification Lab Testing on M1 Abrams Engine Oil Filter 5a. CONTRACT NUMBER W56HZV-15-C-0030 5b. GRANT NUMBER 5c. PROGRAM
Change Detection via Selective Guided Contrasting Filters
NASA Astrophysics Data System (ADS)
Vizilter, Y. V.; Rubis, A. Y.; Zheltov, S. Y.
2017-05-01
Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample) as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (difference map) could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some smoothing operator (SO) is applied for elimination of test image details; at the second step all matched details are restored with local contrast proportional to the value of some local similarity coefficient (LSC). The guided contrasting filter was proposed based on local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, morphological correlation coefficient (MCC), mutual information, mean square MCC and geometrical correlation coefficients are applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided contrasting filters. All implemented filters provide the robustness relative to weak geometrical discrepancy of compared images. Selective guided contrasting based on morphological opening/closing and thresholded morphological correlation demonstrates the best change detection result.
Ilyas, Aamir; Muthanna, Tone M
2017-12-06
The aim of this paper was to conduct pilot-scale column tests on an alternative treatment filter designed for the treatment of highway stormwater in cold climates. The study evaluated adsorption performance of the filter with regard to the four most commonly found metals (Cu, Ni, Pb, and Zn) in highway stormwater. An alternative method was used to estimate the operational life of the filter from the adsorption test data without a breakthrough under high hydraulic loads. The potential environmental impact of the filter was assessed by comparing desorption test data with four different environmental quality standards. The proposed filter achieved high adsorption (over 90%) of the target metals. The comparisons of desorption and leaching data with the environmental standards indicated that iron-oxide/bottom ash was non-hazardous, reusable and without serious environmental risks. The operational life and filter dimensions were highly dependent on rainfall depth, which indicated that the filter design would have to be adapted to suit the climate. To fully appreciate the performance and environmental aspects, the filter unit should be tested in the field and the testing should explicitly include ecotoxicological and life cycle impacts.
ERIC Educational Resources Information Center
Wooley, John F.
In the operation of vacuum filters and belt filters, it is desirable to evaluate the performance of different types of filter media and conditioning processes. The filter leaf test, which is used to evaluate these items, is described. Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1…
30 CFR 7.89 - Test to determine the particulate index.
Code of Federal Regulations, 2012 CFR
2012-07-01
... filters as follows: (i) At least 1 hour before the test, each filter (pair) shall be placed in a closed... the stabilization period, each filter (pair) shall be weighed. The reading is the tare weight. (iii) The filter (pair) shall then be stored in a closed petri dish or a filter holder, both of which shall...
30 CFR 7.89 - Test to determine the particulate index.
Code of Federal Regulations, 2010 CFR
2010-07-01
... filters as follows: (i) At least 1 hour before the test, each filter (pair) shall be placed in a closed... the stabilization period, each filter (pair) shall be weighed. The reading is the tare weight. (iii) The filter (pair) shall then be stored in a closed petri dish or a filter holder, both of which shall...
30 CFR 7.89 - Test to determine the particulate index.
Code of Federal Regulations, 2014 CFR
2014-07-01
... filters as follows: (i) At least 1 hour before the test, each filter (pair) shall be placed in a closed... the stabilization period, each filter (pair) shall be weighed. The reading is the tare weight. (iii) The filter (pair) shall then be stored in a closed petri dish or a filter holder, both of which shall...
30 CFR 7.89 - Test to determine the particulate index.
Code of Federal Regulations, 2011 CFR
2011-07-01
... filters as follows: (i) At least 1 hour before the test, each filter (pair) shall be placed in a closed... the stabilization period, each filter (pair) shall be weighed. The reading is the tare weight. (iii) The filter (pair) shall then be stored in a closed petri dish or a filter holder, both of which shall...
30 CFR 7.89 - Test to determine the particulate index.
Code of Federal Regulations, 2013 CFR
2013-07-01
... filters as follows: (i) At least 1 hour before the test, each filter (pair) shall be placed in a closed... the stabilization period, each filter (pair) shall be weighed. The reading is the tare weight. (iii) The filter (pair) shall then be stored in a closed petri dish or a filter holder, both of which shall...
Computational Study of Hypersonic Boundary Layer Stability on Cones
NASA Astrophysics Data System (ADS)
Gronvall, Joel Edwin
Due to the complex nature of boundary layer laminar-turbulent transition in hypersonic flows and the resultant effect on the design of re-entry vehicles, there remains considerable interest in developing a deeper understanding of the underlying physics. To that end, the use of experimental observations and computational analysis in a complementary manner will provide the greatest insights. It is the intent of this work to provide such an analysis for two ongoing experimental investigations. The first focuses on the hypersonic boundary layer transition experiments for a slender cone that are being conducted at JAXA's free-piston shock tunnel HIEST facility. Of particular interest are the measurements of disturbance frequencies associated with transition at high enthalpies. The computational analysis provided for these cases included two-dimensional CFD mean flow solutions for use in boundary layer stability analyses. The disturbances in the boundary layer were calculated using the linear parabolized stability equations. Estimates for transition locations, comparisons of measured disturbance frequencies and computed frequencies, and a determination of the type of disturbances present were made. It was found that for the cases where the disturbances were measured at locations where the flow was still laminar but nearly transitional, that the highly amplified disturbances showed reasonable agreement with the computations. Additionally, an investigation of the effects of finite-rate chemistry and vibrational excitation on flows over cones was conducted for a set of theoretical operational conditions at the HIEST facility. The second study focuses on transition in three-dimensional hypersonic boundary layers, and for this the cone at angle of attack experiments being conducted at the Boeing/AFOSR Mach-6 quiet tunnel at Purdue University were examined. Specifically, the effect of surface roughness on the development of the stationary crossflow instability are investigated in this work. One standard mean flow solution and two direct numerical simulations of a slender cone at an angle of attack were computed. The direct numerical simulations included a digitally-filtered, randomly distributed surface roughness and were performed using a high-order, low-dissipation numerical scheme on appropriately resolved grids. Comparisons with experimental observations showed excellent qualitative agreement. Comparisons with similar previous computational work were also made and showed agreement in the wavenumber range of the most unstable crossflow modes.
Experimental Study of Heat Transfer to Small Cylinders in a Subsonic, High-temperature Gas Stream
NASA Technical Reports Server (NTRS)
Glawe, George E; Johnson, Robert C
1957-01-01
A Nusselt-Reynolds number relation for cylindrical thermocouple wires in crossflow was obtained from the experimental determination of time constants. Tests were conducted in exhaust gas over a temperature range of 2000 to 3400 R, a Mach number range of 0.3 to 0.8, and a static-pressure range from 2/3 to 1-1/3 atmospheres, yielding a Reynolds number range of 450 to 3000. The correlation obtained is Nu=(0.428 plus or minus 0.003) times the square root of Re* with average deviations of a single observation of 8.5 percent. This relation is the same as one previously reported for room-temperature conditions.
Laser-velocimeter surveys of merging vortices in a wind tunnel: Complete data and analysis
NASA Technical Reports Server (NTRS)
Corsiglia, V. R.; Iversen, J. D.; Orloff, K. L.
1978-01-01
The merger of two corotating vortices was studied with a laser velocimeter designed to measure the two cross-stream components of velocity. Measurements were made at several downstream distances in the vortex wake shed by two semispan wings mounted on the wind-tunnel walls. The velocity data provided wall-defined contours of crossflow velocity, stream function, and vorticity for a variety of test conditions. Downstream of the merger point, the vorticity was found to be independent of the downstream distance for radii smaller than r/b = 0.05. For larger radii, the vorticity depended on the distance from the wing. Upstream of the merger, a multicell vorticity pattern was found.
Guidance simulation and test support for differential GPS flight experiment
NASA Technical Reports Server (NTRS)
Geier, G. J.; Loomis, P. V. W.; Cabak, A.
1987-01-01
Three separate tasks which supported the test preparation, test operations, and post test analysis of the NASA Ames flight test evaluation of the differential Global Positioning System (GPS) are presented. Task 1 consisted of a navigation filter design, coding, and testing to optimally make use of GPS in a differential mode. The filter can be configured to accept inputs from external censors such as an accelerometer and a barometric or radar altimeter. The filter runs in real time onboard a NASA helicopter. It processes raw pseudo and delta range measurements from a single channel sequential GPS receiver. The Kalman filter software interfaces are described in detail, followed by a description of the filter algorithm, including the basic propagation and measurement update equations. The performance during flight tests is reviewed and discussed. Task 2 describes a refinement performed on the lateral and vertical steering algorithms developed on a previous contract. The refinements include modification of the internal logic to allow more diverse inflight initialization procedures, further data smoothing and compensation for system induced time delays. Task 3 describes the TAU Corp participation in the analysis of the real time Kalman navigation filter. The performance was compared to that of the Z-set filter in flight and to the laser tracker position data during post test analysis. This analysis allowed a more optimum selection of the parameters of the filter.
Nuclear counting filter based on a centered Skellam test and a double exponential smoothing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulon, Romain; Kondrasovs, Vladimir; Dumazert, Jonathan
2015-07-01
Online nuclear counting represents a challenge due to the stochastic nature of radioactivity. The count data have to be filtered in order to provide a precise and accurate estimation of the count rate, this with a response time compatible with the application in view. An innovative filter is presented in this paper addressing this issue. It is a nonlinear filter based on a Centered Skellam Test (CST) giving a local maximum likelihood estimation of the signal based on a Poisson distribution assumption. This nonlinear approach allows to smooth the counting signal while maintaining a fast response when brutal change activitymore » occur. The filter has been improved by the implementation of a Brown's double Exponential Smoothing (BES). The filter has been validated and compared to other state of the art smoothing filters. The CST-BES filter shows a significant improvement compared to all tested smoothing filters. (authors)« less
NASA Astrophysics Data System (ADS)
Tang, Yadong; Shi, Jian; Li, Sisi; Wang, Li; Cayre, Yvon E.; Chen, Yong
2014-08-01
Capture of circulating tumor cells (CTCs) from peripheral blood of cancer patients has major implications for metastatic detection and therapy analyses. Here we demonstrated a microfluidic device for high efficiency and high purity capture of CTCs. The key novelty of this approach lies on the integration of a microfilter with conical-shaped holes and a micro-injector with cross-flow components for size dependent capture of tumor cells without significant retention of non-tumor cells. Under conditions of constant flow rate, tumor cells spiked into phosphate buffered saline could be recovered and then cultured for further analyses. When tumor cells were spiked in blood of healthy donors, they could also be recovered at high efficiency and high clearance efficiency of white blood cells. When the same device was used for clinical validation, CTCs could be detected in blood samples of cancer patients but not in that of healthy donors. Finally, the capture efficiency of tumor cells is cell-type dependent but the hole size of the filter should be more closely correlated to the nuclei size of the tumor cells. Together with the advantage of easy operation, low-cost and high potential of integration, this approach offers unprecedented opportunities for metastatic detection and cancer treatment monitoring.
Duan, Wenyan; Dudchenko, Alexander; Mende, Elizabeth; Flyer, Celeste; Zhu, Xiaobo; Jassby, David
2014-05-01
The electrochemical prevention and removal of CaSO4 and CaCO3 mineral scales on electrically conducting carbon nanotube - polyamide reverse osmosis membrane was investigated. Different electrical potentials were applied to the membrane surface while filtering model scaling solutions with high saturation indices. Scaling progression was monitored through flux measurements. CaCO3 scale was efficiently removed from the membrane surface through the intermittent application of a 2.5 V potential to the membrane surface, when the membrane acted as an anode. Water oxidation at the anode, which led to proton formation, resulted in the dissolution of deposited CaCO3 crystals. CaSO4 scale formation was significantly retarded through the continuous application of 1.5 V DC to the membrane surface, when the membrane was operated as an anode. The continuous application of a sufficient electrical potential to the membrane surface leads to the formation of a thick layer of counter-ions along the membrane surface that pushed CaSO4 crystal formation away from the membrane surface, allowing the formed crystals to be carried away by the cross-flow. We developed a simple model, based on a modified Poisson-Boltzmann equation, which qualitatively explained our observed experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James K. Neathery; Gary Jacobs; Amitava Sarkar
In the previous reporting period, modifications were completed for integrating a continuous wax filtration system for a 4 liter slurry bubble column reactor. During the current reporting period, a shakedown of the system was completed. Several problems were encountered with the progressive cavity pump used to circulate the wax/catalyst slurry though the cross-flow filter element and reactor. During the activation of the catalyst with elevated temperature (> 270 C) the elastomer pump stator released sulfur thereby totally deactivating the iron-based catalyst. Difficulties in maintaining an acceptable leak rate from the pump seal and stator housing were also encountered. Consequently, themore » system leak rate exceeded the expected production rate of wax; therefore, no online filtration could be accomplished. Work continued regarding the characterization of ultra-fine catalyst structures. The effect of carbidation on the morphology of iron hydroxide oxide particles was the focus of the study during this reporting period. Oxidation of Fe (II) sulfate results in predominantly {gamma}-FeOOH particles which have a rod-shaped (nano-needles) crystalline structure. Carbidation of the prepared {gamma}-FeOOH with CO at atmospheric pressure produced iron carbides with spherical layered structure. HRTEM and EDS analysis revealed that carbidation of {gamma}-FeOOH particles changes the initial nano-needles morphology and generates ultrafine carbide particles with irregular spherical shape.« less
Grafting of alginates on UF/NF ceramic membranes for wastewater treatment.
Athanasekou, C P; Romanos, G E; Kordatos, K; Kasselouri-Rigopoulou, V; Kakizis, N K; Sapalidis, A A
2010-10-15
The mechanism of heavy metal ion removal in processes involving multi-layered tubular ultrafiltration and nanofiltration (UF/NF) membranes was investigated by conducting retention experiments in both flow-through and cross-flow modes. The prospect of the regeneration of the membranes through an acidic process was also examined and discussed. The UF/NF membranes were functionalised with alginates to develop hybrid inorganic/organic materials for continuous, single pass, wastewater treatment applications. The challenge laid in the induction of additional metal adsorption and improved regeneration capacity. This was accomplished by stabilizing alginates either into the pores or on the top-separating layer of the membrane. The preservation of efficient water fluxes at moderate trans-membrane pressures introduced an additional parameter that was pursued in parallel to the membrane modification process. The deposition and stabilization of alginates was carried out via physical (filtration/cross-linking) and chemical (grafting) procedures. The materials developed by means of the filtration process exhibited a 25-60% enhancement of their Cd(2+) binding capacity, depending on the amount of the filtered alginate solution. The grafting process led to the development of alginate layers with adequate stability under acidic regeneration conditions and metal retention enhancement of 25-180%, depending on the silane involved as grafting agent and the solvent of silanisation. 2010 Elsevier B.V. All rights reserved.
Water treatment: A scalable graphene-based membrane
Vlassiouk, Ivan V.
2017-08-28
We discuss how an improved industrial manufacturability has been achieved for a hybrid water-treatment membrane that exhibits high water permeance, prolonged high salt and dye rejection under cross-flow conditions and better resistance to chlorine treatment.
Water treatment: A scalable graphene-based membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlassiouk, Ivan V.
We discuss how an improved industrial manufacturability has been achieved for a hybrid water-treatment membrane that exhibits high water permeance, prolonged high salt and dye rejection under cross-flow conditions and better resistance to chlorine treatment.
MINIVER: Miniature version of real/ideal gas aero-heating and ablation computer program
NASA Technical Reports Server (NTRS)
Hendler, D. R.
1976-01-01
Computer code is used to determine heat transfer multiplication factors, special flow field simulation techniques, different heat transfer methods, different transition criteria, crossflow simulation, and more efficient thin skin thickness optimization procedure.
Validation of sterilizing grade filtration.
Jornitz, M W; Meltzer, T H
2003-01-01
Validation consideration of sterilizing grade filters, namely 0.2 micron, changed when FDA voiced concerns about the validity of Bacterial Challenge tests performed in the past. Such validation exercises are nowadays considered to be filter qualification. Filter validation requires more thorough analysis, especially Bacterial Challenge testing with the actual drug product under process conditions. To do so, viability testing is a necessity to determine the Bacterial Challenge test methodology. Additionally to these two compulsory tests, other evaluations like extractable, adsorption and chemical compatibility tests should be considered. PDA Technical Report # 26, Sterilizing Filtration of Liquids, describes all parameters and aspects required for the comprehensive validation of filters. The report is a most helpful tool for validation of liquid filters used in the biopharmaceutical industry. It sets the cornerstones of validation requirements and other filtration considerations.
Influence of non-adiabatic wall conditions on the cross-flow around a circular cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.; Shafa, K.S.
1984-02-01
The drag and heat transfer of a finite length circular cylinder in a cross-flow have been investigated in a wind tunnel at surface-to-freestream temperature ratios from 1.0 to 2.1 for freestream Reynolds numbers of 2.2 x 10/sup 5/ and 4.4 x 10/sup 5/. The measured surface pressures were integrated to determine the effect of cylinder temperature on the drag coefficient, and the average Nusselt number was calculated from the electrical power required to heat the cylinder. For the freestream Reynolds number of 4.4 x 10/sup 5/, the experimental data show that increasing the cylinder temperature caused a reverse-transition from supercriticalmore » to subcritical flow. As a result of the increased size of the low-velocity wake region, C /SUB D/ increased by 21 percent and Nu /SUB d/ decreased by 26 percent.« less
NASA Technical Reports Server (NTRS)
Papell, S. S.
1984-01-01
The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.
On the Mixing of Single and Opposed Rows of Jets With a Confined Crossflow
NASA Technical Reports Server (NTRS)
Holdeman, James D.; Clisset, James R.; Moder, Jeffrey P.; Lear, William E.
2006-01-01
The primary objectives of this study were 1) to demonstrate that contour plots could be made using the data interface in the NASA GRC jet-in-crossflow (JIC) spreadsheet, and 2) to investigate the suitability of using superposition for the case of opposed rows of jets with their centerlines in-line. The current report is similar to NASA/TM-2005-213137 but the "basic" effects of a confined JIC that are shown in profile plots there are shown as contour plots in this report, and profile plots for opposed rows of aligned jets are presented here using both symmetry and superposition models. Although superposition was found to be suitable for most cases of opposed rows of jets with jet centerlines in-line, the calculation procedure in the JIC spreadsheet was not changed and it still uses the symmetry method for this case, as did all previous publications of the NASA empirical model.
Pal, Parimal; Bhakta, Pamela; Kumar, Ramesh
2014-08-01
A modeling and simulation study, along with an economic analysis, was carried out for the separation of cyanide from industrial wastewater using a flat sheet cross-flow nanofiltration membrane module. With the addition of a pre-microfiltration step, nanofiltration was carried out using real coke wastewater under different operating conditions. Under the optimum operating pressure of 13 bars and a pH of 10.0, a rate of more than 95% separation of cyanide was achieved. That model predictions agreed very well with the experimental findings, as is evident in the Willmott d-index value (> 0.95) and relative error (< 0.1). Studies were carried out with industrial wastewater instead of a synthetic solution, and an economic analysis was also done, considering the capacity of a running coking plant. The findings are likely to be very useful in the scale-up and design of industrial plants for the treatment of cyanide-bearing wastewater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedersen, G.C.; Bhattachararjee, P.K.
1997-11-01
The available methods for removing pollutants from a gas stream are numerous, to say the least. A popular method, scrubbers allow users to separate gases and solids by allowing the gas to come into contact with a liquid stream. In the end, the pollutants are washed away in the effluent, and the gas exits the system to be used in later processes or to be released into the atmosphere. For many years, counter-flow scrubber methods have been used for the lion`s share of the work in industries such as phosphate fertilizer and semiconductor chemicals manufacturing. Now these industries are exploringmore » the use of cross-flow scrubber design, which offers consistently high efficiency and low operating costs. In addition, the unit`s horizontal orientation makes maintenance easier than typical tower scrubbers. For certain classes of unit operations, cross-flow is now being recognized as a strong alternative to conventional counterflow technology.« less
NASA Technical Reports Server (NTRS)
Singer, Bart A.; Choudhari, Meelan; Li, Fei
1995-01-01
A multiple-scales approach is used to approximate the effects of nonparallelism and streamwise surface curvature on the growth of stationary crossflow vortices in incompressible, three-dimesional boundary layers. The results agree with results predicted by solving the parabolized stability equations in regions where the nonparallelism is sufficiently weak. As the nonparallelism increases, the agreement between the two approaches worsens. An attempt has been made to quantify the nonparallelism on flow stability in terms of a nondimensional number that describes the rate of change of the mean flow relative to the disturbance wavelength. We find that the above nondimensional number provides useful information about the adequacy of the multiple-scales approximation for different disturbances for a given flow geometry, but the number does not collapse data for different flow geometries onto a single curve.
Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage
NASA Astrophysics Data System (ADS)
Papell, S. S.
The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.
Why do Cross-Flow Turbines Stall?
NASA Astrophysics Data System (ADS)
Cavagnaro, Robert; Strom, Benjamin; Polagye, Brian
2015-11-01
Hydrokinetic turbines are prone to instability and stall near their peak operating points under torque control. Understanding the physics of turbine stall may help to mitigate this undesirable occurrence and improve the robustness of torque controllers. A laboratory-scale two-bladed cross-flow turbine operating at a chord-based Reynolds number ~ 3 ×104 is shown to stall at a critical tip-speed ratio. Experiments are conducting bringing the turbine to this critical speed in a recirculating current flume by increasing resistive torque and allowing the rotor to rapidly decelerate while monitoring inflow velocity, torque, and drag. The turbine stalls probabilistically with a distribution generated from hundreds of such events. A machine learning algorithm identifies stall events and indicates the effectiveness of available measurements or combinations of measurements as predictors. Bubble flow visualization and PIV are utilized to observe fluid conditions during stall events including the formation, separation, and advection of leading-edge vortices involved in the stall process.
High Fidelity Simulation of Transcritical Liquid Jet in Crossflow
NASA Astrophysics Data System (ADS)
Li, Xiaoyi; Soteriou, Marios
2017-11-01
Transcritical injection of liquid fuel occurs in many practical applications such as diesel, rocket and gas turbine engines. In these applications, the liquid fuel, with a supercritical pressure and a subcritical temperature, is introduced into an environment where both the pressure and temperature exceeds the critical point of the fuel. The convoluted physics of the transition from subcritical to supercritical conditions poses great challenges for both experimental and numerical investigations. In this work, numerical simulation of a binary system of a subcritical liquid injecting into a supercritical gaseous crossflow is performed. The spatially varying fluid thermodynamic and transport properties are evaluated using established cubic equation of state and extended corresponding state principles with established mixing rules. To efficiently account for the large spatial gradients in property variations, an adaptive mesh refinement technique is employed. The transcritical simulation results are compared with the predictions from the traditional subcritical jet atomization simulations.
The Goertler vortex instability mechanism in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Hall, P.
1984-01-01
The two dimensional boundary layer on a concave wall is centrifugally unstable with respect to vortices aligned with the basic flow for sufficiently high values of the Goertler number. However, in most situations of practical interest the basic flow is three dimensional and previous theoretical investigations do not apply. The linear stability of the flow over an infinitely long swept wall of variable curvature is considered. If there is no pressure gradient in the boundary layer the instability problem can always be related to an equivalent two dimensional calculation. However, in general, this is not the case and even for small values of the crossflow velocity field dramatic differences between the two and three dimensional problems emerge. When the size of the crossflow is further increased, the vortices in the neutral location have their axes locally perpendicular to the vortex lines of the basic flow.
Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J
2017-08-01
In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m 2 /bar. Copyright © 2017 Elsevier Ltd. All rights reserved.
42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates (e.g...
42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates (e.g...
42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates (e.g...
42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates (e.g...
42 CFR 84.125 - Particulate tests; canisters containing particulate filters; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... filters; minimum requirements. 84.125 Section 84.125 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.125 Particulate tests; canisters containing particulate filters; minimum requirements. Gas mask canisters containing filters for protection against particulates (e.g...
Gralewicz, Grzegorz; Owczarek, Grzegorz; Kubrak, Janusz
2017-03-01
This article presents a comparison of the test results of selected mechanical parameters (hardness, Young's modulus, critical force for delamination) for protective filters intended for eye protection against harmful infrared radiation. Filters with reflective metallic films were studied, as well as interference filters developed at the Central Institute for Labour Protection - National Research Institute (CIOP-PIB). The test results of the selected mechanical parameters were compared with the test results, conducted in accordance with a standardised method, of simulating filter surface destruction that occurs during use.
40 CFR 60.285a - Test methods and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... performance test. (b) The owner or operator must determine compliance with the filterable particulate matter... used to determine the filterable particulate matter concentration. The sampling time and sample volume... repeat performance tests for filterable particulate matter at intervals no longer than 5 years following...
Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; ...
2017-09-07
In this paper, we demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynolds-averaged Navier–Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscositymore » model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models (“curve-fits”). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. Finally, we find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan
In this paper, we demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynolds-averaged Navier–Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscositymore » model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models (“curve-fits”). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. Finally, we find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.« less
Córdova, Andrés; Astudillo, Carolina; Vera, Carlos; Guerrero, Cecilia; Illanes, Andrés
2016-04-10
The performance of an ultrafiltration membrane bioreactor for galacto-oligosaccharides (GOS) synthesis using high lactose concentrations (470 g/L) and β-galactosidase from Aspergillus oryzae was assessed. Tested processing variables were: transmembrane-pressure (PT), crossflow-velocity (CFV) and temperature. Results showed that processing variables had significant effect on the yield, the enzyme productivity and the flux but did not on GOS concentration and reaction conversion obtained. As expected, the use of high turbulences improved mass transfer and reduced the membrane fouling, but the use of very high crossflow-velocities caused operational instability due to vortex formation and lactose precipitation. The use of a desirability function allowed determining optimal conditions which were: PT (4.38 bar), CFV (7.35 m/s) and temperature (53.1 °C), optimizing simultaneously flux and specific enzyme productivity Under these optimal processing conditions, shear-stress and temperature did not affect the enzyme but long-term operation was limited by flux decay. In comparison to a conventional batch system, at 12.5h of processing time, the continuous GOS synthesis in the UF-MBR increased significantly the amount of processed substrate and a 2.44-fold increase in the amount of GOS produced per unit mass of catalyst was obtained with respect to a conventional batch system. Furthermore, these results can be improved by far by tuning the membranearea/reactionvolume ratio, showing that the use of an UF-MBR is an attractive alternative for the GOS synthesis at very high lactose concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Philip, Jimmy; Karp, Michael; Cohen, Jacob
2016-01-01
Streaks and hairpin-vortices are experimentally generated in a laminar plane Poiseuille crossflow by injecting a continuous jet through a streamwise slot normal to the crossflow, with air as the working media. Small disturbances form stable streaks, however, higher disturbances cause the formation of streaks which undergo instability leading to the generation of hairpin vortices. Particular emphasis is placed on the flow conditions close to the generation of hairpin-vortices. Measurements are carried out in the cases of natural and phase-locked disturbance employing smoke visualisation, particle image velocimetry, and hot-wire anemometry, which include, the dominant frequency, wavelength, and the disturbance shape (or eigenfunctions) associated with the coherent part of the velocity field. A linear stability analysis for both one- and two-dimensional base-flows is carried out to understand the mechanism of instability and good agreement of wavelength and eigenfunctions are obtained when compared to the experimental data, and a slight under-prediction of the growth-rates by the linear stability analysis consistent with the final nonlinear stages in transitional flows. Furthermore, an energy analysis for both the temporal and spatial stability analysis revels the dominance of the symmetric varicose mode, again, in agreement with the experiments, which is found to be governed by the balance of the wallnormal shear and dissipative effects rather than the spanwise shear. In all cases the anti-symmetric sinuous modes governed by the spanwise shear are found to be damped both in analysis and in our experiments.
Inclined Jet in Crossflow Interacting with a Vortex Generator
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Rigby, D .L.; Heidmann, J. D.
2011-01-01
An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degreees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flowfield properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 < J < 11) show that the vortex generator has a significant effect even at the highest J covered in the experiment. When the vortex generator height is halved, there is a liftoff of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the vortex generator, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the vortex generator with the increasing radius of curvature progressively diminishes its effect. However, allowing for a small radius of curvature may be quite tolerable in practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsuddin Ilias
Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In our previous report, we reported our work on UF of BSA. In this report, we report our continuing application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using pectin in apple juice as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow.« less
Pellegrino, J; Wright, S; Ranvill, J; Amy, G
2005-01-01
Flow-Field Flow Fractionation (FI-FFF) is an idealization of the cross flow membrane filtration process in that, (1) the filtration flux and crossflow velocity are constant from beginning to end of the device, (2) the process is a relatively well-defined laminar-flow hydrodynamic condition, and (3) the solutes are introduced as a pulse-input that spreads due to interactions with each other and the membrane in the dilute-solution limit. We have investigated the potential for relating FI-FFF measurements to membrane fouling. An advection-dispersion transport model was used to provide 'ideal' (defined as spherical, non-interacting solutes) solute residence time distributions (RTDs) for comparison with 'real' RTDs obtained experimentally at different cross-field velocities and solution ionic strength. An RTD moment analysis based on a particle diameter probability density function was used to extract "effective" characteristic properties, rather than uniquely defined characteristics, of the standard solute mixture. A semi-empirical unsteady-state, flux decline model was developed that uses solute property parameters. Three modes of flux decline are included: (1) concentration polarization, (2) cake buildup, and (3) adsorption on/in pores, We have used this model to test the hypothesis-that an analysis of a residence time distribution using FI-FFF can describe 'effective' solute properties or indices that can be related to membrane flux decline in crossflow membrane filtration. Constant flux filtration studies included the changes of transport hydrodynamics (solvent flux to solute back diffusion (J/k) ratios), solution ionic strength, and feed water composition for filtration using a regenerated cellulose ultrafiltration membrane. Tests of the modeling hypothesis were compared with experimental results from the filtration measurements using several correction parameters based on the mean and variance of the solute RTDs. The corrections used to modify the boundary layer mass transfer coefficient and the specific resistance of cake or adsorption layers demonstrated that RTD analysis is potentially useful technique to describe colloid properties but requires improvements.
Out-of-plane aerodynamic forces on slender ogive-nosed cylinders
NASA Astrophysics Data System (ADS)
Lacey, M. R.
An ogive-nosed cylinder with a nose fineness of 3 and a body length equal to 12 diameters, has been tested at a constant crossflow Reynolds' number of 85000 and constant crossflow Mach number of 0.1 in the angle of incidence range 0° - 90°, A method of force measurement has been devised to determine the magnitude of the aerodynamic forces on the ogive cylinder and a statistical analysis was developed to predict its accuracy for any model configuration. It was found generally that the results of static loading tests lay well within the stipulated accuracy limits. The out-of-plane forest and moments measured generally agreed well with published data and predictions based on experimental results. Similar agreement was obtained for in-plane forces and moments. The results for the effect of model roll-orientation on the out-of-plane force indicated the existence of two distinct states of asymmetry in the wake, with an absence of any intermediate states. The out-of-plane forces showed no correlation with the position of model nose imperfections, supporting the findings of previous experimenters. Reducing the length of the cylindrical body section of the model served first to reduce the out-of-plane force but subsequently produced a recovery in its magnitude with further shortening. These results agreed well with the prediction method selected. Increased free stream turbulence tended to have less effect on the distribution of the out-of-plane force than previously reported; no flow unsteadiness was observed and no change in direction of roce was recorded. Increased nose tip radius generally reduced the out- of plane force and considerable directional instability was observed. This reduction was, however, not true for all incidence angles. The directional instability was due probably to the removal of the nose tip imperfections, resulting in an inability of the wake to establish a preferred direction of asymmetry throughout the range of incidence.
Regenerative particulate filter development
NASA Technical Reports Server (NTRS)
Descamp, V. A.; Boex, M. W.; Hussey, M. W.; Larson, T. P.
1972-01-01
Development, design, and fabrication of a prototype filter regeneration unit for regenerating clean fluid particle filter elements by using a backflush/jet impingement technique are reported. Development tests were also conducted on a vortex particle separator designed for use in zero gravity environment. A maintainable filter was designed, fabricated and tested that allows filter element replacement without any leakage or spillage of system fluid. Also described are spacecraft fluid system design and filter maintenance techniques with respect to inflight maintenance for the space shuttle and space station.
Herbst, Daniel P
2014-09-01
Micropore filters are used during extracorporeal circulation to prevent gaseous and solid particles from entering the patient's systemic circulation. Although these devices improve patient safety, limitations in current designs have prompted the development of a new concept in micropore filtration. A prototype of the new design was made using 40-μm filter screens and compared against four commercially available filters for performance in pressure loss and gross air handling. Pre- and postfilter bubble counts for 5- and 10-mL bolus injections in an ex vivo test circuit were recorded using a Doppler ultrasound bubble counter. Statistical analysis of results for bubble volume reduction between test filters was performed with one-way repeated-measures analysis of variance using Bonferroni post hoc tests. Changes in filter performance with changes in microbubble load were also assessed with dependent t tests using the 5- and 10-mL bolus injections as the paired sample for each filter. Significance was set at p < .05. All filters in the test group were comparable in pressure loss performance, showing a range of 26-33 mmHg at a flow rate of 6 L/min. In gross air-handling studies, the prototype showed improved bubble volume reduction, reaching statistical significance with three of the four commercial filters. All test filters showed decreased performance in bubble volume reduction when the microbubble load was increased. Findings from this research support the underpinning theories of a sequential arterial-line filter design and suggest that improvements in microbubble filtration may be possible using this technique.
Herbst, Daniel P.
2014-01-01
Abstract: Micropore filters are used during extracorporeal circulation to prevent gaseous and solid particles from entering the patient’s systemic circulation. Although these devices improve patient safety, limitations in current designs have prompted the development of a new concept in micropore filtration. A prototype of the new design was made using 40-μm filter screens and compared against four commercially available filters for performance in pressure loss and gross air handling. Pre- and postfilter bubble counts for 5- and 10-mL bolus injections in an ex vivo test circuit were recorded using a Doppler ultrasound bubble counter. Statistical analysis of results for bubble volume reduction between test filters was performed with one-way repeated-measures analysis of variance using Bonferroni post hoc tests. Changes in filter performance with changes in microbubble load were also assessed with dependent t tests using the 5- and 10-mL bolus injections as the paired sample for each filter. Significance was set at p < .05. All filters in the test group were comparable in pressure loss performance, showing a range of 26–33 mmHg at a flow rate of 6 L/min. In gross air-handling studies, the prototype showed improved bubble volume reduction, reaching statistical significance with three of the four commercial filters. All test filters showed decreased performance in bubble volume reduction when the microbubble load was increased. Findings from this research support the underpinning theories of a sequential arterial-line filter design and suggest that improvements in microbubble filtration may be possible using this technique. PMID:26357790
Development of Test Protocols for International Space Station Particulate Filters
NASA Technical Reports Server (NTRS)
Vijayakumar, R.; Green, Robert D.; Agui, Juan H.
2015-01-01
Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High-Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. The filter element for this system has a non-standard cross-section with a length-to-width ratio (LW) of 6.6. A filter test setup was designed and built to meet industry testing standards. A CFD analysis was performed to initially determine the optimal duct geometry and flow configuration. Both a screen and flow straighter were added to the test duct design to improve flow uniformity and face velocity profiles were subsequently measured to confirm. Flow quality and aerosol mixing assessments show that the duct flow is satisfactory for the intended leak testing. Preliminary leak testing was performed on two different ISS filters, one with known perforations and one with limited use, and results confirmed that the testing methods and photometer instrument are sensitive enough to detect and locate compromised sections of an ISS BFE.Given the engineering constraints in designing spacecraft life support systems, it is anticipated that non-industry standard filters will be required in future designs. This work is focused on developing test protocols for testing the ISS BFE filters, but the methodology is general enough to be extended to other present and future spacecraft filters. These techniques for characterizing the test duct and perform leak testing can be applied to conducting acceptance testing and inventory testing for future manned exploration programs with air revitalization filtration needs, possibly even for in-situ filter element integrity testing for extensively long-duration missions. We plan to address the unique needs for test protocols for crewed spacecraft particulate filters by preparing the initial version of a standard, to be documented as a NASA Technical Memorandum (TM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-11-01
Massive first-principles simulation provides insight into flame anchoring in a hydrogen-rich jet in cross-flow. When gas turbine designers want to use gasified biomass for stationary power generation, they are faced with a challenge: bio-derived syngas typically contains significant amounts of hydrogen, which is far more reactive than the methane that is the traditional gas turbine fuel. This reactivity leads to a safety design issue, because with hydrogen-rich fuels a flame may anchor in the fuel injection section of the combustor instead of the downstream design point. In collaboration with Jacqueline Chen of Sandia National Laboratories and Andrea Gruber of SINTEF,more » a Norwegian energy think tank, the National Renewable Energy Laboratory (NREL) is carrying out fundamental simulations to provide new insight into the physics of flame anchoring in canonical 'jet in cross-flow' configurations using hydrogen-rich fuels. To deal with the large amount and complexity of the data, the combustion scientists also teamed up with computer scientists from across the U.S. Department of Energy's laboratories to develop novel ways to analyze the data. These simulations have shown that fine-scale turbulence structures formed at the jet boundary provide particularly intense mixing between the fuel and air, which then enters a quiescent region formed downstream of the jet in a separate, larger turbulent structure. This insight explains the effect that reducing the wall-normal velocity of the fuel jet causes the flame to blow off; with the aid of the simulation, we now understand this counterintuitive result because reducing the wall-normal velocity would reduce the intensity of the mixing as well as move the quiescent region farther downstream. NREL and its research partners are conducting simulations that provide new insight into the physics of flame anchoring in canonical 'jet in cross-flow' configurations using hydrogen-rich fuels. Simulation results explain the mechanism behind flame blow-off occurring when a component in the cross-flow direction is progressively added to the jet velocity vector, thereby reducing the relative impact of its wall-normal velocity component. Understanding the mechanism for flame anchoring aids the design of fuel injection nozzles that meet safety requirements when using hydrogen-rich fuels.« less
A pilot study examining density of suppression measurement in strabismus.
Piano, Marianne; Newsham, David
2015-01-01
Establish whether the Sbisa bar, Bagolini filter (BF) bar, and neutral density filter (NDF) bar, used to measure density of suppression, are equivalent and possess test-retest reliability. Determine whether density of suppression is altered when measurement equipment/testing conditions are changed. Our pilot study had 10 subjects aged ≥18 years with childhood-onset strabismus, no ocular pathologies, and no binocular vision when manifest. Density of suppression upon repeated testing, with clinic lights on/off, and using a full/reduced intensity light source, was investigated. Results were analysed for test-retest reliability, equivalence, and changes with alteration of testing conditions. Test-retest reliability issues were present for the BF bar (median 6 filter change from first to final test, p = 0.021) and NDF bar (median 5 filter change from first to final test, p = 0.002). Density of suppression was unaffected by environmental illumination or fixation light intensity variations. Density of suppression measurements were higher when measured with the NDF bar (e.g. NDF bar = 1.5, medium suppression, vs BF bar = 6.5, light suppression). Test-retest reliability issues may be present for the two filter bars currently still under manufacture. Changes in testing conditions do not significantly affect test results, provided the same filter bar is used consistently for testing. Further studies in children with strabismus having active amblyopia treatment would be of benefit. Despite extensive use of these tests in the UK, this is to our knowledge the first study evaluating filter bar equivalence/reliability.
Recovery Act - Refinement of Cross Flow Turbine Airfoils
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEntee, Jarlath
2013-08-30
Ocean Renewable Power Company, LLC (ORPC) is a global leader in hydrokinetic technology and project development. ORPC develops hydrokinetic power systems and eco-conscious projects that harness the power of oceans and rivers to create clean, predictable renewable energy. ORPC’s technology consists of a family of modular hydrokinetic power systems: the TidGen® Power System, for use at shallow to medium-depth tidal sites; the RivGen™ Power System, for use at river and estuary sites; and the OCGen® Power System, presently under development, for use at deep tidal and offshore ocean current sites. These power systems convert kinetic energy in moving water intomore » clean, renewable, grid-compatible electric power. The core technology component for all ORPC power systems is its patented turbine generator unit (TGU). The TGU uses proprietary advanced design cross flow (ADCF) turbines to drive an underwater permanent magnet generator mounted at the TGU’s center. It is a gearless, direct-drive system that has the potential for high reliability, requires no lubricants and releases no toxins that could contaminate the surrounding water. The hydrokinetic industry shows tremendous promise as a means of helping reduce the U.S.’s use of fossil fuels and dependence on foreign oil. To exploit this market opportunity, cross-flow hydrokinetic devices need to advance beyond the pre-commercial state and more systematic data about the structure and function of cross-flow hydrokinetic devices is required. This DOE STTR project, “Recovery Act - Refinement of Cross Flow Turbine Airfoils,” refined the cross-flow turbine design process to improve efficiency and performance and developed turbine manufacturing processes appropriate for volume production. The project proposed (1) to overcome the lack of data by extensively studying the properties of cross flow turbines, a particularly competitive design approach for extracting hydrokinetic energy and (2) to help ORPC mature its pre-commercial hydrokinetic technology into a commercially viable product over a three-year period by means of a design-for-manufacture process to be applied to the turbines which would result in a detail turbine design suitable for volume manufacture. In Phase I of the Project, ORPC systematically investigated performance of cross flow turbines by varying design parameters including solidity, foil profile, number of foils and foil toe angle using scale models of ORPC’s turbine design in a tow tank at the University of Maine (UMaine). Data collected provided information on interactions between design variables and helped ORPC improve turbine efficiency from 21% to greater than 35%. Analytical models were developed to better understand the physical phenomena at play in cross-flow turbines. In Phase II of the Project, ORPC expanded on data collected in Phase I to continue improving turbine efficiency, with a goal to optimally approach the Betz limit of 59.3%. Further tow tank testing and development of the analytical models and techniques was completed at UMaine and led to a deeper understanding of the flow phenomena involved. In addition, ORPC evaluated various designs, materials and manufacturing methods for full-scale turbine foils, and identified those most conducive to volume manufacture. Selected components of the turbine were structurally tested in a laboratory environment at UMaine. Performance and structural testing of the full scale turbine design was conducted as part of the field testing. The work funded by this project enabled the development of design tools for the rapid and efficient development of high performance cross-flow hydrokinetic turbine foils. The analytical tools are accurate and properly capture the underlying physical flow phenomena present in hydrokinetic cross-flow turbines. The ability to efficiently examine the design space provides substantial economic benefit to ORPC in that it allows for rapid design iteration at a low computational cost. The design-for-manufacture work enabled the delivery of a turbine design suitable for manufacture in intermediate to large quantity, lowering the unit cost of turbines and the levelized cost of electricity from ORPC hydrokinetic turbine. ORPC fielded the turbine design in a full scale application – the Cobscook Bay Tidal Energy Project which began operation off the coast of Eastport, Maine in September 2012. This is the first commercial, grid-connected tidal energy project in North America and the only ocean energy project not involving a dam which delivers power to a utility grid anywhere in the Americas. ORPC received a Federal Energy Regulatory Commission pilot project license to install and operate this project in February 2012. Construction of the TidGen® Power System began in March 2012, and the system was grid-connected on September 13, 2012. A 20-year commercial power purchase agreement to sell the power generated by the project was completed with Bangor Hydro Electric Company and is the first and only power purchase agreement for tidal energy. This is the first project in the U.S. to receive Renewable Energy Certificates for tidal energy production. The STTR project is a benefit to the public through its creation of jobs. ORPC’s recent deployment of the TidGen™ Power System is part of their larger project, the Maine Tidal Energy Project. According to ORPC’s report to the Maine Public Utilities Commission and the 20-year power purchase agreement, the Maine Tidal Energy Project will create and/or retain at least 80 direct full-time equivalent jobs in Maine during the development, construction and installation phase (2011 through 2016). In addition, the Maine Tidal Energy Project will create and/or retain at least 12 direct full-time equivalent jobs in Maine during the operating and maintenance phase (2016 through 2020). The STTR project has facilitated new and expanded services in manufacturing, fabrication and assembly, including major business growth for the composite technologies sector; creation of deepwater deployment, maintenance and retrieval services; and the expansion and formation of technical support services such as site assessment and design services, geotechnical services, underwater transmission services, and environmental monitoring services. The Maine Tidal Energy Project’s impact on workforce will enable other ocean energy projects – be they offshore wind, wave or additional tidal opportunities – to succeed in Maine. ORPC received a 2013 Tibbetts Award by the U.S. Small Business Administration.« less
Development of Test Protocols for International Space Station Particulate Filters
NASA Technical Reports Server (NTRS)
Green, Robert D.; Vijayakumar, R.; Agui, Juan H.
2014-01-01
Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High- Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. Over the years, the service life of these filters has been re-evaluated based on limited post-flight tests of returned filters and risk factors. On earth, a well designed and installed HEPA filter will last for several years, e.g. in industrial and research clean room applications. Test methods for evaluating these filters are being developed on the basis of established test protocols used by the industry and the military. This paper will discuss the test methods adopted and test results on prototypes of the ISS filters. The results will assist in establishing whether the service life can be extended for these filters. Results from unused filters that have been in storage will also be presented to ascertain the shelf life and performance deterioration, if any and determine if the shelf life may be extended.
Results from Evaluation of Proposed ASME AG-1 Section FI Metal Media Filters - 13063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, John A.; Giffin, Paxton K.; Parsons, Michael S.
High efficiency particulate air (HEPA) filtration technology is commonly used in Department of Energy (DOE) facilities that require control of radioactive particulate matter (PM) emissions due to treatment or management of radioactive materials. Although HEPA technology typically makes use of glass fiber media, metal and ceramic media filters are also capable of filtering efficiencies beyond the required 99.97%. Sintered metal fiber filters are good candidates for use in DOE facilities due to their resistance to corrosive environments and resilience at high temperature and elevated levels of relative humidity. Their strength can protect them from high differential pressure or pressure spikesmore » and allow for back pulse cleaning, extending filter lifetime. Use of these filters has the potential to reduce the cost of filtration in DOE facilities due to life cycle cost savings. ASME AG-1 section FI has not been approved due to a lack of protocols and performance criteria for qualifying section FI filters. The Institute for Clean Energy Technology (ICET) with the aid of the FI project team has developed a Section FI test stand and test plan capable of assisting in the qualification ASME AG-1 section FI filters. Testing done at ICET using the FI test stand evaluates resistance to rated air flow, test aerosol penetration and resistance to heated air of the section FI filters. Data collected during this testing consists of temperature, relative humidity, differential pressure, flow rate, upstream particle concentration, and downstream particle concentration. (authors)« less
40 CFR 86.1339-90 - Particulate filter handling and weighing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Particulate filter handling and... Exhaust Test Procedures § 86.1339-90 Particulate filter handling and weighing. (a) At least 1 hour before the test, place a filter pair in a closed (to eliminate dust contamination) but unsealed (to permit...
40 CFR 86.1339-90 - Particulate filter handling and weighing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Particulate filter handling and... Exhaust Test Procedures § 86.1339-90 Particulate filter handling and weighing. (a) At least 1 hour before the test, place a filter pair in a closed (to eliminate dust contamination) but unsealed (to permit...
40 CFR 86.139-90 - Particulate filter handling and weighing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Particulate filter handling and... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.139-90 Particulate filter handling and weighing. (a) At least 8 hours, but not more than 56 hours before the test, place each filter in...
40 CFR 86.139-90 - Particulate filter handling and weighing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Particulate filter handling and... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.139-90 Particulate filter handling and weighing. (a) At least 8 hours, but not more than 56 hours before the test, place each filter in...
40 CFR 86.139-90 - Particulate filter handling and weighing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Particulate filter handling and... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.139-90 Particulate filter handling and weighing. (a) At least 8 hours, but not more than 56 hours before the test, place each filter in...
40 CFR 86.139-90 - Particulate filter handling and weighing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Particulate filter handling and... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.139-90 Particulate filter handling and weighing. (a) At least 8 hours, but not more than 56 hours before the test, place each filter in...
40 CFR 86.1339-90 - Particulate filter handling and weighing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Particulate filter handling and... Exhaust Test Procedures § 86.1339-90 Particulate filter handling and weighing. (a) At least 1 hour before the test, place a filter pair in a closed (to eliminate dust contamination) but unsealed (to permit...
40 CFR 86.139-90 - Particulate filter handling and weighing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Particulate filter handling and... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.139-90 Particulate filter handling and weighing. (a) At least 8 hours, but not more than 56 hours before the test, place each filter in...
40 CFR 86.1339-90 - Particulate filter handling and weighing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Particulate filter handling and... Exhaust Test Procedures § 86.1339-90 Particulate filter handling and weighing. (a) At least 1 hour before the test, place a filter pair in a closed (to eliminate dust contamination) but unsealed (to permit...
40 CFR 53.66 - Test procedure: Volatility test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mass concentration and the sample filters are conditioned and preweighed. In phase B, the challenge... preweighed filters for a specified time period. In phase C (the blow-off phase), aerosol and aerosol-vapor... on the filters. The candidate sampler passes the volatility test if the acceptance criteria presented...
40 CFR 53.66 - Test procedure: Volatility test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... mass concentration and the sample filters are conditioned and preweighed. In phase B, the challenge... preweighed filters for a specified time period. In phase C (the blow-off phase), aerosol and aerosol-vapor... on the filters. The candidate sampler passes the volatility test if the acceptance criteria presented...
40 CFR 53.66 - Test procedure: Volatility test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... mass concentration and the sample filters are conditioned and preweighed. In phase B, the challenge... preweighed filters for a specified time period. In phase C (the blow-off phase), aerosol and aerosol-vapor... on the filters. The candidate sampler passes the volatility test if the acceptance criteria presented...
40 CFR 53.66 - Test procedure: Volatility test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... mass concentration and the sample filters are conditioned and preweighed. In phase B, the challenge... preweighed filters for a specified time period. In phase C (the blow-off phase), aerosol and aerosol-vapor... on the filters. The candidate sampler passes the volatility test if the acceptance criteria presented...
40 CFR 53.66 - Test procedure: Volatility test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... mass concentration and the sample filters are conditioned and preweighed. In phase B, the challenge... preweighed filters for a specified time period. In phase C (the blow-off phase), aerosol and aerosol-vapor... on the filters. The candidate sampler passes the volatility test if the acceptance criteria presented...
Raynor, P C; Kim, B G; Ramachandran, G; Strommen, M R; Horns, J H; Streifel, A J
2008-02-01
Synthetic filters made from fibers carrying electrostatic charges and fiberglass filters that do not carry electrostatic charges are both utilized commonly in heating, ventilating, and air-conditioning (HVAC) systems. The pressure drop and efficiency of a bank of fiberglass filters and a bank of electrostatically charged synthetic filters were measured repeatedly for 13 weeks in operating HVAC systems at a hospital. Additionally, the efficiency with which new and used fiberglass and synthetic filters collected culturable biological particles was measured in a test apparatus. Pressure drop measurements adjusted to equivalent flows indicated that the synthetic filters operated with a pressure drop less than half that of the fiberglass filters throughout the test. When measured using total ambient particles, synthetic filter efficiency decreased during the test period for all particle diameters. For particles 0.7-1.0 mum in diameter, efficiency decreased from 92% to 44%. It is hypothesized that this reduction in collection efficiency may be due to charge shielding. Efficiency did not change significantly for the fiberglass filters during the test period. However, when measured using culturable biological particles in the ambient air, efficiency was essentially the same for new filters and filters used for 13 weeks in the hospital for both the synthetic and fiberglass filters. It is hypothesized that the lack of efficiency reduction for culturable particles may be due to their having higher charge than non-biological particles, allowing them to overcome the effects of charge shielding. The type of particles requiring capture may be an important consideration when comparing the relative performance of electrostatically charged synthetic and fiberglass filters. Electrostatically charged synthetic filters with high initial efficiency can frequently replace traditional fiberglass filters with lower efficiency in HVAC systems because properly designed synthetic filters offer less resistance to air flow. Although the efficiency of charged synthetic filters at collecting non-biological particles declined substantially with use, the efficiency of these filters at collecting biological particles remained steady. These findings suggest that the merits of electrostatically charged synthetic HVAC filters relative to fiberglass filters may be more pronounced if collection of biological particles is of primary concern.
Park, Jae Hong; Yoon, Ki Young; Na, Hyungjoo; Kim, Yang Seon; Hwang, Jungho; Kim, Jongbaeg; Yoon, Young Hun
2011-09-01
We grew multi-walled carbon nanotubes (MWCNTs) on a glass fiber air filter using thermal chemical vapor deposition (CVD) after the filter was catalytically activated with a spark discharge. After the CNT deposition, filtration and antibacterial tests were performed with the filters. Potassium chloride (KCl) particles (<1 μm) were used as the test aerosol particles, and their number concentration was measured using a scanning mobility particle sizer. Antibacterial tests were performed using the colony counting method, and Escherichia coli (E. coli) was used as the test bacteria. The results showed that the CNT deposition increased the filtration efficiency of nano and submicron-sized particles, but did not increase the pressure drop across the filter. When a pristine glass fiber filter that had no CNTs was used, the particle filtration efficiencies at particle sizes under 30 nm and near 500 nm were 48.5% and 46.8%, respectively. However, the efficiencies increased to 64.3% and 60.2%, respectively, when the CNT-deposited filter was used. The reduction in the number of viable cells was determined by counting the colony forming units (CFU) of each test filter after contact with the cells. The pristine glass fiber filter was used as a control, and 83.7% of the E. coli were inactivated on the CNT-deposited filter. Copyright © 2011 Elsevier B.V. All rights reserved.
Transition Analysis for the HIFiRE-5 Vehicle
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Chang, Chau-Lyan; Li, Fei; Berger, Karen T.; Candler, Graham V.; Kimmel, Roger
2009-01-01
The Hypersonic International Flight Research and Experimentation (HIFiRE) 5 flight experiment by Air Force Research Laboratories and Australian Defense Science and Technology Organization is designed to provide in-flight boundary-layer transition data for a canonical 3D configuration at hypersonic Mach numbers. This paper outlines the progress, to date, on boundary layer stability analysis for the HIFiRE-5 flight configuration, as well as for selected test conditions from the wind tunnel experiments supporting the flight test. At flow conditions corresponding to the end of the test window, rather large values of linear amplification factor are predicted for both second mode (N>40) and crossflow (N>20) instabilities, strongly supporting the feasibility of first in-flight measurements of natural transition on a fully three-dimensional hypersonic configuration. Additional results highlight the rich mixture of instability mechanisms relevant to a large segment of the flight trajectory, as well as the effects of angle of attack and yaw angle on the predicted transition fronts for ground facility experiments at Mach 6.
Han, Don-Hee; Lee, Jinheon
2005-10-01
Korean certification regulation for particulate filtering respirators requires inward leakage (IL) or total inward leakage (TIL) testing according to European Standard EN 13274-1, and the standard levels of compliance are similar to those of the European Standard. This study was conducted to evaluate particulate filtering respirators being commercially used in the Korean market using an IL or TIL test and the validity of standard level in Korea. Three half masks and 10 filtering facepieces (two top class, four 1st class and four 2nd class)-a total of 13 brand name respirators-were selected for the test with panels of 10 subjects. Each subject was classified with nine facial dimension grid squares in accordance with face length and lip length. IL or TIL testing was conducted at the laboratory of the 3M Innovation Center in which the experimental instruments and systems were established in compliance with European standards. The testing procedure followed EN 13274-1 (2001). As expected, leakages of half masks were less than those of filtering facepieces and the latter were significantly different among brands. TILs of the 1st class filtering facepieces were found to be much more than those of the 2nd class and the result may cause a wearer to get confused when selecting a mask. The main route leakage for filtering facepieces may not be the filter medium but the face seal. Therefore, it is necessary to develop well-fitting filtering facepieces for Koreans. Because leakages were significantly different for different facial dimensions, a defined test panel for IL or TIL testing according to country or race should be developed. A more precise method to demonstrate fit, for example, fit testing such as in the US regulations, will be needed before IL or TIL testing or when selecting a respirator. Another finding implies that geometric mean of five exercises for IL or TIL may be better than arithmetic mean to establish a standard individual subject mean.
An Independent Filter for Gene Set Testing Based on Spectral Enrichment.
Frost, H Robert; Li, Zhigang; Asselbergs, Folkert W; Moore, Jason H
2015-01-01
Gene set testing has become an indispensable tool for the analysis of high-dimensional genomic data. An important motivation for testing gene sets, rather than individual genomic variables, is to improve statistical power by reducing the number of tested hypotheses. Given the dramatic growth in common gene set collections, however, testing is often performed with nearly as many gene sets as underlying genomic variables. To address the challenge to statistical power posed by large gene set collections, we have developed spectral gene set filtering (SGSF), a novel technique for independent filtering of gene set collections prior to gene set testing. The SGSF method uses as a filter statistic the p-value measuring the statistical significance of the association between each gene set and the sample principal components (PCs), taking into account the significance of the associated eigenvalues. Because this filter statistic is independent of standard gene set test statistics under the null hypothesis but dependent under the alternative, the proportion of enriched gene sets is increased without impacting the type I error rate. As shown using simulated and real gene expression data, the SGSF algorithm accurately filters gene sets unrelated to the experimental outcome resulting in significantly increased gene set testing power.
Effectiveness of adverse effects search filters: drugs versus medical devices.
Farrah, Kelly; Mierzwinski-Urban, Monika; Cimon, Karen
2016-07-01
The study tested the performance of adverse effects search filters when searching for safety information on medical devices, procedures, and diagnostic tests in MEDLINE and Embase. The sensitivity of 3 filters was determined using a sample of 631 references from 131 rapid reviews related to the safety of health technologies. The references were divided into 2 sets by type of intervention: drugs and nondrug health technologies. Keyword and indexing analysis were performed on references from the nondrug testing set that 1 or more of the filters did not retrieve. For all 3 filters, sensitivity was lower for nondrug health technologies (ranging from 53%-87%) than for drugs (88%-93%) in both databases. When tested on the nondrug health technologies set, sensitivity was lower in Embase (ranging from 53%-81%) than in MEDLINE (67%-87%) for all filters. Of the nondrug records that 1 or more of the filters missed, 39% of the missed MEDLINE records and 18% of the missed Embase records did not contain any indexing terms related to adverse events. Analyzing the titles and abstracts of nondrug records that were missed by any 1 filter, the most commonly used keywords related to adverse effects were: risk, complications, mortality, contamination, hemorrhage, and failure. In this study, adverse effects filters were less effective at finding information about the safety of medical devices, procedures, and tests compared to information about the safety of drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, J.C.; Olivo, C.A.; Wilson, K.B.
1994-04-01
An experimental test plan has been prepared for DOE/METC review and approval to develop a filter media suitable for multi-contaminant control in granular-bed filter (GBF) applications. The plan includes identification, development, and demonstration of methods for enhanced media morphology, chemical reactivity, and mechanical strength. The test plan includes media preparation methods, physical and chemical characterization methods for fresh and reacted media, media evaluation criteria, details of test and analytical equipment, and test matrix of the proposed media testing. A filter media composed of agglomerated limestone and clay was determined to be the best candidate for multi-contaminate control in GBF operation.more » The combined limestone/clay agglomerate has the potential to remove sulfur and alkali species, in addition to particulate, and possibly halogens and trace heavy metals from coal process streams.« less
Filter Media Tests Under Simulated Martian Atmospheric Conditions
NASA Technical Reports Server (NTRS)
Agui, Juan H.
2016-01-01
Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.
Pharmacy students' test-taking motivation-effort on a low-stakes standardized test.
Waskiewicz, Rhonda A
2011-04-11
To measure third-year pharmacy students' level of motivation while completing the Pharmacy Curriculum Outcomes Assessment (PCOA) administered as a low-stakes test to better understand use of the PCOA as a measure of student content knowledge. Student motivation was manipulated through an incentive (ie, personal letter from the dean) and a process of statistical motivation filtering. Data were analyzed to determine any differences between the experimental and control groups in PCOA test performance, motivation to perform well, and test performance after filtering for low motivation-effort. Incentivizing students diminished the need for filtering PCOA scores for low effort. Where filtering was used, performance scores improved, providing a more realistic measure of aggregate student performance. To ensure that PCOA scores are an accurate reflection of student knowledge, incentivizing and/or filtering for low motivation-effort among pharmacy students should be considered fundamental best practice when the PCOA is administered as a low-stakes test.
Effects of Ultra-Clean and centrifugal filtration on rolling-element bearing life
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Moyer, D. W.; Needelman, W. M.
1981-01-01
Fatigue tests were conducted on groups of 65-millimeter bore diameter deep-groove ball bearings in a MIL-L-23699 lubricant under two levels of filtration. In one test series, the oil cleanliness was maintained at an exceptionally high level (better than a class "000" per NAS 1638) with a 3 micron absolute barrier filter. These tests were intended to determine the "upper limit" in bearing life under the strictest possible lubricant cleanliness conditions. In the tests using a centrifugal oil filter, contaminants of the type found in aircraft engine filters were injected into the filters' supply line at 125 milligrams per bearing-hour. "Ultra-clean" lubrication produced bearing fatigue lives that were approximately twice that obtained in previous tests with contaminated oil using 3 micron absolute filtration and approximately three times that obtained with 49 micron filtration. It was also observed that the centrifugal oil filter had approximately the same effectiveness as a 30 micron absolute filter in preventing bearing surface damage.
40 CFR 53.58 - Operational field precision and blank test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... samplers are also subject to a test for possible deposition of particulate matter on inactive filters... deposition is defined as the mass of material inadvertently deposited on a sample filter that is stored in a... electrical power to accommodate three test samplers are required. (2) Teflon sample filters, as specified in...
Imoto, Yukari; Yasutaka, Tetsuo; Someya, Masayuki; Higashino, Kazuo
2018-05-15
Soil leaching tests are commonly used to evaluate the leachability of hazardous materials, such as heavy metals, from the soil. Batch leaching tests often enhance soil colloidal mobility and may require solid-liquid separation procedures to remove excess soil particles. However, batch leaching test results depend on particles that can pass through a 0.45μm membrane filter and are influenced by test parameters such as centrifugal intensity and filtration volume per filter. To evaluate these parameters, we conducted batch leaching experiments using metal-contaminated soils and focused on the centrifugal intensity and filtration volume per filter used in solid-liquid separation methods currently employed in standard leaching tests. Our experiments showed that both centrifugal intensity and filtration volume per filter affected the reproducibility of batch leaching tests for some soil types. The results demonstrated that metal concentrations in the filtrates significantly differed according to the centrifugal intensity when it was 3000 g for 2h or less. Increased filtration volume per filter led to significant decreases in filtrate metal concentrations when filter cakes formed during filtration. Comparison of the filtration tests using 0.10 and 0.45μm membrane filters showed statistically significant differences in turbidity and metal concentration. These findings suggest that colloidal particles were not adequately removed from the extract and contributed substantially to the apparent metal concentrations in the leaching test of soil containing colloidal metals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
A laser Doppler velocimeter approach for near-wall three-dimensional turbulence measurements
NASA Technical Reports Server (NTRS)
Johnson, D. A.; Brown, J. D.
1990-01-01
A near-wall laser Doppler velocimeter approach is described that relies on a beam-turning probe which makes possible the direct measurement of the crossflow velocity at a grazing incident and the placement of optical components close to the flow region of interest regardless of test facility size. Other important elements of the approach are the use of digital frequency processing, an optically smooth measurement surface, and observation of the sensing volume at 90 degrees. The combination was found to dramatically reduce noise-in-signal effects caused by surface light scattering. Turbulent boundary-layer data to within 20 microns (y(sup+) approximately equal to 1) of the surface are presented which illustrate the potential of the approach.
NASA Astrophysics Data System (ADS)
Papell, S. S.
1984-11-01
The thermal film-cooling footprints observed by infrared imagery for three coolant-passage configurations embedded in adiabatic-test plates are discussed. The configurations included a standard round-hole cross section and two orientations of a vortex-generating flow passage. Both orientations showed up to factors of four increases in both film-cooling effectiveness and surface coverage over that obtained with the round coolant passage. The crossflow data covered a range of tunnel velocities from 15.5 to 45 m/sec with blowing rates from 0.20 to 2.05. A photographic streakline flow visualization technique supported the concept of the counterrotating apability of the flow passage design and gave visual credence to its role in inhibiting flow separation.
NASA Technical Reports Server (NTRS)
Papell, S. S.
1984-01-01
The thermal film-cooling footprints observed by infrared imagery for three coolant-passage configurations embedded in adiabatic-test plates are discussed. The configurations included a standard round-hole cross section and two orientations of a vortex-generating flow passage. Both orientations showed up to factors of four increases in both film-cooling effectiveness and surface coverage over that obtained with the round coolant passage. The crossflow data covered a range of tunnel velocities from 15.5 to 45 m/sec with blowing rates from 0.20 to 2.05. A photographic streakline flow visualization technique supported the concept of the counterrotating apability of the flow passage design and gave visual credence to its role in inhibiting flow separation.
Dilution jet mixing program, supplementary report
NASA Technical Reports Server (NTRS)
Srinivasan, R.; White, C.
1986-01-01
The velocity and temperature distributions predicted by a 3-D numerical model and experimental measurements are compared. Empirical correlations for the jet velocity trajectory developed are presented. The measured velocity distributions for all test cases of phase through phase 3 are presented in the form of contour and oblique plots. quantification of the effects of the following on the jet mixing characteristics with a confined crossflow are: (1) orifice geometry momentum flux ratio and density ratio; (2) nonuniform mainstream temperature and velocity profiles upstream of dilution orifices; (3) cold versus hot jet injection; (4) cross-stream flow are a convergence as encountered in practical dilution zone geometries; (5) 2-D slot versus circular orifices; (6) discrete noncirculcer orifices; (7) single-sided versus opposed jets; (8) single row of jets.
Randriamparany, T; Kouakou, K V; Michaud, V; Fernández-Pinero, J; Gallardo, C; Le Potier, M-F; Rabenarivahiny, R; Couacy-Hymann, E; Raherimandimby, M; Albina, E
2016-08-01
The performance of Whatman 3-MM filter papers for the collection, drying, shipment and long-term storage of blood at ambient temperature, and for the detection of African swine fever virus and antibodies was assessed. Conventional and real-time PCR, viral isolation and antibody detection by ELISA were performed on paired samples (blood/tissue versus dried-blood 3-MM filter papers) collected from experimentally infected pigs and from farm pigs in Madagascar and Côte d'Ivoire. 3-MM filter papers were used directly in the conventional and real-time PCR without previous extraction of nucleic acids. Tests that performed better with 3-MM filter papers were in descending order: virus isolation, real-time UPL PCR and conventional PCR. The analytical sensitivity of real-time UPL PCR on filter papers was similar to conventional testing (virus isolation or conventional PCR) on organs or blood. In addition, blood-dried filter papers were tested in ELISA for antibody detection and the observed sensitivity was very close to conventional detection on serum samples and gave comparable results. Filter papers were stored up to 9 months at 20-25°C and for 2 months at 37°C without significant loss of sensitivity for virus genome detection. All tests on 3-MM filter papers had 100% specificity compared to the gold standards. Whatman 3-MM filter papers have the advantage of being cheap and of preserving virus viability for future virus isolation and characterization. In this study, Whatman 3-MM filter papers proved to be a suitable support for the collection, storage and use of blood in remote areas of tropical countries without the need for a cold chain and thus provide new possibilities for antibody testing and virus isolation. © 2014 Blackwell Verlag GmbH.
Performance Evaluation of Axial Flow AG-1 FC and Prototype FM (High Strength) HEPA Filters - 13123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giffin, Paxton K.; Parsons, Michael S.; Wilson, John A.
High efficiency particulate air (HEPA) filters are routinely used in DOE nuclear containment activities. The Nuclear Air Cleaning Handbook (NACH) stipulates that air cleaning devices and equipment used in DOE nuclear applications must meet the American Society of Mechanical Engineers (ASME) Code on Nuclear Air and Gas Treatment (AG-1) standard. This testing activity evaluates two different axial flow HEPA filters, those from AG-1 Sections FC and FM. Section FM is under development and has not yet been added to AG-1 due to a lack of qualification data available for these filters. Section FC filters are axial flow units that utilizemore » a fibrous glass filtering medium. The section FM filters utilize a similar fibrous glass medium, but also have scrim backing. The scrim-backed filters have demonstrated the ability to endure pressure impulses capable of completely destroying FC filters. The testing activities presented herein will examine the total lifetime loading for both FC and FM filters under ambient conditions and at elevated conditions of temperature and relative humidity. Results will include loading curves, penetration curves, and testing condition parameters. These testing activities have been developed through collaborations with representatives from the National Nuclear Security Administration (NNSA), DOE Office of Environmental Management (DOE-EM), New Mexico State University, and Mississippi State University. (authors)« less
Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration
NASA Astrophysics Data System (ADS)
Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre
2017-02-01
The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.
A close examination of double filtering with fold change and t test in microarray analysis
2009-01-01
Background Many researchers use the double filtering procedure with fold change and t test to identify differentially expressed genes, in the hope that the double filtering will provide extra confidence in the results. Due to its simplicity, the double filtering procedure has been popular with applied researchers despite the development of more sophisticated methods. Results This paper, for the first time to our knowledge, provides theoretical insight on the drawback of the double filtering procedure. We show that fold change assumes all genes to have a common variance while t statistic assumes gene-specific variances. The two statistics are based on contradicting assumptions. Under the assumption that gene variances arise from a mixture of a common variance and gene-specific variances, we develop the theoretically most powerful likelihood ratio test statistic. We further demonstrate that the posterior inference based on a Bayesian mixture model and the widely used significance analysis of microarrays (SAM) statistic are better approximations to the likelihood ratio test than the double filtering procedure. Conclusion We demonstrate through hypothesis testing theory, simulation studies and real data examples, that well constructed shrinkage testing methods, which can be united under the mixture gene variance assumption, can considerably outperform the double filtering procedure. PMID:19995439
Testing the Stability of 2-D Recursive QP, NSHP and General Digital Filters of Second Order
NASA Astrophysics Data System (ADS)
Rathinam, Ananthanarayanan; Ramesh, Rengaswamy; Reddy, P. Subbarami; Ramaswami, Ramaswamy
Several methods for testing stability of first quadrant quarter-plane two dimensional (2-D) recursive digital filters have been suggested in 1970's and 80's. Though Jury's row and column algorithms, row and column concatenation stability tests have been considered as highly efficient mapping methods. They still fall short of accuracy as they need infinite number of steps to conclude about the exact stability of the filters and also the computational time required is enormous. In this paper, we present procedurally very simple algebraic method requiring only two steps when applied to the second order 2-D quarter - plane filter. We extend the same method to the second order Non-Symmetric Half-plane (NSHP) filters. Enough examples are given for both these types of filters as well as some lower order general recursive 2-D digital filters. We applied our method to barely stable or barely unstable filter examples available in the literature and got the same decisions thus showing that our method is accurate enough.
NASA Technical Reports Server (NTRS)
Carpenter, J. R.; Markley, F. L.; Alfriend, K. T.; Wright, C.; Arcido, J.
2011-01-01
Sequential probability ratio tests explicitly allow decision makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models 1he null hypothesis 1ha1 the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming highly-elliptical orbit formation flying mission.
STS-40 DTO 647 prototype filter documented under OV-102's middeck subfloor
NASA Technical Reports Server (NTRS)
1991-01-01
STS-40 Detailed Test Objective (DTO) 647, Water Separator Filter Performance Evaluation, prototype filter installed at the inlet of the water separator is documented under middeck subfloor aboard Columbia, Orbiter Vehicle (OV) 102. The proposed filter is being tested for its ability to remove debris from the air/water stream coming from the cabin heat exchanger.
Nicolas, M; Malvé, M; Peña, E; Martínez, M A; Leask, R
2015-02-05
In this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6mm and tube diameter of 19mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6mm clots both in an eccentric and tilted position and trapping 81.7% of the 3mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Film-Cooling Heat-Transfer Measurements Using Liquid Crystals
NASA Technical Reports Server (NTRS)
Hippensteele, Steven A.
1997-01-01
The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.
Bennett, James; Marlow, David; Nourian, Fariba; Breay, James; Feng, Amy; Methner, Mark
2018-03-01
Exposure control system performance was evaluated during aircraft paint spraying at a military facility. Computational fluid dynamics (CFD) modeling, tracer gas testing, and exposure monitoring examined contaminant exposure vs. crossflow ventilation velocity. CFD modeling using the RNG k-ϵ turbulence model showed exposures to simulated methyl isobutyl ketone of 294 and 83.6 ppm, as a spatial average of five worker locations, for velocities of 0.508 and 0.381 m/s (100 and 75 fpm), respectively. In tracer gas experiments, observed supply/exhaust velocities of 0.706/0.503 m/s (136/99 fpm) were termed full-flow, and reduced velocities were termed 3/4-flow and half-flow. Half-flow showed higher tracer gas concentrations than 3/4-flow, which had the lowest time-averaged concentration, with difference in log means significant at the 95% confidence level. Half-flow compared to full-flow and 3/4-flow compared to full-flow showed no statistically significant difference. CFD modeling using these ventilation conditions agreed closely with the tracer results for the full-flow and 3/4-flow comparison, yet not for the 3/4-flow and half-flow comparison. Full-flow conditions at the painting facility produced a velocity of 0.528 m/s (104 fpm) midway between supply and exhaust locations, with the supply rate of 94.4 m 3 /s (200,000 cfm) exceeding the exhaust rate of 68.7 m 3 /s (146,000 cfm). Ventilation modifications to correct this imbalance created a midhangar velocity of 0.406 m/s (80.0 fpm). Personal exposure monitoring for two worker groups-sprayers and sprayer helpers ("hosemen")-compared process duration means for the two velocities. Hexavalent chromium (Cr[VI]) exposures were 500 vs. 360 µg/m 3 for sprayers and 120 vs. 170 µg/m 3 for hosemen, for 0.528 m/s (104 fpm) and 0.406 m/s (80.0 fpm), respectively. Hexamethylene diisocyanate (HDI) monomer means were 32.2 vs. 13.3 µg/m 3 for sprayers and 3.99 vs. 8.42 µg/m 3 for hosemen. Crossflow velocities affected exposures inconsistently, and local work zone velocities were much lower. Aircraft painting contaminant control is accomplished better with the unidirectional crossflow ventilation presented here than with other observed configurations. Exposure limit exceedances for this ideal condition reinforce continued use of personal protective equipment.
Folmsbee, Martha
2015-01-01
Approximately 97% of filter validation tests result in the demonstration of absolute retention of the test bacteria, and thus sterile filter validation failure is rare. However, while Brevundimonas diminuta (B. diminuta) penetration of sterilizing-grade filters is rarely detected, the observation that some fluids (such as vaccines and liposomal fluids) may lead to an increased incidence of bacterial penetration of sterilizing-grade filters by B. diminuta has been reported. The goal of the following analysis was to identify important drivers of filter validation failure in these rare cases. The identification of these drivers will hopefully serve the purpose of assisting in the design of commercial sterile filtration processes with a low risk of filter validation failure for vaccine, liposomal, and related fluids. Filter validation data for low-surface-tension fluids was collected and evaluated with regard to the effect of bacterial load (CFU/cm(2)), bacterial load rate (CFU/min/cm(2)), volume throughput (mL/cm(2)), and maximum filter flux (mL/min/cm(2)) on bacterial penetration. The data set (∼1162 individual filtrations) included all instances of process-specific filter validation failures performed at Pall Corporation, including those using other filter media, but did not include all successful retentive filter validation bacterial challenges. It was neither practical nor necessary to include all filter validation successes worldwide (Pall Corporation) to achieve the goals of this analysis. The percentage of failed filtration events for the selected total master data set was 27% (310/1162). Because it is heavily weighted with penetration events, this percentage is considerably higher than the actual rate of failed filter validations, but, as such, facilitated a close examination of the conditions that lead to filter validation failure. In agreement with our previous reports, two of the significant drivers of bacterial penetration identified were the total bacterial load and the bacterial load rate. In addition to these parameters, another three possible drivers of failure were also identified: volume throughput, maximum filter flux, and pressure. Of the data for which volume throughput information was available, 24% (249/1038) of the filtrations resulted in penetration. However, for the volume throughput range of 680-2260 mL/cm(2), only 9 out of 205 bacterial challenges (∼4%) resulted in penetration. Of the data for which flux information was available, 22% (212/946) resulted in bacterial penetration. However, in the maximum filter flux range from 7 to 18 mL/min/cm(2), only one out of 121 filtrations (0.6%) resulted in penetration. A slight increase in filter failure was observed in filter bacterial challenges with a differential pressure greater than 30 psid. When designing a commercial process for the sterile filtration of a low-surface-tension fluid (or any other potentially high-risk fluid), targeting the volume throughput range of 680-2260 mL/cm(2) or flux range of 7-18 mL/min/cm(2), and maintaining the differential pressure below 30 psid, could significantly decrease the risk of validation filter failure. However, it is important to keep in mind that these are general trends described in this study and some test fluids may not conform to the general trends described here. Ultimately, it is important to evaluate both filterability and bacterial retention of the test fluid under proposed process conditions prior to finalizing the manufacturing process to ensure successful process-specific filter validation of low-surface-tension fluids. An overwhelming majority of process-specific filter validation (qualification) tests result in the demonstration of absolute retention of test bacteria by sterilizing-grade membrane filters. As such, process-specific filter validation failure is rare. However, while bacterial penetration of sterilizing-grade filters during process-specific filter validation is rarely detected, some fluids (such as vaccines and liposomal fluids) have been associated with an increased incidence of bacterial penetration. The goal of the following analysis was to identify important drivers of process-specific filter validation failure. The identification of these drivers will possibly serve to assist in the design of commercial sterile filtration processes with a low risk of filter validation failure. Filter validation data for low-surface-tension fluids was collected and evaluated with regard to bacterial concentration and rates, as well as filtered fluid volume and rate (Pall Corporation). The master data set (∼1160 individual filtrations) included all recorded instances of process-specific filter validation failures but did not include all successful filter validation bacterial challenge tests. This allowed for a close examination of the conditions that lead to process-specific filter validation failure. As previously reported, two significant drivers of bacterial penetration were identified: the total bacterial load (the total number of bacteria per filter) and the bacterial load rate (the rate at which bacteria were applied to the filter). In addition to these parameters, another three possible drivers of failure were also identified: volumetric throughput, filter flux, and pressure. When designing a commercial process for the sterile filtration of a low-surface-tension fluid (or any other penetrative-risk fluid), targeting the identified bacterial challenge loads, volume throughput, and corresponding flux rates could decrease, and possibly eliminate, the risk of validation filter failure. However, it is important to keep in mind that these are general trends described in this study and some test fluids may not conform to the general trends described here. Ultimately, it is important to evaluate both filterability and bacterial retention of the test fluid under proposed process conditions prior to finalizing the manufacturing process to ensure successful filter validation of low-surface-tension fluids. © PDA, Inc. 2015.
Carasik, Lane B.; Shaver, Dillon R.; Haefner, Jonah B.; ...
2017-08-21
We report the development of molten salt cooled reactors (MSR) and fluoride-salt cooled high temperature reactors (FHR) requires the use of advanced design tools for the primary heat exchanger design. Due to geometric and flow characteristics, compact (pitch to diameter ratios equal to or less than 1.25) heat exchangers with a crossflow flow arrangement can become desirable for these reactors. Unfortunately, the available experimental data is limited for compact tube bundles or banks in crossflow. Computational Fluid Dynamics can be used to alleviate the lack of experimental data in these tube banks. Previous computational efforts have been primarily focused onmore » large S/D ratios (larger than 1.4) using unsteady Reynolds averaged Navier-Stokes and Large Eddy Simulation frameworks. These approaches are useful, but have large computational requirements that make comprehensive design studies impractical. A CFD study was conducted with steady RANS in an effort to provide a starting point for future design work. The study was performed for an in-line tube bank geometry with FLiBe (LiF-BeF2), a frequently selected molten salt, as the working fluid. Based on the estimated pressure drops, the pressure and velocity distributions in the domain, an appropriate meshing strategy was determined and presented. Periodic boundaries in the spanwise direction transverse flow were determined to be an appropriate boundary condition for reduced computational domains. The domain size was investigated and a minimum of 2-flow channels for a domain is recommended to ensure the behavior is accounted for. Finally, the standard low Re κ-ε (Lien) turbulence model was determined to be the most appropriate for steady RANS of this case at the time of writing.« less
Mukhopadhyay, S; Tomasula, P M; Van Hekken, D; Luchansky, J B; Call, J E; Porto-Fett, A
2009-08-01
Thermal preservation is used by the egg industry to ensure the microbiological safety of liquid egg white (LEW); however, it does not eliminate all microorganisms and impairs some of the delicate functional properties of LEW. In this study, a pilot-scale cross-flow microfiltration (MF) process was designed to remove the natural microflora present in commercial LEW, obtained from a local egg-breaking plant, while maintaining the nutritional and functional properties of the LEW. LEW, containing approximately 10(6 +/- 1.7) colony forming units (CFU) per milliliter of total aerobic bacteria, was microfiltered using a ceramic membrane with a nominal pore size of 1.4 microm, at a cross-flow velocity of 6 m/s. To facilitate MF, LEW was screened, homogenized, and then diluted (1 : 2, w/w) with distilled water containing 0.5% sodium chloride. Homogenized LEW was found to have a threefold lower viscosity than unhomogenized LEW. Influence of MF temperature (25 and 40 degrees C) and pH (6 and 9) on permeate flux, transmission of egg white nutrients across the membrane, and microbial removal efficiency were evaluated. The pH had a significantly greater influence on permeate flux than temperature. Permeate flux increased by almost 148% when pH of LEW was adjusted from pH 9 to pH 6 at 40 degrees C. Influence of temperature on permeate flux, at a constant pH, however, was found to be inconclusive. Microbial removal efficiency was at least 5 log(10) CFU/mL. Total protein and SDS-PAGE analysis indicated that this MF process did not alter the protein composition of the permeate, compared to that of the feed LEW, and that the foaming properties of LEW were retained in the postfiltered samples.
NASA Astrophysics Data System (ADS)
Roli, N. F. M.; Yussof, H. W.; Seman, M. N. A.; Saufi, S. M.; Mohammad, A. W.
2016-11-01
A solution model consisted of two different monosaccharides namely xylose and glucose were separated using a pilot scale spiral wound cross-flow system. This system was equipped by a commercial spiral wound nanofiltration (NF) membrane, Desal-5 DK, having a molecular weight cut off (MWCO) of 150-300 g mol-1. The aim of this present work is to investigate the effect of the cross-flow parameters: the trans-membrane pressure (TMP) and the feed concentration (C0) on the xylose separation from glucose. The filtration experiments were carried out in total reflux mode with different feed concentration of 2, 5, and 10 g/L at different TMP of 5,8 and 10 bar. The performances of the NF membrane were evaluated by measuring the permeate flux and sugar rejection for each experiment. All the samples were quantified using a high performance liquid chromatography equipped by a fractive index detector. The experimental results indicated an increase in pressure from 5 to 10 bar which was a notable increase to the permeate fluxes from 2.66 × 10-3 to 4.14 × 10-3L m-2s-1. Meanwhile, an increase in the C0 increases the xylose rejection. At TMP of 10 bar and C0 of 5 g/L, the observed xylose rejection and glucose rejection were measured at 67.19% and 91.82%, respectively. The lower rejection in xylose than glucose suggested that larger glucose molecule were not able to easily pass through the membrane compared to the smaller xylose molecule. The results of this phenomena proved that NF with spiral wound configuration has the potential to separate xylose from glucose, which is valuable to the purification of xylose in xylose production as an alternative to chromatographic processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carasik, Lane B.; Shaver, Dillon R.; Haefner, Jonah B.
We report the development of molten salt cooled reactors (MSR) and fluoride-salt cooled high temperature reactors (FHR) requires the use of advanced design tools for the primary heat exchanger design. Due to geometric and flow characteristics, compact (pitch to diameter ratios equal to or less than 1.25) heat exchangers with a crossflow flow arrangement can become desirable for these reactors. Unfortunately, the available experimental data is limited for compact tube bundles or banks in crossflow. Computational Fluid Dynamics can be used to alleviate the lack of experimental data in these tube banks. Previous computational efforts have been primarily focused onmore » large S/D ratios (larger than 1.4) using unsteady Reynolds averaged Navier-Stokes and Large Eddy Simulation frameworks. These approaches are useful, but have large computational requirements that make comprehensive design studies impractical. A CFD study was conducted with steady RANS in an effort to provide a starting point for future design work. The study was performed for an in-line tube bank geometry with FLiBe (LiF-BeF2), a frequently selected molten salt, as the working fluid. Based on the estimated pressure drops, the pressure and velocity distributions in the domain, an appropriate meshing strategy was determined and presented. Periodic boundaries in the spanwise direction transverse flow were determined to be an appropriate boundary condition for reduced computational domains. The domain size was investigated and a minimum of 2-flow channels for a domain is recommended to ensure the behavior is accounted for. Finally, the standard low Re κ-ε (Lien) turbulence model was determined to be the most appropriate for steady RANS of this case at the time of writing.« less
Li, Chi-Wang; Chiu, Chun-Hao; Lee, Yu-Cheng; Chang, Chia-Hao; Lee, Yu-Hsun; Chen, Yi-Ming
2010-01-01
In our previous publications, compressed air-assisted solvent extraction process (CASX) was developed and proved to be kinetically efficient process for metal removal. In the current study, CASX with a ceramic MF membrane integrated for separation of spent solvent was employed to remove and recover metal from wastewater. MF was operated either in crossflow mode or dead-end with intermittent flushing mode. Under crossflow mode, three distinct stages of flux vs. TMP (trans-membrane pressure) relationship were observed. In the first stage, flux increases with increasing TMP which is followed by the stage of stable flux with increasing TMP. After reaching a threshold TMP which is dependent of crossflow velocity, flux increases again with increasing TMP. At the last stage, solvent was pushed through membrane pores as indicated by increasing permeate COD. In dead-end with intermittent flushing mode, an intermittent flushing flow (2 min after a 10-min or a 30-min dead-end filtration) was incorporated to reduce membrane fouling by flush out MSAB accumulated on membrane surface. Effects of solvent concentration and composition were also investigated. Solvent concentrations ranging from 0.1 to 1% (w/w) have no adverse effect in terms of membrane fouling. However, solvent composition, i.e. D(2)EHPA/kerosene ratio, shows impact on membrane fouling. The type of metal extractants employed in CASX has significant impact on both membrane fouling and the quality of filtrate due to the differences in their viscosity and water solubility. Separation of MSAB was the limiting process controlling metal removal efficiency, and the removal efficiency of Cd(II) and Cr(VI) followed the same trend as that for COD.
K-ε Turbulence Model Parameter Estimates Using an Approximate Self-similar Jet-in-Crossflow Solution
DeChant, Lawrence; Ray, Jaideep; Lefantzi, Sophia; ...
2017-06-09
The k-ε turbulence model has been described as perhaps “the most widely used complete turbulence model.” This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite of model parameters that have been estimated by demanding the satisfaction of well-established canonical flows such as homogeneous shear flow, log-law behavior, etc. While this procedure does yield a set of so-called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the k-ε model using jet-in-crossflow wind tunnelmore » data has yielded parameter estimates that are far more predictive than nominal parameter values. In this paper, we develop a self-similar asymptotic solution for axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the turbulence model parameters while retaining the classical far-field scaling to model flow field quantities. Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal parameters. A traditional simplified jet trajectory model is explicitly related to the turbulence model parameters and is shown to yield good agreement with measurement when utilizing the analytical derived turbulence model coefficients. Finally, the close agreement between the turbulence model coefficients obtained via Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the contention that the Bayesian calibration approach is firmly rooted in the underlying physical description.« less
NASA Astrophysics Data System (ADS)
Li, Xiaoyi; Gao, Hui; Soteriou, Marios C.
2017-08-01
Atomization of extremely high viscosity liquid can be of interest for many applications in aerospace, automotive, pharmaceutical, and food industries. While detailed atomization measurements usually face grand challenges, high-fidelity numerical simulations offer the advantage to comprehensively explore the atomization details. In this work, a previously validated high-fidelity first-principle simulation code HiMIST is utilized to simulate high-viscosity liquid jet atomization in crossflow. The code is used to perform a parametric study of the atomization process in a wide range of Ohnesorge numbers (Oh = 0.004-2) and Weber numbers (We = 10-160). Direct comparisons between the present study and previously published low-viscosity jet in crossflow results are performed. The effects of viscous damping and slowing on jet penetration, liquid surface instabilities, ligament formation/breakup, and subsequent droplet formation are investigated. Complex variations in near-field and far-field jet penetrations with increasing Oh at different We are observed and linked with the underlying jet deformation and breakup physics. Transition in breakup regimes and increase in droplet size with increasing Oh are observed, mostly consistent with the literature reports. The detailed simulations elucidate a distinctive edge-ligament-breakup dominated process with long surviving ligaments for the higher Oh cases, as opposed to a two-stage edge-stripping/column-fracture process for the lower Oh counterparts. The trend of decreasing column deflection with increasing We is reversed as Oh increases. A predominantly unimodal droplet size distribution is predicted at higher Oh, in contrast to the bimodal distribution at lower Oh. It has been found that both Rayleigh-Taylor and Kelvin-Helmholtz linear stability theories cannot be easily applied to interpret the distinct edge breakup process and further study of the underlying physics is needed.
Critical, sustainable and threshold fluxes for membrane filtration with water industry applications.
Field, Robert W; Pearce, Graeme K
2011-05-11
Critical flux theory evolved as a description of the upper bound in the operating envelope for controlled steady state environments such as cross-flow systems. However, in the application of UF membranes in the water industry, dead-end (direct-flow) designs are used. Direct-flow is a pseudo steady state operation with different fouling characteristics to cross-flow, and thus the critical flux concept has limited applicability. After a review of recent usage of the critical flux theory, an alternative concept for providing design guidelines for direct-flow systems namely that of the threshold flux is introduced. The concept of threshold flux can also be applicable to cross-flow systems. In more general terms the threshold flux can be taken to be the flux that divides a low fouling region from a high fouling region. This may be linked both to the critical flux concept and to the concept of a sustainable flux. The sustainable flux is the one at which a modest degree of fouling occurs, providing a compromise between capital expenditure (which is reduced by using high flux) and operating costs (which are reduced by restricting the fouling rate). Whilst the threshold flux can potentially be linked to physical phenomena alone, the sustainable flux also depends upon economic factors and is thus of a different nature to the critical and threshold fluxes. This distinction will be illustrated using some MBR data. Additionally the utility of the concept of a threshold flux will be illustrated using pilot plant data obtained for UF treatment of four sources of water. Copyright © 2011 Elsevier B.V. All rights reserved.
Evaluation of Eye Protection Filters Used with Broad-Spectrum and Conventional LED Curing Lights.
Soares, Carlos José; Rodrigues, Monise de Paula; Vilela, Andomar Bruno Fernandes; Rizo, Erick René Cerda; Ferreira, Lorraine Braga; Giannini, Marcelo; Price, Richard Bengt
2017-01-01
The high irradiance and the different emission spectra from contemporary light curing units (LCU) may cause ocular damage. This study evaluated the ability of 15 eye protection filters: 2 glasses, 1 paddle design, and 12 dedicated filters to block out harmful light from a monowave (HP-3M ESPE) and a broad-spectrum (Valo, Ultradent) LED LCU. Using the anterior sensor in the MARC-Patient Simulator (BlueLight Analytics) the irradiance that was delivered through different eye protection filters was measured three times. The LCUs delivered a similar irradiance to the top of the filter. The mean values of the light that passed through the filters as percent of the original irradiance were analyzed using two-way ANOVA followed by Tukey test (a= 0.05). The emission spectra from the LCUs and through the filters were also obtained. Two-way ANOVA showed that the interaction between protective filters and LCUs significantly influenced the amount of light transmitted (p< 0.001). Tukey test showed that the amount of light transmitted through the protective filters when using the HP-3M-ESPE was significantly greater compared to when using the Valo, irrespective of the protective filter tested. When using the HP-3M-ESPE, the Glasses filter allowed significantly more light through, followed by XL 3000, ORTUS, Google Professional, Gnatus filters. The Valo filter was the most effective at blocking out the harmful light. Some protective filters were less effective at blocking the lower wavelengths of light (<420 nm). However, even in the worst scenario, the filters were able to block at least 97% of the irradiance.
Dual-filter estimation for rotating-panel sample designs
Francis Roesch
2017-01-01
Dual-filter estimators are described and tested for use in the annual estimation for national forest inventories. The dual-filter approach involves the use of a moving widow estimator in the first pass, which is used as input to Theilâs mixed estimator in the second pass. The moving window and dual-filter estimators are tested along with two other estimators in a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.
Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to massmore » flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is expected to require six months of time, after receipt of funding. Benefits: US DOE facilities that use HEPA filters will benefit from access to the new operational measurement methods. Uncertainty and guesswork will be removed from HEPA filter operations.« less
Pharmacy Students' Test-Taking Motivation-Effort on a Low-Stakes Standardized Test
2011-01-01
Objective To measure third-year pharmacy students' level of motivation while completing the Pharmacy Curriculum Outcomes Assessment (PCOA) administered as a low-stakes test to better understand use of the PCOA as a measure of student content knowledge. Methods Student motivation was manipulated through an incentive (ie, personal letter from the dean) and a process of statistical motivation filtering. Data were analyzed to determine any differences between the experimental and control groups in PCOA test performance, motivation to perform well, and test performance after filtering for low motivation-effort. Results Incentivizing students diminished the need for filtering PCOA scores for low effort. Where filtering was used, performance scores improved, providing a more realistic measure of aggregate student performance. Conclusions To ensure that PCOA scores are an accurate reflection of student knowledge, incentivizing and/or filtering for low motivation-effort among pharmacy students should be considered fundamental best practice when the PCOA is administered as a low-stakes test PMID:21655395
ERIC Educational Resources Information Center
Wooley, John F.
A commonly used test for determining filterability of conditioned sludge is the specific resistance (Buchner funnel) test. The sludge is filtered through filter paper using a Buchner funnel, and the time needed to obtain a given volume of filtrate (or for cake residue to begin to crack) is measured. The shorter the time, the better the…
High-efficiency particulate air filter test stand and aerosol generator for particle loading studies
NASA Astrophysics Data System (ADS)
Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.
2007-08-01
This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.
Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A
2007-08-01
This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.
NASA Astrophysics Data System (ADS)
Yu, Zhitao; Miller, Franklin; Pfotenhauer, John M.
2017-12-01
Both a numerical and analytical model of the heat and mass transfer processes in a CO2, N2 mixture gas de-sublimating cross-flow finned duct heat exchanger system is developed to predict the heat transferred from a mixture gas to liquid nitrogen and the de-sublimating rate of CO2 in the mixture gas. The mixture gas outlet temperature, liquid nitrogen outlet temperature, CO2 mole fraction, temperature distribution and de-sublimating rate of CO2 through the whole heat exchanger was computed using both the numerical and analytic model. The numerical model is built using EES [1] (engineering equation solver). According to the simulation, a cross-flow finned duct heat exchanger can be designed and fabricated to validate the models. The performance of the heat exchanger is evaluated as functions of dimensionless variables, such as the ratio of the mass flow rate of liquid nitrogen to the mass flow rate of inlet flue gas.
Transient analysis of a solid oxide fuel cell stack with crossflow configuration
NASA Astrophysics Data System (ADS)
Yuan, P.; Liu, S. F.
2018-05-01
This study investigates the transient response of the cell temperature and current density of a solid oxide fuel cell having 6 stacks with crossflow configuration. A commercial software repeatedly solves the governing equations of each stack, and get the convergent results of the whole SOFC stack. The preliminary results indicate that the average current density of each stack is similar to others, so the power output between different stacks are uniform. Moreover, the average cell temperature among stacks is different, and the central stacks have higher temperature due to its harder heat dissipation. For the operating control, the cell temperature difference among stacks is worth to concern because the temperature difference will be over 10 °C in the analysis case. The increasing of the inlet flow rate of the fuel and air will short the transient state, increase the average current density, and drop the cell temperature difference among the stacks. Therefore, the inlet flow rate is an important factor for transient performance of a SOFC stack.
NASA Technical Reports Server (NTRS)
Hackett, J. E.; Sampath, S.; Phillips, C. G.
1981-01-01
The development of an improved jet-in-crossflow model for estimating wind tunnel blockage and angle-of-attack interference is described. Experiments showed that the simpler existing models fall seriously short of representing far-field flows properly. A new, vortex-source-doublet (VSD) model was therefore developed which employs curved trajectories and experimentally-based singularity strengths. The new model is consistent with existing and new experimental data and it predicts tunnel wall (i.e. far-field) pressures properly. It is implemented as a preprocessor to the wall-pressure-signature-based tunnel interference predictor. The supporting experiments and theoretical studies revealed some new results. Comparative flow field measurements with 1-inch "free-air" and 3-inch impinging jets showed that vortex penetration into the flow, in diameters, was almost unaltered until 'hard' impingement occurred. In modeling impinging cases, a 'plume redirection' term was introduced which is apparently absent in previous models. The effects of this term were found to be very significant.
Mixing Characteristics of Strongly-Forced Jet Flames in Crossflow
NASA Astrophysics Data System (ADS)
Marr, Kevin; Clemens, Noel; Ezekoye, Ofodike
2008-11-01
The effects of high frequency, large-amplitude forcing on the characteristics of a non-premixed jet flame in crossflow (JFICF) at mean Reynolds numbers of 3,200 and 4,850 are studied experimentally. Harmonic forcing of the jet fuel results in a drastic decrease in flame length and complete suppression of soot luminosity. Visualization by planar laser Mie scattering shows that forced JFICF, similar to forced free or coflow jet flames, are characterized by ejection of high-momentum, deeply penetrating vortical structures. These structures rapidly breakdown and promote intense turbulent mixing in the near region of the jet. The rapid mixing resembles a ``one-step'' process going from a fuel rich state far in the nozzle to a well-mixed, but significantly diluted, state just a few diameters from the jet exit plane. Exhaust gas emissions measurements indicate a decrease in NOx, but increases in CO and unburned hydrocarbons with increasing forcing amplitude. Acetone PLIF measurements are used to investigate the effect of partial-premixing on these emissions findings.
NASA Technical Reports Server (NTRS)
Clemens, N. T.; Boxx, I. G.; Idicheria, C. A.
2003-01-01
It is well known that buoyancy has a major influence on the flow structure of turbulent nonpremixed jet flames. For example, previous studies have shown that transitional and turbulent jet flames exhibit flame lengths that are as much as a factor of two longer in microgravity than in normal gravity. The objective of this study is to extend these previous studies by investigating both mean and fluctuating characteristics of turbulent nonpremixed jet flames under three different gravity levels (1 g, 20 mg and 100 micrograms). This work is described in more detail elsewhere. In addition, we have recently initiated a new study into the effects of buoyancy on turbulent nonpremixed jet flames in cross-flow (JFICF). Buoyancy has been observed to play a key role in determining the centerline trajectories of such flames.6 The objective of this study is to use the low gravity environment to study the effects of buoyancy on the turbulent characteristics of JFICF.
Experimental investigation of crossflow jet mixing in a rectangular duct
NASA Technical Reports Server (NTRS)
Liscinsky, D. S.; True, B.; Holdeman, J. D.
1993-01-01
An experimental investigation of the mixing of nonreacting opposed rows of jets injected normal to a confined rectangular crossflow has been conducted. Planar Mie-scattering was used to measure the time-average concentration distribution of the jet fluid in planes perpendicular to the duct axis. The mixing effectiveness of round orifice injectors was measured as a function of orifice spacing and orifice diameter. Mixing effectiveness was determined using a spatial unmixedness parameter based on the variance of mean jet concentration distributions. Optimum mixing was obtained when the spacing-to-duct height ratio was inversely proportional to the square root of the jet-to-mainstream momentum-flux ratio. For opposed rows of round holes with centerlines inline, mixing was similar for blockages up to 75 percent. Lower levels of unmixedness were obtained as a function of downstream location when axial injection length was minimized. Mixing may be enhanced if orifice centerlines of opposed rows are staggered, but note that blockage must be less than 50 percent for this configuration.
On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Davis, Dominic A. R.; Smith, Frank T.
1993-01-01
The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.
Anaerobic Membrane Bioreactor for Continuous Lactic Acid Fermentation
Fan, Rong; Ebrahimi, Mehrdad; Czermak, Peter
2017-01-01
Membrane bioreactor systems can enhance anaerobic lactic acid fermentation by reducing product inhibition, thus increasing productivity. In batch fermentations, the bioconversion of glucose is strongly inhibited in the presence of more than 100 g·L−1 lactic acid and is only possible when the product is simultaneously removed, which can be achieved by ceramic membrane filtration. The crossflow velocity is a more important determinant of flux than the transmembrane pressure. Therefore, to stabilize the performance of the membrane bioreactor system during continuous fermentation, the crossflow velocity was controlled by varying the biomass concentration, which was monitored in real-time using an optical sensor. Continuous fermentation under these conditions, thus, achieved a stable productivity of ~8 g·L−1·h−1 and the concentration of lactic acid was maintained at ~40 g·L−1 at a dilution rate of 0.2 h−1. No residual sugar was detected in the steady state with a feed concentration of 50 g·L−1. PMID:28467384
Computational Analysis of the G-III Laminar Flow Glove
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan
2011-01-01
Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.
Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, Tim; Beck, Griffin; Bennett, Jeffrey
This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO 2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and testmore » new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long-term reliability problems in CO 2 service at these temperatures. However, long-term testing in a flowing environment is recommended in order to understand accurately the severity of the attack. Detailed economic modeling of the existing air cycle recuperator and CO 2 cycle recuperator options was also completed, including costs for material, fabrication, fuel, maintenance, and operation. The analysis results show that the increased capital cost for high-temperature materials may be offset by higher cycle efficiencies, decreasing the overall lifetime cost of the system. The economic analysis also examines costs associated with increased pressure drop and material changes for two redesign options. These results show that, even with slightly reduced performance and/or higher material costs, the lifetime cost per energy production may still be reduced by over 12%. The existing recuperator design information was provided by Solar Turbines, Inc. via several models, drawings, and design handoff meetings. Multiple fluid/thermal and structural models were created in order to analyze critical recuperator performance and mechanical strength in critical areas throughout the redesign process. These models were analyzed for a baseline condition (consistent with current Mercury 50 operation) for validation purposes. Results are presented for heat transfer coefficients and pressure drops, matching well with the existing operational data. Simulation of higher-temperature CO 2 conditions was also performed, showing a slight expected increase in both heat transfer and pressure drop. Mechanical analysis results for critical areas on the cross-flow and counter-flow sheets have also been obtained for air and CO 2 cases. These results show similar stresses in both cases but significantly reduced safety factors for the CO 2 case due to reduced yield and creep rupture strengths of alloy 625 at the higher temperatures. A concept brainstorm session and initial down-selection were completed in order to identify promising redesign options for further analysis. Detailed analysis of all promising redesign options was performed via finite element and computational fluid dynamic simulations in order to characterize mechanical and thermal-fluid performance of each option. These options included material change, various sheet thickness configurations, pitch and phasing of cross-flow and counter-flow sheets, and separator sheets. The analysis results have identified two viable redesign options that maintain existing safety margins optimally through a material change to Haynes 282 and (A) sheet thickness increases of 40% on the counter-flow sheet and 75% on the hot side cross-flow corrugation sheet or (B) addition of a separator sheet in the counter-flow section while maintaining the original counter-flow sheet thickness and increasing the cross-flow corrugation sheet thickness by 90% to account for the increase in cell height. While both options satisfy mechanical stress constraints, the separator sheet design has a higher part count, slightly reduced heat transfer, and slightly higher pressure drop than the first option and is not preferred. Finally, several test loop concepts have been developed for different full-scale and reduced-scale recuperator testing options. For each option, various loop components, such as heat exchangers, valves, heaters, and compressors, were evaluated in an effort to maximize utilization of existing resources. All concepts utilize an existing 3-MW CO 2 compressor, heater, and loop coolers, but the concepts vary by incorporating different amounts of new equipment for achieving various flow rates (all concepts operate at design pressure and temperature). The third concept achieves a 1 kg/s test without purchasing any costly equipment (coolers, heaters, blowers, etc.). Since the stacked cell design of the recuperator results in the same flow conditions at each core cell (even for a reduced-scale test). Thus, test loop Concept #3 was selected for the preliminary design. This loop design is detailed within the report, culminating in a budgetary estimate of $1,013,000.00 for the detailed design, construction, commissioning, and operation of a high-temperature recuperator test loop.« less
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.
1977-01-01
An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).
Field-scale simulation of chemical flooding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, N.
1989-01-01
A three-dimensional compositional chemical flooding simulator (UTCHEM) has been improved. The new mathematical formulation, boundary conditions, and a description of the physicochemical models of the simulator are presented. This improved simulator has been used for the study of the low tension pilot project at the Big Muddy field near Casper, Wyoming. Both the tracer injection conducted prior to the injection of the chemical slug, and the chemical flooding stages of the pilot project, have been analyzed. Not only the oil recovery but also the tracers, polymer, alcohol and chloride histories have been successfully matched with field results. Simulation results indicatemore » that, for this fresh water reservoir, the salinity gradient during the preflush and the resulting calcium pickup by the surfactant slug played a major role in the success of the project. In addition, analysis of the effects of the crossflow on the performance of the pilot project indicates that, for the well spacing of the pilot, crossflow does not play as important a role as it might for a large-scale project. To improve the numerical efficiency of the simulator, a third order convective differencing scheme has been applied to the simulator. This method can be used with non-uniform mesh, and therefore is suited for simulation studies of large-scale multiwell heterogeneous reservoirs. Comparison of the results with one and two dimensional analytical solutions shows that this method is effective in eliminating numerical dispersion using relatively large grid blocks. Results of one, two and three-dimensional miscible water/tracer flow, water flooding, polymer flooding, and micellar-polymer flooding test problems, and results of grid orientation studies, are presented.« less
PCR Testing of IVC Filter Tops as a Method for Detecting Murine Pinworms and Fur Mites.
Gerwin, Philip M; Ricart Arbona, Rodolfo J; Riedel, Elyn R; Henderson, Kenneth S; Lipman, Neil S
2017-11-01
We evaluated PCR testing of filter tops from cages maintained on an IVC system through which exhaust air is filtered at the cage level as a method for detecting parasite-infected and -infested cages. Cages containing 4 naïve Swiss Webster mice received 360 mL of uncontaminated aspen chip or α-cellulose bedding (n = 18 cages each) and 60 mL of the same type of bedding weekly from each of the following 4 groups of cages housing mice infected or infested with Syphacia obvelata (SO), Aspiculuris tetraptera (AT), Myocoptes musculinus (MC), or Myobia musculi (MB) and Radfordia affinis (RA; 240 mL bedding total). Detection rates were compared at 30, 60, and 90 d after initiating bedding exposure, by using PCR analysis of filter tops (media extract and swabs) and testing of mouse samples (fur swab [direct] PCR testing, fecal flotation, anal tape test, direct examination of intestinal contents, and skin scrape). PCR testing of filter media extract detected 100% of all parasites at 30 d (both bedding types) except for AT (α-cellulose bedding, 67% detection rate); identified more cages with fur mites (MB and MC) than direct PCR when cellulose bedding was used; and was better at detecting parasites than all nonmolecular methods evaluated. PCR analysis of filter media extract was superior to swab and direct PCR for all parasites cumulatively for each bedding type. Direct PCR more effectively detected MC and all parasites combined for aspen chip compared with cellulose bedding. PCR analysis of filter media extract for IVC systems in which exhaust air is filtered at the cage level was shown to be a highly effective environmental testing method.
PCR Testing of IVC Filter Tops as a Method for Detecting Murine Pinworms and Fur Mites
Gerwin, Philip M; Arbona, Rodolfo J Ricart; Riedel, Elyn R; Henderson, Kenneth S; Lipman, Neil S
2017-01-01
We evaluated PCR testing of filter tops from cages maintained on an IVC system through which exhaust air is filtered at the cage level as a method for detecting parasite- infected and -infested cages. Cages containing 4 naïve Swiss Webster mice received 360 mL of uncontaminated aspen chip or α-cellulose bedding (n = 18 cages each) and 60 mL of the same type of bedding weekly from each of the following 4 groups of cages housing mice infected or infested with Syphacia obvelata (SO), Aspiculuris tetraptera (AT), Myocoptes musculinus (MC), or Myobia musculi (MB) and Radfordia affinis (RA; 240 mL bedding total). Detection rates were compared at 30, 60, and 90 d after initiating bedding exposure, by using PCR analysis of filter tops (media extract and swabs) and testing of mouse samples (fur swab [direct] PCR testing, fecal flotation, anal tape test, direct examination of intestinal contents, and skin scrape). PCR testing of filter media extract detected 100% of all parasites at 30 d (both bedding types) except for AT (α-cellulose bedding, 67% detection rate); identified more cages with fur mites (MB and MC) than direct PCR when cellulose bedding was used; and was better at detecting parasites than all nonmolecular methods evaluated. PCR analysis of filter media extract was superior to swab and direct PCR for all parasites cumulatively for each bedding type. Direct PCR more effectively detected MC and all parasites combined for aspen chip compared with cellulose bedding. PCR analysis of filter media extract for IVC systems in which exhaust air is filtered at the cage level was shown to be a highly effective environmental testing method. PMID:29256370
X-ray metal film filters at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.
1989-01-01
Thin aluminum foil filters have been evaluated at cryogenic temperatures. The results of the test program, including cold cycling and vibration testing, indicate that these filters are fully successful at cryogenic temperatures and can provide the high X-ray transmittance and high background rejection required for the blocking filters which are being developed for the X-Ray Spectrometer, one of the focal plane instruments on the Advanced X-Ray Astrophysics Facility.
Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg Y.; Fernández, Eduardo
2010-01-01
In this paper, the fast least-mean-squares (LMS) algorithm was used to both eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications, and improve the convergence rate of the filtering process based on the conventional LMS algorithm. The response of the accelerometer under test was corrupted by process and measurement noise, and the signal processing stage was carried out by using both conventional filtering, which was already shown in a previous paper, and optimal adaptive filtering. The adaptive filtering process relied on the LMS adaptive filtering family, which has shown to have very good convergence and robustness properties, and here a comparative analysis between the results of the application of the conventional LMS algorithm and the fast LMS algorithm to solve a real-life filtering problem was carried out. In short, in this paper the piezoresistive accelerometer was tested for a multi-frequency acceleration excitation. Due to the kind of test conducted in this paper, the use of conventional filtering was discarded and the choice of one adaptive filter over the other was based on the signal-to-noise ratio improvement and the convergence rate. PMID:22315579
Acceptance Testing of Thermoluminescent Dosimeter Holders.
Romanyukha, Alexander; Grypp, Matthew D; Sharp, Thad J; DiRito, John N; Nelson, Martin E; Mavrogianis, Stanley T; Torres, Jeancarlo; Benevides, Luis A
2018-05-01
The U.S. Navy uses the Harshaw 8840/8841 dosimetric (DT-702/PD) system, which employs LiF:Mg,Cu,P thermoluminescent dosimeters (TLDs), developed and produced by Thermo Fisher Scientific (TFS). The dosimeter consists of four LiF:Mg,Cu,P elements, mounted in Teflon® on an aluminum card and placed in a plastic holder. The holder contains a unique filter for each chip made of copper, acrylonitrile butadiene styrene (ABS), Mylar®, and tin. For accredited dosimetry labs, the ISO/IEC 17025:2005(E) requires an acceptance procedure for all new equipment. The Naval Dosimetry Center (NDC) has developed and tested a new non-destructive procedure, which enables the verification and the evaluation of embedded filters in the holders. Testing is based on attenuation measurements of low-energy radiation transmitted through each filter in a representative sample group of holders to verify that the correct filter type and thickness are present. The measured response ratios are then compared with the expected response ratios. In addition, each element's measured response is compared to the mean response of the group. The test was designed and tested to identify significant nonconformities, such as missing copper or tin filters, double copper or double tin filters, or other nonconformities that may impact TLD response ratios. During the implementation of the developed procedure, testing revealed a holder with a double copper filter. To complete the evaluation, the impact of the nonconformities on proficiency testing was examined. The evaluation revealed failures in proficiency testing categories III and IV when these dosimeters were irradiated to high-energy betas.
Farnsworth, James E; Goyal, Sagar M; Kim, Seung Won; Kuehn, Thomas H; Raynor, Peter C; Ramakrishnan, M A; Anantharaman, Senthilvelan; Tang, Weihua
2006-10-01
The aim of the work presented here is to study the effectiveness of building air handling units (AHUs) in serving as high volume sampling devices for airborne bacteria and viruses. An HVAC test facility constructed according to ASHRAE Standard 52.2-1999 was used for the controlled loading of HVAC filter media with aerosolized bacteria and virus. Nonpathogenic Bacillus subtilis var. niger was chosen as a surrogate for Bacillus anthracis. Three animal viruses; transmissible gastroenteritis virus (TGEV), avian pneumovirus (APV), and fowlpox virus were chosen as surrogates for three human viruses; SARS coronavirus, respiratory syncytial virus, and smallpox virus; respectively. These bacteria and viruses were nebulized in separate tests and injected into the test duct of the test facility upstream of a MERV 14 filter. SKC Biosamplers upstream and downstream of the test filter served as reference samplers. The collection efficiency of the filter media was calculated to be 96.5 +/- 1.5% for B. subtilis, however no collection efficiency was measured for the viruses as no live virus was ever recovered from the downstream samplers. Filter samples were cut from the test filter and eluted by hand-shaking. An extraction efficiency of 105 +/- 19% was calculated for B. subtilis. The viruses were extracted at much lower efficiencies (0.7-20%). Our results indicate that the airborne concentration of spore-forming bacteria in building AHUs may be determined by analyzing the material collected on HVAC filter media, however culture-based analytical techniques are impractical for virus recovery. Molecular-based identification techniques such as PCR could be used.
Filter for on-line air monitor unaffected by radon progeny and method of using same
Phillips, Terrance D.; Edwards, Howard D.
1999-01-01
An apparatus for testing air having contaminants and radon progeny therein. The apparatus includes a sampling box having an inlet for receiving the air and an outlet for discharging the air. The sampling box includes a filter made of a plate of sintered stainless steel. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough. A method of testing air having contaminants and radon progeny therein. The method includes providing a testing apparatus that has a sampling box with an inlet for receiving the air and an outlet for discharging the air, and has a sintered stainless steel filter disposed within said sampling box; drawing air from a source into the sampling box using a vacuum pump; passing the air through the filter; monitoring the contaminants trapped by the filter; and providing an alarm when a selected level of contaminants is reached. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough.
Optimization of OT-MACH Filter Generation for Target Recognition
NASA Technical Reports Server (NTRS)
Johnson, Oliver C.; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin
2009-01-01
An automatic Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter generator for use in a gray-scale optical correlator (GOC) has been developed for improved target detection at JPL. While the OT-MACH filter has been shown to be an optimal filter for target detection, actually solving for the optimum is too computationally intensive for multiple targets. Instead, an adaptive step gradient descent method was tested to iteratively optimize the three OT-MACH parameters, alpha, beta, and gamma. The feedback for the gradient descent method was a composite of the performance measures, correlation peak height and peak to side lobe ratio. The automated method generated and tested multiple filters in order to approach the optimal filter quicker and more reliably than the current manual method. Initial usage and testing has shown preliminary success at finding an approximation of the optimal filter, in terms of alpha, beta, gamma values. This corresponded to a substantial improvement in detection performance where the true positive rate increased for the same average false positives per image.
Technological development of spectral filters for Sentinel-2
NASA Astrophysics Data System (ADS)
Schröter, Karin; Schallenberg, Uwe; Mohaupt, Matthias
2017-11-01
In the frame of the initiative for Global Monitoring for Environment and Security (GMES), jointly undertaken by the European Commission and the European Space Agency a technological development of two filter assemblies was performed for the Multi- Spectral Instrument (MSI) for Sentinel-2. The multispectral pushbroom imaging of the Earth will be performed in 10 VNIR bands (from 443 nm to 945nm) and 3 SWIR bands (from 1375 nm to 2190 nm). Possible filter coating techniques and masking concepts were considered in the frame of trade-off studies. The selected deposition concept is based on self-blocked all-dielectric multilayer band pass filter. Band pass and blocking characteristic is deposited on the space side of a single filter substrate whereas the detector side of the substrate has an antireflective coating. The space- and detector side masking design is realized by blades integrated in the mechanical parts including the mechanical interface to the filter assembly support on the MSI focal plane. The feasibility and required performance of the VNIR Filter Assembly and SWIR Filter Assembly were successfully demonstrated by breadboarding. Extensive performance tests of spectral and optical parameters and environmental tests (radiation, vibration, shock, thermal vacuum cycling, humidity) were performed on filter stripe- and filter assembly level. The presentation will contain a detailed description of the filter assembly design and the results of the performance and environmental tests.
Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment.
Oyanedel-Craver, Vinka A; Smith, James A
2008-02-01
Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degrees C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 microm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.
Current-State Constrained Filter Bank for Wald Testing of Spacecraft Conjunctions
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Markley, F. Landis
2012-01-01
We propose a filter bank consisting of an ordinary current-state extended Kalman filter, and two similar but constrained filters: one is constrained by a null hypothesis that the miss distance between two conjuncting spacecraft is inside their combined hard body radius at the predicted time of closest approach, and one is constrained by an alternative complementary hypothesis. The unconstrained filter is the basis of an initial screening for close approaches of interest. Once the initial screening detects a possibly risky conjunction, the unconstrained filter also governs measurement editing for all three filters, and predicts the time of closest approach. The constrained filters operate only when conjunctions of interest occur. The computed likelihoods of the innovations of the two constrained filters form a ratio for a Wald sequential probability ratio test. The Wald test guides risk mitigation maneuver decisions based on explicit false alarm and missed detection criteria. Since only current-state Kalman filtering is required to compute the innovations for the likelihood ratio, the present approach does not require the mapping of probability density forward to the time of closest approach. Instead, the hard-body constraint manifold is mapped to the filter update time by applying a sigma-point transformation to a projection function. Although many projectors are available, we choose one based on Lambert-style differential correction of the current-state velocity. We have tested our method using a scenario based on the Magnetospheric Multi-Scale mission, scheduled for launch in late 2014. This mission involves formation flight in highly elliptical orbits of four spinning spacecraft equipped with antennas extending 120 meters tip-to-tip. Eccentricities range from 0.82 to 0.91, and close approaches generally occur in the vicinity of perigee, where rapid changes in geometry may occur. Testing the method using two 12,000-case Monte Carlo simulations, we found the method achieved a missed detection rate of 0.1%, and a false alarm rate of 2%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giffin, Paxton K.; Parsons, Michael S.; Rickert, Jaime G.
The American Society of Mechanical Engineers (ASME) has recently added Section FK establishing requirements for radial flow HEPA filters to the Code on Nuclear Air and Gas Treatment (AG-1). Section FK filters are expected to be a major element in the HEPA filtration systems across the US Department of Energy (DOE) complex. Radial flow filters have been used in Europe for some time, however a limited amount of performance evaluation data exists with respect to these new AG-1 Section FK units. In consultation with a technical working group, the Institute for Clean Energy Technology (ICET) at Mississippi State University (MSU)hasmore » evaluated a series of representative AG-1 Section FK dimple pleated radial flow HEPA filters. The effects of elevated relative humidity and temperature conditions on these filters are particularly concerning. Results from the evaluation of Section FK filters under ambient conditions have been presented at the 2011 waste management conference. Additions to the previous test stand to enable high temperature and high humidity testing, a review of the equipment used, the steps taken to characterize the new additions, and the filter test results are presented in this study. Test filters were evaluated at a volumetric flow rate of 56.6 m{sup 3}/min (2000 cfm) and were challenged under ambient conditions with Alumina, Al(OH){sub 3}, until reaching a differential pressure of 1 kPa (4 in. w.c.), at which time the filters were tested, unchallenged with aerosol, at 54 deg. C (130 deg. F) for approximately 1 hour. At the end of that hour water was sprayed near the heat source to maximize vaporization exposing the filter to an elevated relative humidity up to 95%. Collected data include differential pressure, temperature, relative humidity, and volumetric flow rate versus time. (authors)« less
Regulations Publications WEC3: Wave Energy Converter Code Comparison Project Turbine Control of a Tidal and Surge Wave Energy Converter Performance Characterization of a Cross-Flow Hydrokinetic Turbine in Sheared Inflow More publications News News More News New Wave Energy Converter Design Inspired by Wind Energy
MICROBIAL COMETABOLISM OF RECALCITRANT CHEMICALS IN CONTAMINATED AIR STREAMS
Chlorinated Solvents: The treatment system consists of a laboratory-scale hollow fiber membrane (HFM) module containing a center baffle and a radial cross-flow pattern on the shell side of the fibers. The shell and lumen fluids are contacting in a counter-current f...
Intermediate-Band Photometric Luminosity Descrimination for M Stars
NASA Astrophysics Data System (ADS)
Robertson, T. H.; Furiak, N. M.
1995-12-01
Synthetic photometry has been used to design an intermediate-band filter to be used with CCD cameras to facilitate the luminosity classification of M stars. Spectrophotometric data published by Gunn & Stryker (1983) were used to test various bandwidths and centers. Based on these calculations an intermediate-band filter has been purchased. This filter is being used in conjunction with standard BVRI filters to test its effectiveness in luminosity classification of M stars having a wide range of temperatures and different chemical compositions. The results of the theoretical calculations, filter design specifications and preliminary results of the testing program are presented. This research is supported in part by funds provided by Ball State University, The Fund for Astrophysical Research and the Indiana Academy of Science.
A trait-based test for habitat filtering: Convex hull volume
Cornwell, W.K.; Schwilk, D.W.; Ackerly, D.D.
2006-01-01
Community assembly theory suggests that two processes affect the distribution of trait values within communities: competition and habitat filtering. Within a local community, competition leads to ecological differentiation of coexisting species, while habitat filtering reduces the spread of trait values, reflecting shared ecological tolerances. Many statistical tests for the effects of competition exist in the literature, but measures of habitat filtering are less well-developed. Here, we present convex hull volume, a construct from computational geometry, which provides an n-dimensional measure of the volume of trait space occupied by species in a community. Combined with ecological null models, this measure offers a useful test for habitat filtering. We use convex hull volume and a null model to analyze California woody-plant trait and community data. Our results show that observed plant communities occupy less trait space than expected from random assembly, a result consistent with habitat filtering. ?? 2006 by the Ecological Society of America.
Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Markley, F. Landis
2013-01-01
A document discusses sequential probability ratio tests that explicitly allow decision-makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models the null hypotheses that the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming, highly elliptical orbit formation flying mission.
Cho, Hyun-Woo; Yoon, Chung-Sik; Lee, Jin-Ho; Lee, Seung-Joo; Viner, Andrew; Johnson, Erik W
2011-07-01
Respirators are used to help reduce exposure to a variety of contaminants in workplaces. Test aerosols used for certification of particulate respirators (PRs) include sodium chloride (NaCl), dioctyl phthalate, and paraffin oil. These aerosols are generally assumed to be worst case surrogates for aerosols found in the workplace. No data have been published to date on the performance of PRs with welding fumes, a hazardous aerosol that exists in real workplace settings. The aim of this study was to compare the performance of respirators and filters against a NaCl aerosol and a welding fume aerosol and determine whether or not a correlation between the two could be made. Fifteen commercial PRs and filters (seven filtering facepiece, two replaceable single-type filters, and six replaceable dual-type filters) were chosen for investigation. Four of the filtering facepiece respirators, one of the single-type filters, and all of the dual-type filters contained carbon to help reduce exposure to ozone and other vapors generated during the welding process. For the NaCl test, a modified National Institute for Occupational Safety and Health protocol was adopted for use with the TSI Model 8130 automated filter tester. For the welding fume test, welding fumes from mild steel flux-cored arcs were generated and measured with a SIBATA filter tester (AP-634A, Japan) and a manometer in the upstream and downstream sections of the test chamber. Size distributions of the two aerosols were measured using a scanning mobility particle sizer. Penetration and pressure drop were measured over a period of aerosol loading onto the respirator or filter. Photos and scanning electron microscope images of clean and exposed respirators were taken. The count median diameter (CMD) and mass median diameter (MMD) for the NaCl aerosol were smaller than the welding fumes (CMD: 74 versus 216 nm; MMD: 198 versus 528 nm, respectively). Initial penetration and peak penetration were higher with the NaCl aerosol. However, pressure drop increased much more rapidly in the welding fume test than the NaCl aerosol test. The data and images clearly show differences in performance trends between respirator models. Therefore, general correlations between NaCl and weld fume data could not be made. These findings suggest that respirators certified with a surrogate test aerosol such as NaCl are appropriate for filtering welding fume (based on penetration). However, some respirators may have a more rapid increase in pressure drop from the welding fume accumulating on the filter. Therefore, welders will need to choose which models are easier to breathe through for the duration of their use and replace respirators or filters according to the user instructions and local regulations.
Effects of antimicrobial treatment on fiberglass-acrylic filters.
Cecchini, C; Verdenelli, M C; Orpianesi, C; Dadea, G M; Cresci, A
2004-01-01
The aims of the present study were to: (i) analyse a group of antimicrobial agents and to select the most active against test microbial strains; (ii) test the effect of the antimicrobial treatment on air filters in order to reduce microbial colonization. Different kinds of antimicrobial agents were analysed to assess their compatibility with the production process of air filter media. The minimal inhibitory concentration for each antimicrobial agent was determined against a defined list of microbial strains, and an antimicrobial activity assay of filter prototypes was developed to determine the most active agent among the compatible antimicrobials. Then, the most active was chosen and added directly to the filter during the production process. The microbial colonization of treated and untreated filter media was assessed at different working times for different incubation times by stereomicroscope and scanning electron microscope analysis. Some of the antimicrobial agents analysed were more active against microbial test strains and compatible with the production process of the filter media. Filter sections analysis of treated filter media showed a significantly lower microbial colonization than those untreated, a reduction of species both in density and varieties and of the presence of bacteria and fungal hyphae with reproductive structures. This study demonstrated the ability of antimicrobial treatments to inhibit the growth of micro-organisms in filter media and subsequently to increase indoor air quality (IAQ), highlighting the value of adding antimicrobials to filter media. To make a contribution to solving the problem of microbial contamination of air filters, by demonstrating the efficacy of incorporating antimicrobial agents in the filter media to improve IAQ and health.
ENVIRONMENTAL TECHNOLOGY VERIFICATION TEST PROTOCOL, GENERAL VENTILATION FILTERS
The Environmental Technology Verification Test Protocol, General Ventilation Filters provides guidance for verification tests.
Reference is made in the protocol to the ASHRAE 52.2P "Method of Testing General Ventilation Air-cleaning Devices for Removal Efficiency by P...
40 CFR 86.1337-2007 - Engine dynamometer test run.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engine, dynamometer, and sampling system. (iii) Change filters, etc., and leak check as necessary. (2..., loaded particulate sample filter cartridge into the filter holder assembly. It is recommended that this be done within the filter stabilization environment, with both ends of the filter holder assembly...
40 CFR 86.1337-2007 - Engine dynamometer test run.
Code of Federal Regulations, 2013 CFR
2013-07-01
... engine, dynamometer, and sampling system. (iii) Change filters, etc., and leak check as necessary. (2..., loaded particulate sample filter cartridge into the filter holder assembly. It is recommended that this be done within the filter stabilization environment, with both ends of the filter holder assembly...
40 CFR 86.1337-2007 - Engine dynamometer test run.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine, dynamometer, and sampling system. (iii) Change filters, etc., and leak check as necessary. (2..., loaded particulate sample filter cartridge into the filter holder assembly. It is recommended that this be done within the filter stabilization environment, with both ends of the filter holder assembly...
40 CFR 86.1337-2007 - Engine dynamometer test run.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engine, dynamometer, and sampling system. (iii) Change filters, etc., and leak check as necessary. (2..., loaded particulate sample filter cartridge into the filter holder assembly. It is recommended that this be done within the filter stabilization environment, with both ends of the filter holder assembly...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
... systems; duct temperature limiters; air/oil heat exchangers; oil cooler fans; fuel filter assemblies... assemblies; filter extractors; de- coupler/disassembly wrenches; torque wrench adaptors; test benches; drills...; filter assemblies; oil filter install kits; cartridge screens; filter housings; trim balance weights...
Verification testing of the Hydro International Up-Flo™ Filter with one filter module and CPZ Mix™ filter media was conducted at the Penn State Harrisburg Environmental Engineering Laboratory in Middletown, Pennsylvania. The Up-Flo™ Filter is designed as a passive, modular filtr...
Test Of A Microwave Amplifier With Superconductive Filter
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.
1995-01-01
Report describes design and low-temperature tests of low-noise GaAs microwave amplifier combined with microstrip band-pass filter. Two versions of microstrip filter used in alternate tests; in one version, microstrips formed as films of high-transition-temperature superconductor Y/Ba/Cu/O on lanthanum aluminate substrate with gold film as ground plane. Other version identical except microstrips as well as ground plane made of gold, normally conductive.
Development and Testing of PRD-66 Hot Gas Filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, J.A.; Garnier, J.E.; McMahon, T. J.
1996-12-31
The overall objective of this program is to develop and commercialize PRD-66 hot gas filters for application in pressurized fluidized bed combustors (PFBC) and Integrated Gas Combined Cycle (IGCC) power generation systems. The work is being carried out in phases with the following specific objectives: 1. Demonstrate acceptable mechanical, chemical, and filtration properties in exposure tests. 2. Produce and qualify selected prototype design filter elements in high temperature high pressure (HTHP) simulated PFBC exposure tests. 3. (Option) Generate a manufacturing plan to support commercial scale-up. 4. (Option) Recommend process equipment upgrades and produce 50 candle filters. Since the beginning ofmore » this program, a parallel evaluation of DuPont Lanxide Composites Inc. (DLC) PRD-66 hot gas candle filters took place using AEP`s TIDD PFBC facility. Several PRD-66 filters experienced damage during the final testing phase at TIDD, after highly successful testing in earlier runs. During the past year, DLC has undertaken a study under this contract to understand the mechanism of damage sustained in TIDD Test Segment 5. DLC has formulated a hypothesis for the damage mechanism based on the available evidence, and verified that the damage mechanism is possible given the conditions known to exist in TIDD. Improvements to the filter design to eliminate the root cause of the failure have been undertaken. This report details DLC`s conclusions regarding the failure mechanism, the evidence supporting the conclusions, and steps being taken to eliminate the root cause.« less
Effect of filtration on rolling-element-bearing life in contaminated lubricant environment
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Moyer, D. W.; Sherlock, J. J.
1978-01-01
Fatigue tests were conducted on groups of 65 millimeter-bore ball bearings under four levels of filtration with and without a contaminated MIL-L-23699 lubricant. The baseline series used noncontaminated oil with 49 micron absolute filtration. In the remaining tests contaminants of the composition found in aircraft engine filters were injected into the filter's supply line at a constant rate of 125 milligrams per bearing-hour. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns (0.45, 10, 30, and 70 microns nominal), respectively. Bearings were tested at 15,000 rpm under 4580 newtons radial load. Bearing life and running tract condition generally improved with finer filtration. The 3 and 30 micron filter bearings in a contaminated lubricant had statistically equivalent lives, approaching those from the baseline tests. The experimental lives of 49 micron bearings were approximately half the baseline bearing's lives. Bearings tested with the 105 micron filter experienced wear failures. The degree of surface distress, weight loss, and probable failure mode were found to be dependent on filtration level, with finer filtration being clearly beneficial.
An expert system, CORMIX1, was developed to predict the dilution and trajectory of a single buoyant discharge into an unstratified aquatic environment with and without crossflow. The system uses knowledge and inference rules obtained from hydrodynamic experts to classify and pred...
An Automated Hollow Fiber System for the Deglycerolization of Thawed Frozen Human Blood. Phase 1.
1994-09-13
is restored . Each controe module will have its own internal power supply meeting medical device specifications (FDA, ISO 9000, AAMI, and UL). This...Colton, "A Concentration Polarization Model for the Filtrate Flux in Cross-Flow Microfiltration of Particulate Suspensions," Dept. of Chemical
A Novel Anti-Pollution Filter for Volatile Agents During Cardiopulmonary Bypass: Preliminary Tests.
Nigro Neto, Caetano; Landoni, Giovanni; Tardelli, Maria Angela
2017-08-01
Concerns regarding pollution of the operating room by volatile anesthetics and effects on atmospheric ozone depletion exist. Volatile agents commonly are used during cardiopulmonary bypass to provide anesthesia independent of any supposed myocardial protective effects. The authors' aim was to create and to assess the performance of a prototype filter for volatile agents to be connected to the cardiopulmonary bypass circuit to avoid the emission of volatile agents to the operating room, and also to the environment without causing damage to the membrane oxygenator. Observational trial. University hospital. Prototype filter for volatile agents. The prototype filter was tested in a single ex vivo experiment. The main data measured during the test were pressure drop to detect interference with the performance of the oxygenator, back pressure to detect overpressure to the outlet gas jacket of the oxygenator, analysis of exhaled sevoflurane after the membrane oxygenator, and after the filter to detect any presence of sevoflurane. The prototype filter adsorbed the sevoflurane eliminated through the outlet portion of the oxygenator. During the entire test, the back pressure remained constant (4 mmHg) and pressure drop varied from 243 mmHg to 247 mmHg. The prototype filter was considered suitable to absorb the sevoflurane, and it did not cause an overpressure to the membrane oxygenator during the test. Copyright © 2017 Elsevier Inc. All rights reserved.
[When sunscreens do not help: allergic contact dermatitis to UV filters].
Ludriksone, L; Tittelbach, J; Schliemann, S; Goetze, S; Elsner, P
2018-06-07
Ultraviolet (UV) filters may cause allergic and more frequently photoallergic contact dermatitis. Therefore, a photopach test should always be performed in case of a suspected contact sensitivity to UV filters. We report a case of a 65-year-old woman with a recurrent erythema of the face and décolleté after sun exposure despite application of a sunscreen. The (photo)patch test revealed a contact sensitivity to the UV filter butyl-methoxybenzoylmethane. Treatment with a topical glucocorticoid and avoidance of the particular UV filter led to a rapid improvement.
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.122 - Breathing resistance test; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Exhalation Front-mounted or back-mounted (without particulate filter) 60 75 20 Front-mounted or back-mounted (with approved particulate filter) 70 85 20 Chin-style (without particulate filter) 40 55 20 Chin-style (with approved particulate filter) 65 80 20 Escape (without particulate filter) 60 75 20 Escape (with...